
Chapter 9
Interconnected Systems

The system-theoretic study of interconnected systems is not new. It started with
the work by Gilbert (1963) on controllability and observability for generic classes
of systems in parallel, series, and feedback interconnections. Complete charac-
terizations for multivariable linear systems were obtained by Callier and Nahum
(1975) for series and feedback interconnections and in a short note by Fuhrmann
(1975) for parallel interconnections. We refer the reader to Chapter 10 for a proof
of these classical characterizations using the techniques developed here. However,
the interconnection structures of most complex systems are generally not of the
series, parallel, or feedback type. Thus, one needs to pass from the standard
interconnections to more complex ones, where the interconnection pattern between
the node systems is described by a weighted directed graph. This will be done in
the first part of this chapter. The main tool used is the classical concept of strict
system equivalence. This concept was first introduced by Rosenbrock in the 1970s
for the analysis of higher-order linear systems and was subsequently developed into
a systematic tool for realization theory through the work of Fuhrmann. Rosenbrock
and Pugh (1974) provided an extension of this notion toward a permanence principle
for networks of linear systems. Section 9.2 contains a proof of a generalization
of this permanence principle for dynamic interconnections. From this principle we
then derive our main results on the reachability and observability of interconnected
systems. This leads to very concise and explicit characterizations of reachability
and observability for homogeneous networks consisting of identical SISO systems.
Further characterizations of reachability are obtained for special interconnection
structures, such as paths, cycles, and circulant structures.

Before we delve into the technical details of this chapter, let us discuss some
simple examples on the reachability of interconnected systems (Fig. 9.1). The first
example is defined by a continuous-time consensus algorithm on a path graph whose
nodes are first-order scalar systems. Thus, for the path graph ΓN = (V ,E ) with
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Fig. 9.1 Interconnection graph of (9.1) for N = 5

vertex set V = {1, . . . ,N} and set of edges E = {{1,2},{2,3}, . . . ,{N − 1,N}},
consider the autonomous dynamical system

ż1(t) = z2(t)− z1(t),

żi(t) = zi+1(t)−2zi(t)+ zi−1(t), i = 2, . . . ,N −1, (9.1)

żN(t) = zN−1(t)− zN(t).

Equivalently, the system can be written in matrix form as ż =−LNz, where

LN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

denotes the Laplacian matrix of the graph ΓN . We emphasize that system (9.1)
achieves consensus in the sense that all solutions satisfy limt→∞ (zi(t)− z j(t)) = 0.
More generally, consider an autonomous system of linear differential equations

ż1 = a11z1 + · · ·+a1NzN

...

żN = aN1z1 + · · ·+aNNzN

(9.2)

with a matrix of coefficients A= (aij) ∈ R
N×N . To study the influence of a node on

the evolution of the remaining system variables, select, say, the last variable zN and
consider it a control variable. This leads to the linear control system

ẋ(t) = Ax(t)+bu(t) (9.3)

in the variable x = col(z1, . . . ,zN−1), where

A =

⎛
⎜⎝

a11 . . . a1N−1
...

. . .
...

aN−11 . . . aN−1N−1

⎞
⎟⎠ , b =

⎛
⎜⎝

a1N
...

aN−1N

⎞
⎟⎠ .
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In particular, from (9.1) one obtains the reachable system

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
0

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

More generally, one can select a finite number of state variables in an intercon-
nected autonomous system and replace them by free input variables that act on the
remaining system. Thus, starting from a system of ordinary differential equations,
one obtains a control system, and one can study its reachability properties. This
leads to the topic of pinning control. Now, suppose that certain of the entries aij

are set to zero, i.e., assume that the coefficients aij are defined by the adjacency
matrix of an undirected graph on N nodes. Then the reduced control system (9.3)
has an induced graph structure and clearly defines an interconnected linear system.
One can then ask about the extent to which the graph structure of the autonomous
system (9.2) impacts the reachability properties of the network (9.3). Such pinning
reachability questions have been considered in the past few years by a number
of researchers, including Tanner (2004), Liu, Slotine and Barabasi (2011), and
Parlangeli and Notarstefano (2012). The techniques that we will develop in this
chapter can be applied to such problems.

To further illustrate the issue of pinning control, let us consider some examples
of networks studied by Tanner (2004) and Parlangeli and Notarstefano (2012). The
first example is perhaps a bit surprising because it shows that a complete graph can
lead to unreachability.

Example 9.1. Suppose that A is an (unweighted) adjacency matrix of the complete
graph KN on N vertices. Then (9.3) is equal to

A =

⎛
⎜⎝

1 · · · 1
...

. . .
...

1 · · · 1

⎞
⎟⎠ , b =

⎛
⎜⎝

1
...
1

⎞
⎟⎠ .

Obviously, the system (A,b) is unreachable for N ≥ 2. The same conclusion is true
if A is the Laplacian of KN .

Example 9.2. Here A is the Laplacian matrix of the path graph ΓN on N vertices.
The pinned system is then
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Fig. 9.2 Cycle graph

1

2

3

4
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
0

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is reachable. One could extend this example by replacing the rth state variable
zr by an input. This situation has been analyzed by Parlangeli and Notarstefano
(2012).

Example 9.3. Now assume that A is the symmetric adjacency matrix of the cycle
graph on N vertices and edges {1,2},{2,3}, . . . ,{N −1,N},{N,1} (Fig. 9.2).

Thus A is the tridiagonal matrix

AN =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1
1 0 1

1
. . .

. . .
. . .

. . . 1
1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

and therefore one obtains the pinned system for zN as

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1
1 0 1

1
. . .

. . .
. . .

. . . 1
1 0

⎞
⎟⎟⎟⎟⎟⎠
, b =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0...
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which is not reachable. Likewise, by pinning the variable zN−1, one obtains the
unreachable system
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1
1 0 1

0 1
. . .

. . .
. . .

. . . 1 0
1 0 0

1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
...
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One can also consider pinning control problems where the adjacency matrix A
is replaced by the associated Laplacian matrix. In that situation, one encounters
more interesting reachability phenomena, which have been studied by Parlangeli
and Notarstefano (2012).

The preceding examples show that the reachability of the pinned system depends
in a nontrivial way on the underlying graph structure of the system, as well as
on the selection of the pinned control variables. In Section 9.5, we will study the
reachability of such networks in greater generality. In fact, system (9.2) can be
interpreted as a system of n integrators,

ż1(t) = u1(t)

...

żN(t) = uN(t),

with feedback terms ui = ∑N
j=1 aijz j. If one replaces the integrator dynamics with a

general first-order systems żi = αizi+βiui with local state variables zi ∈R
ni , system

matrices αi,βi ∈ F
ni×ni , and using the same coupling terms ui = ∑N

j=1 aijz j, then the
closed-loop system is

ż1(t) = α1z1(t)+β1

N

∑
j=1

a1 jz j(t)

...

żN(t) = αNzN(t)+βN

N

∑
j=1

aNjz j(t) .

By pinning the last variable zN , one obtains the control system
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ż1(t) = α1z1(t)+β1

N−1

∑
j=1

a1 jz j(t)+β1a1Nu(t)

...

żN−1(t) = αN−1zN−1(t)+βN−1

N−1

∑
j=1

aN−1, jz j(t)+βN−1aN−1,Nu(t) .

Thus one can ask when such a system is reachable and how one can relate
reachability to the graph properties that define the structure of the matrix of coupling
parameters A. We will now develop systematic tools for the reachability and
observability analysis of such systems.

9.1 Interconnection Models

State-Space Representations. We present a state-space formulation of the situa-
tion we are interested in and introduce notation to be used subsequently. Consider
N discrete-time linear systems, which we refer to as node systems Σi, i = 1, . . . ,N,

xi(t +1) = αixi(t)+βivi(t),

wi(t) = γixi(t).
(9.4)

Here αi ∈ F
ni×ni , βi ∈ F

ni×mi , and γi ∈ F
pi×ni are the associated system matrices,

and F denotes a field. Assume that each system is reachable and observable. To
interconnect the node systems, apply static coupling laws

vi(t) =
N

∑
j=1

Aijw j(t)+Biu(t) ∈ F
mi

with constant matrices Aij ∈ F
mi×p j and Bi ∈ F

mi×m, although more complex
dynamic interconnections laws are possible, too, and will be considered later on.
The interconnected output is

y(t) =
N

∑
i=1

Ciwi(t)+Du(t), with Ci ∈ F
p×pi , i = 1, . . . ,N.

To express the closed-loop system in compact matrix form, define n := n1+ · · ·+nN ,
m := m1 + · · ·+mN , p := p1 + · · ·+ pN . Moreover,
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A := (Aij)ij ∈ F
m×p, C := (C1, . . . ,CN) ∈ F

p×p, B :=

⎛
⎜⎜⎝

B1
...

BN

⎞
⎟⎟⎠ ∈ F

m×m, D ∈ F
p×m

and

α :=

⎛
⎜⎝

α1
. . .

αN

⎞
⎟⎠ ∈ F

n×n, β :=

⎛
⎜⎝

β1
. . .

βN

⎞
⎟⎠ ∈ F

n×m,

γ :=

⎛
⎜⎝

γ1
. . .

γN

⎞
⎟⎠ ∈ F

p×n, x(t) :=

⎛
⎜⎝

x1(t)
...

xN(t)

⎞
⎟⎠ ∈ F

n.

Thus, the global state-space representation of the node systems Σi is

x(t +1) = αx(t)+βv(t),
w(t) = γx(t),

and the interconnection is

v(t) = Aw(t)+Bu(t),
y(t) = Cw(t)+Du(t) .

Here u(t) is the external input and y(t) the external output of the network. The
restriction to strictly proper rather than proper node systems is not crucial and is
done here only to simplify some of the subsequent expressions. Thus the network
dynamics has the state-space form

x(t +1) = A x(t)+Bu(t), (9.5)

y(t) = C x(t)+Du(t),

with

A := α +βAγ ∈ F
n×n, B := βB ∈ F

n×m, C :=Cγ ∈ F
p×n. (9.6)

It is convenient to describe an interconnected system in terms of the transfer
functions of the node systems. The ith node transfer function is defined as a strictly
proper transfer function of McMillan degree ni and is given in state-space form as

Gi(z) = γi(zI −αi)
−1βi. (9.7)
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Define the node transfer function as

G(z) := diag(G1(z), . . . ,GN(z)) = γ(zI −α)−1β .

In the case where m = p, the interconnection transfer function is defined as

N (z) =C(zI −A)−1B+D. (9.8)

The global network transfer function is then defined as

NG(z) = C (zI −A )−1B+D;

thus, explicitly,

NG(z) =Cγ(zI −α −βAγ)−1βB+D. (9.9)

A network of systems (9.5) is called homogeneous if the transfer functions of
the node systems (9.7) are identical scalar rational functions that are strictly proper.
The reachability and observability analysis of homogeneous networks is particularly
easy, as is subsequently shown.

Polynomial Matrix Descriptions. A general class of higher-order system repre-
sentations, the so-called polynomial matrix descriptions (PMD), was introduced
by Rosenbrock (1970). In this case, Σi is defined in terms of systems of higher-order
difference equations:

Ti(σ)ξi = Ui(σ)vi,

wi = Vi(σ)ξi +Wi(σ)vi,
(9.10)

with transfer functions

Gi(z) =Vi(z)Ti(z)
−1Ui(z)+Wi(z).

Here, as well as in other parts of this book, σ denotes the backward shift operator
(4.8), defined for discrete-time systems. For continuous-time systems, σ denotes the
differentiation operator. Let

T (z) := diag(T1(z), . . . ,TN(z)) ∈ F[z]r×r,

and similarly define V (z),U(z),W (z). Here r = ∑N
i=1 ri. Using this notation, (9.10)

can be rewritten as the polynomial matrix representation

(
0
I

)
w =

(
T (σ) −U(σ)

V (σ) W (σ)

)(
ξ
v

)
.
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The transfer function of the decoupled system is

V (z)T (z)−1U(z)+W (z).

The interconnections are

v = Aw+Bu,
y = Cw+Du.

The network transfer function (for W = 0) is then

NG(z) = CV(z)(T (z)−U(z)AV(z))−1U(z)B+D.

Matrix Fraction Systems. A special, but interesting, class of polynomial matrix
representations is described as matrix fraction descriptions (MFD). Here, the node
systems Σi, i = 1, . . . ,N, are given by polynomial matrix descriptions:

D�,i(σ)ξi = N�,i(σ)vi,

wi = ξi,

with transfer function representations

Gi(z) = D�,i(z)
−1N�,i(z) = Nr,i(z)Dr,i(z)

−1.

Define the polynomial matrices D�(z) ∈ F[z]p×p,N�(z) ∈ F[z]p×m by

D�(z) = diag(D�,1(z), . . . ,D�,N(z)), N�(z) = diag(N�,1(z), . . . ,N�,N(z)),

and similarly for Dr(z),Nr(z). If the interconnections are given by

v(t) = Aw(t)+Bu(t),
y(t) = Cw(t)+Du(t) ,

then the network transfer function is

NG(z) = C(D�(z)−N�(z)A)−1N�(z)B+D
= CNr(z)(Dr(z)−ANr(z))−1B+D .

(9.11)
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9.2 Equivalence of Interconnected Systems

We next treat the mixed case, where several different models for decoupled node
systems are possible, namely, state space, left and right matrix fractions, and
polynomial system matrices. For each of the polynomial-based representations
one can associate a state-space realization via the shift realization described in
Theorem 4.26. The following theorem shows that the similarity of shift realizations
associated with different representations of a decoupled system is preserved for
interconnected systems. This is true despite the fact that, as a result of inter-
connection, the reachability and observability properties of the uncoupled node
systems may have been lost. In view of Definition 4.30, proving a similarity
of the realizations associated with polynomial system matrices is equivalent to
showing that the polynomial system matrices are strictly system equivalent. This
is the case even when the associated realizations are not minimal, and hence
the state-space isomorphism theorem is not applicable. This constitutes a great
simplification because strict system equivalence can be verified without computing
the realizations.

Special emphasis will be placed on polynomial matrix descriptions because they
cover all system representations of interest to us. Thus, we assume the node systems
have the polynomial matrix descriptions

Ti(z)ξi(z) =Ui(z)vi,

wi =Vi(z)ξi +Wi(z)vi ,
(9.12)

with transfer function Gi(z) = Vi(z)Ti(z)−1Ui(z)+Wi(z). The system interconnec-
tions are given by

vi =
N

∑
j=1

Aijw j +Biu,

y =
N

∑
j=1

Cjw j +Du.

(9.13)

Let

T (z) = diag(T1(z), . . . ,Tr(z)) ∈ F[z]r×r,

and similarly for V (z),U(z),W (z). Using this notation, (9.12) can be rewritten in
matrix form as

(
0
I

)
w =

(
T (z) −U(z)
V (z) W (z)

)(
ξ
v

)
. (9.14)
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Similarly, equation (9.13) can be rewritten as

v = Aw+Bu,

y = Cw+Du.

More generally, we allow for dynamic interconnections described by first-order
difference equations of the form

E(σ)v = A(σ)w+B(σ)u,

y =C(σ)w+Du.
(9.15)

Here E(z) is a square nonsingular polynomial matrix, A(z),B(z),C(z) are appropri-
ately sized polynomial matrices, and D is a constant feedthrough matrix. Assuming
that the rational function E(z)−1(A(z),B(z)) is proper, and by ignoring the output
part, consider a first-order shift realization for

E(σ)v = A(σ)w+B(σ)u

as

ζ (t +1) = Fζ (t)+G1w(t)+G2u(t),

v(t) = Hζ (t)+ J1w(t)+ J2u(t).
(9.16)

Therefore, one obtains the strict system equivalence

(
E(z) −A(z) −B(z)

I 0 0

)
�FSE

(
zI −F −G1 −G2

H J1 J2

)
.

Clearly, ξ , v, and w are latent variables, whereas u and y are manifest variables.
Thus equations (9.14) and (9.15) can be combined to yield a polynomial matrix
description of the following closed-loop interconnected system:

⎛
⎜⎜⎝

0
0
0
I

⎞
⎟⎟⎠y =

⎛
⎜⎜⎝

T (z) −U(z) 0 0
V (z) W (z) −I 0

0 E(z) −A(z) −B(z)
0 0 C(z) D

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ξ
v
w
u

⎞
⎟⎟⎠ .

Similarly, for C(z) =C constant, the closed-loop interconnected system has the first-
order representation

z(t +1) =Ac(t)+Bcu(t),

y(t) = Ccz(t)+Du(t),
(9.17)
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with system matrices

Ac =

(
α +βJ1γ βH

G1γ F

)
,Bc =

(
βJ2

G2

)
,Cc =

(
Cγ 0

)
.

Theorem 9.4. Consider two pairs of N node systems with polynomial system
matrices

(
T (ν)

i (z) −U (ν)
i (z)

V (ν)
i (z) W (ν)

i (z)

)
,ν = 1,2, i = 1, . . . ,N.

Assume that, for all i,

(
T (1)

i (z) −U (1)
i (z)

V (1)
i (z) W (1)

i (z)

)
�FSE

(
T (2)

i (z) −U (2)
i (z)

V (2)
i (z) W (2)

i (z)

)
.

Defining T (ν)(z) = diag(T (ν)
1 (z), . . . ,T (ν)

N (z)), and similarly for the other matrices,
then

(
T (1)(z) −U (1)(z)
V (1)(z) W (1)(z)

)
�FSE

(
T (2)(z) −U (2)(z)
V (2)(z) W (2)(z)

)
.

Assume that each of the two systems is connected by the same interconnection
rule (9.15). Then

⎛
⎜⎜⎝

T (1)(z) −U (1)(z) 0 0
V (1)(z) W (1)(z) −I 0

0 E(z) −A(z) −B(z)
0 0 C(z) D

⎞
⎟⎟⎠�FSE

⎛
⎜⎜⎝

T (2)(z) −U (2)(z) 0 0
V (2)(z) W (2)(z) −I 0

0 E(z) −A(z) −B(z)
0 0 C(z) D

⎞
⎟⎟⎠ .

(9.18)

Assume that C is constant, with

(
T (z) −U(z)
V (z) W (z)

)
�FSE

(
zI −α −β

γ 0

)

and

(
E(z) −A(z) −B(z)

I 0 0

)
�FSE

(
zI −F −G1 −G2

H J1 J2

)
.
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Then

⎛
⎜⎜⎝

T (z) −U(z) 0 0
V (z) W (z) −I 0

0 E(z) −A(z) −B(z)
0 0 C D

⎞
⎟⎟⎠�FSE

⎛
⎝

zI −α −βJ1γ −βH −βJ2

−G1γ zI −F −G2

Cγ 0 D

⎞
⎠ .

Proof. By our assumption, there exist polynomial matrices M(z),N(z),X(z),Y (z),
with M(z),T (2)(z) left coprime and T (1)(z),N(z) right coprime, for which

(
M(z) 0
−X(z) I

)(
T (1)(z) −U (1)(z)
V (1)(z) W (1)(z)

)
=

(
T (2)(z) −U (2)(z)
V (2)(z) W (2)(z)

)(
N(z) Y (z)

0 I

)
.

In turn, this implies

⎛
⎜⎜⎝

M(z) 0 0 0
−X(z) I 0 0

0 0 I 0
0 0 0 I

⎞
⎟⎟⎠

⎛
⎜⎜⎝

T (1)(z) −U (1)(z) 0 0
V (1)(z) W (1)(z) −I 0

0 E(z) −A(z) −B(z)
0 0 C(z) D

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

T (2)(z) −U (2)(z) 0 0
V (2)(z) W (2)(z) −I 0

0 E(z) −A(z) −B(z)
0 0 C(z) D

⎞
⎟⎟⎠

⎛
⎜⎜⎝

N(z) Y (z) 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎞
⎟⎟⎠ .

The left coprimeness of

⎛
⎜⎜⎝

M(z) 0 0 0
−X(z) I 0 0

0 0 I 0
0 0 0 I

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

T (2)(z) −U (2)(z) 0 0
V (2)(z) W (2)(z) −I 0

0 E(z) −A(z) −B(z)
0 0 C(z) D

⎞
⎟⎟⎠

follows from the left coprimeness of M(z) and T (2)(z), and similarly for right
coprimeness. Thus (9.18) follows. For the remaining part, observe that the following
strict equivalences are valid:

⎛
⎜⎜⎝

T (z) −U(z) 0 0
V (z) W (z) −I 0

0 E(z) −A(z) −B(z)
0 0 C D

⎞
⎟⎟⎠�FSE

⎛
⎜⎜⎜⎜⎜⎝

T (z) −U(z) 0 0 0
V (z) W (z) 0 −I 0

0 E(z) 0 −A(z) −B(z)
0 0 I 0 0
0 0 C 0 D

⎞
⎟⎟⎟⎟⎟⎠

�FSE
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⎛
⎜⎜⎜⎜⎜⎝

T (z) −U(z) 0 0 0
V (z) W (z) 0 −I 0

0 E(z) E(z) −A(z) −B(z)
0 0 I 0 0
0 0 C 0 D

⎞
⎟⎟⎟⎟⎟⎠

�FSE

⎛
⎜⎜⎜⎜⎜⎝

T (z) −U(z) 0 0 0
V (z) W (z) 0 −I 0

0 0 E(z) −A(z) −B(z)
0 −I I 0 0
0 0 C 0 D

⎞
⎟⎟⎟⎟⎟⎠

�FSE

⎛
⎜⎜⎜⎜⎜⎝

zI −α −β 0 0 0
γ 0 0 −I 0
0 0 zI −F −G1 −G2

0 −I H J1 J2

0 0 0 C D

⎞
⎟⎟⎟⎟⎟⎠

�FSE

⎛
⎝

zI −α −βJ1γ −βH −βJ2

−G1γ zI −F −G2

Cγ 0 D

⎞
⎠ .

�
We emphasize that the formulation of this theorem for polynomial matrix

descriptions covers several cases of interest, including nonminimal state-space
descriptions and (not necessarily coprime) matrix fraction descriptions. The
next result for constant interconnections is a straightforward consequence of
Theorem 9.4; however, the proof is more specific in exhibiting the required
isomorphisms. For ease of exposition we assume that the node transfer function
G(z) =V (z)T (z)−1U(z)+W (z) is strictly proper, with W (z) = 0.

Theorem 9.5. Assume the strictly proper transfer function G(z) of decoupled node
systems has the following, minimal, representations:

G(z) = γ(zI −α)−1β

= D�(z)
−1N�(z) = Nr(z)Dr(z)

−1 =V (z)T (z)−1U(z).
(9.19)

Let A,B,C,D be interconnection matrices.

1. The shift realizations associated with the interconnected polynomial system
matrices

(
T (z)−U(z)AV(z) −U(z)B

CV(z) D

)
,

(
Dr(z)−ANr(z) −B

CNr(z) D

)

are similar.
2. The shift realizations associated with the interconnected polynomial system

matrices

(
T (z)−U(z)AV(z) −U(z)B

CV(z) D

)
,

(
D�(z)−N�(z)A −N�(z)B

C D

)

are similar.
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3. The shift realizations associated with the interconnected polynomial system
matrices

(
D�(z)−N�(z)A −N�(z)B

C D

)
,

(
Dr(z)−ANr(z) −B

CNr(z) D

)

are similar.
4. The realizations associated with the interconnected polynomial system matrices

(
T (z)−U(z)AV(z) −U(z)B

CV(z) D

)
,

(
zI −α −βAγ −βB

Cγ D

)

are similar.

Proof. Without loss of generality, one can assume that D = 0.

1. By our assumption of minimality, using the state-space isomorphism theorem
and the definition of FSE, it follows that all polynomial system matrices

(
α −β
γ 0

)
,

(
D�(z) −N�(z)

I 0

)
,

(
Dr(z) −I
Nr(z) 0

)
,and

(
T (z) −U(z)
V (z) 0

)

are system equivalent. Our plan is to show that all polynomial system matrices
of the connected system, namely,

(
zI −α −βAγ −β

γ 0

)
,

(
D�(z)−N�(z)A −N�(z)

I 0

)
,

(
Dr(z)−ANr(z) −I

Nr(z) 0

)
, and

(
T (z)−U(z)AV(z) −U(z)

V (z) 0

)
,

are also system equivalent. Noting that the transfer function of the unconnected
system has the representation (9.19), it follows that there exists a polynomial
matrix S(z) for which T (z)−1U(z) = S(z)Dr(z)−1, and hence both the intertwin-
ing relation

U(z)Dr(z) = T (z)S(z)

and

Nr(z) =V (z)S(z)

hold. Since UANr = UAVS, the identity

(
U(z) 0

0 I

)(
Dr(z) −I
Nr(z) 0

)
=

(
T (z) −U(z)
V (z) 0

)(
S(z) 0

0 I

)
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implies

(
U(z) 0

0 I

)(
Dr(z)−ANr(z) −I

Nr(z) 0

)
=

(
T (z)−U(z)AV(z) −U(z)

V (z) 0

)(
S(z) 0

0 I

)
.

In turn, this implies

(
Dr(z)−ANr(z) −I

Nr(z) 0

)
�FSE

(
T (z)−U(z)AV(z) −U(z)

V (z) 0

)
.

2. The proof is similar.
3. The equality D�(z)−1N�(z) = Nr(z)Dr(z)−1 leads to the intertwining relation

(
N�(z) 0

0 I

)(
Dr(z)−ANr(z) −I

Nr(z) 0

)
=

(
D�(z)−N�(z)A −N�(z)

I 0

)(
Nr(z) 0

0 I

)
.

In turn, this implies

(
Dr(z)−ANr(z) −I

Nr(z) 0

)
�FSE

(
D�(z)−N�(z)A −N�(z)

I 0

)
, (9.20)

which proves the similarity of the associated shift realizations.
4. By the state-space isomorphism theorem, the shift realizations associated with

the polynomial system matrices

(
zI −α −β

γ 0

)
and

(
T (z) −U(z)
V (z) 0

)

are similar. Thus, applying Definition 4.30,

(
zI −α −β

γ 0

)
�FSE

(
T (z) −U(z)
V (z) 0

)
.

Our next step is to go from a state-space representation to a minimal right
matrix fraction representation. To this end, let H(z)Dr(z)−1 be a right coprime
factorization of (zI −α)−1β . This implies the intertwining relation βDr(z) =
(zI−α)H(z). Moreover, define Nr(z) = γH(z). Similarity implies system equiv-
alence, but one can actually write down the equivalence explicitly, namely,

(
β 0
0 I

)(
Dr(z) −I
Nr(z) 0

)
=

(
zI −α −β

γ 0

)(
H(z) 0

0 I

)
.
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Thus

(
Dr(z) −I
Nr(z) 0

)
�FSE

(
zI −α −β

γ 0

)
.

Passing on to the polynomial system matrices associated with a coupled system,
an easy computation shows that

(
β 0
0 I

)(
Dr(z)−ANr(z) −I

Nr(z) 0

)
=

(
zI −α −βAγ −β

γ 0

)(
H(z) 0

0 I

)
.

This implies

(
zI −α −βAγ −β

γ 0

)
�FSE

(
Dr(z)−ANr(z) −I

Nr(z) 0

)
. (9.21)

Using equations (9.20) and (9.21) and the transitivity of FSE, one obtains

(
zI −α −βAγ −β

γ 0

)
�FSE

(
T (z)−U(z)AV(z) −U(z)

V (z) 0

)
.

So far, the required system equivalences were shown for C = I and B = I.
However, it is easily seen that if two polynomial system matrices

(
T1(z) −U1(z)
V1(z) 0

)
,

(
T2(z) −U2(z)
V2(z) 0

)

are FSE, then for matrices B and C the polynomial matrices

(
T1(z) −U1(z)B

CV1(z) 0

)
,

(
T2(z) −U2(z)B

CV2(z) 0

)
.

are also system equivalent. This completes the proof. �
One can reformulate this result as follows.

Corollary 9.6 (Permanence Principle). Suppose strictly proper input-output sys-
tems Σ1, . . . ,ΣN are coupled by interconnection matrices A,B,C to define a network
Σ . Assume that the systems Σi are system equivalent to systems Σ̂i, i = 1, . . . ,N.
Let Σ̂ be a network obtained by interconnecting Σ̂1, . . . , Σ̂N using the identical
interconnections A,B,C. Then Σ is system equivalent to Σ̂ .

We list an obvious consequence of this result for poles and zeros of systems that
was introduced in Chapter 4.7. The proof is left to the reader. Recall that F denotes
the algebraic closure of F.
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Corollary 9.7. Assume that the strictly proper transfer function G(z) of the decou-
pled node systems has the following, minimal, representations:

G(z) = γ(zI −α)−1β ,

= D�(z)
−1N�(z) = Nr(z)Dr(z)

−1,

=V (z)T (z)−1U(z).

Consider the interconnection matrices A,B,C,D. Then:

1. The interconnected system (α +βAγ ,βB,Cγ ,D) has a finite zero at z ∈ F if and
only if

rk

(
T (z)−U(z)AV(z) −U(z)B

CV(z) D

)
< r+grk;

here grk denotes the generic rank of NG(z);
2. (α +βAγ ,βB,Cγ ,D) has a pole at z ∈ F if and only if

det(T (z)−U(z)AV(z)) = 0;

3. Assume F = R. Then (α + βAγ ,βB,Cγ ,D) is discrete-time (continuous-time)
asymptotically stable if and only if det(T (z)−U(z)AV(z)) is a Schur (Hurwitz)
polynomial.

9.3 Reachability and Observability of Networks of Systems

The permanence principle is our main tool for analyzing the reachability and
observability properties of interconnected systems. The results will depend on the
type of interconnections, i.e., whether they are static or dynamic.

1. Static Interconnections. The question we are interested in is to decide when
an interconnected system in state-space form (9.5) is reachable or observable. Of
course, if the input and output interconnection matrices B,C are identity matrices,
then the effect of the interconnection matrix A is simply by the action of static output
feedback on the decoupled, block-diagonal system α,β ,γ . In particular, reachability
and observability would be preserved. However, except for this trivial case, it is
more difficult to characterize reachability and observability. A naive approach might
be to compute the n×nm-Kalman reachability matrix (or, equivalently, the Hautus
test) for system (9.5) and check its rank. But this requires checking the rank of a
potentially huge matrix. Moreover, owing to the additive perturbation structure of
A , the impact of interconnection parameters on the reachability properties is hard to
assess. Therefore, one searches for an alternative reachability characterization that
exhibits interconnection parameters and node dynamics in a more direct form.
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The characterization of the reachability and observability of the shift realization
associated with a polynomial system matrix, as in Theorem 4.26, allows us to easily
derive such characterizations for interconnected systems. Since reachability and
observability are preserved by FSE, Theorem 9.5 implies the following result.

Theorem 9.8. With the same assumptions as in Corollary 9.7, let

A = α +βAγ , B = βB, C =Cγ .

1. The transfer function NG(z) of an interconnected system has the following
representations:

NG(z) = C (zI −A )−1B+D

=C(D�(z)−N�(z)A)
−1N�(z)B+D = CNr(z)(Dr(z)−ANr(z))

−1B+D

= CV(z)(T (z)−U(z)AV(z))−1U(z)B+D.

2. The following statements are equivalent:

(a) The system (A ,B,C ) is reachable.
(b) D�(z)−N�(z)A and N�(z)B are left coprime.
(c) Dr(z)−ANr(z) and B are left coprime.
(d) T (z)−U(z)AV(z) and U(z)B are left coprime.

3. The following statements are equivalent:

(a) The system (A ,B,C ) is observable.
(b) D�(z)−N�(z)A and C are right coprime.
(c) Dr(z)−ANr(z) and CNr(z) are right coprime.
(d) CV(z) and T (z)−U(z)AV(z) are right coprime.

4. The system (A ,B,C ) is minimal if and only if Dr(z)−ANr(z) and B are left
coprime and Dr(z)−ANr(z) and CNr(z) are right coprime.

Proof. By Theorem 9.5, the triple (A ,B,C ) is similar to the shift realizations
of each of three polynomial matrix representations (D�(z)− N�(z)A,N�(z)B,C),
(Dr(z) − ANr(z),B,CNr(z)), and (T (z) − U(z)AV(z),U(z)B,CV(z)). The Shift
Realization Theorem 4.26 then implies that the reachability and observability
of these realizations is equivalent to left coprimeness and right coprimeness,
respectively. The result follows. �
Corollary 9.9. A necessary condition for the reachability/observability of an inter-
connected system is the reachability/observability of all node systems.
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Proof. By Theorem 9.8, an interconnected system is reachable if and only if the
polynomial matrices

⎛
⎝

T (z) −U(z) 0
V (z) 0 −I

0 I A

⎞
⎠ and

⎛
⎝

0
0
B

⎞
⎠

are left coprime. Clearly, for this, the left coprimeness of T (z) and U(z) is necessary.
Because of the diagonal nature of both polynomial matrices, this is equivalent
to the left coprimeness of Ti(z) and Ui(z) for all i. One argues similarly for
observability. �

Let us point out that a similar result, phrased in terms of decoupling zeros,
appeared in Rosenbrock and Pugh (1974). At that time, the connection between
decoupling zeros and the properties of reachability and observability had not yet
been clarified.

While Corollary 9.9 provides a simple necessary condition for reachability, the
condition is in general not sufficient. As a simple consequence of Theorem 9.8
one obtains the following Hautus-type characterization of the reachability and
observability of networks. Let F denote the algebraic closure of the field F.

Theorem 9.10. (a) (A ,B) is reachable if and only if

rk
(

T (z)−U(z)AV(z) U(z)B
)
= r, ∀z ∈ F.

(b) (C ,A ) is observable if and only if

rk

(
T (z)−U(z)AV(z)

CV(z)

)
= r, ∀z ∈ F.

The preceding result exhibits, in a clear way, how the different components
of the network contribute to reachability and observability. In comparison with
the Kalman reachability matrix, the size is reduced to r × (r +m). Note that for
homogeneous networks with scalar node functions, the matrices T (z),U(z),V (z)
become scalar multiples of the identity matrix. Therefore, Theorem 9.10 implies
that the reachability and observability properties of a homogeneous network are
actually independent of the choice of the strictly proper node function. Thus,
for homogeneous networks and scalar nodes, the network realization (A ,B) is
reachable if and only if (A,B) is reachable. This greatly simplifies the analysis of
scalar homogeneous networks; see Section 9.6 for further details and applications.
For homogeneous networks with multivariable node transfer functions, the result is
not true without further assumptions. We will now extend Theorem 9.8 to dynamical
interconnection laws and analyze in detail some special interconnection schemes.

2. Dynamic Interconnections. We next consider more general dynamical cou-
pling laws between the various node systems. This is important for network control



9.3 Reachability and Observability of Networks of Systems 487

applications, where one wants to allow for possible delays in interconnections, thus
modeling potential communication delays between subsystems. Let

x(t +1) = αx(t)+βv(t)
w(t) = γx(t)

(9.22)

denote the uncoupled array of node systems. As before, assume that (α,β ,γ) is
reachable and observable with right and left coprime factorizations of the block-
diagonal transfer function

γ(zI −α)−1β = D�(z)
−1N�(z) = Nr(z)Dr(z)

−1.

Let γ(zI − α)−1β = V (z)T (z)−1U(z) + W (z) be a polynomial matrix fraction
decomposition, with V (z),T (z) right coprime and T (z),U(z) left coprime. Consider
the dynamic interconnection law (9.15) via

E(σ)v = A(σ)w+B(σ)u,

y =Cw+Du.

Here E(z) is a square nonsingular polynomial matrix, A(z) and B(z) are appropri-
ately sized polynomial matrices, and C and D are constant matrices. Assuming that
the rational function E(z)−1(A(z),B(z)) is proper, there exists a proper, first-order
shift realization as

ζ (t +1) = Fζ (t)+G1w(t)+G2u(t),

v(t) = Hζ (t)+ J1w(t)+ J2u(t).
(9.23)

Equations (9.22) and (9.23) can be combined to yield the first-order representation

z(t +1) =Acz(t)+Bcu(t),

y(t) = Ccz(t)+Du(t),
(9.24)

with system matrices

Ac =

(
α +βJ1γ βH

G1γ F

)
,Bc =

(
βJ2

G2

)
,Cc =

(
Cγ 0

)
.

The interconnected system then has the following PMD representation:

⎛
⎜⎜⎝

0
0
0
I

⎞
⎟⎟⎠y =

⎛
⎜⎜⎝

T (z) −U(z) 0 0
V (z) W (z) −I 0

0 E(z) −A(z) −B(z)
0 0 C D

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ξ
v
w
u

⎞
⎟⎟⎠ .
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The special choice T (z) = Dr(z),U(z) = I,V (z) = Nr(z),W (z) = 0 leads to the
following result.

Theorem 9.11. Given N node strictly proper systems, with right and left coprime
matrix fraction representations D�(z)−1N�(z) = Nr(z)Dr(z)−1, respectively, the
following strict system equivalences are fulfilled:

⎛
⎝

zI −α −βJ1γ −βH −βJ2

−G1γ zI −F −G2

Cγ 0 D

⎞
⎠�FSE

⎛
⎜⎜⎝

Dr(z) −I 0 0
Nr(z) 0 −I 0

0 E(z) −A(z) −B(z)
0 0 C D

⎞
⎟⎟⎠�FSE

⎛
⎝

I 0 0
0 −A(z)Nr(z)+E(z)Dr(z) −B(z)
0 CNr(z) D

⎞
⎠ .

Proof. The first equivalence follows from Theorem 9.4. The FSE representations

⎛
⎜⎝

N�(z) −D�(z) 0 0
0 0 I 0
0 0 0 I

⎞
⎟⎠

⎛
⎜⎜⎜⎝

Dr(z) −I 0 0
Nr(z) 0 −I 0

0 E(z) −A(z) −B(z)

0 0 C D

⎞
⎟⎟⎟⎠=

⎛
⎜⎝

0 −N�(z) D�(z) 0
0 E(z) −A(z) −B(z)

0 0 C D

⎞
⎟⎠

as well as

⎛
⎝

0 0 0
0 I 0
0 0 I

⎞
⎠
⎛
⎝

I 0 0
0 −A(z)Nr(z)+E(z)Dr(z) −B(z)
0 CNr(z) D

⎞
⎠

=

⎛
⎝

0 −N�(z) D�(z) 0
0 E(z) −A(z) −B(z)
0 0 C D

⎞
⎠

⎛
⎜⎜⎝

I 0 0
0 Dr(z) 0
0 Nr(z) 0
0 0 I

⎞
⎟⎟⎠

are satisfied. It is easily seen that these representations define FSE transformations.
The result follows. �

We conclude that the reachability of the node systems and left coprimeness of
(E(z),A(z),B(z)) are necessary conditions for the reachability of a dynamically
interconnected network. The next theorem characterizes the reachability and observ-
ability properties of interconnected systems. The proof is an obvious consequence
of the preceding equivalence result and therefore omitted.

Theorem 9.12. Assume that (α,β ,γ) are reachable and observable and Nr and
Dr are right coprime, with Nr(z)Dr(z)−1 = γ(zI − α)−1β . Assume further that
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(F,(G1,G2),H) is reachable and observable with left coprime factorization
E(z)−1(A(z),B(z)) = (J1,J2)+H(zI −F)−1(G1,G2). Let

Ac =

(
α +βJ1γ βH

G1γ F

)
,Bc =

(
βJ2

G2

)
,Cc =

(
Cγ 0

)

denote the realization of the dynamically interconnected system (9.24).

1. (Ac,Bc,Cc) is reachable if and only if

rk
(

A(z)Nr(z)−E(z)Dr(z),B(z)
)
= n, ∀z ∈ F.

2. (Ac,Bc,Cc) is observable if and only if

rk

(
A(z)Nr(z)−E(z)Dr(z)

CNr(z)

)
= n, ∀z ∈ F.

As a special case of the general dynamical coupling law one can characterize
reachability and observability for delayed interconnection schemes of the form

vi(t) =
N

∑
j=1

Aijw j(t −Lij)+Biu(t)

for nonnegative integers Lij. This network is described as follows using the
interconnection law (9.15). We use the notations Li := max j=1,...,N Lij, i = 1, . . . ,N,
and Lij = Li −Lij ≥ 0. Define the polynomial matrices EL(z) = diag(zL1 , · · · ,zLN ),

AL(z) = (AijzLij)i, j=1,...,N ∈ F
p×m[z], B(z) := EL(z)B, and C(z) =C. One obtains the

following characterization of reachability and observability for delayed networks.

Theorem 9.13. The shift realization of a delayed network is reachable if and only if

rk
(

AL(z)Nr(z)−EL(z)Dr(z),EL(z)B
)
= n, ∀z ∈ F.

The shift realization of a delayed network is observable if and only if

rk

(
AL(z)Nr(z)−EL(z)Dr(z)

CNr(z)

)
= n, ∀z ∈ F.

As a special case, consider homogeneous networks of identical SISO systems
with node transfer functions Gi(z) =

p(z)
q(z) satisfying p(0) �= 0. In this situation the

preceding result implies the following corollary.

Corollary 9.14. Consider a network of identical node transfer functions
Gi(z) =

p(z)
q(z) satisfying p(0) �= 0. Assume that A is invertible and (A,B,C) is

reachable (observable). Assume further that all delays Lij are identical and
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equal to L ≥ 1. Then the delayed network (Ac,Bc,Cc) is reachable (observable),
independently of the value of L.

Proof. Let A = (Aij). Since Lij = L, one obtains Lij = 0, and thus A(z) = A. From
Theorem 9.12 we conclude that reachability is equivalent to (p(z)A− zLq(z)I,zLB)
having full row rank. For z = 0 this is true since p(0) �= 0 and A is invertible. For

z �= 0 this is equivalent to (A− zLq(z)
p(z) I,B) having full row rank, which again follows

from the reachability of (A,B). For observability one argues similarly. �

9.4 Homogeneous Networks

Clearly, the simplest classes of networks are the homogeneous ones, defined by
interconnections of identical linear systems with SISO node transfer function g(z).
Thus, assume that the dynamics of the identical node systems in a linear network
are described by a single scalar strictly proper transfer function

g(z) = γ(zIn −α)−1β ,

with α ∈ F
n×n,β ∈ F

n,γ ∈ F
1×n reachable and observable. This is a special

case of (9.7). Define h(z) = 1/g(z). Let N (z) = C(zI −A)−1B denote the p×m
interconnection transfer function. Then the network transfer function NG(z) of the
homogeneous network is NG(z) = C(h(z)I −A)−1B, i.e., it is the composition of
rational functions N ◦ h. Let (A ,B,C ) be the shift realization of the network
transfer function NG(z) associated with a minimal factorization of g(z) = p/q. Then
the matrices in (9.6) are represented in Kronecker product form as

A = IN ⊗α +A⊗βγ ∈ F
nN⊗nN ,

B = B⊗β ∈ F
nN×m,

C =C⊗ γ ∈ F
p×nN .

(9.25)

The following test for the reachability of homogeneous networks is a simple
consequence of Theorem 9.10. It was first stated and proved by Hara, Hayakawa
and Sugata (2009). Our proof is quite different and avoids complicated state-space
canonical form arguments.

Theorem 9.15. The shift realization (A ,B,C ) of NG(z), defined by (9.25), is
reachable (observable) if and only if the realization (A,B,C) of the interconnection
transfer function N (z) is reachable (observable). In particular, the reachability of
(A ,B,C ) is independent of the choice of the node transfer function g(z), as long
as g(z) is scalar rational and strictly proper.
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Proof. By Theorem 9.8, (A ,B,C ) is reachable if and only if Q(z)−P(z)A,P(z)B
are left coprime. The coprime factorization of the decoupled system Q(z)−1P(z) =
g(z)IN is Q(z) = q(z)IN , P(z) = p(z)IN , with g(z) = p(z)/q(z) coprime. Thus
(A ,B) is reachable if and only if

rk(q(z)IN − p(z)A, p(z)B) = N (9.26)

for all z ∈ F. If p(z) = 0, then, by coprimeness, q(z) �= 0, and (9.26) is satisfied.
The fundamental theorem of algebra implies that for all w ∈ F there exists z ∈ F,
with p(z) �= 0 and w = q(z)

p(z) . Dividing by p(z), it follows that the left coprimeness

condition is equivalent to rk(wIN −A,B) = N for all w ∈ F. Thus the reachability
of (A ,B) is equivalent to the reachability of (A,B), and we are done. One argues
similarly for observability and minimality. �

The amazing consequence of the preceding theorem is that reachability can be
analyzed completely independently of the choice of node function. We will now
make this even more explicit by relating coprime factorizations of NG and N .
Assume that (A,B)∈F

N×(N+m) is reachable with reachability indices κ1 ≥ ·· · ≥ κm.
Choose a right coprime factorization

(zI −A)−1B = N(z)D(z)−1

by N ×m and m×m polynomial matrices N(z) and D(z), respectively. Therefore,
detD(z) = det(zI −A). Without loss of generality, one can assume that D(z) is in
column proper form, i.e., the leading coefficient matrix of D(z) is D0Δ(z), with D0

invertible and

Δ(z) = diag(zκ1 , · · · ,zκm).

Let g(z) denote a strictly proper, scalar rational transfer function with coprime
factorization g(z) = p(z)/q(z) and McMillan degree n. Define the homogenizations

Ng(z) = N(
q(z)
p(z)

)Δ(p(z)), Dg(z) = D(
q(z)
p(z)

)Δ(p(z)).

Proposition 9.16. Under the preceding assumptions, the following assertions are
true:

1. Ng(z) and Dg(z) are right coprime polynomial matrices and Dg(z) is in column
proper form.

2. detDg(z) = det(q(z)I − p(z)A).
3. The reachability indices of the shift realization of Ng(z)Dg(z)−1 are equal to

(nκ1, . . . ,nκm).

Proof. That Ng(z) and Dg(z) are polynomials follows easily from N(z) and D(z)
being in column proper form. For right coprimeness, one must show that
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rk

(
Ng(z)
Dg(z)

)
= m (9.27)

for all z in the algebraic closure of the field F. If z is not a zero of p, then Δ(p(z))
is invertible. Therefore, the rank condition (9.27) follows from the corresponding
rank condition for N(z) and D(z) at the point h(z) = q(z)

p(z) . If p(z) = 0, then Dg(z) =

D0Δ(q(z)) is invertible. Moreover, by the strict properness of N(z)D(z)−1, at such
a point z one has Ng(z) = 0. This proves right coprimeness. The column properness
of Dg(z) follows from the fact that the leading term of Dg(z) is D0Δ(q(z)). This
also implies part 3, i.e., that the reachability indices of the shift realization of
Ng(z)Dg(z)−1 are nκi for i = 1, . . . ,m.

2. It suffices to verify the formula for the transfer function for all z that are not zeros
of p(z). Note that

Ng(z)Dg(z)
−1 =N(h(z))D(h(z))−1 =C(h(z)I−A)−1B=C(q(z)I− p(z)A)−1 p(z)B.

Finally, for each z that is not a zero of p,

detDg(z) = detD(h(z))detΔ(p(z)) = detD(h(z))p(z)n = det(q(z)I − p(z)A)).

This completes the proof. �

9.5 Special Coupling Structures

Many coupling patterns in interconnected systems arise by specifying linear depen-
dency relations among the coefficients of the coupling matrices A,B,C. Thus, for
example, one may consider 0−∗ patterns in which the entries of A,B,C are either
0 or free independent variables. Other examples include block upper triangular
matrices, symmetric matrices, and Toeplitz matrices A. In this section, we will
explore the reachability task for some of these interconnection structures. A more
systematic approach would require tools from graph theory. Here we pursue modest
goals and focus on the analysis of special cases such as path graphs and circular
structures.

1. Paths. Path graphs or, more generally, trees are among the simplest hier-
archical interconnection patterns. Certainly, the easiest example of a coupling
pattern that comes from a path is the nearest-neighbor interconnection scheme
with controls at the first node. Thus, consider N node systems Σi with reachable
and observable state-space representations αi ∈ F

n×n, βi ∈ F
n×m, and γi ∈ F

p×n.
For i = 1, . . . ,N, let

γi(zI −αi)
−1βi = D�,i(z)

−1N�,i(z) = Nr,i(z)Dr,i(z)
−1 (9.28)
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denote left and right coprime factorizations of the associated transfer functions. For
simplicity assume m = p. Consider the state interconnection matrices

A =

⎛
⎜⎜⎜⎜⎝

0 · · · · · · 0

Im
. . .

...
...

. . .
. . .

...
0 · · · Im 0

⎞
⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

Im
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (9.29)

the Im-component of B being at position 1 ≤ r ≤ N. Clearly, (9.29) represents a
nearest-neighbor interaction of N systems, with the external controls entering at
node r. The closed-loop system matrix then has the lower bidiagonal form

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1

β2γ1 α2

β3γ2
. . .
. . .

. . .

βNγN−1 αN

⎞
⎟⎟⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

βr

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9.30)

Note that, for r = 1, the network (9.30) is simply the series connection Σ1 ∧ . . .∧ΣN

of N systems and thus is reachable if and only if the (N − 1)m×Nm polynomial
Sylvester-type matrix

⎛
⎜⎜⎜⎜⎝

Nr,1(z) Dr,2(z)
. . .

. . .

. . .
. . .

Nr,N−1(z) Dr,N(z)

⎞
⎟⎟⎟⎟⎠

is left prime. Applying Theorem 9.8, one observes that the system is not reachable
for r > 1.

The situation becomes more interesting for symmetric couplings defined by the
interconnection matrices A = J⊗ Im and B = ek ⊗ Im, where

J =

⎛
⎜⎜⎜⎜⎜⎝

0 1
1 0 1

1
. . .

. . .
. . .

. . . 1
1 0

⎞
⎟⎟⎟⎟⎟⎠

. (9.31)
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The interconnected system is then

A =

⎛
⎜⎜⎜⎜⎝

α1 β1γ2

β2γ1 α2
. . .

...
. . .

. . . βN−1γN

0 . βNγN−1 αN

⎞
⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎜⎜⎝

0
.

βk

.

0

⎞
⎟⎟⎟⎟⎟⎠
. (9.32)

Again, applying Theorem 9.8 to the coprime factorization (9.28), we conclude that
(9.32) is reachable if and only if the polynomial matrices

⎛
⎜⎜⎜⎜⎝

Dr,1(z) Nr,1(z)

Nr,2(z) Dr,2(z)
. . .

...
. . .

. . . Nr,N−1(z)
0 . Nr,N(z) Dr,N(z)

⎞
⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎝

0
.

Im

.

0

⎞
⎟⎟⎟⎟⎟⎠

are left prime. Equivalently, the polynomial matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dr,1(z) Nr,1(z)
Nr,2(z) Dr,2(z) Nr,2(z)

. . .
. . .

. . .
Nr,k−1(z) Dr,k−1(z) Nr,k−1(z)

Nr,k+1(z) Dr,k+1(z) Nr,k+1(z)
. . .

. . .
. . .

Nr,N−1(z) Dr,N−1(z) Nr,N−1(z)
Nr,N(z) Dr,N(z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is left prime.
For identical node systems with D(z) := Dr,1(z) = . . . = Dr,N(z) and

N(z) := Nr,1(z) = . . . = Nr,N(z), more explicit results can be obtained using the
spectral information on (9.31). By Theorem 8.45, matrix J has N distinct real
eigenvalues 2cos kπ

N+1 ,k = 1, . . . ,N, with eigenvectors given by the columns of

T =

√
2

N +1

⎛
⎜⎜⎝

sin π
N+1 · · · sin Nπ

N+1
...

. . .
...

sin Nπ
N+1 · · · sin N2π

N+1

⎞
⎟⎟⎠ .

Note that the column vectors x(k) of T are pairwise orthogonal with Euclidean norm
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N +1
2

‖x(k)‖2 =
N

∑
j=1

sin2(
kjπ

N +1
) =

N
2
− 1

2

N

∑
j=1

cos
2kjπ
N +1

=
N
2
− 1

2

N

∑
j=1

Re(ωk j) =
N +1

2
,

where ω = e
2π

√−1
N+1 . Thus T =

√
2

N+1 (sin klπ
N+1 )k,l is a real orthogonal matrix such

that T−1JT is diagonal. Then T ⊗ IN diagonalizes A with eigenvalues 2cos kπ
N+1 ,k =

1, . . . ,N, each one occurring with multiplicity m. Moreover,

T−1er =

√
N +1

2

⎛
⎜⎝

sin rπ
N+1
...

sin Nrπ
N+1

⎞
⎟⎠

has a zero entry if and only if N+1 divides rk for some 1 ≤ k ≤ N, i.e., if and only if
N+1 and r are not coprime. This leads to an explicit characterization of reachability
that is independent of the node system.

Theorem 9.17. The interconnected system (9.32) with identical nodes is reachable
if and only if N +1 and r are coprime.

Proof. The matrix T ⊗ Im (IN ⊗D(z)− J⊗N(z))T−1 ⊗ Im is block-diagonal with
block-diagonal entries D(z)− 2cos kπ

N+1 N(z), 1 ≤ k ≤ N. Therefore, the pair (IN ⊗
D(z)− J ⊗N(z),T−1er ⊗ Im) is left coprime if and only if T−1er has no zero entry,
i.e., if and only if r and N +1 are coprime. �

2. Simple Circulant Structures. Here the reachability problem for linear
systems with special circulant interconnection structures are explored. We refer
the reader to Brockett and Willems (1974) and Lunze (1986) for earlier work on
circulant systems. Further motivation derives from the observation that such systems
present the simplest kind of systems with symmetries; see, for example, Hazewinkel
and Martin (1983). Symmetric systems also arise in recent studies on spatially
invariant systems; see, for example, Bamieh, Paganini and Dahleh (2002).

Consider now N nodes with transfer functions Gi(z) coupled circularly. Specif-
ically, in terms of minimal state-space realizations (9.4), one has the following
state-space equations describing the individual nodes (i = 1, . . . ,N):

σxi = αixi(t)+βivi(t),
wi(t) = γixi(t).

This by itself is not sufficient to describe an interconnected system. We need to
describe the cross influence between the nodes and the way in which the external
input influences the nodes. There are many options. The cross influence between
the nodes can be one- or two-sided nearest-neighbor interactions up to interactions
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between all nodes in the same way. Then one must consider how the external input
influences the individual nodes. The two extreme cases are, first, that the external
input is applied only to one node and, second, that it is applied directly to all nodes.
Similar cases of interest exist for the global output of an interconnected system. We
briefly review some of the options.

2a. Unidirectional Nearest-Neighbor Coupling and One-Node External
Control. The coupling information is described by the matrices

A =

⎛
⎜⎜⎜⎜⎝

0 · · · 0 I

I
. . . 0
. . .

. . .
...

I 0

⎞
⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎝

I
0
...
0

⎞
⎟⎟⎟⎠ , C =

(
I 0 · · · 0

)
. (9.33)

The coupled system has the following representation:

A =

⎛
⎜⎜⎜⎜⎝

α1 0 · · · 0 β1γN

β2γ1 α2
. . . 0

β3γ2
. . .

. . .
...

. . .
. . . 0

βNγN−1 αN

⎞
⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

β1

0
...
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, C =

(
γ1 0 · · · 0

)
.

(9.34)

2b. Bidirectional Nearest-Neighbor Coupling and One-Node External Control.
The coupling in (9.33) is unidirectional. Alternatively, one can use the more
symmetric, nearest-neighbor, coupling described by

A =

⎛
⎜⎜⎜⎜⎝

0 I I
I

. . .
. . .

. . .
. . .

. . .
. . .

. . . I
I I 0

⎞
⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎝

I
0
...
0

⎞
⎟⎟⎟⎠ , C =

(
I 0 · · · 0

)
.

In this case, the coupled system has the following representation:

A =

⎛
⎜⎜⎜⎜⎝

α1 β1γ2 0 · · · β1γN

β2γ1 α2
. . . 0

0 β3γ2
. . .

. . .
...

...
. . .

. . . βN−1γN
βNγ1 0 · · · βNγN−1 αN

⎞
⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

β1

0
...
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, C =

(
γ1 0 · · · 0

)
.

(9.35)
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2c. Full Coupling and One-Node External Control. The coupling is described by

A =

⎛
⎜⎜⎜⎜⎝

0 I I
I

. . .
. . .

. . .
. . .

. . .
. . .

. . . I
I I 0

⎞
⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎝

I
0
...
0

⎞
⎟⎟⎟⎠ , C =

(
I 0 · · · 0

)
.

In this case, the coupled system has the following representation:

A =

⎛
⎜⎜⎜⎜⎝

α1 β1γ2 0 · · · β1γN

β2γ1 α2
. . . 0

0 β3γ2
. . .

. . .
...

...
. . .

. . . βN−1γN
βNγ1 0 · · · βNγN−1 αN

⎞
⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

β1

0
...
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, C =

(
γ1 0 · · · 0

)
.

(9.36)

If all nodes have the same state-space representation, that is, in the homogeneous
case, then the matrices A in the representations (9.34), (9.35), and (9.36) will all
have a block-circulant structure; see the next subsection for a discussion of general
block-circulant structures.

For our purposes, it is advantageous to obtain matrix fraction representations of
the various interconnections. However, because the computations are similar, we
restrict ourselves to a single case, for which a characterization of reachability is
obtained, which is summarized by the following theorem. This should be compared
with the criteria for the reachability of series connections derived subsequently
in (10.5).

Theorem 9.18. Consider the node systems Σi, i = 1, . . . ,N, with coprime matrix
fraction representations as in (9.7). The circular interconnection system (9.34) is
reachable if and only if the polynomial matrix

⎛
⎜⎜⎜⎝

Nr,1(z) Dr,1(z)
Nr,2(z) Dr,2(z)

. . .
. . .

Nr,N−1(z) Dr,N(z)

⎞
⎟⎟⎟⎠ (9.37)

is left prime.

Proof. Applying Theorem 9.8, one sees that (9.34) is reachable if and only if the
pair of polynomial matrices

(Dr(z)−ANr(z),B) =

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

Dr,1 −Nr,N

−Nr,1 Dr,2
. . .

. . .

−Nr,N−1 Dr,N

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

Im

0
...
0

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠



498 9 Interconnected Systems

is left coprime. After a simple column operation, this is equivalent to the left
primeness of (9.37). �
3. Block Circulant Structures. Following Brockett and Willems (1974), we begin
by presenting a state-space formulation of the situation we are interested in and
introduce our subsequent notation. Since Fourier transform techniques will be
applied, we restrict ourselves to the field C of complex numbers. An N ×N block-
circulant matrix has the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A0 A1 · · · AN−2 AN−1

AN−1 A0 · · · · · · AN−2

AN−2
. . .

. . .
...

...
. . .

. . .
. . .

...
A1 · · · AN−2 AN−1 A0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where Ai denotes an n×n matrix with complex coefficients. Similarly, let B and C
denote block-circulant matrices, where the block matrices are of the form Bi ∈C

n×m

and Ci ∈ C
p×n. Consider the input and output matrices, respectively,

β =

⎛
⎜⎜⎜⎝

β1

β2
...

βN

⎞
⎟⎟⎟⎠ , γ =

(
γ1 γ2 · · · γN

)
.

Here, the submatrices satisfy βi ∈ C
m×r and γi ∈ C

s×p, respectively. Consider N
interconnected discrete-time block-circulant linear systems

x(t +1) = Ax(t)+Bβu(t),

y(t) = γCx(t).
(9.38)

We are interested in characterizing when such systems are reachable. Let ω :=
exp(2π

√−1/N) denote the primitive Nth root of unity, and let

Φ =
1√
N
(ω(k−1)(�−1))k,� (9.39)

denote the N×N Fourier matrix. Note that the Fourier matrix Φ is the reachability
matrix of the reachable pair
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Δ(ω) =

⎛
⎜⎜⎜⎝

1
ω

. . .

ωN−1

⎞
⎟⎟⎟⎠ , 1 =

1√
N

⎛
⎜⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎟⎠ .

It is easily seen that the block-circulant matrix is exactly of the form A = ∑N−1
i=0 Si ⊗

Ai, where

S = ΦΔ(ω)Φ∗ =

⎛
⎜⎜⎜⎜⎜⎝

0 1
0 1

. . .
. . .
. . . 1

1 0

⎞
⎟⎟⎟⎟⎟⎠

(9.40)

denotes the standard N ×N circulant matrix. In particular, finite sums and products
of block-circulant matrices with square blocks are block-circulant. Moreover, the
Fourier matrix is unitary and Φ ⊗ In block-diagonalizes all block-circulant matrices
A = ∑N−1

i=0 Si ⊗ Ai. Block-circulant matrices A are best analyzed in terms of the
associated matrix polynomial

A(z) :=
N−1

∑
k=0

Akzk ∈ C[z]n×n.

Thus

A = (Φ ⊗ In)

⎛
⎜⎜⎜⎝

A(1)
A(ω)

. . .

A(ωN−1)

⎞
⎟⎟⎟⎠(Φ∗ ⊗ In) ,

and similarly for B and C. This shows that one has full knowledge on the eigen-
structure of block-circulant matrices. Explicitly, the eigenvalues of block-circulant
matrices are the eigenvalues of A(1), . . . ,A(ωN−1), respectively, while the eigenvec-
tors of A are equal to (Φ ⊗ IN)v for the eigenvectors v of diag(A(1), . . . ,A(ωN−1)).

Define b ∈ C
Nm×r, c ∈ C

s×Np as

b = (Φ ⊗ Im)β =

⎛
⎜⎜⎜⎝

bN

b1
...

bN−1

⎞
⎟⎟⎟⎠ , c = γ(Φ∗ ⊗ Ip) =

(
cN c1 · · · cN−1

)
.
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Thus, in the discrete-time case (and similarly for continuous-time systems), the
block-circulant system (9.38) is state-space equivalent to the parallel connected
system

xk(t +1) = A(ωk)xk(t)+B(ωk)bku(t),

yk(t) = ckC(ωk)xk(t), k = 1, . . . ,N.
(9.41)

We emphasize that this is simply the parallel sum of N systems (ckC(ωk),A(ωk),
B(ωk)bk). The s× r transfer function of system (9.41) is

NG(z) = cdiag(G1(z), · · · ,GN(z))b,

where Gk(z) =C(ωk)(zI −A(ωk))−1B(ωk). Let

(zI −A(ωk))−1B(ωk)bk := Nk(z)Dk(z)
−1

denote a right coprime factorization into polynomial matrices Nk(z),Dk(z), k ∈
1, . . . ,N. Thus Nk(z) and Dk(z) are n×r and r×r polynomial matrices, respectively.
From Theorem 10.4 one arrives at the following theorem.

Theorem 9.19. Assume that (A(ωk),B(ωk)bk) are reachable for k = 1, · · · ,N. The
block-circulant system (9.38) is reachable if and only if the N polynomial matrices
Dk(z) ∈ C[z]r×r,k = 1, . . . ,N are mutually left coprime. In particular, for r = 1 and
reachable pairs (A(ωk),B(ωk)bk),k = 1, . . . ,N, system (9.38) is reachable if and
only if the polynomials det(zI −A(ωk)) are pairwise coprime for k = 1, · · · ,N.

The preceding result generalizes previous results by Lunze (1986) and Brockett
and Willems (1974). These authors considered block-circulant control systems in
which each subsystem was controlled independently. Thus, they effectively assumed
that b was the identity matrix. This excludes several interesting cases, such as
leader–follower networks. The more general case treated here is motivated by the
more recent work of Brockett (2010), in which the inputs are broadcasted to all
nodes of a network. The next example has been studied by Lunze (1986).

Example 9.20. Consider the circulant system

x(t +1) = Ax(t)+Bu(t)

with independent controls. Let A and B be circulant matrices with A(z) = A0−A1+
A1(1+ · · ·+zN−1) and B(z) = B0. For z = 1 one obtains A(1) = A0+(N−1)A1, and
A(ω i) = A0−A1 for i = 1, . . . ,N−1. Therefore, (A(z),B(z)) is reachable for all Nth
roots of unity z if and only if the two systems (A0−A1,B0) and (A0+(N−1)A1,B0)
are reachable. This coincides with the result by Lunze (1986). In contrast, if one
replaces B with Bβ , with β a column vector, then Theorem 9.19 implies that the
system is not reachable for N > 2.
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4. Periodic Interconnections. We proceed to discuss briefly an extension to
periodic interconnection laws for discrete-time systems. We refer the reader to
Bittanti and Colaneri (2010) for background material on periodic linear systems.
Thus, consider N reachable and observable discrete-time decoupled node systems

xk(t +1) = αkxk(t)+βkvk(t),

wk(t) = γkxk(t), k = 1, . . . ,N,

with system matrices αk ∈ F
nk×nk ,βk ∈ F

nk×mk ,γk ∈ F
pk×nk . Equivalently, introduc-

ing the global state vectors x = col(x1, . . . ,xN) ∈ F
n, and similarly for the input and

output vectors v,w, one obtains the global decoupled system

x(t +1) = αx(t)+βvk(t),

w(t) = γx(t),

where α = diag(α1, . . . ,αN), and one argues similarly for β ,γ . We emphasize at
this point that (α,β ,γ) is assumed to be a time-invariant reachable and observable
system. One could also investigate periodic node systems, but we will not do so
here. Let G(z) = Nr(z)Dr(z)−1 = γ(zI −α)−1β be a right coprime factorization of
the global node transfer function. Consider the periodic interconnection law

v(t) = Atw(t)+Btu(t),

y(t) =Ctw(t),

with At = At+τ ,Bt = Bt+τ ,Ct = Ct+τ time-varying matrices of period τ ∈ N. The
closed-loop, first-order system is then the τ-periodic system

x(t +1) =At x(t)+Btu(t),

y(t) = Ct x(t),
(9.42)

with At =α+βAtγ ,Bt = βBt ,Ct =Ctγ . For simplicity, let us focus on reachability.
Define

A =

⎛
⎜⎜⎜⎜⎜⎝

0 Aτ

A1
. . .
. . .

. . .

Aτ−1 0

⎞
⎟⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎜⎝

Bτ
B1

. . .

Bτ−1

⎞
⎟⎟⎟⎟⎠
, C =

⎛
⎜⎜⎜⎜⎜⎝

0 Cτ

C1
. . .
. . .

. . .

Cτ−1 0

⎞
⎟⎟⎟⎟⎟⎠
.

The reachability properties of a periodic system are characterized by the reachability
properties of the so-called lifted system. We refer the reader to Bittanti and Colaneri
(2010) for a discussion on the reachability properties of periodic systems and a proof
of the equivalence of the reachability of periodic systems and of the reachability of
lifted systems. Let S denote the standard τ × τ circulant matrix defined in (9.40).
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Proposition 9.21. The closed-loop periodic system (9.42) is reachable (observ-
able) if and only if the time-invariant lifted system

Ae = S�⊗α +(I ⊗β )A(I ⊗ γ), Be = (I ⊗β )B, Ce =C(I ⊗ γ)

is reachable (observable).

Since we are using the Fourier transform, let us assume from now on that the systems
are defined over the field F= R of real numbers or over the field F= C of complex
numbers. Define ω = e2π

√−1/τ ,ω = e−2π
√−1/τ , and let Φ denote the τ × τ Fourier

matrix. Then

(Φ∗ ⊗ I)Ae(Φ ⊗ I) = Δ(ω)⊗α +(I ⊗β )Â(I ⊗ γ), (Φ∗ ⊗ I)Be = (I ⊗β )B̂,

where Δ(ω) = diag(1,ω, . . . ,ωτ−1), Â = (Φ∗ ⊗ I)A(Φ ⊗ I), and B̂ = (Φ∗ ⊗ I)B.
Thus (Ae,Be) is reachable if and only if (Δ(ω)⊗α +(I ⊗β )Â(I ⊗ γ),(I ⊗β )B̂)
is reachable. The latter system is obtained by interconnecting the decoupled node
system

α̂ = diag(α,ωα, . . . ,ωτ−1α), β̂ = I ⊗β , γ̂ = I ⊗ γ

with the interconnection matrices Â and B̂. The transfer function of the system
(α̂, β̂ , γ̂) is easily computed from the right coprime factorization P(z)Q(z)−1 of
γ(zI −α)−1β as

Ĝ(z) := (I ⊗ γ)(zI− α̂)−1(I ⊗β ) = P̂(z)Q̂(z)−1,

with right coprime factors

Q̂(z) = diag
(
Dr(z),Dr(ωz), . . . ,Dr(ωτ−1z)

)
,

P̂(z) = diag
(
ωNr(ωz),ωNr(ωz), . . . ,ωτ−1Nr(ωτ−1z)

)
.

Applying Theorem 9.10 we arrive at the following corollary.

Corollary 9.22. A periodically interconnected network of linear systems (9.42) is
reachable if and only if the matrix

(
Q̂(z)− ÂP̂(z), B̂

)
has full row rank for all z.

9.6 Exercises

1. For matrix fraction representations (9.11), prove that the map

Z : XD −→ XD−NA, Zf = πD−NA( f )

defines an isomorphism of F[z]-modules.
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2. Let (κ1, . . . ,κm) denote the reachability indices of (A,B), and let (α,β ,γ) denote
a minimal realization of a McMillan degree n, SISO transfer function. Show that
the reachability indices of the homogeneous network A = IN ⊗α+A⊗βγ , B=
B⊗β are (nκ1, . . . ,nκm). Deduce that every state x of the network can be reached
from 0 in at most nκ1 steps.

3. Deduce from Proposition 9.16 the formula

δ (N ◦h) = δ (N )δ (g)

for the McMillan degree of the network transfer function of a homogeneous
network. Apply this to obtain a new proof of Theorem 9.15.

4. Let λ ∈ C be nonzero and pC(z) := ∑N−1
j=0 c j

jz ∈ C[z]. A complex λ -circulant
matrix is a Toeplitz matrix of the form

Cλ =

⎛
⎜⎜⎜⎜⎝

c0 c1 · · · cN−1

λcN−1
. . .

. . .
...

...
. . .

. . . c1

λc1 · · · λcN−1 c0

⎞
⎟⎟⎟⎟⎠

, Sλ :=

⎛
⎜⎜⎜⎜⎝

0 1 · · · 0

0
. . .

. . .
...

...
. . .

. . . 1
λ · · · 0 0

⎞
⎟⎟⎟⎟⎠
.

a. Prove that a λ -circulant is equal to pC(Sλ ). Conversely, each such matrix is a
λ -circulant. Deduce that the set of λ -circulants is an Abelian algebra.

b. Let γ denote an Nth root of λ , i.e., γN = λ . Prove that the eigenvectors of
a λ -circulant matrix Cλ are the columns of the matrix diag(1,γ , . . . ,γN−1)Φ .
What are the eigenvalues?

5. Extend Theorem 9.19 to λ -circulant interconnection matrices A,B,C.
6. Compute the eigenvalues and eigenvectors of the N ×N circulant matrix

A =

⎛
⎜⎜⎜⎜⎝

a b

b
. . .
. . .

. . .

b a

⎞
⎟⎟⎟⎟⎠
.

For which β ∈ R
N is ẋ(t) = Ax(t)+βu(t) reachable?

9.7 Notes and References

A natural question in network analysis is that of structural controllability, i.e., the
classification of all networks that are reachable for a generic choice of coupling
parameters. We refer the reader to Dion, Commault and van der Woude (2013) for
a survey on this topic. Liu, Slotine and Barabasi (2011) characterized all graphs
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such that (9.3) is structurally reachable, i.e., if the network is reachable for a
generic choice of the nonzero coefficients in the coupling parameters A,b. Their
work is based on the characterization by Lin (1974) on structural controllability
and makes it possible to estimate the percentage of so-called driver nodes in a
network, i.e., those state variables that, after pinning, lead to structurally reachable
systems. We emphasize that the work by Liu, Slotine and Barabasi (2011) deals
only with the very special situation in which the node systems are first-order
integrators ẋi = ui. For networks of a more general type of node system their
conclusions on structural controllability need not hold. Theorem 9.15 enables
one to take the first steps in that direction, i.e., to extend the graph-theoretic
characterization of the structural controllability of linear systems to homogeneous
networks. Characterizing structural controllability for heterogeneous networks is
an open problem. Linear systems theory as developed over abstract fields is useful
in several areas, including coding theory. This provides further motivation for the
algebraic approach taken in this book. Observability and state estimation tasks for
linear systems over finite fields are studied in Sundaram and Hadjicostis (2013).

Most of the present chapter is based on Fuhrmann and Helmke (2013). Our
central tool for the structural analysis of networks is the equivalence theorem
of Rosenbrock and Pugh (1974), extended in Theorem 9.4 to include dynamic
couplings. All the subsequent results proven in this chapter follow directly from
Theorem 9.4. Theorem 9.15 has been proven by Hara, Hayakawa and Sugata (2009)
using complicated canonical form arguments. The early paper by Sontag (1979),
which proves the same result in larger generality, has apparently been overlooked.

The key to a deeper understanding of homogeneous networks is the fact that
the network transfer functions NG = N ◦ h, see (9.9), is the composition of the
interconnection transfer function N (z), as defined by (9.8), with the reciprocal
h(z) = 1/g(z) of the scalar node transfer function g(z). This simple observation
in fact characterizes the transfer functions of homogeneous networks. The problem
of characterizing the transfer functions of homogeneous networks is thus equivalent
to the question, first raised by J.F. Ritt, of which rational functions can be written
as a composition of two rational functions. Ritt (1922) proved that a complex scalar
rational function f is the composition of two scalar rational functions if and only
if the Galois group (or monodromy group) of f is imprimitive. This shows that a
rational function f is the transfer function of a homogeneous network if and only
if the Galois group of f is imprimitive. Ritt also solved the decomposition problem
for complex polynomials; we refer the reader to Müller (1995) for a classification
of the Galois groups of indecomposable polynomials. Of course, a full classification
of Galois groups defined by rational functions is difficult and refers to the so-called
inverse problem of Galois theory. Even more so, the characterization of imprimitive
Galois groups of rational functions remains an open problem. We refer the reader
to Brockett (1983) for related work on Galois groups attached to linear feedback
systems. Algebraic-geometric characterizations of decomposable rational functions
in terms of root loci or associated Bezoutian curves have been obtained by Pakovich
(2011).
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The necessary conditions for transfer functions of homogeneous networks are
easily described in terms of fundamental system invariants. For example, the
McMillan degree of rational functions is multiplicative, i.e., δ ( f1◦ f2) = δ ( f1)δ ( f2)
is satisfied for rational functions f1, f2. A similar property holds for the Cauchy
index of a rational function. If F(z) = F(z)� is a real symmetric m × m proper
rational function, then the matrix Cauchy index CI(F), see Bitmead and Anderson
(1977), of F(z) is defined and the matrix Cauchy index of the composition F ◦ h
with h = 1/g satisfies

CI(F ◦h) = CI(F) ·CI(g) . (9.43)

Consequently, this imposes a constraint on the Cauchy index of homogeneous
networks. Formula (9.43) follows easily from the well-known interpretation of the
Cauchy–Maslov index as the topological degree of the associated rational curve in
the Lagrange–Grassmann manifold; see, for example, Byrnes and Duncan (1981).
See Helmke (1989) for a generalization of formula (9.43) in terms of Bezoutian
matrices.

The question of characterizing homogeneous networks is reminiscent of, but
not equivalent to, the classical synthesis problem for electrical circuits, tackled by
Brune (1931) and Bott and Duffin (1949). An amazing M.S. thesis by Ladenheim
(1948) presents a catalog of 108 circuits that are claimed to realize all biquadratic
positive real transfer functions. Despite these efforts, and those of many others, this
fundamental circuit synthesis problem remains unsolved to date, but it has attracted
some attention lately; see, for example, Kalman (2010), Smith (2002), Jiang and
Smith (2011), and Hughes and Smith (2013).

Another interesting topic is the model reduction of networks of systems. There
exist several options for doing this, either by reducing the number of nodes and
coupling parameters or by order reduction of the node systems. For homogeneous
networks, the situation becomes particularly nice. Mullis and Roberts (1976) have
shown that if the discrete-time node transfer function g(z) is allpass with respect
to the unit circle, then the discrete-time reachability Gramian satisfies Wc(A ,B) =
Wc(A,B)⊗Wc(α,β ), and similarly for the observability Gramian. This has been
generalized by Koshita, Abe and Kawamata (2007) for bounded real transfer
functions g(z) and leads to useful techniques for model reduction by balanced
truncation.
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