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27. Modeling of Coastal Waves and Hydrodynamics

Patrick J. Lynett, James M. Kaihatu

This chapter presents an overview of the avail-
able methods for modeling coastal waves. First,
an overview of the relevant coastal processes,
from shoaling to turbulent mixing, is provided to
establish a basis to compare the various mod-
eling approaches. The bulk of the discussion
centers on modeling wind waves and includes
a brief overview of the linear and analytical
theory available to quantify coastal transfor-
mation, and then follows with a summary of
spectral and phase-resolving approaches. Mod-
eling long waves is discussed next, with a focus
on tsunami simulation. Finally, the chapter
summarizes techniques to couple the various
models and reviews recent advances in the
topic.
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As an ocean surface wave enters the coastal zone,
broadly defined here as the water landward of the con-
tinental shelf or some other depth transition, interaction
with the seafloor and currents causes significant trans-
formation. Waves will first start to feel the bottomwhen
the depth (h) to wavelength (L) ratio is less than 1=2,
and waves are considered to be in shallow water, where
the effects of the bottom are strong, when this ra-
tio dips below approximately 1=25. Two-dimensional
(2-D) variations in the seafloor can lead to wave fo-
cusing due to the effects of refraction. Wave shoaling
causes the wave amplitude to grow and the wavelength
to shorten, steepening the wave front until the wave
breaks.

Depending on the properties of the incoming wave,
nonlinearities in the wave behavior are important for
some distance before breaking and through the surf
zone. Shallow water nonlinearity is governed by the
wave height to water depth ratio; as the ratio gets larger,
it is expected that nonlinearity becomes increasingly
important. From this definition, it is clear that nonlin-
earity must be important near breaking, as this is the
point when the wave height is similar to the depth. Non-
linearity in the coastal zone can change the speed at

which a wave travels, where it breaks, and how it in-
teracts with currents.

Nonlinear waves in the coastal zone also induce
a net mass transport in the direction of the wave. This
net mass transport is due to wave radiation stress,
which is name given to the net positive momentum
flux in the direction of wave propagation, and leads
to wave-induced currents. Currents moving parallel to
the shoreline are termed alongshore currents and are
primarily responsible for alongshore sediment move-
ment. These currents can generate instabilities, often
driven by alongshore bathymetry variation, which can
manifest as strong rip currents and shallow turbulent co-
herent structures. Such features induce high horizontal
shear on the flow, and lead to significant horizontal and
vertical mixing.

When designing coastal structures, engineers are of-
ten most concerned with extreme event loads. Here,
extreme events may be storm surges and the accom-
panying storm waves or tsunamis, for example. It is
a present challenge for coastal engineers to determine
these extreme event loads, as there is currently no
accepted design code for extreme wave loads. Further-
more, the sea level rise associated with climate change
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has the potential to increase peak water levels during
storms [27.1], also implying that wave energy may pen-
etrate further inshore. The engineer is left with many
different options to quantify the wave properties in the
coastal zone, from overly simple methods to impracti-
cally complex numerical tools.

Relative to many engineering disciplines, the use
of numerical coastal wave models for design is new.
Many analyses still rely on the simple linear wave meth-
ods described in the following section. The usage of
large-scale spectral wave models has become common-

place, as these models are efficient and well tested.
Currently, it is less common to go to detailed phase-
resolving models in engineering practice. These models
provide a wave-by-wave resolution of the coastal dy-
namics, and can provide insight on a small spatial scale.
Such insight is important when trying to, for exam-
ple, accurately estimate wave overtopping of a coastal
levee or wave impact loads on a structure. The fol-
lowing sections of this paper will outline the various
approaches, providing a brief literature review and the-
oretical background.

27.1 Wind Wave Modeling

There is a wide range of useful techniques for es-
timating wind wave properties in the nearshore; the
choice of which technique to use depends on limiting
factors such as the resources available, the precision re-
quired in the result, and the physical properties of the
waves themselves. The types of approaches discussed
in this section have both highly variable physical ap-
proximation as well as computational demand; these
two factors often have an inverse behavior. It is the pur-
pose of the following presentation to outline the main
types of coastal modeling options, providing theoretical
background, numerical modeling schemes, and typical
applications.

27.1.1 Linear, Analytical and Semi-Empirical
Approaches

The simplest methods for estimating coastal wave
properties utilize linear potential wave theory. While
this theory is covered comprehensively in many text-
books [27.2], the most relevant equations are given
here. Additionally, this presentation will serve to es-
tablish the basic variable quantities used in coastal
hydrodynamic modeling. The free surface elevation �
for a single frequency component is given by

� D H

2
cos � ;

where H is the wave height equal to twice the wave am-
plitude a. For one horizontal dimension and constant
depth, � is the wave phase function given by

� D kx�!t ;

where k is the wave number, x is a horizontal coor-
dinate, ! is the angular frequency, and t is time. In
general terms, k and x can be vector quantities when

directional waves are considered. Wavenumber and an-
gular frequency are related to other important physical
quantities

k D 2�=L; ! D 2�=T; f D 1=T ;

where L is the wavelength, or horizontal distance be-
tween two successive crests or troughs, T is the wave
period, and f is the wave frequency. The linear dis-
persion relation provides the connection between wave
frequency and wavelength

!2 D gk tanh.kh/ ;

where g is gravity, h is the local water depth, and the
fluid is assumed inviscid. Expressions for fluid velocity
and pressure under the wave can be found in textbooks,
and will not be repeated here. Linear wave theory pre-
dicts closed, elliptical orbits of fluid particles under
waves, and, therefore, no net mass transport.

In the limited case of very shallow water, where
the ratio of water depth to wavelength approaches zero,
simplifications can be made to the full linear potential
theory discussed above. The dispersion relation reduces
to

!2 D ghk2 ;

which yields a wave speed c of

c D !

k
D L

T
D p

gh

and a horizontal fluid velocity u of

u D H

2

p
g=h cos � :

These expressions should be applied only in the case of
a very long wave, such as for tides, tsunamis, and swell
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waves in very shallow water. However, even outside
these cases, quick wave property calculations based on
the above will still provide a useful preliminary refer-
ence point for shallow water wind waves.

Linear wave transformation in shallow water in-
cludes the effects of shoaling, refraction and diffraction,
and can be expressed in the general form

H

Ho
D KSKRKD ;

where H represents the wave height at some coastal lo-
cation,Ho the height at some offshore location,KS is the
shoaling factor, KR is the refraction factor, and KD is the
diffraction factor. Assuming no dissipation of energy
during propagation, the conservation of wave power be-
tween any two locations in the propagation path gives
the shoaling coefficient

Ks D
r

noLo
nL

;

where

n D 1

2

�
1C 2kh

sinh .2kh/

�
:

This n value varies from 0.5 for a deep water wave to 1.0
for a shallow water wave. It is remarked that the basic
linear theory presented here does not include bottom re-
flection or bottom dissipation, and can thus be applied
between any two points regardless of the bathymetry
between these two points. However, the theory implic-
itly assumes inviscid propagation and a mildly sloping
bottom, and this must be satisfied at a minimum for the
shoaling estimation above to be physically appropriate.

Wave refraction is the process of wave crests bend-
ing due to propagation-normal variations in bathymetry.
Wave crests will bend into shallow water regions as the
propagation speed slows in such regions, with the re-
fraction coefficient

KR D
r

cos˛o

cos˛
;

where ˛ is the angle of incidence relative to the shore-
line or some prescribed depth contour, and can be found
using Snell’s Law

sin˛ D c

co
sin˛o :

This relation may only be used in simple bathymetries
with shore-parallel bottom contours. In more complex
regions, modified forms of Snell’s law can be used

to create wave rays, which were commonly used in
the twentieth century to show wave paths and out-
line possible areas of wave focusing and de-focusing.
These techniques have been displaced by numerical
methods, some of which are discussed in later sections
of this chapter. There is no general equation for the
diffraction coefficient. The engineer should reference
the numerous diffraction diagrams that can be found in
the Coastal Engineering Manual CEM) [27.3], which
plot KD surfaces for various combinations of breakwa-
ter configurations and incident wave directions.

Once the wave reaches the break point, the coastal
transformation equation given above can no longer be
used, and some other approach must be used to cap the
wave height. A common engineering approach is the
introduction of the breaker index, which is the ratio of
the breaking wave height to the local water depth. For
a given wave period and bathymetry slope, a breaker in-
dex can be estimated. Once the shoaling and refraction
analysis estimates a wave height to depth ratio that ex-
ceeds the breaker index, it is assumed the wave starts to
break; this is the break point. Breaking is then usually
assumed to be depth limited, meaning that the breaker
index remains constant as the water depth decreases
onshore. The difficulty in this approach is determin-
ing a reliable estimation of the breaker index. There
are numerous different equations for this index; the
most common are found in the CEM. For waves shoal-
ing over a very steep slope, the breaker index can be
greater than 1.0, while for waves breaking over an es-
sentially flat bottom, the breaker index may be lower
than 0.4 [27.4]. A commonly assumed value for the
breaker index found in engineering studies is 0.78; this
is derived from the maximum theoretical solitary wave
height, and its physical relevance to random coastal
wind wave breaking is questionable.

For studies that seek to use straightforward analysis
methods but also provide an estimate of the wave height
envelope across a cross-shore beach profile, the energy
flux method [27.5] is a useful tool. Here, it is assumed
that the spatial rate of change of wave energy flux F is
due to some dissipation function '

dF

dx
D �'.x/ :

The dissipation function is driven by breaking and is
proportional to the difference between the local wave
energy flux and some stable energy flux for the local
depth. Determination of a stable energy flux is, simi-
larly to the determination of a breaker index, difficult
for a wide range of conditions. Commonly used mod-
els for the dissipation function include [27.6] and [27.7],
which are both established for random wave break-
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ing. Note that outside the breaker zone, where the left-
hand side of the above equation is zero, the energy flux
method will reduce to a linear shoaling model. This
wave transformation model has been adopted by a num-
ber of large-scale morphology change simulators,which
require a good estimate of the breaker location and re-
sulting longshore currents for large horizontal areas.
However, this approach has been largely displaced by
more recent numerical tools, which can better include
directionality, dissipation, and nonlinear effects. Some
of these tools are discussed in the following sections.

27.1.2 Spectral Modeling: Phase-Averaged
and Phase-Resolving Approaches

In the open ocean, wind wave generation and prop-
agation are typically described using phase-averaged
spectral models. These spectral models determine spa-
tial and temporal changes in the wave spectrum, or
the wave energy as a function of frequency and direc-
tion. A spectral energy balance is derived, accounting
for wave growth, propagation, and dissipation based
on wind energy input, whitecapping, and bottom fric-
tion. Examples of such models are WISWAVE (wave
information study wave model) [27.8], WAVEWATCH
III [27.9], andWAM (wave model) [27.10]. These mod-
els are highly developed for open ocean waves, but do
not account properly for coastal effects such as shal-
low water wave–wave interactions and depth-induced
breaking [27.11]. They output a directional spectrum,
which can then be employed as boundary conditions
in a coastal zone model to simulate nearshore propaga-
tion. For example, WAM could be coupled with SWAN
(simulating waves nearshore) [27.12], a coastal spectral
model, to estimate the spectral evolution from deep to
shallow water [27.11]. However, even coastal spectral
models only crudely approximate dynamic nearshore
phenomena, due to the inherent approximations such
as phase-averaging, weak nonlinear effects, and no
diffraction.

In its most general form, the spectral wave action
density balance equation is given by

Dw .N/

Dt
D S

!
;

where N is the time-dependent wave action density, or
energy density divided by frequency, defined for an in-
dividual frequency; the total derivative Dw .N/=Dt is
taken in the direction of wave motion, and S represents
any external source or sink acting on the conserva-
tion volume for which the total derivative is taken. S
by definition includes forcings such as those of wind
and viscous dissipation, such as whitecapping, wave

breaking, and bottom friction. If the nonlinear advec-
tion terms are neglected from the total derivative, then
S must also include nonlinear energy transfers among
the various frequencies. Expanding the above balance
equation, and including the terms of coastal importance,
we have

@N

@t
C .linear energy transfers/

D Sbottom friction

!
C Sbreaking

!
C Swhitecap

!

� Swind input
!

� .nonlinear energy transfers/ ;

where the mechanism of each source/sink S term is
given in its subscript, and the nonlinear energy transfer
term represents energy transfer from one frequency to
a different frequency. For example, the bottom friction
sink is most commonly expressed in the Joint North Sea
Wave Project (JONSWAP) form [27.13]

Sbottom friction D �CbG .f /E ;

where Cb is a bottom friction coefficient dependent on
local wave and bottom conditions, G is the functional
form of the sink and is dependent on the frequency, and
E is the local energy density. G has the physically rea-
sonable form of being large at low frequencies (high
dissipation in shallow water) and approaches zero (no
dissipation) in the deep water region. The breaking dis-
sipation source function is restricted by breaker-index
uncertainties similarly as discussedwith the linear mod-
eling in the previous section. However, due to the ability
of these coastal spectral models to include nonlinearity
and approximate dissipation, they have been shown to
be excellent predictors of wave height transformation
for a wide range of physical configurations. It is reason-
ably stated that, if the user is not interested in detailed
wave-by-wave breaking estimation, runup, infragrav-
ity waves, three-dimensional (3-D) flow profiles, and
turbulent dynamics such as rip currents and coastal ed-
dies, then coastal spectral models are the most efficient
and accurate option available. For a further discussion
and a nice review of state-of-the-art spectral modeling
methods, the reader is directed to [27.14]. Figure 27.1
shows a result from the SWAN model [27.12], with an
improved numerical scheme for the geographical prop-
agation terms [27.15], applied to the area surrounding
Santa Rosa and San Miguel Islands in the Southern Cal-
ifornia Bight. The extreme refraction around the islands
served as a stringent test of the model; the single-peaked
incident wave spectrum (Fig. 27.1c) has split into two
discrete spectra at the location of the measurement sta-
tion between the two islands.



Modeling of Coastal Waves and Hydrodynamics 27.1 Wind Wave Modeling 601
Part

C
|27.1

0 10 20 30 40 50 60

a)

x (km)

y 
(k

m
)

50

45

40

35

30

25

20

15

10

5

0

300

250

200

150

100

50

0
0 10 20 30 40 50 60

b)

x (km)

y 
(k

m
)

50

40

30

20

10

0

3

2.5

2

1.5

1

0.5

0

0.05 0.06 0.07 0.08 0.09

c)

Frequency (Hz)

D
ire

ct
io

n 
(d

eg
)

100

50

0

–50

–100
0.05 0.06 0.07 0.08 0.09

d)

Frequency (Hz)

D
ire

ct
io

n 
(d

eg
)

100

50

0

–50

–100

0.25

0.2

0.15

0.1

0.05

0

0.05

0.04

0.03

0.02

0.01

0

Fig. 27.1a–d SWAN simulation of wave refraction around San Miguel and Santa Rosa Islands in the Southern California
Bight. (a) Bathymetry (in m) and pressure gage locations (white dots) near San Miguel (left) and Santa Rosa (right)
Islands; location of pressure gage #10 denoted with a star. (b) Significant wave height (in m) on January 14, 1992 at
2300 Pacific Standard Time. (c) Incident swell wave spectrum measured offshore of Southern California Bight (January
14, 1992 at 2300 PST) and applied to the left and upper boundaries of local model domain shown in (a); zero degrees
denotes waves approaching from due west, while C90 degrees denotes waves approaching from due north. (d) Swell
wave spectrum output at location of pressure gage #10

Modelers looking to perform phase-resolving sim-
ulations of waves from intermediate depths to the
shoreline have few options. Well-established models
such as SWAN and STWAVE (steady state spectral
wave model) [27.16] are phase-averaged models and do
not directly provide time histories of free surface and
velocity fluctuations due to waves. Mild-slope equa-
tion models, such as REF/DIF (refraction/diffraction
model) [27.17], are phase-resolving models and are
computationally practical to run in most cases. How-
ever, these models have restrictions that limit their
use, such as weak diffraction effects, a lack of wave
reflection, and the limitation to narrow banded spec-
trums, and higher-order nonlinearity is generally not
captured [27.18].

An alternative approach to spectral phase-averaged
modeling, which retains both shallow water nonlin-
earity and the periodic nature of waves, is nonlin-
ear frequency-domain wave modeling [27.19–22]. In
essence, these models are nonlinear extensions of
phase-resolving nearshore linear refraction-diffraction
models such as REF/DIF [27.17]; a relatively compre-
hensive account of these models is given in [27.23].
These models retain second-order nonlinearity via near
resonant interactions (both subharmonic and superhar-
monic interactions) between triads of frequencies. The
strength of the interactions is dictated by both the inter-
action coefficients and the phase mismatches between
the complex amplitudes of the spectral components.
These models have been improved to include wide-
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angle parabolic propagation [27.24] and interaction
effects among triads of longshore wavenumbers [27.22,
25]. Several models also contain a dissipation mech-
anism representing spectral wave breaking, consisting
of a lumped parameter breaking description [27.7] cou-
pled with an adjustable distribution of dissipation over
the frequency range. The distribution is an adjustable
balance between a frequency-independent weighting
of dissipation and one that is weighted as frequency
squared. The latter distribution was shown by Kaihatu
et al. [27.26] to be an inner surf zone asymptote of the
dissipation dependence on frequency. Smoothed ver-
sions of these phase-resolving models that treat triad
interactions in terms of averaged bispectral quanti-
ties [27.22, 25, 27] have also been developed; these
models are closer akin to the phase-averaged spectral
models discussed previously.

27.1.3 Depth-Integrated
and Boussinesq-Type Approaches

While frequency domain models are advantageous due
to their relatively small computational demand, a sig-
nificant effort in the nearshore wave model commu-
nity towards developing phase-resolving, time domain
Boussinesq models has occurred in the past decade. As-
suming that both nonlinearity and frequency dispersion
are weak and are of the same order of magnitude, Pere-
grine [27.28] derived the standard Boussinesq equa-
tions for variable depth in terms of depth-averaged
velocity and free surface displacement. Numerical re-
sults based on the standard Boussinesq equations or the
equivalent formulations have been shown to give pre-
dictions that compared quite well with field data [27.29]
and laboratory data [27.30, 31].

As mentioned above, the standard Boussinesq equa-
tions are derived based on an assumption between the
nonlinearity of the wave, " D a=h, and the frequency
dispersion of the wave, 
 D kh. The precise relation of
these parameters comes from a nondimensionalization
of the full potential flow equations using a shallow wa-
ter scaling and is given by

O .�/ D O



2

� � 1 ;

which is the true Boussinesq assumption as related to
nonlinear long surface waves. With this assumption,
nonlinear two-dimensional-vertical potential flow can
be reduced to the one-dimensional 1-D-horizontal equa-
tion set for a wave over constant water depth as

continuity: �t C .�u/x C hux D 0 ;

momentum: ut C g�x C uux � 1

3
huxxt D 0 ;

where the subscripts represent partial derivatives and
u is the depth-averaged horizontal velocity. The non-
dispersive, shallow-water wave equations are easily
extracted from this equation set by neglecting the last
term ( 13huxxt/ on the left-hand side of the momentum
equation; it is this single term that adds dispersion to
the shallow water base.

The mathematical effect of the additional dispersive
term can be quantified by examining the linear form of
the standard Boussinesq equations given above and sub-
stituting in the linear wave solution form

� D �oe
i� ; u D uoe

i� ; � D kx�!t :

After some algebra, the dispersion relation of this ap-
proximate equation set can be expressed as

!2 D ghk2

1C 1
3 .kh/

2 ;

which is also the Œ0; 2� Pade approximation of the full
linear dispersion relation given in the Linear Wave Ap-
proaches above (Sect. 27.1.1). In the practical sense,
this single additional term in the momentum equation
allows for accurate linear propagation of waves up to
kh � 0:5, which is approximately a fivefold increase in
applicability compared to the shallow water model, us-
ing the same accuracy thresholds in phase and group
velocity [27.32].

As it is required that both frequency dispersion
and nonlinear effects are weak and of the same order,
the standard Boussinesq equations are not applicable
to very shallow water depth, where the nonlinearity
becomes more important than the frequency disper-
sion, nor to the deep water depth, where the frequency
dispersion is of order 1. The standard Boussinesq equa-
tions break down when the depth is greater than �
1=10 of the wavelength. For many engineering ap-
plications, where the incident wave energy spectrum
consists of many frequency components, a lesser depth
restriction is desirable. To extend the applications to
shorter waves (or deeper water depth) many modified
forms of Boussinesq-type equations have been intro-
duced [27.22, 33, 34]. Although the methods of deriva-
tion are different, the resulting dispersion relations of
the linear components of these modified Boussinesq
equations are similar, and may be viewed as a slight
modification of the .2;2/ Pade approximation of the
full dispersion relation for linear water waves [27.35].
It has been demonstrated that the modified Boussinesq
equations are able to simulate wave propagation from
intermediate water depth (the water depth to wave-
length ratio is about 0.5) to shallow water including the
wave–current interaction [27.36].
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Despite the success of the modified Boussinesq
equations in intermediate water depth, these equations
are still restricted to weak nonlinearity. As waves ap-
proach the shore, the wave height increases due to shoal-
ing, until they eventually break. The wave height to wa-
ter depth ratios associated with this physical process vi-
olates the weakly nonlinear assumption. This restriction
can be readily removed by eliminating the weak non-
linearity assumption [27.37, 38]. Numerical implemen-
tations of the highly-nonlinear, Boussinesq-type equa-
tions include FUNWAVE (fully nonlinear Boussinesq
wavemodel) [27.38] andCOULWAVE (Cornell Univer-
sity long and intermediate wave model) [27.39]. These
models have been applied to a wide variety of top-
ics, including rip and longshore currents [27.40, 41],
wave runup [27.42], wave–current interaction [27.43],
and wave generation by underwater landslides [27.42],
amongmany others. Boussinesqmodels are steadily be-
coming a practical engineering tool. Directional, ran-
dom spectra can readily be generated by the models,
which capture nearshore evolution processes, such as
shoaling, diffraction, refraction, and wave–wave inter-
actions, with very high accuracy. The applicability of
the Boussinesq models is limited by the fact that the
models are fundamentally inviscid. The dissipation pro-
cesses, such as breaking and bottom friction, must be
parameterized in traditional Boussinesq models.

Recently, a number of non-traditional Boussinesq
approaches have been developed, with the goal of in-
cluding horizontal vorticity explicitly in the flow field.
An attempt to include these dynamics under a breaking
wave is found in [27.44], with further advances given
in [27.45]. Integrated within a Boussinesq-type deriva-
tion, the stream function equation is used to determine
the vertical variation of the velocity. This allows the
inclusion of the vorticity generated by breaking. The
breaking terms that appear as corrections to the momen-
tum balance are a function of the amount of vorticity
generated during the breaking process. This vorticity
is obtained from the solution to the vorticity transport
equation and has been shown to capture the flow field
dynamics under a spilling breaker.

A similar attempt was made by Kim et al. [27.46]
who included the viscous effects of a bottom shear, and
the associated rotationality, directly in a Boussinesq-
type derivation. While this leads to a far more complex
equation model, it includes the physics necessary to
simulate boundary shear and the complete coupling of
these effects with a nonlinear, dispersive wave field.
This model can predict the friction-induced changes to
the vertical profile of velocity under weakly unsteady
flow and can thereby provide good estimates of internal
kinematics. It is also able to translate the bottom-
created horizontal vorticity into a vertical vorticity field.

Fig. 27.2 Boussinesq simulation of waves near Freeport,
TX. Resolution of the model is 5m and the total spatial
extent is � 100 km2

Such a model is able to couple the dissipative and non-
linear effects of a bottom shear with a dispersive and
nonlinear wave field. While this and similar recent ad-
vances allow the depth-integrated equations to model
a wider range of physical processes, the computational
cost for this inclusion is high [27.47]. In addition to
the many individual calculations needed to quantify the
various terms in these equations, since the model in-
cludes first to third-order spatial derivatives, it becomes
necessary to resolve the leading order terms to fourth-
order numerical accuracy. This leads to the requirement
of a fourth-order spatial differencing and temporal inte-
gration scheme. Compared to an efficient shallow water
solver, the highly nonlinear Boussinesq-type model can
require 50�100 times more computational time for the
same numerical grid and time step configuration. While
this cost is relatively high, large domains can be tackled
with parallel computing [27.48]. For an example of the
possible scale of these simulations, see Fig. 27.2.

27.1.4 Navier–Stokes Equation-Based
Approaches

Phase and depth-resolving surf zone hydrodynamic
models, such as those that use the Reynolds-averaged
Navier–Stokes(RANS) equations along with a turbu-
lence closure and a robust free surface-tracking scheme,
are an ideal alternative for simulation of complicated
nearshore processes that involve breaking waves. In
general, RANS-based models are capable of calculat-
ing turbulence energy and energy dissipation due to
wave breaking and bottom friction. For example, in
one of the RANS-based models, COBRAS (Cornell
breaking wave and structure) [27.49–51], the two-
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dimensional RANS equations are coupled with the
k-" turbulence closure and the volume of fluid (VOF)
method for tracking free-surface position. This and
similar models can adequately resolve the wave break-
ing process and its interactions with the seabed. An
example of the types of output that this model pro-
vides is given in Fig. 27.3. RANS-based models have
not yet been widely accepted into coastal science and
engineering practice, as their computational cost is rel-
atively high and the high-resolution physical output
provided is often beyond what is needed by engi-
neering standards of practice for design. Where these
models are applied, it is usually for two dimensional
vertical (2DV) transect studies, where, for example,
details of wave breaking [27.52, 53], wave interaction
with complex and/or porous structures [27.54], and
fluid stresses and pressure distributions [27.55] are
studied.

This general class of model is still not practically
applicable, even in the academic sense, for simulat-
ing waves in 3-D coastal regions. 3-D solvers, using
various turbulent closure schemes, are, however, be-
coming a common basis for large-basin numerical wave
tanks. One of the more promising programs is Open-
FOAM [27.56], which is an open-source and freely

a)

b)

Fig. 27.3a,b Two snapshots from a RANS simulation of
wind waves breaking on a shallow shelf. The colors indi-
cate the intensity of turbulent kinetic energy. (a) shows the
free surface and turbulent kinetic energy at moment of jet
impingement on the free surface, and (b) shows the break-
ing wave a short time later.

available computational fluid dynamics package. The
flexibility in this package, and the ability to build off
a significant body of previous computational fluid dy-
namics (CFD) work, makes it possible to apply the
codes towards a variety of coastal modeling prob-
lems [27.57]. In the coming decade, it is anticipated
that wind wave modeling will continually move towards
the utilization of very high resolution, large eddy sim-
ulation (LES) tools, as this class of model is the main
option for predicting vertical and turbulent structures
which drive mixing and transport.

27.2 Modeling Long Waves

A long wave is defined as having a wavelength much
larger than the local water depth. Waves that commonly
meet this requirement include tides, storm surges, and
tsunamis. When the wave disturbance is considered
to be long, it is reasonable to use the non-dispersive
nonlinear shallow water (NSW) wave equations. The
NSW equations can be derived in a number of different
ways, but fundamentally all arise from an integration
of the Euler or Navier–Stokes equations with an as-
sumption of vertically-invariant horizontal velocity and
hydrostatic pressure. Due to the simple and well-studied
nature of the NSW equations, a wide variety of numer-
ical schemes have been used to solve them.

Models that are used to examine tides and storm
surges are often similar, if not the same model. Exam-
ples of this class of model include ADCIRC [27.58] and
DELFT3D-FLOW [27.59], both of which have received
widespread acceptance in the engineering community.
These models need to include proper tidal forcing, wind
stress for surge, and bottom friction in nearshore ar-
eas. Recently, circulation models have been coupled
with nearshore short-wave spectral models, which pro-
vide a wave-induced water level and current forcing
through radiation stress that is ingested by the circu-
lation model [27.60]. This allows for a more complete

nearshore simulation, as wave-induced currents become
important near the surf zone. Of particular importance
for accurate surge prediction is high resolution and ac-
curate coastal bathymetry and topography, often down
to 10m or less. Therefore, as is a common challenge
for simulation of long wave generation and evolution,
a very wide range of scales must be simulated. Numeri-
cal approaches that can accommodate this issue, such as
finite element meshing or grid nesting, must be adopted.

With the large number of deadly tsunamis in
the past decade, tsunami simulation capabilities have
increased relatively rapidly. Several tsunami compu-
tational models are currently used in the National
Tsunami Hazard Mitigation Program, sponsored by
the National Oceanic and Atmospheric Administra-
tion, to produce tsunami inundation and evacuation
maps for the states of Alaska, California, Hawaii, Ore-
gon, and Washington. The computational models in-
clude MOST (method of splitting tsunami), developed
originally by researchers at the University of South-
ern California [27.61]; COMCOT (Cornell multi-grid
coupled tsunami model), developed at Cornell Univer-
sity [27.62]; and TUNAMI-N2, developed at Tohoko
University in Japan [27.63]. All three models solve
the same depth-integrated and 2-D horizontal (2DH)
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nonlinear shallow water equations with different finite-
difference algorithms.

Successful simulation of tsunami propagation and
accurate prediction of the arrival time and wave height
at different locations rely on a correct estimate of the
earthquake fault plane mechanism. Interplate faults in
subduction zones are responsible for most of the large
tsunamis in history. For interplate fault ruptures, the re-
sulting seafloor displacement can be estimated approx-
imately using linear elastic dislocation theory [27.64,
65]. For more sophisticated fault models, non-uniform
stress-strength fields (faults with various kinds of bar-
riers, etc.; [27.66]) are expected, so the actual seafloor
displacement may be very irregular. Once the seafloor
displacement has been determined, the initial ocean free
surface profile is assumed to take the same configura-
tion, based on the assumptions that the upward seafloor
movement is impulsive and seawater is incompressible.

For a given source region condition specified by ei-
ther the initial free surface elevations or a time history
of sea floor displacement, existing models can accu-
rately simulate propagation of a tsunami over a long dis-
tance, provided that bathymetry data exists. Figure 27.4
shows a snapshot of free surface elevation from a COM-
COT simulation at 10 h and 44 min after the March
11, 2011 Japan tsunami. The shallow-water equation
models by definition lack the capability of simulating
dispersive waves, which could well be the dominating
features in landslide-generated tsunamis [27.39] and for
tsunamis traveling a long distance [27.67]. To address
this issue of dispersivity, a different set of governing
equations must be employed, or some manipulation of
the numerical truncation error must be made.
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Fig. 27.4 Snapshot from tsunami simulation of the March 11, 2011
Japan tsunami

As a tsunami propagates into the nearshore region,
the wave front undergoes a nonlinear transformation
while it steepens through shoaling. If the tsunami is
large enough, it can break at some offshore depth
and approach land as a bore. Wave breaking in tra-
ditional NSW tsunami models has not been handled
in a physically satisfactory manner. Numerical dissi-
pation is commonly used to mimic breaking, and thus
results become grid dependent. In Boussinesq models,
this breaking is still handled in an approximate manner
due to the fact that depth-integrated derivation does not
allow for an overturning wave; however these break-
ing schemes have been validated for a wide range of
nearshore conditions [27.68].

27.3 Coupled and Nested Techniques

As mentioned above, there have been recent successful
attempts at coupling spectral wave models with circu-
lation models, which allows for robust simulation of
nearshore currents and the resulting transport. If one
is interested in basin-scale simulation of wind waves
with high coastal resolution, a natural coupling tech-
nique would be to use spectral wave information taken
from a large-scale model, such as SWAN or STWAVE,
to drive a detailed near-coast model, such as the Boussi-
nesq model. Since these two models function in differ-
ent dimensional space, the coupling between the two
models is likely to be one way; meaning that informa-
tion is given by the spectral model, but no information is
received by the spectral model. The implementation of
this coupling is straightforward, as it is with most one-
way coupling methods, and has been used in a number
of studies.

If examining transient wave phenomena or wave
hydrodynamics on a fine scale, spectral models are of
limited use. Of the two typical phase-resolving, depth-
integrated models used in wave studies, the Boussinesq
model can be considered a more physically complete
(or at least a higher-order) approximation compared to
the NSW. In coastal regions, where the water depth
is very shallow and thus amplitude is large and wave-
length becomes short, nonlinear and bathymetric in-
teractions across a wide range of frequencies occur.
These interactions can locally generate various shorter-
crested, or dispersive wave components, even if the off-
shore forcing is considered a long wave. A well-known
example is the transformation of a tsunami front into
an undular bore. Thus, the nearshore is expected to be
nonlinear and (possibly) dispersive, and a Boussinesq
model is appropriate. However, the additional physics
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Fig. 27.5a,b Example hybrid
Boussinesq-RANS setup; the
Boussinesq domain stretches from
x D 0�34m and the RANS exists
from x D 34�39m. (a) shows an
overtopping wave at the time of
maximum speed on the front of the
seawall, while (b) depicts the wave
and turbulent kinetic energy during the
downrush of water along the seawall

included in the Boussinesq approximation come with
substantial computational cost, often making the model
impractical for ocean basin scale simulations. If one
wants to use the physical advantages of the Boussinesq
model for a local region in the nearshore zone, it be-
comes necessary to couple that Boussinesq model with
some other source of wave information for its boundary
conditions. The obvious coupling choice would be the
NSW, proven for both efficient and accurate basin scale
tsunami prediction.

There are numerous challenges with this coupling,
most notably that fact that the two approximations
(NSW and Boussinesq) are different, and so there
can be a physical mismatch across the coupling in-
terface. Also, the NSW will typically have a low-
order numerical solution approach (hence its computa-
tional efficiency), while high-order partial derivations
in the Boussinesq model require a high-order scheme;
matching these two schemes can also create numerical
stability issues. Details regarding a coupling NSW-
Boussinesq approach can be found in [27.69].

While Boussinesq models can provide a detailed
description of the flow due to a tsunami, it can be nec-
essary to use a model with even less restrictive physical
approximations, and the ability to resolve very small-
scale (sub meter) turbulent features, such as a 3-D
Navier–Stokes model. A similar coupling argument as
provided above for the Boussinesq can be made here
for the fully 3-D model. Due to their high computa-
tional costs, full 3-D models would best be used in
conjunction with a depth-integrated two-dimensional-
horizontal model (2DH) (i. e., depth-integrated NSW or
Boussinesq). While the 2DH model provides incident

wave information, the 3-Dmodel computes local wave–
structure interactions. The results from 3-D models
could also provide a better parameterization of small-
scale features (3-D), which could then be embedded
in a large-scale 2DH model. One-way coupling (using
a NSW-generated time series to drive a 3-D model, but
not permitting feedback from the 3-D model back into
the NSW) is fairly straightforward to construct [27.70].
Two-way coupling, however, is difficult and requires
consistent matching of physics and numerical schemes
across model interfaces.

Sittanggang and Lynett [27.71] presented work on
coupling of a Boussinesqmodel and 2-D Navier–Stokes
model. The two models are two-way coupled, and so
act as if they are a single model working on a con-
tinuous domain. In the coupling implementation, the
Boussinesq model is applied in the non-breaking zone
and the RANS model in the breaking/high-turbulence
zone. The two models share a common domain inter-
face for exchanging data, used as boundary conditions
in the models. By coupling the two models, accu-
rate large-scale wave simulation using a coarse grid
and simple physics in the deep-to-intermediate water
and fine grid and detailed physics in the nearshore
area is computationally feasible. Figure 27.5 gives an
example of this hybrid simulation approach for non-
linear wind waves overtopping a coastal structure. The
wind waves propagate from offshore with the Boussi-
nesq model. Approximately one wavelength offshore
of the break point, the Boussinesq and RANS models
are two-way coupled, giving the ability for high res-
olution of the wave overtopping and a relatively large
domain.

27.4 Summary of Model Properties

Table 27.1 provides a descriptive listing of the vari-
ous models described in this chapter. Included in the
table are typical spatial and temporal extents used
in simulations along with resolutions, the number of

derivatives operators found in the governing equa-
tions, and common applications and outputs. The in-
formation in the derivative operators column, which
also includes the highest order of differentiation, is
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meant to provide a basis to compare the computa-
tional cost of the various models; this is a measure
of the effort required to determine a solution at ev-
ery model grid node at every time step. It is remarked
that this table provides information relative to typi-

cal model usage, here meaning applications that might
arise in engineering practice or on an operational level.
Research-level applications push the domain sizes, res-
olutions, and applications well beyond the types given
below.

27.5 Conclusions
In this chapter, we have provided a cursory overview
of coastal wave modeling theory and methods. The
information contained here provides a useful starting
point for understanding the differences in the wide va-
riety of approaches. Ultimately, the choice of model
will be governed by the resources available for the
study and the primary piece of physical information
that requires estimation. If resources are light and
a precise estimate of the wave conditions is not yet
needed, as might be the case for a preliminary scop-
ing analysis, linear wave theory may be an acceptable
approach for coastal transformation. If accurate and

relatively large-scale wave height and period informa-
tion is the goal, spectral models will most likely be
the best option, with the included level of nonlinear-
ity and resolution controlled by the resources of the
project. For studies requiring detailed, small-scale, and
wave-resolved information, such as might be needed for
critical infrastructure, a Boussinesq or Navier–Stokes
approach is reasonable. It is reiterated that the back-
ground given here, in terms of the individual models
discussed, does not represent the wealth of numerical
modeling tools available to the international engineer-
ing community.

27.6 Nomenclature
� free surface elevation
H wave height
a wave amplitude
� wave phase function
k wave number
! angular frequency
L wavelength
T wave period
f wave frequency
g gravity
h water depth
c wave speed
u horizontal fluid particle velocity
Ho offshore wave height

KS shoaling coefficient
KR refraction coefficient
KD diffraction coefficient
˛ wave angle of incidence
F wave energy flux
N time-dependent wave action density
S external wave forcing, source/sink term in spectral

wave equations
Cb bottom friction coefficient
G functional form of wave energy sink
E local wave energy density
" wave amplitude divided by water depth D a=h

 wave number times water depth D kh
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