
Chapter 7
Observer Theory

Observer theory is one of the most basic, and important, aspects of linear systems
theory. The problem addressed in this chapter is that of indirect observation, or
partial state estimation. It arises from the fact that in a control system Σsys, the
observed variables are not necessarily the variables one needs to estimate for
control, or other, purposes. A standard situation often encountered is that of partial
state estimation, where a few, or all, state variables are to be estimated from the
output variables. Of course, if one can estimate the state, then one automatically
has the ability to estimate a function of the state. However, especially in a large
and complex system, estimating the full state may be a daunting task and more
than what is needed. The task of state estimation is also instrumental for practical
implementations of state feedback control using estimates of the unknown state
functions. More generally, our aim is to find a mechanism, called an observer, that
allows us to use information on observed variables y and the inputs u in order to
estimate linear functions z of the state variables. Loosely speaking, an observer for
the system is itself a linear system Σest, which is driven by the variables u and y and
whose output is the desired estimate ζ of z, with the estimation error being e= z−ζ .
The following diagram describes the observation process:
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The error trajectory depends on the system transfer function, the observer transfer
function, and on the initial conditions of both Σsys and Σest. There is great freedom
in the choice of the observer, the only constraint being the compatibility with
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356 7 Observer Theory

the signals u,y,z. Of course, if the observer is not chosen appropriately, the error
trajectory may be large, which makes the estimate useless. Our aim is to characterize
the properties of the observer in terms of these transfer functions. Even of greater
importance is, whenever possible, the construction of observers having desired
properties.

The issues of observation and estimation play a crucial role in analyzing
observation processes for networks and are therefore of paramount importance for
all questions concerning fault detection, monitoring, and measurement processes.
Observer theory has a long history laden with vagueness, imprecision, and incom-
plete or even false proofs; see Trumpf (2013) for a short list of these. The principal
reason for the difficulty in clarifying the structure theory of observers, functional
observers in particular, seems to be that a full understanding of the problems requires
the ability to integrate many topics and viewpoints that cover most of algebraic
systems theory. These include state-space theory (including the dual Brunovsky
form, realizations and partial realizations, Sylvester equations, and some old results
of Roth and Halmos), polynomial and rational model theory, geometric control
(conditioned invariant subspaces, as well as detectability and outer observability
subspaces), and Hankel matrices. Another interesting point of view on observers
is the behavioral approach, as developed and presented in the papers by Valcher
and Willems (1999) and Fuhrmann (2008). However, to keep the exposition within
reasonable limits, this direction will not be pursued. We will draw heavily on
Fuhrmann and Helmke (2001a) and Trumpf (2002, 2013). Of course, the theory
of observers depends strongly on the interpretation of what a linear system is and
how it is represented. The state-space representation of a finite-dimensional, time-
invariant linear system is chosen as our starting point. In addition, we focus on
discrete-time systems because this simplifies matters when comparing trajectory-
based formulations with statements for rational functions. Moreover, this enables us
to state several results for systems over fields more general than the field R of real
numbers. Because most of the statements remain true for continuous-time systems
(and the field of real numbers), this restriction to discrete-time systems presents no
real loss of generality.

7.1 Classical State Observers

In the preceding chapter, we discussed how to design state feedback control laws
ut =−Kxt + vt for linear discrete-time systems of the form

xt+1 = Axt +But ,

yt = Cxt ,
(7.1)

where A ∈ F
n×n,B ∈ F

n×m,C ∈ F
p×n, and F is a field. Obviously, to implement

control laws such as ut = −Kxt + vt , one needs to know the state xt , or at least
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an approximation to the state. State observers are designed precisely to fulfill such
a purpose and are thus indispensable for practical applications of state feedback
control. In this section, the classical construction of a full state observer, due to
Luenberger (1964), is described; see also Luenberger (1971). To investigate standard
stability properties of observers, it will be assumed that F is a subfield of the field C

of complex numbers.
A state observer for system (7.1) is an n-dimensional linear control system

zt+1 = Fzt +Gyt +Hut , (7.2)

with matrices F ∈ F
n×n,G ∈ F

n×p,H ∈ F
n×m, such that, for each initial condition

x0,z0 ∈ F
n and every input sequence u = (ut), limt→∞(xt − zt) = 0. A state observer

is therefore a dynamical system that is driven by the input and output of (7.1) and
whose state vectors zt will asymptotically converge to the state vectors of (7.1).

How can one construct such an observer? Luenberger’s ingenious idea was to
consider systems with F = A−LC, G = L, H = B, i.e.,

zt+1 = Azt +But +L(yt − ŷt),

ŷt = Czt ,
(7.3)

with an observer gain matrix L ∈ F
n×p. Thus (7.3) consists of an identical copy of

a system that is driven by the innovations yt − ŷt . System (7.3) is often called the
Luenberger observer. It has only one free design parameter, i.e., the observer gain
matrix. To see how to choose the observer gain in order to achieve a state observer,
one must consider the evolution of the estimation error

et = xt − zt , t ∈ N.

The dynamics of the estimation error is

et+1 = (A−LC)et .

Thus the estimation error converges to zero if and only if L is chosen such that
A− LC has all its eigenvalues in the open unit disc. This leads to the following
classical result on state observers.

Theorem 7.1. The Luenberger observer (7.3) is a state observer for system (7.1) if
and only if the observer gain L ∈ F

n×p is such that A−LC is asymptotically stable.
Such an observer gain exists if and only if (C,A) is detectable.

Proof. The observer condition for (7.3) is equivalent to limt→∞ et = 0 for all initial
conditions e0 ∈ F

n. Thus (7.3) defines a state observer if and only if A − LC is
asymptotically stable, i.e., has all eigenvalues in the open unit disc. There exists
such a stabilizing observer gain L if and only if (C,A) is detectable. �



358 7 Observer Theory

Having a state observer at hand, how can one use it for the purpose of state
feedback control? Here we consider the closed-loop control system of the form

xt+1 = (A−BF )xt +But ,

yt = Cxt ,
(7.4)

where F ∈ F
m×n is a desired state feedback gain. For example, F may be chosen

such that the closed-loop characteristic polynomial det(zI−A+BF ) is a prescribed
monic polynomial of degree n. How must one choose the observer gain L? A
beautiful simple result, the separation principle, provides a solution. It states that
the designs of the state feedback and observer gain matrices can be done separately.
But even then there is a problem because implementing (7.4) requires knowledge of
the feedback term −F xt . This can be resolved by replacing −F xt with the observer
estimate −F zt . This then leads to the composed controller/observer dynamics with
joint state variables ξ = col(x̂,z):

x̂t+1 = Ax̂t −BF zt +But ,

zt+1 = Azt −BF zt +But +L(Cx̂t −Czt),

yt =Cx̂t .

(7.5)

Written in matrix form we obtain

ξt+1 =Acξt +Bcut ,

with

Ac =

(
A −BF

LC A−LC−BF

)
, Bc =

(
B
B

)
. (7.6)

The fundamental result for a combined controller and observer design is stated next.

Theorem 7.2 (Separation Principle). Let Ac be defined by (7.6).

1. The identity

det(zI −Ac) = det(zI −A+BF )det(zI −A+LC)

is true. In particular, for each state feedback gain F and every output injection
gain L ∈ F

n×p such that A − LC is asymptotically stable, the composed con-
troller/observer dynamics (7.5) satisfies

lim
t→∞

(zt − x̂t) = 0

for arbitrary initial states x̂0,z0 and input sequences (ut).
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2. The transfer function from u to y of (7.5) is

G(z) =C(zI −A+BF )−1B.

More generally, the Z-transforms of (ut) and (yt) are related as

y(z) =C(zI −A+BF )−1Bu(z)

+C(zI −A+BF )−1x̂0 +C(zI −A+BF )−1BF (zI −A+LC)−1(z0 − x̂0).

3. Assuming that A−BF is stable, the system

xt+1 = (A−BF )xt +But ,

yt = Cxt

satisfies

lim
t→∞

(xt − x̂t) = 0

for all initial states x̂0,z0 and input sequences (ut).

Proof. For the invertible matrix

S =

(
I 0
−I I

)

we compute

SAcS−1 =

(
A−BF −BF

0 A−LC

)
, SBc =

(
B
0

)
,

(
C 0

)
S−1 =

(
C 0

)
.

The transfer function of (7.5) is thus equal to C(zI−A+BF )−1B. For the remaining
parts, we proceed to consider the dynamics of the error term εt := zt − x̂t , which is
given as

εt+1 = (A−LC)εt .

Our assumption on L implies limt→∞(zt − x̂t) = 0. For the last claim, consider the
error sequence et := xt − x̂t with associated error dynamics. It satisfies

et+1 = (A−BF )et +BF (zt − x̂t).

Since A−BF is stable and limt→∞(zt − x̂t) = 0, we conclude that limt→∞(xt − x̂t)
= 0. This completes the proof. �
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Of course, the preceding results on full state observers are only the starting point
for a deeper theory of observers that enables one to estimate a finite number of linear
state functionals. This more general observer theory is developed in subsequent
sections.

7.2 Observation Properties

One of Kalman’s major achievements has been the introduction of the concepts of
reachability and observability, as distinct from compensator or observer design. This
separation is reflected in Valcher and Willems (1999), where the observability or
detectability of one set of system variables from another is studied before observer
design is attempted. Such an approach is adopted in this section. Clearly, observers
depend on the observability properties of a system, and a few gradations of observ-
ability will be introduced. Naturally, one expects that the stronger the observation
properties of a system are, the better behaved should be the corresponding observers.
How the observation properties of the system are reflected in the corresponding
observers will be examined in Subsection 7.3.

To state the subsequent definitions and results over a field F, the meaning of
convergence in a finite-dimensional vector space F

n must be clarified. Here we
proceed as in Chapter 6 with respect to the dual situation, i.e., that of state feedback
stabilization. A general field F is endowed with the discrete topology, i.e., the unique
topology on F whose open (and closed) subsets are defined by subsets of F. In
contrast, for a subfield F ⊂ C we introduce the Euclidean topology on F, which
is defined by the standard Euclidean distance |x− y| of complex numbers x,y ∈ C.
In either case, a discrete-time dynamical system xt+1 = Axt on F

n is called stable
whenever the sequence xt = Atx0 converges to zero for all initial conditions x0 ∈ F

n.
Thus a discrete-time dynamical system xt+1 = Axt is asymptotically stable if and
only if either A is Schur stable, for the Euclidean topology on F ⊂ C, or if A is
nilpotent, for the discrete topology on F. Let (et) denote a sequence of points in F

m

that defines a proper rational function

e(z) =
∞

∑
t=0

etz
−t ∈ z−1

F[[z−1]]m,

and let (A,B,C,D) ∈ F
n×n ×F

n×1 ×F
m×n ×F

m denote a minimal realization of

e(z) = D+C(zI −A)−1B.

Thus e0 = D, et = CAt−1B, t ≥ 1, is the sequence of Markov parameters of e(z).

Proposition 7.3. Let e(z) ∈ F(z)m be proper rational. The sequence of Markov
parameters (et) satisfies limt→∞ et = 0 if and only if:
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1. All poles of e(z) have absolute value < 1 or, equivalently, A is Schur stable. This
assumes that F⊂ C carries the Euclidean topology;

2. All poles of e(z) are in z = 0 or, equivalently, A is nilpotent. This assumes that F
carries the discrete topology.

Proof. Since et = CAt−1B for t ≥ 1, and, by the minimality of (A,B,C), the
observability and reachability matrices

⎛
⎜⎝

C
...

CAn−1

⎞
⎟⎠ ,

(
B · · · An−1B

)

have full column rank and full row rank, respectively. Thus the sequence of Hankel
matrices

⎛
⎜⎝

ent+1 · · · en(t+1)
...

...
en(t+1) · · · en(t+2)−1

⎞
⎟⎠=

⎛
⎜⎝

C
...

CAn−1

⎞
⎟⎠Atn (B · · · An−1B

)
, t ∈ N,

converges to zero if and only if limt→∞ Atn = 0. If the field F carries the discrete
topology, this is equivalent to A being nilpotent, while for the Euclidean topology
on F ⊂ C this is equivalent to the eigenvalues of A being in the open complex unit
disc. �

The next characterization will be useful later on.

Proposition 7.4. Let Q(z) ∈ F[z]m×m be nonsingular, and let XQ denote the
associated rational model.

1. Let F⊂C be endowed with the Euclidean topology. The following statements are
equivalent:

(a) All elements h(z) ∈ XQ are stable, i.e., the coefficients ht of h(z) satisfy
limt→∞ ht = 0.

(b) detQ(z) is a Schur polynomial, i.e., all its roots are in the open unit disc.

2. Let F be endowed with the discrete topology. The following statements are
equivalent:

(a) All elements h(z)∈XQ are stable, i.e., the coefficients ht of h(z) satisfy ht = 0
for t sufficiently large.

(b) detQ(z) is a monomial, i.e., all its roots are equal to 0.

Proof. Choosing a polynomial basis matrix P(z) ∈ F[z]m×n for the finite-
dimensional polynomial model XQ implies Q(z)−1P(z) is a basis matrix for
the rational model XQ, and therefore the elements of XQ are of the form
h(z) = Q(z)−1P(z)ξ for unique vectors ξ ∈ F

n. By Proposition 4.36, there exists an
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observable pair (C,A) ∈ F
m×n ×F

n×n, with

C(zI −A)−1 = Q(z)−1P(z).

Thus the coefficients of Q(z)−1P(z)ξ converge to zero for all choices of ξ if
and only if limt→∞ CAt = 0. This is equivalent to (C,A) being detectable. By
Proposition 6.34, and applying the observability of (C,A), this is equivalent to
det(zI −A) being a Schur polynomial, i.e., to all eigenvalues of A being in the open
unit disc. Part (1) follows by observing the identity detQ(z) = det(zI −A). Part (2)
is proven similarly.

Next, some of the important observation properties of a system are introduced,
e.g., the extent to which the observed variables y determine the relevant, or to-be-
estimated, variables z.

Definition 7.5. Let Σsys be a linear system with the state-space representation

Σsys :=

⎧⎨
⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt ,

(7.7)

with xt ,yt ,ut ,zt taking values in F
n,Fp,Fm,Fk, respectively.

1. The variable z is T -trackable from (y,u) if there exists a nonnegative integer T
such that for every two solutions (x,y,u,z),(x,y,u,z) of (7.7) the condition zt = zt

for 0 ≤ t ≤ T implies z = z. The smallest such T is called the tracking index and
is denoted by τ .

2. The variable z is detectable from (y,u) if each pair of solutions (x,y,u,z) and
(x,y,u,z) of (7.7) satisfies limt→∞(zt − zt) = 0.

3. The variable z is reconstructible from (y,u) if for each pair of solutions (x,y,u,z)
and (x,y,u,z) of (7.7) there exists a nonnegative integer T such that zt − zt = 0
for t > T . The smallest such T is called the reconstructibility index.

4. The variable z is observable from (y,u) if each pair of solutions (x,y,u,z) and
(x,y,u,z) of (7.7) satisfies z = z.

One says that a system Σsys, given by (7.7), is T -trackable if z is T -trackable
from y. We similarly define detectability, reconstructibility, and observability.

In view of the Cayley–Hamilton theorem, it is obvious that every linear state
function z = Kx is T -trackable from the output y with u = 0 of an n-dimensional
linear system

xt+1 = Axt

yt = Cxt ,

provided T ≥ n. Thus a finite-dimensional linear system is always trackable,
unless one requires an a priori bound on the tracking index. Therefore, defining
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trackability without imposing a constraint on the tracking index is meaningless. For
reconstructibility, the situation becomes slightly different because not every linear
system is reconstructible. Of course, the definition of detectability strongly depends
on the topology of the field F. If the field F is finite, or more generally if F carries
the discrete topology, detectability is equivalent to reconstructibility. However, for a
subfield F⊂ C with the standard Euclidean topology, this is no longer true. In fact,
for the standard Euclidean topology on a subfield F⊂ C, the detectability of z from
y is equivalent to the condition that for an unobservable state x0 the rational function
K(zI −A)−1x0 has only poles in the open unit disc. Intuitively, it is clear that, since
perfect knowledge of the system is assumed, the effect of the input variable on the
estimate can be removed without affecting the observation properties. The following
simple proposition is stated, with its trivial proof omitted.

Proposition 7.6. Let Σ be a linear system with the state-space representation (7.7),
together with the associated system Σ ′ given by

(Σ ′)

⎧⎨
⎩

xt+1 = Axt ,

yt = Cxt ,

zt = Kxt .

(7.8)

Then:

1. The following conditions are equivalent:

(a) z is T -trackable from (y,u) with respect to Σ ,
(b) z is T -trackable from y with respect to Σ ′,
(c) For all initial conditions x0 such that yt = 0 and ut = 0 are satisfied for all t,

the condition z0 = · · ·= zT = 0 implies zt = 0 for all t;

2. The following conditions are equivalent:

(a) z is detectable from (y,u) with respect to Σ ,
(b) z is detectable from y with respect to Σ ′,
(c) For all initial conditions x0 such that yt = 0 and ut = 0 are satisfied for all t,

limt→∞ zt = 0;

3. The following conditions are equivalent:

(a) z is reconstructible from (y,u) with respect to Σ ,
(b) z is reconstructible from y with respect to Σ ′,
(c) For all initial conditions x0 that satisfy yt = 0 and ut = 0 for all t, then zt = 0

for all t > T ;

4. The following conditions are equivalent:

(a) z is observable from (y,u) with respect to Σ ,
(b) z is observable from y with respect to Σ ′,
(c) For all initial conditions x0 such that yt = 0 and ut = 0 are satisfied for all t,

zt = 0 for all t.
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Next, the invariance of the preceding notions with respect to output injection
equivalence is explored.

Proposition 7.7. Let S ∈ GLn(F),L ∈ F
n×p,R ∈ GLp(F),U ∈ GLm(F) be output

injection transformations. A system (A,B,C,K) is T -trackable, reconstructible,
detectable, or observable, respectively, if and only if the output injection equivalent
system (S(A+LC)S−1,SBU−1,RCS−1,KS−1) is.

Proof. It is obvious that state-space similarity transformations and invertible coor-
dinate changes in the input and output spaces, respectively, do not change the
aforementioned properties. Thus it suffices to prove the result for output injec-
tion transformations. But the invariance of the notions under output injection
(A,B,C,K) �→ (A+LC,B,C,K) is obvious from Proposition 7.6. �

It is convenient, for our further analysis, to first transform the system into a
simple normal form by state-space similarity. This is done next and depends on

an observability condition for the pair
((

C

K

)
,A
)

. A priori, there is no reason to

assume that the pair
((

C

K

)
,A
)

is observable, but the following proposition shows

that this entails no great loss of generality.

Proposition 7.8. 1. Every linear system (7.8) can be reduced to the case that the

pair

((
C
K

)
, A

)
is observable.

2. If (
(

C

K

)
, A) is observable but (C,A) is not, then the system Σ ′ has a state-space

equivalent representation of the form

A =

(
A11 0
A21 A22

)
,

C =
(
C1 0

)
,

K =
(
K1 K2

)
,

(7.9)

with both pairs (C1, A11) and (K2, A22) observable.

Proof. 1. If the pair
((

C

K

)
,A
)

is not observable, the system can be reduced to an

observable one. Letting V =
⋂

j≥0 Ker
(

C

K

)
A j be the unobservable subspace for

the pair (
(

C

K

)
, A) and W be a complementary subspace leads to the direct sum

decomposition of the state space into X = W ⊕V . Writing x =

(
x1

x2

)
, with

x1 ∈W and x2 ∈ V , implies the following block matrix representations:

A =

(
A11 0
A21 A22

)
,

(
C
K

)
=

(
C1 0
K1 0

)
, B =

(
B1

B2

)
.



7.2 Observation Properties 365

Necessarily, (
(

C1
K1

)
,A11) is an observable pair and (7.7) can be replaced by

xt+1 = A11xt +B1ut ,

yt =C1xt ,

zt = K1xt ,

since C2 and K2 are both zero, and hence x2 plays no role.
2. If (C,A) is not an observable pair, then let O∗ =O∗(C,A) =

⋂
j≥0 KerCA j ⊂ F

n

be the unobservable subspace of (C,A). Let W be a complementary subspace to
O∗. With respect to the direct sum decomposition

F
n =W ⊕O∗, (7.10)

we obtain the block matrix representation (7.9). By construction, the pair
(C1,A11) is observable. Also, A22 is similar to A|O∗. Our assumption that the

pair
((

C

K

)
,A
)

is observable implies that the pair (K2,A22) is also observable.

�
Coprime factorizations are the most effective tool in bridging the gap between

frequency-domain and state-space methods. This is done using the shift realization.
The following results, split into two separate theorems, examine the corresponding
functional characterizations. Consider a state-space system

Σsys :=

⎧⎨
⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt ,

with A ∈ F
n×n,B ∈ F

n×m,C ∈ F
p×n,K ∈ F

k×n.

Theorem 7.9. Assume that

((
C
K

)
, A

)
is observable and has the representa-

tion (7.9).

1. There exists a left coprime factorization of the state-to-output transfer function
of Σsys of the form

(
C1 0
K1 K2

)(
zI −A11 0
−A21 zI −A22

)−1

=

(
D11(z) 0
D21(z) D22(z)

)−1(Θ11(z) 0
Θ21(z) Θ22(z)

)
,

(7.11)

with D11(z)∈F[z]p×p and D22(z)∈F[z]k×k nonsingular, D21(z)∈F[z]k×p,Θ11(z)
∈ F[z]p×(n−r),Θ21(z) ∈ F[z]k×(n−r),Θ22(z) ∈ F[z]k×r, for which:
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(a) D11(z)−1Θ11(z) and D22(z)−1Θ22(z) are left coprime factorizations of the
transfer functions C1(zI −A11)

−1 and K2(zI −A22)
−1, respectively. D21(z)

and Θ21(z) satisfy the polynomial equation

D22(z)K1 +Θ22(z)A21 =−D21(z)C1 +Θ21(z)(zI−A11); (7.12)

(b) D11(z) and D22(z) are row proper;
(c) D21(z)D11(z)−1 and D22(z)−1D21(z)D11(z)−1 are strictly proper.

One refers to the coprime factorization (7.11), satisfying parts (a)–(c), as an
adapted coprime factorization.

2. Assume that (7.11) is an adapted coprime factorization. The following properties
are in force:

(a) n = degdet(zI −A) = degdetD11(z)+degdetD22(z).
(b) D22(z) is a nonsingular polynomial matrix.
(c) The linear map

ψ : O∗(C,A)−→ XD22 , ψ(x) =Θ22x,

is bijective, satisfying

ψA22 = SD22 ψ. (7.13)

This implies the isomorphism

SD22 � A22 = A|O∗(C,A). (7.14)

Proof. The first claim of statement 1 is proved first. Applying Proposition 7.8, with
respect to the direct sum decomposition (7.10), yields the block matrix representa-
tion (7.9), with the pairs (C1,A11) and (K2,A22) observable. Let D11(z)−1Θ11(z) and
D22(z)−1Θ22(z) be left coprime factorizations of C1(zI−A11)

−1 and K2(zI−A22)
−1,

respectively. Since a left coprime factorization is unique only up to a common
left unimodular factor, we will assume, without loss of generality, that D11(z) and
D22(z) are both row proper. So (b) holds by construction. Thus the (11)- and (22)-
terms on both sides of (7.11) are equal. Comparing the (21)-terms of both sides
of equation (7.11), multiplying by D22(z) on the left and by (zI − A11) on the
right, we obtain (7.12). Thus D21(z),Θ21(z) fulfill (7.11) if and only if (7.12) is
satisfied. By the observability of the pair (C1,A11), the existence of a polynomial
solution X(z),Y (z) of the Bezout equation X(z)C1 +Y (z)(zI − A11) = I follows.
Consequently, taking into consideration the general, polynomial, solution of the
homogeneous equation, we obtain the parameterization

D21(z) = −(D22(z)K1 +Θ22(z)A21)X(z)−Q(z)D11(z),
Θ21(z) = (D22(z)K1 +Θ22(z)A21)Y (z)+Q(z)Θ11(z),
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where Q(z) ∈ F[z]k×p. Choosing Q(z) =−π+

(
(D22K1 +Θ22A21)XD−1

11

)
guarantees

that D21(z)D11(z)−1 is strictly proper. This does not change the row properness of
D11(z) and D22(z). That D22(z)−1D21(z)D11(z)−1 is strictly proper follows from the
strict properness of D21(z)D11(z)−1 and the fact that the nonsingular, row proper
polynomial matrix D22(z) has a proper inverse.

Proof of 2. From the observability assumption on the pair
((

C

K

)
,A
)

and the left

coprime factorization (7.11), we conclude that

n = degdet(zI −A) = degdet

(
D11(z) 0
D21(z) D22(z)

)

= degdetD11(z)+degdetD22(z),

which proves the first claim. The nonsingularity of D22(z) follows from the

nonsingularity of

(
D11(z) 0
D21(z) D22(z)

)
.

To prove the last claim, note that the coprime factorization

D22(z)
−1Θ22(z) = K2(zI −A22)

−1 (7.15)

is equivalent to the intertwining relation

Θ22(z)(zI −A22) = D22(z)K2.

Applying Theorems 3.20 and 3.21 proves the intertwining relation (7.13) as well as
the invertibility of the map ψ defined by (7.23). The isomorphism (7.14) follows
from (7.13) and the invertibility of ψ . �
Theorem 7.10. Assume that (7.11) is an adapted coprime factorization.

1. Define strictly proper rational matrices ZK(z),ZC(z) by

ZC(z) = C(zI −A)−1,

ZK(z) = K(zI −A)−1.
(7.16)

The general rational solutions of the equation

ZK(z) = Z1(z)ZC(z)+Z2(z) (7.17)

are

Z1(z) = −D22(z)−1D21(z)+W (z)D11(z),
Z2(z) =

(
D22(z)−1Θ21(z)−W (z)Θ11(z), D22(z)−1Θ22(z)

)
,

(7.18)
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where W (z) ∈ F(z)k×p is a rational function. Let Z1(z) be proper rational. Using
an adapted left coprime factorization (7.11), there exists a proper rational W (z)
such that Z1(z) is given by (7.18) and Z2(z) is strictly proper.

2. (a) D22(z) is a stable matrix if and only if the pair (C,A) is detectable.
(b) D22(z) is a unimodular matrix if and only if the pair (C,A) is observable.

In this case, that is, where O∗(C,A) = {0}, the coprime factorization (7.11)
reduces to

(
C
K

)
(zI −A)−1 =

(
D11(z) 0
D21(z) I

)−1(Θ11(z)
Θ21(z)

)
, (7.19)

with D−1
11 Θ11 a left coprime factorization of C(zI −A)−1 and D21(z),Θ21(z)

determined from the equation

K =−D21(z)C+Θ21(z)(zI −A). (7.20)

In this case, the general solution of equation (7.17) is given by

Z1(z) = −D21(z)+W (z)D11(z),
Z2(z) = Θ21(z)−W (z)Θ11(z).

(7.21)

3. (a) Let φ : Fn −→ XzI−A be defined by φ(x) = (zI −A)−1x. Then φ is injective,
with

φ(O∗) = {0}⊕XzI−A22 , (7.22)

and thus induces an isomorphism φ : O∗ −→ XzI−A22 .
(b) The map ψ : O∗ −→ XD22 , defined by

ψ(x) =Θ22(z)x, (7.23)

is an isomorphism satisfying ψ(Ax) = SD22 ψ(x).
(c) The map Ψ : O∗ −→ XD22 defined by x �→ D22(z)−1Θ22(z)x is an isomor-

phism satisfying Ψ(Ax) = SD22Ψ(x), i.e., A|O∗ � SD22 .

Proof. Proof of 1. Using (7.11) and computing
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ZK(z) =
(
K1 K2

)( (zI −A11)
−1 0

(zI −A22)
−1A21(zI −A11)

−1 (zI −A22)
−1

)

=
(
K1(zI −A11)

−1 +K2(zI −A22)
−1A21(zI −A11)

−1, K2(zI −A22)
−1
)

=
(−D22(z)−1D21(z)D11(z)−1Θ11(z)+D22(z)−1Θ21(z), D22(z)−1Θ22(z)

)
= Z1(z)ZC(z)+Z2(z)

(7.24)

leads to a particular solution of (7.17), i.e.,

Z1(z) =−D22(z)
−1D21(z),

Z2(z) =
(
D22(z)−1Θ21(z), D22(z)−1Θ22(z)

)
.

To obtain the general rational solution, one needs to add to (Z1,Z2) the general ratio-
nal solution (Y1,Y2) of the homogeneous equation Y1(z)ZC(z)+Y2(z) = 0 or, equiv-
alently, Y1(z)C +Y2(z)(zI −A) = 0. Noting that ZC(z) =

(
D11(z)−1Θ11(z) 0

)
and

writing Y2(z)=
(

Y ′
2(z), Y ′′

2 (z)
)

implies Y1(z)=W (z)D11(z), Y ′
2(z)=−W (z)Θ11(z)),

and Y ′′
2 (z) = 0, with W (z) a free, rational parameter. This proves (7.18).

For the second claim, choose

W (z) = (Z1(z)+D22(z)−1D21(z))D11(z)−1

= Z1(z)D11(z)−1 +D22(z)−1D21(z)D11(z)−1,

and note that the properness of W (z) follows from the assumed properness of Z1(z)
and the assumption that (7.11) is an adapted coprime factorization.

Proof of 2. The pair (C,A) is detectable if and only if A22 � A|⋂∞
i=0 KerCAi

is stable. By the isomorphism (7.14), this is equivalent to the stability of D22(z),
which proves the first claim. The pair (C,A) is observable if and only if the equality
of degrees n = degdet(zI − A) = degdetD11(z) is satisfied. This is equivalent to
degdetD22(z) = 0, i.e., to D22(z) being unimodular. Equation (7.20) is a special
case of (7.12). Similarly, the parameterization (7.21) is a special case of (7.18).

Proof of 3. Since (C,A) is assumed to be in Kalman decomposition form, x ∈O∗
if and only if x = col(0,x2). Thus φ(O∗) = {(zI −A)−1x|x ∈ O∗}= {0}×XzI−A22 ,
which proves (7.22). The coprime factorizations D22(z)−1Θ22(z) = K2(zI −A22)

−1

yields the intertwining relation

Θ22(z)(zI −A22) = D22(z)K2.

Thus the map ψ : XzI−A22 −→ XD22 defined by ψ(x) = πD22Θ22x = Θ22x is an
isomorphism. Note that {0}×XzI−A22 = O∗.
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Since autonomous behaviors are equal to rational models (Theorem 3.36), we
conclude that XD22 = KerD22(σ) is true for the backward shift operator σ . Now
the multiplication map D−1

22 : XD22 −→ XD22 is an F[z]-module isomorphism, and
therefore the composed map Ψ = D−1

22 ψ is also an F[z]-module isomorphism from
O∗ onto XD22 . This proves the last claim. �

For unobservable states x ∈ O∗, using (7.15), one computes

K2φ(x) = K2(zI −A22)
−1x = D22(z)

−1Θ22(z)x =Ψx = D22(z)
−1ψ(x),

which implies that the following diagram is a commutative diagram of F-vector
space isomorphisms:

XzI−A22

∗

XD22

XD22

y

K2

D−1
22f | ∗ Y

�

�

� �

�
�

�
�

�
�

�
�

�

It is of principal interest to find characterizations of the observation properties
introduced in Definition 7.5. This depends very much on the functional relation
between the observed variables y and the to-be-estimated variables z. Of course, in
the state-space representation (7.8) of the system Σ ′, this relation is indirect. To get
a direct relation, one needs to eliminate the state variable x from (7.8). This is best
done in a behavioral setting but is avoided here.

Thus, avoiding the explicit use of behaviors, we proceed by characterizing the
tracking index of linear systems. First let us note, as an immediate consequence
of the definition, that the trackability of (7.7) with tracking index τ is satisfied if
and only if τ is the smallest number such that, for every initial state x0 ∈ F

n with
C(zI −A)−1x0 = 0, the implication

Kx0 = · · ·= Kxτ = 0 =⇒ Kxt = 0, ∀t ≥ 0,

follows. Note that if (C,A) is observable, then the tracking index of an output
functional z = Kx is τ = 0.

Proposition 7.11. A linear system (7.7) with (
(

C

K

)
,A) observable and having the

representation (7.9), has a tracking index τ if and only if the largest observability
index of (K2,A22) is equal to τ . In particular, T -trackability is fulfilled for every T
that is greater than or equal to the degree of the minimal polynomial of A.
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Proof. Using the representation of states with respect to the direct sum (7.10),

let an initial state have the representation x0 =

(
u
v

)
. The initial condition x0 is

unobservable, that is, C(zI −A)−1x0 = 0 if and only if u = 0. For each such x0 one
has KAix0 = K2Ai

22v for all i ≥ 0, implying the system is T -trackable if and only if
the implication K2Ai

22v = 0, i = 0, . . . ,T =⇒ K2Ai
22v = 0 ∀i ≥ 0 is valid for

all vectors v ∈ F
n2 . Equivalently, this says that

Ker

⎛
⎜⎝

K2
...

K2AT
22

⎞
⎟⎠⊂ Ker

⎛
⎜⎝

K2
...

K2An−1
22

⎞
⎟⎠ .

In turn, this is equivalent to saying that all observability indices of (K2,A22) are less
than or equal to T , which implies the result. �

The following lemma will be needed.

Lemma 7.12. Let Q(z) ∈ F[z]r×r be nonsingular with degree �, i.e., Q(z) = Q0 +

Q1z + · · ·+ Q�z�. Assuming h(z) =
∞

∑
j=1

h j

z j ∈ XQ and h1 = · · · = h� = 0 implies

h(z) = 0.

Proof. Since XQ = ImπQ, it follows that h ∈ XQ if and only if h = πQh. However,
under our assumptions, πQh = π−Q−1π+(Qh) = π−Q−1π+(Qz−�z�h). Clearly,
Q(z)z−� is proper, whereas z�h is strictly proper, so the product is strictly proper
with π+(Qh) = 0. This implies h(z) = 0. �

Lemma 7.12 leads us to a simple polynomial characterization of the tracking
index.

Proposition 7.13. Assume that (7.7) has the representation (7.9) such that the

pair (

(
C
K

)
,A) is observable. Letting K2(zI − A22)

−1 = D22(z)−1Θ22(z) be a

left coprime factorization, with D22(z) row proper, implies the degree of D22(z)
coincides with the tracking index τ of (7.7). If D22(z) is not row proper, the degree
of D22(z) provides an upper bound for the tracking index.

Proof. By Proposition 7.11, the minimal tracking index is equal to the maximal
observability index of (K2,A22). In view of Corollary 6.9, the observability indices
of (K2,A22) coincide with the right Wiener–Hopf indices of D22(z). Since D22(z) is
assumed to be in row proper form, the row indices of D22(z) coincide with the right
Wiener–Hopf indices. In particular, the degree of D22(z) is the largest right Wiener–
Hopf index, i.e., it is equal to the largest observability index of (K2,A22). If D22(z)
is not row proper, Lemma 7.12 can be applied to see that the degree of D22(z) gives
an upper bound for the tracking index. �
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The preceding analysis leads to the following explicit characterizations of the
different observation properties.

Theorem 7.14. Assume that (7.7) has the representation (7.9) such that (

(
C
K

)
,A)

is observable. Let

K2(zI −A22)
−1 = D22(z)

−1Θ22(z),

with D22(z),Θ22(z) left coprime.

1. Suppose D22(z) is row proper. The following conditions are equivalent:

(a) (7.7) has tracking index τ .
(b) The largest observability index of (K2,A22) is equal to τ .
(c) The degree of D22(z) is equal to τ .

2. The following conditions are equivalent:

(a) z is detectable from (y,u) in (7.7).
(b) A22 is stable.
(c) detD22(z) is a Schur polynomial.
(d) All elements of XD22 have their poles in the open unit disc.

3. The following conditions are equivalent:

(a) z is reconstructible from (y,u) in (7.7).
(b) A22 is nilpotent.
(c) D22(z) is a monomic polynomial matrix.
(d) All elements of XD22 have their poles in zero.

4. The following conditions are equivalent:

(a) z is observable from (y,u) in (7.7).
(b) D22(z) is unimodular.
(c) (C,A) is observable.

Proof. Part 1 has already been shown.
Part 2. By Proposition 7.6, detectability is satisfied if and only if limt→∞ zt = 0,

whenever (yt) = 0 and (ut) = 0. The Z-transform of (zt) is equal to K(zI −A)−1x0,
where x0 is in the unobservable subspace O∗. By Theorem 7.10,

{K(zI −A)−1x0 | x0 ∈ O∗}= K2XzI−A22 = XD22

is an autonomous behavior. Applying Proposition 7.4, we conclude that detectability
is satisfied if and only if detD22(z) is a Schur polynomial. Since detD22(z) is equal
to det(zI −A22), this is equivalent to A22 being stable.

For part 3 one can argue similarly. In fact, reconstructibility is equivalent to all
elements of XD22 being stable for the discrete topology of F, which just says that
all elements of XD22 are of the form z−N p(z) for polynomials of degree < N or,
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equivalently, that D22(z) is monomic. Applying Proposition 7.4, one sees that this
in turn is equivalent to detD22(z) = czn2 being a monomial or, equivalently, that all
roots of detD22(z) = 0 are equal to zero, or that A22 is nilpotent.

Finally, the observability of z from (y,u) is fulfilled if and only if (yt) = 0 and
(ut) = 0 implies (zt) = 0. This is equivalent to

{K(zI −A)−1x0 | x0 ∈ O∗}= K2XzI−A22 = {0}.

By the observability of (K2,A22), this is possible only if (C,A) is observable. This
completes the proof. �

It may be surprising to note that the characterizations of detectability, recon-
structibility, and observability for a linear functional K in Theorem 7.14 are identical
with the corresponding ones for K = In. This is stated as a corollary.

Corollary 7.15. The same assumptions are used as in Theorem 7.14. For a linear
system (7.7), the output z = Kx is detectable, reconstructible, or observable from y if
and only if the pair (C,A) is detectable, reconstructible, or observable, respectively.

7.3 Functional State Observers

When dealing with complex systems, one may want to track only a sample of
the state variables. However, these variables of interest may be impossible to
observe directly, so one must have recourse to estimation procedures that utilize
only the available observations. In certain cases this can be achieved even if the
system is not completely observable. As indicated in the introduction to this chapter
and emphasized by the observer diagram appearing there, an observer is itself a
dynamical system driven by inputs and observations and whose output is an estimate
ζ of the relevant variable z. This leads us to the following definition of functional
state observers, which broadly extends the class of full state Luenberger observers.
In the sequel, the principal results will be stated and proved only for discrete-time
systems; these results hold, mutatis mutandis, also in the continuous-time case.

Let

Σsys :=

⎧⎨
⎩

xt+1 = Axt +But

yt = Cxt

zt = Kxt

(7.25)

be a linear system, with A,B,C,K in F
n×n,Fn×m,Fp×n,Fk×n, respectively. Let

another system,

Σest :=

{
ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt ,
(7.26)
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be given with system matrices F,G,H,J,E in F
q×q,Fq×p,Fq×m,Fk×q,Fk×p respec-

tively, and driven by the input u and output y of (7.25). It will always be assumed
that J is of full row rank, which presents no restriction of generality, as well as that

both C and K have full row rank and that the pair (

(
C
K

)
,A) is observable.

Define the estimation error or error trajectory e by

et = zt −ζt = Kxt − Jξt −Eyt = Kxt −
(

J E
)( xt

yt

)
.

The error trajectory defines the strictly proper power series

e = e(z) =
∞

∑
t=0

etz
−t−1. (7.27)

As usual, the error trajectory will often be identified with the equivalent formal
power series expansion (7.27) that it defines. We will refer to (7.26) as a functional
observer because it is designed to estimate a function of the state rather than the
state itself.

Definition 7.16. Consider the linear system (7.25). The system Σest defined
by (7.26) will be called

1. a finitely determined observer for K if there exists a T ∈ N such that et = 0 for
t < T implies e = 0;

2. a tracking observer for K if for every x0 ∈ F
n there exists a ξ0 ∈ F

q such that,
for all input functions u, the solutions xt and ξt of (7.25) and (7.26), respectively,
satisfy et = zt −ζt = 0 for all t ≥ 0;

3. a strongly tracking observer for K if e0 = z0 − ζ0 = 0 implies et = 0 for all
input functions u and t ≥ 0;

4. an asymptotic observer for K if, for all initial conditions of the states x and
ξ and all inputs u, limt→∞ et = limt→∞(zt − ζt) = 0; an observer is called an
asymptotic tracking observer for K if it is both a tracking observer and an
asymptotic observer;

5. spectrally assignable if, given a polynomial p(z) of degree q, there exists an
observer in the family for which the characteristic polynomial of F is p(z).

In all cases, q will be called the order of the observer.

Naturally, there are two fundamental problems that present themselves, namely,
given system (7.25), how does one obtain a characterization of observers and how
does one show the existence of observers of the various types, together with a
computational procedure for observer construction? Note further that, in general,
the initial value of the state of a system is not known, which is at the core of the
estimation/observation problem. Even if a tracking observer exists, there will be a
nonzero tracking error whenever the initialization of the observer is incorrect. This
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points out the importance of asymptotic observers as well as, even more, spectrally
assignable observers where one also controls the rate of convergence to zero of the
error. Several further remarks are in order.

1. Incorporating a feedthrough term in the observer, as in (7.26), improves our
ability to construct reduced-order functional observers. An example of this is the
case of observing Kx, where KerC ⊂ KerK. This implies the existence of a map
E for which K = EC, which leads to a zero-order, i.e., nondynamic, observer
given by ζt = Eyt . Note that incorporating a feedthrough term in the observer
is not new; it already appeared in Luenberger (1971) in the construction of an
observer for a single functional of the state.

2. The definition of a tracking observer clearly implies that the set of the trajectories
to be estimated is included in the set of outputs of the tracking observer.

3. A strongly tracking observer is at the same time a tracking observer. This follows
from our assumption that J has full row rank. Thus e0 = Kx0 − Jξ0 can always
be made zero by an appropriate choice of ξ0. Note also that a strongly tracking
observer is finitely determined, with T = 1.

It was already observed that the trackability of an output of a finite-dimensional
linear system is always satisfied. In the same vein, it is always possible to construct
tracking observers by inspection. For instance, taking the copy of a system as

ξt+1 = Aξt +But ,

ζt = Kξt

obviously leads to a tracking observer of system (7.25). Note that this observer has
the same dimension n as (7.25). More generally, for a matrix L ∈ F

n×p, the system

ξt+1 = (A−LC)ξt +LCxt +But ,

ζt = Kξt

is a tracking observer for (7.25). Therefore, the main issue is not the existence of
tracking observers (they always exist), but whether or not tracking observers with
prescribed dimension q ≤ n exist or, even better, whether a minimal-order observer
can be constructed. This problem will be addressed in Theorem 7.27, but first, a
characterization of functional observers is derived.

Our starting point is the derivation of a state-space characterization, in terms
of matrix Sylvester equations, for the classes of observers introduced in Defini-
tion 7.16. Thus we consider a linear system Σsys:

Σsys :=

⎧⎨
⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt ,

(7.28)
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with state space F
n and the estimator system

Σest :=

{
ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt ,
(7.29)

in the state space F
q.

Theorem 7.17. Assume that both (

(
C
K

)
,A) and (J,F) are observable.

1. System (7.29) is a tracking observer for K if and only if there exists a solution
Z ∈ F

q×n of the observer Sylvester equations

ZA =
(

F G
)(Z

C

)
,

H = ZB,

K =
(

J E
)(Z

C

)
.

(7.30)

The solution Z of (7.30) is uniquely determined.
2. Let Z be the unique solution to the observer Sylvester equations (7.30). Defining

ZK(z) = K(zI −A)−1 and ZC(z) =C(zI −A)−1, the equation

ZK(z) = Z1(z)ZC(z)+Z2(z) (7.31)

is solvable with

Z1(z) = E + J(zI −F)−1G, Z2(z) = J(zI −F)−1Z. (7.32)

3. Defining an auxiliary variable ε by

ε = Zx−ξ , (7.33)

the observer error dynamics with the initial condition ε0 = Zx0 −ξ0 are

εt+1 = Fεt ,

et = Jεt ,
(7.34)

i.e., the error trajectory is the output of an autonomous linear system. The set
Berr of all error trajectories is an autonomous behavior of the form

Berr = XQ, (7.35)
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where

Q(z)−1P(z) = J(zI −F)−1 (7.36)

are coprime factorizations.
4. The following conditions are equivalent:

(a) System (7.29) is an asymptotic tracking observer for K.
(b) There exists a linear transformations Z, with F stable, such that (7.30) holds.

5. The following conditions are equivalent:

(a) System (7.29) represents a family of spectrally assignable tracking observers
for K.

(b) With the characteristic polynomial of F preassigned, there exists a linear
transformation Z that satisfies the observer Sylvester equations (7.30).

Proof. 1.
For initial conditions x0 for Σsys and ξ0 for Σest, the Z-transforms of the solutions

to equations (7.28), (7.29), and (7.34) are given by

x = (zI −A)−1x0 +(zI−A)−1Bu,

y =C(zI −A)−1x0 +C(zI −A)−1Bu,

z = K(zI −A)−1x0 +K(zI −A)−1Bu,

ξ = (zI−F)−1ξ0+(zI −F)−1GC(zI −A)−1x0+(zI−F)−1(H+GC(zI −A)−1B)u,

ζ = J(zI −F)−1ξ0 + J(zI −F)−1GC(zI −A)−1x0 +EC(zI −A)−1x0

+ J(zI −F)−1(H +GC(zI −A)−1B)u+EC(zI −A)−1x0 +EC(zI −A)−1Bu,

e = z−ζ =
[
K − J(zI −F)−1GC−EC

]
(zI −A)−1x0 − J(zI −F)−1ξ0,

+
[
(K −EC)(zI −A)−1B− J(zI −F)−1(H +GC(zI −A)−1B)

]
u.

(7.37)

To begin, one takes u = 0. The trackability assumption translates into the following
statement. For each vector x0 ∈ F

n, there exists a vector ξ0 ∈ F
q such that

J(zI−F)−1ξ0+J(zI−F)−1GC(zI−A)−1x0+EC(zI−A)−1x0−K(zI−A)−1x0 = 0.

This implies that ξ0 is a linear function of x0. Because x0 is unrestricted, this means
that there exists a Z ∈ F

q×n for which ξ0 = Zx0. This leads to the identity

J(zI −F)−1Z + J(zI −F)−1GC(zI −A)−1 +EC(zI −A)−1 −K(zI −A)−1 = 0.
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Equating residues, one obtains

K = JZ +EC =
(

J E
)(Z

C

)
. (7.38)

Using this identity one computes

0 = J(zI −F)−1Z + J(zI −F)−1GC(zI −A)−1 +EC(zI −A)−1 −K(zI −A)−1

= J(zI −F)−1Z + J(zI −F)−1GC(zI −A)−1 +(K − JZ)(zI −A)−1−K(zI −A)−1

= J(zI −F)−1[Z(zI −A)+GC− (zI −F)Z](zI −A)−1

= J(zI −F)−1[−ZA+GC+FZ](zI −A)−1.

The nonsingularity of (zI − A) and the observability of the pair (J,F) imply the
identity

ZA−FZ = GC, (7.39)

which can be rewritten as

ZA =
(

F G
)(Z

C

)
.

By inserting identities (7.38) and (7.39), together with ξ0 = Zx0, back into the
representation of e in (7.37), one gets

0 = J
[
Z − (zI −F)−1GC

]
(zI −A)−1Bu− J(zI −F)−1Hu

= J(zI −F)−1 [(zI −F)Z −GC] (zI −A)−1Bu− J(zI −F)−1Hu

= J(zI −F)−1 [Z(zI −A)] (zI −A)−1Bu− J(zI −F)−1Hu

= J(zI −F)−1(ZB−H)u.

Choosing constant inputs and using the observability of (J,F), this implies H = ZB.
Thus the observer Sylvester equations (7.30) hold.

To show the uniqueness of the solution to the observer Sylvester equations (7.30),
assume there exist two maps Z′,Z′′ satisfying them. Setting Z = Z′′ −Z′ yields ZA =
FZ and JZ = 0. The intertwining relation implies that ZAk = FkZ, for all k ≥ 0, and
hence JFkZ = JZAk = 0, i.e., ImZ ⊂ ⋂

k≥0 KerJFk. The observability of the pair
(J,F) implies now Z = 0, i.e., Z′′ = Z′.

Conversely, assume the observer Sylvester equations (7.30) are satisfied. For a
control u and an initial condition x0 for Σ ′, we choose ξ0 = Zx0. By (7.37), using
the Sylvester equations, the error trajectory is given by
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e =
[
K − J(zI −F)−1GC

]
(zI −A)−1x0 − J(zI −F)−1Zx0

+
[
JZ(zI −A)−1B− J(zI −F)−1(H +GC(zI −A)−1B)

]
u

= J(zI −F)−1 [(zI −F)Z −Z(zI −A)−GC] (zI −A)−1x0

+ J(zI −F)−1 [(zI −F)Z −Z(zI −A)−GC] (zI −A)−1Bu(z) = 0.

This shows that Σest is a tracking observer for Σsys.

2. From equation (7.39) it follows that

Z(zI −A)− (zI−F)Z =−GC,

and hence

(zI −F)−1Z −Z(zI −A)−1 =−(zI −F)−1GC(zI −A)−1.

Using (7.38), this leads to

J(zI −F)−1Z + J(zI −F)−1GC(zI −A)−1 = JZ(zI −A)−1 = (K −EC)(zI −A)−1,

which proves the statement.

3. To determine the error dynamics, one computes, using the observer Sylvester
equations (7.30),

εt+1 = Zxt+1 −ξt+1

= ZAxt +ZBut −Fξt −GCxt −Hut

= ZAxt +ZBut − [F(Zxt − εt)+GCxt −ZBut ]

= Fεt ,

et = Kxt − Jξt = Jεt .

This proves (7.34). The error behavior, i.e., the space of error trajectories, is given
by Berr = {J(zI − F)−1ξ |ξ ∈ F

q}. Applying Proposition 4.36 to the coprime
factorizations (7.36) leads to the representation {J(zI −F)−1ξ |ξ ∈ F

q}= XQ.

4. (a)⇔ (b).

Assume that (7.29) is an asymptotic tracking observer for (7.28). By part 1,
there exists a uniquely determined linear transformation Z that satisfy the Sylvester
equations (7.30). Since the error dynamics is given by (7.34), and (J,F) is an
observable pair by assumption, the convergence et → 0 always implies εt → 0. Thus
the error dynamics (7.34) are stable, which shows that F is stable.
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Conversely, the existence of a map Z solving the Sylvester equations (7.30)
implies Σest is a tracking observer. The assumed stability of F implies, using the
error dynamics (7.34), that Σest is actually an asymptotic tracking observer.

5. (a)⇔ (b).
Follows directly from the definition of a spectrally assignable family of tracking
observers, together with part 1.

�
It is of interest to relate the error trajectories to the proper, rational solutions

Z1(z),Z2(z) of the equation ZK(z) = Z1(z)ZC(z)+Z2(z). Here ZK(z) and ZC(z) are
defined by (7.16) and Z1(z) and Z2(z) by (7.32). Note that Z1(z) is the transfer
function of the observer from y to ζ , while Z2(z) is related to the error estimate.
Choosing the initial condition of the observer as ξ0 = Zx0 would make the error
trajectory zero. However, the initial state x0 is unknown to the observer and, in the
absence of that initial state information, the challenge is to obtain an error estimate.
This is provided by the following proposition.

Proposition 7.18. Let the initial conditions for system (7.25) and the observable
tracking observer (7.26) be x0 and ξ0, respectively. The error trajectory is given by

e = J(zI −F)−1(Zx0 −ξ0) = Z2(z)x0 − J(zI −F)−1ξ0. (7.40)

In particular, e does not depend on the input u.

Proof. Computing, using equation (7.37), together with the observer Sylvester
equations (7.30) and (7.32),

e =
[
K − J(zI −F)−1GC−EC

]
(zI −A)−1x0 − J(zI −F)−1ξ0

+
[
(K −EC)(zI −A)−1B− J(zI −F)−1(H +GC(zI −A)−1B)

]
u

= [ZK(z)−Z1(z)ZC(z)]x0 − J(zI −F)−1ξ0

+[ZK −Z1(z)ZC(z)−Z2(z)]Bu

= Z2(z)x0 − J(zI −F)−1ξ0

completes the proof. �
How the existence of tracking observers is preserved under the action of the

output injection group G is shown in the next proposition. This is done by showing
how the observer Sylvester equations (7.30) transform under the same group action.

Proposition 7.19. Let the linear system

Σsys :=

⎧⎨
⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt

(7.41)
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act in the state space F
n. It is assumed that C and K have full row rank and that

(
(

C

K

)
,A) is observable. Assume that

Σest :=

{
ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt

is an observable tracking observer with state space F
q that satisfies the observer

Sylvester equations

ZA =
(

F G
)(Z

C

)
,

H = ZB,

K =
(

J E
)(Z

C

)
.

(7.42)

Equations (6.3) are extended to the action of the output injection group G on
quadruples A,B,C,K by

⎛
⎝ A B

C 0
K 0

⎞
⎠=

⎛
⎝R L 0

0 S 0
0 0 I

⎞
⎠
⎛
⎝ A B

C 0
K 0

⎞
⎠
(

R 0
0 I

)−1

.

Under this action, the observer Sylvester equations transform as follows:

ZA =
(

F G
)(Z

C

)
,

H = ZB,

K =
(

J E
)(Z

C

)
,

(7.43)

where

A = (RA−LC)R−1, B = RB, C = SCR−1, K = KR−1,

Z = ZR−1, L = LS−1,

F = F, G = G−ZL, H = H, J = J, E = ES−1.

Proof. Equation (7.43) can be rewritten as

(ZR−1)(R(A−LS−1C)R−1) =
(

F (G−ZLS−1)
)( ZR−1

CR−1

)
,

H = (ZR−1)(RB),

KR−1 =
(

J E
)( ZR−1

CR−1

)
.
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This in turn is equivalent to the Sylvester equations (7.30).

Corollary 7.20. Consider system (7.28). The observer (7.29) is finitely determined
if and only if it is tracking.

Proof. Follows from the error dynamics given by (7.35) and Lemma 7.12. �
The matrix Z that solves the observer Sylvester equations is not necessarily of

full rank. Next, it is shown how the maps F,G,H,J,E can always be modified in
such a way that a full rank solution Z to the Sylvester equations of the modified
observer exists.

Proposition 7.21. Suppose there exists a q-dimensional observable tracking
observer for K. Then there exists a tracking observer F ,G,H,J,E of dimension
q ≤ q together with a full row rank solution Z to the observer Sylvester equations

ZA−FZ = GC,

H = ZB,
K = JZ +EC.

(7.44)

Furthermore, the pair (J,F) can be chosen to be observable.

Proof. Let F,G,H,J,E denote an observable tracking observer for system (7.25),
with Z the solution to the observer Sylvester equation (7.30). If Z is not surjective,

this implies that, in an appropriate basis, one has Z =

(
Z
0

)
, with Z surjective, i.e.,

of full row rank. The corresponding representations are as follows:

F =

(
F11 F12

F21 F22

)
, G =

(
G1

G2

)
, H =

(
H1

H2

)
, J =

(
J1 J2

)
.

Equations (7.44) can now be rewritten as

(
Z
0

)
A =

(
F11 F12

F21 F22

)(
Z
0

)
+

(
G1

G2

)
C,

(
H1

H2

)
=

(
Z
0

)
B,

K =
(
J1 J2

)(Z
0

)
+EC.

This in turn implies

ZA−F11Z = G1C,

H1 = ZB,

K = J1Z +EC.
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The observability of the pair (J,F) implies the observability of the pair (J1,F11).
Therefore,

ξt+1 = F11ξt +G1yt +H1ut ,

ζt = J1ξt +EC

is a tracking observer for (7.28). �
Before proceeding to establish the basic connections between observation prop-

erties and observer constructions, the following simple lemma is stated.

Lemma 7.22. Let (F,G,H,J,E) be a tracking observer for (A,B,C,K).

1. If Z is a solution to the observer Sylvester equations, then, for each output
injection map L, (F,G−ZL,H,J,E) is a tracking observer for (A−LC,B,C,K).

2. If Z is a solution to the observer Sylvester equations and P is nonsingular,
then PZ solves the Sylvester equations for the tracking observer defined by
(PFP−1,PG,PH,JP−1,E).

Proof. 1. Theorem 7.17 is applied to conclude that there exists a solution Z to the
Sylvester equations (7.30). The first equation, ZA = FZ +GC, implies Z(A−
LC) = FZ +(G−ZL)C, while the other two equations remain untouched. This
implies that the observer defined by (F,G−ZL,H,J,E) is a tracking observer for
the system defined by (A−LC,B,H,C,K).

2. Using the observer Sylvester equations (7.30), one computes

(PZ)A = (PFP−1)(PZ)+(PG)C,

K = (JP−1)(PZ)+EC.

The identity of transfer functions

[
PFP−1 PG PZ
JP−1 E 0

]
=

[
F G Z
J E 0

]

is easily checked.
�

An interesting question is to analyze the extent of our control over the error
dynamics. In particular, one might want to clarify the following question: under
what conditions can we preassign the error dynamics? In one direction, this is easily
resolved using observability subspaces. This is studied in Fuhrmann and Trumpf
(2006). For further studies, one would first have to extend Definition 7.16 to the
notion of spectral assignability and derive results characterizing the existence of
such observers.
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7.4 Existence of Observers

Having studied the observation properties of linear systems in Section 7.2 and
introduced several classes of observers in Section 7.3, it will come as no great
surprise that there is a natural correspondence between observation properties and
observers of linear systems. This correspondence is addressed next.

Theorem 7.23. Let the linear system

Σsys :=

⎧⎨
⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt

(7.45)

act in the state space F
n. It is assumed that (

(
C
K

)
,A) is observable and is of the

form (7.9).

1. Let Σsys be trackable with minimal tracking index τ . Then the maximal observ-
ability index of every tracking observer for K is greater than or equal to τ .

2. The following conditions are equivalent:

(a) There exists an asymptotic tracking observer for K.
(b) The pair (C,A) is detectable.

3. The following conditions are equivalent:

(a) There exists a spectrally assignable family of tracking observers for K.
(b) The pair (C,A) is observable.

Proof. Part 1.
Let Σest be a tracking observer (7.26) with maximal observability index equal to

τ∗. Choose an initial condition x0 ∈ F
n with CAtx0 = 0 for all t. Assume Kx0 = · · ·=

Kxτ∗ = 0. Since (7.26) is a tracking observer, there exists ξ0 such that Kxt = Jξt is
true for all t. Since yt = CAtx0 = 0 for all t, one concludes Jξt = JFtξ0 for all t. In
particular, Jξ0 = · · ·= JFτ∗−1ξ0 = 0. By the observability of J and F , we have that
ξ0 = 0, and thus Kxt = 0 for all t. This implies the bound τ ≤ τ∗ for the minimal
tracking index.

Part 2. (a)⇔ (b)

Assume that an asymptotic tracking observer

ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt

(7.46)

for z exists; then F is necessarily stable. One must show that all unobservable
modes of (C,A) are stable. Choose u = 0, and pick an unobservable initial state
x0 ∈ O∗. Then ζt = JFtξ0 is true for all t and all ξ0. The stability of F implies
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limt→∞ JFtξ0 = 0. Since (7.46) is a tracking observer, there exists ξ0 such that ζt = zt

for all t ≥ 0. Thus limt→∞ KAtx0 = limt→∞ zt = 0 for all x0 ∈ O∗. This is equivalent
to limt→∞ K2At

22 = 0 and, therefore, by the observability of (K2,A22), to the stability
of A22. Thus (C,A) is detectable.

Conversely, assume (C,A) is detectable. By Theorem 7.14, the unobservable
modes of A are stable and there exists an output injection matrix L such that A−LC
is stable. Therefore, the full state Luenberger observer

ξt+1 = (A−LC)ξt +Lyt +But ,

ζt = Kξt

(7.47)

is an asymptotic tracking observer for K.

Part 3. (a)⇔ (b)

If (C,A) is observable, then one can find L such that A−LC has a preassigned
characteristic polynomial. Thus the Luenberger observer (7.47) yields a spectrally
assignable tracking observer for K. This shows that (b) ⇒ (a). For the converse,
assume (7.46) is a spectrally assignable tracking observer. Thus F can be chosen
with a preassigned characteristic polynomial. To show that (C,A) is observable,
suppose, to obtain a contradiction, that there exists a nonzero unobservable state
x0 ∈ O∗. Choose u = 0 and ξ0 such that zt = ζt for all t. Then, for each v, there
exists ξ0 with zt = K2At

22v = JFtξ0, or, equivalently, there exists a matrix Z that
satisfies

K2At
22 = JFtZ

for all t ≥ 0. Equivalently,

K2(zI −A22)
−1 = J(zI −F)−1Z. (7.48)

Since (7.46) is spectrally assignable, one can choose F so that the minimal
polynomial b(z) of F is coprime to the minimal polynomial a(z) of A22. Then the
poles of the rational functions on both sides of (7.48) are disjoint. Therefore, both
sides must be zero, i.e.,

K2(zI −A22)
−1 = 0 = J(zI −F)−1Z,

in contradiction to the observability of (K2,A22). This completes the proof. �
Our next objective is the characterization of several classes of observers

Σest =

{
ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt ,
(7.49)
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defined in the state space F
q. This includes the characterization of minimal-

order observers as a special case, relating, for example, minimal-order q tracking
observers (7.49) with maximal conditioned invariant subspaces of codimension q.
It is tacitly assumed throughout the subsequent arguments that (7.49) is observable.
Our analysis is done in essentially two ways, geometrically and functionally. For the
case of detectability, it will always be assumed that the underlying field is a subfield
of C. Our results remain in force for all fields F endowed with the discrete topology.
In that case, detectability is equivalent to reconstructibility.

Theorem 7.24. Let the linear system

Σsys :=

⎧⎨
⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt

(7.50)

act in the state space F
n. It is assumed that the pair (

(
C
K

)
,A) is observable and C

and K are both of full row rank. Let ZC(z),ZK(z) be defined by (7.16).

1. The following conditions are equivalent:

(a) There exists a tracking observer for K of order q.
(b) There exists a conditioned invariant subspace V ⊂ F

n, of codimension q,
satisfying

V ∩KerC ⊂ KerK. (7.51)

(c) There exist proper rational functions Z1(z),Z2(z), with McMillan degree of(
Z1(z) Z2(z)

)
less than or equal to q, that solve

(
Z1(z) Z2(z)

)( C
zI −A

)
= K (7.52)

or the equivalent equation

ZK(z) = Z1(z)ZC(z)+Z2(z). (7.53)

2. The following statements are equivalent:

(a) There exists an order q asymptotic tracking observer for K.
(b) There exists an outer detectable subspace, with codimD = q, satisfying

D ∩KerC ⊂ KerK. (7.54)

(c) There exist strictly proper, stable rational functions Z1(z),Z2(z), with
McMillan degree of

(
Z1(z) Z2(z)

)
equal to q, that solve (7.53).
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3. The following conditions are equivalent:

(a) There exists an order-q, spectrally assignable family of tracking observers
for K.

(b) There exists an outer observability subspace O of codimension q satisfying

O ∩KerC ⊂ KerK. (7.55)

(c) There exist polynomial matrices P1(z) and P2(z) that solve (7.53).

Proof. Part 1. (a)⇔ (b).
Assume that a q-dimensional tracking observer exists and is given by (7.49). By

Theorem 7.17, there exists a solution to the observer Sylvester equations (7.30).
By Proposition 7.21, it can be assumed without loss of generality that Z is of full
row rank. For minimal tracking observers this is automatically satisfied. Otherwise,
the observer order could be further reduced, contradicting the assumption that the
observer has minimal order. Define now V = KerZ. The equation

ZA =
(

F G
)(Z

C

)

implies

AKer

(
Z
C

)
⊂ KerZ

or, equivalently,

A(V ∩KerC)⊂ V ,

which shows that V is a conditioned invariant subspace. By Theorem 7.17, there
exist F and Z that satisfy the Sylvester equations (7.30). In particular, ZA=FZ+GC
shows that V = KerZ is conditioned invariant. Moreover, the equation K = JZ+EC
implies the inclusion

V ∩KerC = Ker

(
Z
C

)
⊂ KerK.

Z having row rank implies rankZ = q. The equality dimKerZ = n− rankZ implies
codimV = q.

To prove the converse, assume there exists a conditioned invariant subspace V
of codimension q satisfying the inclusion (7.51). Let Z ∈ F

q×n be of full row rank q
such that KerZ = V . The inclusion (7.51) implies the factorization
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K =
(

J E
)(Z

C

)
.

Since V is a conditioned invariant subspace, there exists an output injection L
such that (A − LC)KerZ ⊂ KerZ. This inclusion implies the existence of F ∈
F

q×q for which Z(A − LC) = FZ. Defining G = ZL and H = ZB, the Sylvester
equations (7.30) and an order q observer are obtained.

(a)⇔ (c).
Assume that Σest, given by (7.49), is an order-q tracking observer. Define the

transfer function

(
Z1(z) Z2(z)

)
=

[
F G Z
J E 0

]
, (7.56)

that is,

Z1(z) = J(zI −F)−1G+E,
Z2(z) = J(zI −F)−1Z.

Using the Sylvester equations (7.30), we compute Z1(z)ZC(z)+Z2(z) =

= (J(zI −F)−1G+E)C(zI −A)−1 + J(zI −F)−1Z

= J(zI −F)−1GC(zI −A)−1 +(K − JZ)(zI −A)−1 + J(zI −F)−1Z

= K(zI −A)−1 + J(zI −F)−1[GC− (zI −F)Z +Z(zI −A)](zI −A)−1

= K(zI −A)−1 + J(zI −F)−1[GC+FZ −ZA](zI −A)−1

= K(zI −A)−1 = ZK(z),

i.e., we obtain a proper solution of (7.53), of McMillan degree q. Note that the
equivalence of the solvability of equations (7.52) and (7.53) is trivial.

Conversely, assume that, with ZC(z),ZK(z) defined in (7.16), Z1(z),Z2(z) is a
proper solution of equation (7.53), of McMillan degree q. Note that, since ZK(z)
and Z1(z)ZC(z) are both strictly proper, necessarily Z2(z) is strictly proper, too.

Therefore, a minimal realization of
(

Z1(z) Z2(z)
)

has the form

(
F G Z
J E 0

)
, which

has dimension q. Then

0 = K(zI −A)−1 − (J(zI −F)−1G+E)C(zI−A)−1 − J(zI −F)−1Z.

By inspection of the residue term, this implies K = JZ +EC. Substituting this back
into the previous equation, we compute
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0 = (JZ +EC)(zI −A)−1 − (J(zI −F)−1G+E)C(zI−A)−1 − J(zI −F)−1Z

= JZ(zI −A)−1 − J(zI −F)−1GC(zI −A)−1 − J(zI −F)−1Z

= J(zI −F)−1[(zI −F)Z −GC−Z(zI −A)](zI −A)−1

= J(zI −F)−1[−FZ −GC+ZA](zI −A)−1.

By the nonsingularity of zI−A and the observability of the pair (J,F), we conclude
that ZA−FZ−GC = 0. Defining H = ZB, it follows that (7.29) is a tracking observer
of dimension at most q.

Proof of the equivalence (a)⇔ (b) in part 4.
Assuming there exists an outer detectable subspace D that satisfies (7.54), there

exists an output injection map L for which (A−LC)D ⊂ D and the induced map
(A−LC)|X /D is stable. As in part 1, we set D = KerZ for some surjective linear
transformation Z; then, by Lemma 3.8, there exists a map F that satisfies Z(A−
LC) = FZ, i.e., ZA−FZ =GC with G= ZL, as well as maps J and E, with K = JZ+
EC. The stability of the induced map (A−LC)|X /D and the isomorphism F � (A−
LC)|X /D imply the stability of F . Finally, we define H = ZB. Thus, equations (7.30)
have been derived.

Conversely, assume Σest is an asymptotic tracking observer for Σsys. By Propo-
sition 7.21, there exists a reduced-order observer for which the Sylvester equations
(7.30) are satisfied, with Z of full row rank q ≤ q. By the surjectivity of Z, there
exists an L for which G = ZL, and hence Z(A−LC) = FZ holds. Moreover, since
K = JZ +EC, D = KerZ is a conditioned invariant subspace of codimension q ≤ q
that satisfies (7.54). By the surjectivity of Z, the map (A−LC)|Fn/D is isomorphic
to F . Since F is stable, D is an outer detectability subspace of codimension q ≤ q.

(a)⇔ (c)
Assume the Sylvester equations (7.30) hold, with F stable. Then Z1(z) and

Z2(z), as defined in (7.56), are necessarily proper and stable. Conversely, assume
equation (7.52) is solvable with strictly proper and stable Z1(z) and Z2(z). Choose a
minimal realization

(
F G Z
J E 0

)

of
(

Z1(z) Z2(z)
)
. Necessarily, F is stable. By part 1, equations (7.30) are satisfied

with F stable.
Proof of the equivalence (a)⇔ (b) in part 5.
Assume there exists a spectrally assignable family of observers (7.29). The

subspace O = KerZ is a conditioned invariant subspace such that, for each
polynomial f (z) of degree equal to codimO , there exists a friend L of O for which
the characteristic polynomial of F is f (z). Necessarily, O is an outer observability
subspace.
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Conversely, assume that O is an observability subspace of codimension q that
satisfies (7.55). Let O have the kernel representation O = KerZ, with Z surjective.
By the definition of observability subspaces, for each polynomial f (z) of degree
q there exists a friend L of O for which Z(A − LC) = FZ and F has f (z) as
its characteristic polynomial. From the inclusion (7.55) it follows that there exist
unique J and E for which K = JZ +EC. Finally, by defining G = ZL, the required
family of observers is obtained.

(c)⇔ (b)
Let O∗ denote the unobservability subspace, i.e., the smallest outer observability

subspace of (C,A). Assume that there exists an outer observability subspace O
that is contained in the kernel of K. Thus O∗ ⊂ KerK, i.e., with respect to the
representation (7.9), one has K2 = 0. Since (C1,A11) is observable, there exist
polynomial matrices P1(z) and P2(z), with P1(z)C1 +P2(z)(zI−A11) = K1. Thus

(
P1(z) P2(z) 0

)
⎛
⎝ C1 0

zI −A11 0
−A21 zI −A22

⎞
⎠=

(
K1 0

)
,

and a polynomial solution of (7.53) was constructed.
Conversely, let P1(z),P2(z) denote a polynomial solution to (7.53). Then

P1C(zI −A)−1 +P2(z) = K(zI −A)−1.

Choose an unobservable state x ∈ O∗. Thus C(zI −A)−1x = 0, and therefore

P2(z)x = K(zI −A)−1x.

Since the left-hand side is polynomial and the right-hand side is strictly proper, we
conclude K(zI −A)−1x = 0 and P2(z)x = 0 for all x ∈ O∗. This implies Kx = 0,
i.e., O∗ ⊂ KerK. This proves the converse. Moreover, x = col(u,v), with u = 0 and
K2(zI −A22)

−1v = K(zI −A)−1x = 0. Thus the observability of (K2,A22) implies
O∗ = {0}. This shows the observability of (C,A). �
Remarks: 1. It has already been noted that trackability is a weak concept. There-

fore, one expects that a tracking observer for Σsys, given by (7.45), should always
exist. This is indeed the case. One can define the observer as

ξt+1 = Aξt +But ,

ζt = Kξt ,
(7.57)

and check that it is a tracking observer. Also, note that one strictly proper solution
of (7.52) is given by

(
Z1(z) Z2(z)

)
=

(
0 K(zI −A)−1

)
. This also leads to the

observer (7.57). Finally, the zero subspace is a conditioned invariant subspace for
(C,A) and is contained in KerK. This allows us to take Z = I and, hence, from
the Sylvester equations, show that F = A and J = K. So, once again, we are back
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to the observer (7.57). Such an observer is of course totally useless because it
disregards all the observed data y.

2. Note that the existence of fixed-order tracking observers with preassignable
spectra does not necessarily imply the existence of a suitable observability
subspace, not even in the minimal-order case.

3. Clearly, the existence of a spectrally assignable family of observers implies the
existence of an asymptotic observer. In particular, part 3 (c) of Theorem 7.24
should imply part 2 (c), and in the same way, part 3 (d) should imply part 2 (d).
This can be verified directly using partial realization theory, a topic that will not
be discussed in this book.

It may be of interest to understand the conditions under which the observer
equations (7.49) can be simplified to the form ζt+1 =Fζt +Gyt +Hut . The following
proposition addresses this question and gives a geometric characterization for the
existence of strongly tracking observers.

Proposition 7.25. Consider the system

Σsys :=

⎧⎨
⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt .

It is assumed that both C and K have full row rank and that (

(
C
K

)
,A) is

observable.

1. A tracking observer

Σest :=

{
ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt ,
(7.58)

with (J,F) observable, is a strongly tracking observer if and only if J is
nonsingular. In that case, we may assume without loss of generality that the
observer is given by

ζt+1 = Fζt +Gyt +Hut . (7.59)

2. A strongly tracking observer of the form (7.59) exists if and only if KerK is a
conditioned invariant subspace. In this case, the error dynamics are given by

et+1 = Fet . (7.60)

Proof. 1. Assume J in (7.58) is nonsingular. The error dynamics are given
by (7.34), and hence

et+1 = Jεt+1 = JFεt = JFJ−1Jεt = JFJ−1et .
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This shows that et = (JFJ−1)t−1e0, and hence e0 = 0 implies et = 0, i.e., Σest is
a strongly tracking observer.

Conversely, assume that Σest is a strongly tracking observer. The error
dynamics are given by (7.34), and hence et = JFt−1ε0. By the property of
strong tracking, e0 = 0 implies et = 0 for all t ≥ 0, i.e., ε0 ∈ ⋂

KerJFt−1. By
the observability of the pair (J,F), we conclude that e0 = 0 implies ε0 = 0. This
shows that J is injective and, hence, since it was assumed that J has full row
rank, actually invertible. Substituting ξ = J−1ζ into the observer equation and
multiplying from the left by J, ζt+1 = (JFJ−1)ζt + (JG)yt + (JH)ut follows.
Modifying appropriately the definitions of F,G,H, equation (7.59) is proved.

2. Assume (7.59) is a strongly tracking observer. By Theorem 7.17, there exists a
map Z satisfying the following Sylvester equations:

ZA = FZ +GC,

H = ZB,
K = Z.

Letting x ∈ KerK ∩ KerC implies K(Ax) = 0, i.e., Ax ∈ KerK, so KerK is a
conditioned invariant subspace.

Conversely, assume KerK is a conditioned invariant subspace. Letting Z = K,
there exists a map L such that (A− LC)KerK ⊂ KerK, and using, once again
Lemma 3.8, we infer that K(A−LC) = FK for some L. Thus KA−FK = GC,
with G = KL. Setting J = I and defining H = KB, we are done. That the error
dynamics are given by (7.60) follows from (7.34) and the fact that J = I.

�
This section ends with some ideas on state-space constructions of functional

observers. Theorem 7.24 contains equivalent characterizations for minimal-order
observers but does not give the minimal order of a tracking observer or a way
of computing such an observer. From a practical point of view, it is important to
have a systematic way of constructing observers, and, for computational efficiency,
it is important to have the order of the observer minimal. These questions are
addressed next. To this end, assume Σest, defined by (7.49), is a minimal-order
tracking observer for system (7.50). By Theorem 7.17, there exists a solution Z of
the observer Sylvester equations (7.30), and, by Proposition 7.21, it may be assumed
without loss of generality that Z has full row rank. Define now V = KerZ. The
first equation in (7.30) means that A(V ∩KerC) ⊂ V , i.e., that V is a conditioned
invariant subspace, whereas the last equation in (7.30) means that V ∩ KerC ⊂
KerK. In view of the geometric characterizations given in Theorem 7.24, to find
minimal-order observers for system (7.28), one must find all maximal dimensional
conditioned invariant subspaces V that satisfy V ∩ KerC ⊂ KerK. Since the set
of all conditioned invariant subspaces is closed under intersections but not under
sums, one must approach the minimality question differently. In spirit, we follow
Michelangelo’s dictum: “Carving is easy, you just go down to the skin and stop.”
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Therefore, to get a minimal-order tracking observer, one must choose a minimal

rank extension
(

Z

C

)
for which V = KerZ is conditioned invariant and

V ∩KerC = Ker

(
Z
C

)
⊂ KerK. (7.61)

By the minimality of such an extension, Z necessarily has full row rank. It is easy
to fulfill the second requirement, simply by choosing Z = K, which implies

Ker

(
Z
C

)
= Ker

(
K
C

)
⊂ KerK.

There are two problems with this choice, of which the first one is minor. Since, in
the case where KerK and KerC have a nontrivial intersection, K can be reduced
modulo C to get a lower rank extension K′. The second problem is due to the fact
that, in general, there is no reason why V = KerK should be conditioned invariant.
(But, as we shall see in Example 7.32, it may.) One way to overcome this is to add,
if necessary, additional terms to Z. An easy way to do this is to set

Z =

⎛
⎜⎜⎜⎝

KAn−1

...
KA
K

⎞
⎟⎟⎟⎠ .

Clearly, KerZ is not only a conditioned invariant subspace but actually an invariant
one. However, in general, the constructed Z does not have full row rank and thus
would lead to a nonminimal observer. The remedy to these two problems is to
maintain a fine balance between increasing the rank of Z sufficiently so that KerZ
is conditioned invariant and (7.61) being satisfied, but small enough to preserve
the maximality of the dimension of KerZ and, hence, leading to a minimal-order
functional observer. This will be treated in Theorem 7.27.

To formalize the reduction process, the following proposition, which is of interest
on its own, is stated and proved.

Proposition 7.26. 1. Let S ∈ F
n×q and T ∈ F

n×p be of full column rank. Then there
exists S′ ∈ F

n×r, of full column rank, such that

ImS′ ⊂ ImS,

ImS′+ ImT = ImS+ ImT,

ImS′ ∩ ImT = {0},

implying the direct sum representation ImS+ ImT = ImS′ ⊕ ImT .
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2. Let K ∈ F
q×n and C ∈ F

p×n be of full row rank. Then there exists K′ ∈ F
r×n, of

full row rank, such that

KerK′ ⊃ KerK,

KerK′ ∩KerC = KerK ∩KerC,

KerK′+KerC = F
n,

i.e., KerK ∩ KerC is the transversal intersection of KerK′ and KerC, which
implies the direct sum representation

F
n/(KerK′ ∩KerC) = KerK′/(KerK′ ∩KerC)⊕KerC/(KerK′ ∩KerC).

Moreover,

r = rankK′ = codimKerK′.

Proof. 1. Noting that S is assumed to be of full column rank, it follows that,
with Si being the columns of S, the set B = {S1, . . . ,Sq} is a basis for ImS.
Let {R1, . . . ,Rr} be a basis for ImS ∩ ImT . By the basis exchange theorem,
there exist r elements of B, which without loss of generality one can take to
be the first r, for which {R1, . . . ,Rr,Sr+1, . . . ,Sq} is a basis for ImS. Defining
S′ =

(
Sr+1 . . . Sq

)
, we are done.

2. The first assertion follows from the first part by duality considerations, while the
second one follows from the identity dimKerK′+dimImK′ = n.

�
Let

Σsys :=

⎧⎨
⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt

be a linear system acting in the state space Fn. Assume that (

(
C
K

)
,A) is observable

and that both C and K are of full row rank. Define the ith partial observability
matrix Oi(K,A) by

Oi(K,A) :=

⎛
⎜⎜⎜⎝

KAi−1

...
KA
K

⎞
⎟⎟⎟⎠ .
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Define, inductively, a sequence of full row rank matrices {Zi} as follows:
Set Z0 = 0, and proceed inductively. Assume Z0, . . . ,Zi are constructed. If KerZi ∩
KerC is conditioned invariant, then one sets Z = Zi and stops. Otherwise, Proposi-
tion 7.26 is applied to construct Zi+1, which satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

KerZi+1 ⊃ KerOi+1(K,A),

Ker

(
Zi+1

C

)
= Ker

⎛
⎝KAi

Zi

C

⎞
⎠= Ker

(
Oi+1(K,A),

C

)

KerZi+1 +KerC = F
n.

(7.62)

Theorem 7.27. Let Zi be constructed as above. The following assertions are
true:

1. For all i, Ker

(
Zi+1

C

)
⊂ Ker

(
Zi

C

)
.

2. Let ν be the smallest index with

Ker

(
Zi+1

C

)
= Ker

(
Zi

C

)
. (7.63)

Setting Z = Zν , the subspace V = KerZ is a maximal conditioned invariant
subspace that satisfies (7.61).

3. There exist matrices F ∈ F
q×q, G ∈ F

q×p, J ∈ F
k×q, and E ∈ F

k×p for which the
following Sylvester equations are satisfied:

ZA = FZ +GC,

K = JZ +EC.

Then the system

Σest :=

{
ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt

is an order-q tracking observer for K, where

q = rankZ = codimKerZ. (7.64)

Proof. 1. Follows from the equality Ker

(
Zi+1

C

)
= Ker

⎛
⎝KAi

Zi

C

⎞
⎠.

2. The equalities (7.62) and (7.63) imply the equality
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Ker

(
Oi(K,A)

C

)
= Ker

(
Oi+1(K,A)

C

)
,

which in turn implies the inclusion

AKer

(
Oi(K,A)

C

)
⊂ Ker

(
Oi+1(K,A)

C

)
.

Using this, one computes

A(V ∩KerC) = AKer

(
Zν
C

)
= AKer

(
Oν(K,A)

C

)
⊂ Ker

(
Oν+1(K,A)

C

)

= Ker

(
Zν+1

C

)
= Ker

(
Zν
C

)
= V ,

showing that V is conditioned invariant. Since, for i ≥ 1, one has KerOi(K,A)⊂
KerK, it follows that

V ∩KerC = Ker

(
Zν
C

)
= Ker

(
Oν(K,A)

C

)
⊂ KerK,

i.e., (7.61) holds.
3. Follows from Theorem 7.24.

�
The decision whether or not q, defined in (7.64), is the minimal order of tracking

observers is left as an open problem. Next, we consider a few special cases of
Theorem 7.27.
Case I: KerC ⊂ KerK. This means that unobserved states are not to be estimated, or,
equivalently stated, states to be estimated are directly observed. From the inclusion
KerC ⊂ KerK one deduces that there exists an E for which K = EC. This implies
Z = 0, F = 0, G = 0, and J = 0. Thus, as intuitively expected, the existence of a
zero-order or, equivalently, a nondynamic, observer for K is obtained.
Case II: K = I, i.e., tracking the state. To this end, one needs a map Z for which

Ker

(
Z
C

)
⊂ KerK = {0}. The easiest choice, though not necessarily the minimal

one, is to take Z = I and E = 0 and G = 0. This implies J = I and F = A. Thus, a
tracking observer is given by

Σest :=

{
σξ = Aξ ,

ζ = ξ ,

and the Luenberger state observer has been rederived. To obtain a reduced-order

state observer, Z is chosen so that
(

Z

C

)
is nonsingular.
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Case III: C = 0, i.e., no observations are available. By our assumption of the

observability of the pair (
(

C

K

)
,A), (K,A) is necessarily an observable pair. Let

K1, . . . ,Kq be the rows of K. Since K is assumed to be of full row rank, the rows
are linearly independent. The dual Kronecker indices are defined by the following
deletion process:

Starting from the top of the observability matrix

col(K1, . . . ,Kq,K1A, . . . ,KqA, . . . ,K1An−1, . . . ,KqAn−1),

delete all row vectors that are linearly dependent on the set of preceding ones. In
this way one obtains, up to a permutation of the rows, a matrix of the form

Z = col(K1,K1A, . . . ,K1Aν1−1, . . . ,Kq, . . . ,KqAνq−1).

The observability of (K,A) implies ∑q
i=1 νi = n and, hence, the invertibility of Z.

Defining F = ZAZ−1, J = KZ−1, then

Σest :=

{
σξ = Fξ ,

ζ = Jξ

is a tracking observer. For tracking, given an initial condition x0 of the state system,
one chooses ξ0 = Zx0.

Example 7.28. This example is taken from Fernando, Trinh, Hieu and Jennings
(2010). One takes A,C,K as follows:

A =

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ , C =

(
1 1 0

)
, K =

(
1 2 0

)
.

Note that the rows of C and K are linearly independent, so Z1 = K. Computing
KA =

(−1 −2 0
)
, which is linearly dependent on K, we conclude that Z = Z1 = K.

Since KerZ +KerC = F
3, V = KerZ is a tight conditioned invariant subspace. It is

easily checked that the observer Sylvester equations have a unique solution given
by F =−1,G = 0,J = 1,E = 0, which gives an asymptotic observer.

Example 7.29. Let A,C,K be as follows:

A =

⎛
⎜⎜⎜⎜⎜⎝

−1 0 0 0 0
1 −1 0 0 0
0 1 −1 0 0
0 0 0 1 0
0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎠
, C =

(
0 0 1 0 0

)
, K =

(
0 1 0 0 1

)
.
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In this example, the pair (C,A) is not observable, but

((
C
K

)
,A

)
is. Since C and K

are linearly independent, one gets Z1 = K. Computing

O5(K,A) =

⎛
⎜⎜⎜⎜⎜⎝

KA4

KA3

KA2

KA
K

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

−4 1 0 4 1
3 −1 0 3 1
−2 1 0 2 1
1 −1 0 1 1
0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎠
,

it is seen that the bottom four rows are linearly independent, but the top row depends
linearly on them. Therefore, Z = O4(K,A) and KerZ = {col(0,0,γ ,0,0)|γ ∈ R}.
Since

A

⎛
⎜⎜⎜⎜⎜⎝

0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0
0
−1
0
0

⎞
⎟⎟⎟⎟⎟⎠
,

KerZ is actually an A-invariant subspace. It is easily checked that KerZ +KerC =
R

5, hence V = KerZ is a tight conditioned invariant subspace, which means that
the corresponding tracking observer is uniquely determined up to similarity. Using
the observer Sylvester equations, one obtains

F =

⎛
⎜⎜⎝

0 2 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ , J =

(
0 0 0 1

)
, E =

(
0
)
.

7.5 Construction of Functional Observers

In Theorem 7.24, characterizations of various classes of observers in terms of
conditioned invariant, outer detectability, and outer observability subspaces appear.
Recalling that these subspaces have nice functional representations, given in
Proposition 6.67 and Theorem 6.72, it is only natural to attempt observer con-
struction using these representations. Key ingredients in the analysis are the
coprime factorization (7.19), the parameterizations (7.18) and (7.21), and the shift
realization (4.20).
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Consider the system

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt ,

(7.65)

with A ∈ F
n×n,B ∈ F

n×m,C ∈ F
p×n,K ∈ F

k×n, assuming that

((
C
K

)
, A

)
is

observable. Let C,K,A have the representation (7.9), with respect to the direct sum
representation (7.10), and let

(
C1 0
K1 K2

)(
zI −A11 0
−A21 zI −A22

)−1

=

(
D11(z) 0
D21(z) D22(z)

)−1(Θ11(z) 0
Θ21(z) Θ22(z)

)

be an adapted coprime factorization, i.e., satisfying conditions (1a)–(1c) of Theo-
rem 7.9. Under these assumptions the following assertions are true.

Theorem 7.30. 1. The map

Θ : X(
zI −A11 0
−A21 zI −A22

) −→ X(
D11(z) 0
D21(z) D22(z)

)

(
f1

f2

)
=Θ

(
ξ1

ξ2

)
=

(
Θ11(z) 0
Θ21(z) Θ22(z)

)(
ξ1

ξ2

) (7.66)

is an F[z]-isomorphism. Defining, via the shift realization,

A := S( D11 0
D21 D22

), C

(
f1

f2

)
:=

((
D−1

11 0
)( f1

f2

))
−1

= (D−1
11 f1)−1,

K

(
f1

f2

)
:=

((−D−1
22 D21D−1

11 D−1
22

)( f1

f2

))
−1

=
(−D−1

22 D21D−1
11 f1 +D−1

22 f2
)
−1 ,

(7.67)

the intertwining relations

ΘA = AΘ , C =CΘ , K = KΘ (7.68)

are satisfied.
2. For the parameterization (7.18) of the set of rational solutions of (7.17), we can

choose a proper rational matrix W (z), with left coprime factorization

W (z) = T (z)−1L(z), (7.69)
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such that Z1(z) is proper. Let Q(z) be the l.c.l.m.(T (z),D22(z)), and let RD(z)
and RL(z) be left coprime polynomial matrices with

Q(z) = RD(z)D22(z) = RT (z)T (z). (7.70)

Then the parameterization (7.18) can be rewritten as

Z1(z) = Q(z)−1(−RD(z)D21(z)+RT (z)L(z)D11(z)),

Z2(z) = Q(z)−1 (−RT (z)L(z)Θ11(z)+RD(z)Θ21(z) RD(z)Θ22(z).
) (7.71)

3. Define maps

Z : X(
D11 0
D21 D22

) −→ XQ, F : XQ −→ XQ, G : Fp −→ XQ,

H : Fm −→ XQ, J : XQ −→ F
k, E : Fp −→ F

k

by

Z = πQ
(−RT L RD,

) |X(
D11 0
D21 D22

)

F = SQ,

G = −πQ

((−RT L RD,
)(D11

D21

)
(·)

)

H = ZB,
J =

(
Q−1(·))−1 ,

E = π+Q−1 (−RDD21 +RT LD11) .

(7.72)

Then the system

Σest =

{
ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt ,
(7.73)

defined in the state space XQ by these maps, is an observable tracking observer
for K with transfer functions

Z1(z) =

[
F G
J E

]
, Z2(z) =

[
F Z
J 0

]

of (F,G,J,E) and (F,Z,J,0), respectively. The realization (F,G,J,E) of Z1(z) is
always observable. It is reachable if and only if the polynomial matrices Q(z)
and −RT (z)L(z)D11(z)+RD(z)D21(z) are left coprime.



7.5 Construction of Functional Observers 401

Proof. The adapted coprime factorization leads to the intertwining relation

(
Θ11(z) 0
Θ21(z) Θ22(z)

)(
zI −A11 0
−A21 zI −A22

)
=

(
D11(z) 0
D21(z) D22(z)

)(
C1 0
K1 K2

)
.

Applying Theorem 3.21 shows that the map Θ , defined by (7.68), is an F[z]-module
isomorphism. The intertwining relations (7.66) are easily verified. This proves
part 1.

Part 2 follows from a straightforward substitution of (7.69) in the param-
eterization (7.18), using the identities D22(z)−1 = Q(z)−1RD(z) and T (z)−1 =
Q(z)−1RT (z).
Proof of part 3. Recall from Theorem 3.30 that

S( D11 0
D21 D22

)
(

f1

f2

)
= z

(
f1

f2

)
−
(

D11 0
D21 D22

)(
ξ1

ξ2

)
,

where

(
ξ1

ξ2

)
=

((
D11 0
D21 D22

)−1(
f1

f2

))
−1

. For f =

(
f1

f2

)
∈ X(

D11 0
D21 D22

),

using (7.67), one computes (ZA−FZ) f =

= πQ
(−RT L RD

)
S( D11 0

D21 D22

)
(

f1

f2

)
−SQπQ

(−RT L RD
)( f1

f2

)

= πQ
(−RT L RD

)
(z

(
f1

f2

)
−
(

D11 0
D21 D22

)(
ξ1

ξ2

)
)−πQ

(−RT L RD
)

z

(
f1

f2

)

=−πQ
(−RT L RD

)(D11 0
D21 D22

)(
ξ1

ξ2

)
=−πQ

(−RT L RD
)(D11

D21

)
ξ1.

It was shown that, with C,A defined by (7.67) and Z,F,G by (7.72), the observer
Sylvester equation ZA = FZ +GC is satisfied. The equation K = JZ +EC can be
verified similarly. This completes the proof. �

A few remarks are in order.

1. The construction of the tracking observer (7.73) works for every left coprime
pair of polynomials T (z),L(z), with T (z) nonsingular. In particular, one does not
need to impose a properness assumption on

Z1 =−(TD22)
−1(TD21 −LD11).
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However, if one wants to obtain the observer from a shift realization of Z1(z),
then W (z) = T (z)−1L(z) must be chosen such that Z1 is proper.

2. The unobservable subspace O∗(C,A) of system (7.65) has the representation

O∗(C,A) =

(
zI −A11 0
−A21 I

)
X(

I 0
0 zI −A22

)

and dimension degdet(zI −A22). Its image under Θ is given by

(
D11(z) 0
D21(z) I

)
X(

I 0
0 D22(z)

),

which has dimension degdetD22 = degdet(zI −A22).

3. The constructed tracking observer

Z1(z) =

[
F G
J E

]

can be written as in (7.71), with the shift realization defined in the state space
XTD22 . Clearly, dimXTD22 = degdet(T )+degdet(D22), and the term degdet(D22)
is the price of tracking the unobservable subspace O∗(C,A).

4. The choice of the rational matrix W (z) in Theorem 7.30 is closely related to
partial realizations; however, we will not follow this path in this book and instead
refer the reader to Fuhrmann (2008) for some of the details.

From Theorem 7.30 we deduce several special cases as corollaries.

Corollary 7.31. Consider system (7.65), with

((
C
K

)
,A

)
observable.

1. Assume that (C,A) is observable.

(a) The coprime factorization (7.5) reduces to

(
C
K

)
(zI −A)−1 =

(
D11(z) 0
D21(z) I

)−1(Θ11(z)
Θ21(z)

)
.

(b) Choose a proper rational matrix W (z) with left coprime factorization W (z)=
T (z)−1L(z) so that Z1(z) in (7.18) is proper. Define maps

Z : XD11 −→ XT , F : XT −→ XT , G : Fp −→ XT ,

H : Fm −→ XT , J : XT −→ F
k, E : Fp −→ F

k
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by

Z = −πT L|XD11 ,

F = ST ,

G = −πT LD11(·),
H = ZB,
J = (T−1(·))−1,

E = π+(−D21 +T−1LD11).

(7.74)

Then system (7.73), defined by F,G,H,J,E, is a tracking observer for K.

2. Assume C = 0, i.e., there are no observations at all.

(a) The pair (K,A) is observable, and the coprime factorization (7.5) reduces to

K(zI −A)−1 = D22(z)
−1Θ22(z).

(b) The map Z : XzI−A −→ XD22 , defined as Zξ = Θ22(z)ξ , is an isomorphism,
and the Sylvester equation (7.42) reduces to ZA = FZ, with Z invertible and
K = JZ.

(c) The pair (J,F), defined in the state space XD22 by

F = SD22 ,

Jg = (D−1
22 g)−1,

is a tracking observer.

3. Assume the pair (C,A) is detectable.

(a) In the coprime factorization (7.5), the polynomial matrix D22(z) is stable.
(b) In the parameterization (7.18) of the set of rational solutions of (7.17), we

can choose the rational matrix W (z) with coprime factorization W (z) =
T (z)−1L(z) so that Z1(z) is proper and stable.

(c) System (7.73), defined by the F,G,H,J,E in (7.72), is an asymptotic tracking
observer for K.

Proof. Basically, this follows from Theorem 7.30. However, we add a few remarks.
A simple computation yields

X⎛
⎝D11 0

D21 I

⎞
⎠
=

{(
f (z)
0

)
| f (z) ∈ XD11

}
.

Note that the intertwining relation
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(
I 0

)(D11(z) 0
D21(z) I

)
= D11(z)

(
I 0

)
,

taken together with the trivial associated coprimeness relations, implies that the map

Φ : X(
D11 0
D21 I

) −→ XD11 , defined by

(
f (z)
0

)
�→ f (z), is an F[z]-isomorphism. Using

this, the maps in (7.72) have the simplified form (7.74). �
It should be pointed out that, to compensate for the total absence of observations,

i.e., for the case C = 0, the order of a minimal tracking observer is necessarily equal
to the dimension of the state space of the system.

To clarify the issues of observer characterization and construction, we present
an example from two points of view: the state-space formulation on the one hand
and the functional model formulation on the other. Each formulation has its own
advantages and insights.

Example 7.32. Let A,C,K be as follows:

A =

⎛
⎝ 0 0 0

1 0 0
0 1 0

⎞
⎠ , C =

(
0 1 0

)
, K =

(
0 0 1

)
.

Computing Z1 = K =
(

0 0 1
)
, KA =

(
0 1 0

)
, clearly,

Ker

(
K
C

)
= Ker

(
0 0 1
0 1 0

)
⊂ Ker

(
0 1 0

)
= KerKA,

which shows that V = KerK is a conditioned invariant subspace satisfying V ∩
KerC ⊂ KerK. Obviously, it is a maximal such subspace. The Sylvester equations
lead to an observer defined by

F = (0), G = (1)
J = (1), E = (0).

Since the matrix

(
K
C

)
has full row rank, this representation is uniquely determined.

Computing further KA2 =
(

1 0 0
)
, and setting Z =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, one has ZA =

⎛
⎝ 0 0 0

1 0 0
0 1 0

⎞
⎠, and the equation ZA = FZ +GC implies
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F =

⎛
⎝0 0 −t0

1 0 −t1
0 1 −t2

⎞
⎠ ,G =

⎛
⎝ t0

t1
t2

⎞
⎠ . (7.75)

The nonuniqueness of the constructed minimal-order observer is a consequence of
the inequality dim(KerZ +KerC) = 2 < 3 = dimF

3.
From a polynomial point of view, one has X = Xz3 and A = [Sz3 ]. Since KerK =

{ξ0 + ξ1z}, the maximal conditioned invariant subspace V contained in KerK is
the zero subspace; hence, V = Xz3 ∩ t(z)F[z], with t(z) a polynomial of degree
greater than or equal to 3. To obtain minimal-order observers, we take deg t(z) = 3.
Setting t(z) = t0+ t1z+ t2z2+ z3, we compute F = [πt |Xz3 ] and G =−[πt z3]. Simple
computations lead to (7.75).

7.6 Exercises

1. Consider the undamped harmonic oscillator

ẋ1(t) = x2(t),

ẋ2(t) =−ω2x1(t)+u(t),

y(t) = x2(t).

(a) Determine an observer

ż(t) = (A−LC)z(t)+Ly(t)+Bu(t),

u(t) = Fz(t)+ v(t),

y(t) = x2(t),

such that the eigenvalues of the closed-loop system

(
A BF

LC A−LC+BF

)

are −ω ±√−1ω , −ω,−ω .
(b) Determine a one-dimensional reduced observer.

2. Consider the third-order system ẋ = Ax+ bu,y = cx, with α < 0,β �= 0,k �= 0,
and
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A =

⎛
⎝0 1 0

0 −β 1
0 0 α

⎞
⎠ , b =

⎛
⎝ 0

k
0

⎞
⎠ , c =

(
1 0 0

)
.

(a) Prove that the system is stabilizable and observable.
(b) Find an observer of order 3 such that the eigenvalues of the closed-loop

system are −1,−2,−3,−4,−5,α .

3. Let (A,B) ∈ R
n×n ×R

n×m. Assume that the unreachable modes λ ∈ C of

xt+1 = Axt +But

are unstable, i.e., satisfy |λ | ≥ 1. Then, for every C ∈ R
p×n with C �= 0, there

exists an initial state x0 and an input sequence (ut) such that Cxt �→ 0 for t → ∞.
4. Assume that G(z) = D+C(zI −A)−1B is a p×m proper rational function such

that G(z)u(z) is stable for all proper rational functions u(z) ∈ F(z)m. Show that
D = 0 and C(zI −A)−1B = 0.

5. Assume that the output sequence {yt} of the linear system

xt+1 = Axt +But ,

yt = Cxt +Dut

satisfies limt→∞ yt = 0 for all initial conditions x0 ∈ F
n and all input sequences

u = (ut). Assume further that all unreachable modes of A are unstable. Show that
C = 0 and D = 0.

6. Let (J,F) be an observable pair, and let (A,B) be reachable. Prove the following
result from Fuhrmann and Helmke (2001a): for matrices M and N one has

J(zI −F)−1(zM+N)(zI −A)−1B = 0

if and only if there exist constant matrices X and Y with JY = 0 and XB = 0
satisfying

zM+N = X(zI −A)− (zI−F)Y.

7.7 Notes and References

Probably the first application of modern control theory was that of system stabiliza-
tion (Chapter 6), and this was done by state feedback. Since the state of a system is
hardly ever available, the immediate question arises of how to estimate the state from
measurements. This question immediately leads to the fields of optimal filtering
and observer theory. Although attempts at state estimation were made earlier, it is



7.7 Notes and References 407

generally accepted that the origin of observer theory can be traced to Luenberger
(1964). What is surprising is that, over the years, the analysis and synthesis of
functional observers, i.e., observer theory, did not attract the appropriate attention
from the control community that it so rightly deserves. Moreover, in the system
literature, there are several gaps, faulty proofs, and lack of insights that only now
are beginning to be filled in. Refer to Trumpf (2013) for details on these gaps in the
development of observer theory. In this connection we mention also, for example,
Fuhrmann and Helmke (2001) for a fairly complete account of asymptotic observers
and to the Ph.D. thesis by Trumpf (2002), which focuses on certain geometric
properties that relate to observer theory.

In recent years, the behavioral approach, an approach that avoids the input/output
point of view, has been initiated and developed by Willems (1986, 1991) and
coworkers. For a study of observers in the behavioral context we refer to the work by
Valcher and Willems (1999) and Trumpf, Trentelmann and Willems (2014); see also
Fuhrmann (2008), who pointed out how conventional state observer theory fits into
the behavioral framework. A full study of the connections between conventional and
behavioral observer theories has not yet been undertaken.

The concept of reconstructibility is important for cases dealing with dead-beat
observers, a case that will not be addressed in this book. For a treatment of dead-
beat obsevers, see Bisiacco, Valcher and Willems (2006) and Fuhrmann and Trumpf
(2006). The parameterization results, given by (7.18) when the pair (C,A) is not
observable and by (7.21) when it is, relate to partial realizations; they are also
reminiscent of the Youla–Kucera parameterization as outlined in Chapter 6. In fact,
from the first equation of (7.21) it follows that W = −D21D−1

11 − Z1D−1
11 , which

shows that W (z) is a solution to a nice partial realization problem induced by
−D21D−1

11 . Minimal McMillan degree solutions to (7.17) can be obtained from
minimal McMillan degree solutions of the partial realization problem. We refer the
reader to Fuhrmann (2008) for a full analysis of the observable case.

The linear equation ZK(z) = Z1(z)ZC(z) + Z2(z) in proper rational functions
Z1(z),Z2(z) plays a central role in our approach to functional observers. Since the
space of proper rational functions is a valuation ring, and hence a local ring, this
task amounts to studying linear matrix equations over a local ring. This fact may be
useful in developing solution algorithms for ZK(z) = Z1(z)ZC(z)+Z2(z).

In Definition 7.16, we made a distinction between asymptotic observers and
asymptotic tracking observers. Theorem 7.17 left open the question of how to
characterize asymptotic observers. A natural question arises as to how to specify
extra conditions such that an asymptotic observer is also tracking. This issue has
been addressed by Trumpf (2013) for continuous-time systems. Some preparatory
results from Trumpf (2013) appear as Exercises 4–6. In the absence of a full proof,
this is stated as a conjecture.

Conjecture 7.33. Let the linear system (7.28) act in the state space R
n. Assuming

that all unreachable modes of the system are unstable, the system, defined in the
state space R

q by
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ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt ,

is an observable, asymptotic observer for K if and only if F has all its eigenvalues
in the open unit disc, (J,F) is observable, and there exists a matrix Z ∈ R

q×n such
that

ZA−FZ = GC, H = ZB, K = JZ +EC.

In particular, under such an assumption, asymptotic observers are automatically
asymptotic tracking observers.

Under the assumption that the pair (A,B) is reachable, this was proved in Fuhrmann
and Helmke (2001a). See also Fernando, Jennings and Trinh (2011) for a claim
toward Conjecture 7.33. For a characterization of asymptotic observers in the
behavioral framework, see Trumpf, Trentelmann and Willems (2014).
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