
Chapter 6
State Feedback and Output Injection

Our attention turns now to the study of the fundamental question: How does one
use input variables in the actual control of a system? Naturally, the use of control
functions depends on the desired objectives of performance. Moreover, there are
various ways in which the control can be applied. One way is to determine, a priori,
a control sequence in the discrete-time case, or a control function in the continuous-
time case, and apply it. Thus the control is applied without regard to its lasting
effects or to the actual system performance, except insofar as the design goals have
been taken into account. This is referred to as open-loop control. Obviously, this
kind of control is often far from being satisfactory. The reasons for this may be
manifold, in that there is no exact modeling of systems or that there are no errorless
determinations of state vectors or precisely known control mechanisms. Thus open-
loop control does not take into account noise in the system or random variations
occurring from external influences. However, one advantage of open-loop control
lies in the computational ease of determining such controls, for instance using
optimization techniques. This aspect becomes particularly important when dealing
with the control of large networks of systems.

An alternative to open-loop control is feedback control. Our standing assump-
tion is that some knowledge of the state is available to the control mechanism, or
to the controller, and the control device takes this information into account. There
is a wide range of possibilities in designing feedback laws. If at each moment
the controller has access to the full state of the system, then one refers to it as
state feedback. If only a function, linear in the case of interest to us, of the state
variables is available, then this will be referred to as output feedback. A controller
can be memoryless, that is, the control is determined only by the currently available
information. In this case, it is called constant gain feedback. Alternatively, the
controller itself may be a dynamic system, in which case one speaks of dynamic
feedback control. Whatever the specific control strategy may be, feedback control
has the well-known advantage of ensuring robustness, while its disadvantages lie
in the computational burden that comes with either computing the feedback gains

© Springer International Publishing Switzerland 2015
P.A. Fuhrmann, U. Helmke, The Mathematics of Networks
of Linear Systems, Universitext, DOI 10.1007/978-3-319-16646-9_6

281



282 6 State Feedback and Output Injection

or estimating the full or partial state variables of the system. Thus feedback control
can become an increasingly complex task for large-scale networks. The tasks of
controlling large-scale interconnected systems, such as swarms or ensembles of
systems, therefore rather ask for a hybrid approach where both open-loop and
closed-loop control strategies are employed.

Schematically one considers the following feedback configuration:
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Here G is the plant, or the original system, and K denotes the control device.
Thus, in the linear, discrete-time case, the equations of the plant are

xt+1 = Axt +But ,

yt = Cxt +Dut ,

and if the controller is memoryless, we consider static output feedback as

ut =−Kyt +wt .

State feedback is a special case of this, and we set p = n and C = In. A dynamic
situation occurs when K is itself a linear system and hence is given internally by

zt+1 = Fzt +Gyt ,

vt = Hzt + Jyt ,

while the coupling equation, which allows for another control apart from the
feedback already incorporated, is

ut = wt + vt .

In this chapter we focus on analyzing the effects of state feedback control, while the
design of open-loop controls was addressed already in Chapter 4.

For a deeper analysis of state feedback and output injection problems for linear
systems (A,B,C), it turns out to be useful to study special classes of linear subspaces
in the state space that capture the dynamics of the subsystems of (A,B,C). Such
subspaces are the controlled and conditioned invariant subspaces and were first
introduced and extensively studied in the early 1970s by Basile and Marro, as well
as Wonham and Morse in the context of geometric control theory. The textbooks
by Wonham (1979) and Basile and Marro (1992) give comprehensive accounts
of the geometric theory. This chapter will be confined to the derivation of basic
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characterizations of controlled and conditioned invariant subspaces, both in the
state space and using functional model representations. In the subsequent Chapter 7,
characterizations of functional observers will be given using conditioned invariant
subspaces.

6.1 State Feedback Equivalence

This section is devoted to the study of the effects of state feedback transformations
that act on a fixed input-to-state pair (A,B). Let U and X be finite-dimensional
vector spaces over the field F, and let (A,B) be a reachable pair with A : X −→X
and B : U −→X linear transformations. Our assumption will be that dimU = m
and dimX = n. Through a choice of bases one can identify U and X with F

m and
F

n, respectively. In that case, A and B are represented by n×n and n×m matrices,
respectively. The pair (A,B) stands for the linear system

xt+1 = Axt +But . (6.1)

If the system is augmented by the identity readout map

yt = xt ,

then the transfer function of the combined system is

G(z) = (zI −A)−1B.

A state feedback law is given by

ut =−Kxt +wt , (6.2)

where wt denotes the external input applied at time t. Substituting (6.2) back
into (6.1) amounts to transforming the pair (A,B) into the pair (A−BK,B). In this
case, one says that (A−BK,B) has been obtained from (A,B) by state feedback.
Clearly, the applications of state feedback transformations form a commutative
group. If the group is enlarged to the one generated by invertible transformations in
the input space U , state-space similarity transformations in X , and state feedback
transformations, then the full state feedback group F is obtained. Thus an element
of F is a triple of linear maps (S,K,R), with S : X −→ X and R : U −→ U
nonsingular and K : X −→ U . The feedback group acts on a pair (A,B) by the
following rule:

(A,B)
(S,K,R)�→ (

S(A−BR−1K)S−1,SBR−1) .
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This implies the group composition law

(S,K,R)◦ (S1,K1,R1) = (SS1,RK1 +KS1,RR1).

This composition law is clearly associative since it can be expressed in terms of
matrix multiplication as follows:

(
S 0
K R

)(
S1 0
K1 R1

)
=

(
SS1 0

KS1 +RK1 RR1

)
∈ GLn+m(F).

The state feedback action can be identified with

(A,B) �→ S (A,B)

(
S 0
K R

)−1

=
(
S(A−BR−1K)S−1,SBR−1) .

This clearly shows that

(S,K,R)−1 = (S−1,−R−1KS−1,R−1)

and, hence, that F is a bona fide group. It is clear from the matrix representation
of the feedback group that every element of F is the product of three elementary
types:

1. Similarity or change of basis in the state space, i.e., elements of the form (S,0, I),
with S invertible;

2. Similarity or change of basis in the input space, i.e., elements of the form (I,0,R),
with R invertible;

3. Pure feedbacks, i.e., elements of the form (I,K, I).

Indeed, one has the composition law

(S,K,R) = (S,0, I)(I,K, I)(I,0,R).

The feedback group F induces a natural equivalence relation in the set of
reachable pairs (A,B) with state space X and input space U . Let (Ai,Bi), i = 1,2,
be input pairs with state spaces Xi and input spaces Ui, respectively. The pair
(A2,B2) is said to be state feedback equivalent to (A1,B1) if there exist invertible
maps Z : X1 −→X2 and R : U1 −→U2 and a map K : X1 −→U2 that satisfy

ZA1 −A2Z = B2K,

ZB1 = B2R.

It is trivial to check that this is indeed an equivalence relation. The equivalence
classes are called the orbits of the feedback group, and one would like to obtain the
orbit invariants as well as to isolate a single element in each orbit, a canonical form,
that exhibits these invariants.
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The dual concept the state feedback transformations is that of output injection.
Here it is formulated for matrix representations of the system maps A : X −→
X , B : U −→ X , and C : X −→ Y , although a coordinate-free description is
of course also possible. Thus two output pairs (Ci,Ai) ∈ F

p×n ×F
n×n, i = 1,2, are

called output injection equivalent if there exist invertible matrices R∈GLn(F) and
S ∈ GLp(F) and a matrix L ∈ F

n×p such that

(
A2

C2

)
=

(
R L
0 S

)(
A1

C1

)
R−1 =

(
(RA1 −LC1)R−1

SC1R−1

)
. (6.3)

The relation of output injection equivalence defines a bona fide equivalence
relation on the matrix space F

p×n × F
n×n. The equivalence classes are given by

the orbits

{
(RCS−1,S(A−LC)S−1) | S ∈ GLn(F),R ∈ GLp(F),L ∈ F

n×p}

of the output injection group G , where

G =

{(
R L
0 S

) ∣
∣
∣ R ∈ GLn(F),S ∈ GLp(F),L ∈ F

n×p
}

⊂ GLn+p(F). (6.4)

Conceptually, output injection seems much harder to grasp than state feedback.
A clarification of its importance comes from a deeper study of observer theory, and
this will be taken up in Chapter 7. There is therefore a measure of poetic justice
in the fact that the analysis of the output injection case is, from a technical point
of view, often significantly easier than that of the feedback case. The notion of
output injection bears a natural duality with state feedback. In fact, a pair (C1,A1)
is output injection equivalent to a pair (C2,A2) if and only if the dual pair (A�

1 ,C
�
1 )

is state feedback equivalent to (A�
2 ,C

�
2 ). This simple fact allows us to translate

results for state feedback into corresponding results for output injection, and vice
versa. However, while a natural approach is to dualize the feedback result, one can
often develop an independent analysis of the output injection case, with the option
of deriving results on the feedback group by duality considerations. Sometimes
the proofs obtained along such lines become easier than those derived from state
feedback analysis using duality arguments.

6.2 Polynomial Characterizations

The feedback group is introduced through a state-space formalism. However, as
is seen in several instances, various aspects of linear systems theory are easier
to handle if one operates with polynomial data, and this approach is our choice.
Henceforth, by a choice of bases, X will be identified with F

n and U with F
m.
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Thus, for a reachable pair (A,B), the polynomial matrices zI − A and B are left
coprime. Since each factorization of a rational matrix function is associated with a
right coprime factorization, one can write

(zI −A)−1B = N(z)D(z)−1, (6.5)

with N(z) and D(z) right coprime. Furthermore, N(z) and D(z) are uniquely
determined up to a common right unimodular factor. Thus, each reachable pair
(A,B) is associated with the unique shift realization, defined in (4.23) as

SD : XD −→ XD, πD : Fm −→ XD.

By Theorem 4.21, the pairs (A,B) and (SD,πD) are similar. Moreover, (6.5) defines
a bijective correspondence between the similarity equivalence classes

{(SAS−1,SB) | S ∈ GLn(F)}

of reachable pairs and the equivalence classes

{(D(z)U(z)) |U(z) ∈ GLn(F[z])},

with respect to right multiplication by unimodular polynomial matrices, of nonsin-
gular polynomial matrices D(z). The next theorem characterizes feedback equiva-
lence in terms of the factorizations (6.5).

Theorem 6.1. Let (A,B) be a reachable pair, with A ∈ F
n×n and B ∈ F

n×m. Let
N(z)D(z)−1 be a right coprime factorization of (zI − A)−1B. Then a necessary
and sufficient condition for a reachable pair (A,B) to be feedback equivalent to
(A,B) is the existence of R ∈ GLm(F), S ∈ GLn(F), and Q(z) ∈ F[z]m×m, for which
Q(z)D(z)−1 is strictly proper, such that

(zI −A)−1B = SN(z)(D(z)+Q(z))−1R−1. (6.6)

Proof. Assume G(z) = (zI −A)−1B = N(z)D(z)−1 are coprime factorizations, and
let (A,B) be feedback equivalent to (A,B). Thus, there exist invertible maps S and R
such that A = S(A−BK)S−1 and B = SBR−1. Hence,

(zI −A)−1B = (S(zI −A+BK)−1S−1)−1SBR = S(zI −A+BK)−1BR−1 .

Now, computing

(zI −A+BK)−1B = [(zI −A)(I +(zI −A)−1BK)]−1B

= (I +(zI−A)−1BK)−1(zI −A)−1B

= (I +G(z)K)−1G(z),
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and using the equality G(z)(I + KG(z)) = (I + G(z)K)G(z), it follows that
(I +G(z)K)−1G(z) = G(z)(I +KG(z))−1. Consequently,

G f (z) := (zI −A)−1B = SG(z)(I +KG(z))−1R−1

= SN(z)D(z)−1(I +KN(z)D(z)−1)−1R−1

= SN(z)(D(z)+KN(z))−1R−1.

If one defines Q(z) = KN(z), then clearly G f (z) = SN(z)(D(z)+Q(z))−1R−1, and
Q(z)D(z)−1 = KN(z)D(z)−1 is strictly proper. This proves the necessity part of the
theorem.

Conversely, assume that (6.6) is satisfied. Without loss of generality, it suffices
to show that if, with D(z) = D(z) + Q(z) and Q(z)D(z)−1 being strictly proper,
the equality N(z)D(z)−1 = (zI − A)−1B is satisfied for a reachable pair (A,B),
then (A,B) is feedback equivalent to (A,B). Thus it suffices to show that the pairs
(SD,πD) and (SD,πD) are feedback equivalent. Alternatively, it must be shown that,
for some invertible F-linear map Y : XD −→ XD and a linear map K : XD −→ F

n, the
equality SD −YSDY−1 = BK is valid, where B : Fn −→ XD is defined by Bu = πDu

for u ∈ F
n. Clearly, the previous equation is equivalent to SDY −YSD = BKY = BK1.

Hence, it suffices to show that

Im(SDY −YSD)⊂ ImπD,

and this we proceed to do. We define the Toeplitz induced map Y : XD −→ XD by

Y f = πDπ+DD
−1

f , f ∈ XD.

Showing that Y is an invertible map follows, using Theorem 3.49, from the fact that
D(z)D(z)−1 is biproper. For f ∈ XD one computes

(YSD −SDY) f = πDπ+DD
−1πDzf −πDzπDπ+DD

−1
f

= πDπ+DD
−1

Dπ−D
−1

zf −πDzπ+DD
−1

f

= πDπ+Dπ−D
−1

zf −πDzπ+DD
−1

f

= πDπ+DD
−1

zf −πDzπ+DD
−1

f

= πD(DD
−1

f )−1 ∈ ImπD.

This completes the proof. �
The following theorem allows us to characterize state feedback equivalence in

purely module-theoretic terms.
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Theorem 6.2. Let D(z),D(z) ∈ F[z]m×m be nonsingular. Then the reachable pairs
(SD,πD) and (SD,πD) obtained by the shift realizations Σ•D−1 and Σ•D−1 , respec-
tively, are state feedback equivalent if and only if there exist a unimodular matrix
U(z) ∈ GLm(F[z]) and a biproper rational matrix Γ (z) ∈ F[[z−1]]m×m, with

D(z) = Γ (z)D(z)U(z).

Equivalently, this is satisfied if and only if the left Wiener–Hopf indices of D(z) and
D(z) are equal.

Proof. To prove the sufficiency direction, assume that D(z) is of the form D(z) =
Γ (z)D(z)U(z) for a unimodular matrix U(z) and Γ (z) is biproper. Since the shift
realizations of D(z) and D(z)U(z) are similar, we can assume without loss of
generality that U(z) = Im. Then the assumption is equivalent to D(z)D(z)−1 being
biproper, i.e., the left Wiener–Hopf indices of D(z)D(z)−1 being zero. Then, by
Theorem 3.47, the Toeplitz operator T

DD−1 : F[z]m −→ F[z]m being invertible, and
so is the induced Toeplitz operator πDT

DD−1 : XD −→ XD. Computing now

(πDT
DD−1SD −SDπDT

DD−1) f = πDπ+DD
−1πDzf −πDzπDπ+DD

−1
f

= πDπ+DD
−1

Dπ−D
−1

zf −πDzπ+DD
−1

f

= πDπ+Dπ−D
−1

zf −πDzπ+DD
−1

f

= πDπ+DD
−1

zf −πDzπ+DD
−1

f

= πD(DD
−1

f )−1 ∈ ImπD

proves the state feedback equivalence of Σ•D−1 and Σ•D−1 .
Conversely, assume that the pairs (SD,πD) and (SD,πD) are state feedback

equivalent. Choose basis matrices N(z),N(z) for XD and XD, and let (A,B) and (A,B)
be the uniquely determined reachable pairs satisfying (zI −A)−1B = N(z)D(z)−1,
(zI −A)−1B = N(z)D(z)−1. By the transitivity of state feedback equivalence, the
pairs (A,B) and (A,B) are state feedback equivalent. By Theorem 6.1, we obtain

N(z)D(z)−1 = (zI −A)−1B = SN(z)(D(z)+Q(z))−1R−1,

with Q(z)D(z)−1 strictly proper and Q(z) = KN(z). Since N(z) and D(z)
are assumed to be right coprime, SN(z),D(z) + KN(z) are right coprime, too.
Therefore, both pairs (N(z),D(z)) and SN(z),D(z) + KN(z)) are right coprime.
Thus, there exists a unimodular polynomial matrix U(z) with D(z) = R(D(z) +
Q(z))U(z). Since QD−1 is strictly proper, the matrix

Γ (z) = D(z)(D(z)+Q(z))−1R−1 =
(
Im +Q(z)D(z)−1)−1

R−1
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is biproper, and hence

Γ (z)D(z) = D(z)U(z).

This completes the proof. �
The next theorem summarizes the preceding results.

Theorem 6.3. For i= 1,2, let (Ai,Bi)∈F
(n×(n+m), rankBi =m, be reachable pairs,

with input-to-state transfer functions Gi(z), having the coprime factorizations

Gi(z) = (zI −Ai)
−1Bi = Ni(z)Di(z)

−1.

The following assertions are equivalent:

(a) (A2,B2) is state feedback equivalent to (A1,B1).
(b) There exist state feedback transformation matrices L ∈ GLm(F),K ∈ F

m×n,
S ∈ GLn(F) with

G2(z) = SG1(z)(I+KG1(z))
−1L−1.

(c) D1(z) and D2(z) have the same left Wiener–Hopf indices.
(d) G1(z) and G2(z) have the same left Wiener–Hopf indices.

Proof. The equivalence (a) ⇐⇒ (b) ⇐⇒ (c) was shown already in Theorem 6.2.
The implication (b) =⇒ (d) is trivial. We prove (d) =⇒ (c). Thus, there exist a
biproper rational function Γ (z) ∈ F[[z−1]]m×m and a unimodular polynomial matrix
U(z) ∈ GLn(F[z]) such that

N2(z)D2(z)
−1 =U(z)N1(z)D1(z)

−1Γ (z). (6.7)

By the reachability of (A1,B1), the matrix N1(z) is right prime, and therefore
U(z)N1(z) is right prime, too. Thus there exists a polynomial matrix M(z) that
satisfies M(z)U(z)N1(z) = I. Multiplying the identity (6.7) by M(z) on both sides,
it follows that

M(z)N2(z) = D1(z)
−1Γ (z)D2(z).

Taking determinants, one obtains

det(M(z)N2(z)) =
detD2(z)
detD1(z)

detΓ (z).

Since Γ (z) is biproper, the determinant detΓ (z) is biproper, too. Moreover, both
detD1(z) = det(zI −A1) and detD2(z) = det(zI −A2) have degree n. Thus

detD2(z)
detD1(z)

detΓ (z)
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is biproper. Hence, the polynomial det(M(z)N2(z)) is also biproper, which implies
that M(z)N2(z) is unimodular. Thus

Γ (z)−1D1(z)M(z)N2(z) = D2(z)

implies that D1(z) and D2(z) have the same left Wiener–Hopf indices. This shows
(d) =⇒ (c), and the proof is complete. �

The importance of the preceding result lies in showing that the classification of
reachable pairs (A,B) ∈ F

n×(n+m), up to state feedback equivalence, is equivalent
to the classification of nonsingular m×m polynomial matrices D(z) with identical
left Wiener–Hopf indices. The bijective correspondence between orbits of the state
feedback group and polynomial matrices with fixed Wiener–Hopf indices will be
taken up in the next section.

Duality is used to derive the following two counterparts to Theorems 6.1 and 6.2.

Theorem 6.4. Let D(z),D(z) ∈ F[z]p×p be nonsingular. Then the observable pairs
((D·)−1,SD) and ((D·)−1,SD), obtained by the shift realization in the state spaces
XD,XD, are output injection equivalent if and only if there exist a unimodular matrix
U(z) ∈ GLp(F[z]) and a biproper rational matrix Γ (z) ∈ F[[z−1]]p×p with

D(z) =U(z)D(z)Γ (z).

Equivalently, this is true if and only if the right Wiener–Hopf indices of D(z) and
D(z) are equal.

Proof. Using Proposition 3.48, this follows from Theorem 6.2 by duality
considerations. �
Theorem 6.5. Let (C1,A1),(C2,A2)∈ F

(p+n)×n, rkCi = p, be observable pairs with
state-to-output transfer functions

G1(z) =C1(zI −A1)
−1 = D�,1(z)

−1N�,1(z),

G2(z) =C2(zI −A2)
−1 = D�,2(z)

−1N�,2(z)

and left coprime factorizations D�,1(z),N�,1(z) and D�,2(z),N�,2(z), respectively. The
following statements are equivalent:

(a) (C1,A1) is output injection equivalent to (C2,A2).
(b) There exists an output injection transformation matrix P ∈ GLp(F),

L ∈ F
n×p,S ∈ GLn(F) with

G2(z) = P(Ip +G1(z)L)
−1G1(z)S

−1.

(c) D�,1(z) and D�,2(z) have the same right Wiener–Hopf indices.
(d) G1(z) and G2(z) have the same right Wiener–Hopf indices.
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Proof. A change of basis in the output space changes the transfer function by a
left nonsingular factor. Similarly, a similarity transformation in the state space can
be easily coped with. Thus, without loss of generality, one can assume that A2 =
A1 − LC1 and C2 = C1. Rewriting the coprime factorization as N�,1(z)(zI −A1) =
D�,1(z)C1 and adding N�,1(z)LC1 to both sides, one obtains the intertwining relation
N�,1(z)(zI −A1 +LC1) = (D�,1(z)+N�,1(z)L)C1, which can be written as

C1(zI −A1 +LC1)
−1 = (D�,1(z)+N�,1(z)L)

−1N�,1(z) = D�,2(z)
−1N�,2(z).

It is easily checked that the factorization G2(z) = (D�,1(z)+N�,1(z)L)−1N�,1(z) is
left coprime. Thus, there exists a unimodular polynomial matrix M(z) such that
D�,2(z) = M(z)(D�,1(z)+N�,1(z)L) and N�,2(z) = M(z)N�,1(z) are fulfilled, thereby
obtaining the right Wiener–Hopf factorization

D�,2(z) = M(z)D�,1(z)Γ (z),

with Γ (z) = D�,1(z)−1(D�,1(z) + N�,1(z)L) = Ip + G1(z)L biproper. In particular,
D�,1(z) and D�,2(z) have the same right Wiener–Hopf indices. This shows the
implications (a) =⇒ (b) =⇒ (c). The reverse directions follow as for the proofs
of Theorems 6.1 and 6.2. The implication (b) =⇒ (d) is trivial. The proof that
(d) =⇒ (c) runs parallel to the proof in Theorem 6.3 and is thus omitted. �

6.3 Reachability Indices and the Brunovsky Form

For discrete-time systems

xt+1 = Axt +But

yt = Cxt ,

with state space X , input space U , and output space Y , there exists a fine structure
in the state space according to how fast the various states are reached. Dually, one
can ask how fast one can observe the state from the output. It turns out that this
structure, manifested through the so-called reachability and observability indices, is
all important for the study of the fundamental problems of systems theory, namely,
a description of the inherent limitations of controllers to change the dynamics of the
system and for state estimation purposes.

Consider the sequence of subspaces Vi(A,B)⊂X , defined by

Vi(A,B) =B+AB+ · · ·+AiB, (6.8)

where B = ImB. Thus, in discrete time, the linear subspace Vi consists of all states
that can be reached from zero in at most i+1 steps. Obviously, Vi ⊂ Vi+1. Applying
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the Cayley–Hamilton theorem and the assumption of reachability, Vn−1+ j = R is
also valid for j ≥ 0, where R denotes the reachable space of (A,B). Define a
sequence of indices by

νi(A,B) =

{
dimB i = 0,
dimVi −dimVi−1 i ≥ 1.

(6.9)

Thus

m ≥ ν0(A,B)≥ ν1(A,B)≥ . . .≥ νn(A,B) = 0.

Define the dual set of indices by

κi(A,B) = #{ν j(A,B) | ν j(A,B)≥ i}. (6.10)

Thus κ1 ≥ ·· · ≥ κm and ∑m
i=1 κi = ∑n

j=0 ν j. Thus κ = (κ1, . . . ,κm) and ν =
(ν0, . . . ,νn) form dual partitions of r = dimVn(A,B). The indices κ1 ≥ ·· · ≥ κm

are usually called the controllability indices of the pair (A,B). In the discrete-time
case, it is more appropriate to call them, as we shall, the reachability indices. If the
pair (A,B) is fixed, then one writes κi for κi(A,B), and so forth. It follows trivially
from (6.9) that κ1 + · · ·+κm = ν0 + · · ·+ νn = dimR. Therefore, the reachability
indices of a reachable pair on an n-dimensional state space form a partition of n,
that is, a representation κ1 + · · ·+ κm = n. It is easily seen, by examples, that in
fact all partitions of n into at most m parts arise as reachability indices of a suitable
reachable pair (A,B).

Similarly, the observability indices of a pair (C,A) ∈ F
p×n × F

n×n will be
introduced. To this end, define, for each i = 1, . . . ,n, the ranks of the ith partial
observability matrix as

ri(C,A) = rank

⎛

⎜
⎝

C
...

CAi−1

⎞

⎟
⎠ .

Thus the differences (s0 := 0)

si = ri − ri−1, i = 1, . . . ,n

measure the increase in the ranks of the partial observability matrices.

Definition 6.6. The observability indices of (C,A) ∈ F
p×n ×F

n×n are the nonneg-
ative integers λ1(C,A)≥ . . .≥ λp(C,A) defined by

λi(C,A) = #{s j(C,A) | s j(C,A)≥ i}.
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In complete analogy with the reachability indices, the equality

λ1 + · · ·+λp = n

is true if and only if (C,A) is observable. The following lemma will be needed.

Lemma 6.7. The reachability indices are state feedback invariants, i.e.,

κi(S(A+BK)S−1,SBR−1) = κi(A,B), i = 1, . . . ,m,

is true for all matrices R ∈ GLm(F),S ∈ GLn(F),K ∈ F
m×n. Similarly, the observ-

ability indices are output injection invariants, i.e., for all i = 1, . . . , p and for all
matrices R ∈ GLp(F),S ∈ GLn(F),L ∈ F

n×p, the equality

λi(RCS−1,S(A+LC)S−1) = λi(C,A)

is valid.

Proof. It is obvious, with S,R invertible maps in the state space and input space,
respectively, that

Vi(S(A+BK)S−1,SBR−1) = SVi(A,B)

for all i ≥ 0. While the spaces Vi defined in (6.8) change under the action of an
element of the feedback group, their dimensions do not, i.e., they are invariant. This
shows that the νi(A,B) are state feedback invariant, as are, thus, the reachability
indices κi(A,B). The proof is similar for the observability indices. �

The preceding definition of reachability indices was introduced in state-space
terms. We now show the connection to invariants defined in terms of coprime
factorizations of (zI −A)−1B.

Theorem 6.8. Let (A,B) ∈ F
n×n ×F

n×m be a reachable pair, with rankB = m. Let
N(z)D(z)−1 be a right coprime factorization of (zI−A)−1B, and let κ1 ≥ ·· · ≥ κm >
0 be the reachability indices of the pair (A,B) as defined in (6.10). Then:

1. The reachability indices of the pair (A,B) are equal to the minimal column
indices of the submodule D(z)F[z]m ⊂ F[z]m;

2. The reachability indices of the pair (A,B) are equal to the left Wiener–Hopf
factorization indices of D(z);

3. The reachability indices of the pair (A,B) are equal to the minimal column
indices of the submodule Ker (zI −A,−B) ⊂ F[z]n+m, defined by the linear
multiplication operator

(zI −A,−B) : F[z]n+m −→ F[z]n.
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Proof. Assume η1 ≥ ·· · ≥ ηm are the minimal column indices of D(z). Let Δ(z) =
diag(zη1 , . . . ,zηm). Then there exist a unimodular polynomial matrix U(z) and a
biproper matrix Γ (z) such that

D(z)U(z) = Γ (z)Δ(z).

By Theorem 6.2, the pairs (SD,πD) and (SΔ ,πΔ ) are feedback equivalent and,
hence, have the same reachability indices. Thus, it suffices to prove the theorem
for A = SΔ ,B = πΔ . The reachability indices of (SΔ ,πΔ ) are easily computed
as follows. With e1, . . . ,em the standard basis elements of F

m, clearly, by our
assumption that B has full column rank, we get ImπΔ = span{e1, . . . ,em}. On
the other hand, the equality between the coprime factorizations (zI − A)−1B =
N(z)D(z)−1 implies, using the shift realization, that (A,B) is similar to (SD,πD),
so it is feedback equivalent to (SΔ ,πΔ ). Consider now the subspaces Vi, defined
in (6.8), that correspond to the pair (SΔ ,πΔ ). Clearly, dimV1 = #{ηi > 0} = m
and dimVk = dimVk−1 +#{ηi ≥ k}. So νk = dimVk −dimVk−1 = #{ηi ≥ k}. Thus
η1 ≥ ·· · ≥ ηm are the dual indices to the νi, but so are the reachability indices
κ1, . . . ,κm. Hence, necessarily, ηi = κi.

By part 1, the column indices of D(z) are equal to the reachability indices of
(SD,πD), i.e., to κ1, . . . ,κm. Therefore, there exists a unimodular polynomial matrix
V (z) for which D(z)V (z) is column proper with column indices κ1, . . . ,κm. Writing
D(z)V (z)=Γ (z)Δ(z), where Δ(z)= diag(zκ1 , . . . ,zκm), Γ (z) is necessarily biproper
because the leading term of Γ (z) is [DV]hc, which is nonsingular. This implies that,
with U(z) =V (z)−1, the left Wiener–Hopf factorization D(z) = Γ (z)Δ(z)U(z).

The equality (zI −A)N(z) = BD(z) can be rewritten as

(zI −A,−B)

(
N(z)
D(z)

)
= 0.

Using the coprimeness assumption (Theorem 2.27), it follows that

Ker (zI −A,−B) =

(
N(z)
D(z)

)
F[z]m.

Now N(z)D(z)−1 is strictly proper, and thus the minimal column indices of

(
N(z)
D(z)

)

are equal to those of D(z). By part 2, they coincide with the reachability indices of
(A,B). �

The next result, which is a straightforward consequence of Theorem 6.8,
characterizes the reachability and observability indices of an observable pair in
terms of Wiener–Hopf factorization indices.
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Corollary 6.9. 1. Let (A,B) be a reachable pair, and let N(z)D(z)−1 = (zI−A)−1B
be a right coprime factorization. Then the reachability indices of (A,B) are equal
to the left Wiener–Hopf indices of D(z).

2. Let (C,A) be an observable pair, and let D�(z)−1N�(z) = C(zI −A)−1 be a left
coprime factorization. Then the observability indices of (C,A) are equal to the
right Wiener–Hopf indices of D�(z).

If G(z) is a proper, rational transfer function, then its Wiener–Hopf factorization
indices must have a system-theoretic interpretation. This is indeed the case, and a
system-theoretic interpretation of the factorization indices of the denominators in
coprime matrix fraction representations of G(z) can be derived.

Theorem 6.10. Let G(z) ∈ F[z]p×m be a proper rational function admitting the
coprime matrix fraction representations

G(z) = Nr(z)Dr(z)
−1 = D�(z)

−1N�(z), (6.11)

and let (A,B,C,D) be a reachable and observable realization of G(z). Then the
reachability indices of the realization are equal to the left Wiener–Hopf indices
of Dr(z) and the observability indices are equal to the right Wiener–Hopf indices
of D�(z).

Proof. By the state-space isomorphism theorem, the pair (A,B) is isomorphic to the
pair (SDr ,πDr). By Proposition 2.19, there exists a unimodular matrix U(z) such that
Dr(z)U(z) is column proper with column indices κ1 ≥ κ2 ≥ ·· · ≥ κm. Clearly,

Dr(z)U(z) = Γ (z)Δ(z), (6.12)

with Δ(z) = diag(zκ1 , . . . ,zκm) and Γ biproper. By Theorem 6.2, this implies that
(SDr ,πDr) and (SΔ ,πΔ ) are feedback equivalent pairs. However, the reachability
indices of (SΔ ,πΔ ) are easily seen to be equal to κ1, . . . ,κm (see the proof of the
subsequently stated Theorem 6.14). Finally, (6.12) can be rewritten as

Dr(z) = G−(z)Δ(z)G+(z),

with G−(z) = Γ (z) and G+(z) = U(z)−1. This is a left Wiener–Hopf factorization
of Dr(z). The statement concerning observability indices follows by duality. �

In Corollary 6.9 and Theorem 6.10, it was shown that the reachability indices
of a pair (A,B) coincide with the left Wiener–Hopf indices of the nonsingular
polynomial matrix D(z) appearing in a coprime factorization

(zI −A)−1B = N(z)D(z)−1.

One attempts to extend this analysis to Wiener–Hopf factorizations of strictly proper
transfer functions G(z) =C(zI−A)−1B. For simplicity, our focus will be on strictly
proper transfer functions, although an extension to proper transfer functions is
possible.
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Definition 6.11. A reachable and observable system (A,B,C) is called state feed-
back irreducible if and only if (S(A + BK)S−1,SBR−1,CS−1) is reachable and
observable for all state feedback matrices (S,K,R) ∈Fn,m.

Of course, while the reachability of a system is always preserved by state feedback,
this is no longer true of observability. It is a simple observation that transfer
functions of the form

(zI −A)−1B or C(zI −A)−1,

with (A, B) reachable or (C, A) observable, are feedback irreducible. Thus feedback
irreducibility is an extension of the situation discussed previously.

To begin with the analysis of feedback irreducibility, one considers the single-
input single-output case. Let

g(z) =
p(z)
q(z)

∈ F[z]

denote a scalar strictly proper transfer function of degree n, given by a coprime
factorization, with q(z) monic and deg p(z) < degq(z) = n. Let (A,b,c) denote a
minimal realization of g(z). Without loss of generality, one can assume that (A,b)
is in Brunovsky canonical form, i.e.,

⎛

⎜
⎜
⎜
⎝

0 1
. . .

. . .

0 1
0 . . . . . . 0

⎞

⎟
⎟
⎟
⎠
, b =

⎛

⎜
⎜
⎜
⎝

0
...
0
1

⎞

⎟
⎟
⎟
⎠
, c =

(
c0 c1 · · · cn−1

)
,

with transfer function

g(z) =
p(z)
q(z)

=
c0 + . . .+ cn−1zn−1

zn .

Thus the system (A,b,c) is feedback irreducible if and only if the pair

A+bk =

⎛

⎜
⎜
⎜
⎝

0 1
. . .

. . .

0 1
k0 −q0 . . . . . . kn−1 −qn−1

⎞

⎟
⎟
⎟
⎠
, c =

(
c0 c1 · · · cn−1

)

is observable for all state feedback matrices k = (k0, . . . ,kn−1). This in turn is
equivalent to p(z) = ∑n−1

j=0 c jz j being coprime to all monic polynomials of the

form qk(z) = zn + kn−1zn−1 + · · · + k0, i.e., that p(z) = c0 �= 0 is a nonzero
constant polynomial. Thus a scalar strictly proper transfer function g(z) is feedback
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irreducible if and only if it has no finite zeros, i.e., if and only if the relative degree
degq−deg p of g(z) is equal to n. This analysis is now extended to the matrix case,
beginning with the following lemma.

Lemma 6.12. Let G(z)∈ F(z)m×m be proper with the right Wiener–Hopf factoriza-
tion G(z) =U(z)Δ(z)Γ (z), with U(z) ∈ F[z]p×p unimodular, and Γ (z) biproper. Let
N(z) ∈ F[z]p×m be a right prime polynomial matrix, with p ≥ m. Then

N(z)G(z) =U1(z)

(
Δ(z)

0

)
Γ (z).

In particular, G(z) and N(z)G(z) have the same right factorization indices.

Proof. Since N(z) is right prime, there exist unimodular matrices V (z),W (z), with

N(z) =V (z)

(
Im

0

)
W (z).

Thus,

N(z)G(z) =V (z)

(
Im

0

)
W (z)U(z)Δ(z)Γ (z) =U1(z)

(
Δ(z)

0

)
Γ (z),

where U1(z) =V (z)diag(W (z)U(z), I). �
Theorem 6.13. Let (A,B,C) be a reachable and observable realization of a strictly
proper transfer function G(z) with right coprime factorization G(z) = N(z)D(z)−1.
Assume that G(z) has full column rank. Then:

1. (A,B,C) is feedback irreducible if and only if N(z) is right prime (i.e., left
invertible);

2. Assume that (A,B,C) is feedback irreducible. Then the negatives of the reach-
ability indices of (A,B) coincide with the right Wiener–Hopf indices and the
negatives of the observability indices of (C,A)) coincide with the left Wiener–
Hopf indices of the transfer function G(z) =C(zI −A)−1B.

Proof. Recall that every state feedback transformation (A,B,C) �→ (A+BK,B,C)
acts on transfer functions by right multiplication with a biproper rational function,
that is,

C(zI −A+BK)−1B =C(zI −A)−1B(Im +K(zI −A)−1B)−1.

Moreover, each right coprime factorization of (zI −A)−1B = H(z)D(z)−1 implies
the intertwining relation BD(z) = (zI −A)H(z). This induces the factorization

G(z) =C(zI −A)−1B = N(z)D(z)−1,



298 6 State Feedback and Output Injection

with N(z) = CH(z). This is summarized in the system equivalence relation

(
B 0
0 I

)(
D(z) −I
N(z) 0

)
=

(
zI −A −B

C 0

)(
H(z) 0

0 I

)
,

with B,zI − A left coprime and D(z),H(z) right coprime, which implies the
following equivalence:

(
D(z) −I
N(z) 0

)
�FSE

(
zI −A −B

C 0

)
.

Using the Shift Realization Theorem 4.26, it follows that the minimality of (A,B,C)
implies the right coprimeness of N(z),D(z). Similarly, from the factorization
(zI −A−BK)−1B = H(z)(D(z)−KH(z))−1 follows the intertwining relation

(
B 0
0 I

)(
D(z)+KH(z) −I

N(z) 0

)
=

(
zI −A+BK −B

C 0

)(
H(z) 0

0 I

)
.

Here B,zI −A+BK and D(z) +KH(z),H(z) are left coprime and right coprime,
respectively. In particular,

(
D(z)+KH(z) −I

N(z) 0

)
�FSE

(
zI −A+BK −B

C 0

)

for each K. This shows that (A,B,C) is feedback irreducible if and only if the
polynomial matrices N(z) and D(z)+KH(z) are right coprime for each K.

Next, it will be shown that this condition is equivalent to the right primeness
of N(z). Clearly, the right primeness of N(z) implies for each state feedback matrix
K the right coprimeness of N(z) and D(z)−KH(z). Thus N(z) right prime implies
feedback irreducibility. To prove the converse implication, let us assume that N(z) is
not right prime, i.e., there exists a polynomial factorization N(z) = N′(z)F(z) with
N′(z) right prime and F(z) ∈ F[z]m×m nonsingular and nonunimodular. Applying
Lemma 6.12, it follows that G(z) = N(z)D(z)−1 and F(z)D(z)−1 have the same
right Wiener–Hopf indices. Let

F(z)D(z)−1 =U(z)Δ(z)−1Γ (z)

be the right Wiener–Hopf factorization, with Δ(z) = diag(zκ1 , · · · ,zκm). Then
E(z) := Δ(z)U(z)−1 is a nonsingular polynomial matrix and

D1(z) := E(z)F(z) = Γ (z)D(z)
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is a nonsingular polynomial matrix with degdetD1(z) = degdetD(z). Computing

G(z)Γ (z)−1 = N(z)D(z)−1Γ (z)−1 = N(z)D1(z)
−1

= N′(z)E(z)−1

yields a nontrivial factorization. Thus, the McMillan degrees of G(z)Γ (z)−1 and
G(z) are related as

δ (GΓ −1)≤ degdetE(z)< degdetD1(z) = degdetD(z) = δ (G).

This shows that G(z) is feedback reducible and completes the proof of the first claim
of the theorem.

By the first part, a full column rank coprime factorization G(z) = N(z)D(z)−1

is feedback irreducible if and only if N(z) is right prime. But then Lemma 6.12
implies that G(z) and D(z)−1 have the same right Wiener–Hopf indices. Thus the
right Wiener–Hopf indices of G(z) are equal to the negative of the left Wiener–Hopf
indices of D(z), which by Theorem 6.10 coincide with the reachability indices of
(A,B). This completes the proof of the second claim 2. �

Our attention turns now to the question of constructing a canonical form for
reachable pairs under the action of the state feedback group.

Theorem 6.14. 1. Let (A,B) ∈ F
n×n ×F

n×m be a reachable pair with reachability
indices κ1 ≥ . . . ≥ κm. Then (A,B) is feedback equivalent to the block matrix
representation

⎛

⎜
⎝

⎛

⎜
⎝

A1
. . .

Am

⎞

⎟
⎠ ,

⎛

⎜
⎝

B1
. . .

Bm

⎞

⎟
⎠

⎞

⎟
⎠ , (6.13)

with the matrices A j ∈ F
κ j×κ j and B j ∈ F

κ j×1 defined by

A j =

⎛

⎜
⎜
⎜
⎜
⎝

0

1
. . .
. . .

. . .

1 0

⎞

⎟
⎟
⎟
⎟
⎠
, B j =

⎛

⎜
⎜
⎜
⎝

1
0
...
0

⎞

⎟
⎟
⎟
⎠
. (6.14)

We will refer to D(z) = diag(zκ1 , . . . ,zκm) as the polynomial Brunovsky form
and to (6.13) and (6.14) as the Brunovsky canonical form.

2. Two reachable pairs (A,B),(A,B) ∈ F
n×(n+m) are state feedback equivalent if

and only if they have the same reachability indices

κ1(A,B) = κ1(A,B), . . . , κm(A,B) = κm(A,B).



300 6 State Feedback and Output Injection

Proof. The direct sum XΔ = Xzκ1 ⊕ ·· · ⊕ Xzκm is a consequence of Δ(z) being
diagonal. Let {e1, . . . ,em} be the standard basis in F

m; then the vectors

{zie j | 1 ≤ j ≤ m,0 ≤ i < κ j −1}

form a basis for XΔ . Relative to these bases in F
m and XΔ , the pair (SΔ ,πΔ ) has the

matrix representation (6.13)–(6.14).
It is a trivial consequence of the Brunovsky canonical form that the reachability

indices define a complete set of invariants for state feedback of reachable pairs. �
For a reachable pair (A,B), the group

Stab(A,B) =

{(
S 0
K R

)
| (S(A+BK)S−1,SBR−1) = (A,B)

}
⊂ GLn+m(F)

of all elements of the feedback group that leave (A,B) invariant is called the state
feedback stabilizer group of (A,B). Clearly, the stabilizers of feedback equivalent
pairs are isomorphic. As a consequence, it suffices to study the stabilizer group for
systems in Brunovsky canonical form. It follows that the structure of the stabilizer
depends only on the reachability indices of the reachable pair (A,B). The relation
between the state feedback stabilizer subgroup and the left factorization group
introduced in Theorem 2.37 can be stated as follows.

Theorem 6.15. Let (A,B) be a reachable pair, and let N(z)D(z)−1 be a right
coprime factorization of (zI −A)−1B. Then the state feedback stabilizer group of
(A,B) is isomorphic to the left factorization group of D(z).

Proof. The pair (A,B) is isomorphic to (SD,πD) and, in turn, state feedback equiv-
alent to the polynomial Brunovsky form (SΔ ,πΔ ), with Δ(z) = diag(zκ1 , . . . ,zκm).
It suffices, therefore, to study the state feedback stabilizer at (SΔ ,πΔ ). However, by
Theorem 6.2, this is equivalent to finding all solutions of the equation

Γ (z)Δ(z) = Δ(z)U(z), (6.15)

with U(z) ∈ F[z]m×m unimodular and Γ (z) ∈ F[[z−1]]m×m biproper. Equation (6.15)
is equivalent to γijzκ j = zκiuij, which in turn implies

deguij =

{
0 κi > κ j

≤ κ j −κi κ j ≥ κi .
(6.16)

Conversely, if U(z) is unimodular and satisfies (6.16), then it is easily seen that
equation (6.15) is solvable with a biproper Γ (z). Thus the unimodular matrices
U(z) of (6.15) have a block triangular structure. By Theorem 2.37, the set of such
unimodular matrices U(z) coincides with the left factorization group of Δ(z). This
structure is reflected in Γ (z), which is uniquely determined by U(z) and Δ(z).
This completes the proof. �
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From the preceding discussion it is clear that the existence of a Wiener–Hopf
factorization of a nonsingular polynomial matrix is equivalent to the existence of
Brunovsky’s canonical form for a reachable pair. Next, in a purely state-space-
oriented manner, a refinement of the Brunovsky canonical form is derived. Recall
that the Kronecker indices of a state space pair (A,B = (b1, . . . ,bm)) are defined
by the following deletion process on the columns of the reachability matrix. Let ≤
denote the lexicographical ordering on {0, . . . ,n−1}×{1, . . . ,m} defined as

(i, j)≤ (k, �) ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

i < k

or

i = k, j ≤ �.

While going from left to right in the list

(
b1, . . . ,bm,Ab1, . . . ,Abm, . . . ,A

n−1b1, . . . ,A
n−1bm

)

of mn vectors in F
n, delete all vectors Akb� that are linearly dependent on the set

of preceding vectors {Aib j|(i, j)≤ (k, �)}.

It is easily seen that the remaining vectors constitute a list of the form

(b1,Ab1, . . . ,A
k1−1b1, . . . ,bm, . . . ,A

km−1bm), (6.17)

for unique nonnegative integers k1, . . . ,km, called the Kronecker indices. Note that
the Kronecker indices define an m-tuple of integers and not a set of numbers. By
construction, the vectors in (6.17) form a basis of the reachable set R of (A,B). Thus
(A,B) is reachable if and only if the Kronecker indices satisfy k1 + · · ·+ km = n.
An important difference that distinguishes the Kronecker indices k = (k1, . . . ,km)
from the reachability indices κ = (κ1, . . . ,κm) is that the Kronecker indices are not
ordered by magnitude. Thus (2,0,3) and (3,2,0) are Kronecker indices of different
systems (A,B). It is easily seen that k = (k1, . . . ,km) are Kronecker indices of a
system (A,B), with ki ≥ 1 for all i; then the reachability indices of (A,B) arise by
reordering the Kronecker indices in decreasing form. However, this is not true if one
of the Kronecker indices is zero.

Let Um denote the subgroup of GLm(F) consisting of all m×m upper triangular
matrices U with identical entries u11 = · · · = umm = 1 on the diagonal. The
restricted state feedback group is then defined by all state feedback trans-
formations

(
S 0
K U

)
,

with S ∈ GLn(F), K ∈ F
m×n, and U ∈ Um. Two linear systems (A,B),(A,B) are

called restricted state feedback equivalent if (A,B) = (S(A−BK)S−1,SBU−1) is
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satisfied for a restricted state feedback transformation (S,K,U). We proceed to show
that the Kronecker indices are feedback invariants.

Lemma 6.16. Let (A,B) ∈ F
n×(n+m) be reachable with Kronecker indices k =

(k1, . . . ,km). For each S ∈ GLn(F), U ∈ Um, and K ∈ F
m×n, the pairs (A,B) and

(A,B) = (S(A−BK)S−1,SBU−1) have the same Kronecker indices k = (k1, . . . ,km).

Proof. It is easily seen that the reachability matrix

R(A,B) = (B, . . . ,An−1B)

satisfies

R(A,B) = SR(A−BK,BU) = SR(A,B)V

for a suitable invertible upper triangular matrix V ∈ GLnm(F) with diagonal blocks
V11 = · · · = Vnn = Im. This implies that the Kronecker indices of (A,B) and (A,B)
coincide. This completes the proof. �

The following result will be needed.

Lemma 6.17. Let (A,B) ∈ F
n×(n+m) be reachable with Kronecker indices

k = (k1, . . . ,km). Then there exists a unipotent matrix U ∈ Um such that B =
(b1, . . . ,bm) = BU satisfies for each j = 1, . . . ,m

Ak j b j ∈ ImB+ · · ·+Ak j−1ImB,

Ak j b j �∈ ImB+ · · ·+Ak j−2ImB.

Proof. By construction of the Kronecker indices there exist cij ∈ F, i < j, and z j ∈
ImB+ · · ·+Ak j−1ImB such that

Ak j b j = z j +
j−1

∑
i=1

cijA
k j bi,

Ak j−1b j �∈ ImB+ · · ·+Ak j−2ImB+Ak j−1 span{b1, . . . ,b j−1}
(6.18)

holds. Define b j = b j −∑ j−1
i=1 cijbi and

U =

⎛

⎜
⎜
⎜
⎜
⎝

1 −c12 · · · −c1m
. . .

. . .
...

. . . −cm−1,m

1

⎞

⎟
⎟
⎟
⎟
⎠

∈Um.



6.3 Reachability Indices and the Brunovsky Form 303

Then Ak j b j = z j ∈ ImB+ · · ·+Ak j−1ImB. Suppose

Ak j−1b j ∈ ImB+ · · ·+Ak j−2ImB.

Then Ak j−1b j = Ak j−1b j + ∑ j−1
i=1 cijAk j−1bi, in contradiction to (6.18). This com-

pletes the proof. �
Using the preceding lemmas, it will be shown next that the Kronecker indices

define a complete set of invariants for the restricted state feedback equivalence of
reachable pairs.

Theorem 6.18. 1. Let (A,B) ∈ F
n×(n+m) be a reachable pair with Kronecker

indices k = (k1, . . . ,km). Then (A,B) is restricted state feedback equivalent to
the block matrix

⎛

⎜
⎝

⎛

⎜
⎝

A1
. . .

Am

⎞

⎟
⎠ ,

⎛

⎜
⎝

B1
. . .

Bm

⎞

⎟
⎠

⎞

⎟
⎠ (6.19)

A j =

⎛

⎜
⎜
⎜
⎜
⎝

0

1
. . .
. . .

. . .

1 0

⎞

⎟
⎟
⎟
⎟
⎠
, B j =

⎛

⎜
⎜
⎜
⎝

1
0
...
0

⎞

⎟
⎟
⎟
⎠

(6.20)

if k j ≥ 1. If k j = 0, then the block A j is absent and B j = 0.
2. Two reachable pairs (A,B),(A,B) ∈ F

n×(n+m) are restricted state feedback
equivalent if and only if their Kronecker indices coincide.

Proof. Choose U as in Lemma 6.17. Then there exist elements β1, j, . . . ,βk j , j ∈ ImB
such that

Ak j b j −Ak j−1β1, j −·· ·−βk j , j = 0. (6.21)

For j = 1, . . . ,m define the state vectors

x1, j=b j, x2, j=Ab j−β1, j, . . . , xk j , j = Ak j−1b j −Ak j−2β1 j −·· ·−βk j−1, j.

Let X ⊂ F
n denote the span of the vectors {xi, j | 1 ≤ i ≤ k j, j = 1, . . . ,m}. Clearly,

ImB ⊂X . Using (6.21), it follows that Axk j , j = βk j , j ∈ ImB ⊂X . Thus X is A-
invariant. Thus the reachability of (A,B) implies that {xi, j | 1 ≤ i ≤ k j, j = 1, . . . ,m}
defines a basis of Fn. Choose ui, j ∈ F

m with Bui, j = βi, j, i = 1, . . . ,k j, j = 1, . . . ,m.
Then the feedback transformation K : Fn −→ F

m defined by

Kxi, j =−ui, j, i = 1, . . . ,k j, j = 1, . . . ,m,
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satisfies, for each j = 1, . . . ,m,

(A−BK)xi, j = Axi, j −βi, j = xi+1, j, 1 ≤ i ≤ k j −1,

(A−BK)xKj , j = AxKj , j −βk j , j = 0.

By choosing S=(x1,1, . . . ,xk1,1, . . . ,x1,m, . . . ,xkm,m), K, and U as above, one sees that
S is invertible and (S(A−BK)S−1,SBU) has the form (6.19), (6.20). This completes
the proof of the first part. The second follows easily from the first part, together with
Lemma 6.16. �

6.4 Pole Assignment

The study of the effects of state feedback on closed-loop dynamics begins with
an analysis of the simple case of a single-input reachable system. It will be
shown how, by the use of state feedback, the dynamics of the system, determined
by its characteristic polynomial, can be arbitrarily assigned. This indicates the
tremendous importance of feedback. In fact, as long as reachability is fulfilled, the
original system can be flexibly modified by the use of feedback. In particular, every
reachable system can be stabilized through feedback. The subsequent results are
presented in an unashamedly matrix-oriented manner, beginning with the single-
input case, where the analysis becomes particularly simple.

Theorem 6.19. Let (A,b)∈F
n×n×F

n be a reachable system with the n-dimensional
state space Fn. Let f (z) = f0 + · · ·+ fn−1zn−1 + zn be a monic polynomial of degree
n. Then there exists a unique feedback transformation K ∈ F

1×n such that A− bK
has f (z) as its characteristic polynomial.

Proof. Let q(z) = q0+ · · ·+qn−1zn−1+zn denote the characteristic polynomial of A.
Since (A,b) is reachable, the pair (A,b) is state space equivalent to the reachable
shift realization (Sq,πq) on Xq. Thus, without loss of generality, one can identify
(A,b) with the pair (Sq,πq) and, by the choice of basis in Xq, one can assume that
the pair (A,b) has the control canonical form

A =

⎛

⎜
⎜
⎜
⎝

0 1
. . .

. . .

0 1
−q0 −q1 . . . −qn−1

⎞

⎟
⎟
⎟
⎠
, b =

⎛

⎜
⎜
⎜
⎝

0
...
0
1

⎞

⎟
⎟
⎟
⎠
. (6.22)

This can be done by taking a right coprime factorization N(z)q(z)−1 of (zI−A)−1b,
with q(z) the characteristic polynomial of A, and choosing in Xq the control basis
Bco := {γ1(z), . . . ,γn(z)}, where, for i = 0, . . . ,n,

γi(z) = zn−i +qn−1zn−i−1 + · · ·+qi.
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A straightforward computation shows that the shift operator Sq acts on these basis
vectors via

Sq(γi) = γi−1(z)−qi−1.

Therefore, (A,b) in (6.22) is just the basis representation of (Sq,πq) with respect to
the control basis. Let K = (k0, . . . ,kn−1) be the feedback map, i.e.,

Kx = k0x1 + · · ·+ kn−1xn;

then

A−bK =

⎛

⎜
⎜
⎜
⎝

0 1
. . .

. . .

0 1
−k0 −q0 . . . . . . −kn−1 −qn−1

⎞

⎟
⎟
⎟
⎠
.

The unique choice ki =−qi + fi then yields det(zI −A+bK) = f (z). �
The following two results present explicit formulas for the feedback gain K.

Theorem 6.20 (Ackermann Formula). Let (A,b) ∈ F
n×n ×F

n be reachable, and
let f (z) = ∑n

j=0 f jz j, fn = 1, be a monic polynomial of degree n. Let R(A,b) =

(b, . . . ,An−1b) ∈ GLn(F) denote the reachability matrix. Then

K = (0, . . . ,0,1)R(A,b)−1 f (A)

is the unique element K ∈ F
1×n, with det(zI −A+bK) = f (z).

Proof. By Theorem 6.19, there exists a unique K ∈ F
1×n that satisfies det(zI −A+

bK) = f (z). Applying the Cayley–Hamilton theorem, one obtains

n

∑
j=0

f j(A−bK) j = f (A−bK) = 0,

and therefore

f (A) =−
n

∑
j=0

f j
(
(A−bK) j −A j) .

There exist row vectors k j,� ∈ F
1×n, k j, j−1 =−K, with

(A−bK) j −A j =
j−1

∑
�=0

A�bk j,�.
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Thus

f (A) =−
n

∑
j=0

j−1

∑
�=0

A�bf jk j,� =−
n−1

∑
i=0

Aibξi,

with ξi = ∑ j>i f jk j,i and ξn−1 = fnkn,n−1 =−K. Defining the matrix

ξ =

⎛

⎜
⎝

ξ0
...

ξn−1

⎞

⎟
⎠ ∈ F

n×n

we obtain

f (A) =−R(A,b)ξ ,

and hence K =−e�n ξ = e�n R(A,b)−1 f (A). �
We now turn to the analysis of state feedback in the general case m ≥ 1.

Lemma 6.21. Assume (A,B) is reachable and b = Bv �= 0. Then there exist u0 =
v,u1, . . . ,un−1 ∈ F

m such that (x1, . . . ,xn), recursively defined as

x1 = b, xk = Axk−1 +Buk, k = 2, . . . ,n,

is a basis of Fn.

Proof. One constructs the input vectors uk recursively, starting from u0 = v. Suppose
that u1, . . . ,uk−1 are such that x1, . . . ,xk are linearly independent, satisfying (x0 := 0)
x j = Ax j−1 +Bu j−1 for j = 1, . . . ,k and k < n. Let L ⊂ F

n denote the k-dimensional
linear subspace spanned by x1, . . . ,xk. Then one chooses uk ∈ F

m such that xk+1 :=
Axk +Buk /∈ L. Such a vector uk always exists, thereby proving the induction step
that {x1, . . . ,xk+1} is linearly independent. In fact, otherwise

Axk +Bu ∈ L

is true for all u ∈ F
m. This implies Axk ∈ L, and therefore also ImB ⊂ L, and, in

turn, Ax j = x j+1 −Bu j ∈ L for j = 1, . . . ,k−1. This shows that L is an A-invariant
linear subspace that contains ImB. The reachability of (A,B) thus implies L = F

n,
in contradiction to dimL = k < n. �

The preceding result has an interesting consequence for state feedback control.

Lemma 6.22 (Heymann). Let (A,B) ∈ F
n×n ×F

n×m and b = Bv �= 0. Then there
exists K ∈ F

m×n such that (A+BK,b) is reachable. In particular, for each reachable
pair (A,B) there exists a feedback gain K ∈ F

m×n such that A+BK is cyclic.
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Proof. Choose u0, . . . ,un−1 ∈ F
m and basis vectors x1, . . . ,xn of F

n, as in
Lemma 6.21. For each element un ∈ F

m there exists a unique K ∈ F
m×n, with

Kx j = u j, j = 1, . . . ,n.

This shows that

(A+BK)x j = Ax j +Bu j = x j+1

for j = 1, . . . ,n−1. Since b = x1, we obtain

(A+BK)jb = x j+1

for j = 1, . . . ,n − 1. Thus (b,(A + BK)b, . . . ,(A + BK)n−1b) is a basis of F
n,

completing the proof. �
It is easy to see that, for nonzero b ∈ ImB, the set of all such feedback gains K

forms a Zariski-open subset of Fm×n. The celebrated pole-shifting theorem of M.
Wonham is proved next. The reason for the name is due to the fact that poles of the
rational function (zI −A+BK)−1B correspond to the eigenvalues of A−BK.

Theorem 6.23 (Pole-Shifting Theorem). A linear system (A,B) ∈ F
n×n ×F

n×m is
reachable if and only if for every monic polynomial f (z) ∈ F[z] of degree n there
exists K ∈ F

m×n, with

det(zI −A+BK) = f (z). (6.23)

Proof. Suppose (A,B) is reachable. Choose a nonzero vector b = Bv in the image
space of B. By Heymann’s Lemma 6.22, there exists F ∈ F

m×n such that (A+BF,b)
is reachable. Thus, using Theorem 6.19, there exists a row vector L ∈ F

1×n such that

det(zI −A−BF+bL) = f (z).

This proves (6.23) for K =−F + vL.
To prove the converse, the Kalman decomposition is used. Thus, assume that

(A,B) is a system with k-dimensional reachable subspace

R = ImB+AImB+ · · ·+An−1ImB.

Choose the basis vectors v1, . . . ,vk of R and extend them to a basis v1, . . . ,vn of
the state space F

n. Then the matrix S = (v1, . . . ,vn) ∈ F
n×n is invertible. Since R

is an A-invariant linear subspace, this implies that the state-space equivalent system
(S−1AS,S−1B) has the structure

(
A1 A2

0 A3

)
,

(
B1

0

)
, (6.24)
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which is referred to as the Kalman decomposition; it exists for every (A,B) ∈
F

n×(n+m). Note that (A1,B1) is uniquely determined up to a similarity transformation
and is reachable. Moreover, the eigenvalues of A3 are uniquely determined by the
similarity orbit of (A,B). Thus, for the converse, one can assume, without loss of
generality, that (A,B) is given by (6.24), with k < n. Hence, for each feedback matrix
K = (K1,K2),

A−BK =

(
A1 −B1K1 A2 −B1K2

0 A3

)
,

with the characteristic polynomial det(zI − A + BK) = det(zI − A1 + B1K1)
det(zI −A3). This implies that the characteristic polynomials det(zI − A + BK)
of nonreachable pairs (A,B) all contain the same factor det(zI−A3) and thus cannot
be arbitrarily assigned. This completes the proof. �

There is a simple, inductive proof of Wonham’s theorem that works over an
algebraically closed field F = F. We learned the following argument from Carsten
Scherer. Without loss of generality, assume that rkB = m and (A,B) is of the form

A =

(
A11 A12

A21 A22

)
, B =

(
Im

0

)
.

Then, using the Hautus test, one sees that the reachability of (A,B) implies that
of (A22,A21). Consider a monic polynomial f (z) = f1(z) f2(z), with monic factors
f1(z), f2(z) of degrees m,n−m, respectively. Applying the induction hypothesis,
there exists K2 ∈ F

m×(n−m) such that

det(zIn−m −A22 +A21K2) = f2(z).

Let C be a matrix with the characteristic polynomial f1(z). With

S =

(
I K2

0 I

)

and a suitable matrix X , one obtains

SAS−1 =

(
A11 +K2A21 X

A21 A22 −A21K2

)
, SB = B =

(
I
0

)
.

Therefore, it follows that, with F = (C−A11 −K2A21,−X), one obtains

SAS−1 +SBF =

(
C 0

A21 A22 −A21K2

)
,

which has the characteristic polynomial f1(z) f2(z). This completes the proof.
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6.5 Rosenbrock’s Theorem

We turn now to the question of finding the extent to which the dynamics of a system
can be modified by state feedback. Of course, as far as eigenvalue assignment
of A − BK is concerned, it would suffice to know whether the eigenvalues of
A−BK could be freely assigned. A deeper question concerns the ability to alter
the entire eigenstructure of A− BK, i.e., the Jordan canonical form. Rosenbrock
showed, in a subtle analysis, that the invariant factors of A − BK can be freely
assigned subject only to a finite set of constraints arising from the reachability
indices. Our aim in this section is to prove this fundamental result. In view of
Theorem 6.14, the only invariants of a reachable pair (A,B) under the action of
a feedback group are the reachability indices. On the other hand, the invariant
factors of a nonsingular polynomial matrix D(z) are invariant under left and right
multiplication by unimodular polynomial matrices. Now if N(z)D(z)−1 is a right
coprime factorization of the input to state transfer function (zI −A)−1B, then the
column indices of D(z), which are the minimal indices of the submodule M =
D(z)F[z]m, are equal to the reachability indices of the pair (A,B). Thus it suffices to
see how, starting with a polynomial matrix diag(ψ1, . . . ,ψm), where the ψi satisfy
ψi|ψi−1 for i = 2, . . . ,m, that the minimal indices of M can be changed by left and
right multiplication by unimodular matrices. Our starting point is the following.

Lemma 6.24. Let D(z) = (d1(z), . . . ,dm(z)) ∈ F[z]m×m be a nonsingular, column
proper polynomial matrix with its columns d1(z), . . . ,dm(z) of degrees λ1 ≥ ·· · ≥
λm. Assume, without loss of generality, that the highest column coefficient matrix is
[D]hc = Im. If 1 ≤ j,k ≤ m, with degd j < degdk, then there exist elementary row and
column operations transforming D(z) into D′(z) = (d′

1(z), . . . ,d
′
m(z)), with

degd′
i =

⎧
⎨

⎩

degdi i �= j,k,
degd j +1 i = j,
degdk −1 i = k,

and [D′]hc = Im.

Proof. Adding the jth row, multiplied by z, to the kth row of D(z), one gets a matrix

D(1)(z) with columns d(1)
i (z), with

degd(1)
i

⎧
⎨

⎩

= degdi, i �= j,k,
= degd j +1, i = j,
≤ degdk, i = k.
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Next, add a suitable multiple of the jth column to the kth column to obtain a D(2)(z),
with

degd(2)
i

⎧
⎨

⎩

= degdi, i �= j,k,
= degd j +1, i = j,
≤ degdk, i = k.

Since detD(2)(z) = detD(z), one necessarily has degd(2)
k = degdk − 1, and the

highest column coefficient matrix satisfies det[D(2)]hc �= 0. Thus the matrix D′(z) =
[D(2)]−1

hc D(2)(z) has the required properties. �
As an example of the process, taken from Rosenbrock (1970), consider the

nonsingular, column proper polynomial matrix

D(z) =

⎛

⎝
z2 +2 z3 z5 + z+1
2z+1 z4 +3z+1 2z2

z+2 2z2 +1 z6 −2z4

⎞

⎠ .

The column indices are 2,4,6, and we will reduce the degree of the last column and
increase the degree of the first. The successive stages are

D(1)(z) =

⎛

⎝
z2 +2 z3 z5 + z+1
2z+1 z4 +3z+1 2z2

z3 +3z+2 z4 +2z2 +1 2z6 −2z4 + z2 + z

⎞

⎠ ,

D(2)(z) =

⎛

⎝
z2 +2 z3 −z5 −4z3 + z+1
2z+1 z4 +3z+1 −4z4 −2z3 +2z2

z3 +3z+2 z4 +2z2 +1 −8z4 −4z3 + z2 + z

⎞

⎠ ,

[D(2)]hc =

⎛

⎝
0 0 −1
0 1 0
1 1 0

⎞

⎠ , [D(2)]−1
hc =

⎛

⎝
0 −1 1
0 1 0
−1 0 0

⎞

⎠ ,

and, finally,

D′(z) =

⎛

⎝
z3 + z+1 2z2 −3z −4z4 −2z3 − z2 + z

2z+1 z4 +3z+1 −4z4 −2z3 +2z2

−z2 −2 −z3 z5 +4z3 − z−1

⎞

⎠ .

Proposition 6.25. Let M ⊂ F[z]m be a full submodule with minimal indices
λ1 ≥ ·· · ≥ λm, and let κ1 ≥ ·· · ≥ κm be a sequence of nonnegative integers.
If the conditions

∑ j
i=1 λi ≥ ∑ j

i=1 κi, j = 1, . . . ,m−1,
∑m

i=1 λi = ∑m
i=1 κi,
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are satisfied, then there exists a submodule N ⊂ F[z]m, unimodularly equivalent to
M, with minimal indices κ1 ≥ ·· · ≥ κm.

Proof. The proof is by a purely combinatorial argument on partitions, applying
Lemma 6.24. Recall that a partition of n is a decreasing sequence of integers
κ1 ≤ ·· · ≤ κm, with κ1 + · · · + κm = n. Define a partial order, the so-called
dominance order, on partitions κ = (κ1, . . . ,κm) and λ = (λ1, . . . ,λm) of ∑m

i=1 κi =
n = ∑m

i=1 λi as

κ � λ ⇐⇒
j

∑
i=1

κi ≤
j

∑
i=1

λi, j = 1, . . . ,m−1.

A partition λ �= κ is called a cover of κ whenever λ is the smallest element in
the dominance order that satisfies κ � λ . The covers for the dominance order are
characterized as follows. There exists j < k, with

λi =

⎧
⎨

⎩

κi i, �= j,k,
κ j +1, i = j,
κk −1, i = k.

It is a simple and well-known combinatorial exercise to verify that two arbitrary
partitions κ � λ are connected through a chain of covers, i.e.,

κ = λ (1) � ·· · � λ (k) = λ ,

where λ (i) is a cover of λ (i−1), i = 2, . . . ,k. From this and Lemma 6.24 the result
follows, as every product of elementary row and column operations is achieved by
multiplying with appropriate unimodular matrices. �

To prove Rosenbrock’s theorem, one can start from the coprime factorization

(zI −A)−1B = N(z)D(z)−1

and try to modify the invariant factors of D(z), keeping the reachability indices
invariant. This is a difficult process, though conceptually more natural. Much easier,
at the cost of being somewhat indirect, is to start from a polynomial matrix with the
required invariant factors and modify the reachability indices, without changing the
invariant factors.

Theorem 6.26 (Rosenbrock). Let (A,B) ∈ F
n×n ×F

n×m be a reachable pair with
reachability indices κ1 ≥ ·· · ≥ κm. Let ψi ∈ F[z] be such that ψi+1 | ψi for i =
1, . . . ,m−1. Then a necessary and sufficient condition for the existence of a matrix K
such that the invariant factors of A−BK are ψ1, . . . ,ψm is that
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∑d
i=1 degψi ≥ ∑d

i=1 κi, d = 1, . . . ,m−1,

∑m
i=1 degψi = ∑m

i=1 κi.

(6.25)

Proof. Let (zI − A)−1B = N(z)D(z)−1 be a right coprime factorization such that
D(z) is column proper. Then D(z) is a minimal-basis matrix for the full sub-
module D(z)F[z]m ⊂ F[z]m with minimal indices κ1 ≥ ·· · ≥ κm and Smith form
diag(ψ1, . . . ,ψm). Let gk denote the degree of the g.c.d. δk(D) of all k× k minors
of D(z). Since D(z) is a minimal basis, a k× k principal minor of D(z) has degree
κm+ · · ·+κm−k+1, and therefore gk ≤ κm+ · · ·+κm−k+1 for k = 1, . . . ,m. Similarly,
since δk(D) = ψm · · ·ψm−k+1, we obtain

gk =
m

∑
i=m−k+1

degψi ≤
m

∑
i=m−k+1

κi,

m

∑
i=1

degψi =
m

∑
i=1

κi,

which is equivalent to (6.25). This shows necessity.
Conversely, assume that conditions (6.25) are in force. By Proposition 6.25, the

submodule M with the minimal-basis matrix Dψ := diag(ψ1, . . . ,ψm) is unimod-
ularly equivalent to a full submodule D(z)Fm[z] with indices κ1 ≥ ·· · ≥ κm. Thus
there exist unimodular polynomial matrices U(z),V (z) with D(z) = U(z)DψV (z),
and D(z) has invariant factors ψ1, . . . ,ψm and minimal indices κ1 ≥ ·· · ≥ κm.
Consider the shift realization (SD,πD). By Theorem 6.8, the reachability indices
of (SD,πD) are κ1 ≥ ·· · ≥ κm, and the invariant factors of SD are equal to the
Smith invariants of D(z), i.e., they are ψ1, . . . ,ψm. Now consider reachable pairs
(A,B) with reachability indices κ1 ≥ ·· · ≥ κm. By Theorem 6.1, the pair (A,B) is
feedback equivalent to the pair (SD,πD), where SD has invariant factors ψ1, . . . ,ψm.
This completes the proof. �

6.6 Stabilizability

Recall that a discrete-time linear dynamical system

xt+1 = Axt (6.26)

on F
n is called stable whenever the sequence xt = Atx0 converges to zero for all

initial conditions x0 ∈ F
n. Similarly, a linear control system

xt+1 = Axt +But (6.27)
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in the state space F
n is called open-loop stabilizable if, for all initial conditions

x0 ∈ F
n, there exists an input sequence ut ∈ F

m, with

lim
t→∞

xt = 0.

Of course, these notions require specifying a topology on F
n, and there are

various ways to do that. This issue came up already in Chapter 5 in the discussion of
the stability of linear systems. As in Chapter 5, we consider only two possibilities,
depending on whether or not F is a subfield of the complex number field C:

1. The Euclidean distance topology on subfields F⊂ C;
2. The discrete topology on any other field F.

Recall that the discrete topology is a unique topology on F whose open (and
closed) subsets are subsets of F. Thus every finite field is compact with respect
to this topology. Moreover, if F is endowed with the discrete topology, then the
stability of (6.26) means that the trajectories of (6.26) eventually become constant,
i.e., xt+T = xT , t ≥ 0, for a sufficiently large T ∈ N. Equivalently, A is nilpotent.
In contrast, if F ⊂ C is endowed with the Euclidean topology, then the asymptotic
stability of (6.26) is satisfied if and only if all eigenvalues λ of A have absolute
value |λ |< 1. In this case, one says that A is Schur stable. The stability properties
of linear systems (6.26) are thus summarized as follows.

Proposition 6.27. Let F denote a field. A discrete-time dynamical system (6.26) is
asymptotically stable if and only if

1. A is Schur stable whenever F⊂ C;
2. A is nilpotent for the discrete topology on F.

For the remaining parts of this section, let us assume that F ⊂ C is satisfied,
so that one is dealing with the standard notion of stability. The standard stability
domain for the discrete-time system (6.26) is the open unit disc in the complex
plane

D := {z | |z|< 1}.

In contrast, for continuous-time systems ẋ = Ax it will be the open left half-plane
C− = {z | Re(z) < 0}. In more generality, one may consider a subset Λ of the
complex field C and refer to it as a region of stability.

Definition 6.28. Let F⊂ C be a subfield.

1. A nonsingular polynomial matrix T (z) ∈ F[z]r×r will be called Λ -stable, with
respect to a region of stability Λ , if detT (z) has all its zeros in Λ . If Λ =D, then
the polynomial matrix T (z) is called stable.

2. The pair (A,B) ∈ F
n×n ×F

n×m is called Λ -feedback stabilizable if there exists
a state feedback gain K ∈ F

m×n such that A − BK has all eigenvalues in Λ .
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For discrete-time systems (6.27) and Λ = D, one refers simply to feedback
stabilizable rather than to D-feedback stabilizable.

Next, it is shown that the notions of feedback stabilizability and open-loop
stabilizability are equivalent.

Proposition 6.29. Let F⊂ C be a subfield.

1. A linear system (6.27) is open-loop stabilizable if and only if it is feedback
stabilizable.

2. Let F = C. A linear system (6.27) is reachable if and only if it is Λ -feedback
stabilizable for all nonempty subsets Λ ⊂ C.

Proof. Clearly, feedback stabilizability implies stabilizability. Suppose (A,B) is
stabilizable. As a result of the pole-shifting theorem, it follows that the reachability
of (A,B) is sufficient for feedback stabilizability. If (A,B) is not reachable, then,
after applying a suitable similarity transformation (A,B) �→ (SAS−1,SB) by an
invertible matrix S ∈ GLn(F), one can assume without loss of generality that (A,B)
is in the Kalman decomposition form

A =

(
A11 A12

0 A22

)
, B =

(
B1

0

)
,

where (A11,B1) is reachable. By the pole-shifting theorem, there exists a feedback
matrix K = (K1,K2) ∈ F

m×n such that A11 − B1K1 is stable. Since (A,B) is
stabilizable, the matrix A22 must be stable. This implies that A−BK is stable, i.e.,
(A,B) is feedback stabilizable.

Again, using the pole-shifting theorem, the eigenvalues of A−BK for reachable
pairs (A,B) can be placed arbitrarily in the complex plane. If (A,B) is not
reachable, then the unreachable modes, i.e., the eigenvalues of A22 in the Kalman
decomposition, are in the spectrum of A−BK for every feedback matrix K. This
proves the converse. �

The same argument as in the preceding proof shows that systems (6.27) over the
field of real numbers R are reachable if and only if they are Λ -feedback stabilizable
for all nonempty self-conjugate subsets Λ ⊂ C. However, for other subfields of C
such as, for example, the algebraic number fields, such simple characterizations
cannot be expected.

A polynomial characterization of stabilizability is our next objective.

Theorem 6.30. Let F ⊂ C be a subfield, and let Λ ⊂ C be a nonempty subset. Let
G(z) = V (z)T (z)−1U(z)+W (z) ∈ F(z)p×m be proper rational, and let (A,B,C,D)
be the associated shift realization (4.20) defined over F. Then the following
conditions are equivalent:

1. The shift realization is Λ -feedback stabilizable.
2. The g.c.l.d. E(z) of T (z) and U(z) is stable.
3.

(
T (z) U(z)

)
has full row rank for every z �∈ Λ .

4.
(

zI −A B
)

has full row rank for every z �∈ Λ .
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Proof. By Theorem 4.26, the reachability subspace of the shift realization is R =
EXT ′ . Let F be a complementary subspace to EXT ′ in XT , i.e., XT = EXT ′ +F and
F ∩EXT ′ = {0}. Then F � XT/EXT ′ , and this in turn is isomorphic to XE . To see
this, consider the projection map πE : XT −→ XE . From the intertwining relation
T (z) = E(z)T ′(z) it follows, using Theorem 3.21, that this map is surjective and its
kernel is EXT ′ . Thus the isomorphism is proved. In terms of this direct sum, the pair
(A,B) has the Kalman decomposition

(
A11 A12

0 A22

)
,

(
B1

0

)
,

with (A11,B1) reachable and A22 � SE . Thus the pair (A,B) is feedback stabilizable
if and only if A22 is stable or, equivalently, if and only if E(z) is a stable polynomial
matrix. This proves the equivalence of the first two conditions. The last two
conditions are equivalent to the assertion that the g.c.l.d. E(z) is invertible for
all z �∈ Λ , i.e., to detE(z) being Λ -stable. In turn, this is equivalent to the matrix
(zI −A,B) being full row rank for all z �∈ Λ . This completes the proof. �

A different way of stating this for the field F = C is as follows. For Λ ⊂ C and
A ∈ C

n×n we let

XΛ (A) =
⊕

λ∈Λ
Ker(λ I −A)n

denote the direct sum of the generalized eigenspaces of A with respect to the
eigenvalues λ ∈ Λ . If Λ− is a stability region and Λ+ is its complement in C, then
every polynomial p(z) has a factorization p(z) = p+(z)p−(z), with p−(z) stable and
p+(z) antistable. Clearly,

XΛ+(A) = Kerd+(A).

For each stability region Λ− and its complement Λ+ we will also write

X± = XΛ±(A).

The preceding result can also be stated in a state-space representation.

Theorem 6.31. A pair (A,B) ∈ C
n×n ×C

n×m is Λ−-stabilizable if and only if one
of the following equivalent conditions is satisfied:

1. X+(A) is contained in the reachable set of (A,B).
2. rk(zI −A, B) = n is valid for all z ∈ Λ+.

Proof. The first condition is often expressed by saying that the unstable modes are
reachable. The equivalence of stabilizability with the first condition thus follows
from the Kalman decomposition of (A,B). The equivalence of stabilizability with
the second condition follows at once from Theorem 6.30. �
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This construction can be extended to a field F as follows. Let F−[z]⊂ F[z] denote
a multiplicatively closed subset of nonzero polynomials such that, with an element
f (z) ∈ F−[z], all its prime factors are also contained in F−[z], and further assume
that 1 ∈ F−[z]. Such subsets are called saturated. Denote by F+[z] the set of all
polynomials that are coprime with all elements of F−[z]. Elements of F−[z] will
be called stable polynomials and those of F+[z] antistable. It is a consequence of
the primary decomposition theorem that every polynomial p(z) has a factorization
p(z)= p−(z)p+(z), with p−(z) stable and p+(z)∈F+[z]. As an example, take F=R

and R−[z] the set of all monic Schur polynomials of arbitrary degree (including 1).
Alternatively, one considers the set of all monic real Hurwitz polynomials, including
1. As another example, one may consider F−[z] := {zn | n ∈ N0}.

Let A : Fn −→ F
n be a linear transformation and d(z) = det(zI −A) its charac-

teristic polynomial, and let d(z) = d−(z)d+(z) be its factorization into stable and
antistable factors. In Chapter 3, it was shown that such a factorization induces
essentially unique factorizations

zI −A = S+(z)S−(z) = S−(z)S+(z),

with S−(z),S−(z) stable and S+(z),S+(z) antistable. This leads to the spectral
decomposition

F
n = XzI−A = S+(z)XS− ⊕S−(z)XS+ = X−(A)⊕X+(A),

where the subspaces X−(A),X+(A) are the generalized eigenspaces associated with
the sets of stable and antistable eigenvalues, respectively. With these constructions
in our hands, Theorem 6.31 generalizes as follows; the proof is by a straightforward
modification of the arguments for Theorem 6.31 and is omitted.

Theorem 6.32. Let F−[z] be a saturated subset of nonzero polynomials. For
(A,B) ∈ F

n×n ×F
n×m, the following conditions are equivalent:

1. There exists K ∈ F
m×n with det(zI −A+BK) ∈ F−[z].

2. X+(A) is contained in the reachable set (A,B).
3. rank(zI −A B) = n is satisfied for all roots z ∈ F of all irreducible polynomials

in F+[z].

The dual notion to open-loop stabilizability is that of detectability. While we will
introduce this concept in Chapter 7 in a larger context, here we confine ourselves to
a more specialized situation.

Definition 6.33. The system

xt+1 = Axt +But

yt = Cxt

(6.28)
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is called detectable, provided all pairs of trajectories (xt),(x̄t) with the same input
sequence (ut) and identical output sequences (Cxt) = (Cx̄t) satisfy

lim
t→∞

(xt − x̄t) = 0.

Using linearity, it is easily seen that the detectability of (6.28) is satisfied if and only
if all state trajectories (xt) of the input-free or, equivalently, autonomous system

xt+1 = Axt ,

yt = Cxt ,
(6.29)

with Cxt = 0 for t ≥ 0, satisfy

lim
t→∞

xt = 0.

Thus (6.28) is detectable if and only if (6.29) is detectable. The system-theoretic
interpretation of detectability is clarified by the following result.

Proposition 6.34. Let F⊂ C. The following conditions are equivalent:

1. System (6.28) is detectable.
2. The unobservable states

O∗ =
n−1⋂

i=0

KerCAi−1

satisfy

O∗ ⊂ {x0 ∈ F
n | lim

t→∞
xt = 0}.

3. The unobservable modes λ ∈ C of (C,A) are all stable, i.e., satisfy |λ |< 1.
4. The dual system (A�,C�) is stabilizable.
5. There exists an output injection transformation L ∈ F

n×p such that A− LC is
Schur stable.

Proof. The equivalence of statements (1) and (2) follows directly from the defini-
tion. Equivalently, the dual Kalman decomposition of (C,A) is of the form

SAS−1 =

(
A11 0
A21 A22

)
, CS−1 =

(
C1 0

)
,

with (C1,A11) observable and A22 stable. Equivalently, the Kalman decomposition
of (A�,C�) is

(
A�

11 A�
21

0 A�
22

)
,

(
C�

1
0

)
,
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with (A�
11,C

�
1 ) reachable and A�

22 stable. Thus statement (2) is both equivalent
to statement (3) and to (A�,C�) being stabilizable. By Proposition 6.29, this is
equivalent to the existence of K ∈ F

n×p such that A�+C�K is stable. With L = K�
this shows the equivalence of statements (4) and (5). �

Using this simple proposition, all mentioned results on state feedback stabiliz-
ability dualize to corresponding results on detectability. For a subset Λ ⊂ C, a
realization (A,B,C,D) defined over a subfield F ⊂ C is called Λ -output injection
stabilizable, if there exists L ∈ F

n×p such that det(zI −A+LC) has all its roots in
Λ . With this notation, the dual result to Theorem 6.30 is stated as follows.

Theorem 6.35. Let F ⊂ C be a subfield, and let Λ ⊂ C be a nonempty subset.
Let G(z) = V (z)T (z)−1U(z) +W (z) ∈ F(z)p×m be a proper rational matrix, and
let (A,B,C,D) be the associated shift realization (4.20), defined over F. Then the
following conditions are equivalent:

1. The shift realization is Λ -output injection stabilizable.
2. The g.c.l.d. E(z) of T (z) and V (z) is stable.

3.

(
V (z)
T (z)

)
has full column rank for every z �∈ Λ .

4.

(
C

zI −A

)
has full column rank for every z �∈ Λ .

Proof. By transposing the transfer function G(z), one obtains the factor-
ization G(z)� = U(z)�T (z)−�V (z)� + W (z)�, having the shift realization
(A�,C�,B�,D�). Moreover, (C,A) is Λ -output injection stabilizable if and
only if (A�,C�) is Λ -feedback stabilizable. Thus the result follows by applying
Theorem 6.30 to G(z)�. �

The next result is valid over an arbitrary field. It is obtained by dualizing
Theorem 6.32; the straightforward arguments are omitted.

Theorem 6.36. Let F−[z] be a saturated subset of nonzero polynomials, and let
(A,B) ∈ F

n×n ×F
n×m; then the following conditions are equivalent:

1. There exists L ∈ F
n×p with det(zI −A+LC) ∈ F−[z].

2. The unobservable states O∗ of (C,A) satisfy

O∗ ⊂ X−(A).

3. The full rank condition

rk

(
C

zI −A

)
= n

is fulfilled for all roots z ∈ F of all irreducible polynomials in F+[z].
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6.7 Dynamic Output Feedback Stabilization

Next, let us consider the task of characterizing the notions of internal stability
and stabilizability for the standard output feedback connection of a system with
transfer function G(z) and a controller with transfer function K(z). This is a
generalization of the situation discussed so far, insofar as it refers to dynamic
output feedback rather than to static state feedback or output injection. For
simplicity, we will focus on continuous-time systems described over the field of
real numbers; the discrete-time case runs similarly. Schematically, the following
diagram describes the feedback connection:

G

K

�

y2 e2

y1e1 � �

�

�

��� �

�

Our assumption is that both transfer functions G(z) ∈R(z)p×m and K(z) ∈R(z)m×p

are proper rational. The full system equations are then given by

G(e1 + y2) = y1,

K(e2 + y1) = y2.
(6.30)

Equivalently, the closed-loop feedback interconnection Σcl is described using state-
space realizations

ẋ = Ax+Bu1,

y1 = Cx+Du1,
(6.31)

ξ̇ = Acξ +Bcu2,

y2 = Ccξ +Dcu2,
(6.32)

for G(z) and K(z), respectively, together with the coupling equations

u1 = e1 + y2, u2 = e2 + y1.

The feedback interconnection Σcl is called well-posed, provided I −DDc is invert-
ible or, equivalently, if the transfer function I−G(z)K(z) is properly invertible. This
condition is easily seen to be equivalent to the (m+ p)× (m+ p)-matrix

F =

(
Im −Dc

−D Ip

)
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being invertible. Thus the feedback interconnection of a strictly proper transfer
function G(z) with a proper controller K(z) is well posed. The assumption of well-
posedness allows one to eliminate the internal input variables u1,u2 via

F

(
u1

u2

)
=

(
0 Cc

C 0

)(
x
ξ

)
+

(
e1

e2

)

from the state equations (6.31) and (6.32). The closed-loop state space representa-
tion Σcl of a well-posed feedback interconnection then takes the form

ẋcl = Aclxcl +Bcl

(
e1

e2

)
,

(
y1

y2

)
= Cclxcl +Dcl

(
e1

e2

)
,

(6.33)

with system matrices

Acl =

(
A 0
0 Ac

)
+

(
B 0
0 Bc

)
F−1

(
0 Cc

C 0

)
, Bcl =

(
B 0
0 Bc

)
F−1

Ccl =

(
0 I
I 0

)
F−1

(
0 Cc

C 0

)
, Dcl =

(
D 0
0 Dc

)
F−1 .

(6.34)

Thus (Acl,Bcl,Ccl) is static output feedback equivalent to the direct sum system

((
A 0
0 Ac

)
,

(
B 0
0 Bc

)
,

(
C 0
0 Cc

))
,

which shows that (6.34) is reachable and observable if and only if both (A,B,C,D)
and (Ac,Bc,Cc,Dc) are reachable and observable. Thus the minimality of the
realizations (A,B,C,D), (Ac,Bc,Cc,Dc) of G(z) and K(z) implies the minimality
of the closed-loop system (Acl,Bcl,Ccl,Dcl).

Definition 6.37. The feedback interconnection Σcl is internally stable if and only
if Σcl is well posed and the system matrix Acl is stable, i.e., all eigenvalues of Acl

have negative real part.

Note that

Φ(z) = Dcl +Ccl(zI −Acl)
−1Bcl (6.35)

is the transfer function of the feedback interconnection (6.34).
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Proposition 6.38. Φ(z), the closed-loop transfer function in (6.35) from

(
e1

e2

)
to

(
y1

y2

)
, is given by

Φ =

(
I −G

−K I

)−1(
G 0
0 K

)
=

(
G 0
0 K

)(
I −K

−G I

)−1

. (6.36)

In particular, the closed-loop transfer function G f from e1 to y1 is given by

G f (z) =
(

I 0
)

Φ(z)

(
I
0

)

= (I −G(z)K(z))−1G(z) = G(z)(I −K(z)G(z))−1.

(6.37)

Proof. The system equations (6.30) can be written in matrix form as

(
I −G

−K I

)(
y1

y2

)
=

(
G 0
0 K

)(
e1

e2

)
.

It is easily calculated that

(
I −G

−K I

)−1

=

(
(I −GK)−1 G(I −KG)−1

(I −KG)−1K (I −KG)−1

)
,

and hence

(
y1

y2

)
=

(
(I −GK)−1G G(I −KG)−1K
(I −KG)−1KG (I −KG)−1K

)(
e1

e2

)
. (6.38)

The expression for the transfer function G f (z) from e1 to y1 follows easily
from (6.38). �

The definition of internal stability is stated solely in state-space terms. If the
realizations (A,B,C,D) and (Ac,Bc,Cc,Dc) of the plant G(z) and the controller K(z)
are stabilizable and detectable, then we can reformulate this condition in terms of
the two transfer functions.

Proposition 6.39. Assume that (A,B,C,D) and (Ac,Bc,Cc,Dc) are stabilizable and
detectable. Then the feedback interconnection Σcl is internally stable if and only if
I −G(z)K(z) is properly invertible and the transfer function Φ(z) of Σcl is stable.

Proof. By assumption, the realization (Acl,Bcl,Ccl,Dcl) is stabilizable and
detectable. Thus the transfer function Φ(z) is stable if and only if Acl is stable.
Moreover, I −G(∞)K(∞) = I −DDc. This completes the proof. �
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To characterize internally stabilizing controllers K(z) for a transfer function
G(z), it is convenient to replace the ring of polynomials by the ring of stable
proper rational functions. We proceed to formulate the relevant results on coprime
factorizations in this context.
1. Coprime Factorizations over RH∞.
Let RH∞ denote the set of all proper rational transfer functions g(z) ∈ R(z) with
poles only in the left half-plane C−. It is easily seen that RH∞ is a ring and, indeed,
a principal ideal domain; see Chapter 2 for details. Since any real rational function
in R(z) can be expressed as the quotient of two elements from RH∞, we conclude
that R(z) is the field of fractions of RH∞. Many important properties of rational
matrix functions remain valid over RH∞. One says that a rational matrix valued
function G(z) ∈ R(z)p×m is in RHp×m

∞ if and only if G(z) is proper and stable. Two
results for rational matrix functions – of importance for us, namely the existence of
coprime and doubly coprime factorizations over the ring RH∞ – are stated next. The
proofs of these theorems run verbatim with those of Theorem 2.29, Theorem 2.33,
and Corollary 2.34 in Chapter 2; they are therefore omitted.

Theorem 6.40. For G(z) ∈ F(z)p×m the following assertions are valid:

1. There exist right coprime matrices P(z)∈ RHp×m
∞ ,Q(z)∈ RHm×m

∞ with det Q �= 0
such that

G(z) = P(z)Q(z)−1. (6.39)

If P1(z) ∈ RHp×m
∞ ,Q1(z) ∈ RHm×m

∞ are right coprime with det Q1 �= 0 and

P1(z)Q1(z)
−1 = P(z)Q(z)−1 = G(z),

then there exists a unique unimodular matrix U ∈ GLm(RH∞) with (P1(z),Q1(z))
= (P(z)U(z),Q(z)U(z)).

2. There exist left coprime matrices P�(z)∈ RHp×m
∞ ,Q�(z)∈ RHp×p

∞ with det Q� �= 0
such that

G(z) = Q�(z)
−1P�(z). (6.40)

If P�,1(z) ∈ RHp×m
∞ ,Q�,1(z) ∈ RHp×p

∞ are left coprime with det Q�,1 �= 0 and

Q�,1(z)
−1P�,1(z) = Q�,2(z)

−1P�,2(z) = G(z),

then (P�,1(z),Q�,1(z)) = (U(z)P�,2(z),U(z)Q�,2(z)) for a uniquely determined
unimodular matrix U ∈ GLm(RH∞).

Factorizations as in (6.39) and (6.40) are called right and left coprime factoriza-
tions of G over RH∞.
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We now relate the coprimeness of factorizations over RH∞ to the solvability of
Bezout equations, i.e., to unimodular embeddings. Let

G(z) = Q�(z)
−1P�(z) = Pr(z)Qr(z)

−1

be right and left coprime factorizations of G(z) ∈ F(z)p×m over the ring RH∞,
respectively, which implies the intertwining relation

P�(z)Qr(z) = Q�(z)Pr(z).

Theorem 6.41 (Doubly Coprime Factorization). Let P�(z)∈RHp×m
∞ and Q�(z)∈

RHp×p
∞ be right coprime and Pr(z) ∈ RHp×m

∞ and Qr(z) ∈ RHm×m
∞ be left coprime,

with

Q�(z)Pr(z) = P�(z)Qr(z).

Then there exist stable proper rational matrices X(z) ∈ RHm×p
∞ ,X(z) ∈

RHm×p
∞ ,Y (z) ∈ RHm×m

∞ ,Y (z) ∈ RHp×p
∞ , with

(
Y (z) X(z)

−P�(z) Q�(z)

)(
Qr(z) −X(z)
Pr(z) Y (z)

)
=

(
Im 0
0 Ip

)
.

In particular, every right coprime factorization G(z) = P(z)Q(z)−1 of a proper
rational function G(z) ∈ R(z)p×m admits an extension to a unimodular matrix

(
Q(z) −X(z)
P(z) Y (z)

)
∈ GLm+p(RH∞).

2. Characterization of stabilizing controllers.
The characterization of controllers that internally stabilize a transfer function G(z)
is our next task. For this, the following abstract extension of Lemma 2.28 is needed.

Lemma 6.42. Let R denote a principal ideal domain, and let A ∈ Rr×r,B ∈
Rr×m,C ∈ Rp×r be such that det A �= 0, A and B are left coprime and C and A
are right coprime. Then CA−1B ∈ Rp×m if and only if A ∈ GLr(R) is unimodular.

Proof. The condition is obviously sufficient. For the necessity part consider a
solution X ∈ Rr×r,Y ∈ Rr×p of the Bezout equation

XA+YC = Ir.

The solution exists since A and C are right coprime. Thus A−1B = XB+YCA−1B ∈
Rr×m. Using the dual Bezout equation

AX̃ +BỸ = I

we conclude that A−1 = X̃ +A−1BỸ ∈ Rr×r. Thus A is unimodular, i.e., A ∈ GLr(R).
�
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Theorem 6.43. Assume that G(z) ∈ F(z)p×m is proper and that K(z) ∈ F(z)m×p is
a proper controller, with the assumption that I −G(∞)K(∞) is invertible. Assume
that G(z) and K(z) have the following coprime factorizations over RH∞:

G(z) = Q�(z)−1P�(z) = Pr(z)Qr(z)−1,

K(z) = S�(z)−1R�(z) = Rr(z)Sr(z)−1.

(6.41)

Then:

1. The transfer function Φ(z) of Σcl has the following coprime factorizations:

Φ(z) =

(
Q� −P�

−R� S�

)−1(
P� 0
0 R�

)
=

(
Pr 0
0 Rr

)(
Qr −Rr

−Pr Sr

)−1

. (6.42)

2. For suitable units u1,u2,u3 in RH∞, the following equations are fulfilled:

det

(
Q� −P�

−R� S�

)
= u1 det(Q�Sr −P�Rr) = u2 det(S�Qr −R�Pr)

= u3 det

(
Qr −Rr

−Pr Sr

)
.

3. Φ(z) is proper and stable if and only if

S�Qr −R�Pr ∈ GLm(RH∞) or Q�Sr −P�Rr ∈ GLp(RH∞).

4. The closed-loop transfer function G f from e1 to y1 has the following equivalent
representations:

G f (z) = Sr(z)(Q�(z)Sr(z)−P�(z)Rr(z))
−1P�(z)

= Pr(z)(S�(z)Qr(z)−R�(z)Pr(z))
−1S�(z)

=
(

Pr 0
)
(

Qr −Rr

−Pr Sr

)−1(
I
0

)

=
(

I 0
)
(

Q� −P�
−R� S�

)−1(
P�
0

)
.

(6.43)

More generally, the closed-loop transfer function is

Φ(z) =

(
0 0
−I 0

)
+

(
Pr

Qr

)
(S�Qr −R�Pr)

−1 (S� R�

)

=

(
0 −I
0 0

)
+

(
Sr

Rr

)
(Q�Sr −P�Rr)

−1 (P� Q�

)
.
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Proof. The representations (6.42) follow by substituting the coprime factoriza-
tions (6.41) into equation (6.36). The right coprimeness of the factorization

(
Pr 0
0 Rr

)(
Qr −Rr

−Pr Sr

)−1

is equivalent to the right primeness of the matrix

⎛

⎜
⎜
⎝

Pr 0
0 Rr

Qr −Rr

−Pr Sr

⎞

⎟
⎟
⎠ ,

i.e., after suitable elementary row operations, to the right primeness of

⎛

⎜
⎜
⎝

Pr 0
Qr 0
0 Rr

0 Sr

⎞

⎟
⎟
⎠ .

In turn, this is equivalent to our assumption that Pr,Qr and Rr,Sr are right coprime,
respectively. A similar argument shows left coprimeness.
2. First, note that from the coprime factorizations (6.45) it follows that detQ� =
cdetQr and detS� = d detSr for suitable units c,d ∈ RH∞. Next, computing

(
I 0

R�Q
−1
� I

)(
Q� −P�

−R� S�

)
=

(
Q� −P�
0 S�−R�Q

−1
� P�

)
=

(
Q� −P�
0 (S�Qr −R�Pr)Q−1

r

)
,

and applying the multiplication rule of determinants, it follows that

det

(
Q� −P�

−R� S�

)
= detQ� ·det(S�Qr −R�Pr) ·detQ−1

r

= c ·det(S�Qr −R�Pr).

The other equalities are derived analogously.
4. Substituting representations (6.41) into (6.37), the closed-loop transfer function
G f (z) has the following representations:

G f (z) = Sr(z)(Q�(z)Sr(z)−P�(z)Rr(z))
−1P�(z)

= Pr(z)(S�(z)Qr(z)−R�(z)Pr(z))
−1S�(z).

To obtain the third representation in (6.43), the coprime factorizations (6.42) are
used to compute
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G f (z) =
(

I 0
)
(

Pr 0
0 Rr

)(
Qr −Rr

−Pr Sr

)−1(
I
0

)

=
(

Pr 0
)
(

Qr −Rr

−Pr Sr

)−1(
I
0

)
.

The last representation in (6.43) is similarly derived. The formulas for the closed-
loop transfer function Φ(z) are similarly derived using formula (6.38). �

The preceding result leads to the first main characterization of all stabilizing
controllers.

Theorem 6.44. The following assertions are equivalent for proper transfer func-
tions G(z) ∈ R(z)p×m and K(z) ∈ R(z)m×p that define a well-posed feedback
interconnection:

1. K internally stabilizes G.
2. The matrix

(
Q� −P�
−R� S�

)
∈ RH(p+m)×(p+m)

∞

is invertible over RH∞.
3. The matrix

(
Qr −Pr

−Rr Sr

)
∈ RH(p+m)×(p+m)

∞

is invertible over RH∞.
4. det (Q�Sr −P�Rr) is a biproper stable rational function with stable inverse.
5. det (S�Qr −R�Pr) is a biproper stable rational function with stable inverse.

Proof. By Proposition 6.39, the controller K internally stabilizes K if and only if

the transfer function Φ ∈ RH(p+m)×(p+m)
∞ . By Lemma 6.42 this is true if and only if

(
Q� −P�
−R� S�

)−1

∈ RH(p+m)×(p+m)
∞ .

This in turn is equivalent to

(
Qr −Pr

−Rr Sr

)−1

∈ RH(p+m)×(p+m)
∞ .

By Theorem 6.43, this is true if and only if det (Q�Sr −P�Rr) [or det (S�Qr −
R�Pr)] is a biproper stable rational function with stable inverse. This proves the
equivalence of parts (1)–(5). �
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3. The Youla–Kucera Parameterization.
The characterization of stabilizing controllers via unimodular embeddings is precise
but has the disadvantage of not leading to an easily manageable parameterization
of all such controllers. The Youla–Kucera parameterization resolves this issue by
giving a complete parameterization of all stabilizing controllers via linear fractional
transformations.

Theorem 6.45 (Youla-Kucera). Let

G(z) = Q�(z)
−1P�(z) = Pr(z)Qr(z)

−1 ∈ R(z)p×m

be a proper rational, stable, and coprime factorization over RH∞. Let

(
Y (z) X(z)
P�(z) Q�(z)

)(
Qr(z) −X(z)

−Pr(z) Y (z)

)
=

(
Im 0
0 Ip

)
(6.44)

be a unimodular embedding for this doubly coprime factorization over RH∞. Then
all proper rational and internally stabilizing controllers for G(z) are parameter-
ized by

K = (X −QrΓ )(Y −PrΓ )−1 = (Y −Γ P�)
−1(X −Γ Q�). (6.45)

Here Γ denotes an arbitrary element of (RH∞)
m×p such that the matrices

Y (∞)−Pr(∞)Γ (∞) and Y (∞)−Γ (∞)P�(∞)

are invertible.

Proof. By Theorem 6.44, all internally stabilizing controllers K = RrS−1
r are such

that the matrix

(
Qr(z) −Rr(z)

−Pr(z) Sr(z)

)

is unimodular over RH∞. Thus there exists a unimodular matrix

U =

(
U11 U12

U21 U22

)
∈ GLm+p(RH∞),

with

(
Qr(z) −Rr(z)

−Pr(z) Sr(z)

)
=

(
Qr(z) −X(z)

−Pr(z) Y (z)

)(
U11 U12

U21 U22

)
∈ GLm+p(RH∞).

This implies U11 = I, U21 = 0, and U22 is unimodular over RH∞. Thus Γ :=U12U−1
22

exists in RH∞ and
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(−Rr(z)
Sr(z)

)
=

(
Qr(z) −X(z)
−Pr(z) Y (z)

)(
ΓU22

U22

)

follows, implying

K = RrS
−1
r = (X −QrΓ )(Y −PrΓ )−1.

By the unimodular embedding (6.44), we see that

(
Y−Γ P� X−Γ Q�

P� Q�

)(
Qr −Rr

−Pr Sr

)
=

(
I −Γ
0 I

)(
Y X
P� Q�

)(
Qr −X
−Pr Y

)(
I Γ
0 I

)

=

(
I 0
0 I

)
.

Defining R� = X −Γ Q�,S� := Y −Γ P�, one obtains S�Rr = R�Sr, and therefore
S−1
� R� = RrS−1

r , which completes the proof. �
As a consequence of the Youla–Kucera parameterization, it is now shown that

the closed-loop transfer function depends affinely on the stabilizing parameter Γ .
This fact is very important in robust controller design and opens the way to applying
convex optimization techniques to robust controller design.

Theorem 6.46. Let

G(z) = Q�(z)
−1P�(z) = Pr(z)Qr(z)

−1 ∈ R(z)p×m

be a proper rational, stable, and coprime factorization over RH∞. Let

K0(z) = Y (z)−1X(z) = X(z)Y (z)−1 ∈ R(z)m×p

denote a proper rational, stable, and coprime factorization over RH∞ of a stabilizing
controller K0(z) of G(z). Then the closed-loop transfer function ΦK(z) =

(
Pr(z) 0

0 X(z)

)(
Qr(z) −X(z)
−Pr(z) Y (z)

)−1

−
(

Pr(z)
Qr(z)

)
(

0 Γ (z)
)
(

Qr(z) −X(z)
−Pr(z) Y (z)

)−1

of all proper stabilizing controllers K(z) of G(z) depends affinely on the stabilizing
parameter Γ , where Γ (z) ∈ RH∞ is such that the matrices

Y (∞)−Pr(∞)Γ (∞) and Y (∞)−Γ (∞)P�(∞)

are invertible. In particular, the closed-loop transfer function from e1 to y1 has the
affine parametric form
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G f (z) = (I −P�ΓY
−1
)G(I −K0G)−1 .

Proof. By Theorem 6.43, the transfer function for the feedback interconnection of
G with K = ML

−1
is

G f (z) =
(

Pr 0
)
(

Qr −M
−Pr L

)−1(
I
0

)
.

From the Youla–Kucera parameterization it follows that

(
Qr −M

−Pr L

)
=

(
Qr −X

−Pr Y

)(
I Γ
0 I

)
.

Moreover,

(
Qr −X

−Pr Y

)
=

(
I −K0

−G I

)(
Qr 0
0 Y

)
.

Using (6.38), we compute

G f (z) =
(

Pr 0
)
(

I −Γ
0 I

)(
Qr −X

−Pr Y

)−1(
I
0

)

=
(

Pr −PrΓ
)
(

Q−1
r 0

0 Y
−1

)(
I −K0

−G I

)−1(
I
0

)

= G(I −K0G)−1 −PrΓY
−1

G(I −K0G)−1,

which completes the proof. �
To present a state-space representation of the Youla–Kucera parameterization, state-
space formulas for the involved transfer functions are derived. Let (A,B,C,D) and
(Ac,Bc,Cc,Dc) be realizations of the transfer functions G(z) and K(z), respectively.
Choosing a state feedback F such that A+BF is stable, the transfer functions

Qr(z) =

[
A+BF B

F I

]
, Pr(z) =

[
A+BF B
C+DF D

]
(6.46)

are in RH∞ and define a right coprime factorization of G(z) = Pr(z)Qr(z)−1.
Similarly, for J such that A− JC is stable, the transfer functions

Q�(z) =

[
A− JC J
−C I

]
, P�(z) =

[
A− JC B− JD

C D

]
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are in RH∞ and define a left coprime factorization of

G(z) = Q�(z)
−1P�(z).

A solution of the unimodular embedding (6.44) is constructed as follows. Define

Y (z) =

[
A+BF J
C+DF I

]
, X(z) =

[
A+BF J

F 0

]
.

Similarly,

Y (z) =

[
A− JC B− JD
−F I

]
, X(z) =

[
A− JC J

F 0

]
. (6.47)

The state-space representation of the stabilizing controller then has the form

ξ̇ = Aξ +Bu+ J(y−Cξ −Du)

u = Fξ −Γ (
d
dt
)(y−Cξ −Du),

(6.48)

where Γ (z) denotes a proper rational and stable matrix function such that the
feedback system is well posed. One observes that the transfer function of (6.48) from
y to u is exactly the controller transfer function K(z) in Youla–Kucera form (6.45).
By choosing a state-space realization of Γ (z) as

Γ (z) = Dc +Cc(zI −Ac)Bc,

we obtain the (implicit) first-order representation of the stabilizing controller as

ξ̇ = Aξ +Bu+ J(y−Cξ −Du)

ξ̇c = Acξc +Bc(y−Cξ −Du)

u = Fξ −Ccξc −Dc(y−Cξ −Du).

For D = 0, this leads to the input/output representation of all stabilizing controllers:

ξ̇ = (A+BF− (J−Dc)C)ξ −BcCcξc + Jy

ξ̇c =−BcCξ +Acξc +Bcy

u = (F +DcC)ξ −Ccξc −Dcy.
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6.8 Controlled Invariant Subspaces

The next two sections are devoted to a presentation of basic concepts of geometric
control, i.e., the notions of controlled and conditioned invariant subspaces. Geomet-
ric control was developed in the early 1970s, by Francis, Wonham, and Morse on
the one hand and by Basile and Marro on the other, as a tool for better understanding
the structure of linear control systems within the context of state-space theory.
Controlled and conditioned invariant subspaces generalize the class of invariant
subspaces of a linear operator into a system-theoretic context; we refer the reader
to Basile and Marro (1992) and Wonham (1979) for comprehensive accounts of the
theory. The emphasis of geometric control is on clear, conceptual statements rather
than a reliance on complex matrix manipulations. The term geometry refers to the
basis-free study of classes of subspaces of the state space of a system realization.
This development led to (sometimes iterative) design procedures based on elegant
vector space geometric considerations.

However, it turned out that even the most fundamental problem of linear control –
characterizing the limitations of pole placement by state feedback – was first solved
by Rosenbrock using polynomial algebra. This brought about the need to find a
bridge between the elegance of state-space problem formulations on the one hand
and the computational effectiveness of polynomial algebra on the other.

The availability of the shift realizations allows us, given a system in a polynomial
matrix description, to interpret the relation between the elements of the associated
polynomial system matrix in state-space terms. Conversely, constructs coming from
geometric control theory can, in the case of the shift realization, be completely
characterized in polynomial terms. This leads to the most direct connection between
abstract module theory, polynomial matrix descriptions, and state-space theory. In
particular, the most basic objects of geometric control theory, namely, controlled
and conditioned invariant subspaces, have very nice characterizations in terms of the
zero structure of linear systems. Space limitations prevent us from delving deeper
into the subject.

For a linear transformation A in X and an A-invariant subspace V , denote by
A|V the restriction of A to V . By a slight abuse of notation, an induced map,
i.e., a map induced by A in the quotient space X /V , will be denoted by A|X /V .
Controlled invariant subspaces are introduced in state-space terms, and functional
characterizations are derived.

Definition 6.47. 1. For an input pair (A,B), a subspace V ⊂ X is called a
controlled invariant subspace, or an (A,B)-invariant subspace, if

AV ⊂ V + ImB. (6.49)

2. Let V be a controlled invariant subspace for the pair (A,B). A feedback map
K : X −→ U that satisfies (A − BK)V ⊂ V is called a friend of V . For a
controlled invariant subspace V , denote by F (V ) the set of all friends of V .
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3. One says that a family {Vα} of controlled invariant subspaces is compatible if⋂
α F (Vα) �= /0, i.e., if there exists a single feedback map K such that

(A−BK)Vα ⊂ Vα

if fulfilled for all α .
4. A controlled invariant subspace V is called a reachability subspace if for each

monic polynomial q(z) of degree equal to dimV there exists a friend K ∈F (V )
such that q(z) is the characteristic polynomial of (A−BK)|V .

If V ⊂X is a controlled invariant subspace for the pair (A,B), and if K ∈F (V ),
the notation (A−BK)|V and (A−BK)|X /V will be used for restricted and induced
maps, respectively. The next proposition is basic to all subsequent characterizations
of controlled invariant subspaces.

Proposition 6.48. For an input pair (A,B), the following statements are
equivalent:

1. V is a controlled invariant subspace.
2. There exists a state feedback map K : X −→ U such that the subspace V is

(A−BK)-invariant.
3. For each x0 ∈ V , there exists an infinite sequence of inputs (ut) such that the

state trajectory (xt) stays in V .

Proof. Assume V is controlled invariant. We choose a basis {v1, . . . ,vm} for V . By
our assumption, Avi = wi +Bui, with wi ∈ V and ui ∈U . Define a linear map K on
V by Kvi = ui, and arbitrarily extend it to all of X . Thus there exists a linear map
K : X −→U such that (A−BK)vi = wi, i.e., (A−BK)V ⊂ V , and (1) implies (2).

Let x0 ∈ V . It suffices to show that there exists a control u such that x1 =
Ax0 +Bu ∈ V . Since (A−BK)x0 = x1 ∈ V , we simply choose u = −Kx0, and (2)
implies (3). To show that (3) implies (1), consider x0 ∈X . It suffices to show that
there exists a u such that Ax0 = x1 −Bu. By our assumption, there exists a u ∈ U
such that x1 = Ax0 +Bu ∈ V . �

The following are simple, yet very useful, characterizations.

Proposition 6.49. Let (A,B) be an input pair in the state space X . Then:

1. A q-dimensional subspace V ⊂ X is controlled invariant if and only if there
exists a linear map F : V0 −→ V0 on a q-dimensional subspace V0 and an
injective map Z : V0 −→X , with ImZ = V , so that for some K

ZF = (A−BK)Z. (6.50)

2. A q-dimensional subspace R ⊂X is a reachability subspace if and only if there
exists a reachable pair (F,G) in a q-dimensional state space V0 and an injective
map Z : V0 −→X , with ImZ =R, so that for some K,L
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ZF = (A−BK)Z,
ZG = BL.

(6.51)

Proof. If V ⊂X is controlled invariant, choose V0 =V , F = (A−BK)|V , and Z to
be the embedding map of V into X . Conversely, if F and Z exist and satisfy (6.50),
then clearly V = ImZ satisfies (A+BK)V ⊂ V , i.e., V is controlled invariant.

To prove the second claim, observe that BL ⊂ ImZ implies the existence of G. If
R is a reachability subspace, it is in particular controlled invariant. So, with F and Z
defined as previously, the first equation of (6.51) was derived. By the injectivity of Z,
G is uniquely determined. Thus, the second equation in (6.51) follows. Conversely,
if (6.51) holds, then, as previously, R = ImZ is controlled invariant. Now, with
k = dimX0 and using the reachability of (F,G), we compute

k−1

∑
i=0

(A−BK)i ImBL = Z
k−1

∑
i=0

Fi ImG = ZX0 =R,

which shows that R is a reachability subspace. �
Stated next are some elementary properties of controlled invariant subspaces.

Proposition 6.50. Let (A,B) be an input pair in the state space X . Then:

1. The set of controlled invariant subspaces is closed under sums;
2. For each subspace K ⊂X there exists a maximal controlled invariant subspace

contained in K that is denoted by V ∗(K ).

Proof. The first claim follows directly from (6.49). For the second claim note that
the set of all controlled invariant subspaces contained in K is closed under sums
and is nonempty because the zero subspace is included. V ∗(K ) is the sum of all
these subspaces. �

There exists a simple subspace algorithm to compute V ∗; see Wonham (1979).

Theorem 6.51 (V ∗-Algorithm). Let (A,B) ∈ F
n×n ×F

n×m and a linear subspace
W ⊂ F

n. Define a sequence of linear subspaces Vi, recursively constructed as
follows:

V0 =W

Vi+1 =W ∩A−1(Vi + ImB).

Then V0 ⊃V1 ⊃V2 ⊃ ·· · and, for a suitable k ≤ dimW, the equality Vk = V ∗(W ) is
valid. In particular,

V ∗(W ) =W ∩A−1(W )∩·· ·∩A−k+1(W )∩A−k(W + ImB).
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Proof. The construction of Vi implies Vi ⊂ W for all i. Suppose that Vi ⊂ Vi−1 is
satisfied for some i. Then

Vi+1 =W ∩A−1(Vi + ImB)⊂W ∩A−1(Vi−1 + ImB) =Vi.

Thus Vj ⊂Vj−1 is satisfied for all j ≥ 1. Moreover, by the same argument, Vi =Vi−1

implies Vr = Vi−1 for all r ≥ i. Thus there exists k ≤ dimW with Vk = Vk+r for
all r ≥ 1. Since Vk+1 =W ∩A−1(Vk + ImB) =Vk, the inclusions Vk ⊂W and AVk ⊂
Vk+ImB follow. Thus Vk is a controlled invariant subspace contained in W . If V ⊂W
is a controlled invariant subspace, then V ⊂ V0. Let r be the largest nonnegative
number with V ⊂ Vr. Then V being controlled invariant implies the inclusion V ⊂
A−1(V + ImB), and therefore Vr+1 =W ∩A−1(Vr + ImB) ⊃W ∩A−1(V + ImB) ⊃
V . This proves that V ⊂ Vi for all i, and therefore V ⊂ Vk. Thus Vk is the largest
controlled invariant subspace contained in W . �

In applications, for example, to disturbance decoupling, it is often useful to
extend the notion of controlled invariant subspaces by taking the output of the
system under consideration. To this end, new geometric objects are introduced.

Definition 6.52. Let (A,B,C,D) be a state-space system in the state space X .

1. A subspace V ⊂X is called output nulling if there exists a state feedback map
K that satisfies

(A−BK)V ⊂ V ⊂ Ker(C−DK). (6.52)

2. Let V be a controlled invariant subspace for the pair (A,B). A feedback map K
that satisfies (6.52) is called an output nulling friend of V . Denote by FON(V )
the set of all output nulling friends of V .

3. A subspace R of the state space is called an output nulling reachability
subspace if for each monic polynomial q(z) of degree equal to dimR there
exists a friend K ∈ FON(V ) such that q(z) is the characteristic polynomial of
(A−BK)|V .

Thus a subspace is output nulling if and only if, for each initial state in V , one can
find a state feedback controller that keeps the state in V while keeping the output
zero. Usually, for an output nulling space V , there exist also some external inputs
that may be output nulled. Thus there exists a linear map L for which

(A−BK)V ⊂ V ⊂ Ker(C−DK)

ImBL ⊂ V

DL = 0.

This is equivalent to nulling the output using a feedback law of the form

u = Kx+Lv.
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Such an L, in fact a maximal one, can be constructed by considering the subspace

L = {ξ | Bξ ∈ V , Dξ = 0},
and choosing L to be a basis matrix for this subspace.

In addition to the preceding basic definitions, a number of further useful classes
of controlled invariant subspaces are linked with certain stability properties of
the restriction and induced operators. Refer to Section 6.6 for the class of stable
polynomials defined by a multiplicatively closed subset F−[z]⊂ F[z].

Definition 6.53. Let (A,B,C,D) be a state-space system acting in the state
space X . A controlled invariant subspace V for the pair (A,B) is called stabilizable,
or inner stabilizable, if there exists a friend K ∈ F (V ) such that (A−BK)|V is
F−[z]-stable.

Analogously, a controlled invariant subspace V is called outer stabilizable if
there exists a friend K ∈F (V ) such that (A−BK)|X /V

is F−[z]-stable. One defines
inner antistabilizable subspaces similarly.

If V is controlled invariant with respect to the reachable pair (A,B) and K ∈
F (V ), then the pair induced by (A−BK,B) in X /V is also reachable; hence, V
is both outer stabilizable and antistabilizable. From this point of view, it is more
interesting to study inner stabilizability and antistabilizability.

1. Polynomial Characterization of Controlled Invariant Subspaces
By Theorem 3.14, the study of invariant subspaces, in the polynomial model context,
is directly related to factorization theory. So it is natural to try and extend this
correspondence to the study of controlled and conditioned invariant subspaces as
well as other classes of subspaces.

A consequence of the shift realization procedure is the compression of informa-
tion. All information, up to state-space isomorphism, of a reachable pair (A,B) is
encoded in one, nonsingular, polynomial matrix. To see this, recall that reachability
is equivalent to the left coprimeness of zI −A,B. Taking coprime factorizations

(zI −A)−1B = N(z)D(z)−1, (6.53)

the isomorphism of the input pairs (A,B) and (SD,πD) follows and is described by
the following diagram:

���
���

F
m

XD XzI−A

XD XzI−A

SD

πD(·)

A

B

πzI−A(B·)

πzI−A(B·)

�

�

� �
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Let (Ai,Bi), i = 1,2, be state feedback equivalent pairs and Di(z) the respective
denominators in the coprime factorizations (6.53). Then, by Theorem 6.2, the feed-
back equivalence is expressed by the fact that D2(z)D1(z)−1 is biproper. Since a
controlled invariant subspace is an invariant subspace for a feedback equivalent pair,
we obtain the following theorem.

Theorem 6.54. Let D(z) ∈ F[z]m×m be nonsingular. Then a subspace V ⊂ XD is
a controlled invariant subspace, i.e., an (SD,πD)-invariant subspace, if and only
if there exist necessarily nonsingular, polynomial matrices E1(z), F1(z) ∈ F[z]m×m

such that

1. D(z)D1(z)−1 is biproper for

D1(z) := E1(z)F1(z). (6.54)

2. The subspace V has the representation

V = πDTDD−1
1
(E1XF1). (6.55)

Proof. Assume there exist D1(z),E1(z) and F1(z) ∈ F[z]m×m such that (1) and (2)
are satisfied. Then (6.54) implies that E1XF1 is an SD1 -invariant subspace of XD1 .
From (1) it follows that the pairs (SD,πD) and (SD1 ,πD1) are feedback equivalent
pairs, with the Toeplitz induced map πDTDD−1

1
: XD1 −→ XD satisfying

SDπDTDD−1
1

−πDTDD−1
1

SD1 = πDK (6.56)

for some K : XD1 −→ F
m. This implies that V is a controlled invariant subspace.

Conversely, assume that V ⊂ XD is a controlled invariant subspace of XD. By the
definition of controlled invariant subspaces, V is an invariant subspace of a feedback
equivalent pair. This pair can be taken, without loss of generality, to be (SD1 ,πD1).
This implies that D(z)D1(z)−1 is biproper. The map from XD1 to XD that exhibits
the feedback, i.e., that satisfies (6.56), is simply an induced Toeplitz map. Since
SD1 -invariant subspaces of XD1 are of the form E1XF1 for some factorization (6.54),
it follows that V has the required representation (6.55). �

We next aim at a characterization of controlled invariant subspaces of XD in terms
of rational models.

Theorem 6.55. Let D(z) be an m×m nonsingular polynomial matrix. Let the pair
(A,B) be defined by the shift realization in the state space XD. Then a subspace
V ⊂ XD is controlled invariant if and only if

V = πDπ+DXF1

for some nonsingular polynomial matrix F1(z) for which all left Wiener–Hopf
factorization indices of D(z)F1(z)−1 are nonnegative.
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Proof. Assume such an F1(z) exists. This implies the existence of a nonsingular
polynomial matrix E1 for which DF−1

1 E−1
1 is biproper. We define

D1(z) = E1(z)F1(z). (6.57)

By Proposition 3.50, the map Y : XD1 −→ XD, defined, for f (z) ∈ XD1 , by Yf =
πDTDD−1

1
f , is invertible. Now, the factorization (6.57) implies that E1XF1 is an SD1 -

invariant subspace, so its image under Y is a controlled invariant subspace of XD.
Computing

V = Y (E1XF1) = πDTDD−1
1

E1XF1 = Dπ−D−1π+DF−1
1 E−1

1 E1XF1

= Dπ−D−1π+DXF1 = πDπ+DXF1 = DπDXF1 ,

it is a consequence of Theorem 3.49 that the map Z : XF −→ XD, defined, for h(z) ∈
XF , by

Zh = πDπ+Dh,

is injective. This shows that ImZ = πDπ+DXF is indeed controlled invariant for the
pair (A,B) defined by the shift realization.

Conversely, assume that V ⊂ XD is a controlled invariant subspace. Every pair
that is feedback equivalent to the pair (SD,πD(·)) can be assumed, up to similarity,
to be of the form (SD1 ,πD1(·)), with D(z)D1(z)−1 biproper. An invariant subspace
of XD1 is of the form V1 = E1XF1 for a factorization D1(z) = E1(z)F1(z) into
nonsingular factors. The biproperness assumption on D(z)D1(z)−1 implies that all
left Wiener–Hopf factorization indices of D(z)F1(z)−1 are nonnegative. The Toeplitz
induced map T DD−1

1
: XD1 −→XD, defined for f ∈XD1 by T DD−1

1
f = πDπ+DD−1

1 f , is

therefore, by Theorem 3.49, invertible, and hence its restriction to E1XF1 is injective.
Moreover, it satisfies SDT DD−1

1
− T DD−1

1
SD1 = πDK for some feedback map K :

XD1 −→ F
m. Indeed, for f ∈ XD1 , setting g+ = π+DD−1

1 f and g+ = π+DD−1
1 f ,

we compute

(SDT DD−1
1

−T DD−1
1

SD1) f = πDzπDπ+DD−1
1 f −πDπ+DD−1

1 πD1 zf

= πDzπ+DD−1
1 f −πDπ+DD−1

1 D1π−D−1
1 zf

= πD
{

zπ+DD−1
1 f −π+Dπ−D−1

1 zf
}

= πD
{

zπ+DD−1
1 f −π+D(I −π+)D

−1
1 zf

}

= πD
{

zπ+DD−1
1 f −π+zDD−1

1 f
}

= πD {zg+−π+z(g++g−)}=−πDπ+zg− =−πDξ ,
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with ξ = π+zg− ∈ F
m. Thus

V = TV1 = πDπ+DD−1
1 (E1XF1) = πDπ+DF−1

1 E−1
1 (E1XF1) = πDπ+DXF1 .

�
Using Theorem 3.32, i.e., the isomorphism between polynomial and rational

models, one can restate Theorem 6.54 in terms of the rational functional model.
The trivial proof of the next result is omitted.

Theorem 6.56. Let D(z) be a nonsingular polynomial matrix. With the (A,B)
defined by the shift realization (4.26), a subspace V ⊂ XD is a controlled invariant
subspace if and only if there exist nonsingular polynomial matrices E1(z), F1(z) ∈
F[z]m×m such that

1. D(z)D1(z)−1 is biproper for D1(z) = E1(z)F1(z);
2. V = πDXF1 .

Proposition 6.57. Let D(z) ∈ F[z]m×m be nonsingular. Then a subspace V ⊂ XD is

controlled invariant with respect to the shift realization Σ •D−1
if and only if it has a

(not necessarily unique) representation of the form

V = πDXF

for some nonsingular polynomial matrix F(z) ∈ F[z]m×m.

Proof. Using the isomorphism of the shift realizations Σ•D−1 and Σ •D−1
, it follows

from Theorem 6.54 that the controlled invariant subspace V has the representation

V = D−1πDπ+DXF = D−1Dπ−D−1π+DXF

= π−D−1π+DXF = πDXF .

Conversely, assume V = πD�XF for some nonsingular F(z) ∈ F[z]m×m. To prove
that V is controlled invariant, one must show that for each h ∈ V there exist h′ ∈ XF

and ξ ∈ F
m such that SDπDh = πDh′+π−D−1ξ . This is done by choosing h′ = S−h

and ξ = (Dh)−1. To this end, one computes

SDπDh−πDS−h = π−zπ−D−1π+Dh−π−D−1π+Dπ−zh

= π−zD−1π+Dh−π−D−1π+Dπ−zh

= π−D−1 {zπ+Dh−π+zDh}= π−D−1ξ .

�
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Theorem 6.54 can be strengthened to yield a particularly clean representation
of controlled invariant subspaces, a representation that has no direct reference to
specific factorizations or to particular representations of submodules.

Theorem 6.58. Let D(z) ∈ F[z]m×m be nonsingular. With respect to the realiza-
tion (4.26) in the state space XD, a subspace V ⊂ XD is controlled invariant if
and only if

V = πDL (6.58)

for some submodule L ⊂ z−1
F[[z−1]]m.

Proof. In view of Theorem 6.54, all that needs to be proven is that the image under
the projection πD of a submodule of L ⊂ z−1

F[[z−1]]m is a controlled invariant
subspace of XD. Equivalently, one must show that if h ∈L , then there exist h1 ∈L
and ξ ∈ F

m such that

SDπDh = πDh1 +π−D−1ξ . (6.59)

We will prove (6.59), with h1 = S−h and ξ = (Dh)−1. In this case,

SDπDh −πDS−h = π−zπ−D−1π+Dh−π−D−1π+Dπ−zh

= π−zD−1π+Dzh−π−D−1π+Dzh

= π−D−1zπ+Dh−π+zDh = π−D−1ξ .
�

For the rational model characterization of controlled invariant subspaces as
in Theorem 6.58, the shift realization Σ •D−1

was used, with D(z) as a right
denominator. However, when analyzing output nulling subspaces, it turns out to be
more convenient to work with the polynomial model shift realization ΣT−1V . To state
the relevant characterization, one first extends the definition of a polynomial model
from square nonsingular polynomial matrices to rectangular polynomial matrices
U(z) ∈ F[z]p×m as

XU :=U(z)(z−1
F[[z−1]]m)∩F[z]p. (6.60)

We refer to this space as the rectangular polynomial model. It is emphasized that
XU is certainly an F-vector space of polynomials; however, unless U is nonsingular
square, it is not a module over F[z].

Proposition 6.59. Let G(z) be a p×m proper rational matrix function with matrix
fraction representation G(z) = T (z)−1U(z).

1. Assume U(z) = E1(z)U1(z), with E1(z) ∈ F[z]p×p a nonsingular polynomial
matrix. Then
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V = E1XU1

is an output nulling subspace of the shift realization ΣT−1U in the state space XT ,
and the following inclusions are valid:

E1XU1 ⊂ XU ⊂ XT .

2. A subspace V ⊂ XT is output nulling if and only if V = E1XU1 , with U(z) =
E1(z)U1(z) and E1(z) ∈ F[z]p×p nonsingular.

Proof. Let f ∈ E1XU1 , that is, f = E1g, with g = U1h ∈ F[z]p for a strictly proper
power series h. Since T−1U is proper and h is strictly proper, it follows that T−1 f =
(T−1U)h is strictly proper. Thus f ∈ XT , which shows E1XU1 ⊂ XT . Next we show
that if h is strictly proper with g =U1h ∈ F[z]p, then also U1(S−h)∈ F[z]p. Denoting
by η = h−1 ∈ F

m the residue term of h, the equality zh(z) = η +S−h follows. This
implies

U1(S−h) =U1(zh)−U1η = z(U1h)−U1η = zg−U1η ∈ F[z]p.

To show that V = E1XU1 is controlled invariant, let (A,B,C,D) denote the shift
realization ΣT−1U . For f ∈ E1XU1 , i.e., f = E1g and g =U1h, one computes

STf = πT (zf ) = πT (zE1U1h) = πT (E1U1zh) = πT (E1U1(η +S−h))
= πT (Uη)+πT (E1U1S−h) = πT (Uη)+E1U1S−h.

Since we assume T−1U to be proper, there exists a representation U(z) = T (z)
D+V (z), with T−1V strictly proper. Hence,

πT (Uη) = πT (TD+V )η =V η ,

and therefore

Af = STf = E1U1(S−h)+V η .

As E1U1S−h ∈ E1XU1 and V η ∈ ImB, this proves that V is controlled invariant.
Next, compute

Cf = (T−1 f )−1 = (T−1Uh)−1 = (T−1(TD+V )h)−1

= (Dh)−1 = Dh−1 = Dη .

Since η depends linearly on f , there exists a linear transformation K such that η =
Kf . Thus (A−BK) f ∈ V and (C−DK) f = 0. This completes the proof of (1). The
proof of the second claim is omitted. �
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The preceding result leads us to prove the following polynomial characterization
of the maximal output nulling subspace.

Theorem 6.60. With respect to the shift realization ΣT−1U in the state space XT ,
the maximal output nulling subspace is given as

V ∗ = XU .

Proof. By Proposition 6.59 (1), it follows that XU is output nulling. Moreover, by
part (2) of the same proposition, each output nulling subspace V of XT is of the
form V = E1XU1 , with U = E1U1 and E1 nonsingular. Using Proposition 6.59 (1)
once more, we obtain V ⊂ XU , which implies that XU is the maximal output nulling
subspace. �

A purely module-theoretic characterization of R∗ is presented without proof.

Theorem 6.61. Let G(z) be a p×m proper rational matrix function with the left
coprime matrix fraction representation G(z) = T (z)−1U(z). Then, with respect to
the shift realization on XT , the maximal output nulling reachability subspace is given
by

R∗ = XU ∩UF[z]m.

6.9 Conditioned Invariant Subspaces

We begin by introducing basic concepts from geometric control theory that are rele-
vant to observer design, i.e., conditioned invariant subspaces and related subspaces.
The theory of such subspaces is dual to that of controlled invariant subspaces and
thus can be developed in parallel.

Definition 6.62. 1. For an output pair (C,A), a subspace V ⊂ X is called
conditioned invariant if

A(V ∩KerC)⊂ V .

2. For a conditioned invariant subspace V of the pair (C,A), an output injection
map J for which (A− JC)V ⊂ V is called a friend of V . Denote by G (V ) the
set of all friends of V .

3. For a pair (C,A), a conditioned invariant subspace V ⊂ X is called tight if it
satisfies

V +KerC =X .

4. A set of conditioned invariant subspaces Vα is compatible if
⋂

α F (Vα) �= /0.
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5. A conditioned invariant subspace V will be called an observability subspace if,
for each monic polynomial q(z) of degree equal to codimV , there exists a friend
J ∈ G (V ) such that q(z) is the characteristic polynomial of (A− JC)|X /V , the
map induced on the quotient space X /V by A− JC.

Some elementary properties of conditioned invariant subspaces are stated next.

Proposition 6.63. Let (C,A) be an output pair acting in the state space X .
Then:

1. The set of conditioned invariant subspaces is closed under intersections;
2. For every subspace L ⊂ X , there exists a minimal conditioned invariant

subspace containing L ; this subspace is denoted by V∗(L );
3. V is a conditioned invariant subspace if and only if there exists an output

injection map J : Fp −→X such that V is (A− JC)− invariant.

Proof. The set of all conditioned invariant subspaces containing L is closed
under intersections and is nonempty because X is included. V∗(L ) is the
intersection of all these subspaces. The proof of the last claim runs parallel to that
of Proposition 6.48. Explicitly, choose a basis {v1, . . . ,vr} of V ∩KerC, and extend
it to a basis {v1, . . . ,vq} of V . Then Cvr+1, . . . ,Cvq ⊂ F

p are linearly independent,
with q− r ≤ p. Thus there exists a linear transformation J : Fp −→ X that maps
Cvr+1, . . . ,Cvq to Avr+1, . . . ,Avq ∈ V . Thus (A − JC)vi = Avi for 1 ≤ i ≤ r and
(A− JC)vi = 0 for r+ 1 ≤ i ≤ q. Thus (A− JC)V ⊂ V . The converse is obvious.

�
It may be instructive to see how the last claim can also be deduced from

Proposition 6.48 by reasons of duality. In fact, assume for simplicity that X = F
n

and, thus, A ∈ F
n×n,B ∈ F

n×m and C ∈ F
p×n. Consider a linear subspace V ⊂ F

n.
Let V ⊥ ⊂ F

n denote the orthogonal complement with respect to the standard
nondegenerate bilinear form < x,y >= x�y on F

n. Then

AV ⊂ V + ImB

is satisfied if and only if

V ⊥ ∩KerB� = V ⊥ ∩ (ImB)⊥ = (V + ImB)⊥ ⊂ (AV )⊥ = (A�)−1(V ⊥),

i.e., if and only if

A�(V ⊥ ∩KerB�)⊂ V ⊥.

Thus V is (A,B)-invariant if and only if V ⊥ is (B�,A�)-invariant. In this way,
most results on controlled invariant subspaces for a linear system (A,B,C) can be
equivalently reformulated as results on conditioned invariant subspaces for the dual
system (A�,C�,B�).
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The dual notions to inner and outer stabilizable controlled invariant subspaces
are introduced next.

Definition 6.64. Let (A,B,C,D) be a state-space system acting in the state
space X . A subspace V ⊂ X is called inner detectable if there exists a friend
J ∈ G (V ) such that (A−JC)|V is stable. A subspace V is outer detectable if there
exists a J ∈ G (V ) such that (A− JC)|X /V is stable. Again, the concepts of inner
and outer antidetectability are naturally defined.

Let V be a conditioned invariant subspace for the observable pair (C,A), and let
J ∈ G (V ); then (C,A− JC) has a restriction to V , which is observable. Thus, if
V is conditioned invariant, then it is both inner detectable and antidetectable. By
standard duality considerations, one expects the notions of inner stabilizability to be
related to outer detectability, and this indeed is the case.

1. Polynomial Characterizations of Conditioned Invariant Subspaces
We next derive polynomial characterizations of conditioned invariant subspaces.

Theorem 6.65. Let T (z) ∈ F[z]p×p be nonsingular, and let (C,A) be the associated
observable pair obtained via the shift realization ΣT−1•. Then a subspace V ⊂ XT is
a conditioned invariant subspace, i.e., a ((T ·)−1,ST )-invariant subspace, if and only
if there exist nonsingular polynomial matrices E1(z), F1(z) ∈ F[z]p×p such that:

1. T1(z)−1T (z) is normalized biproper for

T1(z) = E1(z)F1(z); (6.61)

2. In terms of the factorization (6.61), the representation

V = E1XF1

is obtained.

Proof. Two proofs of this theorem are given.

Proof I:
V is a conditioned invariant subspace if and only if it is invariant for A1 = A− JC.
By Theorem 6.5, if the pair (C,A) is associated with the matrix fraction T (z)−1U(z),
then the pair (C,A1) is associated with the matrix fraction T1(z)−1U(z), where
T1(z)−1T (z) is biproper. Since XT and XT1 are equal as sets, V is an ST1 -invariant
subspace of XT1 . These subspaces are, by Theorem 3.11, of the form V = E1XF1

with T1(z) = E1(z)F1(z).

Proof II:
In this proof, duality and the characterization of controlled invariant subspaces given
in Theorem 6.54 will be used. The subspace V ⊂ XT is conditioned invariant if and
only if V ⊥ ⊂ XT� is controlled invariant, i.e., an (ST� ,πT�)-invariant subspace.
By Theorem 6.54, there exists a polynomial matrix T1(z) ∈ F[z]p×p such that
T�(z)T�

1 (z)−1 is biproper and
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V ⊥ = πT�TT�T−�
1

(F�
1 XE�

1
),

where T1(z) = E1(z)F1(z), and hence also T�
1 (z) = F�

1 (z)E�
1 (z). By the elementary

properties of dual maps, (πT�TT�T−�
1

)∗V = V1 ⊂ XT1 and V ⊥
1 = F�

1 XE�
1

. Applying

Theorem 3.11, one obtains V1 = E1XF1 , and since (πT�TT�T−�
1

)∗ : XT −→ XT1 acts

as the identity map, it follows that V = E1XF1 . �
In view of Theorems 6.56 and 6.65, it is of considerable interest to characterize

the factorizations appearing in these theorems. The key to this are Wiener–Hopf
factorizations at infinity.

Proposition 6.66. 1. Let D(z),F1(z) ∈ F[z]m×m be nonsingular. Then there exist
E1(z) ∈ F[z]m×m, and D1(z) := E1(z)F1(z) such that D(z)D1(z)−1 is biproper
if and only if all the left Wiener–Hopf factorization indices at infinity of
D(z)F1(z)−1 are nonnegative.

2. Let T (z),E1(z) ∈ F [z]p×p be nonsingular. Then there exist polynomial matrices
F1(z)∈ F[z]p×p, and T1(z) := E1(z)F1(z) such that T1(z)−1T (z) is biproper if and
only if the right Wiener–Hopf factorization indices at infinity of E1(z)−1T (z) are
nonnegative.

Proof. Define D1(z) = E1(z)F1(z). If Γ (z) = D(z)D1(z)−1 is biproper, then
D(z)F1(z)−1 = Γ (z)E1(z). Now let E1(z) = Ω(z)Δ(z)U(z) be a left Wiener–
Hopf factorization of E1(z). Then necessarily the factorization indices of E1(z) are
nonnegative, being the reachability indices of the input pair (SE1 ,πE1). It follows
that

D(z)F1(z)
−1 = (Γ (z)Ω(z))Δ(z)U(z), (6.62)

i.e., D(z)F1(z)−1 has nonnegative left factorization indices. Conversely, if (6.62)
holds with Δ(z) = diag(zκ1 , . . . ,zκm), and κ1 ≥ ·· · ≥ κm ≥ 0, then, defining E1(z) =
Δ(z)U(z), it follows that D(z) = Ω(z)D1(z), with D1(z) = E1(z)F1(z) and Ω(z)
biproper.

The proof of the second claim follows the lines of the proof of part 1 or can be
derived from that theorem by duality. �

The characterizations appearing in Theorems 6.54 and 6.65 are factorization-
dependent. The following proposition makes this unnecessary.

Proposition 6.67. Let D�(z) ∈ F[z]p×p be nonsingular. A subspace V ⊂ XD�
is

conditioned invariant with respect to the shift realization ΣD−1
� • if and only if it

has a (not necessarily unique) representation of the form

V = KerπT |XD�
= XD�

∩T (z)F[z]p,

where T (z) ∈ F[z]p×p is a nonsingular polynomial matrix.



6.9 Conditioned Invariant Subspaces 345

Proof. By Theorem 6.65, there exists a representation V = E1XF1 , with D−1
� E1F1

biproper. Assume f ∈ V = E1XF1 ; then f ∈ XD�
and f = E1g, so V ⊂ XD�

∩E1F[z]p.
Conversely, if f ∈ XD�

∩E1F[z]p, then f = XD�
and f = E1g. Let T1 := E1F1; then

T−1
1 D� is biproper. Applying these facts, it follows that D−1

� f is strictly proper, and
the biproperness of T−1

1 D� implies that also T−1
1 f = T−1

1 E1g=F−1
1 E−1

1 E1g=F−1
1 g

is strictly proper. But this shows that g ∈ XF1 , and the inclusion XD�
∩E1F[z]p ⊂ V

is proved. �
Theorems 6.54 and 6.65 can be strengthened to yield a particularly clean represen-
tation of controlled and conditioned invariant subspaces that has no direct reference
to specific factorizations or to particular representations of submodules.

Theorem 6.68. Let D�(z) ∈ F[z]p×p be nonsingular. With respect to the realiza-
tion (4.24) in the state space XD�

, a subspace V ⊂ XD�
is conditioned invariant if

and only if

V = XD�
∩M (6.63)

for some submodule M ⊂ F[z]p.

Proof. The only if part was proved in Theorem 6.65. To prove the if part,
assume V = XD�

∩M , where M is a submodule of F[z]p. If f ∈ V ∩ KerC,
then (D−1

� f )−1 = 0, which implies that SD�
f = πD�

zf = zf . But SD�
f ∈ XD�

and
SD�

f = zf ∈ M . Therefore, SD�
f ∈ XD�

∩M follows, which shows that V is a
conditioned invariant subspace, thus proving the theorem. �

The availability of the representation (6.63) of conditioned invariant subspaces
allows us to give different proofs of the closure of the sets of controlled/conditioned
invariant subspaces under sums/intersections, respectively.

Proposition 6.69. 1. Let D(z) ∈ F[z]m×m be nonsingular. Let Vi be controlled

invariant subspaces of XD, with respect to the shift realization Σ •D−1
, and

having the representations Vi = πDLi for submodules Li ⊂ z−1
F[[z−1]]m. Then

V = ∑iVi is controlled invariant with the representation V = πD ∑iLi.
2. Let D�(z) ∈ F[z]p×p be nonsingular. Let Vi be conditioned invariant subspaces

of XD�
, with respect to the shift realization ΣD−1

� •, and having the representations

Vi = XD�
∩Mi for submodules Mi ⊂ F[z]p. Then V = ∩iVi is conditioned

invariant and has the representation V = XD�
∩ (∩iMi).

Proof. The proof is obvious. �
The representation formula (6.63) is at the heart of the analysis of conditioned

invariant subspaces and opens up several interesting questions, some of which will
be described later. Note first that, for unimodular polynomial matrices U(z), one has
TF[z]p = TUF[z]p and XUT = XT . Thus it is not important to distinguish between
representing polynomial matrices up to an appropriate, one-sided unimodular factor.
The representations of controlled and conditioned invariant subspaces that appear
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in Theorem 6.65 have the advantage of using nonsingular polynomial matrices
in the representations. The disadvantage is the nonuniqueness of the representing
polynomial matrices. However, uniqueness modulo unimodular factors can be
recovered by switching to the use of rectangular polynomial matrices. This is done
next.

As noted already, the submodule M in a representation of the form V =XD�
∩M

is, in general, not unique. To get a unique representation, one needs to associate
with a conditioned invariant subspace of XD�

a unique submodule, and none is more
natural than the submodule of F[z]p generated by V .

Proposition 6.70. Let D�(z) ∈ F[z]p×p be nonsingular, and let V ⊂ XD�
be a

conditioned invariant subspace. Let < V > be the submodule of F[z]p generated
by V , which is the smallest submodule of F[z]p that contains V . Then

V = XD�
∩ < V > .

Proof. Assume V = XD�
∩M for some submodule of F[z]p. Clearly, V ⊂M , and

hence < V >⊂M , and so V ⊂< V >⊂M , which in turn implies

V ⊂ XD�
∩ < V > ⊂ XD�

∩ M = V .
�

Corollary 6.71. For each subset E ⊂ XD�
, the intersection XD�

∩ < E > is the
smallest conditioned invariant subspace of XD�

that contains E.

Proof. XD�
∩ < E > is a conditioned invariant subspace and contains E. Let W be

another conditioned invariant subspace containing E. Then < E >⊂ < W >, and
hence

XD�
∩ < E > ⊂ XD�

∩ <W >=W .
�

Finally, we arrive at a very useful characterization of conditioned invariant
subspaces.

Theorem 6.72. A subspace V ⊂ XD�
is a conditioned invariant subspace if and

only if it has a representation of the form

V = XD�
∩ H(z)F[z]k,

where H(z) is a full column rank p× k polynomial matrix whose columns are in V .
H(z) is uniquely determined up to a right k× k unimodular factor.

Proof. Follows from Theorem 6.68 and the basis representation of submodules of
F[z]p by full column rank polynomial matrices. �
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6.10 Zeros and Geometric Control

In this section we clarify the connection between the analysis of zeros based on mod-
ule theory and that based on geometric control concepts. Recalling the definition of
the zero module given in (4.43), we proceed with the following computational result.
For any rectangular polynomial matrices we define the rectangular polynomial
model XU as

XU :=U(z)(z−1
F[[z−1]]m)∩F[z]m (6.64)

and the rectangular rational model XU as

XU := {h ∈ z−1
F[[z−1]]m | π−(Uh) = 0}. (6.65)

In particular, both identities XU = KerU(σ) and UXU = XU are satisfied.

Proposition 6.73. Let G(z) be a strictly proper, p×m transfer function, with the
left coprime factorization

G(z) = T (z)−1U(z). (6.66)

Then:

1. Viewed as linear multiplication maps from F(z)m to F(z)p,

KerG = KerU ;

2.

π−G−1(F[z]p) = XU = KerU(σ) (6.67)

and

Uπ−G−1(F[z]p) = XU , (6.68)

where XU and XU are defined by (6.64) and (6.65), respectively;
3.

Uπ−KerG = XU ∩UF[z]m. (6.69)

Proof. 1. Obvious.
2. Assume h ∈ G−1(F[z]p), i.e., g = T−1Uh ∈ F[z]p. Defining h± = π±h, this

implies Tg = Uh = Uh− + Uh+, or Uh− = Tg − Uh+ ∈ F[z]p and, in turn,
h− ∈ KerU(σ) = XU .
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Conversely, if h− ∈ KerU(σ), then Uh− ∈ F[z]p. By the left coprimeness of
T (z),U(z), there exist polynomial vectors g(z),h+(z) for which Uh− = Tg −
Uh+. Therefore, with h = h− + h+ we have g = T−1Uh, i.e., h ∈ G−1(F[z]p).
From the equality Uh− = Tg−Uh+ it follows that π−Uh− = 0, i.e., (6.67) is
proven.

3. Clearly, G−1({0}) = KerG = KerU . For h = h−+h+ ∈ KerU , we have Uh− =
−Uh+, which implies U(σ)h− = π−Uh− = 0, that is, h− ∈ XU as well as Uh− =
−Uh+ ∈UF[z]m, and the inclusion Uπ−KerG ⊂ XU ∩UF[z]m follows.

Conversely, if Uh ∈ XU ∩UF[z]m, then there exist h+ ∈ F[z]m and h− ∈
z−1

F[[z−1]]m for which Uh = Uh− = −Uh+. From this it follows that π−(h−+
h+) = h− and U(h−+h+) = 0, or (h−+h+) ∈ KerG. This implies the inclusion
XU ∩UF[z]m ⊂Uπ−KerG. The two inclusions imply (6.69).

�
Following Wyman, Sain, Conte and Perdon (1989), we define

ZΓ (G) =
G(z)−1(F[z]p)

G(z)−1(F[z]p) ∩ F[z]m
, (6.70)

Z0(G) =
KerG

KerG ∩ F[z]m
, (6.71)

and recall the definition of the zero module, given in (4.43), namely,

Z(G) =
G(z)−1

F[z]p +F[z]m

KerG(z) + F[z]m
.

Theorem 6.74. Let G(z) be a (strictly) proper, p×m transfer function, with the left
coprime factorization (6.66). Then:

ZΓ (G)� π−G−1(F[z]p) = XU , (6.72)

Z0(G)� π−KerG. (6.73)

For the zero module, defined by (4.43), the following isomorphism is true:

Z(G)� XU

XU ∩UF[z]m
=

V ∗

R∗ . (6.74)

Here V ∗ and R∗ are defined by Theorems 6.60 and 6.61, respectively.

Proof. For the proof we will use the following standard module isomorphisms Lang
(1965). Assuming M,N,Mi are submodules of a module X over a commutative
ring R,
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M+N
N

� M
M∩N

and, assuming additionally the inclusions M0 ⊂ M1 ⊂ M2,

M2

M1
� M2

M0
/

M2

M1
.

Using these, we have the isomorphisms

ZΓ (G) =
G(z)−1(F[z]p

G(z)−1(F[z]p) ∩ F[z]m
� G(z)−1(F[z]p)+F[z]m

F[z]m

and

Z0(G) =
KerG

KerG ∩ F[z]m
� KerG+F[z]m

F[z]m
.

Clearly, the inclusion KerG⊂G(z)−1(F[z]p) implies the inclusions F[z]m ⊂KerG+
F[z]m ⊂ G(z)−1(F[z]p)+F[z]m. Again, we obtain the isomorphism

Z(G) =
G(z)−1(F[z]p)+F[z]m

KerG(z) + F[z]m
� G(z)−1(F[z]p)+F[z]m

F[z]m
/

KerG+F[z]m

F[z]m
.

(6.75)

Note that (6.68) implies Uπ−(G(z)−1(F[z]p)+F[z]m) = XU , and, similarly, (6.69)
implies Uπ−(KerG+F[z]m) = XU ∩UF[z]m. Furthermore,

KerUπ−|(G(z)−1(F[z]p)+F[z]m) = KerG+F[z]m,

and hence the isomorphism (6.74) follows. �
The isomorphism (6.74) shows that the zero module is directly related to

the transmission zeros Morse (1973). The modules ZΓ (G) and Z0(G) also have
system-theoretic interpretations, but this is beyond the scope of the present
monograph.

6.11 Exercises

1. Let R(A,B) = (B,AB, . . . ,An−1B) denote the reachability matrix of (A,B) ∈
F

n×(n+m). Prove that for a feedback K ∈ F
m×n there exists an upper triangular

block matrix U ∈ F
nm×nm with diagonal blocks U11 = · · ·=Unn = Im and

R(A+BK,B) = R(A,B)U.



350 6 State Feedback and Output Injection

2. Prove that the reachability indices of a pair (A,B) coincide with the Kronecker
indices, arranged in decreasing order.

3. Assume that the reachable pair (A,b) ∈ F
n×n ×F

n is in Jordan canonical form,

A =

⎛

⎜
⎝

λ1 · · · 0
...

. . .
...

0 · · · λn

⎞

⎟
⎠ , A =

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠ ,

with eigenvalues λ1, . . . ,λn ∈F. Let μ1, . . . ,μn ∈F. Prove the formula by Mayne-
Murdoch, i.e., that the feedback gain K = (k1, . . . ,kn) ∈ F

1×n,

ki =
∏ j(λi −μ j)

∏ j(λi −λ j)
, i = 1, . . . ,n,

satisfies

det(zI −A+bK) =
n

∏
j=1

(z−μ j).

4. (a) Let the pair (A,B) ∈ F
n×(n+m) be reachable. For a monic polynomial f (z) ∈

F[z] of degree m+n, show the existence of matrices X ∈ F
m×n and Y ∈ F

m×n

such that f (z) is the characteristic polynomial of

M =

(
A B
X Y

)
.

(b) Let

A =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0

⎞

⎟
⎟
⎠ , B =

⎛

⎜
⎜
⎝

1 0
1 0
0 1
0 0

⎞

⎟
⎟
⎠ .

Determine the matrices X and Y such that the matrix M is nilpotent.
5. Let κ = (κ1, . . . ,κm) denote a partition of n. Prove that the set of pairs (A,B) ∈

F
n×n × F

n×m whose reachability indices λ = (λ1, . . . ,λm) satisfy ∑r
j=1 κ j ≤

∑r
j=1 λ j, r = 1, . . . ,m, forms a Zariski-closed subset of F

n×n ×F
n×m. Let n =

km+ � with 0 ≤ � < m. Deduce that the set of pairs (A,B) ∈ F
n×n ×F

n×m with
reachability indices κ = (k + 1, . . . ,k + 1,k, . . . ,k) is a nonempty Zariski-open
subset in F

n×n ×F
n×m.
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6. Prove that a linear subspace V ⊂ F
n is simultaneously (A,B)- and (C,A)-

invariant if and only if there exists an output feedback gain K ∈F
m×p that satisfies

(A+BKC)V ⊂ V .
7. Let (A,B,C) be reachable and observable. Then the following conditions are

equivalent:

(a) (A,B,C) is state feedback irreducible.
(b) (A+BK,B,C) is observable for all K.
(c) V ∗(KerC) = {0}.

8. Consider the scalar real rational transfer function G(s) = 1
(s−1)(s−2) of a

continuous-time linear system.

(a) Show that G(s) = P(s)Q(s)−1, with P(s) = 1
(s+1)2 and Q(s) = (s−1)(s−2)

(s+1)2 , is
a coprime factorization over RH∞.

(b) Determine all stabilizing controllers of G(s).

9. Let G(s) ∈ RH∞ be a p×m proper rational stable transfer function. Show that all
stabilizing controllers of G are of the form

K(s) = Γ (s)(I −G(s)Γ (s))−1,

with Γ ∈ RH∞ and (I −G(s)Γ (s))−1 proper. Is K always in RH∞?

6.12 Notes and References

A module-theoretic approach to the study of state feedback was initiated by
Hautus and Heymann (1978); see also Fuhrmann (1979). The characterization
in Theorem 6.13 of reachability indices via Wiener–Hopf indices for feedback
irreducible systems can be extended to transfer functions that are not full column
rank; see Fuhrmann and Willems (1979). A closely related characterization of
feedback irreducibility is due to Heymann (1975).

The Brunovsky canonical form is due to Brunovsky (1970). The Kronecker
indices appear first in the work by Popov (1972) and Wang and Davison (1976)
on state-space canonical forms. Their characterization in Theorem 6.18 as complete
invariants for restricted state feedback equivalence was shown by Helmke (1985).
The dimension of the state feedback orbit of a reachable pair was expressed by
Brockett (1977) via the reachability indices κ1 ≥ . . .≥ κm as

n2 +nm+m2 −
m

∑
i, j=1

max(κi −κ j +1,0).
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This formula is a straightforward consequence of Theorem 6.15. For a study of the
feedback group, see also Tannenbaum (1981). For an analysis of the topological
closure of each state feedback orbit in terms of the dominance order on partitions,
see Hazewinkel and Martin (1983) and Helmke (1985).

The connection between reachability indices of a reachable pair and the Wiener–
Hopf factorization indices is due to Gohberg, Lerer and Rodman (1978); see also
Fuhrmann and Willems (1979). Rosenbrock’s theorem is one important instance
where polynomial arguments become much simpler than a pure state-space proof.
The polynomial proof of Rosenbrock’s theorem by Münzner and Prätzel-Wolters
(1979) shows the elegancy of polynomial algebra arguments.

The Youla–Kucera parameterization of stabilizing controllers, together with
a general theory of coprime factorizations, is nicely revealed in the book by
Vidyasagar (1987). The state-space formulas (6.46)–(6.47) and (6.48) for the Youla–
Kucera parameterization are taken from Kucera (2011). A more difficult problem is
that of strong stabilizability that deals with the issue of finding a stable controller
that stabilizes a plant. In Chapter 5.3 of Vidyasagar (1987), strong stabilizability is
characterized in terms of parity interlacing conditions on the poles of plants with
respect to unstable blocking zeros. A natural generalization of strong stabilizability
is the simultaneous stabilization problem of N plants by a single controller, which
has been studied by many researchers, including, for example, Blondel (1994);
Ghosh and Byrnes (1983); Vidyasagar (1987).

For an early connection between state feedback pole placement and matrix
extension problems, see Wimmer (1974b). The problem of pole placement and
stabilization by static output feedback is considerably more difficult than that of
state feedback control. Pole placement by constant output feedback is equivalent to
an intersection problem in a Grassmann manifold, first solved, over the complex
numbers, by Schubert in 1886. The connection to intersection theory in the
Grassmann manifold was first revealed in the paper by Brockett and Byrnes (1981);
see also Byrnes (1989). A striking result that generalized all of the preceding ones
is due to Wang (1992), who showed that the pole-placement problem is generically
solvable over the reals if mp > n. An interesting extension of the pole-placement
problem to finite fields F is due to Gorla and Rosenthal (2010).

Geometric control was initiated by Francis and Wonham (1976) and Basile and
Marro (1992); see also Wonham (1979). The mutual relations between the various
subspaces are summarized by the so-called Morse relations and the Morse diamond;
see Morse (1973). Readers who want to delve somewhat deeper into geometric
control theory must master these important contributions. For a nice exposition and
further results, we refer the reader to Aling and Schumacher (1984). Geometric
control concepts can be applied, for example, to disturbance decoupling with
measurement feedback Willems and Commault (1981) and to noninteracting control
Falb and Wolovich (1967); Morse and Wonham (1971). A very important problem,
which can be successfully dealt with in the framework of geometric control, is the
so-called servomechanism or output regulation problem; see Francis (1977).
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The polynomial model approach to the characterization of controlled and
conditioned invariant subspaces yields clean module-theoretic representations. In
particular, (6.58) is due to Fuhrmann and Willems (1980), whereas (6.63) was
proved in Fuhrmann (1981). Closely related, and more general, characterizations
of controlled and conditioned invariant subspaces in terms of transfer function
representations are due to Hautus (1980) and Özgüler (1994). For the case of
strictly proper rational transfer functions, the polynomial characterization of V ∗
in Theorem 6.60 is due to Emre and Hautus (1980) and Fuhrmann and Willems
(1980). The characterization of the maximal output nulling reachability subspace
R∗ in Theorem 6.61 is due to Fuhrmann (1981) and Khargonekar and Emre (1982).
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