
Chapter 8
Nonnegative Matrices and Graph Theory

The interconnections and coupling patterns of dynamical systems are best described
in terms of graph theory. This chapter serves the purpose of summarizing the main
results and tools from matrix analysis and graph theory that will be important for
the analysis of interconnected systems in subsequent chapters. This includes a proof
of the Perron–Frobenius theorem for irreducible nonnegative matrices using a con-
traction mapping principle on convex cones due to Birkhoff (1957). We introduce
adjacency matrices and Laplacians associated to a weighted directed graph and
study their spectral properties. The analysis of eigenvalues and eigenvectors for
graph adjacency matrices and Laplacians is the subject of spectral graph theory,
which is briefly summarized in this chapter; see the book by Godsil and Royle
(2001) for a comprehensive presentation. Explicit formulas for the eigenvalues and
eigenvectors of Laplacians are derived for special types of graphs such as cycles
and paths. These formulas will be used later on, in Chapter 9, in an examination of
homogeneous networks. The technique of graph compression is briefly discussed
owing to its relevance for the model reduction of networks. Properties of graphs
are increasingly important for applications to, for example, formation control and
molecular geometry. Therefore, a brief section is included on graph rigidity and the
characterization of Euclidean distance matrices.

We begin by establishing some notation to be used subsequently and presenting
some basic facts on Kronecker products of matrices over a field F. For rectangular
matrices A ∈ F

m×n,B ∈ F
k×l , the Kronecker product is defined as the mk × nl

matrix

A⊗B =

⎛
⎜⎝

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

⎞
⎟⎠ .

By this definition, the Kronecker product of an upper triangular matrix A with a
rectangular matrix B is block-upper triangular. In particular, the Kronecker product
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B⊗ IN is of the form

B⊗ IN =

⎛
⎜⎝

b11IN . . . b1l IN
...

. . .
...

bk1IN . . . bklIN

⎞
⎟⎠ ,

while

IN ⊗A = diag (A, . . . ,A) =

⎛
⎜⎝

A . . . 0
...

. . .
...

0 . . . A

⎞
⎟⎠ .

If A and B are invertible n×n and m×m matrices, respectively, then the Kronecker
product A⊗B is invertible and

(A⊗B)−1 = A−1 ⊗B−1.

The eigenvalues of A⊗B are the products λi(A)λ j(B) of the eigenvalues λi(A) and
λ j(B) of A and B, respectively. Therefore, the trace and determinant of A⊗B of
matrices A and B are tr (A⊗ B) = tr (A)tr (B) and det(A⊗ B) = det(A)m det(B)n.
Similarly, the eigenvalues of A ⊗ Im + In ⊗ B are the sums λi(A) + λ j(B). The
following rules for the Kronecker product are easily verified:

(A⊗B)(C⊗D) = AC⊗BD,

(A⊗B)� = A�⊗B�.

Let vec(A) ∈ F
mn denote a column vector obtained by stacking the second column

of A under the first, then the third under the second, and so on. This leads to the
following important identity:

vec(ABC) =
(
C�⊗A

)
vec(B).

8.1 Nonnegative Matrices and Contractions

Let R+ denote the subset of all nonnegative real numbers. A matrix A ∈ R
n×n is

called nonnegative (positive) if all entries aij of A are nonnegative (positive) real
numbers. The notation for nonnegative and positive matrices

A ≥ 0 ⇐⇒ aij ≥ 0, i, j = 1, . . . ,n,

A > 0 ⇐⇒ aij > 0, i, j = 1, . . . ,n
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should not be confused with the notion of positive definiteness for symmetric
matrices. To distinguish these notions from each other, the positive (semi-) defi-
niteness of real symmetric matrices A = A� ∈ R

n×n is denoted by

A � 0 ⇐⇒ x�Ax ≥ 0 for all x ∈ R
n,

A 	 0 ⇐⇒ x�Ax > 0 for all x ∈ R
n \{0}.

The sum and product of finitely many nonnegative matrices is nonnegative.
Moreover, the scalar product λA of a nonnegative matrix A with a nonnegative real
number λ is a nonnegative matrix. Thus the set of nonnegative matrices forms a
closed convex cone Rn×n

+ in the matrix space Rn×n, which is multiplicatively closed.
The set of nonnegative matrices forms the largest class of matrices that leave

the cone R
n
+ invariant. The Hilbert metric allows for a natural generalization of this

situation. We refer to the papers by Birkhoff (1957), Bushell (1986), and Kohlberg
and Pratt (1982) for additional background. Let C ⊂R

n denote a closed convex cone
that is pointed, i.e., C has nonempty interior and satisfies C∩ (−C) = {0}. We use
the notation x ≥ 0 whenever x ∈ C and x > 0 whenever x is an interior point of C.
Recall that the dual cone of C is defined as

C∗ = {λ ∈ R
1×n | λ (x)≥ 0}.

Clearly, the dual cone (Rn
+)

∗ of Rn
+ is equal to R

1×n
+ . We mention, without proof,

the well-known fact that for pointed closed convex sets the interior of the dual cone
C∗ is nonempty. Note further that for C a closed pointed convex cone, every linear
functional λ in the interior of C∗ satisfies λ (x) > 0 for all nonzero x ∈ C. This
implies the following lemma.

Lemma 8.1. Let C be a closed convex and pointed cone in R
n. Then the subset

C1 = {x ∈C | λ (x) = 1} is compact for all interior points λ of the dual cone C∗.

Proof. Clearly, C1 R
n. Suppose C1 is unbounded. Then there exists a sequence xk ∈

C1, with ‖xk‖ → ∞ and λ (xk) = 1 for all k. Thus λ ( xk
‖xk‖ ) converges to 0. By the

compactness of the unit sphere in R
n, there exists an infinite subsequence ym,m ∈N

of xk
‖xk‖ that converges to a unit vector y ∈C. Thus λ (y) = limm→∞ λ (ym) = 0. But λ

is in the interior of C∗, and therefore λ (x)> 0 for all x ∈C\{0}. Thus y = 0, which
is a contradiction. �

A projective metric on C is a map d : C ×C −→ R∪ {∞} such that for all
x,y,z ∈C (and r ≤ ∞, r+∞ = ∞ = ∞+∞ for all real r):

1. d(x,y) = d(y,x);
2. d(x,y)≥ 0, d(x,y) = 0 if and only if x = λy for some real λ > 0;
3. d(x,z)≤ d(x,y)+d(y,z).

Conditions 1–3 imply the identity

4. d(λx,μy) = d(x,y) for all λ > 0,μ > 0.
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Let

M(x,y) = inf{λ ≥ 0 | x ≤ λy},

m(x,y) = sup{λ ≥ 0 | x ≥ λy}= 1
M(y,x)

.

The following properties are easily seen:

0 ≤ m(x,y)≤ M(x,y)≤ ∞,

m(x,y)y ≤ x ≤ M(x,y)y.

Definition 8.2. The Hilbert metric on C is a projective metric defined by

d(x,y) = log
M(x,y)
m(x,y)

= logM(x,y)+ logM(y,x).

Here, d(0,0) = 0; d(x,0) = d(0,y) = ∞ for x,y ∈C.

The preceding definitions are illustrated by the following examples.

Example 8.3. (a) Let C = R
n
+. Then for all x > 0,y > 0

m(x,y) = min
i=1,...,n

xi

yi
, M(x,y) = max

i=1,...,n

xi

yi
.

Thus the Hilbert metric on R
n
+ is

d(x,y) = max
1≤i, j≤n

log
xiy j

x jyi
, for x > 0,y > 0.

(b) Let C = {X ∈ R
n×n | X = X� � 0} denote the closed convex cone of positive

semidefinite real symmetric matrices. Let λmin(X) and λmax(X) denote the
smallest and largest eigenvalues of a symmetric matrix X , respectively. For
positive definite matrices X 	 0,Y 	 0 then

m(X ,Y ) = λmin(XY−1), M(X ,Y ) = λmax(XY−1).

Thus the Hilbert metric of two positive definite matrices X 	 0,Y 	 0 is

d(X ,Y ) = log
λmax(XY−1)

λmin(XY−1)
.

For the proof of the following result see Kohlberg and Pratt (1982).

Theorem 8.4. Let C be a closed convex cone in R
n that is pointed. Let λ ∈ C∗ be

an interior point of C∗. Then the following properties are satisfied:
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1. The Hilbert metric is a projective metric on C. The distance satisfies d(x,y)< ∞
if and only if x and y are interior points of L(x,y)∩C. In particular, d(x,y)< ∞
for all interior points x,y of C.

2. Let C1 := {x ∈C | λ (x) = 1}. Then (C1,d) is a compact metric space, and there
exists a constant γ > 0 with

‖x− y‖ ≤ γd(x,y) ∀x,y ∈C1.

3. Let x,y ∈C be such that d(x,y)< ∞. Then there exist a,b ∈C such that

d(x,y) = log
‖a− y‖‖x−b‖
‖a− x‖‖y−b‖ .

A linear map A : Rn −→ R
n is called C-monotonic whenever AC ⊂ C. Let d

denote the Hilbert metric on C. Then

k(A) = inf{k ≥ 0 | d(Ax,Ay)≤ kd(x,y) ∀x,y ∈C}

denotes the contraction constant of A. The operator A is called a contraction if
k(A)< 1. There is a beautiful formula for the contraction constant of a C-monotonic
linear map A.

Theorem 8.5 (Birkhoff (1957)). A linear C-monotonic map A : Rn −→ R
n is a

contraction if and only if

δ = sup{d(Ax,Ay) | x,y ∈C}< ∞.

Whenever this is satisfied, the contraction constant is equal to

k(A) =
eδ/2 −1

eδ/2 +1
.

For a linear contraction on a closed convex and pointed cone C the Banach fixed-
point theorem applies. The following result extends the classical Perron–Frobenius
theorem to monotonic maps on a closed convex pointed cone.

Theorem 8.6 (Contraction Mapping Theorem). Let C ⊂ R
n denote a closed

convex and pointed cone, λ ∈ C∗ an interior point of the dual cone C∗, and
C1 := {x ∈C | λ (x) = 1}. Let μ ≥ 0 be a nonnegative real number. Let N ∈ N and
A : Rn −→R

n be a linear map such that (μI+A)N maps C1 into the interior of C.

1. Then (μI +A)N is a contraction on C and A has a unique eigenvector x∗ ∈ C1.
The vector x∗ is contained in the interior of C1 with a positive eigenvalue r∗ > 0.

2. The discrete dynamical system
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xt+1 =
(μI +A)Nx

t

λ ((μI +A)Nx
t )

, xt ∈C1 (8.1)

converges to x∗ from each initial condition x0 ∈C1.

Proof. Let B = (μI +A)N . By Lemma 8.1, C1 is compact, and therefore the image
K := B(C1) is a compact subset of the interior of C. Thus

sup{d(Bx,By) | x,y ∈C}= sup{d(Bx,By) | x,y ∈C1}
≤ δ (K)< ∞,

where δ (K) denotes the diameter of the compact set K. The Birkhoff Theorem 8.5
therefore implies that B is a contraction on the complete metric space C1. Consider
the discrete-dynamical system xt+1 = f (xt) on C1, defined by iterating the map

f : C1 −→C1, f (x) =
Bx

λ (Bx)
.

By our assumption on A, the map f is well defined and satisfies d( f (x), f (y)) =
d(Bx,By). Since B is a contraction on C1, so is f . Thus there exists 0 ≤ k < 1 with
d( f (x), f (y))≤ kd(x,y) for all x,y ∈C1. Therefore, one can apply the Banach fixed-
point theorem to f and conclude that there exists a unique fixed point x∗ ∈ C1 of
f . Moreover, the dynamical system (8.1) converges to x∗ from every initial point
x0 ∈ C1. This shows that x∗ ∈ C1 is an eigenvector of B, with Bx∗ = σx∗. Since
B maps C1 into the interior of C, σx∗ = Bx∗ must be an interior point of C. But
this implies that σ > 0 as well as that x∗ is an interior point of C1. By projective
invariance of the Hilbert metric,

d(Ax∗,x∗) = d(A(Bx∗),Bx∗)

= d(B(Ax∗),Bx∗)≤ kd(Ax∗,x∗),

and therefore d(Ax∗,x∗) = 0. But this implies Ax∗ = r∗x∗ for some r > 0. The result
follows. �

One can give a steepest-descent interpretation of the preceding arguments
that will be useful for the proof of the Perron–Frobenius theorem. Consider the
continuous function

RA : K −→ R+, RA(x) = m(Ax,x). (8.2)

It is instructive to compute this function in the special case C =R
n
+, where for x > 0

one has

RA(x) = min
1≤i≤n

(Ax)i

xi
.

This form is reminiscent of the Rayleigh quotient function.
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Proposition 8.7 (Generalized Rayleigh Quotient). The same notation is used
here as in Theorem 8.6. The function (8.2) has x∗ as its unique maximum with
RA(x∗) = r∗. Moreover, RA(xt), t ≥ 0, is monotonically increasing in t and converges
to RA(x∗) = r∗ for each sequence of points (xt)t≥0 that are generated by the power
iterations (8.1).

Proof. We use the notation from the proof of Theorem 8.6. Note that RA is well
defined and continuous, because K = B(C1) is a compact subset of the interior of C.
Since m(cx,cy) = m(x,y) for c > 0, one obtains for all x ∈ K

RA( f (x)) = m(ABx,Bx) = sup{λ | ABx ≥ λBx}
= sup{λ | B(Ax−λx)≥ 0}
≥ sup{λ | Ax−λx ≥ 0}= RA(x).

Since Bv > 0 for all nonzero vectors v ∈ C, this shows B(Ax−λx) > 0 for all x ∈
K that are not eigenvectors of A. This implies that sup{λ | B(Ax − λx) ≥ 0} >
sup{λ | Ax− λx ≥ 0} is a strict inequality, unless x ∈ K is an eigenvector of A.
Thus RA(xt+1) = RA( f (xt)) < RA(xt), unless xt = f (xt) is a fixed point of f . By
Theorem 8.6, the eigenvector x∗ is the only fixed point of f and satisfies RA(x∗) =
m(Ax∗,x∗) = m(r∗x∗,x∗) = r∗. This completes the proof. �

The next result yields an explicit form for the contraction constant for positive
matrices A ∈ R

n×n, A > 0. Here C = R
n
+.

Corollary 8.8. Every positive matrix A ∈ R
n×n is a contraction with respect to the

Hilbert metric on R
n
+. The contraction constant is

k(A) =
√γ −1√γ +1

,

where

γ = max
i, j,k,l

akialj

akjali
.

8.2 Perron–Frobenius Theorem

The Perron–Frobenius theorem establishes a surprising and deep connection
between the spectral properties of nonnegative matrices and the properties of
the associated graph. Let us begin by deriving the theorem using the contraction
mapping theorem on closed convex cones. For other approaches and further details
see, for example, the beautiful books by Fiedler (2008) and Sternberg (2010).
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The notion of the irreducibility of nonnegative matrices plays a central role in the
subsequent analysis. In Section 8.6, a simple graph-theoretic characterization of
irreducibility is derived.

Definition 8.9. A matrix A ∈ R
n×n is called reducible if either (n = 1,A = 0) or

n≥ 2 and there exists a permutation matrix P∈R
n×n, 1≤ r ≤ n−1, and the matrices

B ∈ R
r×r,C ∈ R

r×(n−r),D ∈ R
(n−r)×(n−r), with

P�AP =

(
B C
0 D

)
.

Otherwise, A is called irreducible.

Irreducible nonnegative matrices have useful properties.

Lemma 8.10. Let A ∈ R
n×n be a nonnegative irreducible matrix and x ∈ R

n a
vector with nonnegative components. Then Ax = 0 implies x = 0.

Proof. After a suitable permutation of the entries of x (and an induced similarity
transformation on A), one may assume that x = (ξ�,0)�, with ξ = (x1, . . . ,xr)

�
and x1 > 0, . . . ,xr > 0. Suppose r ≥ 1. Partition the matrix A accordingly as

A =

(
A11 A12

A21 A22

)
, (8.3)

with A11 ∈ R
r×r, and so forth. Thus Ax = 0 is equivalent to A11ξ = 0,A12ξ = 0,

which implies A11 = 0,A21 = 0. This is a contradiction to A being irreducible.
Therefore, Ax = 0 implies x = 0. �

Using this lemma, we next prove a basic existence and uniqueness result for
positive eigenvectors of nonnegative irreducible matrices. Let

ρ(A) = max{|λ | | det(λ I −A) = 0} (8.4)

denote the spectral radius of matrix A. Suppose that A has exactly h eigenvalues
with absolute value ρ(A). Then h is called the index of A.

Theorem 8.11. Let A ∈ R
n×n be a nonnegative irreducible matrix. Let

e = (1, . . . ,1)� ∈ R
n, C1 = {x ∈ R

n
+ | e�x = 1}.

1. Then A has a unique nonnegative eigenvector x∗ ∈R
n
+, with e�x∗ = 1, called the

Perron vector. Both the Perron vector and the associated eigenvalue are positive.
2. If A is positive, then the sequence of power iterates

xt+1 =
Axt

e�Axt
, xt ∈C1 (8.5)

converges to x∗ from each initial condition x0 ∈C1,x0 > 0.
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Proof. C1 is a compact convex subset of the closed convex and pointed cone C =
R

n
+. By Lemma 8.10, matrix A maps C \ {0} into itself. Moreover, e�Ax > 0 for

all x ∈ C \ {0}. Since A is irreducible, the matrix (I + A)n−1 is positive (see the
subsequent Theorem 8.26) and therefore maps C1 into the interior of C. Thus one
can apply Theorem 8.6, with N = n− 1 and μ = 1, to conclude that A possesses
a unique eigenvector x∗ in C1. Moreover, x∗ is contained in the interior of C1 with
positive eigenvalue r > 0. In particular, x∗ > 0. The second part follows again from
Theorem 8.6. �

After this first step we can state and prove the Perron–Frobenius theorem.

Theorem 8.12 (Perron–Frobenius). Let A ∈ R
n×n denote an irreducible nonneg-

ative matrix. Then the spectral radius ρ(A) is a simple positive eigenvalue of A and
there exists a positive eigenvector x > 0 for ρ(A). No eigenvector corresponding to
other eigenvalues of A is positive.

Proof. Suppose, x ∈ R
n
+ is a nonnegative eigenvector of A. By Theorem 8.11, then

x = x∗, where x∗ > 0 denotes the unique Perron vector of A; thus Ax∗ = r∗x∗ and
r∗ > 0. Since Rx∗ is the only eigenspace that intersects R

n
+, the eigenvalue r∗ has

an algebraic multiplicity of one. It suffices, therefore, to show that ρ(A) coincides
with the eigenvalue r∗ for x∗. In fact, let λ ∈ C be an eigenvalue of A so that Az =
λ z for some complex vector z = (z1, . . . ,zn)

�. Let |z| = (|z1|, . . . , |zn|) ∈ R
n
+ be the

associated nonnegative vector of absolute values. From the triangle inequality one
obtains |λ ||z| ≤ A|z|. Let

m(x,y) = sup{λ ≥ 0 | x ≥ λy}

be the order function for Rn
+. Applying Proposition 8.7, then

|λ |= m(λ |z|, |z|)≤ m(A|z|, |z|)≤ r∗.

Thus r∗ is an eigenvalue with eigenvector x∗ and is equal to the spectral radius. This
completes the proof. �

The following perturbation result is of independent interest.

Proposition 8.13 (Wielandt). Let A ∈ R
n×n be an irreducible nonnegative matrix.

Let B ∈ C
n×n be a complex matrix with

|bij| ≤ aij for all i, j = 1, . . .n.

Then ρ(B)≤ ρ(A). If ρ(B) = ρ(A) and ρ(B)eφ
√−1 is an eigenvalue of B, then there

exists a diagonal matrix D = diag(z1, . . . ,zn) ∈C
n×n with |z1|= . . .= |zn|= 1 such

that

B = eφ
√−1DAD−1.

In particular, |bij|= aij for all i, j = 1, . . .n.
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Proof. In the preceding proof of the Perron–Frobenius theorem it was shown that
the maximum r∗ = RA(x∗) of the function RA : Rn

+ −→ R∪{∞},RA(x) = m(Ax,x)
exists and r∗ = ρ(A). Let z ∈ C

n,z �= 0, and λ ∈ C, with Bz = λ z. Then, using the
triangle inequality, one obtains |λ ||z|= |Bz| ≤ A|z|, and therefore

|λ |= m(|Bz|, |z|)≤ m(A|z|, |z|)≤ r∗ = ρ(A). (8.6)

This shows that ρ(B)≤ ρ(A). Assume that ρ(B) = ρ(A) = r∗ and λ is an eigenvalue
of B, with |λ | = r∗. Then (8.6) implies that r∗ = |λ | = m(A|z|, |z|). The Perron–
Frobenius theorem therefore implies A|z| = r∗|z| and |z| > 0. Similarly, for |B| =
(|bij|) one obtains

r∗|z|= |λ z|= |Bz| ≤ |B| · |z| ≤ A|z|= r∗|z|,

and therefore |B| · |z|= A · |z|. Since A−|B| is a nonnegative matrix and |z|> 0, this
implies A = |B|.

Define

D = diag

(
z1

|z1| , . . . ,
zn

|zn|
)
.

Then D|z|= z and BD|z|=Bz= λD|z|. Thus C := eφ
√−1D−1AD satisfies C|z|=A|z|

and |C| = |B| = A. Split the complex matrix C = ReC +
√−1ImC into real and

imaginary parts ReC and ImC, respectively. Since A is real, C|z| = A|z| implies
ReC|z| = A|z|. From ReC ≤ |C| = A it follows that A−ReC is nonnegative, with
(A−ReC)|z| = 0. Since |z| > 0, this implies |C| = A = ReC, and therefore C = A.
This completes the proof. �

Let A ∈ R
n×n be nonnegative and irreducible. For i = 1, . . . ,n, the period p(i)

is defined as the greatest common divisor of all m ∈ N satisfying (Am)ii > 0.
By a theorem of Romanovsky, p(1) = · · · = p(n) for all irreducible nonnegative
matrices A. The common value p(A) := p(1) = · · · = p(n) is called the period
of A. A nonnegative matrix A of period 1 is called aperiodic. We now state,
without providing full proof details, a full characterization of the structure of
irreducible nonnegative matrices. A stronger form of the subsequent result and its
proof appeared as Theorem 4.3.1 in the book by Fiedler (2008).

Theorem 8.14. Let A ∈R
n×n be irreducible and nonnegative, and let λ0, . . . , λk−1

denote the eigenvalues of A with absolute value equal to the spectral radius ρ(A).
The following statements are true:

1. λ0, . . . ,λk−1 are simple eigenvalues of A and satisfy

λ j = e
2π

√−1 j
k ρ(A), j = 0, . . . ,k−1.

2. The spectrum of A is invariant under rotations with angle 2π
k .
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3. If k > 1, then there exists a permutation matrix P such that

PAP� =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 B12 0 . . . 0

0 0 B23
...

...
. . .

. . . 0
0 0 Bk−1,k

Bk1 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

with block matrices Bij of suitable sizes.
4. The index k of A in (1) coincides with the period of A.
5. A is primitive if and only if the spectral radius ρ(A) is the only eigenvalue λ of

A with |λ |= ρ(A).

Proof. Only the first two statements are shown; we refer the reader to Fiedler
(2008) for a proof of the remaining claims. Let λ j = ρe2πφ j

√−1,φ0 = 0, denote
the eigenvalues of absolute value ρ = ρ(A). Applying Proposition 8.13 with B = A
one obtains

A = e2πφ j
√−1D jAD−1

j , j = 0, · · · ,k−1

for suitable unitary diagonal matrices D0, . . . ,Dk−1. Thus the spectrum of A is
invariant under multiplications by e2πφ j

√−1, j = 0, · · · ,k − 1. Since the spectral
radius λ0 = ρ is a simple eigenvalue of A, λ0, . . . ,λk−1 are simple eigenvalues of
e2πφ j

√−1D jAD−1
j = A. For all 0 ≤ r,s ≤ k−1 and Drs = DrDs,

A = e2πφr
√−1DrAD−1

r = e2πφr
√−1e2πφs

√−1DrDsAD−1
r D−1

s

= e2π(φr+φs)
√−1DrsAD−1

rs .

Thus e2π(φr+φs)
√−1ρ are eigenvalues of A for all 0 ≤ r,s ≤ k− 1. This implies that

{1,e2πφ1
√−1, . . . ,e2πφk−1

√−1} is a multiplicative subgroup of S1 = {z ∈ C | |z|= 1}
of order k. Thus

λ j = e
2π j

√−1
k , j = 0, . . . ,k−1.

In particular, the spectrum of A is invariant under rotations by 2π
k . This completes

the proof for the first two items. �
The preceding result allows for an interesting dynamical interpretation of

irreducible nonnegative matrices A in terms of discrete-time periodic linear systems.
In fact, if A is not primitive, then the dynamical system xt+1 = Axt is permutation
equivalent to a periodic time-varying system xt+1 = A[t]xt , with local states xt ∈R

nt

and a periodic sequence of matrices A[0] = B12,A[1] = B23, . . . ,A[k−1] = Bk1,A[k] =
A[0], and so forth.



422 8 Nonnegative Matrices and Graph Theory

8.3 Stochastic Matrices and Markov Chains

We present a simple version of the ergodic theorem in the context of finite-
dimensional matrix algebras. Recall that a norm ‖ · ‖ on the matrix space C

n×n

is called submultiplicative if ‖AB‖ ≤ ‖A‖‖B‖ for all matrices A,B ∈ C
n×n. Stan-

dard examples of submultiplicative matrix norms include the 1-norm ‖A‖1 =

∑n
i, j=1 |aij|, the Frobenius norm ‖A‖F =

√
∑n

i, j=1 |aij|2, and the operator norm ‖A‖=
sup‖x‖=1 ‖Ax‖. Let ρ(A) denote the spectral radius of A.

Proposition 8.15. Let ρ(A) denote the spectral radius of a matrix A ∈ C
n×n. Then

the following assertions are true:

1. If ρ(A)< 1, then

lim
k→∞

Ak = lim
k→∞

1
k

k−1

∑
i=0

Ai = 0.

2. If ρ(A)> 1, then both sequences (Ak) and 1
k ∑k−1

i=0 Ai diverge.
3. Let ρ(A) = 1. The limit limk→∞ Ak exists if and only if 1 is the only eigenvalue of

A with absolute value 1 and all Jordan blocks for 1 are 1×1.
4. Let ρ(A) = 1. The limit limk→∞

1
k ∑k−1

i=0 Ai exists if and only if all eigenvalues λ
of A with absolute value |λ |= 1 have a geometric multiplicity of one.

Proof. The simple proofs of assertions 1–3 are omitted. To prove assertion 4,
assume that the limit limk→∞

1
k ∑k−1

i=0 Ai exists. From assertion it follows that each
eigenvalue λ of A must satisfy |λ | ≤ 1. Suppose |λ |= 1. Without loss of generality,
one can assume that A = λ I +N is a Jordan block. Then

1
k

k−1

∑
i=0

Ai =
1
k

k−1

∑
i=0

λ iI +
1
k

k−1

∑
i=0

iλ i−1N + . . .+
1
k

k−1

∑
i=0

Ni

diverges whenever

1
k

k−1

∑
i=0

iλ i−1 =

⎧⎨
⎩

kλ k−1(λ−1)−(λ k−1)
k(λ−1)2 if λ �= 1

k−1
2 if λ = 1

diverges. This completes the proof. �
Theorem 8.16 (Ergodic Theorem). Let ‖ · ‖ be a submultiplicative matrix norm
on C

n×n and A ∈ C
n×n with ‖A‖ ≤ 1. Then:

1. The limit

P = lim
k→∞

1
k

k−1

∑
i=0

Ai

exists and satisfies P2 = P = PA = AP. Moreover,
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Im P = Ker (A− I)

Ker P =
⊕

λ �=1

Ker (A−λ I)n;

2. If 1 is the only eigenvalue of A with an absolute value of one, then

P = lim
k→∞

Ak

exists.

Proof. Assume that the limit

P = lim
k→∞

1
k

k−1

∑
i=0

Ai (8.7)

exists. Proposition 8.15 then implies ρ(A) ≤ 1. For complex numbers λ with
|λ | ≤ 1,

lim
k→∞

1
k

k−1

∑
i=0

λ i = lim
k→∞

1
k

λ k −1
λ −1

=

{
0 if λ �= 1,

1 if λ = 1.

Thus, by decomposing the Jordan canonical form J = diag(J1,J2) of A, where J1 and
J2 have eigenvalues λ = 1 and |λ |< 1, respectively, one obtains limk→∞

1
k ∑k−1

i=0 Ji
1 =

I and limk→∞
1
k ∑k−1

i=0 Ji
1 = 0. Thus P = limk→∞

1
k ∑k−1

i=0 Ai is a projection operator that
commutes with A. Therefore, P2 = P = AP = PA. The preceding argument also
implies the formulas for the image space Im P and kernel of P. The second claim
follows from Proposition 8.15. Thus it remains to show that the limit (8.7) exists.

For all complex matrices and submultiplicative norms the inequality ρ(A)≤ ‖A‖
is valid. By Proposition 8.15, it is enough to show that the Jordan blocks for
the eigenvalues λ with |λ | = 1 are 1 × 1. Assume that A = SJS−1, where J =
diag(J1, . . . ,Jr) are in Jordan canonical form. Let J1, . . . ,Jν be the Jordan blocks
for the eigenvalues λ with an absolute value of one. For all m ∈ N, therefore,
‖Jm‖ ≤ ‖S‖‖S−1‖‖Am‖ ≤ ‖S‖‖S−1‖. Since all norms on C

n×n are equivalent, one
obtains, for i = 1, . . . ,ν ,

‖Jm
i ‖1 ≤ ‖Jm‖1 ≤ γ‖Jm‖ ≤ γ‖S‖‖S−1‖.

For every Jordan block Ji = λ I +N, i = 1, . . . ,ν , of size s and m ≥ 1, one has the
estimate

‖Jm
i ‖1 = ‖(λ I +N)m‖1 ≥

{
1 s = 1,

m+1 s > 1
.
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Thus the sequence (‖Jm‖1)m grows unbounded if there exists an eigenvalue λ of
geometric multiplicity greater than one and |λ |= 1. This completes the proof. �
We establish a concrete form of the ergodic theorem for doubly stochastic matrices.

Definition 8.17. A nonnegative matrix A ∈ R
n×n is called stochastic if

n

∑
j=1

aij = 1, i = 1, . . . ,n.

A is called doubly stochastic if it is nonnegative and satisfies

n

∑
j=1

aij = 1,
n

∑
l=1

alj = 1, i, l = 1, . . . ,n. (8.8)

Let

en =

⎛
⎜⎝

1
...
1

⎞
⎟⎠

denote a vector in R
n with all components equal to one. Then a nonnegative matrix

A is stochastic (or doubly stochastic) if and only if Aen = en (or Aen = en,e�n A= e�n ).

Theorem 8.18. Let A ∈ R
n×n be a stochastic matrix. Then

1. 1 is an eigenvalue of A and A has a spectral radius equal to 1;
2. The limit

P = lim
k→∞

1
k

k−1

∑
i=0

Ai

exists and is a stochastic matrix that satisfies P2 = P = PA = AP;
3. If 1 is the only eigenvalue of A with an absolute value of one, then

P = lim
k→∞

Ak

exists. In particular, this is case if A is primitive;
4. If A is irreducible, then

lim
k→∞

1
k

k−1

∑
i=0

Ai = eny�.

Here y is a uniquely determined positive vector with

y�A = y�, y1 + · · ·+ yn = 1.
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Proof. The matrix norm ‖A‖ = max1≤i≤n ∑n
j=1 |aij| is submultiplicative, and every

stochastic matrix A satisfies ‖A‖ = 1. The vector en is an eigenvector of A with
eigenvalue 1. Therefore, the spectral radius satisfies 1 ≤ ρ(A)≤ ‖A‖= 1, i.e.,

ρ(A) = ‖A‖= 1.

This proves claim 1. Moreover, claim 2 follows from the Ergodic Theorem 8.16,
together with the observation that A being stochastic implies that for each k the
matrix 1

k ∑k−1
i=0 Ai is nonnegative, with 1

k ∑k−1
i=0 Aien =

1
k ∑k−1

i=0 en = en. The first claim
in statement 3 follows from Theorem 8.16, while the second claim follows from
the Perron–Frobenius theorem. To prove the last claim, one applies the Perron–
Frobenius theorem to the irreducible matrix A�. Thus, there exists a unique vector
y ∈ R

n,y > 0, with y�A = y� and e�y = 1. Moreover, 1 is a simple eigenvalue of
A. Thus Theorem 8.16 implies that rkP = dimKer(A− I) = 1, and therefore P is of
the form P = bc� for unique nonzero vectors b,c ∈R

n, with c�1 = 1. Since Pe = e,
b = e. Moreover, y�A = y� implies y�P = y�, and therefore y� = y�P = y�ec� =
c�, since y�e = 1. This completes the proof. �
Corollary 8.19. For every irreducible, doubly stochastic matrix A ∈ R

n×n,

lim
k→∞

1
k

k−1

∑
i=0

Ai =
1
n

ee�.

It is straightforward to apply the preceding results to Markov chains. Consider
random variables with values in the finite alphabet {1, . . . ,n} and associated
probabilities πi = P(X = i), i = 1, . . . ,n. Thus π = (π(1), . . . ,π(n))� ∈ R

n satisfies
π ≥ 0 and π(1)+ · · ·+π(n) = 1. One can easily generalize this simple static model
to a dynamic one by considering a stochastic process (Xt) defined by a sequence
of random variables Xt , t ∈ N0, with values in {1, . . . ,n}. Let (πt) ∈ R

n denote the
associated vector of probabilities. Markov chains are special stochastic processes
where for each time t the vector of probabilities πt depends only on πt−1. More
precisely, it is assumed that for each i, j ∈ {1, . . . ,n} the conditioned probabilities

pij := P(Xt+1 = j|Xt = i), t ∈ N0,

are independent of time t. Therefore, one can describe the transition probabilities
between states i and j by a matrix

A = (pij) ∈ R
n×n

of real numbers pij ≥ 0, with ∑n
j=1 pij = 1 for i = 1, . . . ,n. Thus A ∈ R

n×n is a
stochastic matrix of transition probabilities, with Ae = e.

Definition 8.20. A Markov chain on the finite state space {1, . . . ,n} is a discrete
dynamical system
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π�
t+1 = π�

t A, π0 = π, t ∈ N0 (8.9)

defined by a stochastic matrix A. Here the initial probability distribution π is allowed
to be an arbitrary vector of nonnegative numbers p1, . . . , pn, p1 + · · ·+ pn = 1.

The preceding results on stochastic matrices can be reformulated as follows.

Theorem 8.21. Let (A,π) be a Markov chain on {1, . . . ,n} with initial probability
distribution π . Let π�

t = (πt(1), . . . ,πt(n)) denote the probability distributions that
evolve according to the Markov chain (8.9).

1. If A is irreducible, then there exists a unique stationary probability distribution
π�

∞ = (π∞(1), . . . ,π∞(n)) ∈ R
1×n satisfying

π∞ > 0, π�
∞ A = π�

∞ , e�π∞ = 1.

Moreover,

lim
k→∞

1
k

k−1

∑
i=0

Ai = eπ�
∞ ,

which implies that

lim
k→∞

1
k

k−1

∑
t=0

π�
t = π�

∞ .

2. Assume A is primitive, i.e., Am > 0 for some m ∈ N. Then the following limits
exist:

lim
k→∞

Ak = eπ�
∞ ,

lim
t→∞

E(Xt) =
n

∑
i=1

iπ∞(i).

Here the expectation value of Xt is defined as E(Xt) := ∑n
i=1 iπt(i).

Example 8.22. We discuss the Ehrenfest diffusion model from statistical mechan-
ics. Assume a domain Ω is partitioned into two regions, Ω1 and Ω2. Assume further
that Ω contains exactly n particles that may move around in Ω , passing from
one region to the other. Let Xt ∈ {0, . . . ,n} denote the number of particles that are
in region Ω1 at time t. Assume that the probability for a change of a particle from
region Ω1 to region Ω2, or vice versa, is exactly 1

n . The transition probability matrix,
then, is the (n+1)× (n+1) tridiagonal matrix
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · · · · 0

1
n 0 n−1

n

...

0 2
n 0 n−2

n

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

n
0 · · · · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that A is an irreducible stochastic matrix. Therefore, a unique stationary prob-
ability distribution π∞ of Xt exists and satisfies π�

∞ A = π�
∞ . Define y = (y0, . . . ,yn)

�,
with y j = 2− j

(n
j

)
. A straightforward computation shows that y�A = y�,y�e = 1.

Therefore, the stationary probabilities are

π∞( j) =
1
2 j

(
n
j

)
, j = 0, . . . ,n.

In particular, the expectation value of the number of particles in region Ω1 is equal to

E(Xt) =
n

∑
j=0

jπ∞( j) =
n

∑
j=0

j
1
2 j

(
n
j

)
=

n
2
,

as expected. One can show that the eigenvalues of A are the real numbers 1− 2k
n ,

k = 0, . . . ,n. The convergence rate of the Markov chain is dependent on the
second largest eigenvalue of A, i.e., it is equal to 1− 2

n . Thus, for large numbers
n of particles, the Markov chain will converge quite slowly to the equilibrium
distribution.

8.4 Graphs and Matrices

We now introduce some of the basic notions from graph theory and relate the graph
concepts to the structure of nonnegative matrices. A directed graph (digraph) Γ =
(V,E) consists of a finite set V = {v1, . . . ,vN} of vertices, together with a finite
subset E ⊂ V ×V of pairs of vertices called edges. Thus each edge of a graph is a
pair (v,w) of vertices v and w, which are called the initial and terminal vertices of e,
respectively. This leads to well-defined maps ι ,τ : E −→V that assign to each edge
the initial vertex ι(v,w) = v and terminal vertex τ(v,w) = w, respectively. We refer
to the pair ι ,τ as the canonical orientation on a digraph (Figures 8.1 and 8.2).

Each vertex element v in a digraph has two kinds of neighborhoods, the
in-neighborhood,

N i(v) = {u ∈V | (u,v) ∈ E},
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Fig. 8.1 Directed graph 1

2

3

4

Fig. 8.2 Spanning tree 1

2

3

4

and the out-neighborhood,

N o(v) = {w ∈V | (v,w) ∈ E}.

The cardinalities di(v) = |N i(v)| and do(v) = |N o(v)| are called the in-degree
and out-degree of v, respectively. A subgraph of a digraph Γ = (V,E) is a digraph
Γ ′ = (V ′,E ′), with V ′ ⊂V and E ′ ⊂ E. It is called a spanning subgraph if V ′ =V
and E ′ ⊂ E. An induced subgraph of Γ = (V,E) is a subgraph Γ ′ = (V ′,E ′) that
contains all edges in E between pairs of vertices in V ′. A walk in a directed graph
Γ of length r− 1 is a finite sequence of vertices (v1, . . . ,vr) such that (vi,vi+1) are
edges for i = 1, . . . ,r − 1. A walk is cyclic if v1 = vr. A path is a walk where all
vertices v1, . . . ,vr are distinct. Thus a path cannot be cyclic. A directed graph is
called acyclic if it does not contain a cycle.

An important topological concept in graph theory is that of connectivity.
A digraph Γ is called strongly connected if there exists a directed path between all
pairs (u,v) ∈ V ×V of distinct vertices. Γ is called connected if, for each (u,v) ∈
V ×V , there exists a directed path from u to v or from v to u. A strong component
of a digraph is a maximal, strongly connected induced subgraph (Figure 8.3).

For a proof of the following characterization of strong components we refer the
reader to Fiedler (2008).
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Fig. 8.3 Strongly connected
graph
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Fig. 8.4 Undirected graph 1

2

3

4

Proposition 8.23. Let Γ = (V,E) be a digraph.

1. Every vertex v is contained in a unique strong component.
2. Two distinct strong components have disjoint sets of vertices.
3. Two distinct vertices u,v ∈V belong to the same strong component if and only if

there are directed paths from u to v and from v to u.

An undirected graph Γ =(V,E), often simply called a graph, consists of a finite
set V = {v1, . . . ,vN} of vertices, together with a finite set E = {{vi,v j} | (i, j)∈ I} of
edges. Here I denotes a finite subset of {1, . . . ,N}×{1, . . . ,N}. Thus the edges of an
undirected graph are unordered pairs of vertices. Frequently, self-loops are excluded
from the definition. A graph Γ is oriented if there exist maps ι ,τ : E −→ V such
that for each edge, e = {ι(e),τ(e)}. Thus, Γ̂ = (V,E) is a directed graph with a set
of edges E = {(ι(e),τ(e)) | e ∈ E}. In many situations concerning graphs one often
assumes that an underlying orientation of the graph is specified. A directed graph
Γ = (V,E) carries a natural orientation by defining ι(v,w) = v,τ(v,w) = w for all
vertices (Figures 8.4 and 8.5).

We briefly mention a number of elementary operations one can perform with
graphs. Let Γ =(V,E) and Γ ′ =(V ′,E ′) denote graphs with a disjoint set of vertices,
i.e., V ∩V ′ = /0. Then the following operations yield new graphs:

1. Union: Γ ∪Γ ′ := (V ∪V ′,E ∪E ′).
2. Join: Γ +Γ ′ := (V ∪V ′,< E ∪E ′ >), where

< E ∪E ′ >:= E ∪E ′ ∪{{v,v′} | v ∈V, v′ ∈V ′}.
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Fig. 8.5 Orientation of a
graph
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3. Product: Γ ×Γ ′ := (V ×V ′, Ê), where the set of edges Ê is defined as

{(v,v′),(w,w′)} ∈ Ê ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

{v,w} ∈ E and v′ = w′

or

{v′,w′} ∈ E ′ and v = w.

4. Insertion of a vertex into an edge: Geometrically this means one places a new
vertex w in the middle of an edge uv and replaces the old edge uv with the two
new ones uw,wv. This operation does not change the topology of the graph. Thus,
for every edge {u,v} ∈ E, a new graph Γ ′ = (V ′,E ′) is defined as

V ′ =V ∪{{u,v}}
E ′ = E \{{u,v}}∪{{u,w},{w,v}} .

5. Contraction of an edge: Here one replaces an edge {u,v} with a new vertex w
and adds new edges to all neighboring vertices of u,v.

The preceding definitions and constructions for digraphs carry over to undirected
graphs in an obvious way. For a vertex v ∈V , let

N(v) = {w ∈V | {v,w} ∈ E}

denote the neighborhood of v in the graph. The degree of v is the number of all
neighboring vertices, i.e., it is equal to |N(v)|. A graph is called k-regular if all
vertices have the same degree k. A subgraph of Γ is defined by a pair Γ ′ = (V ′,E ′)
such that V ′ ⊂V and E ′ ⊂E. A spanning subgraph of Γ is a subgraph Γ ′ =(V ′,E ′)
with the same set of vertices V ′ =V . A path in Γ of length r−1 is a finite sequence
of vertices (v0, . . . ,vr) such that ei = {vi−1,vi} are edges of Γ for i = 1, . . . ,r.
One says that the path connects the vertices v0 and vr. If vr = v0, then the path
is called closed or a cycle. A graph is called connected if two distinct vertices
v �= w are always connected through a suitable path in Γ . A maximal, connected,
induced subgraph of a graph is called a connected component. The counterpart
to Proposition 8.23 is true, too, i.e., each vertex is contained in a unique connected
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component, and the connected components of a graph form a disjoint decomposition
of the set of vertices. A tree is a connected graph Γ without cycles. This is
easily seen to be equivalent to |V | = |E|+ 1. A forest is a graph whose connected
components are trees. A spanning tree in a graph Γ = (V,E) is a spanning subgraph
Γ ′ = (V ′,E ′), which is a tree. The number of spanning trees in a graph can be
counted by the so-called Matrix-Tree Theorem 8.43.

Weighted Digraphs and Matrices. Nonnegative matrices are associated with
digraphs in various ways. A digraph Γ = (V,E) is called weighted if for each
edge (vi,v j) ∈ E one specifies a nonzero real number aij ∈ R. For (vi,v j) /∈ E set
aij = 0. Thus, using a labeling {1, . . . ,N} −→ V , one associates with the graph
a real N × N matrix A(Γ ) = (aij) ∈ R

N×N . We refer to A(Γ ) as the weighted
adjacency matrix. The labelings of the set of vertices differ from each other by
a permutation π on {1, . . .N}. Thus the associated adjacency matrix changes by a
similarity transformation πA(Γ )π−1. Conversely, if A denotes a real N ×N matrix,
then let ΓA = (VA,EA) denote the associated finite directed graph with vertex set
VA = {1, . . . ,N}. A pair (i, j) ∈VA ×VA is an edge of ΓA if and only if aij �= 0. Then
A is the weighted adjacency matrix of ΓA. Similarly, weighted undirected graphs
are defined by specifying for each edge {vi,v j} a real number aij and aij = 0 for
{vi,v j} /∈ E. Thus the weight matrix A = (aij) of an undirected graph is always a
real symmetric matrix and therefore has only real eigenvalues.

Every digraph can be considered in a canonical way as a weighted digraph by
defining the weight matrix with 0,1 entries as

A= (aij) ∈ {0,1}N×N , with aij =

{
1 (vi,v j) ∈ E,

0 otherwise.

We refer to the digraph ΓA as a canonically weighted digraph.

Example 8.24. A simple example of digraphs with nonnegative weights arises
in Euclidean distance geometry and shape analysis. Thus, consider an arbitrary
directed graph Γ = (V,E) with vertex set V = {v1, . . . ,vN} ⊂ R

m. Using the
Euclidean distance ‖v − w‖ between two vertices, define the weights as aij =
‖vi − v j‖ if and only if (vi,v j) ∈ E, and aij = 0 otherwise. Then the weighted
adjacency matrix contains all the mutual distances between ordered pairs of points
(vi,v j) that are specified by the edges of the graph. Thus this matrix contains very
interesting information on the geometric configuration of the vertex points.

One can express the classical adjacency matrices of a graph in terms of basic
graph operations. Let Γ and Γ ′ be graphs on m and n vertices, respectively. The
classical adjacency matrices for unions, sums, and products are

AΓ∪Γ ′ = diag(AΓ ,AΓ ′), AΓ×Γ ′ = AΓ ⊗ In + Im ⊗AΓ ′ ,

AΓ+Γ ′ =

(
AΓ J
J� AΓ ′

)
.

Here J denotes the m×n matrix with all entries equal to 1.
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The analysis of the structural properties of matrices is closely related to graph
theory. The basic connectivity properties of digraphs are reflected in the associated
properties of the weighted adjacency matrix. There is a simple graph-theoretic
characterization of irreducible matrices.

Proposition 8.25. The following conditions are equivalent for a matrix A ∈
R

N×N:

1. A is irreducible.
2. The digraph ΓA is strongly connected.

Proof. Assume that ΓA is not strongly connected. Then there exist vertices w �= j ∈
VA such that there exists no directed path from w to j. Let V ′ ⊂VA denote the set of
vertices v such that there exists a directed path from v to j. Define V1 =V ′ ∪{ j} and
V2 =VA \V1. By construction of these sets, there does not exist a path from a vertex
w in V2 to some vertex v in V1; otherwise, one could concatenate the path from w to
v with the path from v to j to obtain a path from w to j. This is a contradiction,
since V2 ∩V1 = /0. By assumption on w, j, one has j ∈ V1 �= /0,w ∈ V2. After a
suitable renumbering of vertices one can assume, without loss of generality, that
V1 = {1, . . . ,r},V2 = {r+1, . . . ,N}, 1 ≤ r ≤ N −1. Thus there exists a permutation
matrix P such that

P�AP =

(
B C
0 D

)
.

Therefore, A is reducible. Conversely, if A is reducible, then there exists no path
from the set V2 = {r+ 1, . . . ,N} to V1 = {1, . . . ,r}. Thus the graph is not strongly
connected. This completes the proof. �

For nonnegative matrices a stronger form of Proposition 8.25 is valid.

Theorem 8.26. The following conditions are equivalent for a nonnegative A ∈
R

N×N.

1. A is irreducible.
2. For every pair of indices i, j ∈ {1, . . . ,N} there exists m ∈ N, with (Am)ij �= 0.
3. (IN +A)N−1 > 0.
4. The digraph ΓA is strongly connected.

Proof. The equivalence of conditions 1 and 4 has already been shown. For m ∈ N,
the sum

(Am)ij = ∑
k1,...,km−1

aik1 ak1k2 . . .akm−1 j = 0

is zero if and only if each summand is zero. But this is equivalent to the property
that there exists no walk from i to j of length m. Thus condition 2 is equivalent to
condition 4.
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Fig. 8.6 Cyclic graph 1

2

Assume condition 3. Since A is nonnegative, the entries of the matrix

(I +A)N−1 =
N−1

∑
j=0

(
N −1

j

)
A j

are all positive. Thus, for each i, j, the ij entry of Am is positive, for m = 1, . . . ,N−1.
Thus condition 2 is satisfied and condition 3 implies condition 2 and, therefore,
condition 4. Conversely, assume that ΓA is strongly connected. Between every two
distinct vertices there exists, then, a path of length ≤ N − 1 that connects them.
Thus the off-diagonal entries of (I +A)N−1 are positive. Since the diagonal entries
of (I +A)N−1 are positive, too, this implies condition 3. This completes the proof.

�
The adjacency matrix of the cyclic graph in Figure 8.6 is

A =

(
0 1
1 0

)

and satisfies, for each m,

A2m+1 =

(
0 1
1 0

)
, A2m =

(
1 0
0 1

)
.

Thus A is an example of a nonnegative matrix that satisfies assertion 2 in Theorem
8.26 but does not satisfy Am > 0 for some m. Such phenomena are explained by the
Perron–Frobenius theorem.

Definition 8.27. A nonnegative matrix A ∈ R
N×N is called primitive if Am > 0 for

some m ∈ N. The smallest such integer m is called the primitivity index γ(A).

Thus a primitive nonnegative matrix A is irreducible, but the converse does not
hold. In general, the primitivity index does not satisfy γ(A)≤ N. One can show that
the primitivity index always satisfies the sharp bound

γ(A)≤ N2 −2N +2.
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8.5 Graph Rigidity and Euclidean Distance Matrices

Graph rigidity is an important notion from Euclidean distance geometry that
plays a central role in diverse areas such as civil engineering Henneberg (1911),
the characterization of tensegrity structures, molecular geometry and 2D-NMR
spectroscopy Havel and Wüthrich (1985), and formation shape control of multiagent
systems Anderson et. al. (2007). Formations of specified shape are useful in
control for sensing and localizing objects, and formations of fixed shape can be
contemplated for moving massive objects placed upon them. To steer formations of
points from one location to another, steepest-descent methods are used to optimize
a suitable cost function. Typically, the smooth cost function

V (X) =
1
4 ∑

ij∈E
(‖xi − x j‖2 −d2

ij)
2

on the space of all formations X = (x1, . . . ,xN) of N points xi in R
m is used. The

gradient flow of V is

ẋi = ∑
j: ij∈E

(‖xi − x j‖2 −d2
ij)(xi − x j), i = 1, . . . ,N,

and can be shown to converge from every initial condition pointwise to a single
equilibrium point. It thus provides a simple computational approach to find a
formation that realizes a specified set of distances dij > 0, ij ∈ E, indexed by
the edges of a graph. The characterization of such critical formations and the
analysis of their local stability properties in terms of the properties of the graph
are among the open research problems in this field. Such research depends crucially
on a deeper understanding of Euclidean distance geometry and associated graph-
theoretic concepts, such as rigidity. We next turn to a brief description of such
methods.

In Euclidean distance geometry one considers a finite tuple of points x1, . . . ,xN

in Euclidean space R
m, called a formation, together with an undirected, connected

graph Γ = (V,E) on the set of vertices V = {1, . . . ,N}, with prescribed distances
dij = ‖xi − x j‖ for each edge ij ∈ E of Γ . Conversely, by assigning positive real
numbers d∗

ij to the edges ij of a graph Γ , one is asked to find a formation x1, . . . ,xN ∈
R

m that realizes the d∗
ij as distances ‖xi − x j‖. In heuristic terms (see below for a

more formal definition), a formation (x1, . . . ,xN) is then called rigid whenever there
does not exist a nontrivial perturbed formation (x′1, . . . ,x

′
N) near (x1, . . . ,xN) that

realizes the same prescribed distances.
Let us associate with a vertex element i ∈ V a point xi in Euclidean space R

m.
The m×N matrix X = (x1, . . . ,xN) then describes a formation X of N points labeled
by the set of vertices of Γ . With this notation at hand, consider the smooth distance
map

D : Rm×N −→ R
M, D(X) = (‖xi − x j‖2)(i, j)∈E .
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The image set

CMm(Γ ) = {D(X) | X ∈ R
m×N}

is called the Cayley–Menger variety. Being the image of a real polynomial map,
the Cayley–Menger variety defines a semialgebraic subset of R

M , which is in
fact closed. It is a fundamental geometric object that is attached to the set of all
realizations of a graph in R

m. For simplicity, let us focus on the complete graph KN

with a set of vertices V = {1, . . . ,N} and a set of edges E =V ×V . Then the elements
of the Cayley–Menger variety Cm(KN) are in bijective correspondence with the set
of N ×N Euclidean distance matrices

D(x1, . . . ,xN) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ‖x1 − x2‖2 . . . ‖x1 − xN‖2

‖x1 − x2‖2 0 . . . ‖x2 − xN‖2

...
. . .

. . .
...

‖x1 − xN−1‖2 0 ‖xN−1 − xN‖2

‖x1 − xN‖2 . . . ‖xN−1 − xN‖2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

defined by x1 . . . ,xN ∈ R
m. Thus,

D(x1, . . . ,xN) =−2X�X +xe�+ ex�.

Here x = col(‖x1‖2, . . . ,‖xN‖2) ∈ R
N and X�X = (x�i x j) ∈ R

N×N denote the
Gramian matrix associated with x1, . . . ,xN . In particular, D(x1, . . . ,xN) is a rank two
perturbation of the rank ≤ m Gramian matrix X�X . This observation implies that
Euclidean distance matrices of N points in R

m have rank ≤ m+2, while for generic
choices of x1, . . . ,xN the rank is equal to m+2. To characterize the set of Euclidean
distance matrices, one needs a simple lemma from linear algebra.

Lemma 8.28. Let A = A� ∈ R
n×n, and assume that B ∈ R

r×n has full row rank r.
Let QA denote the quadratic form x�Ax defined on the kernel KerB of B. Then the
symmetric matrix

C =

(
0 B�

B A

)

satisfies the equations for rank and signature

rk C = rk QA +2r,

sign C = sign QA.

Proof. Let R and L be invertible r × r and n × n matrices, with LBR = (0, Ir),
respectively. Then
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(
R� 0
0 L

)(
0 B�

B A

)(
R 0
0 L�

)
=

(
0 (LBR)�

LBR LAL�

)
,

and after such a suitable transformation one can assume without loss of generality
that B = (Ir,0). Partition the matrix A

A =

(
A11 A12

A�
12 A22

)
,

where A11, A12, and A22 have sizes r× r, r× (n− r), and (n− r)× (n− r). Applying
elementary row and column operations we obtain

C =

⎛
⎝

0 Ir 0
Ir A11 A12

0 A�
12 A22

⎞
⎠=

⎛
⎝

I 0 0
1
2 A11 I 0
A�

12 0 I

⎞
⎠
⎛
⎝

0 Ir 0
Ir 0 0
0 0 A22

⎞
⎠
⎛
⎝

I 1
2 A11 A12

0 I 0
0 0 I

⎞
⎠ .

Thus the inertia theorem of Sylvester implies that

rk C = rk A22 +2r = rk QA +2r,

sign C = sign A11 = sign QA.

�
A classical result by Menger (1928), see also Blumenthal (1953), asserts that

the Euclidean distance matrices D(x1 . . . ,xN) of N points in R
m have nonpositive

Cayley–Menger determinants

det

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 . . . 1
1 0 − 1

2‖x1 − x2‖2 . . . − 1
2‖x1 − xk‖2

1 − 1
2‖x1 − x2‖2 0 . . . − 1

2‖x2 − xk‖2

...
...

...
. . .

...
1 − 1

2‖x1 − xk‖2 − 1
2‖x2 − xk‖2 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

≤ 0 (8.10)

for each k ≤ N (and are equal to zero for k > m+ 1). One can easily deduce this
condition from the following more general characterization of Euclidean distance
matrices.

Theorem 8.29. Let A = (aij) ∈ R
N×N
+ be a nonnegative symmetric matrix, with

a11 = · · ·= aNN = 0. The following assertions are equivalent:

(a) A is a Euclidean distance matrix of N points in R
m.

(b) There exists a nonnegative vector a ∈ R
N
+ that satisfies the linear matrix

inequality with rank constraint
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−A+ae�+ ea� � 0, rk(−A+ae�+ ea�)≤ m.

(c) There exists a positive semidefinite matrix S of rank ≤ m, with

− 1
2

A = S− 1
2

(
diag(S)ee�+ ee�diag(S)

)
. (8.11)

(d) The matrix

SA :=−1
2

(
IN − 1

N
ee�

)
A

(
IN − 1

N
ee�

)

is positive semidefinite of rank ≤ m.
(e) The restriction of the quadratic form x�Ax on (Re)⊥ is negative semidefinite

and has rank ≤ m.
(f) The Cayley–Menger matrix

CM(A) :=

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 . . . 1
1 0 − 1

2 a12 . . . − 1
2 a1N

1 − 1
2 a12 0 . . . − 1

2 a2N
...

...
...

. . .
...

1 − 1
2 a1N − 1

2 a2N . . . 0

⎞
⎟⎟⎟⎟⎟⎠

has exactly one negative eigenvalue and at most m+1 positive eigenvalues.

Proof. Using the identity ‖xi − x j‖2 = ‖xi‖2 + ‖x j‖2 − 2x�i x j, we see that A =
D(x1, . . . ,xN) for some points x1, . . . ,xN ∈ R

m if and only if

− 1
2

A = X�X − 1
2

ae�− 1
2

ea�, (8.12)

where a = col(‖x1‖2, . . . ,‖xN‖2). Equivalently, A is a Euclidean distance matrix in
R

m if and only if there exists a positive semidefinite matrix S of rank ≤ m with

−1
2

A = S− 1
2

(
diag(S)ee�+ ee�diag(S)

)
.

Here diagS is a diagonal matrix with the same diagonal entries as S. This completes
the proof of the equivalence of the first three conditions. It is easily seen that

S :=−1
2

(
IN − 1

N
ee�

)
A

(
IN − 1

N
ee�

)

satisfies (8.11). Thus (d) implies (c) and hence also (a). Conversely, (a) implies
(8.12), and therefore
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SA =−1
2

(
IN − 1

N
ee�

)
X�X

(
IN − 1

N
ee�

)

is positive semidefinite of rank ≤ m. This shows the equivalence of (a) and (d). The
equivalence of (a) with (e) and (f) follows from Lemma 8.28 by noting that SA in
(d) satisfies x�SAx =− 1

2 x�Ax for all x ∈ (Re)⊥. This completes the proof. �
There are two simple facts about Cayley–Menger determinants that are worth

mentioning. First, for N = 3 points in R
2, one has the expression for the determinant

of the distance matrix (with aij := ‖xi − x j‖)

detD(x1,x2,x3)

=−1
4
(a12 +a13 +a23)(a12 +a13 −a23)(a12 −a13 +a23)(−a12 +a13 +a23).

This relates to the familiar triangle inequalities that characterize a triple of nonneg-
ative real numbers d1,d2,d3 as the side lengths of a triangle. Second, a well-known
formula for the volume Vol (Σ) of the simplex Σ defined by N +1 points x0, . . . ,xN

in R
N asserts that

Vol (Σ) =
1

N!
|det (x1 − x0, . . . ,xN − x0)|.

From the translational invariance of the norm, the distance matrix A :=
D(x0, . . . ,xN) = D(0, p1, . . . , pN), with pi := xi − x0 for i = 1, . . . ,N. Applying
(8.12) to d := col(0,‖p1‖2, . . . ,‖pN‖2), P := (p1, . . . , pN) ∈ R

d×N , we obtain

Vol2(Σ) =

(
1

N!

)2

|detP|2 = det

(
I2 0
0 P�P

)

=−det

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 · · · 1
1 0 0 · · · 0
1 0 p�1 p1 · · · p�1 pN
...

...
...

. . .
...

1 0 p�N p1 · · · p�N pN

⎞
⎟⎟⎟⎟⎟⎠

=−det

(
0 e�

e − 1
2 D

)
.

Thus we obtain the formula for the squared volume of the simplex in terms of
the mutual distances as

Vol2(Σ) =−
(

1
N!

)2

detCM,
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where CM is the Cayley–Menger matrix of the distance matrix D(x0, . . . ,xN).
Returning to the situation of formations defined over a graph, the rigidity matrix

of a formation is defined as the M×mN Jacobi matrix R(X) = JacD (X) whose ijth
row (ij ∈ E) is

R(X)ij = (ei − e j)
�⊗ (xi − x j)

�.

A formation X is called regular whenever

rkR(X) = max
Z∈Rm×N

rkR(Z).

The regular formations form an open and dense subset in the space of all formations.
The geometry of formations is closely connected with the standard action of the
Euclidean group on R

m. Let O(m) denote the compact matrix Lie group of all
real orthogonal m × m matrices. The Euclidean group E(m) then parameterizes
all Euclidean group transformations of the form p �→ gp+ v, where g ∈ O(m) and

v ∈R
m denotes a translation vector. Thus E(m) is a Lie group of dimension m(m+1)

2 ,
which is in fact a semidirect product of O(m) and R

m. Since D is invariant under
orthogonal rotations, i.e., D(SX) =D(X) for S ∈ O(m), the tangent space to such a
group orbit is contained in the kernel of the rigidity matrix R(X).

Lemma 8.30. The kernel of the rigidity map R(X) contains the tangent space
TX (O(m) ·X). Suppose the linear span of the columns x1, . . . ,xN of X has dimen-
sion r. Then the kernel of R(X) has at least dimension 1

2 r(2m− r−1).

Proof. The first statement is a simple consequence of the invariance of D under
the group of orthogonal transformations X �→ SX. Note that the stabilizer group
O(m)X of X coincides with the subgroup of O(m) that leaves the elements of the
linear span < x1, . . . ,xN > pointwise invariant. Thus a straightforward computation
reveals that the dimension of O(m)X is equal to 1

2 (m− r)(m− r−1). Therefore, the
dimension of the group orbit O(m) ·X is equal to 1

2 m(m−1)− 1
2 (m−r)(m−r−1)=

1
2 r(2m− r−1). This completes the proof. �

A formation is called infinitesimally rigid if the kernel of the rigidity matrix
coincides with the tangent space TX (O(m) ·X). Equivalently, infinitesimal rigidity
holds if and only if the following rank condition is satisfied:

rkR(X) = m(N −1)− 1
2

rkX(2m− rkX −1).

Note that from the structure of R(X) one can easily check that rkR(X) ≤ N −1 for
r = 1. Likewise one can check that rkR(X) ≤ 2N −3 for r = 2 and all d with M ≥
2N − 3. With the aid of these bounds, one can then verify using the rank condition
that a formation of N points in the plane R

2 is infinitesimally rigid if and only if
r = 2 and the rank of R(X) is equal to 2N − 3. Similarly, a formation of N ≥ 4
points in R

3 is infinitesimally rigid if and only if r = 3 and the rank of R(X) is equal
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Fig. 8.7 Complete graphs
are rigid
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Fig. 8.8 Nonrigid graph 1
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Fig. 8.9 Minimally rigid
graph
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to 3N −6. A formation X is called rigid whenever the orbit SO(m) ·X is isolated in
the fiber D−1(D(X). Every infinitesimally rigid formation is rigid, but the converse
does not hold. In fact, regular formations are infinitesimally rigid if and only if they
are rigid (Figures 8.7 and 8.8).

A rigid graph in R
m is one for which almost every X ∈ R

m is infinitesimally
rigid. Thus Γ is rigid in R

m if and only if the rigidity matrix R(X) has generic rank

equal to mN − m(m+1)
2 . A rigid graph is called minimally rigid if it has exactly

mN− m(m+1)
2 edges (Figure 8.9). An example of a rigid graph is the complete graph

KN that has an edge between each pair of the N vertices. KN is minimally rigid if and
only if N = 2,3, but not if N ≥ 4. In contrast, a graph with 4 vertices and 5 edges
realized in R

2 is minimally rigid.
Rigid graphs in R

2 are characterized in a combinatorial manner by the so-called
Laman condition stated in the next theorem.
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Theorem 8.31 (Laman (1970)). A graph Γ with M edges and N vertices is
minimally rigid in R

2 if and only if the following two conditions are satisfied:

(a) M = 2N −3.
(b) Every subgraph Γ ′ of Γ with N′ vertices and M′ edges satisfies M′ ≤ 2N′ −3.

An explicit combinatorial characterization of rigid graphs in R
3 is unknown.

8.6 Spectral Graph Theory

Definition 8.32. The spectrum of a weighted graph is defined as the set of
eigenvalues of the adjacency matrix A(Γ ), counted with their multiplicities. The
characteristic polynomial of Γ is defined as the characteristic polynomial

det(zI −A(Γ )) = zN + c1zN−1 + · · ·+ cN .

The field of spectral graph theory is concerned with attempting to characterize
the properties of graphs using information on the spectrum. Typically, the graphs are
not weighted, and thus the adjacency matrix considered is the classical adjacency
matrix of a graph. The first three coefficients of the characteristic polynomial of an
unweighted graph (without self-loops) are easily characterized as follows:

1. c1 = 0,
2. c2 =−|E|,
3. c3 =−2δ , where δ denotes the number of triangles in Γ .

We refer the reader to Cvetkovic, Rowlinson and Simic (2010) for a detailed study
of graph spectra.

Laplacian matrices are constructed from the adjacency matrix of a weighted
graph through the notion of oriented incidence matrices. Their spectral properties
dominate the present theory of consensus and synchronization, as will be further
explained in Chapter 11. Let Γ = (V,E) be an oriented (directed or undirected)
weighted graph with associated maps ι : E −→ V and τ : E −→ V on the initial
and terminal points, respectively. Here and in the sequel we will always use the
canonical orientation on a digraph. Assume that Γ has n vertices {v1, . . . ,vN} and
M edges {e1, . . . ,eM}. Thus, for an edge e ∈ E with initial and terminal points
vi = ι(e),v j = τ(e), respectively, there are associated weights ae = aij ≥ 0. Let
A ∈ R

N×N
+ denote the weight adjacency matrix of Γ = (V,E). Equivalently, one

can present the weights as the diagonal matrix

W = diag(ae)e∈E ∈ R
M×M.

The oriented incidence matrix is defined as
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Fig. 8.10 Orientation
labeling of a graph

1
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B = (bij) ∈ R
N×M, bij =

⎧⎪⎪⎨
⎪⎪⎩

1 if vi = τ(e j) �= ι(e j),

−1 if vi = ι(e j) �= τ(e j),

0 otherwise.

(8.13)

Thus every incidence matrix has in each of its columns a single entry 1 and
a single entry −1. All other entries in the column are zero. If B,B′ are incidence
matrices of two identical graphs but with different orientations, then B′ = BS for
a unique diagonal matrix S = diag(s1, . . . ,sM) and si = ±1. Thus the product
B′W (B′)� = BWB� is independent of the orientation. If the graph Γ is strongly
connected, then the incidence matrix B is known to have full row rank N − 1; see,
for example, Fiedler (2008). This shows that B has full row rank N−1 and the kernel
of B has dimension M−N +1. Each vector in Ker B describes a cycle in the graph
Γ . Thus there are exactly M −N + 1 linearly independent cycles for a (directed or
undirected) graph defined by a basis of the kernel of B with integer coefficients
(Figure 8.10).

Let
←−
Γ = (V,

←−
E ) denote the so-called reverse graph, i.e., Γ and

←−
Γ have the same

set V of vertices and for each pair of vertices u,v:

(u,v) ∈ E ⇐⇒ (v,u) ∈←−
E .

Then the adjacency matrix of
←−
Γ is the transpose of that of Γ , i.e.,

A(
←−
Γ ) = A(Γ )�.

Definition 8.33 (Laplacian). Let Γ =(V,E) be a weighted (directed or undirected)
graph with nonnegative weight matrix A(Γ ) ∈ R

N×N
+ . Let DΓ = diag(d1, . . . ,dN)

denote the real diagonal matrix with entries di := ∑N
j=1 aij. The Laplacian of the

weighted digraph is defined as

L(Γ ) = D(Γ )−A(Γ ) ∈ R
N×N .
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The canonical Laplacian L (Γ ) ∈ Z
N×N of a (directed or undirected) graph is

defined as a Laplacian with the canonical 0,1 adjacency weight matrix A(Γ ).

Proposition 8.34. Let Γ = (V,E) be an oriented directed graph with nonnegative
weight matrix AΓ . Then

BWB� = L(Γ )+L(
←−
Γ ).

If Γ is undirected, then

BWB� = L(Γ ).

Proof. Let e1, . . . ,eM denote the edges of Γ . The ij entry of BWB� is equal to
∑M

k=1 aek bikbjk. Note that bikbjk = 0 if and only if either i or j is not a vertex of
the edge ek. This shows that

(BWB�)ij =

{
−(aij +aji) for i �= j

∑N
r=1(air +ari) for i = j .

This shows the formula for directed graphs. For undirected graphs, the edges ij and
ji appear only once. This accounts for the factor of 1

2 . This completes the proof. �
The Laplacian of an undirected, weighted graph is always a real symmetric

matrix and therefore has only real eigenvalues. Of course, for a directed graph this
does not need to be true. However, there are important constraints on the spectrum
of a Laplacian that are specified by the next theorem.

For ξ = col(ξ1, . . . ,ξN) ∈ R
N , introduce the diagonal matrix diag(ξi −

ξ j)(i, j)∈E ∈ R
M×M. The oriented incidence matrix then satisfies the useful identity

B�ξ = diag(ξi −ξ j)e.

The preceding lemma then implies the explicit representation of the associated
quadratic form as

QΓ (ξ ) = ξ�(L(Γ )+L(
←−
Γ ))ξ = ξ�BWB�ξ

=
n

∑
i, j=1

aij(ξi −ξ j)
2.

(8.14)

Most spectral properties of Laplacian matrices can be derived via the canonical
quadratic form QΓ : RN×N −→ R associated with the graph.

Lemma 8.35. The quadratic form QΓ vanishes on Re. It is exactly zero on Re if
the graph Γ is strongly connected.
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Proof. The first claim is obvious. By (8.14), it follows that QΓ (ξ ) = 0 if and only
if aij(ξi − ξ j)

2 = 0 for all i, j. This implies ξi = ξ j for all edges (i, j) ∈ E. Thus, if
Γ is strongly connected, this implies ξ1 = · · ·= ξn. �
Theorem 8.36. Let L(Γ ) denote the Laplacian of a weighted graph Γ on N vertices

with nonnegative weights. Let e = (1, . . . ,1)� ∈ R
N. Then L(Γ )e = L(

←−
Γ )e = 0.

Moreover:

1. The eigenvalues of L(Γ ) have nonnegative real part;
2. If Γ is strongly connected, then L(Γ ) has rank N −1, i.e.,

KerL(Γ ) = Re.

Thus, 0 is a simple eigenvalue of L(Γ ), and all other eigenvalues of LΓ have
positive real part.

3. The quadratic form QΓ is positive semidefinite if and only if e�L(Γ ) = 0.

Proof. The claim L(Γ )e = L(
←−
Γ )e = 0 is obvious from the definition of Laplacians.

Note that e�L(Γ ) = 0 if and only if ∑N
j=1 aij = ∑N

j=1 aji for all i = 1, . . . ,N. This in

turn is equivalent to L(
←−
Γ ) = L(Γ )�. For simplicity, we only prove claims 1 and

2 for symmetric weights, i.e., for L(
←−
Γ ) = L(Γ )�. See Bullo, Cortés and Martínez

(2009), Theorem 1.32, for the proof in the general case.
Claims 1 and 2. Assume Lx = λx for a nonzero complex vector x and λ ∈ C. By

Proposition 8.34, then L+L� = BWB�, and therefore, using x∗ = x�,

2Reλ‖x‖2 = x∗Lx+ x∗L�x = x∗BWB�x ≥ 0.

Thus Reλ ≥ 0. Now suppose that Γ is strongly connected. By Lemma 8.35, the
symmetric matrix L(Γ ) + L(Γ )� is positive semidefinite and degenerates exactly
on Re. This proves the claim.

Claim 3. If e�L(Γ ) = 0, then L(Γ )+L(Γ )� = L(Γ )+L(
←−
Γ ) = BWB� is positive

semidefinite. Conversely, assume that L(Γ )+L(Γ )� is positive semidefinite. Then

0 = e�(L(Γ )+L(Γ )�)e.

By the positive semidefiniteness of L(Γ ) + L(Γ )�, thus (L(Γ )�e = L(Γ ) +
L(Γ )�)e = 0. This proves (3). �

A classical result on the eigenvalues of Hermitian matrices is the Courant–
Fischer minimax principle, which characterizes the eigenvalues of Hermitian
matrices.

Theorem 8.37 (Courant–Fischer). Let A = A∗ ∈ C
n×n be Hermitian with eigen-

values λ1 ≥ ·· · ≥ λn. Let Ei denote the direct sum of the eigenspaces corresponding
to the eigenvalues λ1, . . . ,λi. Then
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λi = min
dimS=n−i+1

max
0 �=x∈S

x∗Ax
x∗x

= min
0 �=x∈Ei

x∗Ax
x∗x

.

The minimax principle can be extended to establish bounds for the eigenvalues
of sums of Hermitian matrices, such as the Weyl inequalities. The Weyl inequality
asserts that the eigenvalues of the sum A+B of Hermitian matrices A,B ∈ C

n×n,
ordered decreasingly, satisfy, for 1 ≤ i+ j−1 ≤ n, the inequality

λi+ j−1(A+B)≤ λi(A)+λ j(B).

More refined eigenvalue estimates are obtained from generalizations of the Weyl
inequalities such as the Freede–Thompson inequality. We next state a straightfor-
ward consequence of the minimax principle to Laplacian matrices.

Corollary 8.38. Let L(Γ ) denote the Laplacian of a weighted, directed graph on N
vertices with nonnegative weights. Assume that Γ is strongly connected and satisfies
e�L = 0. Then the eigenvalue λN−1 of L(Γ ) with smallest positive real part satisfies

Re(λN−1)≥ min
0 �=x∈(Re)⊥

x∗Lx
x∗x

> 0. (8.15)

Moreover, if L(Γ ) is symmetric, then λN−1 is real, and equality in (8.15) holds.

Proof. By Theorem 8.36 the quadratic form QΓ (x) = 2x∗Lx = x∗(L+L∗)x is posi-
tive semidefinite and degenerates exactly on Re. Moreover, all nonzero eigenvalues
σ of L have positive real part. Thus the eigenvectors v of L with Lv = σv satisfy
v∗e = 0 and v∗(L+L∗)v = 2Re(σ)‖v‖2. Thus the result follows from the minimax
principle applied to A := L+L∗. �

Let us briefly mention a coordinate-free approach to Laplacian matrices. Let
S(N) denote the vector space of real symmetric N × N matrices. For an N × N
matrix S, let δ (S) = (s11,s22, . . . ,sNN)

� denote the column vector defined by the
diagonal entries of S. Moreover, let diag(S) denote the diagonal matrix obtained
from S by setting all off-diagonal entries equal to zero. Define a linear map
D : S(N)−→ S(N) as

D(S) = S− 1
2
(δ (S)e�+ eδ (S)�),

where e = (1, . . . ,1)� ∈ R
N .

Lemma 8.39.

KerD = {ae�+ ea�}.

Proof. The inclusion ⊂ follows from the definition of D(S) with a = 1
2 δ (S). For

the other direction let S = ae�+ ea�. Then δ (S) = 2a, and thus D(S) = 0. �
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It is easily seen that the adjoint operator of D with respect to the Frobenius inner
product < S1,S2 >:= tr(S1S2) is D∗ : S(N)−→ S(N), with

D∗(S) = S− 1
2

diag(δ (S)ee�+ ee�δ (S)�).

The Laplacian operator is the linear map L = D∗ ◦D . Obviously, a symmetric
matrix S satisfies

tr(L(S)S) = tr(D(S)D(S)) = ‖D(S)‖2 ≥ 0,

and therefore tr(L(S)S) = 0 if and only if D(S) = 0. Note further that D ◦D∗ =D∗
and the operators D and D∗ commute on the space of symmetric matrices with zero
diagonal entries. A brute force calculation shows

L(S) = S− 1
2
(δ (S)e�+ eδ (S)�)− 1

2
diag(See�+ ee�S)+

N
2

diag(S)+
1
2

tr(S)IN .

Using the preceding formula for the Laplacian operator one concludes for each
symmetric matrix S that

Lij(S) =

{
sij − sii+sjj

2 if i �= j

−∑N
j=1(sik − sii+skk

2 ) if i = j.

In particular, L(S)e = 0 for all S. This explicit formula implies the following
corollary.

Corollary 8.40. For (x1, . . . ,xN) ∈ R
m×N, define the distance matrix D(x1, . . . ,xN)

= (‖xi − x j‖2). Then the Laplacian of S = X�X is

L(X�X) =−1
2
(D(x1, . . . ,xN)−diag(D(x1, . . . ,xN)e).

In particular, if the matrix D(x1, . . . ,xN) is irreducible, then

KerL(X�X) = Re.

Laplacian operators share an important monotonicity property.

Proposition 8.41. L is a monotonic operator, i.e., if S1−S2 is positive semidefinite,
then so is L(S1)−L(S2). The kernel of L is equal to the kernel of D .

Proof. The second claim is obvious from the definition of L =D∗ ◦D . For the first
claim it suffices to show that L maps positive semidefinite matrices into positive
semidefinite matrices. If S is positive semidefinite, then there exists a full column
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row matrix X = (x1, . . . ,xN), with S = X�X . Therefore, Lij(X�X) =−‖xi−x j‖2 for
i �= j and Lii(X�X) = ∑N

j=1 ‖xi − x j‖2. Thus, for a vector ξ ,

ξ�L(X�X)ξ =
1
2 ∑

i< j
‖xi − x j‖2(ξi −ξ j)

2 ≥ 0.

This completes the proof. �
A different version of the Laplacian matrix of a graph that is frequently of interest

in applications is the normalized Laplacian, or the flocking matrix

L = D−1A.

Here A denotes the weighted adjacency matrix and D = diag(Ae). We list a few
spectral properties of the normalized Laplacian for undirected graphs.

Theorem 8.42. The normalized Laplacian L of an undirected, weighted, con-
nected graph Γ has the following properties:

1. L is a stochastic matrix with only real eigenvalues −1 ≤ λ ≤ 1;
2. 1 is a simple eigenvalue of L with eigenspace Re. Moreover, −1 is not an

eigenvalue of Γ if and only if Γ is not bipartite;
3. If A has at least one positive entry on the diagonal, then −1 is not an eigenvalue

of L .

Proof. L is similar to the real symmetric matrix

D
1
2 L D− 1

2 = D− 1
2 AD− 1

2 = I −D− 1
2 LD− 1

2

and therefore has only real eigenvalues. Moreover, D−1Ax = x if and only if
Lx = (D−A)x = 0. Theorem 8.36 implies that 1 is a simple eigenvalue of L with
eigenspace equal to the kernel of L, i.e., it coincides with Re. L is nonnegative, with
L e = e, and therefore a stochastic matrix. Thus Theorem 8.18 implies that L has
spectral radius 1. Moreover, the irreducibility of the adjacency matrix A implies that
L is irreducible. Suppose that −1 is an eigenvalue of L . Applying Theorem 8.23
we conclude that L and, hence, A are permutation equivalent to a matrix of the
form

(
0 B1

B�
1 0

)
. (8.16)

But this is equivalent to the graph being bipartite. Conversely, assume that A is the
adjacency matrix of a bipartite graph. Then L is permutation equivalent to (8.16).
Thus the characteristic polynomial of L is even, and therefore −1 is an eigenvalue.
This proves the first two claims. Now suppose that A and, hence, L have at least one
positive diagonal entry. Then L cannot be permutation equivalent to a matrix of the
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form (8.16) because diagonal entries remain on the diagonal under permutations.
Thus Theorem 8.23 implies that −1 cannot be an eigenvalue of L . This completes
the proof. �

Finally, we prove the classical matrix-tree theorem for weighted graphs, which
plays an important role in algebraic combinatorics. We use the following notation.
For each edge e ∈ E let ae > 0 denote the associated weight. For a subset E ′ ⊂ E
define

aE ′ = ∏
e∈E ′

ae.

Note that the classical adjoint of a matrix A is the transposed matrix adj (A of
cofactors, i.e., adj Aij = (−1)i+ j detAji.

Theorem 8.43 (Matrix-Tree Theorem). Let Γ be an undirected weighted graph
and L(Γ ) the associated Laplacian with real eigenvalues 0 = λ1 ≤ λ2 ≤ ·· · ≤ λN.
Then:

1. The (N −1)× (N −1) leading principal minor of L(Γ ) is equal to

κ(Γ ) = ∑
|E ′|=N−1

aE ′ , (8.17)

where the sum is over all spanning subtrees (V,E ′) of Γ ;
2. The adjoint matrix of L(Γ ) is

adj L(Γ ) = κ(Γ )ee�; (8.18)

3.

κ(Γ ) =
λ2 · · ·λN

N
. (8.19)

Proof. By Lemma 8.34, the 11-minor of the Laplacian is equal to det(B1WB�
1 ),

where B1 ∈ R
(N−1)×M denotes the (N −1)×M submatrix of the oriented incidence

matrix B formed by the first N −1 rows. By the Cauchy–Binet formula,

det(B1WB�
1 ) = ∑

|E ′|=N−1

det2(BE ′)detWE ′ , (8.20)

where the summation is over all subsets of edges E ′ ⊂ E ∩ ({1, . . . ,N − 1} ×
{1, . . . ,N − 1}) of cardinality N − 1. One can always assume without loss of
generality that the subgraphs ({1, . . . ,N −1},E ′) are connected, because otherwise
BE ′ would contain a zero row (or zero column), and thus det2(BE ′) = 0. Assume
that ({1, . . . ,N −1},E ′) contains a cycle of length r ≤ N −1. Then, after a suitable
permutation of rows and columns, BE ′ would be of the form
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(
B11 B12

0 B22

)
,

with

B11 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 −1
−1 1 0 0

0
. . .

. . .
. . .

...
... −1 1 0
0 · · · 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

a circulant matrix whose last column is the negative of the sum of the previous ones.
Thus detB11 = 0, and therefore the corresponding summand in (8.20) vanishes. Thus
only the cycle-free subgraphs Γ ′ = ({1, . . . ,N−1},E ′) contribute. These are exactly
the spanning subtrees of ({1, . . . ,N − 1},E ′) with determinant detBE ′ = ±1. This
proves (8.20).

For the second claim note that Γ is connected if and only if the rank of the
Laplacian is n− 1. Thus, if Γ is not connected, then both sides of (8.19) are zero.
Hence, one can assume that Γ is connected. From L(Γ )adj L(Γ ) = det L(Γ )I = 0
we conclude that every column of adj L(Γ ) is in the kernel of L(Γ ), i.e., is a scalar
multiple of e. Since L(Γ ) is symmetric, so is adj L(Γ ). Thus adj L(Γ ) is a multiple
of ee�.

The last claim follows by taking traces in (8.19). Thus Nκ(Γ ) = tr adj L(Γ )
coincides with the sum of eigenvalues of adj L(Γ ). If λ1, . . . ,λN denote the
eigenvalues of a matrix M, then the eigenvalues of the adjoint adj M are ∏ j �=i λ j,
j = 1, . . . ,N. Thus we obtain tr adj L(Γ ) = λ2 · · ·λN . This completes the proof. �

As a consequence of the matrix-tree theorem one can derive an explicit formula
for the number of spanning trees in a graph.

Corollary 8.44 (Temperley (1964)). Let L := L(Γ ) be the Laplacian of an undi-
rected weighted graph on N vertices and J = ee�. Then

κ(Γ ) =
det (J+L)

N2 .

Proof. The identities NJ = J2,JL = 0 imply (NI − J)(J + L) = NL. By taking
adjoints, therefore, adj (J +L)adj (NI − J) = adj (NL) = NN−1adj L. Thus, using
adj (NI − J) = NN−2J, the matrix-tree theorem implies

NN−1κ(Γ )J = NN−1adj L = NN−2adj (J+L)J.

Thus Nκ(Γ )J = adj (J+L)J, and therefore
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det (J+L)J = (J+L)adj (J+L)J = adj (J+L)(J+L)J = Nadj (J+L)J

= N2κ(Γ ).

�
For the complete graph KN on N vertices, the classical graph Laplacian is L =

NI − J. This implies the well-known formula

κ(KN) =
det (J+L )

N2 =
NN

N2 = NN−2

for the number of spanning trees in KN .

8.7 Laplacians of Simple Graphs

We determine spectral information for important classes of classical Laplacians and
adjacency matrices for directed and undirected graphs Γ . For simplicity we focus
on unweighted graphs, i.e., on classical Laplacians and adjacency matrices. Note
that both Laplacians and adjacency matrices of undirected, weighted graphs satisfy
the following properties.

L(Γ ∪Γ ′)) = diag (L(Γ ),L(Γ ′)),

L(Γ ×Γ ′) = L(Γ )⊗ In + Im ⊗L(Γ ′) .

In particular, the eigenvalues of the Laplacian of the direct product graph Γ ×Γ ′
are the sums λi +μ j of the eigenvalues λi and μ j of Γ and Γ ′, respectively.

1. Simple Path Graph. Our first example is the simple directed path graph Γn

on the vertex set V = {1, . . . ,N} and edges E = {(1,2),(2,3), . . . ,(N − 1,N)}
(Figure 8.11).

The adjacency matrix and Laplacian of ΓN are respectively

A=

⎛
⎜⎜⎜⎜⎝

0 · · · · · · 0

1
. . .

...
...

. . .
. . .

...
0 · · · 1 0

⎞
⎟⎟⎟⎟⎠
, L =

⎛
⎜⎜⎜⎜⎝

0 · · · · · · 0

−1 1
...

...
. . .

. . .
...

0 · · · −1 1

⎞
⎟⎟⎟⎟⎠
.

1 2 3 4 5

Fig. 8.11 Directed simple path
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1 2 3 4 5

Fig. 8.12 Undirected simple path

Thus A is the standard cyclic nilpotent matrix, while L has 0 as a simple
eigenvalue and the eigenvalue 1 has a geometric multiplicity of one (and an algebraic
multiplicity of N −1) (Figure 8.12).

More interesting is the associated undirected graph with a set of edges
E = {{1,2},{2,3}, . . . ,{N − 1,N}} and graph adjacency and Laplacian matrices,
respectively,

AN =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
1 0 1

1
. . .

. . .
. . .

. . . 1
1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, LN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

We begin with a spectral analysis of AN . This is a classical exercise from analysis.

Theorem 8.45. 1. The eigenvalues of AN are the distinct real numbers λk(AN) =
2cos kπ

N+1 , k = 1, . . . ,N.

2. The unique eigenvector x(k) = (ξ (k)
0 , . . . ,ξ (k)

N−1)
�, normalized as ξ (k)

0 := 1, for the

eigenvalue 2cos kπ
N+1 is

ξ (k)
ν =

sink( ν+1
N+1 )π

sin( kπ
N+1 )

, ν = 0, . . . ,N −1.

In particular, the coordinates of the eigenvector x(k) are reflection symmetric,

that is, they satisfy ξ (k)
ν = ξ (k)

n−1−ν .

Proof. Let

eN(z) = det(zI −AN)

be the characteristic polynomial of AN . Expanding by the first row leads to the
three-term recursion

eN(z) = zeN−1(z)− eN−2(z). (8.21)

For the 1-norm ‖A‖ ≤ 2, and hence it follows that the eigenvalues satisfy |λ | ≤ 2
and, as eigenvalues of a real symmetric matrix, they are all real. So one can set
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λ = 2cosx. From (8.21) it follows that λ is an eigenvalue if and only if eN(λ ) = 0.
The difference equation (8.21) can be written now as

eN(2cosx) = 2cosx · eN−1(2cosx)− eN−2(2cosx). (8.22)

We try an exponential solution to this difference equation, i.e., we put eN =
Aζ N

1 + Bζ N
2 , where ζ1 and ζ2 are the two roots of the characteristic polynomial

ζ 2 − 2ζ cosx + 1 = 0. This leads to ζ = e±
√−1x. The initial conditions for the

difference equation (8.21) are e0(z) = 1 and e1(z) = z. Setting eN(2cosx) =

Ae
√−1Nx +Be−

√−1Nx leads to the pair of equations

A+B = 1, Ae
√−1x +Be−

√−1x = 2cosx.

Solving and substituting back in (8.22) one obtains

eN(2cosx) =
sin(N +1)x

sinx
.

The right-hand side vanishes for x= kπ
N+1 , k= 1, . . . ,N, and therefore the eigenvalues

of AN are 2cos kπ
N+1 .

We proceed now to the computation of the eigenvectors of AN . Let x(k) =

(ξ (k)
0 , . . . ,ξ (k)

N−1) be the eigenvector corresponding to the eigenvalue λk =

2cos( kπ
N+1 ). The characteristic equation Tx(k) = λkx(k) is equivalent to the system

ξ (k)
1 = λkξ (k)

0

ξ (k)
0 +ξ (k)

2 = λkξ (k)
1

...

ξ (k)
N−3 +ξ (k)

N−1 = λkξ (k)
N−2

ξ (k)
N−2 = λkξ (k)

N−1 .

(8.23)

The coordinates of the eigenvector x(k) satisfy the recursion

ξ (k)
ν = 2cos(

kπ
N +1

)ξ (k)
ν−1 −ξ (k)

ν−2.

Normalize the eigenvector by requiring ξ (k)
0 = 1. The second coordinate is deter-

mined by the first equation in (8.23) and ξ (k)
1 = 2cos( kπ

N+1 ). As is the case with
eigenvalues, one solves the difference equation using a linear combination of two
exponential solutions. Thus
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ξ (k)
ν = Ae

√−1νπ
N+1 +Be

−√−1νπ
N+1 .

The initial conditions determine the ξν , and we obtain the explicit formula

ξ (k)
ν =

sink( ν+1
N+1 )π

sin( kπ
N+1 )

.

�
For later use we formulate a similar result for the matrices

MN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

LN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Expanding the characteristic polynomial of MN

gN(z) = det(zI −MN)

by the last row one obtains the recursion

gN(z) = (z−2)gN−1(z)−gN−2(z),

with initial conditions g0(z) = 1,g1(z) := z−1,g2(z) = (z−1)(z−2)−1. Note that
γN(z) = eN(z−2) satisfies the same recursion, but with different initial conditions.
For a proof of the next result we refer to Yueh (2005); see Willms (2008) for further
eigenvalue formulas for tridiagonal matrices.

Theorem 8.46. 1. The eigenvalues of MN are distinct and are

λk(MN) = 2−2cos
(2k−1)π

2N +1
, k = 1, . . . ,N.

An eigenvector x(k) = (ξ (k)
0 , . . . ,ξ (k)

N−1)
� for the eigenvalue λk(MN) is

ξ (k)
ν = sin

( (2k−1)(ν +N +1)π
2N +1

)
, ν = 0, . . . ,N −1.

2. The eigenvalues of LN are distinct

λk(LN) = 2−2cos
(k−1)π

N
, k = 1, . . . ,N.
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Fig. 8.13 Directed cycle
graph

1

2

3

4

5

The unique eigenvector x(k) = (ξ (k)
0 , . . . ,ξ (k)

N−1)
�, normalized as ξ (1)

ν := 1, for the
eigenvalue λk(LN) is

ξ (k)
ν = cos

( (k−1)(2ν +1)π
2N

)
, ν = 0, . . . ,N −1.

2. Simple Cycle Graph. In this case the set of edges of the digraph is E =
{(1,2), . . . ,(N −1,N),(N,1)} and in the undirected case

E = {{1,2}, . . . ,{N −1,N},{1,N}}.

Consider first the directed graph case (Figure 8.13). Then the adjacency matrix
is the circulant matrix

CN =

⎛
⎜⎜⎜⎜⎝

0 1

1
. . .
. . .

. . .

1 0

⎞
⎟⎟⎟⎟⎠

. (8.24)

Being a circulant matrix, C is diagonalized by the Fourier matrix. Explicitly, let

Φ =
1√
N

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2N−2

...
...

1 ωN−1 ω2N−2 · · · ω(N−1)2

⎞
⎟⎟⎟⎟⎟⎟⎠

(8.25)

denote the Fourier matrix, where ω = e2π
√−1/N denotes a primitive Nth root of

unity. Notice that Φ is both a unitary and a symmetric matrix:

CN = Φdiag(1,ω, . . . ,ωN−1)Φ∗ .
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Fig. 8.14 Undirected cycle
graph
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2

3

4

5

This proves the following theorem.

Theorem 8.47. The eigenvalues of CN are distinct and are the Nth roots of unity:

λk(CN) = ωk = e
2k
√−1π

N , k = 1, . . . ,N.

An eigenvector x(k) = (ξ (k)
0 , . . . ,ξ (k)

N−1)
� for the eigenvalue λk(CN) is

x(k) = Φek =
N−1

∑
j=0

ω(k−1) je j+1, k = 1, . . . ,N.

The associated Laplacian matrix is equal to LN = IN −CN . Thus the eigenvalues and
eigenvector are trivially related to those of CN (Figure 8.14).

The undirected case is more interesting. The adjacency matrix and Laplacian
matrices are

AN =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1
1 0 1

1
. . .

. . .
. . .

. . . 1
1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, LN = 2IN −AN =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠
. (8.26)

Theorem 8.48. 1. The eigenvalues of AN and LN defined in (8.26) are

λk(AN) = 2cos(
2kπ
N

), k = 1, . . . ,N,

λk(LN) = 2−2cos(
2kπ
N

), k = 1, . . . ,N.

In either case, λk = λl for 1 ≤ k, l ≤ N if and only if l = N − k. For N = 2m
even, λm and λN are simple and λk has a multiplicity of two for all other k.
For N = 2m+ 1 odd, λN is simple and all other eigenvalues have a multiplicity
of two.
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2. An orthonormal basis for the eigenspaces of AN and LN for the eigenvalue
λk(AN) and λk(LN), respectively, is as follows:

(a) A single generator

1√
N

⎛
⎜⎜⎜⎜⎜⎝

1
1
1
...
1

⎞
⎟⎟⎟⎟⎟⎠
,

1√
N

⎛
⎜⎜⎜⎜⎜⎝

1
−1
1
...
1

⎞
⎟⎟⎟⎟⎟⎠

for k = N or k = m,N = 2m, respectively.
(b) Otherwise, a basis of two orthonormal vectors

x(k) =
1√
N

⎛
⎜⎜⎜⎜⎜⎜⎝

1
cos( 2kπ

N )

cos( 4kπ
N )

...

cos( 2(N−1)kπ
N )

⎞
⎟⎟⎟⎟⎟⎟⎠
, y(k) =

1√
N

⎛
⎜⎜⎜⎜⎜⎜⎝

1
sin( 2kπ

N )

sin( 4kπ
N )

...

sin( 2(N−1)kπ
N )

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Proof. Since

AN =CN +C�
N = Φdiag(1,ω, . . . ,ωN−1)Φ∗+Φdiag(1,ω, . . . ,ωN−1)Φ∗,

the eigenvalues of C +C� are equal to Re(ωk +ωk) = 2cos( 2kπ
N ). Moreover, the

complex eigenvectors of AN are simply the columns

φk =
1√
N

⎛
⎜⎜⎜⎜⎜⎝

1
ωk

ω2k

...
ω(N−1)k

⎞
⎟⎟⎟⎟⎟⎠

of the Fourier matrix ΦN . Thus the real and imaginary parts

x(k) =
1
2
(φk +φk), y(k) =

1
2i
(φk −φk)

form a real basis of the corresponding eigenspaces. Writing x(k) = 1√
N
(ξ (k)

0 , . . .,

ξ (k)
N−1)

� and y(k) = 1√
N
(η(k)

0 , . . . , η(k)
N−1)

� one obtains for each k = 1, . . . ,N
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x(k)ν = cos
2kνπ

N
, y(k)ν = sin

2kνπ
N

, k = 1, . . . ,N,ν = 0, . . . ,N −1.

This completes the proof for AN . The result on the Laplacian follows trivially as
LN = 2IN −AN . �

8.8 Compressions and Extensions of Laplacians

We begin by recalling the definition of the Schur complement. Let M be an N ×N
matrix and I,J ⊂ {1, . . . ,N}. Then MIJ denotes the submatrix of M with row indices
in I and column indices in J, respectively.

Definition 8.49. Let M be an N ×N matrix and I ⊂ {1, . . . ,N} such that MII is
invertible. Let J = {1, . . . ,N}\ I �= /0. Then

M/MII := MJJ −MJIM
−1
II MIJ

is called the Schur complement.

The Schur complement has some basic properties that are easily established, as
follows.

Proposition 8.50. Let M be an N ×N matrix and I ⊂ {1, . . . ,N} such that MII is
invertible. The Schur complement M/MII has the following properties:

1. rkM = rkMII + rkM/MII;
2. Let M be Hermitian; then M/MII is Hermitian with signature

sign(M) = sign(MII)+ sign(M/MII).

Proof. Without loss of generality, assume that I = {1, . . . ,r},1 ≤ r < n and M is
partitioned as

M =

(
M11 M12

M21 M22

)
.

The result follows easily from the identity

(
I 0

−M21M−1
11 I

)(
M11 M12

M21 M22

)(
I −M−1

11 M12

0 I

)
=

(
M11 0

0 M22 −M21M−1
11 M12

)
.

�
The 2×2 matrix
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(
1 −2
2 −3

)

shows that the Schur complement of a Hurwitz matrix need not be a Hurwitz matrix.
Information about the spectral properties of the Schur complement is provided by
the next result. For the proof we refer the reader to Fiedler (2008).

Theorem 8.51. Let M be a real N×N matrix with nonpositive off-diagonal entries
mij ≤ 0, i �= j. Let I ⊂ {1, . . . ,N}, with MII invertible. Suppose there exists a vector
x ≥ 0 with Mx > 0. Then:

1. All eigenvalues of M have positive real part;
2. The eigenvalues of MII and M/MII have positive real parts, respectively;
3. The off-diagonal entries of MII and the Schur complement M/MII are both non-

positive. The inverses M−1
II and (M/MII)

−1 exist and are nonnegative matrices.

Let L denote the Laplacian matrix of an undirected, weighted graph Γ . Assume
that Δ = diag(δ1, . . . ,δN) denotes a diagonal matrix with nonnegative entries δ1 ≥
0, . . . ,δN ≥ 0. Then the matrix

L = L+Δ

is called a generalized Laplacian for Γ . Thus the generalized Laplacians L are
characterized as those matrices with nonpositive off-diagonal entries that satisfy
L e ≥ 0. Let A denote the weighted adjacency matrix of Γ . The loopy Laplacian is
then the generalized Laplacian Q= L+Δ defined by setting δi := aii for i= 1, . . . ,N.

We now prove a central result on the submatrices of generalized Laplacians.

Theorem 8.52. Let Γ be an undirected, weighted graph with generalized Laplacian
matrix L .

1. Γ is connected if and only if L is irreducible.
2. Every eigenvalue and every principal minor of L are nonnegative.
3. For each I �= {1, . . . ,N}, LII is a positive definite matrix and its inverse (LII)

−1

is a nonnegative matrix.
4. Let Γ be connected. Then, for each I �= {1, . . . ,N}, both LII and the Schur

complement L /LII are generalized Laplacians.

Proof. Since the off-diagonal entries of −L coincide with those of the graph
adjacency matrix A of Γ , it follows that L is irreducible if and only if A is
irreducible. But this is equivalent to Γ being connected.

By Proposition 8.34, every principal submatrix of L is of the form

LII = ΔII +BIWB�
I ,

where BI denotes the submatrix of the incidence matrix B formed by the rows that
are indexed by I. The matrix ΔII is a diagonal matrix with nonnegative entries. Thus
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LII has nonnegative off-diagonal terms and is positive semidefinite. This proves
claim 2. Assume that Γ is connected. Then for each proper subset I ⊂{1, . . . ,N}, the
matrix BIWB�

I is positive definite. In fact, x�BIWB�
I x = 0 implies B�

I x = 0. Extend
x to z ∈ R

N by adding zeros, so that B�z = B�
I x. Since Ker B� = Re, therefore

z = λe. Since at least one entry of z is zero, we obtain λ = 0. Thus x = 0, which
proves positive definiteness of BIWB�

I . In particular, LII = ΔII +BIWB�
I is positive

definite for all proper index sets I. Moreover, LII is a generalized Laplacian matrix
because the off-diagonal entries are all nonpositive and LIIe ≥ 0. Let A denote
a real matrix with nonpositive off-diagonal entries such that all eigenvalues of A
have positive real part. By Theorem 5.2.1 in Fiedler (2008), one obtains that A−1

is a nonnegative matrix. Applying this result to A = LII we conclude that L −1
II is

nonnegative. This completes the proof of claim 3. Since LII is invertible, the Schur
complement L /LII = LJJ −LJIL

−1
II LIJ exists. Moreover, L −1

II is nonnegative
and the entries of LJI ,LIJ are nonpositive. Thus all entries of −LJIL

−1
II LIJ are ≤

0. Since the off-diagonal entries of LJJ are all ≤ 0, this shows that the off-diagonal
entries of L /LII are nonpositive. Thus it remains to show that the diagonal entries
of the Schur complement are nonnegative. To this end, we simplify the notation by
assuming that I = {1, . . . ,r}. Then diagonal entries of L /LII are of the form

v�
(−L21L

−1
11 I

)(L11 L12

L21 L22

)(−L −1
11 L12

I

)
v = w�L w,

for suitable choices of v,w. By claim 2, then w�L w ≥ 0, and the result follows. �
We now explore in more detail the underlying graphs that are associated with

forming submatrices and Schur complements. Let Γ = (V,E) be an undirected
weighted graph and V ′ ⊂ V a nonempty subset of r vertices in V . Let ΓV ′ =
(V ′,E∩(V ′×V ′) denote an induced graph with the induced weight adjacency matrix
A′. The relation between the Laplacians of ΓV ′ and Γ is established by the following
result, whose easy proof is omitted.

Proposition 8.53. Let I = {i1 < .. . < ir} ⊂ {1, . . . ,N} and V ′ = {vi1 , . . . ,vir}
denote the corresponding set of vertices in V . Let

L(Γ )II = (Lab)a,b∈I

denote the r × r principal submatrix of the Laplacian L(Γ ) = (Lij), with row and
column indices in I. Then

L(Γ )II = L(ΓV ′)+DV ′ ,

where DV ′ = diag (δ1, . . . ,δr) is a diagonal matrix with nonnegative entries
δi = ∑ j �∈I(aij + aji). In particular, the submatrix L(Γ )II of the Laplacian L is a
generalized Laplacian of the induced graph ΓV ′ = (V ′,E ∩ (V ′ ×V ′).
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For the Schur complement we introduce the following notion; see Fiedler (2008)
and Horn and Johnson (1990).

Definition 8.54. Let Γ = (V,E) be an undirected weighted graph on a vertex set
V = {1, . . . ,N} and I ⊂V . The Schur complement, or the Kron reduction, on J is
the graph ΓJ = (J,EJ) with the set of vertices J :=V \ I. Between vertices i, j ∈ J an
edge (i, j) ∈ E ′ is defined if and only if there exists a path from i to j such that all
its interior vertices (i.e., those of the path that differ from i and j) belong to W .

The Kron reduction of an undirected graph is an undirected graph on a subset of
vertices; however, it may contain self-loops even if Γ = (V,E) does not have self-
loops. The Kron reduction graph has some appealing properties that are partially
stated in the next result.

Theorem 8.55. Let Γ = (V,E) be an undirected weighted graph that is connected.
The Kron reduction of Γ is connected. The Schur complement L /LII of a
generalized Laplacian of Γ is a generalized Laplacian of the Kron reduction graph
ΓJ = (VJ ,EJ).

Proof. For a proof that the Kron reduction is connected, we refer to Doerfler
and Bullo (2013). By the preceding reasoning, L(J) := L /LII is a generalized
Laplacian on the vertex set J. Thus it remains to show that the off-diagonal entries
Lij(J) are nonzero if and only if ij is an edge of the Kron reduction ΓJ = (J,EJ).
This is shown in Theorem 14.1.2 by Fiedler (2008) in the case where L possesses
a vector x ≥ 0 with L x > 0. In Theorem 3.4 by Doerfler and Bullo (2013), this is
shown for the so-called loopy Laplacian matrix of a graph. �

The Courant–Fischer minimax principle has important implications for the char-
acterization of the eigenvalues of submatrices of Hermitian matrices via interlacing
conditions. We state one of the simplest known results here, which is often attributed
to Cauchy and Weyl.

Theorem 8.56 (Eigenvalue Interlacing Theorem). Let M be a Hermitian n× n
matrix and I ⊂ {1, . . . ,n} a subset of cardinality r. Assume that the eigenvalues of
Hermitian matrices A are ordered increasingly as λ1(A) ≤ ·· · ≤ λn(A). Then, for
1 ≤ k ≤ r,

λk(M)≤ λk(MII)≤ λk+n−r(M). (8.27)

If in addition MII is positive definite, then for 1 ≤ k ≤ n− r,

λk(M)≤ λk(M/MII)≤ λk(MJJ)≤ λk+r(M).

Proof. For the proof of the first inequality we refer to Theorem 4.3.15 in Horn
and Johnson (1990). For the second claim note that the positive definiteness of
MII implies that of MJIM

−1
II MIJ . Therefore, MJJ � MJJ − MJIM

−1
II MIJ , and thus

λk(M/MII)≤ λk(MJJ) for all 1 ≤ k ≤ n. Applying (8.27) to the submatrix MJJ gives
the result. �
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We next describe inequalities between the eigenvalues of the Laplacians of a
graph and induced subgraph.

Theorem 8.57. Let Γ = (V,E) be an undirected weighted graph and ΓV ′ = (V ′,E∩
(V ′ ×V ′) an induced subgraph on V ′ ⊂ V . Let 0 = λ1 ≤ λ2 ≤ ·· · ≤ λn, λ ′

1 ≤ λ ′
2 ≤

·· · ≤ λ ′
r , and 0 = μ1 ≤ μ2 ≤ ·· · ≤ μr denote the eigenvalues of L(Γ ), L(Γ )V ′ , and

L(ΓV ′), respectively. Then for all 1 ≤ k ≤ r,

λk ≤ λ ′
k ≤ λN−r+k,

k

∑
j=1

λ ′
j ≥

k

∑
j=1

μ j +
k

∑
j=1

δ j.

In particular,

λN + · · ·+λN−r+1 ≥
r

∑
i=1

∑
j �=i

(aij +aji).

Proof. The first inequality follows from the interlacing theorem for eigenvalues of
nested Hermitian matrices; see, for example, Horn, Rhee and So (1998). The second
estimate follows from a standard eigenvalue inequality for sums of Hermitian
matrices. The last inequality follows from the other two. In fact, by the first
inequality, λn + · · ·+ λn−r+1 ≥ tr(L(Γ )V ′) = trL(ΓV ′) + DV ′ . This completes the
proof. �

Similar eigenvalue inequalities exist for the Schur complement of generalized
Laplacians. The straightforward proof of the next theorem is omitted.

Theorem 8.58. Let L denote a generalized Laplacian of an undirected, connected
graph, and let Lred = L /LII denote the Schur complement, |I| = r. Then the
following interlacing conditions for eigenvalues are satisfied:

λk(L )≤ λk(Lred)≤ λk(LJJ)≤ λk+r(L ) for 1 ≤ k ≤ N − r.

8.9 Exercises

1. Let λ1, . . . ,λn and μ1, . . . ,μm be the eigenvalues of the matrices A ∈ R
n×n

and B ∈ R
m×m, respectively. Prove that the eigenvalues of the Kronecker

product A⊗B and of A⊗ Im + In ⊗B are λiμ j and λi + μ j, respectively, for
i = 1 . . . ,n; j = 1, . . . ,m. Deduce that the Sylvester operator A⊗ Im − In ⊗B is
invertible if and only if A and B have disjoint spectra.

2. Let λ1, . . . ,λn and μ1, . . . ,μm be the eigenvalues of the matrices A ∈ R
n×n and

B ∈ R
m×m, respectively. Let p(x,y) = ∑i, j ci jxiy j denote a real polynomial in
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two commuting variables. Generalize the preceding exercise by showing that
the eigenvalues of

∑
ij

cijA
i ⊗B j

are equal to p(λk,μl).
3. The Hadamard product of two matrices A,B ∈ R

n×n is defined as the n× n
matrix A∗B=(aijbij). Prove that A∗B is a principal submatrix of A⊗B. Deduce
that the Hadamard product A∗B of two positive definite symmetric matrices A
and B is again positive definite.

4. Prove that the set of matrices A ∈ R
n×n, with e�A = e� and Ae = e, forms an

affine space of dimension (n−1)2.
5. Prove Birkhoff’s theorem, stating that the set of n × n doubly stochastic

matrices form a convex polyhedron whose n! vertices are permutation matrices.
6. Let A∈C

n×n be unitary. Prove that the n×n matrix (|aij|2) is doubly stochastic.
7. Let A ∈ R

n×n be irreducible and D ∈ R
n×n be diagonal with AD = DA. Prove

that D = λ In is suitable for λ ∈ R.
8. Let A ∈ R

n×n be irreducible and D1, . . . ,DN−1 ∈ R
n×n diagonal, with

A = e2π
√−1k/NDkAD−1

k , k = 1, . . . ,N −1.

Then there exists λk ∈ C, with Dk = λkDk
1 for k = 1, . . . ,N −1.

9. A connected graph with N vertices, without loops and multiple edges, has at
least N − 1 edges. If the graph has more than N − 1 edges, then it contains a
polygon as a subgraph.

10. Prove that a graph is connected if and only if it has a spanning tree.
11. Consider the directed graph Γ on the vertex set V = {1,2,3,4,5,6} with

adjacency matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 1 0
0 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(a) Prove that Γ is strongly connected.
(b) Prove that there exists a cycle of period two through vertex 1 and 1 has no

cycle of odd period.
(c) Prove that the period of A is 2.
(d) Compute the eigenvalues of A.

12. Let A ∈R
n×n be nonnegative and irreducible. Show that (A+εI)n−1 > 0 for all

ε > 0.
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13. Consider the matrices

A1 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

⎞
⎟⎟⎠ .

Check for the primitivity of the matrices and, if possible, determine the smallest
m ∈ N such that Am

i > 0.
14. Show that the contraction constant for the Hilbert metric of

A =

(
1 1

2
1
2

1
3

)

is equal to

k(A) =
2−√

3

2+
√

3
,

while the eigenvalues of A are λ± = 4±√
13

6 . Deduce that k(A) is strictly smaller
than the convergence rate for the power iteration defined by A.

15. The primitivity index γ(A) of a nonnegative matrix A is defined as the smallest
m ∈ N, with Am > 0. Prove that the n×n Wielandt matrix

A =

⎛
⎜⎜⎜⎜⎝

0 1 . . . 0
...

. . .
. . .

...

0
. . . 1

1 1 . . . 0

⎞
⎟⎟⎟⎟⎠

is primitive with primitivity index γ(A) = n2 −2n+2.
16. Prove that every nonnegative irreducible matrix A ∈ R

n×n with at least one
positive diagonal element is primitive.

17. Consider a real n×n tridiagonal matrix

A =

⎛
⎜⎜⎜⎜⎝

a1 b1 · · · 0

c1
. . .

. . .
...

...
. . .

. . . bn−1

0 · · · cn−1 an

⎞
⎟⎟⎟⎟⎠

with spectral radius r(A). Prove:

(a) If b jc j ≥ 0 for all j, then A has only real eigenvalues.



464 8 Nonnegative Matrices and Graph Theory

(b) If b jc j > 0 for all j, then A has only real simple eigenvalues.
(c) Assume b j > 0, c j > 0, and a j ≥ 0 for all j. Then A is irreducible. Matrix

A is primitive if at least one a j > 0. If a1 = . . .= an = 0, then −r(A) is an
eigenvalue of A.

18. Let Γ = (V = {1, . . . ,N},E) be a finite directed graph and do( j) = |N o( j)|=
|{i ∈ V | ( j, i) ∈ Γ }| the out-degree of vertex j. For a real number 0 ≤ α < 1
define the N ×N Google matrix G = (gi j) of the digraph Γ as

gi j :=

⎧⎪⎪⎨
⎪⎪⎩

α
do( j) +

1−α
N i ∈N o( j) �= /0

1−α
N i �∈N o( j) �= /0

1
N N o( j) = /0.

(a) Prove that G is column stochastic and primitive,
(b) Prove that the largest eigenvalue of G is λ1 = 1 and the second largest

eigenvalue of G is λ2 = α .

19. The Leslie matrix is a nonnegative matrix of the form

A =

⎛
⎜⎜⎜⎝

a1 a2 · · · an

b1 0 · · · 0
...

. . .
. . .

...
0 · · · bn−1 0

⎞
⎟⎟⎟⎠ .

We assume an > 0 and b1 > 0, . . . ,bn > 0.

(a) Show that A is irreducible.
(b) Show that A is primitive whenever there exists i with ai > 0 and ai+1 > 0.
(c) Show that A is not primitive if n = 3 and a1 = a2 = 0.

20. Prove that the Cayley–Menger determinants of a formation x1, . . . ,xN ∈R
m are

nonpositive for k ≤ N and are zero for k > m+1.

8.10 Notes and References

Classical references for nonnegative matrices, Markov chains, and the Perron–
Frobenius theorem include Gantmacher (1959), Horn and Johnson (1990), and
Seneta (1981). We also mention the excellent book by Fiedler (2008), which
provides a useful collection of results on special matrices and connections to
graph theory. Part of the material on stochastic matrices and the ergodic theorem
in Section 8.3 was inspired by the book of Huppert (1990). Infinite-dimensional
generalizations of the Perron–Frobenius theory can be found in the work of Jentzsch
(1912), Krein and Rutman (1950), and Krasnoselskii (1964). A special case of the
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Contraction Mapping Theorem 8.6 was applied by Pollicot and Yuri (1998) to prove
the existence of a unique Perron vector for aperiodic {0,1} matrices. For positive
matrices A, the existence of the Perron vector in Theorem 8.11 is well known and
easily deduced from purely topological arguments. In fact, the standard simplex C1

is homeomorphic to the closed unit ball, on which

x �→ Ax
e�Ax

defines a continuous map. Thus the Brouwer fixed-point theorem implies the
existence of an eigenvector x ∈C1 with positive eigenvalue. The papers by Bushell
(1986) and Kohlberg and Pratt (1982) provide further background on the Hilbert
metric and the analysis of positive operators. The sequence of power iterates (8.5)
to compute the Perron vector is reminiscent of the well-known power method from
numerical linear algebra,

xt+1 =
Axt

‖Axt‖ ,

for computing dominant eigenvectors of a matrix A. The convergence speed of
the general power method depends on the ratio |λ1|

|λ2| of the largest and second
largest eigenvalues. See Parlett and Poole (1973) and Helmke and Moore (1994)
for convergence proofs of the power method on projective spaces and Grassmann
manifolds.

Graph-theoretic methods have long been used for studying the convergence
properties of random walks on a graph, for analyzing synchronization and clustering
phenomena in physical systems, and for algorithms in distributed computing,
formation control, and networked control systems; we refer the reader to the
monographies by Bullo, Cortés and Martínez (2009) and Meshbahi and Egerstedt
(2010) for extensive background material and further references. Boyd, Diaconis
and Xiao (2004) developed linear matrix inequalities characterizing the fastest
Markov chain on a graph, while Xiao and Boyd (2004) studied linear iterations for
distributed averaging and consensus in networks. Ottaviani and Sturmfels (2013)
studied the problem of finding weights in a complete graph such that the associated
Markov chain has a stationary probability distribution that is contained in a specified
linear subspace. This problem is equivalent to characterizing the Laplacian matrices
A of a graph such that the pair (C,A) is not observable. This problem seems widely
open, but in a special situation (complete graph; weights are complex numbers),
Ottaviani and Sturmfels (2013) successfully computed the degree of the variety of
unobservable pairs.

The literature on formation shape control via distances and graph concepts
includes early work by Olfati-Saber, Fax and Murray (2007) and Doerfler and
Francis (2010). For characterizations of rigid graphs see Asimov and Roth (1978)
and Connelly (1993). References on Euclidean distance geometry and applications
include Crippen and Havel (1988), Dress and Havel (1993), and Blumenthal (1953).
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The nonpositivity condition (8.10) for the Cayley–Menger determinants yields
a simple determinantal condition that is necessary for a nonnegative symmetric
matrix A with zero diagonal entries to be a Euclidean distance matrix. Blumenthal
(1953), Chapter IV, p. 105, has shown that every such matrix A is a Euclidean
distance matrix if and only if the Cayley–Menger determinants for all k×k principal
submatrices of A are nonpositive, k = 1, . . . ,N. The conditions of parts (d) and (e)
in Theorem 8.29 are due to Gower (1985) and Schoenberg (1935), respectively.

A reference for the proof of Theorem 8.45 and related material is Grenander
and Szegö (1958). The spectral properties of circulant matrices are well studied. An
important fact is that the set of all circulant matrices is simultaneously diagonalized
by the Fourier matrix (8.25). Further information on circulant matrices can be
found in Davis (1979) and the recent survey by Kra and Simanca (2012). For
a statement and proof of the Courant–Fischer minimax principle, see Horn and
Johnson (1990). A generalization is Wielandt’s minimax theorem on partial sums
of eigenvalues. The eigenvalue inequalities appearing in Theorem 8.57 are the
simplest of a whole series of eigenvalue inequalities, which can be derived from
eigenvalue inequalities on sums of Hermitian matrices. For a derivation of such
eigenvalue inequalities via Schubert calculus on Grassmann manifolds, see Helmke
and Rosenthal (1995). The full set of eigenvalue inequalities for sums of Hermitian
matrices has been characterized by Klyachko; his work is nicely summarized by
Fulton (2000). Such results should be useful in deriving sharp eigenvalue bounds
for the Schur complement of Laplacian matrices.
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