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19. Cooperative Vehicle Environmental Monitoring

Naomi Ehrich Leonard

This chapter reviews cooperative control of au-
tonomous vehicles for environmental monitoring
with a focus on methodologies that have been
designed, deployed, and proven to provide effi-
cient, reliable, and sustained monitoring of the
uncertain and inhospitable ocean environment.
Vehicles that communicate their state or measure
the relative state of other vehicles in the team
can cooperate by using feedback control to coor-
dinate their motion as a mobile, reconfigurable
sensor array, responding efficiently to changing
signals, scales, and conditions in the environ-
ment. In a variety of contexts, a vehicle team
with judiciously designed cooperative control can
outperform the same team with each vehicle con-
trolled independently. For example, cooperative
control methodologies have been developed to
improve the richness of information in the data
that the vehicles collect, their accuracy in feature
detection and tracking, and the robustness of their
decisions to uncertainty and failures. The chapter
begins with a survey of early work on ocean samp-
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ling and environmental monitoring, coopera-
tive control, and collective motion. The theory,
methodology, and field deployment are then high-
lighted for two projects on cooperative vehicle
monitoring in the coastal ocean that demonstrated
the applicability and associated performance
advantages of cooperative control. The chapter
concludes with a presentation of more recent
developments as well as future directions in coop-
erative vehicle environmental monitoring.

19.1 Motivation

Over the last decade, methodologies for automated
cooperative control of robotic vehicles have been de-
signed, deployed, and proven to provide efficient, re-
liable, and sustained monitoring of the uncertain and
inhospitable ocean environment. Unprecedented data
sets have been collected from deployments of coop-
erative vehicles in the field, and both real-time and
post-deployment analyses have led to new understand-
ing of the environment. This first decade of success in
cooperative vehicle environmental monitoring sets the
stage for new opportunities and future gain, especially
as the development of cooperative control methodolo-
gies can continue to leverage ongoing technological and
scientific advances in underwater communication and
sensing, energy and computational efficiency, vehicle
size, speed, maneuverability and cost, and ocean mod-
eling and prediction.

Indeed, the demonstrated potential of cooperative
vehicle control has led to increased demand for fleets
of autonomous underwater vehicles (AUVs) for use in
measuring ocean physics, biology, chemistry, and ge-
ology to improve understanding of natural dynamics
and human-influenced changes in the marine environ-
ment. Further, methodologies for cooperative control of
robotic vehicles in the ocean are readily adaptable to ap-
plications on land, in the air and in space; likewise, there
is much to be learned from developments in these other
domains. The recent explosion in research on networks
and complex systems, including investigation of mecha-
nisms that explain a collective intelligence exhibited by
animal aggregations on the move, are also being lever-
aged to advance design of cooperative vehicle dynamics.

For environmental monitoring to be successful,
physical, chemical, and biological variables must be
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measured across a range of spatial and temporal scales;
in the ocean the monitoring strategy must also con-
tend with a harsh, three-dimensional physical space
that is highly uncertain and dynamic. Small spatial and
temporal scales associated with the measured variables
typically make a stationary sensor array impractical be-
cause a very large number of sensors would be needed
to get sufficient resolution in space and/or time. An ar-
ray of mobile sensors, however, may be very well suited
to such a challenge since mobility can be exploited to
dynamically distribute fewer sensors according to the
spatial and temporal scales.

The underlying principle of cooperative control of
vehicles for environmental monitoring leverages mobil-
ity of sensors and uses an interacting dynamic among
the individual sensors to yield a collective behavior
that performs better than the sum of the parts. If the
vehicles can communicate their state or measure the
relative state of others in the team, then they can coop-
erate and the cooperative vehicle dynamics can provide
coordinated motion of the team as a whole. The re-
sulting vehicle network functions as a dynamically
reconfigurable sensor array with a capability for high
performance in environmental monitoring not available
at the level of individuals. High performance has been
demonstrated with cooperative vehicle groups in the
ocean in terms of richness of information in measure-
ments, accuracy in feature detection and tracking, and
robustness of decisions to uncertainty and failures.

Methodologies for systematic generation of feed-
back control laws that yield provable collective dy-
namics have been critical to the successful design of
high-performing cooperative vehicle networks. Feed-
back control refers here to the automated changes that
each vehicle makes in response to its measurements of
the sampled fields, the relative state of other vehicles in
the network, and any additional available measured or
computed signals.

Consider, for example, the task of tracking high-
density phytoplankton patches in the ocean with a team
of AUVs that carry optical sensors for measuring phy-
toplankton concentration. Suppose also that when any
two vehicles in the team are not separated by too great
a distance (call them neighbors), they can measure or
communicate to each other their relative position and/or
velocity. Then, each vehicle can apply a feedback con-
trol law, at its sampling or communication frequency,
that moves it in the direction of a combination of its
best estimate of:

1. The direction of increasing concentration
2. The direction toward its neighbors that are farther

than a prescribed separation distance

3. The direction away from its neighbors that
are closer than a prescribed minimal separation
distance.

In ideal conditions, the vehicles will move as a reg-
ularly spaced array up the phytoplankton concentration
gradient; in real conditions, feedback will provide ro-
bustness to noise, uncertainty, and disturbance within
bounds. An augmentation to this feedback law to fur-
ther reduce error due to noisy measurements has each
vehicle compute a local estimate of the optimal vehi-
cle array resolution for gradient climbing accuracy and
then adapt the prescribed separation distances between
neighbors to achieve this resolution.

Consider, as another example, the task of providing
dynamic sampling coverage of the changing phyto-
plankton patches over a fixed region with this same
team of AUVs. The goal is to enable the vehicles to effi-
ciently sample the patches across the region so that the
data can be used to map the phytoplankton patches with
minimal mapping error. Each vehicle can apply a feed-
back control law in response to where its neighbors are
collecting data and in accordance with priors on spatial
and temporal scales associated with the phytoplankton
patches. The feedback control law moves it toward a lo-
cation that is easily accessible, is away from others,
and has not been recently sampled. In this case in ideal
conditions, the vehicle network will cooperatively per-
form dynamic sampling coverage of the patches over
the region; in real conditions, feedback will provide ro-
bustness to some noise, uncertainty, and disturbance.
An augmentation to this feedback law has each vehicle
compute a local estimate of changing spatial and tem-
poral scales to update its priors and adapt how far from
other vehicles to move and how frequently to re-sample
previously sampled locations.

Feedback has also been used to close the loop
between cooperating vehicle networks and advanced
ocean models when data collected by the vehicle net-
work can be made available for assimilation into the
ocean models and the ocean model predictions can be
made available to one or more of the vehicles. In the
first example of tracking high-density phytoplankton
patches, the feedback with ocean models allows indi-
vidual vehicles to modify their gradient climb based
on predictions of high-density locations. In the sec-
ond example of dynamic sampling coverage in a fixed
region, the feedback with ocean models provides en-
hanced estimates of uncertainty so that individuals
could bias their motion toward sampling locations with
the greatest possibility of minimizing uncertainty in the
mapping. Forecasts of ocean currents are also useful for
navigation.
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Cooperative feedback control makes possible a ve-
hicle network that is autonomous, versatile, and robust
to noise and uncertainty. Further, when each vehicle
has the same feedback law, the vehicle network has
an added robustness to vehicle failures or additions
since an ordering of the vehicles is unnecessary and in
particular the system does not depend on any special in-
dividuals. Other promising opportunities have been ex-
plored with a heterogeneous group of vehicles. In these
cases, feedback can be used for cooperative subtask
allocation or coordinated complementary actions: for
example, slow-moving autonomous underwater gliders
can provide coverage and fast-moving propelled un-
derwater vehicles can be allocated to relay information
and to move to hot spots at great speed. Similarly, un-
manned aerial vehicles (UAVs) can provide large-scale
mapping of sea-surface fields and AUVs can comple-
ment with in-depth feature tracking below the surface.
In this chapter, we describe two projects in coopera-
tive vehicle environmental monitoring with extensive
field deployment in the coastal ocean that demonstrated
for the first time at large scale and over several weeks
the applicability and associated performance advan-
tages of cooperative control methodologies for mobile
sensor networks in the ocean. The first of these was
the autonomous ocean sampling network (AOSN) II
project [19.1, 2] with its field experiment in Monterey
Bay, CA, over the month of August 2003 and the sec-
ond was the adaptive sampling and prediction (ASAP)
project with its field experiment in Monterey Bay, CA,
over the month of August 2006 [19.3].

For AOSN-II, a methodology was designed [19.4]
and demonstrated [19.5] that featured small networks
of autonomous underwater gliders cooperating to com-

pute temperature gradients and track cold upwelled
water. The gliders were also used to demonstrate au-
tonomous coordination of their motion to sample along
the path of drifters and thus increase measurement
density along fronts. For ASAP, a methodology was
designed [19.6] and demonstrated [19.3] that featured
a network of 10 gliders (of two types) to optimize
dynamic sampling coverage, minimizing uncertainty
for estimation of temperature, salinity, and currents in
a large coastal region just north of Monterey Bay. In
both field experiments, three numerical ocean models
ran in near real time, assimilating data collected by
the gliders and providing estimates and predictions that
were used in the gliders’ adaptive motion planning.
Additional real-time data were provided by a research
aircraft, satellite imagery, high-frequency radar, moor-
ings, drifters, and propelled vehicles. In the ASAP
experiment, the cooperative behavior of a network of
six gliders ran autonomously without failure for almost
24 days straight.

An important factor in the success of the AOSN-
II and the ASAP projects was the strong multidisci-
plinary collaboration among researchers with expertise
in ocean science, vehicle dynamics, and control and dy-
namical systems theory. The methodologies developed
drew inspiration from earlier work in ocean sampling
and environmental monitoring, cooperative control, and
collective motion; we present background and history
on these subjects in Sect. 19.2. The AOSN-II and
ASAP programs in cooperative vehicle ocean monitor-
ing, from theory through full-scale ocean deployment,
are reviewed in Sect. 19.3. More recent developments
and future directions in cooperative vehicle environ-
mental monitoring are described in Sect. 19.4.

19.2 Background and History

The autonomous oceanographic sampling network
(AOSN) was introduced in 1993 by Curtin et al. [19.7]
as an approach for dynamic measurement of the ocean
environment and resolution of spatial and temporal gra-
dients in the sampled fields. At that time most oceano-
graphic data were collected from satellites, ships with
towed underwater profilers, and arrays of moorings and
floats. The AOSN concept was to deploy AUVs to
take measurements that would complement those from
distributed point sensors such as moorings and from
remote sensors such as satellites, and enable adaptive
sampling to improve forecast skill; the AOSN system
would operate successfully with the use of acoustic and
radio modems for communication and docking stations
for recharging AUV batteries. It was anticipated that

control would be critical for the AUVs to accomplish
complex missions in the presence of uncertainties and
real-world constraints, and that coordinated control of
the multiple vehicles would lead to system efficiency
and endurance. Bellingham described in [19.8] how
nested approaches would allow sampling the ocean over
a range of spatial and temporal scales.

The vision of an integrated ocean monitoring
system was made possible with the development
of small, relatively inexpensive AUVs. Propelled
AUVs such as the autonomous benthic explorer
(ABE) [19.9], the Odyssey [19.10], and the RE-
MUS [19.11] were designed to provide maneuverability
and speed. Buoyancy-driven autonomous underwater
gliders, including the Slocum [19.12], Spray [19.13]
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and Seaglider [19.14], were designed to provide en-
durance [19.15, 16]. ABE was used to map the sea
bottom and to search out and study deep-sea hydrother-
mal vent sites and volcanoes [19.17–20]. The Odyssey
vehicle was used in experiments under the ice in the
Arctic [19.21]. REMUS was equipped with optical sen-
sors and used to measure bioluminescence [19.22, 23].
Seagliders were sent on 5-month-long missions to mea-
sure physics, biology and chemistry off the coast of
Washington and in the Labrador Sea [19.15]. Slocum
gliders were introduced as an integral part of the long-
term ecosystem observatory (LEO), an integrated ob-
servatory off the coast of New Jersey [19.24–26].

An early example of a control architecture design
for multiple AUVs was described in 1987 by Albus
and Blidberg in [19.27]: the architecture was designed
to enable two AUVs to perform cooperative search,
approach, and mapping using cooperative maneuvers
such as fly-formation, circle-split-and-rendezvous, and
leader-follower. In [19.28] the objective was to use
multiple AUVs as an imaging system. Virtual chains of
AUVs were considered by Triantafyllou and Streitlien
in [19.29]; a technology for one vehicle to track an-
other in a chain-like fashion using an ultrashort baseline
(USBL) acoustic tracking system was demonstrated by
Singh et al. [19.30] in Buzzards Bay off Woods Hole,
MA in March 1996. In June 1996, two Odyssey ve-
hicles were used along with an acoustic tomography
network for mapping in the Haro Strait region of British
Columbia [19.31]. Stilwell and Bishop presented a de-
centralized control framework for a cooperative platoon
of AUVs in [19.32]. Formation flying to map salinity
fronts was tested in the North River in North Carolina
using the Ranger micro-AUV [19.33].

A 1997 survey by Cao et al. [19.34] described co-
operative mobile robotics as a still emerging field rich
with opportunities. The robotics community became
heavily engaged in the late 1980s first with a focus on
simulation [19.35, 36] and then physical implementa-
tions [19.37, 38]. Collective behavior in animal groups
was an early inspiration [19.39], with a behavioral-
based approach becoming popular in the 1990s [19.40].
However, according to [19.34] in 1997, few applica-
tions of cooperative robotics had been reported, and
supporting theory was still in its formative stages.

Interest in very large-scale stationary sensor net-
works surged with advances in wireless communication
technology and microsensors, and environmental mon-
itoring was an early, important application driver for
development of network architectures and algorithms
in this context [19.41–44]. Energy considerations were
used to justify the use of large numbers of station-
ary sensors over mobile sensors. However, the balance
tipped the other way in the case of undersea sensing due

to the challenges of undersea communication and the
emergence of relatively inexpensive, high-endurance
vehicles such as the autonomous underwater gliders.

Bretherton et al. [19.45] in the 1970s applied the
technique of objective analysis (OA) [19.46], which
uses classical linear estimation theory to compute ob-
jective maps, to address the problem of deployment
design for an array of stationary or passively drifting
sensors in the ocean where the aim was to provide
coverage and minimize uncertainty in the estimates
made from the data collected. Adaptive ocean sam-
pling, as in [19.47], built on this concept to consider
the design of a trajectory for a mobile sensor platform,
complementing another sensor platform moving along
a predetermined track, in order to minimize uncertainty
in an ocean forecasting model. A performance metric
that accounts for both spatial and temporal sampling re-
quirements was derived by Wilcox et al. [19.48]; it was
used to evaluate oceanographic survey performance
with AUVs in [19.49]. A methodology for control of
multiple sensor platforms based on information the-
ory was presented in [19.50] and sampling strategies
driven by distributed parameter estimation were de-
scribed in [19.51, 52].

Motivated by the many potential applications and
the rich theoretical possibilities, researchers in the con-
trol theory community began a significant effort in the
early 2000s to use systems theoretic approaches to de-
sign and study cooperative control. Artificial potentials
presented an attractive methodological basis for coop-
erative control of network formations [19.53–58] both
because convergence and performance could be proved
using Lyapunov stability theory (see early work on
robot navigation and obstacle avoidance [19.59, 60])
and because control laws derived from artificial poten-
tials resembled the distributed, cohesive, and repulsive
forces used to model animals that move together [19.61,
62].

Artificial potential methods were also used to
design cooperative gradient climbing strategies for
a group of vehicles that could each only take a scalar
measurement at a time of the field of interest (e.g.,
ocean temperature) [19.63]. Capitalizing on this idea
and building on the methods of [19.55, 56], Ögren
et al. [19.4] developed a provable methodology to con-
trol the shape of the formation as well as the rotation,
translation, and expansion of the formation [19.64]; this
was used to design control strategies for a network of
vehicles to adaptively climb gradients in the sampled
field and thus robustly find peaks (Sect. 19.3.1 below
reviews the implementation of this methodology in the
field). These ideas were extended further by Zhang
and Leonard [19.65, 66] to design provable control
laws for cooperative level set tracking, whereby small
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vehicle groups could cooperate to generate contour
plots of noisy, unknown fields, adjusting their forma-
tion shape to provide optimal filtering of their noisy
measurements. Related work addressed environmental
boundary tracking [19.67, 68], coverage control [19.69,
70], target tracking [19.71, 72], and maximization of in-
formation [19.50].

Researchers in control also took a strong interest
in the dynamics of consensus within a network; the
topology of the sensing and communication intercon-
nections among agents was encoded using graphs, and
the convergence of consensus dynamics was proved
with approaches that exploited graph theory allow-
ing for time-varying communication graphs and time-
delayed communications [19.73–77]. Consensus in the
positions of agents was used to address a variety of
other problems including formations [19.78] and ren-
dezvous [19.79].

In most of this consensus literature the dynamics are
linear, and yet the problem of consensus on direction
of motion that mobile robots must make is nonlinear,
since the space of directions in the plane is a circle
(and not a line). Consensus on the circle is called syn-
chronization, and it has been studied extensively in the
context of coupled phase oscillators used to model a va-

riety of interconnected periodic processes in biology
and physics (firefly flashing and neuron firing) [19.80,
81]. Justh and Krishnaprasad developed a geometric
framework to design steering control laws to coordi-
nate the motion of vehicles in [19.82]. This approach
was generalized in the work of Sepulchre et al. [19.83,
84] using a model that extends coupled oscillator dy-
namics, in which the phase of each oscillator represents
the direction of motion of a vehicle, to include the spa-
tial dimensions, which represent the positions of the
vehicles. These works provided a systematic method-
ology for designing provable, distributed control laws
that stabilize motion patterns in the plane ([19.85–87]
for 3-D); each vehicle uses a feedback law that depends
only on what limited measurements it can make, and the
controlled system can cope with a time-varying com-
munication network and with real-time changes in the
number of vehicles in the group. Because the method-
ology is systematic and robust and because distributed
control of vehicle motion patterns is central to environ-
mental monitoring, the methodology of [19.83, 84] was
developed into an adaptive sampling methodology for
mobile sensor networks in the ocean [19.6] (Sect. 19.3.2
below reviews the implementation of this methodology
in the field).

19.3 Advances in Cooperative Vehicle Ocean Monitoring

The AOSN II and ASAP projects were driven by
an interest in developing sustainable, portable, adap-
tive ocean observing and prediction systems for use
in coastal environments. The projects used cooperating
AUVs carrying sensors to measure the physics and biol-
ogy in the ocean together with advanced ocean models
in an effort to improve the ability to observe and pre-
dict ocean dynamics. A central focus was on reliable,
efficient and adaptive coordinated control strategies for
mobile sensor platforms to collect data of high value.
Both the AOSN II and ASAP experiments were de-
signed to bring together new techniques in sensing,
forecasting and coordinated control; see [19.88] for
a summary of goals and progress. The 2003 AOSN II
experiment brought these techniques together for the
first time, yielding an unprecedented data set. The 2006
ASAP experiment fully integrated these techniques to
even greater benefit, demonstrating their potential in
a versatile and high-performing adaptive coastal ocean
observing and prediction system. The methodologies
derived, integrated, and demonstrated are adaptable to
a wide variety of environmental monitoring problems
and settings.

19.3.1 Cooperative Gliders in AOSN II

In summer 2003, a multidisciplinary research group as
part of the AOSN II project produced an unprecedented
in-situ observational capability for studying upwelling
features in Monterey Bay over the course of a month-
long field experiment [19.1, 2]. A highlight was the
simultaneous deployment of more than a dozen, sensor-
equipped, autonomous underwater gliders [19.15], in-
cluding 5 Spray gliders (Scripps Institution of Oceanog-
raphy, La Jolla, CA) and up to 10 Slocum glid-
ers (Woods Hole Oceanographic Institution (WHOI),
Woods Hole, MA). Autonomous underwater gliders are
high endurance, buoyancy-driven vehicles that move up
and down in the ocean by controlling their net buoyancy
using pumping systems. Their fixed wings and tail give
them lift, which helps them make forward progress by
following sawtooth-shaped trajectories. To control their
attitude, gliders actively redistribute internal mass. The
Slocum uses a rudder to control heading, and the Spray
shifts mass to the side to roll, bank, and turn. Dur-
ing the field experiment, the gliders were operated to
achieve a fixed velocity relative to the flow. Their effec-
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tive forward speed was of the same order as the stronger
currents in and around Monterey Bay: � 25 cm s�1 in
the case of Spray and 35 cm s�1 in the case of Slocum.
Thus, when the currents were too strong, the gliders
did not make progress if they were moving against the
currents.

As part of the field experiment, sea trials were run
with groups of three Slocum gliders controlled into tri-
angular formations [19.5]; see also [19.6] for a survey.
Feature-tracking capabilities of the glider formations
were demonstrated under the challenging conditions of
limited communication and limited feedback as well as
a strong flow field. Two sea trials tested strategies for
cooperative motion control and cooperative gradient es-
timation for the gliders at relatively small scales in the
region, i. e., on the order of 3 km. In a third sea trial,
a Slocum glider was used to track a Lagrangian drifter
in real time and collect data in a volume surrounding
the path of the drifter. This demonstrated the utility of
a glider, and the possibilities for a network of gliders, to
track Lagrangian particle features such as a water mass
encompassing an algal bloom [19.5].

The Slocum gliders were operated to 200m depth
and were deployed far enough from the coast to avoid
shallower water. Each glider surfaced every couple
of hours, although the gliders did not surface syn-
chronously. At the surface, each glider got a global
positioning system (GPS) fix for navigation, and us-
ing Iridium satellite and ethernet, sent back to shore
the data it had collected and received updated mission
commands from the shore computer. Since the gliders
were not equipped with underwater communication, the
communication with the shore computers was the only
means for (indirect) communication between gliders.

The strategy for coordinated motion control was
based on the virtual body and artificial potential
(VBAP) methodology for control of multiple vehicles
described in [19.4]. VBAP is a general coordinated
control strategy that stabilizes the translation, rotation,
and expansion of a formation of autonomous vehicles;
it is especially well suited to missions that require
a changeable mobile sensor array such as gradient
climbing in a scalar, sampled field, where expansion
and contraction of the network modify the resolution
of the array. The virtual body refers to a collection
of moving reference points, each with dynamics that
are computed centrally and made available to the au-
tonomous vehicles. Spring-like control forces for the
vehicles, and the virtual body, are derived from arti-
ficial potentials between the vehicles and the virtual
body; they are designed to stabilize the dynamics of
the vehicles and the virtual body into a formation. In
the computation of its control law, each vehicle uses
a measurement of the relative position of neighbor-

ing vehicles and nearby reference points on the virtual
body.

The local gradients of a sampled scalar field can be
estimated on-board or centrally, if the samples taken on-
board the vehicles can be communicated among them
or to a central computer. The group will control its
motion in the direction of the gradient if the virtual
body dynamics are designed to move it in the direc-
tion of the gradient; for example, if the dynamics of the
virtual body move it toward the coldest water, as de-
termined from an estimated temperature gradient, the
vehicle group will move toward the coldest water as
well since it moves with the virtual body in formation.
In the VBAP methodology, stability and convergence
of the vehicle formation is guaranteed with a feedback
control on the speed of the virtual body.

Ideal assumptions, including continuous communi-
cation and feedback for the autonomous vehicles, were
used to prove the control theory and algorithms de-
scribed in [19.4]. Thus, in order to make the control
methodology applicable to the conditions of the coop-
erative control sea trials of 2003, the VBAP control
methodology was modified in a few key ways. For ex-
ample, the algorithmswere integrated with the on-board
glider waypoint tracking routine and adjusted to accom-
modate the constant speed of the gliders, the high-speed
ocean currents, the asynchronous surfacings of the glid-
ers, as well as other latencies [19.89]. The approach was
later systematized as part of the ASAP project in a fully
automated software suite, the glider coordinated control
system (GCCS) [19.90]. The GCCS automates the de-
centralized coordinated control methodology of [19.6]
for adaptive sampling motion patterns.

The main idea behind the integration of VBAP with
waypoint control was to use VBAP to produce waypoint
lists, corresponding to coordinated glider trajectories,
that the gliders would then follow using their on-board
waypoint control [19.5, 89]. Accordingly, VBAP was
run in a planning mode using a simulation of the glid-
ers with initial conditions defined by the gliders’ most
recent GPS fixes and average flow measurements. The
VBAP-planned trajectories were discretized into way-
point lists. Each Slocum glider uploaded its waypoint
list when it surfaced, and followed those waypoints for
the subsequent 2 h until its next surfacing.

For the Slocum vehicles, a waypoint is prescribed
as a vertical cylinder in the ocean since it refers to a po-
sition in the horizontal plane and a radius that sets how
close the vehicle should come to the waypoint position.
Thus, when a sequence of waypoints is prescribed, the
glider follows the waypoints by passing through each of
the corresponding cylinders in the prescribed sequence.
To follow a sequence of waypoints, each glider uses
its on-board low-level heading control which depends
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Fig. 19.1a,b From [19.2]. Three gliders moving northwest in triangular formation (gray lines) from 18:00 GMT August
6 into late morning August 7, 2003. Colored dots indicate the temperature in degree Celsius (see color scale) at (a) 5m
depth and (b) 30m depth. Black circles and lines show initial position and formation, and open circles with a cross inside
triangles illustrate the path of the center of the triangle formation. Red arrows correspond to estimate of the negative
gradient of temperature in the horizontal plane along the path of the center of the triangular formation. The color contours
indicate sea-surface temperature in degree Celsius (see color scale) as sampled by the Naval postgraduate school’s TWIN
OTTER aircraft

on its own heading (measured on-board) and a deduced
reckoning estimate of its own position [19.91]. The de-
duced reckoning position is computed by integrating
an estimate of horizontal speed using the most recent
GPS fix as the initial condition. The horizontal speed
is estimated from depth and vertical speed, which are
estimated from on-board pressure measurements. The
method also uses the glider’s estimate of average flow,
computed from the difference on the surface between
its GPS and its deduced reckoned position.

The first sea trial in which three Slocum gliders
coordinated their motion in an equilateral triangle for-
mation was run over a period of 16 h on August 6–7,
2003, with asynchronous 2-hourly surfacings. The dis-
tance between gliders was prescribed to be 3 km and the
formation prescribed to move along a linear path head-
ing northwest to measure the incipient upwelling front.
In the first half of the sea trial, there was no prescription
on the orientation of the formation so that it could most
efficiently maintain array resolution and follow its path.
In the second half of the sea trial, to test the orienta-
tion control feature of the methodology, the orientation
was prescribed such that one edge of the triangle would
always be normal to the path of the center of mass of
the group. The stable tracking of prescribed glider array
resolution and linear path made it possible for in-situ
estimates of gradients to be computed in near real time
from the gliders’ scalar measurements. The results sug-
gest that the gliders could successfully be programmed

to autonomously follow their estimate of the gradient if
so desired.

Figure 19.1 shows a sequence of snapshots of
the triangular glider formation over the August 6–7,
2003 sea trial. Temperature measurements are shown
on 19.1a at 10m depth and on 19.1b at 30m depth. As
shown, the three vehicles stayed in formation moving
along the desired linear path despite relatively high-
speed currents. The red arrows on the plot show a few
example glider estimates of the negative gradient of
temperature. These vectors point in the direction of the
cold water, as verified from independent temperature
measurements. The resolution corresponding to 3 km
between gliders led to remarkably smooth gradient es-
timates over time.

Three gliders again coordinated their motion in
an equilateral triangle formation in a second sea trial
on August 16–17, 2003. This time the distance between
gliders was prescribed to start at 6 km and then contract
to 3 km. This was meant to demonstrate the expansion
and contraction feature of the methodology and test the
effect of the different glider array resolutions on the gra-
dient estimates. The formation was prescribed to move
along a zigzag path heading southwest across the up-
welling front. Despite facing currents with magnitude
as high as the Slocum’s effective speed of 35 cm s�1,
the glider formation moved and contracted remarkably
well. The results suggest that the gliders could suc-
cessfully be programmed to autonomously adapt their
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formation size in response to changing scales in the
sampled field.

In the August 6–7 sea trial, the coordinated glider
network measured the front close to its inception, while
in the August 16–17 sea trial, the network measured
the front after it had been advected further to the south
across the mouth of Monterey Bay [19.2]. As a result,
the data collected from these two sea trials added new
insight into the evolving vertical structure of the up-
welling plume. Notably, the gradient estimates from the
glider networks would not have been possible using
conventional profiling floats or drifters. Since frontal
dynamics are typically nonlinear, precise gradient es-
timates are critical in forecasting frontogenesis and
evolving instabilities.

In the third sea trial on August 23, 2003, a single
glider followed a surface drifter in real time, mak-
ing zigzags across and below its projected path. This
demonstrated yet another opportunity for environmen-
tal monitoring with coordinated vehicles, namely that
a glider or glider formation could collect scalar sam-
ples and thus estimate gradients both across and along
tracer paths.

19.3.2 Cooperative Gliders in ASAP

In summer 2006, a multidisciplinary research group as
part of the ASAP project performed an unprecedented
field experiment, building on the successful efforts
of the AOSN II project. The ASAP project demon-
strated a full-scale adaptive ocean sampling network
featuring a coordinated network of gliders controlled
autonomously over the course of a month to efficiently
sample a 22�40 km2 and up to more than 1000m-deep
region of coastal ocean just northwest of Monterey Bay
as shown in Fig. 19.2 [19.3]. The coordinated sampling
of the gliders was integrated with an assortment of ad-
ditional mobile and stationary sensing platforms, three
real-time numerical ocean models, numerical optimiza-
tion and prediction tools, a virtual control room, and
a participating team of scientists.

When gliders move without taking into account, for
example, through feedback, the relative position or mo-
tion of other gliders in the group, they are susceptible to
strong currents driving them into clumps. In the AOSN
II experiment current-driven clumping was observed
and shown to lead to sensor redundancy with negative
impact on sampling performance [19.6]. This moti-
vated the development of coordinating feedback control
laws that enforce dynamic distribution of vehicles to
enhance sampling performance. The methodology pro-
posed and justified in [19.6] provides this coordinated
feedback control with two components: (1) the design
of coordinated motion patterns for high-performance

sampling and (2) the design of feedback control laws
that systematically and automatically stabilize vehicles
onto the desired coordinated patterns. The methodol-
ogy of [19.6] was implemented in the 2006 ASAP
experiment, which provided a proof of concept for the
applicability of the methodology to the field.

The methodology proposed in [19.83, 84] was used
for the second component, the systematic generation of
feedback control laws for stable coordination of a net-
work of autonomous vehicles to a family of motion
patterns. The patterns, which consist of vehicles mov-
ing on a finite set of closed curves, are distinguished
by a small number of parameters that encode syn-
chrony. For example, two vehicles that move in parallel
around two separate curves have synchronized head-
ing directions, while two vehicles that move around the
same curve but always on opposite sides of the curve
have anti-synchronized heading directions. The corre-
sponding feedback laws the vehicles use are likewise
distinguished by control gains that depend on the same
small number of synchrony parameters.

The control laws are distributed, which means that
each vehicle applies its own control law that depends on
its own measurements. Furthermore, the control laws
are reactive, they do not require a prescription of where
each vehicle should be as a function of time, but rather
each vehicle moves in response to the relative position
and direction of its neighbors. Each vehicle is con-
stantly adjusting what it does to keep moving, to stay
close to its assigned curve, and importantly to maintain
the desired spacing with respect to the other vehicles,
as encoded by the synchrony parameters. Because the
responsive behavior of each individual can be defined
as a function of the state of a small number of other
vehicles, independent of the total number of vehicles,
the control methodology is scalable. And because there
are no leaders or special individuals in the network, the
methodology is robust to vehicle failure.

The GCCS software infrastructure described
in [19.90] and tested in [19.92] was used to implement
the methodology in the field. In the ASAP experiment,
it was observed that vehicles maintain their prescribed
relative spacing in the presence of strong currents
by moving off their assigned curve as needed: when
a vehicle was slowed down by a strong opposing flow
field, it cut inside its curve to make up distance, while
its neighbor on the other side of the curve that was
sped up by the strong current cut outside the curve to
avoid overtaking the slower vehicle and compromising
spacing.

There are several advantages to designing the coor-
dinated motion patterns independently from the design
of control laws to stabilize vehicles to those motion pat-
terns. First, the patterns can be independently chosen to
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optimize a sampling performance metric. Second, the
pattern can be chosen for minimal performance sensi-
tivity to disturbances in vehicle motion. Additionally,
the pattern can be chosen to account for design require-
ments and constraints, such as avoiding or focusing
on certain regions, leveraging information on the di-
rection of strong currents so vehicles move with them
rather than against them, and accommodating additions
or removals of vehicles. Human-in-the-loop supervi-
sory control, which can be critical for highly complex
settings, can be fairly easily integrated when it is war-
ranted. In the ASAP experiment, a team of scientists
made supervisory decisions based on visualizations of
observational data, modeling output, system perfor-
mance, and availability of vehicles. A method was in
place to translate these decisions into formal adapta-
tions of the desired motion patterns, which could be
refined using numerical optimization tools. To imple-
ment an adaptation, an intermittent, discrete change in
the pattern was input to the GCCS and the vehicle net-
work responded accordingly.

The sampling metric used to design motion pat-
terns [19.6] is computed from the mapping error of
the data assimilation scheme known as OA [19.45, 46].
OA provides a linear statistical estimation of a sam-
pled field, and the mapping error measures the residual
uncertainty. OA mapping error is a sampling perfor-
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Fig. 19.2a,b From [19.3]. (a) Region of glider fleet operations in the 2006 ASAP field experiment, just northwest of
Monterey Bay, California. The summertime ocean circulation in Monterey Bay oscillates between upwelling and relax-
ation. During an upwelling event, cold water often surfaces just north of the bay, near Point Año Nuevo and tends to flow
southward across the mouth of the bay. During relaxation, poleward surface flow crosses the mouth of the bay past Point
Año Nuevo. (b) Objective analysis mapping error plotted in gray scale on the ASAP sampling domain for July 30, 2006
at 23:30 GMT (Greenwich mean time); see text for details on the mapping error. Eight gliders are shown; their positions
are indicated with red (Slocum) and blue circles (Spray)

mance metric since reduced uncertainty implies better
measurement coverage. The mapping error at a given
position and time is the error variance at that position
and time. It can be computed from an empirically de-
rived model of the covariance of fluctuations of the
sampled field about its mean and from where and when
data are taken. The OA mapping error is plotted in
gray scale in Fig. 19.2b on the sampling domain. The
sampling metric is computed as the negative log of the
integral of the mapping error over the sampling region.
In the ASAP experiment, the mapping error was com-
puted in real time so that humans making adaptation
decision could evaluate sampling performance.

An examination of the oceanographic and atmo-
spheric conditions during the ASAP experiment using
data and model output is described in [19.93]. The
oceanographic focus of the ASAP experiment was
the [19.3]

three-dimensional dynamics of the coastal up-
welling frontal zone in Monterey Bay and the
processes governing the heat budget of the 22�
40 km2 control volume during periods of upwelling-
favorable winds and wind relaxations.

An objective for the coordinated glider sampling was to
be responsive to the dynamics of intermittent upwelling
events.
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Data were collected during the experiment from
other sources as well as the gliders. These include
a Naval postgraduate school research aircraft, satellite
imagery, high-frequency radar, and several moorings,
drifters deployed by the Monterey Bay Aquarium Re-
search Institute (MBARI) and other ships and vehi-
cles outside the control volume. Three different high-
resolution ocean models regularly assimilated data: the
Harvard Ocean Prediction System (HOPS) [19.94], the
Jet Propulsion Laboratory implementation of the Re-
gional Oceanic Modeling System (JPL/ROMS) [19.95]
and the Navy Coastal Ocean Model/Innovative Coastal
Ocean Observing Network (NCOM/ICON) [19.96].
Each model produced daily updated ocean predictions
of temperature, salinity, and velocity. A central data
server at MBARI was used to run a virtual control
room (VCR) and to make all observational data and
model outputs available in near real time. The VCR,
developed for the 2006 ASAP field experiment, made
it possible for participants to remain at their home in-
stitutions throughout the experiment but still be fully
informed and connected team members [19.97]. There
were a number of different panels on the VCR including
those for team decision making and voting.

Virtual pilot experiments were run in advance of
the field experiment to get experience with the coor-
dinated control and adaptive sampling implementation.
The virtual experiments were run as if they were real
field experiments except for the replacement of real ve-
hicles in the real ocean with simulated vehicles moving
in the currents of a virtual ocean defined by a HOPS
re-analysis of Monterey Bay in 2003. The simulation
mode of the GCCS was designed to allow for virtual
experiments with control of gliders, communication
paths, and data flow exactly the same as what was used
in the 2006 field experiment [19.90, 98].

For the ASAP experiment, the Slocum gliders were
allocated to mapping the interior volume using auto-
mated coordinated sampling defined by motion patterns
on a finite set of closed curves, with properties between
measured paths inferred using interpolation. The au-
tomated feedback control laws for the Slocums were
implemented with the GCCS. The Spray gliders were
allocated to mapping the periphery of the volume. The
boundary was divided up into segments and each Spray
glider was assigned to move in an oscillatory manner
along a segment of the boundary. A separate control law
was implemented for this oscillatory behavior so the
gliders were well distributed. The experiment started
with a default coordinated motion pattern, and as the
environment and operating conditions changed, the co-
ordinated motion pattern was re-designed and updated.

The input file to the GCCS that defines a coor-
dinated motion pattern is called a glider coordinated

trajectory (GCT). As an example, GCT #2 used for the
Slocum gliders in the ASAP experiment is illustrated
in Fig. 19.3a. A GCT defines the curves that serve as
tracks for the gliders as well as the synchronization of
the motion of the gliders on and across the different
curves. For example, the GCT #2 shown in Fig. 19.3a
defines a pattern in which a pair of gliders, denoted with
red circles, moves around the red curve with maximal
intervehicle spacing and is synchronized with another
pair of gliders, denoted with green circles, that moves
around the green curve with maximal intervehicle spac-
ing. The glider planner status panel of the VCR on July
30 at 23:10 GMT, when GCT #2 was active, is shown
in Fig. 19.3b. The glider planner panel for OA mapping
error at roughly the same time is shown in Fig. 19.4.

Pseudoelliptical curves were selected for the
Slocums since they had nearly straight long sides. The
curves were oriented to ensure that the gliders would re-
peatedly cross over the shelf break, each time sampling
a cross-section of the dynamic ocean processes that
propagate parallel to the shelf break. The shelf break
refers to the end of the continental shelf characterized
by a markedly increased slope toward the deep ocean
bottom [19.3]:

By constructing a time sequence of cross-section
plots, it would then be possible to reconstruct,
identify and monitor ocean processes even before
assimilating the glider profile data into an advanced
ocean model.

The distribution (synchronization) of the gliders rel-
ative to one another around the curves, as well as the
dimensions and position of the curves, were selected to
maximize the sampling performance metric. An on-line
optimization tool was available for locally optimizing
any candidate motion pattern. Additionally, candidate
coordinated motion patterns were often pretested using
the GCCS in simulation mode using one or more of the
forecast ocean fields. Because the simulations of gliders
moving in the forecast ocean could be run in faster than
real time, it was possible to obtain predictions of glider
performance in the predicted real ocean.

To implement an adaptation to sampling plans,
a new GCT was prepared to replace the existing GCT.
This was initiated manually by briefly interrupting the
GCCS, swapping the new GCT file for the old one, and
then re-starting the GCCS. Over 24 days of the ASAP
experiment, 14 different GCTs were used to adapt the
Slocum glider plan (Fig. 19.4a). Some of the adapta-
tions were made in response to changes in the ocean
involving strong and highly variable flow conditions.
Other adaptations were made in response to changes in
scientific objectives, for example, to add sampling over
the head of the canyon and to chase an eddymoving off-
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opposites of the middle track (green) and the two pairs synchronized on their respective tracks. Glider we07 should move
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presents, for each glider, surfacings over the previous 12 h (black squares), waypoints expected to be reached before the
next surfacing (gray triangle), next predicted surfacing (gray circle with red fill), new waypoints over the next 6 h (blue
triangles inside red circles), and planned position in 24 h (hollow red circle). Each glider is identified with a label at the
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shore. The influence of these adaptations are reflected in
the Slocum glider sampling performance, which is plot-
ted as a function of time in Fig. 19.4b. In particular, poor
coordination of gliders resulted in a decline in sam-

pling performance. On August 6, during GCT #6, the
sampling performance experienced its steepest decline
as a result of flow conditions impairing coordination.
Recovery of performance after a subsequent adaptation
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of motion pattern demonstrated the positive impact of
coordinated control on sampling performance. Details
on the ocean conditions, adaptations, and performance
of the gliders during the field experiment are described
in [19.3].

The methodology of [19.6] was successfully imple-
mented in the challenging coastal ocean environment
of Monterey Bay, CA in August 2006, demonstrating
a new capability for ocean sampling. The implemen-

tation points to the feasibility and versatility of the
method for adaptation of motion patterns and integrated
human decision making to address a complex multi-
robot sensing task. The glider network coordinationwas
autonomous and sustained with glider motion patterns
adapted to meet the requirements of the changing ocean
sampling mission and the changing dynamic state of the
ocean. The methodology can be applied to collaborative
robotic sensing in other domains.

19.4 Recent Developments and Future Directions

Recent years have seen an acceleration of theoretical
developments and field testing of cooperative vehicle
environmental monitoring; these have both motivated
and leveraged advances in sensors, energy efficient
and versatile mobile sensing platforms, communica-
tions, environmental modeling and estimation tech-
niques, and control theory for cooperative exploration
by networked mobile agents. It has become clear that
robotic vehicles are especially useful for monitoring
in remote and hostile environments and that their po-
tential is much enhanced when they perform in co-
operative teams [19.99]. A recent survey of robotics
for environmental monitoring, including a discussion
of cooperative systems, is provided by Dunbabin and
Marques [19.100]. Redfield surveys works on coopera-
tive underwater vehicles in [19.101]. Many of the recent
advances are opening up further opportunities and av-
enues for continued research.

Further, new infrastructure developments, such as
the cabled ocean observatories, provide significant re-
sources that could potentially enhance the versatility
of cooperative autonomous vehicles, most particularly
with respect to data, communication, and power. For ex-
ample, the NEPTUNE regional cabled ocean observa-
tory boasts continuous high-power and high-bandwidth
data transfer in real time between a large expanse of the
ocean sea floor and the shore. Without having to sur-
face, any autonomous vehicle could make use of sea
floor nodes to send its data back to shore, or to share its
location and data with other vehicles in the team, which
would improve coordination among vehicles. A vehicle
could also use the infrastructure to calibrate its location
for its on-board deduced reckoning and to leverage the
data collected in the cabled observed for its on-board
(and thus collective) decision-making. Further, if dock-
ing stations were available, autonomous vehicles could
recharge their batteries. Leveraging cabled observato-
ries in this way would be most advantageous if dynamic
sampling coverage were needed to complement the ex-
isting coverage from the sea floor nodes. Otherwise,

there would be a tradeoff for the autonomous vehicles
between moving into areas already well covered and ex-
ploring new areas where no cabled observatory exists.

Examples of recent field-tested methodologies for
cooperative vehicle environmental monitoring include
a decentralized strategy for coordinated harbor patrol
using the theory of Gaussian processes implemented on
three AUVs in Lisbon harbor byMarino et al. [19.102].
Schofield et al. [19.103] describe a number of field tests
including a test of remote coordination of an array of
acoustically networked AUVs and the coordinated sam-
pling of underwater gliders and the space-based Hyper-
ion imager flying on the Earth Observing-1 spacecraft.
Using decentralized data fusion and control, two UAVs
were used to demonstrate cooperative localization of
ground-based features by Cole et al. [19.104]. Techy
et al. [19.105] implemented a strategy for coordina-
tion based on speed modulation to synchronize two
autonomous UAVs for tracking long-distance move-
ment of plant pathogens above crop fields. Maczka
et al. [19.106] demonstrated an efficient method for co-
operative navigation of underwater vehicles from time-
synchronized acoustic data transmissions. Hollinger
et al. [19.107] demonstrated on a single AUV in the
Southern California Bight a probabilistic planner that
uses uncertainty in ocean current prediction based on
an interpolation variance. Merino et al. [19.108] pre-
sented a cooperative perception system for multiple
UAVs with different kinds of sensors and showed exper-
imental results of forest fire detection with cooperating
UAVs. Alvarez et al. [19.109] described methodology
that estimates volumetric distribution of the geostrophic
current field from glider measurements merged with
satellite altimetry data; this methodology was validated
using data collected from three Slocum gliders and
one Spray glider moving along predefined paths during
a field experiment in August 2010 in a coastal region of
the Ligurian Sea. Alvarez and Mourre [19.110] exam-
ined optimal sampling strategies for a single underwater
glider sampling in the presence of a mooring.
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Lekien et al. [19.111] presented a method that uses
Lagrangian coherent structures to coordinate vehicles
robustly in the presence of very strong currents. Other
methods to coordinate gliders and AUVs to maximize
information in the data collected, taking explicit ac-
count of challenging ocean currents have been studied,
[19.112–116].

Strategies for coordinated sampling that optimize
information-based metrics have also been further ex-
plored [19.117–123].

Advances have been made in decentralized coop-
erative control strategies that improve or leverage the
communication network structure of mobile robotic
teams. These include new algorithms that use graph the-
oretic approaches [19.124] for computing, maintaining
or maximizing connectivity [19.125–127], controllabil-
ity [19.128], and robustness of coordinated motion to
uncertainty [19.129]. Techniques from algebraic topol-
ogy have also been applied to problems in multivehicle
sensing [19.130]. Advances in cooperative routing and
motion planning for multiple autonomous vehicles have
been extensive, see, for example [19.131, 132].

Another source of inspiration for cooperative con-
trol design comes from mechanisms of collective be-
havior in animal groups such as fish schools and bird
flocks. In these animal groups, remarkable collective
behaviors result without centralized direction from rel-
atively simple individuals who sense and respond to
their local environment, including the relative position,
heading or speed of neighbors in the group [19.133–
136]. Mathematical models have been used to explain
individual decision-making and interactions that lead to
high-performing group behaviors [19.137–141]. These
models can potentially be used to design provable
decision-making feedback laws for individual robotic
vehicles so that robotic teams inherit some of the crit-
ical group-level properties observed in nature, notably
the ability of the group to forage efficiently (for infor-
mation) despite individual-level limitations on sensing
and communication and significant uncertainty in the
environment. Torney et al. [19.142] showed how animal
groups could apply a performance-dependent interac-
tion to efficiently move to the source of a chemical gra-
dient in a turbulent environment, andWu et al. [19.143]
turned this into a provable algorithm for efficient coop-
erative search in a noisy distributed field. In [19.144],
Young et al. applied system-theoretic techniques to un-
derstand interactions in starling flocks that yield ro-
bustness of consensus to uncertainty, and used these
in [19.129] to design decentralized feedback laws that
enable networks of vehicles to improve their robustness
to uncertainty.

Design of dynamics of decision-making teams of
robots and humans is yet another important direction

of research that has the potential to impact the success
of cooperative vehicles in complex tasks. Humans are
capable of intelligent and adaptable decision-making
in response to reasoning about real-world information
in real time, and robotic systems are capable of sig-
nificant computational speed and memory. Challenging
problems in complex settings, for example, with mul-
tiple scales and significant uncertainty, can be well
served by solutions in which humans and robotic sys-
tems participate in complementary ways. Benefits and
possible pitfalls of such human and robot collabora-
tion were evidenced in the AOSN II and ASAP ex-
periments. Indeed, with the data visualization tools,
computational aids, and communication mechanisms
accessible through the GCCS and ASAP’s virtual con-
trol room, the ASAP field experiment demonstrated
collaboration between a distributed team of humans and
an automated group of underwater robots to perform
adaptive ocean sampling in an uncertain environment
with multiple objectives subject to a variety of safety
and operational constraints. While the autonomous ve-
hicles moved continuously in coordinated patterns, the
human participants contributed in ways the automated
system could not by making rapid decisions in response
to critical environmental changes (sudden excessively
strong currents or unanticipated shallow water) and
operational failures. The human team also made im-
portant longer term decisions in response to observed
or predicted indications of change in the environment,
such as new features or locations of interest, or decline
in performance with respect to one or more perfor-
mance metric. And yet, opportunities may have been
missed when the human participants had difficulty as-
sessing the likelihood of risk in proposed scenarios or
balancing the many competing objectives. Likewise,
human supervisory strategies may have been less than
optimal given that the autonomous robots had no op-
portunity to provide direct feedback to their human
supervisors.

In this vein, progress has been reported on hu-
mans and robots in exploration [19.145–149] and on
humans working together in search tasks [19.150–153].
Progress has also been made on algorithm development
using what cognitive scientists understand about human
decision-making. For example, decision-making algo-
rithms with provable performance in search tasks were
derived in [19.154], drawing on research on the heuris-
tics humans use to trade off between exploiting well-
known alternatives and exploring uncertain but possibly
better alternatives. It has been shown in [19.155] that
humans use their ability to learn correlation struc-
ture when it exists among decision alternatives, as
in the case of alternatives representing different loca-
tions in a spatially distributed resource. The knowledge
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of correlation structure has been shown to be criti-
cal to enhancing performance in the search algorithms
of [19.154]. This suggests approaches to systematize
means for robots to benefit from human input, for
example, by using observations of human choices to
estimate correlation structure and updating decision-

making strategies accordingly. Further work that builds
on research on human decision-making and behavior
may allow derivation of engineering models and prov-
able strategy design for well-integrated human–robot
teams in complex missions such as cooperative vehicles
for environmental monitoring.
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