
Chapter 5
Tensor Products, Bezoutians, and Stability

Mathematical structures often start from simple ones and are extended by various
constructions to structures of increasing complexity. This process is to be controlled,
and the guiding lines should include, among other things, applicability to problems
of interest. The present chapter is devoted to a circle of ideas from abstract linear
algebra that covers several topics of interest to us because of their applicability to
the study of linear systems. These topics include bilinear forms defined on vector
spaces, module homomorphisms over various rings, and the analysis of classes of
special structured matrices such as Bezoutian, Hankel, and Toeplitz matrices. The
connections to algebraic methods for analyzing 2D systems, i.e., modules over the
ring F[z,w] of polynomials in two variables, are also explored. The unifying tools
are tensor products defined for modules and vector spaces. The interaction between
the diverse areas of structured matrix analysis, polynomial modules, and quadratic
form theory becomes particularly evident within this context.

Tensor products provide a link between multilinear algebra and classical linear
algebra by enabling one to represent multilinear maps as linear functions on a
tensor product space. This technique applies both to vector spaces over a field and
modules over a ring. The scenario becomes interesting and rich in the context of
polynomial and rational models, which are modules over the ring F[z] and, at the
same time, finite-dimensional vector spaces over the field F. In this situation, the
result of forming the tensor product depends critically on the algebraic context
within which the tensor product is formed, i.e., whether one considers the tensor
product over the field F or over the ring F[z]. Taking the tensor product of two
polynomial models X ⊗F Y over the field F yields a space of polynomials in
two variables. In contrast, the tensor product X ⊗F[z] Y over the ring F[z] is a
module of polynomials in one variable. In this chapter these constructions will be
explained and their algebraic properties worked out in detail. As a useful byproduct,
explicit characterizations of intertwining maps and homomorphisms of polynomial
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210 5 Tensor Products, Bezoutians, and Stability

models using tensor products will be derived. Following classical duality theory of
polynomial models, the mutual relationships between tensor products of polynomial
models and spaces of homomorphisms are expressed via the following commutative
diagram:

� �

�

�

( ⊗ ∗)∗

( ⊗ [z]
∗)∗

Hom ( , )

Hom [z]( , )

∗ i

F

i

f

The horizontal maps denote natural isomorphisms and the vertical maps canonical
injections. Although these maps are canonically defined, they crucially involve the
construction of dual spaces. Therefore, to obtain a more concrete version of this
diagram, a suitable duality theory for power series in two variables is first developed.
This will enable us to find explicit descriptions for tensor products and duals of
polynomial models and lead us, finally, to the concrete form of the preceding
commutative diagram as

�

�

�XD2⊗I XI⊗D�
1

Hom (XD1 ,XD2)

Hom [z](XD1 ,XD2)

Y

y

�

XD2(z)⊗D�
1 (w)

b i

The construction of this commutative diagram is a central purpose of this chapter.
It leads to a deeper understanding of the characterization of homomorphisms
given in Chapter 3, provides us with a coordinate-free construction of Bezoutian
matrices, and yields elegant matrix rank characterizations of coprimeness for matrix
polynomials. Historically, the Euclidean algorithm applied to scalar polynomials
suggested finding matrix criteria for the coprimeness of two polynomials. This led
to the introduction, by Sylvester, of the Bezoutian and resultant matrices. Quadratic
(and Hermitian) forms over the field of complex numbers were used efficiently
by Hermite (1856) in his work on the root location of polynomials. Generalized
Bezoutians, generated by a quadruple of polynomial matrices, originated in the
work of Anderson and Jury (1976) in the analysis of coprimeness of polynomial
matrices and the solvability of Sylvester-type equations. An interesting advance
was the characterization of the Bezoutian matrix as a matrix representation of an
intertwining map. Intertwining maps between polynomial models were character-
ized in Theorem 3.20, providing a powerful tool for the study of multivariable
linear systems. Using tensor product representations of module homomorphisms,
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another proof of this important result will be given. On the way, polynomial versions
of classical matrix equations are derived, of which the Sylvester and Lyapunov
equations are important special cases. These polynomial Sylvester equations will
also prove useful in deriving stability tests for nonsingular matrix polynomials.

5.1 Tensor Products of Modules

Tensor products of modules are at center stage of this chapter, so it is only
appropriate to give a working definition. In algebra, the tensor product of two
modules is defined abstractly via a universal property as follows.

Definition 5.1. Let R be a commutative ring with identity, and let M,N,L be R-
modules. An R-module M ⊗R N is called a tensor product of M and N if there
exists an R-bilinear map φ : M×N −→ M⊗R N such that for every R-bilinear map
γ : M ×N −→ L there exists a unique R-homomorphism γ∗ : M ⊗R N −→ L that
makes the following diagram commutative:

�

���������

�M×N M⊗RN

L

g

f

g∗

Although the notation M ⊗R N for the tensor product of two modules seems to
suggest this, one should beware of assuming that the elements of M ⊗R N can be
represented as single tensor products m⊗R n of the elements m ∈ M,n ∈ N. In fact,
the elements of the tensor product are finite sums ∑k

i=1 mi⊗R ni and may not simplify
to a decomposable representation of the form m⊗R n. Note further that, according
to Definition 5.1, there may be several, necessarily isomorphic, tensor products.

One can give an abstract construction of a tensor product that is briefly sketched
as follows; see, for example, Hungerford (1974). Let < M×N > denote the free R-
module of all finite formal linear combinations ∑k

i=1 ri(mi,ni), where ri ∈ R, mi ∈ M,
and ni ∈ N. Let IR denote the R-submodule of < M × N > that is generated by
elements of the form

1. r(m,n)− (rm,n), r(m,n)− (m,rn);
2. (m1 +m2,n)− (m1,n)− (m2,n);
3. (m,n1 +n2)− (m,n1)− (m,n2).

Then the quotient R-module

M⊗R N :=< M×N > /IR, (5.1)
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together with the map φ : M×N −→M⊗R N, (m,n) �→m⊗n :=(m,n)+IR, satisfies
the universal properties of a tensor product and thus serves as a model for the
tensor product, unique up to isomorphisms. However, because most of the spaces
we use have functional representations, one looks for concrete representations of
the various tensor products encountered. As it is, such representations turn out to be
amenable to explicit computations.

Listed below are a few basic properties of tensor products. Relative to direct
sums, tensor products have the following distributivity and associativity properties:

(⊕k
i=1Mi)⊗R N � ⊕k

i=1(Mi ⊗R N),

M⊗R (⊕l
j=1Nj) � ⊕l

j=1(M⊗R Nj),

M⊗R (N ⊗R P) � (M⊗R N)⊗R P.

(5.2)

Another useful isomorphism is

M⊗R N � N ⊗R M,

via the map that sends m⊗n to n⊗m.
Concerning ring extensions, the following lemma is useful.

Lemma 5.2. Let S be a subring of R, and let M and N be R-modules and L an
S-module. Then:

1. The unique S-linear map M⊗S N −→ M⊗R N, which maps each element m⊗S n
to m⊗R n, is surjective.

2. Suppose that b : M×N −→ L is an S-bilinear map that satisfies

b(rm,n) = b(m,rn)

for r ∈ R, m ∈ M, and n ∈ N. Then there exists a unique S-linear map

B : M⊗R N −→ L,

with B(m⊗n) = b(m,n).

Proof. Here it pays off to work with the abstract definition of a tensor product.
The map M×N −→ M⊗R N,(m,n) �→ m⊗R n is S-bilinear and therefore induces a
unique S-linear map M⊗S N −→M⊗R N that maps each m⊗S n to m⊗R n. In fact, by
inspection of (5.1), one sees that IS ⊂ IR is valid and therefore induces a well-defined
surjective map < M ×N > /IS −→< M ×N > /IR, with (m,n)+ IS �→ (m,n)+ IR.
This completes the proof of the first part.

Since each element of M ⊗R N is of the form t = m1 ⊗ n1 + · · ·+ mr ⊗ nr,
the additivity of B implies B(t) = b(m1,n1) + · · ·+ b(mr,nr). This implies the
uniqueness of B. To prove the existence of B, define B(r(m,n)) := b(rm,n) for all
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r ∈ R,m ∈ M,n ∈ N. This extends to a well-defined map B on < M ×N >. The
bilinearity of b implies that B is additive. Since b(rm,n) = b(m,rn), it follows that B
vanishes on IR and therefore induces a unique S-linear map B : M⊗R N −→ L, with
B(m⊗n) = b(m,n). This completes the proof. �

The tensor product of linear maps is defined as follows. Let f : M1 −→ N1 and
g : M2 −→N2 be R-linear maps between R-modules M1,N1 and M2,N2, respectively.
Then f × g : M1 ×M2 −→ N1 ⊗R N2,(m1,m2) �→ f (m1)⊗ f (m2) is R-bilinear and
therefore extends in a natural way to an R-linear map,

f ⊗g : M1 ⊗R M2 −→ N1 ⊗R N2,

that maps each element m1 ⊗ m2 to f (m1)⊗ f (m2). We refer to f ⊗ g as the
tensor product of f with g. It is clear that the tensor product of two module
isomorphisms is a module isomorphism. If concrete matrix representations of f
and g are given, the matrix representation of the tensor product f ⊗ g is equivalent
to the so-called Kronecker product of matrices; we will return to this in Section 5.2
when we examine tensor products of polynomial models. Since polynomial models
are concrete representations of polynomial quotient modules, it is only natural to
expect that the analysis of tensor products of polynomial quotient modules, and of
associated module homomorphisms, should prove useful for linear systems theory,
and therefore particular attention will be paid to this topic.

The following result provides a very useful identification of tensor products of
quotient modules. Let M1 and M2 be R-modules, with R a commutative ring. Let
Ni ⊂ Mi be submodules. The quotient spaces Mi/Ni then have a natural R-module
structure.

Proposition 5.3. Let N be the submodule of M1 ⊗R M2 defined as

N := N1 ⊗R M2 +M1 ⊗R N2.

The R-linear map

f : M1 ⊗R M2 −→ M1/N1 ⊗R M2/N2, m1 ⊗m2 �→ (m1 +N1)⊗ (m2 +N2)

defines the following isomorphism of R-modules:

M1/N1 ⊗R M2/N2 � (M1 ⊗R M2)/N.

Proof. By the construction of f , the kernel of f is contained in N. Moreover, f
is surjective. Thus f induces a surjective homomorphism f : (M1 ⊗R M2)/N −→
M1/N1 ⊗R M2/N2. The map

g : M1/N1 ⊗R M2/N2 −→ (M1 ⊗R M2)/N, (m1 +N1)⊗ (m2 +N2) �→ m1 ⊗m2 +N

is well defined and is a left inverse to f . Thus f is an isomorphism. �
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The next result is useful in establishing isomorphisms between tensor product
spaces.

Proposition 5.4. Let S be a subring of R and k ≥ 3. Let M1, . . . ,Mk be R-modules
and N an S-module. Suppose that f : M1 × ·· · × Mk −→ N is an S-multilinear
function that satisfies

f (m1, . . . ,mk−2,rmk−1,mk) = f (m1, . . . ,mk−2,mk−1,rmk)

for all r ∈ R and mi ∈ Mi. Then there exists a unique S-multilinear function

F : M1 ×·· ·×Mk−2 × (Mk−1 ⊗R Mk)−→ N,

with

F(m1, . . . ,mk−2,mk−1 ⊗mk) = f (m1, . . . ,mk). (5.3)

Proof. Since the elements of M ⊗R N are finite sums of elementary tensors a⊗ b,
the uniqueness of F follows from (5.3) and the additivity of F in the last argument.
To construct F , we fix m1, . . . ,mk−2. By Lemma 5.2, there exists a unique S-linear
map Fm1···mk−2 : M⊗R N −→ L, with

Fm1...mk−2(mk−1 ⊗mk) = f (m1, . . . ,mk−2,mk−1,mk).

By the S-multilinearity of f , this yields the desired S-linear map F : M1 × ·· · ×
Mk−2 × (Mk−1 ⊗R Mk)−→ N, satisfying

F(m1, . . . ,mk−2,mk−1 ⊗mk) = Fm1...mk−2(mk−1 ⊗mk).

�
Consider a commutative ring R, and let S ⊂ R be a subring. Let M and N be

R-modules, and let L be an S-module. Note that the space HomS(N,L) of S-linear
maps becomes an R-module by defining

(r · f )(n) = f (rn)

for all r ∈ R,n ∈ N and f ∈ HomS(N,L). For greater generality, one denotes by
BilS,R(M,N;L) the set of all S-bilinear maps f : M×N −→ L that satisfy

f (rm,n) = f (m,rn) (5.4)

for all (m,n) ∈ M ×N and r ∈ R. In the special case where S = R, one uses the
simplified notation BilR(M,N;L). It is easily seen that BilS,R(M,N;L) is, in a natural
way, an R-module with respect to the R-scalar product

(r · f )(m,n) = f (rm,n), r ∈ R.
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Proposition 5.5. Let R be a commutative ring, let S ⊂ R be a subring and let
M and N be R-modules and L an S-module. Then the following are R-module
isomorphisms:

HomS(M⊗R N,L)� BilS,R(M,N;L)� HomR(M,HomS(N,L)).

Proof. Let f ∈ BilS,R(M,N;L), and let m ∈ M. Defining, for n ∈ N, fm(n) = f (m,n),
it follows that fm : M −→ HomS(N,L) is S-linear for all m ∈ M. Since f satisfies
(5.4), then (r · fm)(n) = f (m,rn) = f (rm,n) = frm(n) for all r ∈ R. Thus frm =
r · fm, i.e., the map fm belongs to HomR(M,HomS(N,L)). On the other hand, given
g ∈ HomR(M,HomS(N,L)), a map f : M×N −→ L is defined by f (x,y) = g(x)(y),
which is necessarily S-bilinear and satisfies (5.4) for each r ∈ R. This proves the
isomorphism BilS,R(M,N;L) � HomR(M,HomS(N,L)). To prove the existence of
an R-linear isomorphism

HomS(M⊗R N,L)� HomR(M,HomS(N,L)),

consider the map Θ : HomS(M⊗R N,L)−→HomR(M,HomS(N,L)),Θ f = g, where

Θ( f )(m)(n) := f (m⊗R n), f ∈ HomS(M⊗R N,L).

Clearly, Θ is R-linear. Similarly, the map

Ψ : HomR(M,HomS(N,L))−→ HomS(M⊗R N,L),

which is defined by

Ψg(m⊗R n) := g(m)(n),

is R-linear and Ψ ◦Θ and Θ ◦Ψ are identity maps. The result follows. �
The duality properties of tensor products are of interest to us. Recall that the

algebraic dual module M′ of an R-module M is defined by

M′ = HomR(M,R), (5.5)

i.e., by the space of all R-linear functionals on M or, equivalently, by the space of all
R-homomorphisms of M into R. For the special case L = R, Proposition 5.5 implies
the module isomorphisms

(M⊗R N)′ = HomR(M⊗R N,R)� HomR(M,N′). (5.6)

Clearly, if M is an R-torsion module and the ring R has no zero divisors, then
M′ = 0. Unfortunately, the definition of the algebraic dual in the context of modules,
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namely, by (5.5), is of little use for the applications we have in mind. Of course,
given a subring S ⊂ R, one can replace the algebraic dual M′ with the S-dual

M∗ := HomS(M,S).

This is still an R-module that has in general better duality properties than M′. The
best choice here would be to take S as a subfield of R, and this is what will be done
in the sequel. The objects of interest to us are polynomial and rational models. Both
have two structures: they are vector spaces over the field F and modules over the
polynomial ring F[z]. As F[z]-modules, they are finitely generated torsion modules,
and hence their algebraic dual, defined by (5.5), is the zero module. In much the
same way, all objects defined in the subsequent isomorphism (5.6) are trivial. To
overcome this problem, two module structures, over F and F[z] respectively, will be
used and the algebraic dual replaced by the vector space dual.

1. Tensor products of vector spaces
Tensor products of vector spaces over a field F are studied next in somewhat
more detail. This is of course a much simpler situation in which most of the
pathologies encountered in studying tensor products over a ring disappear. As
indicated previously, one needs to introduce vector space duality. For a finite-
dimensional F-vector space X , the vector space dual is defined by

X ∗ = HomF(X ,F).

The annihilator of a subspace V ⊂X is defined as the linear subspace

V ⊥ := {λ ∈X ∗ | λ |V = 0}.

If X is finite-dimensional, then so is V ⊥ and

dimV ⊥ = dimX −dimV .

Finite-dimensional vector spaces are reflexive, i.e., the isomorphism X ∗∗ �X is
satisfied. In fact, these two spaces can be identified by letting each vector x ∈X act
on an element x∗ ∈X ∗ by x(x∗) = x∗(x). We now take a closer look at the case of
tensor products of two finite-dimensional F-linear spaces X ,Y . Let BX = { fi}n

i=1,
BY = {gi}m

i=1 be bases of X and Y , respectively. Let B∗
X = {φi}n

i=1 be the basis
of X ∗, which is dual to BX , i.e., it satisfies φi( f j) = δij. For a linear transformation
T ∈ HomF(X ,Y ), let tij ∈ F be defined by

Tf j =
m

∑
i=1

tijgi, j = 1, . . . ,n. (5.7)

Thus [T ]BY
BX

= (tij) is the matrix representation with respect to this pair of bases. On
the other hand, we consider the tensor product Y ⊗X ∗, which is generated by the
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basis elements gi ⊗φk. Associate with gi ⊗φk the linear map from X to Y , defined
for x ∈X by

(gi ⊗φk)x = φk(x)gi.

We claim that {gi ⊗ φk|i = 1, . . . ,m,k = 1, . . . ,n} is a basis for L(X ,Y ). Indeed,
T = ∑m

i=1 ∑n
k=1 cikgi ⊗φk implies

Tf j =
m

∑
i=1

n

∑
k=1

cik(gi ⊗φk) f j =
m

∑
i=1

n

∑
k=1

cikφk( f j)gi

=
m

∑
i=1

n

∑
k=1

cikδkjgi =
m

∑
i=1

cijgi.

Comparing this with (5.7), it follows that cij = tij. Hence,

T =
m

∑
i=1

n

∑
j=1

tijgi ⊗φ j, (5.8)

i.e., {gi ⊗φ j} is a basis for Y ⊗FX
∗. This leads us back to the isomorphism

HomF(X ,Y )� Y ⊗FX
∗ (5.9)

given by (5.8). The representation (5.8) of T ∈ HomF(X ,Y ) can be simplified. If
rankT = k, then there exists a minimal-length representation

T =
k

∑
i=1

ψi ⊗φi,

where {φi}k
i=1 is a basis of (KerT )⊥ ⊂ X ∗ and {ψi}k

i=1 is a basis of ImT ⊂ Y .
For a linear transformation T ∈ HomF(X ,Y ), the adjoint transformation T ∗ ∈
HomF(Y

∗,X ∗) is defined by

(T ∗y∗)x = y∗(Tx).

The map T �→ T ∗ yields the isomorphism

HomF(X ,Y )� HomF(Y
∗,X ∗).

Clearly, (5.9) is a special case of (5.6). Another consequence of (5.9) is the
following dimension formula:

dim(X ⊗FY ) = dimX ·dimY . (5.10)
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Note that in view of the isomorphism (5.9), for T ∈ HomF(X ,Y ) there are two
possible matrix representations that turn out to be equal, namely,

[T ]BY
BX

= [T ]BY⊗B∗
X .

Here BY ⊗B∗
X is the tensor product of the basis BY of Y and the basis B∗

X of X∗,
which is dual to the basis BX of X .

2. Tensor products of F[z]-modules
Next, the situation of principal interest to us, namely, the case where the vector
spaces X and Y are actually F[z]-modules, is addressed. The module structure on
X defines a canonical F[z]-module structure on the dual vector space X ∗ via

(z ·λ )(x) = λ (z · x)

for x ∈X and λ ∈X ∗. As a consequence of the reflexivity property, there exists an
isomorphism X �X ∗∗ as F[z]-modules. Of particular interest is the establishment
of a relation between the operations of forming the tensor product X ⊗Y and the
space of homomorphisms Hom(X ,Y ). The dimension formula (5.10) implies that
there is a well-defined F-linear isomorphism

Y ⊗FX
∗ −→ HomF(X ,Y ), (y,λ ) �→ (x �→ λ (x)y) (5.11)

as long as X and Y are finite-dimensional F-vector spaces. It is desirable to estab-
lish a similar F[z]-linear isomorphism of modules Y ⊗F[z]X

∗ −→HomF[z](X ,Y ).
For a ring R and R-modules M and N, it is well known, see Hilton and Wu (1974),
that if M is finitely generated and projective, then the canonical map

φ : N ⊗R M′ −→ HomR(M,N), (n,λ ) �→ (m �→ λ (m)n) (5.12)

is a module isomorphism. Since every free module is projective, this covers the
vector space case. Thus, it seems to be the appropriate generalization of (5.11) to
F[z]-modules. Unfortunately, the isomorphism (5.12) excludes the case of M being
a torsion module, which is the case of main interest for us. This shows that the
isomorphism (5.12) with the algebraic dual M′ instead of the vector space dual M∗
is of no further use for us.

Let D(z) ∈ F[z]m×m be a nonsingular polynomial matrix, and let XD denote the
associated polynomial model. Standard duality theory for polynomial models, as
summarized in Theorem 3.38, shows that there exists an isomorphism of F[z]-
modules

XD � X∗
D� � XD� .

In fact, the isomorphism XD � XD� follows from the fact that both polynomial
matrices D(z) and D�(z) have the same invariant factors. The isomorphism
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XD � X∗
D� follows from Theorem 3.38. The next result explores in more detail the

various isomorphisms between spaces of homomorphisms and tensor products.

Proposition 5.6. Let F be a field and X and Y be F[z]-modules that are finite-
dimensional as vector spaces over F. The following assertions are true:

1. There is a natural F[z]-module isomorphism

X �X ∗∗.

2. There is a natural F[z]-module isomorphism

BilF,F[z](X ,Y ;F)� (X ⊗F[z]Y
∗)∗ � HomF[z](X ,Y ). (5.13)

3. There are natural F-vector space isomorphisms

X ∗ ⊗FY � BilF(X ,Y ;F)� (X ⊗FY
∗)∗ � HomF(X ,Y ). (5.14)

Proof. 1. For x ∈ X let εx : X −→ F denote the linear functional defined as
εx(λ ) = λ (x). By the finite dimensionality of X , the natural map ε : X −→
X ∗∗,x �→ εx is an F-linear isomorphism. The F[z]-module structure on X ∗∗ is
defined as (z ·εx)(λ ) := εx(zλ̇ )= λ (zx) for x∈X ,λ ∈X ∗. Therefore, z ·εx = εzx

for all x ∈X , which proves that ε is F[z]-linear. The result follows.
2. The isomorphism (X ⊗F[z]Y

∗)∗ � HomF[z](X ,Y ) follows by applying Propo-
sition 5.5 to the case of S = F, R = F[z], M =X , and N = Y ∗, noting that the
F[z]-modules X ∗∗ and X are isomorphic.

3. The last two natural isomorphisms in (5.14) follow from Proposition 5.5 by tak-
ing R = S = F. The natural isomorphism between X ∗ ⊗FY and HomF(X ,Y )
can be constructed explicitly by mapping the generating elements x∗ ⊗F y of the
tensor product X ∗ ⊗FY onto the linear transformation from X to Y , defined
by (x∗ ⊗F y)(x) = (x∗(x))y. �

Proposition 5.6 implies the following commutative diagram of linear maps:

� �

�

�

( ⊗ ∗)∗

( ⊗ [z]
∗)∗

Hom ( , )

Hom [z]( , )

∗ i

Y

y

i

Here ι∗ denotes the adjoint transformation of the canonical surjective F-linear map
ι : X ⊗F Y

∗ −→ X ⊗F[z] Y
∗ and therefore is injective. Map i is the canonical

inclusion map and ψ and Ψ are the canonical F[z]-linear and F-linear isomorphisms
defined by (5.13) and (5.14), respectively. The preceding diagram has the advantage
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of involving only canonical constructions of polynomial models. Its disadvantage
lies in the usage of duality, which makes it hard to write down the maps in concrete
form. Therefore, in the sequel, we will aim at a more concrete representation
of the spaces appearing in this diagram that does not involve dual spaces. This
new diagram will be derived in the following sections and will require concrete
representations for tensor product spaces. It will also play an important role in our
analysis of Bezoutians.

Next, one extends the duality theory from vector spaces to F[z]-modules.

Definition 5.7. Let M be a module over the ring of polynomials F[z]. The vector
space annihilator of an F[z]-submodule N ⊂ M is the submodule of M∗ defined as

N⊥ = {φ ∈ M∗ | φ |N = 0}.

Using this notation, the dual of a quotient module over F[z] has a nice represen-
tation. In fact, one has the F[z]-linear isomorphism

(M/N)∗ � N⊥.

The isomorphism (5.6) is extended to the tensor product of two quotient modules.

Proposition 5.8. Let Ni ⊂ Mi, i = 1,2, be F[z]-modules. There is an F[z]-linear
isomorphism

(M1/N1 ⊗F[z] M2/N2)
∗ � (M1 ⊗F[z] N2 +N1 ⊗F[z] M2)

⊥

= (N1 ⊗F[z] M2)
⊥ ∩ (M1 ⊗F[z] N2)

⊥.

Proof. Let N denote the submodule in M1 ⊗F[z] M2 that is generated by the spaces
N1 ⊗F[z] M2 and M1 ⊗F[z] N2. Clearly, the equality of annihilators N⊥ = (N1 ⊗F[z]

M2 +M1 ⊗F[z] N2)
⊥ is true. Thus Proposition 5.3 implies the module isomorphism

(M1/N1 ⊗F[z] M2/N2)
∗ � (M1 ⊗F[z] M2)/N � N⊥ = (N1 ⊗F[z] M2 +M1 ⊗F[z] N2)

⊥

= (N1 ⊗F[z] M2)
⊥ ∩ (M1 ⊗F[z] N2)

⊥. �

3. Tensor product spaces of Laurent series
The ambient space for the algebraic analysis of discrete-time linear systems is
F((z−1))m. Thus as a first step one considers the tensor product of such spaces,
both taken over the field F as well as over the ring of polynomials F[z]. Clearly, the
polynomial ring F[z] is a rank one module over itself but an infinite-dimensional
vector space over F.
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Proposition 5.9. The following F-linear and F[z]-linear isomorphisms are valid:

F[z]p ⊗F F[z]m � F[z,w]p×m, f ⊗F g �→ f (z)g(w)�,

F[z]p ⊗F[z] F[z]
m � F[z]p×m, f ⊗F[z] g �→ f (z)g(z)�.

(5.15)

Proof. To prove (5.15), one notes that the map γ : F[z]p × F[z]m −→ F[z,w]p×m

that maps a pair of polynomials ( f ,g) to the polynomial matrix in two variables
f (z)g(w)� is F-linear and therefore determines a unique F-linear map γ∗ : F[z]p ⊗F

F[z]m −→ F[z,w]p×m for which γ = γ∗φ . γ∗ is surjective because every element
Q(z,w)∈F[z,w]p×m is a finite sum Q(z,w) =∑q

i=1 fi(z)gi(w)� = γ∗ ∑q
i=1 fi⊗Fgi. To

prove the injectivity of γ∗, we note that F[z]m has a basis {zie j|i ∈ Z+, j = 1, . . . ,m}.
Therefore, each element of F[z]p ⊗F F[z]m in the kernel of γ∗ has the form ξ =

∑(i, j)∈I fijzie j, with γ∗(ξ ) = ∑(i, j)∈I fij(z)wi(e j)
� = 0. Hence, ∑(i, j)∈I fij(z)wi = 0

for all j, implying that fij(z) = 0 for all i, j. Thus ξ = 0. Mutatis mutandis, using the
F[z]-bilinear map γ : F[z]p ⊗F F[z]m −→ F[z]p×m that maps a pair of polynomials
( f ,g) to the polynomial matrix f (z)g(z)� ∈ F[z]p×m exhibits an induced F[z]-
isomorphism F[z]p ×F[z]m −→ F[z]p×m, which proves the second isomorphism in
(5.15). �

The surjectivity of (5.15) can be reformulated as follows.

Proposition 5.10. Every Q(z,w) ∈ F[z,w]p×m has a representation of the form

Q(z,w) =
k

∑
i=1

Ri(z)P
�
i (w),

with Ri(z) ∈ F[z]p and Pi(w) ∈ F[w]m. This implies a factorization

Q(z,w) = R(z)P�(w),

with R(z) ∈ F[z]p×k and P(w) ∈ F[w]m×k.

To extend the previous results to Laurent series, several more spaces will be
needed. Because the field F((z−1)) of truncated Laurent series has two module
structures of interest, namely, with respect to the fields F and F((z−1)), there are
two different tensor products, given by

F((z−1))p ⊗F F((z
−1))m � Fsep((z

−1,w−1))p×m (5.16)

and

F((z−1))p ⊗
F((z−1)) F((z

−1))m � F((z−1))p×m. (5.17)

These are the analogs of equation (5.15).
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Here, Fsep((z−1,w−1)) denotes the ring of separable truncated Laurent series
in the variables z and w, which are of the form F(z,w) = ∑N

i=1 fi(z)gi(w) for
finitely many f1, . . . , fN ∈ F((z−1)), g1, . . . ,gN ∈ F((w−1)). Thus Fsep((z−1,w−1))
is a proper subset of F((z−1,w−1)), the field of truncated Laurent series. By
Fsep((z−1,w−1))p×m we denote the module of all p×m matrices with entries in
Fsep((z−1,w−1)). Rational elements H(z,w) ∈ Fsep((z−1,w−1))p×m have represen-
tations of the form H(z,w) = ∑k

i=1 fi(z)gi(w)�, with both fi(z) and gi(z) rational.
This implies a representation of the form

H(z,w) = d(z)−1Q(z,w)e(w)−1,

with Q(z,w) ∈ F[z,w]p×m and e(w),d(z) nonzero, scalar polynomials.
The isomorphism F((z−1,w−1))p×m � F

p×m((z−1,w−1)) will be routinely used,
and we will actually identify the two spaces. The identification F

p×m[z,w] =
F[z,w]p×m is a special case. By F[z,w] we denote the ring of polynomials in the
variables z and w and by F[[z−1,w−1]] the ring of formal power series in z−1

and w−1. Denote by F[z,w]p×m the space of p × m polynomial matrices. The
elements of z−1

F[[z−1,w−1]]p×mw−1 are called strongly strictly proper. It should
be emphasized that not every strictly proper rational function in two variables
belongs to z−1

F[[z−1,w−1]]w−1. For example, 1
z−w /∈ z−1

F[[z−1,w−1]]w−1. It will
be convenient to use F[[z−1,w]p×m to denote the subspace of F((z−1,w−1))p×m

of matrices whose entries are formal power series in z−1 and polynomial in w.
Thus the elements of F[[z−1,w]p×m are of the form F(z,w) = ∑N

i=0 Fi(z)wi for
suitable Fi(z)∈F((z−1))p×m. Thus F[[z−1,w]p×m ⊂Fsep((z−1,w−1))p×m. The space
F[z,w−1]]p×m is similarly defined. In the same vein, Fsep[[z−1,w−1]]p×m denotes the
space of p×m matrix functions of separable formal power series ∑N

i=1 fi(z)gi(w)�,
with fi(z) ∈ F[[z−1]]p, gi(z) ∈ F[[w−1]]m.

The definition of Fsep((z−1,w−1))p×m implies the isomorphism

Fsep((z
−1,w−1))p×m � F((z−1))p ⊗F F((z

−1))m.

Taking into account the direct sum representations (3.1) as well as (5.2), one
computes

Fsep((z
−1,w−1))p×m � (F[z]p ⊕ z−1

F[[z−1]]p)⊗F (F[z]
m ⊕ z−1

F[[z−1]]m)

� (F[z]p ⊗F F[z]
m)⊕ (F[z]p ⊗F z−1

F[[z−1]]m)

⊕ (z−1
F[[z−1]]p ⊗F F[z]

m)⊕ (z−1
F[[z−1]]p ⊗F z−1

F[[z−1]]m)

� F[z,w]p×m ⊕F[z,w−1]]p×mw−1 ⊕ z−1
F[[z−1,w]p×m ⊕ z−1

Fsep[[z
−1,w−1]]p×mw−1.

To these direct sum representations correspond, respectively, the following projec-
tion identities:
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I = πz
+⊗ I +πz

−⊗ I = I ⊗πw
++ I ⊗πw

−
= πz

+⊗πw
++πz

−⊗πw
++πz

+⊗πw
−+πz

−⊗πw
−.

Our next target is the extension of duality theory to the context of polynomial
spaces in two variables. To this end, the space of matrix truncated Laurent series in
two variables, i.e.,

F((z−1,w−1))p×m = {G(z,w) =
n1

∑
i=−∞

n2

∑
j=−∞

Gijz
iw j},

is introduced. For G(z,w) ∈ F((z−1,w−1))p×m, its residue is defined as the coef-
ficient of z−1w−1, i.e., G−1,−1. In analogy with (3.41), for G(z,w),H(z,w) ∈
F((z−1,w−1))p×m, we define a bilinear form on F((z−1,w−1))p×m by

= Trace(H�G)−1,−1 = Trace
∞

∑
i=−∞

∞

∑
j=−∞

H�
−i−1,− j−1Gij

=
∞

∑
i=−∞

∞

∑
j=−∞

TraceH�
−i−1,− j−1Gij.

(5.18)

Note that the sum defining [G,H] contains only a finite number of nonzero terms.
Clearly, the form defined in (5.18) is nondegenerate. If G(z,w) ∈ F((z−1,w−1))q×m,
A(z,w)∈ F((z−1,w−1))p×q, and H(z,w)∈ F((z−1,w−1))p×m, then A(z,w)G(z,w)∈
F((z−1,w−1))p×m and

[AG,H] = [G,A�H].

It is easy to see that, with respect to the bilinear form (5.18), one has

(F[z,w]p×m)⊥ = F[z,w−1]]p×m +F[[z−1,w]p×m. (5.19)

The next result gives a concrete representation of the dual space of F[z,w]p×m that
is an extension of Theorem 3.38.

Proposition 5.11. The vector space dual of F[z,w]p×m is F-linear isomorphic to
the space (z−1

F[[z−1,w−1]]w−1)p×m, i.e.,

(F[z,w]p×m)∗ � (z−1
F[[z−1,w−1]]w−1)p×m.

Proof. Clearly, for H(z,w) ∈ (z−1
F[[z−1,w−1]]w−1)p×m and Q(z,w) ∈ F[z,w]p×m,

the map Φ : F[z,w]p×m −→ F, defined by Φ(Q) = [Q,H], is a linear functional
on F[z,w]p×m. Conversely, suppose Φ is a linear functional on F[z,w]p×m. For all
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i, j ≥ 0, Φ induces linear functionals Φij on F
p×m by defining Φij(A) = Φ(ziAw j).

Every functional Φij on F
p×m has a representation of the form Φij(A)=Trace(H�

ij A)
for a unique Hij ∈ F

p×m. Defining

H(z,w) =
∞

∑
i=0

∞

∑
j=0

Hijz
−i−1w− j−1 ∈ z−1

F[[z−1,w−1]]p×mw−1,

it follows that Φ(Q) = [Q,H]. �

5.2 Tensored Polynomial and Rational Models

Turning now to a detailed study of tensor products of polynomial and rational
models, taken together with duality theory, will enable us to construct, in concrete
terms, an isomorphism

X ∗ ⊗F[z]Y −→ HomF[z](X ,Y )

and, in the process, develop a coordinate-free approach to Bezoutians.
Spaces like F[z]m or, more importantly for our purposes, quotient spaces like

F[z]m/D(z)F[z]m have module structures with respect to both the field F, i.e.,
vector space structures, and the ring of polynomials F[z]. With respect to the
characterization of tensor products, the underlying ring is of utmost importance
because the tensor product depends very much on the ring used. These two
constructs do not exhaust the possibilities, especially where polynomial models are
concerned, and we will also study polynomial models defined by the Kronecker
product of polynomial matrices. In analyzing the tensor products of two polynomial
models, our first objective will be to find concrete representations of the various
tensor products. Furthermore, it will be shown that the class of polynomial models
is closed under tensor product operations. The inherent noncommutative situation in
the case of nonsingular polynomial matrices makes things more difficult, especially
if concrete isomorphisms are to be constructed. Of particular difficulty is the lack
of a concrete representation of XD1 ⊗F[z] XD2 . This is the result of the absence of
a nice representation of a two-sided greatest common divisor. The tensor products
of function spaces given by (5.15), (5.16), and (5.17) just set the stage. In studying
tensor products of polynomial or rational models, there are essentially four ways
to proceed. For nonsingular polynomial matrices D1(z) ∈ F[z]p×p and D2(z) ∈
F[z]m×m, one can study the F – and F[z] – tensor products, i.e., XD1 ⊗F XD2 and
XD1 ⊗F[z]XD2 , respectively. Additionally, one can study the polynomial, and rational,
models defined by the Kronecker products D1(z)⊗ D�

2 (w) and D1(z)⊗ D�
2 (z),

respectively. Later on, it will be shown that the F-tensor product XD1 ⊗F XD2 and the
polynomial model XD1(z)⊗D�

2 (w) are isomorphic, which will reduce the complexity
to the study of three distinct spaces.
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Before starting the analysis of the four different tensor product representations,
some useful notation and terminology must be established. For rectangular matrices
A ∈ F

m×n,B ∈ F
k×�, and in this chapter only, the Kronecker product is defined as

the mk×n� matrix

A⊗B =

⎛
⎜⎝

b11A . . . b1�A
...

. . .
...

bk1A . . . bk�A

⎞
⎟⎠ .

Note that this definition is in harmony with the definition of the tensor product f ⊗g
of two linear maps f : Fn −→ F

m and g : F� −→ F
k. In fact, if A and B denote the

matrices of f and g with respect to the standard basis, then A ⊗ B is the matrix
representation of f ⊗ g with respect to the standard basis. Nevertheless, we warn
the reader that this definition of the Kronecker product is slightly different from that
used by many other authors, in the sense that what we denote as A⊗B is usually
denoted as B⊗A. We will use the preceding definition of the Kronecker product only
in this chapter, in order to simplify some of the expressions. Later on, in Part III of
this book, we will return to the standard definition of the Kronecker product.

By the definition of the Kronecker product, the Kronecker product of an upper
triangular matrix A with an rectangular matrix B is block-upper triangular. In
particular, the Kronecker product B⊗ IN is of the form

IN ⊗B =

⎛
⎜⎝

b11IN . . . b1�IN
...

. . .
...

bk1IN . . . bk�IN

⎞
⎟⎠ ,

while

A⊗ IN = diag(A, . . . ,A) =

⎛
⎜⎝

A . . . 0
...

. . .
...

0 . . . A

⎞
⎟⎠ .

For invertible, n × n and m × m, respectively, matrices A and B, the Kronecker
product A⊗B is invertible, and

(A⊗B)−1 = A−1 ⊗B−1.

The following rules for the Kronecker product are easily verified:

(A⊗B)⊗C = A⊗ (B⊗C),

(A⊗B)(C⊗D) = AC⊗BD,

(A⊗B)� = A�⊗B�.
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Let vec(A) ∈ F
mn denote the column vector that is obtained by stacking the second

column of A under the first, then the third under the second, and so on. The identity

vec(ABC) = (A⊗C�)vec(B)

is very useful in replacing linear matrix equations in vectorized form. Moreover,
there exist permutation matrices P and Q such that

P(A⊗B)Q = B⊗A

is true of all matrices A,B. The eigenvalues of A⊗B are the products λi(A)λ j(B) of
the eigenvalues λi(A) and λ j(B) of A and B, respectively. Therefore, the trace and
determinant of A⊗B of matrices A and B are tr(A⊗B) = tr(A)tr(B) and det(A⊗
B) = det(A)m det(B)n. Similarly, the eigenvalues of A⊗ Im + In ⊗B are the sums
λi(A)+λ j(B).

1. Kronecker Product Polynomial Models
Our aim is to obtain concrete representations of the tensor products XD1 ⊗F XD�

2
and

XD1 ⊗F[z] XD�
2

. To this end, the theory of polynomial and rational models is extended
to the case of models induced by Kronecker products of polynomial matrices in one
or two variables. Polynomial models based on Kronecker product representations
were first studied by Helmke and Fuhrmann (1998) in order to obtain explicit
descriptions for tangent spaces for manifolds of rational transfer functions.

Recalling the identification (5.17) and the fact that F((z−1))p is a vector space
over the field F((z−1)) allows us to introduce a module structure on the space of
truncated matrix Laurent series in two variables, z and w, i.e., on F((z−1,w−1))p×m,
as follows.

Definition 5.12. For Laurent series A1(z)∈F((z−1))p×p and A2(w)∈F((w−1))m×m,
define their F-Kronecker product A1(z)⊗A�

2 (w) as the map

(A1(z)⊗A�
2 (w)) : F((z−1,w−1))p×m −→ F((z−1,w−1))p×m

(A1(z)⊗A�
2 (w))F(z,w) = A1(z)F(z,w)A2(w).

Clearly, A1(z)⊗A�
2 (w) is an F((z−1,w−1))-linear map and, hence, also an F-linear

map. Similarly, one defines the F[z]-Kronecker product A1(z)⊗A�
2 (z) as the map

(A1(z)⊗A�
2 (z)) : F((z−1))p×m −→ F((z−1))p×m

(A1(z)⊗A�
2 (z))F(z) = A1(z)F(z)A2(z).

There are many derivatives of this definition. In particular, we will look at the
restriction to polynomial spaces F[z]p×m and F[z,w]p×m, i.e., to spaces of polyno-
mial matrices in one or two variables. Thus, we define the two projection maps
πD1(z)⊗D�

2 (w) : F[z,w]p×m −→ F[z,w]p×m and πD1(z)⊗D�
2 (z) : F[z]p×m −→ F[z]p×m by
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πD1(z)⊗D�
2 (w)F(z,w) = (D1(z)⊗D�

2 (w))(πz
−⊗πw

−)(D1(z)⊗D�
2 (w))

−1F(z,w)

= (πD1(z)⊗F πD�
2 (w))F(z,w) (5.20)

and

πD1(z)⊗D�
2 (z)F(z) = (D1(z)⊗D�

2 (z))π−(D1(z)⊗D�
2 (z))

−1F(z)

= D1(z)[π−(D1(z)
−1F(z)D2(z)

−1)]D2(z)

= (πD1(z)⊗F[z] πD�
2 (z))F(z),

(5.21)

respectively. Clearly, πz
− ⊗ πw− is a projection map in F((z−1,w−1))p×m and

π− a projection map in F((z−1))p×m. Hence, πD1(z)⊗D�
2 (w) is a projection map

in F[z,w]p×m and πD1(z)⊗D�
2 (z) a projection map in F[z]p×m. There are two important

special cases of these maps, namely,

πD1(z)⊗FIQ(z,w) = πD1(z)Q(z,w),

πI⊗FD�
2 (w)Q(z,w) = Q(z,w)πD�

2 (w).

To formulate the basic properties of the projection operators, we first prove an
elementary result about projections.

Lemma 5.13. Let X be a linear space and P1 and P2 two commuting linear
projections acting in X , i.e., P1P2 = P2P1. Then:

KerP1P2 = KerP1 +KerP2,

ImP1P2 = ImP1 ∩ ImP2.
(5.22)

Proof. Since KerP1,KerP2 ⊂ KerP1P2 = KerP2P1, also KerP1 +KerP2 ⊂ KerP1P2.
Conversely, assume x ∈ KerP1P2. This implies P2x ∈ KerP1. The representation x =
(x−P2x) +P2x, with (x−P2x) ∈ KerP2 and P2x ∈ KerP1, shows that KerP1P2 ⊂
KerP1 +KerP2, and (5.22) follows. By the commutativity assumption, ImP1P2 ⊂
ImP1 ∩ ImP2. Conversely, assuming x ∈ ImP1 ∩ ImP2, there exist vectors z,w ∈X
for which x = P1z = P2w. Since P2

2 = P2, this implies x = P2w = P2P1z ∈ ImP1P2,
i.e., ImP1 ∩ ImP2 ⊂ ImP1P2. The two inclusions imply the equality. �
Proposition 5.14. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular
polynomial matrices. Then:

1. The maps πD1(z)⊗I , πI⊗D�
2 (w), and πD1(z) ⊗F πD�

2 (w) are all projections in

F[z,w]p×m;
2. The projections πD1(z)⊗I and πI⊗D�

2 (w) commute, and

πD1(z)⊗IπI⊗D�
2 (w) = πI⊗D�

2 (w)πD1(z)⊗I = πD1(z)⊗D�
2 (w) = πD1(z)⊗F πD�

2 (w);

(5.23)
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3. The following characterizations are valid:

KerπD1(z)⊗I = D1(z)F[z,w]p×m,

KerπI⊗D�
2 (w) = F[z,w]p×mD2(w),

KerπD1(z)⊗D�
2 (w) = D1(z)F[z,w]p×m +F[z,w]p×mD2(w).

(5.24)

Proof. 1. Follows from the fact that πD1 is a projection in F[z]p and πD2 a projection
in F[z]m.

2. From the isomorphism (5.15) it follows that elements of the form f (z)⊗F g(w) =
f (z)g�(w) span F[z,w]p×m. On elements of this form

πD1(z)⊗IπI⊗D�
2 (w) f ⊗F g = πD1(z)⊗I( f ⊗F πD�

2 (w)g)

= (πD1(z) f ⊗F πD2(w)g) = πI⊗D�
2 (w)(πD1(z) f ⊗F g)

= πI⊗D�
2 (w)πD1(z)⊗I( f ⊗F g),

from which (5.23) follows.
3. Clearly, Q(z,w) ∈ KerπD1(z)⊗I if and only if πz

−D1(z)−1Q(z,w) = 0, i.e.,
D1(z)−1Q(z,w) = P(z,w) for some polynomial matrix P(z,w). This is equivalent
to Q(z,w) = D1(z)P(z,w) ∈ D1(z)F[z,w]p×m. The second equality is proved
analogously. The third equality follows from Lemma 5.13 and the commutativity
of the projections πD1(z)⊗I and πI⊗D�

2 (w). �

Definition 5.15. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular poly-
nomial matrices.

1. The two-variable Kronecker product polynomial model is defined by

XD1(z)⊗D�
2 (w) = ImπD1(z)⊗D�

2 (w) ⊂ F[z,w]p×m, (5.25)

where the projection πD1(z)⊗D�
2 (w) is defined by (5.20).

2. The Kronecker product polynomial model is defined by

XD1(z)⊗D�
2 (z) = ImπD1(z)⊗D�

2 (z) ⊂ F[z]p×m, (5.26)

where the projection πD1(z)⊗D�
2 (z) is defined by (5.21).

Note that in either of these cases, the spaces XD1(z)⊗D�
2 (w) and XD1(z)⊗D�

2 (z) can be

identified with polynomial models for the Kronecker products D1(z)⊗D�
2 (w) and

D1(z)⊗D�
2 (z), respectively.
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Theorem 5.16. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular polyno-
mial matrices. Then:

1. Q(z,w) ∈ F[z,w]p×m satisfies Q(z,w) ∈ XD1(z)⊗D�
2 (w) if and only if the rational

matrix function

D1(z)
−1Q(z,w)D2(w)

−1 ∈ z−1
F[z−1,w−1]p×mw−1

is strictly proper in both variables;
2. The set J = D1(z)F[z,w]p×m + F[z,w]p×mD2(w) is an F[z,w]-submodule of

F[z,w]p×m. The following isomorphism of F[z,w]-torsion modules is valid:

XD1(z)⊗D�
2 (w) � F[z,w]p×m/(D1(z)F[z,w]

p×m +F[z,w]p×mD2(w))

= XD1(z)⊗I ∩XI⊗D�
2 (w)

� XD1 ⊗F XD�
2

;

(5.27)

3. The following dimension formula is valid:

dimXD1(z)⊗D�
2 (w) = deg(detD1) ·deg(detD2);

4. A polynomial matrix satisfies Q(z) ∈ XD1(z)⊗D�
2 (z) if and only if D1(z)−1Q(z)

D2(z)−1 is strictly proper;
5. One has

KerπD1(z)⊗D�
2 (z) = D1(z)F[z]

p×mD2(z), (5.28)

and D1(z)F[z]p×mD2(z) is a full submodule of F[z]p×m. Hence, there is an
isomorphism

XD1(z)⊗D�
2 (z) � F[z]p×m/(D1(z)F[z]

p×mD2(z)),

with both sides being F[z]-torsion modules;
6. The following dimension formula is valid:

dimXD1(z)⊗D�
2 (z) = deg(detD1) ·deg(detD2).

Proof. 1. A p × m polynomial matrix Q(z,w) is in XD1(z)⊗D�
2 (w) if and only if

Q(z,w) = πD1(z)⊗D�
2 (w)Q(z,w). In view of (5.20), this is equivalent to

(D1(z)⊗D�
2 (w))

−1Q(z,w) = (πz
−⊗F πw

−)(D1(z)⊗D�
2 (w))

−1Q(z,w),

i.e., to D1(z)−1Q(z,w)D2(w)−1 ∈ z−1
F[[z−1,w−1]]p×mw−1.
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2. By Proposition 5.14, the map

πD1(z)⊗F πD�
2 (w) = πD1(z)⊗D�

2 (w) : F[z,w]p×m −→ XD1(z)⊗D�
2 (w)

is surjective and F[z,w]-linear, with KerπD1(z)⊗D�
2 (w) = J. Thus, the first isomor-

phism in (5.27) holds. The second equality follows from Lemma 5.13, while the
third isomorphism follows directly from Proposition 5.8.

Clearly, J is an F[z,w]-submodule of F[z,w]p×m. Using, with d(z) = detD(z),
the identity d(z)I = D(z)adjD(z), we get the inclusion d1(z)F[z,w]p×md2(w) ⊂
D1(z)F[z,w]p×m +F[z,w]p×mD2(w). In turn, this implies that

πD1(z)⊗D�
2 (w)(d1(z)d2(w)Q(z,w)) = 0

for all Q(z,w)∈XD1(z)⊗D�
2 (w), i.e., the quotient module F[z,w]p×m/J is an F[z,w]-

torsion module.
3. Follows from (5.27), using the fact that the dimension of the F-tensor product of

two F-vector spaces is the product of their dimensions.
4. Follows trivially from (5.21).
5. Clearly, D1(z)F[z]p×mD2(z) ⊂ KerπD1(z)⊗D�

2 (z). Conversely, assume that Q(z) ∈
KerπD1(z)⊗D�

2 (z). By the invertibility of the multiplication operator D1(z) ⊗
D�

2 (z), this means π−D1(z)−1Q(z)D2(z)−1 = 0. Thus there exists a P(z) ∈
F[z]p×m such that D1(z)−1Q(z)D2(z)−1 = P(z) or Q(z) =D1(z)P(z)D2(z), which
implies the inclusion KerπD1⊗F[z]D

�
2
⊂ D1(z)F[z]p×mD2(z), and hence (5.28)

follows.
6. Without loss of generality, we can assume that D1(z) and D2(z) are in Smith

canonical form with invariant factors d(1)
1 (z), . . . ,d(1)

p (z) and d(2)
1 (z), . . . ,d(2)

m (z),
respectively. Thus, the quotient module F[z]p×m/(D1(z)F[z]p×mD2(z)) is a finite-
dimensional F-vector space of dimension

p

∑
i=1

m

∑
j=1

degd(1)
i degd(2)

j = degdetD1(z)degdetD2(z).

This completes the proof. �
2. Tensored Rational Models
In analogy with the introduction of tensored polynomial models, we introduce the
tensored rational models. Let D1(z)∈F[z]p×p and D2(w)∈F[w]m×m be nonsingular.

Define a projection map

πD1(z)⊗D�
2 (w) : z−1

F[[z−1,w−1]]p×mw−1 −→ z−1
F[[z−1,w−1]]p×mw−1
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by

πD1(z)⊗D�
2 (w)H(z,w)

= (πz
−⊗F πw−)(D1(z)⊗D�

2 (w))
−1(πz

+⊗F πw
+)(D1(z)⊗D�

2 (w))H(z,w).

The two-variable Kronecker product rational model and the Kronecker product
rational model are defined as

XD1(z)⊗D�
2 (w) : = ImπD1(z)⊗D�

2 (w) ⊂ z−1
F[z−1,w−1]p×mw−1,

XD1(z)⊗D�
2 (z) : = ImπD1(z)⊗D�

2 (z) ⊂ z−1
F[z−1]p×m,

(5.29)

respectively.
Equation (5.29) provides an image representation of the rational model
XD1(z)⊗D�

2 (w). To derive a kernel representation of rational models, we introduce
two-variable Toeplitz operators on z−1

F[[z−1,w−1]]p×mw−1. For P1(z) ∈ F[z]p×p

and P2(w) ∈ F[w]m×m, we define the Toeplitz operator P1(σ)⊗F P�
2 (τ), acting on

a truncated Laurent series in two variables H(z,w) ∈ z−1
F[[z−1,w−1]]p×mw−1, by

(P1(σ)⊗F P�
2 (τ))H(z,w) = (πz

−⊗F πw
−)(P1(z)H(z,w)P2(w)).

Special cases are the backward shifts σ and τ in the variables z and w, respectively.

Lemma 5.17. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular polyno-
mial matrices. Let H(z,w) ∈ z−1

F[[z−1,w−1]]p×mw−1. A necessary and sufficient

condition for H(z,w)∈XD1(z)⊗D�
2 (w) to be valid is D1(z)H(z,w)D2(w)∈F[z,w]p×m.

This is equivalent to the kernel representation

XD1(z)⊗D�
2 (w) = Ker(D1(σ)⊗F D�

2 (τ)). (5.30)

Proof. Clearly, H(z,w)∈XD1(z)⊗D�
2 (w) if and only if H(z,w)= πD1(z)⊗D�

2 (w)H(z,w).

Assume H(z,w) ∈ XD1(z)⊗D�
2 (w). Computing

(πz
−⊗F πw

−)(D1(z)⊗D�
2 (w))H(z,w)

= (πz
−⊗F πw

−)(D1(z)⊗D�
2 (w))πD1(z)⊗D2(w)H(z,w)

= (πz
−⊗F πw

−)(πz
+⊗F πw

+)(D1(z)⊗D�
2 (w))H(z,w) = 0

implies XD1(z)⊗D�
2 (w) ⊂ Ker(D1(σ)⊗F D�

2 (τ)).
Conversely, assuming H(z,w) ∈ Ker(D1(σ)⊗F D�

2 (τ)) implies D1(z)H(z,w)
D2(w) ∈ F[z,w]p×m. This implies



232 5 Tensor Products, Bezoutians, and Stability

(πz
−⊗F πw

−)(D1(z)⊗D�
2 (w))

−1(πz
+⊗F πw

+)(D1(z)⊗D�
2 (w))H(z,w)

= (πz
−⊗F πw

−)(D1(z)⊗D�
2 (w))

−1(D1(z)⊗D�
2 (w))H(z,w) = H(z,w),

i.e., Ker(D1(σ)⊗F D�
2 (τ))⊂ XD1(z)⊗D�

2 (w). The two inclusions imply (5.30). �

The elements of XD1(z)⊗D�
2 (w) are rational functions of a special type. They are

characterized next.

Proposition 5.18. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular

polynomial matrices. Every element H(z,w) ∈ XD1(z)⊗D�
2 (w) is a rational, strictly

proper function in two variables that has a representation of the form

H(z,w) =
P(z,w)

d1(z)d2(w)
, (5.31)

with di(z) = detDi(z) ∈ F[z] nonzero polynomials and P(z,w) ∈ F[z,w]p×m.

Proof. From Lemma 5.17 it follows that H(z,w) ∈ XD1(z)⊗D�
2 (w) if and only if

Q(z,w) = D1(z)H(z,w)D2(w) ∈ F[z,w]p×m. Letting d1(z) = detD1(z) and d2(w) =
detD1(w), we compute

H(z,w) = D1(z)
−1Q(z,w)D2(w)

−1 =
adjD1(z)Q(z,w)adjD2(w)

d1(z)d2(w)
=

P(z,w)
d1(z)d2(w)

. �

Rational functions of the form (5.31) are called separable and have the property
that the set of poles is a direct product A×B of two finite subsets of the algebraic
closure F. We refer to Fliess (1970) for a characterization of rational elements of
F[[z−1,w−1]] in terms of a finite rank condition of an appropriate Hankel matrix.

The study of duality for the tensor product of models is our next topic.

Theorem 5.19. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular. Then

(XD1(z)⊗D�
2 (z))

∗ � (F[z]p×m/D1(z)F[z]
p×mD2(z))

∗ � XD�
1 (z)⊗D2(z)

and

(XD1(z)⊗D�
2 (w))

∗ � XD�
1 (z)⊗D2(w) � XD�

1 (z)⊗D2(w)

are F[z]- and F[z,w]-linear isomorphisms, respectively.

Proof. Proposition 5.16 implies the following isomorphism of F[z]-modules:

(XD1(z)⊗D�
2 (z))

∗ � (F[z]p×m/D1(z)F[z]
p×mD2(z))

∗.

Using the vec-operator, we can identify the matrix space F[z]p×m with the space of
vector polynomials F[z]pm. Moreover, the identity

(D1(z)⊗D�
2 (z))

� = D�
1 (z)⊗D2(z)
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is satisfied. For vectors of polynomials F(z) and strictly proper functions H(z)
let [F,H] = (F�(z)H(z))−1, denote the residue term of F(z)�H(z). Using Theo-
rem 3.38, the map

XD�
1 (z)⊗F[z]D2(z) −→ (XD1(z)⊗D�

2 (z))
∗

H(z) �→
(

F(z) �→ Trace(F(z)�H(z))−1

)

yields the module isomorphism

(XD1(z)⊗D�
2 (z))

∗ � XD�
1 (z)⊗F[z]D2(z).

This completes the proof for the first isomorphisms.
By Proposition 5.16, the elements of the rational model XD�

1 (z)⊗D2(w) are of the
form H(z,w) = D1(z)−�Q(z,w)D2(w)−�. Consider the map

L : XD�
1 (z)⊗D2(w) −→ (XD1(z)⊗D�

2 (w))
∗ (5.32)

defined by

L(H)F := [F(z,w),H(z,w)] = Trace(F(z,w)�H(z,w))−1,−1.

Here, [·, ·] denotes the dual pairing on functions of two variables, defined by (5.18).
To prove that this pairing is nondegenerate, assume that a polynomial F(z,w) ∈
XD1(z)⊗D�

2 (w) satisfies [F,H] = 0 for all H ∈ XD�
1 (z)⊗D2(w). Equivalently,

[D1(z)
−1F(z,w)D2(w)

−1,Q(z,w)] = 0

for all polynomial matrices Q of the appropriate size. By (5.19), this is equivalent to

D1(z)
−1F(z,w)D2(w)

−1 ∈ z−1
F[[z−1,w−1]]w−1 ∩ (

F[z,w−1]]p×m +F[[z−1,w]p×m)

= {0}.

Thus, F(z,w) = 0. Similarly, [F,H] = 0 for all F ∈ XD1(z)⊗D�
2 (w) implies H = 0.

Thus the bilinear form [·, ·] on XD1(z)⊗D�
2 (w) ×XD�

1 (z)⊗D2(w) is nondegenerate and

therefore induces a vector space isomorphism (5.32). Moreover, the natural F[z,w]-

module action on, respectively, XD1(z)⊗D�
2 (w) and XD�

1 (z)⊗D2(w)) implies

[p(z,w) ·F,H] = [p(z,w)F,H] = [F, p(z,w)H] = [F, p(z,w) ·H].
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Therefore, (5.32) defines an F[z,w]-linear isomorphism. The equality

XD�
1 (z)⊗D2(w) = D1(z)

−�⊗D2(w)
−1XD�

1 (z)⊗D2(w)

implies the F[z,w]-linear isomorphism

XD�
1 (z)⊗D2(w) � XD�

1 (z)⊗D2(w)
.

This completes the proof. �
4. F-Tensored Polynomial Models
Our attention turns to the study of F-tensor products of vectorial polynomial models.
Proposition 5.16 implies that a Kronecker tensored polynomial model, in the sense
of (5.25), is isomorphic to the tensor product of polynomial models taken over the
field F. This is no longer true if tensored polynomial models in the sense of (5.26)
are used, and indeed, the models XD1(z)⊗D�

2 (z) and XD1(z)⊗F XD2(z) are generally not
isomorphic. The next proposition gives a concrete, functional representation of the
F-tensor product of two polynomial models.

Proposition 5.20. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular poly-
nomial matrices. Let φ : XD1 ×XD�

2
−→ XD1 ⊗F XD�

2
be the canonical isomorphism,

and let γ : XD1 ×XD�
2
−→ XD1(z)⊗D�

2 (w) be F-bilinear.

1. The map γ∗ : XD1 ⊗F XD�
2
−→ XD1(z)⊗D�

2 (w) defined by

γ∗( f1 ⊗F f2) = f1(z) f�2 (w)

is an F[z,w]-linear isomorphism implying

XD1 ⊗F XD�
2
� XD1(z)⊗D�

2 (w). (5.33)

In particular, this gives a concrete representation of the tensor product.
2. The following dimension formula is valid:

dim(XD1(z)⊗F XD�
2 (w)) = deg(detD1) ·deg(detD2).

Proof. 1. Noting the isomorphism (5.27), we compute

XD1(z)⊗D�
2 (w) � F[z,w]p×m/(D1(z)F[z,w]p×m +F[z,w]p×mD2(w))

� (F[z]p/D1(z)F[z]p)⊗F (F[z]m/D�
2 (z)F[z]

m)

� XD1(z)⊗F XD�
2 (z).
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2. Using the dimension formula dimXD = deg(detD) and the isomorphism (5.33),
we obtain for the F-tensor product of two polynomial models the dimension
formula

dim
(
F[z]p/D1(z)F[z]⊗F F[w]

m/D�
2 (w)F[w]

m
)
= deg(detD1) ·deg(detD2). �

Note that the polynomial models XD1 and XD2 not only have a vector space
structure but are actually F[z]-modules. This implies that XD1(z)⊗D�

2 (w) and, hence,

using the isomorphism (5.33), XD1 ⊗F XD�
2

have natural F[z,w]-module structures.
This is defined by

p(z,w) ·Q(z,w) = πD1(z)⊗D�
2 (w)p(z,w)Q(z,w), Q(z,w) ∈ XD1(z)⊗D�

2 (w),

(5.34)

where p(z,w) ∈ F[z,w].
Similarly, we define an F[z,w]-module structure on the tensored rational model

XD1(z)⊗D�
2 (w) by letting,

p(z,w) ·H(z,w) = πD1(z)⊗D�
2 (w)[∑k

i=1 ∑l
j=1 pijzi−1H(z,w)w j−1] (5.35)

for p(z,w) = ∑k
i=1 ∑l

j=1 pijzi−1w j−1 ∈ F[z,w] and H(z,w) ∈ XD1(z)⊗D�
2 (w).

Proposition 5.21. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular

polynomial matrices and H(z,w) ∈ XD1(z)⊗D�
2 (w).

1. The F[z,w]-module structure on XD1(z)⊗D�
2 (w) defined by (5.35) can be

rewritten as

p(z,w) ·H(z,w) = (πz
−⊗πw

−)
k

∑
i=1

l

∑
j=1

pijz
i−1H(z,w)w j−1. (5.36)

2. With the F[z,w]-module structure on XD1(z)⊗D�
2 (w) and XD1(z)⊗D�

2 (w), given by
(5.36) and (5.35) respectively, the multiplication map

D1(z)⊗D�
2 (w) : XD1(z)⊗D�

2 (w) −→ XD1(z)⊗FD�
2 (w)

is an F[z,w]-module isomorphism, giving

XD1(z)⊗D�
2 (w) � XD1(z)⊗D�

2 (w).

Proof. 1. Follows from (5.35).
2. Follows, using Lemma 5.17, from the fact that H(z,w)∈XD1(z)⊗D�

2 (w) if and only

if H(z,w) = πD1(z)⊗D�
2 (w)H(z,w).
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Equivalently, if and only if πD1(z)⊗D�
2 (w)D1(z)H(z,w)D2(w) = D1(z)H(z,w)

D2(w), i.e., D1(z)H(z,w)D2(w) ∈ XD1(z)⊗D�
2 (w). �

Special cases of interest are the single-variable shift operators

Sz,Sw : XD1(z)⊗D�
2 (w) −→ XD1(z)⊗D�

2 (w),

defined by

SzQ(z,w) = πD1(z)⊗D�
2 (w)zQ(z,w) = πD1(z)zQ(z,w),

SwQ(z,w) = πD1(z)⊗D�
2 (w)Q(z,w)w = πI⊗FD�

2 (w)Q(z,w)w.

A concrete representation of the dual space to a tensored polynomial model
is given next. For subspaces U and V of a linear space X , we shall use the
isomorphism (X /V )∗ � V ⊥, as well as the identity (U +V )⊥ =U ⊥ ∩V ⊥.

Theorem 5.22. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular polyno-
mial matrices. Then the following is an F[z,w]-linear isomorphism:

(XD1 ⊗F XD�
2
)∗ � XD1(z)⊗FI ∩XI⊗FD�

2 (w) � XD�
1 (z)⊗D2(w).

Proof. By Proposition 5.16 and Theorem 5.19, the following are F[z,w]-linear
isomorphisms:

XD1 ⊗F XD�
2
� XD1(z)⊗D�

2 (w),

(XD1 ⊗F XD�
2
)∗ � XD�

1 (z)⊗D2(w).

This implies the F[z,w]-linear isomorphisms

(XD1 ⊗F XD�
2
)∗ � (F[z,w]m×p/(D1(z)F[z,w]p×m +F[z,w]p×mD2(w)))

∗

� (D1(z)F[z,w]p×m +F[z,w]p×mD2(w))
⊥

= (D1(z)F[z,w]p×m)
⊥ ∩ (F[z,w]p×mD2(w))

⊥

= XD1(z)⊗FI ∩XI⊗FD�
2 (w).
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Here, the identities

(
D�

1 (z)F[z,w]
p×m

)⊥
= XD1(z)⊗FI ,

(
F[z,w]p×mD�

2 (w)
)⊥

= XI⊗FD�
2 (w)

were used. They follow from the duality relation based on the bilinear form (5.18).
Indeed, H(z,w) ∈ (D1(z)F[z,w]p×m)

⊥ if and only if, for every Q(z,w) ∈ F[z,w]p×m,

0 = [D1(z)Q(z,w),H(z,w)] = [Q(z,w),D1(z)H(z,w)],

i.e., if and only if D1(z)H(z,w)∈ F[z,w]p×m, which implies H(z,w)∈ XD1(z)⊗I . The
other formula is proved similarly. �
3. F[z]-tensored polynomial models
In the preceding parts, tensor product representations of polynomial models over a
field were studied. Things change dramatically when tensor products of polynomial
models are taken over the polynomial ring F[z]. This leads directly to the study of
intertwining maps, the Sylvester equation, and, in a very natural way, to the study
of generalized Bezoutians.

Definition 5.23. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular polyno-
mial matrices. The greatest common left Kronecker divisor of D1(z) and D2(z) is
defined as the greatest common left divisor D1(z)∧D2(z) of the polynomial matrices
D1(z)⊗ Im and Ip ⊗D2(z)�.

Of course, by construction, the greatest common left Kronecker divisor D1(z)∧
D2(z) ∈ F[z]pm×pm is a nonsingular polynomial matrix. Further elementary prop-
erties of D1(z)∧D2(z) are listed subsequently in Corollary 5.25. The F[z]-tensor
product of the polynomial models XD1 and XD2 is characterized by the following
theorem. It shows in particular that the F[z]-tensor product of two polynomial
models is isomorphic to a polynomial model, defined by the greatest common left
Kronecker divisor.

Theorem 5.24. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular polyno-
mial matrices. Let J be the submodule of F[z]p×m defined by

J = D1(z)F[z]
p×m +F[z]p×mD2(z).

1. The F[z]-tensor product can be identified by the following isomorphism:

XD1 ⊗F[z] XD�
2
� F[z]p×m/(D1(z)F[z]

p×m +F[z]p×mD2(z)).
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The isomorphism is given by the canonical map γ : XD1 ×XD2 −→ XD1 ⊗F[z] XD2

defined by

γ( f1, f2) = [ f1 f�2 ]J ,

where [F ]J denotes the equivalence class of F ∈ F[z]p×m with respect to
submodule J.

2. Let D1 ∧D2 ∈ F[z]pm×pm denote the greatest common left divisor of D1(z)⊗ Im

and Ip⊗D�
2 (z). Then XD1 ⊗F[z] XD�

2
is F[z]-linearly isomorphic to the polynomial

model

XD1∧D2 .

Proof. The first claim follows trivially from Proposition 5.3.
By identifying F[z]p×m with F[z]pm we obtain the module isomorphism

XD1 ⊗F[z] XD�
2
� F[z]pm/D(z)F[z]2pm,

where D(z) := (D1(z)⊗ Im, Ip ⊗D�
2 (z)) ∈ F[z]pm×2pm. Thus

D(z) = (D1(z)∧D2(z))A(z),

where A(z) ∈ F[z]pm×2pm is left prime. Thus A(z)F[z]2pm = F[z]pm, and therefore

D(z)F[z]2pm = D1(z)∧D2(z)F[z]
pm.

This implies XD1 ⊗F[z]XD�
2
� F[z]pm/D1(z)∧D2(z)F[z]pm � XD1∧D2 . This completes

the proof of the second part. �
Corollary 5.25. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular poly-

nomial matrices with invariant factors d(1)
1 (z), . . . ,d(1)

p (z) and d(2)
1 (z), . . . ,d(2)

m (z),

respectively. Let d(1)
i ∧ d(2)

j denote the greatest common divisor of the polynomials

d(1)
i (z) and d(2)

j (z).

1. The tensor product XD1 ⊗F[z] XD2 is isomorphic to the polynomial model XD1∧D2 .
2. For scalar polynomials d1(z),d2(z) there is an isomorphism of F[z]-modules

Xd1 ⊗F[z] Xd2 � Xd1∧d2 .

3. XD1 ⊗F[z] XD2 is F[z]-linearly isomorphic to the direct sum

p⊕
i=1

m⊕
j=1

X
d(1)i ∧d(2)j

.
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In particular, the following dimension formula is valid:

dimXD1 ⊗F[z] XD2 =
p

∑
i=1

m

∑
j=1

deg(d(1)
i ∧d(2)

j ).

4. The invariant factors of D1(z)∧D2(z) are d(1)
i (z)∧d(2)

j (z). In particular,

detD1(z)∧D2(z) = detD1(z)
m detD2(z)

p.

Proof. Assertions 1 and 2 follow at once from part 2 of Theorem 5.24.

3. Let Δ1 = diag(d(1)
1 , . . . ,d(1)

p ) and Δ2 = diag(d(2)
1 , . . . ,d(2)

m ) be the respective
Smith forms of D1(z) and D2(z), and let Ui(z) and Vi(z) be unimodular
polynomial matrices satisfying Ui(z)Di(z) = Δi(z)Vi(z). This implies the F[z]-
linear isomorphism

XΔ1 �
p⊕

i=1

X
d(1)i

, XΔ2 �
m⊕

j=1

X
d(2)j

.

Using 2, the isomorphisms

XD1 ⊗F[z] XD2 � XΔ1 ⊗F[z] XΔ2 �
(

p⊕
i=1

X
d(1)i

)
⊗F[z]

(
m⊕

i=1

X
d(2)j

)

�
⊕
i, j

X
d(1)i

⊗F[z] Xd(2)j
�

p⊕
i=1

m⊕
j=1

X
d(1)i ∧d(2)j

follow. This completes the proof of 3.
4. Consider the unimodular polynomial matrices Ui(z) and Vi(z) such that

D1(z) =U1(z)Δ1(z)V1(z), D2(z)
� =U2(z)Δ2(z)

�V2(z)

are in Smith form. Since D1 ∧D2 is the greatest common left factor of D1 ⊗ Im

and Ip ⊗D�
2 there exist polynomial matrices M(z) and N(z) such that

(D1 ∧D2)M = D1 ⊗ Im = (U1 ⊗U2)(Δ1 ⊗ I)(V1 ⊗U−1
2 ),

(D1 ∧D2)N = (U1 ⊗U2)(Ip ⊗Δ�
2 )(U−1

1 ⊗V2).

Thus there exist unimodular matrices P(z) = (U1 ⊗U2)
−1, R(z) = (V−1

1 ⊗U2),
and S(z) = (U1 ⊗V−1

2 ) such that

P(D1 ∧D2)MR = Δ1 ⊗ I, P(D1 ∧D2)NS = Ip ⊗Δ�
2 .
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This implies that P(z)(D1 ∧D2) is a greatest common left divisor of Δ1 ⊗ I and
Ip ⊗Δ�

2 and therefore, up to an irrelevant unimodular factor, coincides with Δ1 ∧
Δ2. Thus D1 ∧D2 and Δ1 ∧Δ2 have the same invariant factors. It is easy to see

that Δ1 ∧Δ2 can be chosen as a diagonal matrix with diagonal entries d(1)
i ∧d(2)

j .
This completes the proof. �

Corollary 5.26. Consider nonsingular polynomial matrices D(z) ∈ F[z]p×p and
D(z)∈F[z]m×m with the same nontrivial invariant factors di, ordered so that di|di−1.
Then the following assertions hold:

1.

dimHomF[z](SD,SD) = ∑
i
(2i−1)degdi.

2. Let A ∈ F
n×n have invariant factors d1, . . . ,dn ordered such that di|di−1. Let

C (A) = {X ∈ F
n×n | AX = XA} denote the centralizer of A. Then:

dimC (A) =
n

∑
i=1

(2i−1)degdi; (5.37)

3. For A ∈ F
n×n with invariant factors d1, . . . ,dn, dimC (A) = n2 if and only if there

exists an α ∈ F such that, for all i = 1, . . . ,n, di(z) = z−α . Equivalently, A = αI,
i.e., A is a scalar transformation.

The relation of the F[z]-tensor product XD1 ⊗F[z] XD�
2

to the tensored Kronecker
model XD1(z)⊗D�

2 (z) is examined next.

Proposition 5.27. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular. The
following is an F[z]-linear isomorphism:

XD1 ⊗F[z] XD�
2
� XD1(z)⊗D�

2 (z)/(D1XI⊗D�
2
+XD1⊗ID2). (5.38)

Proof. With i the canonical injections, the following diagram is commutative. Here
πD1⊗D�

2
|J denotes the restriction of πD1⊗D�

2
to the subspace J = D1(z)F[z]p×m +

F[z]p×mD2(z):

D1(z)F[z]p×m+F[z]p×mD2(z) F[z]p×m

XD1⊗D�
2

D1XI⊗D�
2
+XD1⊗ID2

πD1⊗D�
2
|J πD1⊗D�

2

i

i

�

�
��
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Moreover, π−1
D1⊗D�

2
(D1XI⊗D�

2
+XD1⊗ID2)=D1(z)F[z]p×m+F[z]p×mD2(z). Using the

surjectivity of πD1⊗D�
2

: F[z]p×m −→ XD1⊗D�
2

and applying a standard argument, the
isomorphism (5.38) follows. �

The next theorem yields an explicit description of the module (XD1 ⊗F[z] X
∗
D2
)∗.

Theorem 5.28. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular. The
following are F[z]-linear isomorphisms:

XD1 ⊗F[z] XD�
2
� (XD1 ⊗F[z] X

∗
D2
)∗ � (XD1 ⊗F[z] XD�

2
)∗ � XD1⊗I ∩XI⊗D�

2 .

Proof. For each submodule M ⊂ F[z]p×m, one can identify the annihilator
with M⊥ = {H ∈ z−1

F[[z−1]]p×m | Trace[F,H] = 0 ∀F ∈ M}. Here [F,H] =
(F(z)�H(z))−1 denotes the residue. Computing

(XD1 ⊗F[z] XD�
2
)∗ �

(
F[z]p×m/(D1(z)F[z]

p×m +F[z]p×mD�
2 (z))

)∗

= (D1(z)F[z]
p×m +F[z]p×mD�

2 (z))
⊥

= (D1(z)F[z]
p×m)⊥ ∩ (F[z]p×mD�

2 (z))
⊥

= XD1⊗I ∩ XI⊗D�
2

proves one isomorphism.
To prove the other isomorphisms, one uses the Smith form. Thus, for each

nonsingular polynomial matrix Q(z), the invariant factors of Q(z) and Q�(z) are
equal, implying the F[z]-linear isomorphism

XQ � XQ� .

Moreover, Theorem 3.38 implies the isomorphism XQ � X∗
Q. By Theorem 5.24, the

tensor product XD1 ⊗F[z] XD�
2

is F[z]-linearly isomorphic to the polynomial model

XD1∧D�
2

and hence also to X∗
D1∧D�

2
� (XD1 ⊗F[z] XD�

2
)∗. This completes the proof.

�

5.3 Polynomial Sylvester Equation

Proceeding now to a more detailed study of the Sylvester equation in the tensored
polynomial model framework, definition (5.34) is specialized to the polynomial
p(z,w) = z−w. One obtains, for all Q(z,w) ∈ XD1(z)⊗FD�

2 (w), that

S Q(z,w) = (z−w) ·Q(z,w) = πD1(z)⊗D�
2 (w)(zQ(z,w)−Q(z,w)w). (5.39)
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The map S is referred to as the polynomial Sylvester operator . In fact,
with constant matrices A1 ∈ F

p×p and A2 ∈ F
m×m, and defining D1(z) = zI −A1

and D2(w) = wI − A2, we obtain XD1(z)⊗FD�
2 (w) = F

p×m. Therefore, Q(z,w) ∈
XD1(z)⊗D�

2 (w) if and only if Q(z,w) ∈ F
p×m, i.e., X = Q(z,w) is a constant matrix.

This implies

(z−w) ·X = π(zI−A1)⊗(wI−A�
2 )(z−w)X = A1X −XA2

for all X ∈F
p×m, i.e., we recover the standard Sylvester operator. This computation

shows that the classical Sylvester equation

A1X −XA2 =C

corresponds to the equation

S X =C,

with X ,C ∈ X(zI−A1)⊗F(wI−A�
2 ) necessarily constant matrices.

Note that every polynomial matrix T (z,w) ∈ XD1(z)⊗D�
2 (w) has a factorization of

the form

T (z,w) = R1(z)R
�
2 (w),

with R1(z) ∈ XD1⊗Ik ⊂ F[z]p×k and R2(w)� ∈ XIk⊗D�
2 (w) ⊂ F[w]k×m, and both

polynomial matrices R1(z) and R2(w) have linearly independent columns. The
following theorem reduces the analysis of the general Sylvester equation to a
polynomial equation of the Bezout type. This extends the method, introduced in
Willems and Fuhrmann (1992), for the analysis of the Lyapunov equation. Of
course, a special case is the homogeneous Sylvester equation, which has a direct
connection to the theory of Bezoutians.

Theorem 5.29. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular, let the
Sylvester operator S : XD1(z)⊗D�

2 (w) −→ XD1(z)⊗D�
2 (w) be defined by (5.39) and let

R1(z) ∈ XD1(z)⊗FI , R�
2 (w) ∈ XI⊗FD�

2 (w). Then:

1. The Sylvester equation

SD1 Q−QSD2
= T (z,w) = R1(z)R

�
2 (w), (5.40)

or equivalently

S Q(z,w) = πD1(z)⊗D�
2 (w)(z−w)Q(z,w) = R1(z)R

�
2 (w),
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is solvable if and only if there exists polynomial matrices N1(z) ∈ XD1(z)⊗I and
N2(z) ∈ XI⊗D�

2 (z) for which

D1(z)N2(z)−N1(z)D2(z)+R1(z)R
�
2 (z) = 0. (5.41)

Equation (5.40) will be referred to as the polynomial Sylvester equation, or
PSE for short, and its solutions are given by

Q(z,w) =
D1(z)N2(w)−N1(z)D2(w)+R1(z)R�

2 (w)
z−w

; (5.42)

2. Q(z,w) ∈ XD1(z)⊗D�
2 (w) solves the homogeneous polynomial Sylvester equa-

tion, or HPSE for short, if and only if there exist polynomial matrices N1(z) ∈
XD1⊗I and N2(z) ∈ XI⊗D�

2
that satisfy

D1(z)N2(z)−N1(z)D2(z) = 0, (5.43)

in terms of which

Q(z,w) =
D1(z)N2(w)−N1(z)D2(w)

z−w
.

Proof. 1. Assume there exist the polynomial matrices N1(z) ∈ XD1⊗I and N2(z) ∈
XI⊗D�

2
, solving equation (5.41), and for which Q(z,w) is defined by (5.42). Note

first that, under our assumptions on R1(z) and R2(w),

D1(z)
−1Q(z,w)D2(w)

−1

=
N2(w)D2(w)−1 −D1(z)−1N1(z)+D1(z)−1R1(z)R�

2 (w)D2(w)−1

z−w

is strictly proper in both variables, i.e., Q(z,w) is in XD1(z)⊗D�
2 (w). Computing

S Q(z,w) = πD1(z)⊗D�
2 (w)(z−w)Q(z,w)

= πD1(z)⊗D�
2 (w)(D1(z)N2(w)−N1(z)D2(w)+R1(z)R2(w))

= R1(z)R2(w)
�,

it follows that Q(z,w) is indeed a solution.
To prove the converse, note that, given a nonsingular polynomial matrix

D1(z) ∈ F[z]p×p, then, for f (z) ∈ XD2 , (SD2 f )(z) = zf (z)− D2(z)ξ f , where
ξ f = (D−1

2 f )−1. This implies that, for Q(z,w) ∈ XD1(z)⊗D�
2 (w),
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Sz⊗1Q(z,w) = zQ(z,w)−D1(z)N2(w), S1⊗wQ(z,w) = Q(z,w)w−N1(z)D2(w),

with both N2D−1
2 and D−1

1 N1 strictly proper. Assuming Q(z,w) is a solution of
the PSE, we compute

Sz−wQ(z,w) = [zQ(z,w)−D1(z)N2(w)]− [Q(z,w)w−N1(z)D2(w)]

= R1(z)R2(w)
�,

implying

Q(z,w) =
D1(z)N2(w)−N1(z)D2(w)+R1(z)R2(w)�

z−w
.

However, because Q(z,w) ∈ XD1(z)⊗D�
2 (w) is a polynomial matrix, (5.41) neces-

sarily holds.
2. Follows from the previous part. �

This leads us to introduce the following object.

Definition 5.30. A polynomial matrix Q(z,w) ∈ XD1(z)⊗D�
2 (w) is called a general-

ized Bezoutian if it has a representation of the form

Q(z,w) =
D1(z)N2(w)−N1(z)D2(w)

z−w
, (5.44)

with D−1
1 N1 and N2D−1

2 strictly proper and such that the identity

D1(z)N2(z) = N1(z)D2(z) (5.45)

is satisfied.

Corollary 5.31. Q(z,w)∈ XD1(z)⊗D�
2 (w) is a solution of the HPSE (5.43) if and only

if Q(z,w) is a generalized Bezoutian.

Proof. Follows from Theorem 5.29.2. �

5.4 Generalized Bezoutians and Intertwining Maps

Proposition 5.6 shows that there is a close connection between tensor products of
vector spaces and spaces of F-linear maps between vector spaces. For functional
models one can be more specific about the form of such connections, leading to a
new interpretation of Bezoutian operators in terms of intertwining maps and module
homomorphisms of polynomial models. Denote by HomF(XD1 ,XD2) the space of
all F-linear maps from XD1 to XD2 and by HomF[z](XD1 ,XD2) the space of all F[z]-
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linear maps from XD1 to XD2 , i.e., the space of all F-linear maps Z from XD1 to
XD2 that satisfy ZSD1 = SD2 Z. The essential information that encodes the mutual
interrelations between these spaces is given by the following commutative diagram:

� �

�

�

XD2 ⊗ XD�
1

XD2 ⊗ [z]XD�
1

Hom (XD1 ,XD2)

Hom [z](XD1 ,XD2)

i

Y

y

b

Here i is the natural inclusion of HomF[z](XD1 ,XD2) in HomF(XD1 ,XD2). The map
β will be constructed via Bezoutians, and we will establish the F- and F[z]-linear
isomorphisms Ψ and ψ , respectively. As is easily seen, this diagram is an equivalent
reformulation of the first diagram, mentioned at the beginning of this chapter,
insofar as the dual spaces X∗

D1
and (XD2 ⊗X∗

D1
)∗ are replaced by their isomorphic

counterparts XD�
1

and XD2 ⊗XD�
1

, respectively. For the relevant isomorphisms that
underpin such reformulations, we refer to Theorem 5.28. It may come as somewhat
of a surprise that the study of F[z]-homomorphisms of polynomial models can be
based on the study of tensored models. This (see Theorem 5.34) leads to a further
clarification of the connection between intertwining maps and Bezoutians.

To achieve an even more concrete form of the previous diagram, we next prove
a proposition that establishes a concrete connection between the space of maps Z
intertwining the shifts SD2 and SD1 and the F[z]-tensor product of the polynomial
models XD�

2
and XD1 .

Proposition 5.32. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[w]m×m be nonsingular.

1. Every Q(z,w) ∈ XD2(z)⊗D�
1 (w) has a representation of the form

Q(z,w) = R2(z)R
�
1 (w), (5.46)

with R2(z) ∈ XD2(z)⊗FI and R1(w)� ∈ XI⊗FD1(w)� , i.e., both D2(z)−1R2(z) and

D1(w)−�R1(w) are strictly proper. Without loss of generality, assume that the
columns of R1(z) and R2(z) are linearly independent.

2. Define a map Ψ : XD2(z)⊗FD�
1 (w) −→ HomF(XD1 ,XD2), for f (z) ∈ XD1 and

Q(z,w) ∈ XD2(z)⊗D�
1 (w) having the representation (5.46), by

Ψ(Q) f = ZQ f =< f ,Q(z, .)� >= [D−1
1 f ,Q(z, .)�] = (Q(z, ·)D−1

1 f )−1.
(5.47)
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Then Ψ induces the isomorphism

XD2(z)⊗FD�
1 (w) � HomF(XD1 ,XD2).

The polynomial Q(z,w) will be called the representing kernel of the map Ψ(Q),
and (5.47) will be referred to as its kernel representation.

Proof. 1. Let {u1(z), . . . ,un1(z)} be a basis for XD2 and {v1(z), . . . ,vn2(z)} be a
basis for XD1 . Assume Q(z,w) ∈ XD2(z)⊗D�

1 (w). Since D2(z)−1Q(z,w) is strictly

proper in z, there exist polynomials gi(w) such that Q(z,w) = ∑n2
i=0 ui(z)gi(w).

Since Q(z,w)D1(w)−1 is strictly proper in the variable w,

n2

∑
i=0

ui(z)π+(gi(w)D1(w)
−1) = 0.

In turn, this implies g�i (w) ∈ XD�
1

and, hence, the existence of αij ∈ F for which

gi(w) = ∑n1
j=0 αijv j(w)�. Thus

Q(z,w) =
n2

∑
i=0

n1

∑
j=0

αijui(z)v j(w)
� = R(2)(z)AR(1)(w)�.

Here R(2) = (u1(z), . . . ,un1(z)), R(1) = (v1(z), . . . ,vn2(z)) and A = (αij). Next,
let r = rankA, which implies the existence of a factorization A = A2A�

1 , with
Ai ∈ F

ni×r of full column rank. Redefining the R(i)(z), the statement follows.
2. As elements of the form ui(z)(v j(w))� generate XD2(z)⊗FD�

1 (w), we compute for

such an element Ψ(ui(z)(v j(w))�) = ui(z)< f ,v j >. This allows us to compute,
for Q(z,w) = ∑k

i=1 ui(z)vi(w)� = R2(z)R�
1 (w),

Ψ(
k

∑
i=1

ui(z)vi(w)
�) f =

k

∑
i=1

ui(z)< f ,vi >

= (
k

∑
i=1

ui(z)vi(w)
�D1(w)

−1 f (w))−1 = (
k

∑
i=1

ui(z)vi(w)
�D1(w)

−1 f (w))−1

=< f ,
k

∑
i=1

vi(w)ui(z)
� >=< f ,Q(z, ·)� > .

Clearly, Ψ defined by (5.47) is F-linear. To show the injectivity of Ψ , assume
without loss of generality that the columns of R1(z) are linearly independent and
that Ψ(Q) = 0, i.e., that for all g(z) ∈ XD1 ,

0 =< g,Q(z, .)� >= R2(z)(R
�
1 (w)D1(w)

−1g(w))−1.
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This implies (R�
1 (w)D1(w)−1g(w))−1 = 0 for all g(z) ∈ XD1 . Since the columns

of R1(z) are in XD�
1

, Theorem 3.38 implies that R1 = 0 and, hence, Q(z,w) = 0.
That Ψ is an isomorphism follows from the equality of dimension. Indeed,

dimXD2(z)⊗FD�
1 (w) = dimXD2 ⊗F XD�

1

= dimXD2 ·dimXD�
1
= degdetD1 ·degdetD2

= dimHomF(XD1 ,XD2).

�
The following lemma will be needed in the sequel.

Lemma 5.33. Let H(z) ∈ F((z−1))p×m. Then:

(
H(w)
w− z

)

−1
= π+H(z).

Proof. Let H(w) = ∑nH
k=−∞ H−kwk. One computes

(
H(w)
w− z

)

−1
=

(
nH

∑
k=−∞

H−k
wk

w− z

)

−1

= ∑nH
k=−∞ H−k

(
wk

w− z

)

−1

= ∑nH
k=−∞ H−k ∑∞

j=0

(
wk z j

w j+1

)

−1
= ∑nH

k=0 H−kzk

= π+H(z).

Here we used

(
wk z j

w j+1

)

−1
=

{
0 j �= k

zk j = k.
�

In Theorem 3.20, a characterization of maps intertwining two polynomial models
was derived. In fact, already in equation (3.22) there is a clue to the beautiful
link between intertwining maps and the theory of generalized Bezoutians. This
connection is now formalized in the following theorem, which plays a central role
in our analysis. It allows for a second, independent approach to the characterization
of homomorphisms between polynomial models and the commutant lifting theorem
(Chapter 3).

Theorem 5.34. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[w]m×m be nonsingular. Let
R1(z) ∈ F[z]p×k and R2(z) ∈ F[z]m×k. Assume that D1(z)−�R1(z) and D2(z)−1R2(z)
are strictly proper. Then the following statements are equivalent.
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1. Q(z,w) = R2(z)R�
1 (w) is a solution of the HPSE (5.43).

2. Q(z,w) = R2(z)R�
1 (w) is a Bezoutian, i.e., it has a representation of the form

(5.44) and satisfies (5.45).
3. The map Z : XD1 −→ XD2 defined by

Zg = R2(z)< g,R�
1 >=< g,Q(z, .)� >

= [D−1
1 g,(R2(z)R

�
1 (w))

�] = (R2(z)R
�
1 (w)D1(w)

−1g(w))−1

(5.48)

satisfies

SD2 Z = ZSD1 , (5.49)

i.e., it is an intertwining map or, equivalently, an F[z]-homomorphism.
4. The map Z : XD1 −→ XD2 has the representation

Zg = πD2 N2g, g ∈ XD1 , (5.50)

with D1(z),D2(z) satisfying the intertwining relation

N2(z)D1(z) = D2(z)N1(z) (5.51)

for some N1(z),N2(z) ∈ F[z]p×m.

Proof. (1) ⇔ (2)
Follows from Theorem 5.29 and Definition 5.30.
(2) ⇒ (3)
Assume Q(z,w) = R2(z)R1(w)� is a Bezoutian, i.e., it has a representation of the

form (5.44). We compute, for g(z) ∈ XD1 ,

(SD2 Z −ZSD1)g

= SD2(R2(z)R1(w)
�D1(w)

−1g(w))−1 −R2(z)(R1(w)
�D1(w)

−1SD1 g(w))−1

= πD2(zR2(z)R
�
1 (w)D1(w)

−1g(w))−1 −R2(z)(R1(w)
�D1(w)

−1πD1 wg(w))−1

= πD2(zR2(z)R
�
1 (w)D1(w)

−1g(w))−1 −R2(z)(R1(w)
�π−D−1

1 wg(w))−1

= πD2(zR2(z)R
�
1 (w)D1(w)

−1g(w))−1 −R2(z)(R1(w)
�D1(w)

−1wg(w))−1

= πD2((D2(z)N1(w)−N2(z)D1(w))D1(w)
−1g(w))−1

=−πD2(N2(z))(D2(w)D2(w)
−1g(w))−1)

=−N2(z)(g(w))−1 = 0,

using the fact that g(w) is a polynomial. This implies (5.49).
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(2) ⇒ (4)
Assume first that Q(z,w) is a Bezoutian, i.e., has a representation of the form

(5.44). We prove now that Z has the alternative representation (5.50). To this end,
using Lemma 5.33, one computes

Zg =< g,Q(z, ·)� >

= [D−1
1 g,Q(z, ·)�] = (

Q(z,w)D1(w)
−1g(w)

)
−1

=

(
D2(z)N1(w)−N2(z)D1(w)

z−w
D1(w)

−1g(w)

)

−1

=

(
D2(z)

N1(w)D1(w)−1g(w)
z−w

−N2(z)
g(w)
z−w

)

−1

=−D2(z)π+N1D−1
1 g+N2(z)g(z) = N2(z)g(z)−D2π+D−1

2 N2g

= D2π−D−1
2 N2g = πD2 N2g.

(3) ⇒ (2)
Assume that Z : XD1 −→ XD2 , defined by (5.48), is intertwining. For g(z) ∈ XD1 ,

one computes, using Lemma 5.33, the fact that πD2 R2 = R2, and that a contribution
of a polynomial term to the residue ()−1 is zero,

0 = (SD2 Z −ZSD1)g = SD2 < g,Q(z, .)� >−< SD1 g,Q(z, .)� >

= SD2

(
R2(z)R1(w)

�D1(w)
−1g(w)

)
−1

−
(

R2(z)R1(w)
�D1(w)

−1SD1 g(w)
)
−1

= πD2

(
zR2(z)R1(w)

�D1(w)
−1g(w)

)
−1

−
(

R2(z)R1(w)
�D1(w)

−1(πD1wg(w))
)
−1

= πD2

(
zR2(z)R1(w)

�D1(w)
−1g(w)

)
−1

−
(

R2(z)R1(w)
�D1(w)

−1wg(w)
)
−1

= πD2

(
R2(z)(z−w)R1(w)

�D1(w)
−1g(w)

)
−1

.

Since this is true for all g(z) ∈ XD1 , and as it trivially holds for g(z) ∈ D1F[z]m,
it is satisfied for all g(z) ∈ F[z]m. Hence, πD2

(
R2(z)(z−w)R1(w)�D1(w)−1

)
is a

polynomial in both variables. It follows that (πD2 ⊗πD1)
(
R2(z)(z−w)R1(w)�

)
= 0,

i.e., R2(z)R1(w)� is a solution of the HPSE. Applying Theorem 5.29, it follows that
R2(z)R1(w)� is a Bezoutian.

(4) ⇒ (3)
From representation (5.50) it easily follows that Z is intertwining. Indeed, noting
that equality (5.51) implies N2KerπD2 ⊂ KerπD1 , we compute

SD1 Zg−ZSD2 g = πD1 zπD1N2g−πD1N2πD2 zg = πD1zN2g−πD1N2zg = 0.

�
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Proposition 5.35. Let D1(z) ∈ F[z]m×m and D2(z) ∈ F[z]p×p be nonsingular.

1. Every H ∈ XD2⊗I ∩XI⊗D�
1 has unique representations

H(z) = D2(z)
−1N2(z) = N1(z)D1(z)

−1, (5.52)

with N1(z) ∈ XI⊗D�
1 and N2(z) ∈ XD2⊗I .

2. The map ψ : XD2⊗I ∩XI⊗D�
1 −→ HomF[z](XD1 ,XD2) defined by

ψ(H)g = πD2 N2g, g(z) ∈ XD1 (5.53)

induces the isomorphism

XD2⊗I ∩XI⊗D�
1 � HomF[z](XD1 ,XD2). (5.54)

Proof. 1. That H(z) ∈ XD2⊗I ∩ XI⊗D�
1 has the unique representations (5.52) is

obvious from the definitions.
2. Clearly, by Theorem 5.34, ψ(H) ∈ HomF[z](XD1 ,XD2), i.e., it is an intertwining

map. To show the injectivity of the map ψ , assume ψ(H) = 0. With the
representation (5.52), this implies πD2 N2g = 0 for all g ∈ XD1 . This means that
D2(z) is a left factor of N2(z). But as N2(z) ∈ XD2⊗I , necessarily N2(z) = 0. That
ψ is surjective follows from Theorem 5.34. �

The Bezout Map.
We are now in a position to explain the beautiful connection between tensor
products, intertwining maps, and Bezoutians in a very concrete way. Our starting
point is the commutative diagram of canonical homomorphisms established in the
following diagram:

� �

�

�

(XD2 XD�
1
)∗

(XD2 [z]XD�
1
)∗

Hom (XD1 ,XD2)

Hom [z](XD1 ,XD2)

F

f

∗ ii

In Proposition (5.6), it was shown that (XD2 ⊗F XD�
1
)∗ is naturally isomorphic

to XD2 ⊗F XD�
1

, which in turn is isomorphic to the Kronecker product space
XD2(z)⊗D�

1 (w) of polynomials in two variables z,w. Similarly, using duality theory

and Theorem 5.28, the module (XD2 ⊗F[z]XD�
1
)∗ can be identified with XD2 ⊗F[z]XD�

1
,

but now at the expense of a less clear interpretation of the maps ι∗ and φ .
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Matters simplify considerably if, instead of using a polynomial model representation
XD2 ⊗F[z] XD�

1
, we pass to a rational model XD2⊗I ∩ XI⊗D�

1 via the isomorphism
(5.54). This leads to a new commutative diagram of concrete maps that is described
now in more detail.

Noting that every H(z) ∈ XD2⊗I ∩XI⊗D�
1 has a unique representation of the form

H(z) = D2(z)
−1N2(z) = N1(z)D1(z)

−1,

one defines the Bezout map

β : XD2⊗I ∩XI⊗D�
1 −→ XD2(z)⊗D�

1 (w)

by associating with the rational function (z) the two-variable polynomial

β (H) = Q(z,w) =
D2(z)N1(w)−N2(z)D1(w)

z−w
. (5.55)

Note that β is F-linear and injective and the image space consists of all Bezoutian
forms. That Q(z,w) ∈ XD2(z)⊗D�

1 (w) follows from the calculation

D2(z)
−1Q(z,w)D1(w)

−1 = D2(z)
−1 D2(z)N1(w)−N2(z)D1(w)

z−w
D1(w)

−1

=
H(w)−H(z)

z−w
=

∞

∑
k=1

Hk
w−k − z−k

z−w
=− 1

zw

∞

∑
k=1

Hk
w−k − z−k

w−1 − z−1

=− 1
zw

∞

∑
k=1

Hk

(
w1−k +w2−kz−1 + · · ·+ z1−k

)
,

which shows that it is indeed strictly proper.
With these definitions, the principal result can be stated.

Theorem 5.36. Let D2(z) ∈ F[z]p×p and D1(z) ∈ F[w]m×m be nonsingular. Let the
maps

Ψ : XD2(z)⊗D�
1 (w) −→ HomF(XD1 ,XD2)

and

ψ : XD2⊗I ∩XI⊗D�
1 −→ HomF[z](XD1 ,XD2)

be defined by (5.47) and (5.53), respectively. Let

i : HomF[z](XD1 ,XD2)−→ HomF(XD1 ,XD2)
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be the canonical embedding, and let

β : XD2⊗I ∩XI⊗D�
1 −→ XD2(z)⊗D�

1 (w)

be the injective Bezout map given in (5.55). Then the following diagram commutes:

� �

�

�

XD2(z)⊗D�
1 (w)

XD2⊗I XI⊗D�
1

Hom (XD1 ,XD2)

Hom [z](XD1 ,XD2)

Y

y

ib

Proof. Note that, by Proposition 5.35, every element H ∈ XD2⊗I ∩ XI⊗D�
1 has a

unique representation of the form (5.52). With the Bezout map defined by (5.55),
all that remains is to prove the identity

Ψ ◦β = i◦ψ. (5.56)

To this end, with H(z) ∈ XD2⊗I ∩XI⊗D�
1 , g ∈ XD1 , and using equation (5.50) and

Lemma 5.4, we compute

(Ψ ◦β )(H)g =Ψ(β (H))g =Ψ(Q)g

=< g,Q(z, ·)� >=

(
D2(z)N1(w)−N2(z)D1(w)

z−w
D1(w)

−1g(w)

)

−1

= D2(z)

(
D2(w)−1N2(w)g(w)

z−w

)

−1
−N2(z)

(
g(w)
z−w

)

−1

=−D2(z)π+(D2(z)
−1N2(z)g(z))+N2(z)π+(g(z))

= D2(z)π−(D2(z)
−1N2(z)g(z))−N2(z)g(z)+N2(z)π+(g(z))

= πD2 N2g = ψ(H)g = (i◦ψ)(H)g,

i.e., (5.56) is proved. �
Theorem 5.36 shows that the F-linear maps XD1 −→ XD2

Zf =
(
Q(z,w)D1(w)

−1 f (w)
)
−1 ,

whose representing kernel Q(z,w) is a Bezoutian form, correspond exactly to
the F[z]-linear homomorphisms XD1 −→ XD2 . Thus the theory of Bezoutians is
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intimately connected to the structure of module homomorphisms of polynomial
models. This is a two-way street because it shows the existence of concrete
representations of module homomorphisms by Bezoutian forms. Conversely, the
linear maps defined by Bezoutians are seen to be module homomorphisms whose
structure is clarified by the commutant lifting theorem, Theorem 2.54.

Generalized Bezoutian Matrices.
Generalized Bezoutian matrices B(N1,D1,N2,D2), induced by a quadruple of poly-
nomial matrices satisfying an intertwining relation, were introduced in Anderson
and Jury (1976) and studied in further detail in Lerer and Tismenetsky (1982).
In the sequel we will find it convenient to distinguish between the Bezoutian
form as a matrix polynomial in two variables, which is an element of a tensored
model, the corresponding intertwining map, and the Bezoutian matrix, which is a
specific matrix representation. This is analogous to the distinction between a linear
transformation and its matrix representation. There are many choices of bases in
polynomial models, and some lead to interesting matrix representations; see, for
example, Fuhrmann and Datta (1989) or Mani and Hartwig (1997).

Definition 5.37. Assume that the polynomial matrices N1(z) and N2(z) are such
that H(z) = N1(z)D1(z)−1 = D2(z)−1N2(z) ∈ F(z)p×m are strictly proper. Let the
polynomial matrix Q(z,w) be given as

Q(z,w) =
D2(z)N1(w)−N2(z)D1(w)

z−w
=

k

∑
i, j=1

Qijz
i−1w j−1.

Then the matrix

B(N1,D1,N2,D2) = (Qij) ∈ F
kp×km

is called the generalized Bezoutian matrix. The linear operator

B : XD1 −→ XD2 , B f =
(
Q(z,w)D1(w)

−1 f (w)
)
−1

is called the Bezout operator of H(z) = N1(z)D1(z)−1 = D2(z)−1N2(z).

In Chapter 3, coprimeness conditions for the injectivity, surjectivity, and bijec-
tivity of homomorphisms between polynomial models were obtained. Using Theo-
rem 5.36, this result can now be applied to characterize full rank properties of the
Bezout operator.

Theorem 5.38. The Bezout operator B of H(z) = N1(z)D1(z)−1 = D2(z)−1N2(z) is

1. Full column rank if and only if D1(z) and N1(z) are right coprime,
2. Full row rank if and only if D2(z) and N2(z) are left coprime,
3. Invertible if and only if D1(z) and N1(z) are right coprime and D2(z) and N2(z)

are left coprime.
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Proof. By Theorem 5.36, the Bezout operator B coincides with the homomorphism
Z : XD1 −→ XD2 defined by Zf = πD2(N2 f ). The result follows by applying
Theorem 3.21. �

The Bezout operator has the advantage of providing a simple rank test for
coprimeness of pairs of polynomial matrices. However, to compute a matrix
representation, basis vectors in the polynomial model spaces must be chosen. In
contrast, the generalized Bezoutian matrix by Anderson and Jury (1976) is directly
defined as the matrix (Qk�) of coefficients of the Bezoutian polynomial

Q(z,w) = ∑
k,�

Qk�z
k−1w�−1.

This matrix is certainly easier to compute than a matrix representation of the Bezout
operator, but it is more difficult to explore the structural properties of this matrix.
For instance, using Theorem 5.36, the greatest common left and right divisors of
polynomial matrices can be characterized in terms of the kernel of the Bezout
operator. For the generalized Bezoutian matrix (Qk�) of Anderson and Jury (1976),
this is much harder to achieve. Thus our preference is to work with the foregoing
definition.

The strength of the preceding approach is illustrated by briefly discussing the
case of classical Bezoutians. Thus, let

q(z) = zn +qn−1zn−1 + · · ·+q0 ∈ F[z]

be a scalar monic polynomial, and let

p(z) = pn−1zn−1 + pn−2zn−2 + · · ·+ p0 ∈ F[z].

The Bezoutian form then has the expansion

q(z)p(w)− p(z)q(w)
z−w

=
n

∑
i, j=1

bijz
i−1w j−1,

with unique coefficients bij ∈ F. The Bezoutian matrix, then, is the n×n matrix

B(p,q) = (bij) ∈ F
n×n.

The following basic representation theorem for Bezoutian matrices is discussed
next. Let Bst = {1,z, . . . ,zn−1} denote the standard basis of Xq, and let Bco =
{e1(z), . . . ,en(z)}, with

ei(z) = zn−i +qn−1zn−i−1 + · · ·+qi = π+(z
−iq(z)),
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denote the control basis of Xq. One checks that Bco is the dual basis to Bst by
computing

(
zk−1e�(z)

q(z)

)

−1
=

(
zk−1π+(z−�q(z))

q(z)

)

−1

=

(
zk−1(z−�q(z))

q(z)

)

−1
=
(

zk−�−1
)
−1

= δk�.

Theorem 5.39. 1. The Bezoutian matrix B(p,q) = [B]st
co is the matrix representa-

tion of the Bezout operator B with respect to the control basis and standard basis
on Xq.

2. The Bezoutian can be expressed, using the shift operator Sq : Xq −→ Xq, as

B(p,q) = [p(Sq)]
st
co.

Proof. Computing

Be j =

(
q(z)p(w)− p(z)q(w)

z−w
q(w)−1e j(w)

)

−1

=
n

∑
r,s=1

brsz
r−1

(
ws−1q(w)−1π+(w

− jq(w))
)
−1

=
n

∑
r,s=1

brsz
r−1

(
ws−1q(w)−1(w− jq(w))

)
−1

=
n

∑
r,s=1

brsz
r−1

(
ws− j−1

)
−1

=
n

∑
r=1

brjz
r−1

shows that the Bezout matrix B(p,q) = [B]st
co is simply a matrix representation of

the Bezout operator B : Xq −→ Xq. This proves the first claim.
Theorem 5.36 implies that, for j = 1, . . . ,n, Be j = πq(p(z)e j(z)) = p(Sq)e j,

which completes the proof. �
Recall from (3.26) that the matrix representation of the shift operator Sq with

respect to the standard basis on Xq is the companion matrix

[Sq]
st
st =Cq :=

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · −q0

1 0 −q1
. . .

. . .
...

1 0 −qn−2

1 −qn−1

⎞
⎟⎟⎟⎟⎟⎠
.

Moreover, the basis change matrix [I]st
co coincides with the Bezoutian B(1,q).

Thus the explicit description of the Bezoutian matrix as B(p,q) = p(Cq)B(1,q) is
deduced. This expression is often referred to as Barnett’s formula.
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As a further simple consequence, one obtains a classical coprimeness test for
scalar polynomials.

Theorem 5.40. The polynomials p(z) and q(z) are coprime if and only if the
Bezoutian matrix B(p,q) is invertible.

Proof. We know already that the Bezout operator B : Xq −→ Xq defined by h(z) =
p(z)q(z)−1 = q(z)−1 p(z) is invertible if and only if p and q are coprime. In the
preceding theorem it was shown that B(p,q) is a matrix representation of B. Thus,
the result follows. �

5.5 Stability Characterizations

Characterization of the stability of linear systems is central to systems theory.
A discrete-time linear dynamic system

xt+1 = Axt

on F
n is called asymptotically stable if the sequences xt = Atx0 converge to zero

for all initial conditions x0 ∈ F
n. Likewise, a continuous-time linear system

ẋ(t) = Ax(t)

is called asymptotically stable whenever

lim
t→∞

etAx0 = 0

is true for all x0 ∈ F
n. Of course, in order for such a notion to make sense, a topology

on the field F must be specified. Throughout this section, we will restrict our
discussion to the standard situation where F denotes either the field of real numbers
R or the field of complex numbers C, both being endowed with their standard
Euclidean topology. To streamline the presentation of the subsequent results, we will
mainly restrict ourselves to continuous-time systems and mention corresponding
results for discrete-time systems only occasionally.

It is easily seen (see Proposition 5.41 below) that a continuous-time system
ẋ(t) = Ax(t) is asymptotically stable if and only if all eigenvalues of A have a
negative real part. Similarly, a discrete-time system is asymptotically stable if and
only if all eigenvalues of A are in the open unit disc. Since the eigenvalues of A are
the roots of the characteristic polynomial, determination of the stability of finite-
dimensional linear systems reduces to the problem of characterizing the location of
zeros of real and complex polynomials. This problem has a long history, and there
are two basic approaches to it – via the use of quadratic forms on the one hand or
the use of special Sylvester equations on the other. The problem of root location
was already solved by Hermite (1856) and Hurwitz (1895) using quadratic form
approaches. In this connection one should also refer to the work of Routh (1877)
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because of the efficiency of the computational algorithm proposed by the researcher.
In a major contribution to the subject, Lyapunov (1893) offered a completely
different approach based on energy considerations. In the linear case, the Lyapunov
theory reduces the study of the stability of a system of first-order homogeneous
constant coefficient differential equations to the positive definiteness of the solution
of the celebrated Lyapunov equation.

In this section, we will first characterize the asymptotic stability of first-order
systems using Lyapunov’s method and then discuss the generalization to higher-
order systems of differential equations. Because it is trivial to reduce a scalar nth-
order homogeneous equation

dny
dtn +an−1

dn−1y

dtn−1 + · · ·+a0y = 0

to a first-order system ẋ = Ax, it became possible to derive the classical stability
criteria for scalar higher-order systems from Lyapunov theory. This was done
surprisingly late, and the paper by Parks (1962) is usually considered the first of
such derivations. The various reductions seemed to work also for the case of a
higher-order system of matrix differential equations of the form

y(n) +Pn−1y(n−1) + · · ·+P0y = 0,

i.e., for which the matrix polynomial P(z) = Imzn +Pn−1zn−1 + · · ·+P0 is monic.
Strangely, a gap remained in the theory related to finding an algebraic test for the
asymptotic stability of solutions of a system of the form

Pny(n) +Pn−1y(n−1) + · · ·+P0y = 0,

where P(z) = Pnzn + Pn−1zn−1 + · · ·+ P0 ∈ C
m×m[z] is a nonsingular polynomial

matrix. It is our aim in this chapter not only to close this gap but to apply the theory
of quadratic forms and tensor products of polynomial and rational models to the
derivation of stability criteria for higher-order multivariable systems. This leads to
the study of two-variable polynomial matrices. It is worth mentioning that Kalman
(1969, 1970) utilized a similar idea of switching from a polynomial equation in one
variable to a polynomial in two variables and its associated quadratic form. Both
these papers deal solely with the scalar case.

1. Lyapunov Stability
A brief summary of the basic facts from linear algebra on complex Hermitian
matrices and adjoint operators is presented. In particular, bilinear forms are replaced
by sesquilinear forms, i.e., forms < x,y > that are antilinear in x and linear in y.
Let X be a finite-dimensional complex vector space, and let X ∗ denote its dual
space of complex linear functionals on X . In this context there are two different
ways of defining duality. The first is the one already employed in Chapter 3, using
the canonical dual pairing X ∗ ×X −→ C defined by (λ ,x) �→ λ (x). The other
definition – and this is the one adopted in this section – is given by the Hermitian
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dual pairing < ·, ·>: X ∗ ×X −→ C defined as

< λ ,x >C= λ (x̄).

Note that < λ ,x> is antilinear in λ and linear in x and therefore defines a sequilinear
form. Since finite-dimensional vector spaces are reflexive, we can identify X ∗∗ with
X . Thus

< x,λ >C=< λ ,x >C.

Consider now a linear map T : X −→ Y , where X and Y are complex
vector spaces with duals Y ∗ and X ∗, respectively. The Hermitian adjoint map
T ∗ : Y ∗ −→X ∗ is determined through the equality

< T x,y∗ >C=< x,T ∗y∗ >C .

The notion of self-adjointness is now extended to this setting. A map Z : X −→
X ∗ will be called self-adjoint or Hermitian if and only if Z∗ = Z, i.e., if, for all
f ,g ∈X ,

< Zf ,g >C=< f ,Zg >C .

If B is a basis in X and B∗ is its dual basis, then the bilinear form < Zf ,g > can
be evaluated as ([Z]B

∗
B [ f ]B, [g]B). Here [Z]B

∗
B is the representing matrix of Z and

(ξ ,η) = ξ ∗η := ξ
�

η

denotes the standard Hermitian inner product in C
n. One denotes by A∗ = A

�

the Hermitian adjoint of a complex matrix A ∈ C
n×n. A∗ is a unique matrix such

that (Aξ ,η) = (ξ ,A∗η) for all ξ ,η ∈ C
n. A matrix A is Hermitian if and only if

A∗ = A. Thus the matrix representing the Hermitian adjoint Z∗ is the Hermitian
adjoint A∗ of A = [Z]B

∗
B ∈ C

n×n. Thus Z is Hermitian if and only if its matrix
representation A is Hermitian. The map Z is called positive definite, denoted by
Z � 0, if < Zf , f >C> 0 for all nonzero f in X . Similarly, we write Z � 0 whenever
Z is positive semidefinite. It is easily seen that a Hermitian map Z is positive if and
only if A = [Z]B

∗
B is a positive definite Hermitian matrix.

Our starting point for the stability analysis of linear systems, induced by a
complex n×n matrix A, is to derive a characterization linking the stability question
with an associated eigenvalue problem.

Proposition 5.41. 1. The continuous-time system ẋ = Ax is asymptotically stable
if and only if all eigenvalues of A are in the open left half-plane C− = {z ∈
C | Rez < 0}.

2. The discrete-time system xt+1 = Axt is asymptotically stable if and only if all
eigenvalues of A are in the open unit disc D= {z ∈ C | |z|< 1}.
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Proof. 1. Assume that ẋ = Ax is asymptotically stable, i.e., limt→∞ etAx0 = 0 is
satisfied for all x0 ∈ C

n. Let λ ∈ C be an eigenvalue of A with associated
eigenvector v ∈ C

n. Then etAv = etλ v is true for all t. Thus

lim
t→∞

etAv = lim
t→∞

etλ v = 0,

and therefore limt→∞ et Reλ = limt→∞ |etλ | = 0. Thus λ < 0, and therefore the
condition is necessary.

Conversely, assume that all eigenvalues of A have negative real part. Let
λ1, . . . ,λr denote the distinct eigenvalues of A with algebraic multiplicities
n1, . . . ,nr, respectively. Using the Jordan canonical form for A, one obtains the
representation

etA =
r

∑
j=1

etλ j Pj(t), (5.57)

where Pj(t) ∈ C
n×n are suitable matrix polynomials in t whose entries have

degrees ≤ n j. Thus, each entry of etλ j Pj(t) is of the form etλ j π(t) for a certain
polynomial π(t). But

lim
t→∞

|etλ j π(t)|= lim
t→∞

et Reλ j |π(t)|= 0

since Reλ j < 0 and the exponential function grows faster than polynomials. This
implies limt→∞ etA = 0, i.e., the asymptotic stability of ẋ = Ax.

2. The proof of the discrete-time case runs completely similar to the preceding case
and is therefore omitted. �
Because of the preceding characterization, we call C− and D the stability

domain of ẋ = Ax and xt+1 = Axt , respectively.

Definition 5.42. A scalar complex polynomial p(z) = ∑n
i=0 aizi ∈ C[z] is called a

Hurwitz polynomial (or Schur polynomial) if p(z) has roots only in C− (or only
in D).

Of course, it is by no means obvious how one can recognize whether a particular
polynomial p(z) is Hurwitz or Schur. For real polynomials of degree 2 it is an easy
exercise to see that z2 + az+ b is a Hurwitz polynomial if and only if a > 0 and
b > 0. The characterization of degree 3 real Hurwitz polynomials is due to Maxwell
(1868), who showed that z3 +az2 +bz+ c is Hurwitz if and only if

a > 0, c > 0, ab > c.

For complex polynomials, these expressions are more complicated. A full charac-
terization of Hurwitz polynomials, expressed in terms of the positivity of a certain
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quadratic form whose coefficients are quadratic polynomials in the coefficients of
p(z), will be given later on.

Next, the classic characterization by Lyapunov (1893) of asymptotic stability in
terms of linear matrix inequalities is presented.

Theorem 5.43 (Lyapunov). Let X be a complex n-dimensional vector space and
A : X −→X a linear operator. The following statements are equivalent:

1. The system ẋ = Ax on X is asymptotically stable.
2. There exists a positive definite Hermitian linear operator Q : X −→ X ∗ that

satisfies the Lyapunov inequality

A∗Q+QA ≺ 0.

Proof. Without loss of generality, one can assume that X = C
n and A ∈ C

n×n.
Consequently, 0 ≺ Q = Q∗ ∈ C

n×n. Suppose that Q is a positive definite solution of
the Lyapunov inequality. Let λ be an eigenvalue of A with associated eigenvector
v ∈ C

n. Then Av = λv and v∗A∗ = λv∗. Thus

0 > v∗A∗Qv+ v∗QA∗v = (λ +λ )v∗Qv.

By the positive definiteness of Q, we obtain v∗Qv > 0, which implies 2Reλ = λ +
λ < 0. Thus A is asymptotically stable.

For the converse assume that ẋ = Ax is asymptotically stable, i.e., A has only
eigenvalues with negative real part. From the decomposition (5.57), it can be seen
that each entry of etA is in L2([0,∞),C), with limt→∞ etA = 0, and, in particular, the
integral

Q :=
∫ ∞

0
etA∗

etAdt

exists. Obviously, Q = Q∗ is Hermitian and satisfies

v∗Qv =
∫ ∞

0
‖etAv‖2dt ≥ 0

for all v ∈ C
n. Thus v∗Qv = 0 if and only if etAv = 0 for all t ≥ 0, i.e., if and only if

v = 0. This shows that Q is positive definite. Moreover,

A∗Q+QA =
∫ ∞

0

d
dt
(etA∗

etA)dt =−In ≺ 0.

This completes the proof. �
A useful strengthening of the preceding theorem of Lyapunov is due to Snyders

and M. Zakai (1970) and Wimmer (1974a).
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Theorem 5.44. Let X and Y be two complex, finite-dimensional vector spaces.
Let A : X −→ X be a linear transformation. The following assertions are
equivalent:

1. The system ẋ = Ax on X is asymptotically stable.
2. For a linear transformation C : X −→Y , with (C,A) observable, the Lyapunov

equation

A∗Q+QA =−C∗C (5.58)

has a unique positive definite Hermitian solution Q : X −→X ∗.
3. There exists a linear transformation C : X −→ Y , with (C,A) observable, such

that the Lyapunov equation (5.58) has a positive definite Hermitian solution Q :
X −→X ∗.

Proof. Again, and without loss of generality, assume X = C
n, Y = C

p, A ∈
C

n×n,Q = Q∗ � 0. Obviously, 2 implies 3.
Assume that 3 is satisfied. Let λ be an eigenvalue of A with associated

eigenvector v ∈ C
n. From the Lyapunov equation we get

2Reλv∗Qv = v∗A∗Qv+ v∗QA∗v =−‖Cv‖2 ≤ 0.

Since v∗Qv > 0, Reλ ≤ 0. Suppose Reλ = 0. Then Cv = 0, i.e., v is an eigenvector
of A that is contained in the kernel of C. But, by the Hautus criterion, this contradicts
observability. Therefore, each eigenvalue of A has negative real part and assertion 1
is proved.

To prove that 1 implies 2, we proceed similarly to the proof of the Lyapunov
theorem. Thus, assume that A has only eigenvalues with negative real part. For C ∈
C

p×n, the integral

Q :=
∫ ∞

0
etA∗

C∗CetAdt

exists and defines a Hermitian matrix. For each complex vector v this implies

v∗Qv =
∫ ∞

0
‖CetAv‖2dt ≥ 0,

and therefore v∗Qv = 0 if and only if CetAv = 0 for all t ≥ 0. Equivalently, CAkv = 0
for all k ∈ N0. By the observability of (C,A), v = 0. This shows that Q is positive
definite. Moreover,

A∗Q+QA =
∫ ∞

0

d
dt

etA∗
C∗CetAdt =−C∗C.

This completes the proof. �
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The preceding results by Lyapunov, Snyders-Zakai, and Wimmer have been
generalized by Ostrowski and Schneider (1962) into an inertia theorem that relates
the number of stable and unstable eigenvalues with the signature of Q. Their
result will be proved in a slightly more general form. For a matrix A ∈ C

n×n,
let n0(A) denote the number of eigenvalues (counting multiplicities) of A with
real part zero. Similarly, let n±(A) denote the number of eigenvalues (counting
multiplicities) of A with positive and negative real parts, respectively. The triple
ind(A) = (n0(A),n+(A),n−(A)) is called the inertia index of A.

Theorem 5.45 (Inertia Theorem). Let A : X −→X and C : X −→Y be linear
transformations between finite-dimensional complex vector spaces. Assume that
(C,A) is an observable pair. Then every Hermitian solution Q : X −→X ∗ of the
Lyapunov inequality

A∗Q+QA+C∗C � 0

satisfies

n0(Q) = n0(A) = 0, n+(Q) = n−(A), n−(Q) = n+(A). (5.59)

Proof. First, one proves n0(A) = n0(Q) = 0. As before, one assumes, without loss
of generality, that X =C

n, and so forth. Suppose that λ = iω is a purely imaginary
eigenvalue of A with eigenvector v ∈ C

n. Multiplying v∗ and v on both sides of the
Lyapunov inequality, we obtain

0 ≥ v∗(A∗Q+QA+C∗C)v = ‖Cv‖2,

which implies Cv = 0. By the observability of (C,A), v = 0. Thus n0(A) = 0. Next,
consider v ∈C

n, with Qv = 0. Then, by the same reasoning, we obtain Cv = 0. After
applying a suitable unitary state-space similarity transformation, one can assume
that

A∗Q+QA+C∗C =−diag(Ir,0).

Partition v accordingly as v = col(x,y), with x ∈ C
r. Thus

−‖x‖2 = v∗(A∗Q+QA+C∗C)v = 0,

and therefore x = 0. Moreover, QAv = (A∗Q+QA+C∗C)v =−diag(Ir,0)v = 0 for
v= col(0,y). This implies A(KerQ)⊂KerQ. Since KerQ⊂KerC, the observability
of (C,A) implies KerQ = {0}. Thus n0(Q) = 0.

For the proof of the remaining equalities (5.59), we proceed by a simple
continuity argument. Consider the convex cone of Hermitian n×n matrices

C = {Q = Q∗ | A∗Q+QA+C∗C � 0}.
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Using the observability of the pair (C,A), it was just shown that each element of C
is invertible. Thus C ⊂ GLn(C) is a convex and hence connected subset of GLn(C).
Since the inertia index, ind(P), depends continuously on P ∈ GLn(C), it suffices to
establish the inertia equalities (5.59) for a single element Q0 ∈ C . Since A has no
purely imaginary eigenvalues, we can assume without loss of generality that (C,A)
are partitioned as

A =

(
A+ 0
0 A−

)
, C =

(
C+ C−

)
.

Here the eigenvalues of A+ are assumed to have positive real part, while the
eigenvalues of A− have negative real part. Using the Hautus criterion one sees
that the observability of (C,A) is equivalent to the observability of (C+,A+) and
(C−,A−). Define for real numbers r > 0

Q− = r
∫ ∞

0
etA∗−etA−dt,

Q+ = r
∫ ∞

0
e−tA∗

+e−tA+dt.

Then Q± = Q∗± � 0 are positive definite and Hermitian and the Hermitian matrix

Q := diag(−Q+,Q−)

satisfies

A∗Q+QA+C∗C =C∗C− rI.

Moreover, n+(Q) = n−(A) and n−(Q) = n+(A). Choose r > 0 such that rI � C∗C.
Then Q satisfies the Lyapunov inequality. �

As an example, we examine the stability of second-order systems of the form

ẍ(t)+(M+Δ)ẋ(t)+Nx(t) = 0 (5.60)

for x ∈ R
n. The following assumptions will be made:

M = M� � 0, N = N� � 0,

Δ� =−Δ .

Consider the matrices

A =

(
0 In

−N −M−Δ

)
, C =

(
0 M

1
2

)
.
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Using the skew symmetry of Δ , one verifies that the positive definite symmetric
matrix

Q =
1
2

(
N 0
0 I

)

satisfies the Lyapunov equation

A�Q+QA =−C�C.

Moreover, the pair (C,A) is easily seen to be observable. Now Theorem 5.44 implies
the asymptotic stability of (5.60).

2. Complex Polynomials and Hermitian Operators.
Sesquilinear forms and adjoint operators are then extended to the context of

polynomial and rational models. We will discuss briefly two-variable polynomial
matrices and examine naturally induced linear maps and Hermitian forms in
complex polynomial models. In the preceding parts of this chapter, the connection
between tensor products, linear transformations, and bilinear forms was established.
When the field is taken to be the field C of complex numbers, this must be slightly
modified in order for it to be applicable to stability questions. Using sesquilinear
forms, the duality theory of polynomial models developed in Chapter 3 can be
extended in a rather straightforward way.

Our analysis starts with functions in one variable. Define, for A(z) =

∑nA
j=−∞ A jz j ∈ C((z−1))p×m, the conjugate power series A∗ ∈ C((z−1))p×m by

A∗(z) = A(z)
�
=

nA

∑
j=−∞

A∗
j z

j ∈ C((z−1))m×p.

In C((z−1))m ×C((z−1))m, a sesquilinear form [g, f ]C is defined by

[g, f ]C =
∞

∑
j=−∞

g∗− j−1 fi = (g∗(z) f (z))−1, (5.61)

where f (z) = ∑∞
j=−∞ f jz j, g(z) = ∑∞

j=−∞ g jz j, and g∗(z) = ∑∞
j=−∞ g∗j z j. Thus

[g, f ]
C
= [ f ,g]C. It is clear that, because both f (z) and g(z) are truncated Laurent

series, the sum in (5.61) is well defined, containing only a finite number of nonzero
terms. Let A(z) ∈ C((z−1))m×m. Then [g,Af ]C = [A∗g, f ]C for all f (z),g(z) ∈
C((z−1))m. This global form is used to obtain a concrete representation of X∗

D, the
dual space of the polynomial model XD.

Proposition 5.46. Let D(z) ∈ C[z]m×m be nonsingular. Then D∗(z) := D(z)
� ∈

C
m×m[z] is nonsingular, and the following assertions are in force.



5.5 Stability Characterizations 265

1. The dual space X∗
D of XD can be identified with XD∗ under the nondegenerate

pairing

< g, f >C= [g,D−1 f ]C = (g∗(z)D(z)−1 f (z))−1,

for f (z) ∈ XD and g(z) ∈ XD∗ .
2. The form < g, f >C is sesquilinear, i.e.,

< g, f >C=< f ,g >C.

3. The module structures of XD and XD∗ are related through

S∗D = SD∗ .

Proof. The nondegeneracy of < ·, ·>C follows from Theorem 3.38. Computing

< f ,g >C = ( f ∗(z)D∗(z)−1g(z))−1 = (g∗(z)D(z)−1 f (z))−1

proves the second assertion. The last assertion is proved by a trivial calculation,
which is omitted. �

Let C[z,w]n1×n2 denote the n1 ×n2 complex polynomial matrices in the complex
variables z and w. For M(z,w) ∈C[z,w]n1×n2 , one defines the conjugate polynomial
M∗(z,w) ∈ C[z,w]n2×n1 by

M∗(z,w) := M(w,z)
�
.

A polynomial matrix M(z,w) ∈ C[z,w]n×n, with

M(z,w) =
d

∑
i, j=1

Mijz
i−1w j−1,

will be called Hermitian if

M∗(z,w) = M(z,w).

It is easy to see that this is equivalent to the condition Mij = M∗
ji. A Hermitian

polynomial matrix M(z,w) ∈ C[z,w]n×n is called nonnegative, and denoted by
M ≥ 0, if and only if ∑i, j ξ ∗

i Mijξ j ≥ 0 for all ξi ∈ C
n. This is equivalent to the

matrix (Mij) ∈ C
dn×dn being Hermitian and positive semidefinite. Thus there exists

a full column rank matrix C ∈C
dn×k with (Mij) = CC∗. This implies that the matrix

polynomial M is nonnegative if and only if there exists some C(z) ∈ C[z]n×k such
that
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M(z,w) =C(z)C∗(w).

In fact, the relation between C and C(z) is simply C(z) = (In, . . . ,zd−1In)C.
Next, the corresponding objects in the context of polynomial models are intro-

duced. Let D1(z) ∈ C[z]m×m and D2(z) ∈ C[z]p×p be two nonsingular polynomial
matrices, and let XD1 and XD2 be the associated polynomial models. The Kronecker
product model XD2(z)⊗D�

1 (w) is defined as the set of all complex p×m polynomial

matrices M(z,w) for which D2(z)−1M(z,w)D1(w)−1 is strictly proper in both
variables. The isomorphism XD2(z)⊗D�

1 (w) � XD2(z) ⊗C XD�
1 (w) implies that every

M(z,w) ∈ XD2(z)⊗CD�
1 (w) has a representation, in terms of generating elements, of

the form

M(z,w) =C2(z)C
∗
1(w),

with each column of D2(z)−1C2(z) and D∗
1(w)

−1C1(w) strictly proper. Note that

M∗(z,w) =C1(z)C
∗
2(w).

For polynomials M(z,w)∈ XD2(z)⊗D�
1 (w), we define a map M : XD1 −→ XD2 , induced

by M(z,w), by

M f (z) := (M(z,w)D−1
1 (w) f (w))−1 =< M∗(·,z), f >C, f (z) ∈ XD1 . (5.62)

Note that this construction parallels that in Theorem 5.34. Clearly, M is a linear
operator that maps XD1 to XD2 .

Definition 5.47. A Hermitian polynomial M(z,w) ∈ XD(z)⊗D(w) is D-positive,
denoted by M >D 0, if the induced Hermitian map M : XD∗ −→ XD is positive,
that is, if the quadratic form < M f , f > is positive definite, i.e., < M f , f > > 0
for all nonzero f (z) ∈ XD∗ .

Theorem 5.48. Let M(z,w) ∈ XD2(z)⊗D�
1 (w). Let the map M : XD1 −→ XD2 be

defined by (5.62). Then:

1. The Hermitian adjoint map M∗ : XD∗
2
−→ XD∗

1
is given, for g(z) ∈ XD∗

2
, by

(M∗g)(w) =< M∗(w, ·),g >C; (5.63)

2. M(z,w) ∈ XD(z)⊗D(w) is Hermitian if and only if M(z,w) has a representation of
the form

M(z,w) =
k

∑
i=1

λigi(z)g
∗
i (w), (5.64)
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with gi(z) ∈ XD and λi ∈ R. M(z,w) is Hermitian if and only if the induced map
M : XD∗ −→ XD is Hermitian;

3. Let D(z) ∈ C[z]m×m be nonsingular, and let M(z,w) ∈ XD(z)⊗D(w) be Hermitian.
The following conditions are equivalent:

a. M(z,w) is D-positive.
b. There exists a basis {gi(z)} in XD for which

M(z,w) =
n

∑
i=1

gi(z)g
∗
i (w).

Proof. From the identity M(z,w) =C2(z)C∗
1(w) one obtains

M f (z) = (C2(z)C
∗
1(w)D1(w)

−1 f (w))−1,

and thus, for all f ∈ XD1 ,g ∈ XD∗
2
,

< g,M f >C =
(
g∗(z)D2(z)

−1(C2(z)C
∗
1(w)D1(w)

−1 f (w))−1
)
−1

=
(
(g∗(z)D2(z)

−1C2(z))−1C∗
1(w)D1(w)

−1 f (w)
)
−1

=< M∗g, f >C

=
(
(M∗g)∗(w)D1(w)

−1 f (w)
)
−1 .

Thus

M∗g(w) =C1(w)(g∗(z)D2(z)−1C2(z))−1

=
(
C1(w)C

∗
2(z)D

∗
2(z)

−1g(z)
)
−1

=
(
M∗(w,z)D∗

2(z)
−1g(z)

)
−1

=< M∗(w, ·),g >C .

This proves (5.63).
A complex matrix Q is Hermitian if and only if Q =CΛC∗ is satisfied for a real

diagonal matrix Λ and a complex matrix C. This shows that a complex polynomial
M(z,w) ∈ C[z,w]m×m is Hermitian if and only if it is of the form

M(z,w) =C(z)ΛC∗(w) =
k

∑
i=1

λigi(z)g
∗
i (w)

for suitable real numbers λ1, . . . ,λk and complex polynomial vectors gi(z) ∈ C[z]m.
Here gi(z) denotes the ith column of C(z). Also, M(z,w) ∈ XD(z)⊗D(w) if and only if
gi ∈ XD for all i. This proves (5.64). For f ∈ XD∗ , one has
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M f =
(
M(z,w)D∗(w)−1 f (w)

)
−1

M∗ f =
(
M∗(w,z)D∗(z)−1 f (z)

)
−1 .

Thus M = M∗ if and only if M∗(z,w) = M(z,w). This completes the proof of the
second assertion.

To prove the last assertion, one computes the inner product < M f , f >C for
each f ∈ XD∗ . Since M(z,w) is Hermitian, it has the representation M(z,w) =
C(z)ΛC∗(w) for a real diagonal matrix Λ = diag(λ1, · · · ,λn) and D(z)−1C(z) strictly
proper. Without loss of generality, one can assume that the columns c1(z), . . . ,cn(z)
of C(z) form a basis of XD. Thus the quadratic form

< M f , f >C =
(

f ∗(z)D(z)−1(C(z)ΛC∗(w)D∗(w)−1 f (w))−1
)
−1

=
(

f ∗(z)D(z)−1C(z)
)
−1 Λ

(
C∗(w)D∗(w)−1 f (w)

)
−1

=
n

∑
i=1

λi|< f ,ci >C |2

is positive definite on XD∗ if and only if λ1 > 0, . . . ,λn > 0. Thus the elements gi(z)=√
λici(z), i = 1, . . . ,n, define a basis of XD, with

M(z,w) =
n

∑
i=1

gi(z)g
∗
i (w)

and

< M f , f >C=
n

∑
i=1

|< f ,gi >C |2. �

In Theorem 5.48, the map induced by a two-variable polynomial matrix
M(z,w) ∈ XD2(z)⊗D�

1 (w) was examined. This restriction is unnecessary because

one can use the projection πD2(z)⊗D�
1 (w) in C[z,w]p×m, as defined in (5.20). Thus,

assume that M(z,w)∈C[z,w]p×m. Let D1(z)∈C[z]m×m and D2(z)∈C[z]p×p be two
nonsingular polynomial matrices, and let XD1 and XD2 be the associated polynomial
models. Since ImπD2(z)⊗D�

1 (w) = XD2(z)⊗CD�
1 (w), one can define the induced map

M : XD1 −→ XD2 by

(M f )(z) =
(

πD2(z)⊗D�
1 (w)M(z,w)D1(w)

−1 f (w)
)
−1

. (5.65)

In view of (5.24), the induced map satisfies M = 0 if and only if there exist
polynomial matrices Mi(z,w) such that M(z,w) = D2(z)M1(z,w)+M2(z,w)D1(w).
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3. Stability of Higher-Order Equations
We proceed now to establish stability criteria for complex polynomial matrices.
This is done by reduction to the Lyapunov theorem. For simplicity we focus on
continuous-time systems; discrete-time systems can be handled similarly. Recall
that a complex matrix A is called stable if all its eigenvalues lie in the open left half-
plane. Equivalently, a matrix A is stable if and only if its characteristic polynomial
is stable. One extends this definition to nonsingular polynomial matrices by saying
that λ is an eigenvalue of a nonsingular polynomial matrix D(z) if there exists a
nonzero vector ξ in KerD(λ ). In view of Theorem 3.30, λ is an eigenvalue of D(z)
if and only if it is an eigenvalue of SD. A nonsingular polynomial matrix D(z) is a
stable polynomial matrix if all its eigenvalues lie in the open left half-plane. Note
that a matrix A is stable if and only if the polynomial matrix zI −A is stable. With
the analysis of stability our present goal, it is important to introduce symmetry with
respect to the imaginary axis. For a polynomial matrix P(z) ∈ C[z]m×m, one defines
its parahermitian adjoint P∗(z) by

P∗(z) := P(−z)
�
= P∗(−z).

One says that P(z) is parahermitian if P∗(z) = P(z). Clearly, P(z) is stable if and
only if P∗(z) is antistable, i.e., it has all its eigenvalues in the open right half-plane.

Our principal theorem is stated next.

Theorem 5.49. Let P(z)∈C[z]m×m be a nonsingular polynomial matrix. Then P(z)
is stable if and only if, for polynomial matrices R(z) with P(z) and R(z) right
coprime and R(z)P(z)−1 proper, there exists a solution Q(z) of the polynomial
Sylvester equation

P∗(z)Q(z)+Q∗(z)P(z) = R∗(z)R(z) (5.66)

such that the quadratic form, induced in XP by

V (z,w) =
P∗(z)Q(w)+Q∗(z)P(w)−R∗(z)R(w)

z+w
, (5.67)

is positive definite.

Proof. Assume P(z) is stable and R(z) is right coprime with P(z). The coprimeness
condition implies (Theorem 4.28) that the pair (C,A) defined, in the state space XP,
by the shift realization (4.23) is observable. Explicitly, the shift realization of the
proper transfer function R(z)P(z)−1, with R(z)P(z)−1 −D being strictly proper, is
given as A : XP −→ XP, C : XP −→ C

p,

A = SP,

Cf =
(
R(z)P(z)−1 f (z)

)
−1 , f ∈ XP.

(5.68)
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Note that Cf =
(
(R(z)P(z)−1 −D) f (z)

)
−1, which implies that C does not depend

on the constant term D. A straightforward computation shows that the Hermitian
adjoint of C is the linear operator C∗ : Cp −→ XP∗ , defined as C∗v = R∗(z)−
P∗(z)D∗v for v ∈ C

p. In fact, for all v ∈ C
p, f ∈ XP,

<C∗v, f >C =
(
(C∗v)∗(z)P(z)−1 f (z)

)
−1 =< v,Cf >C

= v∗
(
(R(z)−DP(z))P(z)−1 f (z)

)
−1 ,

which is equivalent to C∗ = R∗(z)−P∗(z)D∗.

The stability of P(z) implies that there exists a solution to equation (5.66). This is
shown next. Because P(z) is stable, so is p(z) = detP(z), and the scalar polynomials
p(z) and p∗(z) := p(−z) are coprime. Therefore, the polynomial Sylvester equation

K(z)p(z)+ p∗(z)L(z) = R∗(−z)R(z)

is solvable. Moreover, the solution is unique if one assumes L(z) is reduced modulo
p(z) and K(z) modulo p∗(z). By a symmetry argument, K(z) = L∗(z), and hence

L∗(z)p(z)+ p∗(z)L(z) = R∗(z)R(z).

Using Cramer’s rule, i.e., p(z)I = adjP(z)P(z), and defining Q(z) := adjP∗(z)L(z),
with Q∗(z) = L∗(z)adjP(z), the equality Q∗(z)P(z) + P∗(z)Q(z) = R∗(z)R(z)
follows.

Thus Q(z) solves the polynomial Sylvester equation (5.66). As a consequence of
(5.66), V (z,w) defined by (5.67) is a polynomial matrix in two variables. Let

M(z,w) = (z+w)V (z,w) = P∗(z)Q(w)+Q∗(z)P(w)−R∗(z)R(w).

Clearly, both V (z,w) and M(z,w) are Hermitian. Moreover,

πP∗(z)⊗P�(w)M(z,w) =−(R∗(z)−P∗(z)D∗)R(w).

The polynomial matrix M(z,w) induces a Hermitian linear operator

M : XP −→ XP∗ , M f =
(

πP∗(z)⊗P�(w)M(z,w)P(w)−1 f (w)
)
−1

by equation (5.65). Using (5.68) we obtain

M f =−(R∗(z)−P∗(z)D∗)
(
R(w)P(w)−1 f (w)

)
−1 =−(R∗(z)−P∗(z)D∗)Cf =−C∗Cf .
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Thus

M =−C∗C. (5.69)

Similarly, using Proposition 5.32, the polynomial V (z,w) induces a Hermitian
linear operator V : XP −→ XP∗ defined by

V f =
(

πP∗(z)⊗P�(w)V (z,w)P(w)−1 f (w)
)
−1

.

Since the adjoint S∗P coincides with the shift SP∗ on XP∗ , one obtains, for all
f ∈ XP,

(SP∗V+VSP) f =
(

πP∗(z)⊗P�(w)(zV (z,w)+V (z,w)w)P(w)−1 f (w)
)
−1

=
(

πP∗(z)⊗P�(w)M(z,w)P(w)−1 f (w)
)
−1

= M f .

This proves that

SP∗V+VSP = M.

Since A= SP, and using (5.69), one concludes that V satisfies the Lyapunov equation

A∗V+VA =−C∗C.

Since P is stable, the shift operator A = SP has all its eigenvalues in the open left
half-plane. By Theorem 5.44, the quadratic form < V f , f > is positive definite, or,
equivalently, V >P 0.

Conversely, assume Q(z) is a solution of the polynomial Sylvester equa-
tion (5.66) and the quadratic form < V f , f > induced in XP by V (z,w), as defined
in (5.67), is positive definite. Since SP∗ = S∗P, as before, the following Lyapunov
equation is satisfied:

S∗PV+VSP =−C∗C.

Applying Theorem 5.44, one concludes that SP is stable and, hence, by Theo-
rem 3.30, that P(z) is, too. �

Using the same technique, one can derive a higher-order analog of the Ostrowski
and Schneider (1962) inertia theorem.

Theorem 5.50 (Polynomial Inertia Theorem). Let G(z) = R(z)P(z)−1 be a
proper complex rational matrix function that is right coprime. Suppose that the
polynomial matrix P(z) has n0 eigenvalues with real part zero, n+ eigenvalues with
positive real part, and n− eigenvalues with negative real part, all counted with
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multiplicities. Let Q(z) be a solution of the polynomial Sylvester equation

P∗(z)Q(z)+Q∗(z) = R∗(z)R(z),

and let

V (z,w) =
P∗(z)Q(w)+Q∗(z)P(w)−R∗(z)R(w)

z+w

denote the associated Hermitian polynomial. Then the Hermitian operator V in XP

is invertible with exactly n+ negative and n− positive eigenvalues. Moreover, n0 = 0.

Proof. Following the notation in the proof of Theorem 5.49, one obtains

A∗V+VA =−C∗C

for the shift realization (A,C) of R(z)P(z)−1. By the right coprimeness of P(z),R(z),
the pair (C,A) is observable. Thus the result follows from the inertia theorem 5.45.

�
4. Classical Stability Criteria
The results of the previous section can be used for an easy derivation of some of the
classical stability criteria for real and complex scalar polynomials. To do this, it will
be useful to compute the matrix representation of the Hermitian operator V induced
by a scalar two-variable polynomial V (z,w). Our derivation of the classical stability
criteria is nonstandard insofar as they are deduced from the Lyapunov stability
criteria rather than from using winding number arguments and the Cauchy index.

Let

V (z,w) =
n

∑
i, j=1

aijz
i−1w j−1

denote a Hermitian scalar polynomial, and let p(z) = ∑n
j=0 p jz j, pn = 1, denote a

monic complex polynomial. Note that

Xp(z)⊗p(w) = {
n

∑
i, j=1

aijz
i−1w j−1 | aij ∈ C}

and therefore each polynomial in z,w of degree < n is contained in Xp(z)⊗p(w). In
particular, V (z,w) ∈ Xp(z)⊗p(w). Recall next the construction of the standard basis
and control basis on scalar polynomial models. Thus, let

Bst = {1,z, . . . ,zn−1}
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denote the standard basis of Xp and

Bco = {e1(z), . . . ,en(z)}

with

ei(z) = zn−i + pn−1zn−i−1 + · · ·+ pi = π+(z
−i p(z))

denote the control basis of Xp. The computation

(
zk−1e�(z)

p(z)

)

−1
=

(
zk−1π+(z−�p(z))

p(z)

)

−1

=

(
zk−1(z−�p(z))

p(z)

)

−1
=
(

zk−�−1
)
−1

= δk�

shows that Bco is the dual basis to Bst = {1,z, . . . ,zn−1}.
To obtain a matrix representation of the operator V : Xp −→Xp with respect to the

control basis and standard basis on Xp and Xp∗ , respectively, one computes, using
the fact that the product of two strictly proper functions has zero residue,

(
V (z,w)p(w)−1e j(w)

)
−1 =

n

∑
r,s=1

arsz
r−1 (ws−1 p(w)−1π+(w

− j p(w))
)
−1

=
n

∑
r,s=1

arsz
r−1 (ws−1 p(w)−1(w− j p(w))

)
−1

=
n

∑
r,s=1

arsz
r−1 (ws− j−1)

−1

=
n

∑
r=1

arjz
r−1.

Thus the matrix representation of V is given by the coefficients of V (z,w), that is,
[V]st

co = (ars).

Definition 5.51. Let p(z) = zn + pn−1zn−1 + · · ·+ p0 ∈ C[z] be a complex polyno-
mial with Hermitian adjoint p(z) = zn + pn−1zn−1 + · · ·+ p0 ∈ C[z]. The Hermite–
Fujiwara form is defined as a Hermitian form with generating function

p(z)p(w)− p(−z)p(−w)
z+w

=
n

∑
i, j=1

hijz
i−1w j−1,
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and the Hermite–Fujiwara matrix is the Hermitian matrix

Hn(p) = (hij) ∈ C
n×n.

As an example, the Hermite–Fujiwara matrix for a complex polynomial z2 +
p1z+ p0 of degree two is computed. Thus

H2(p) = 2

(
Re(p0 p1) −iIm p0

iIm p0 Re p1

)
,

which is positive definite if and only if

Re(p1)> 0, Re(p1)Re(p0 p1)− Im2(p0)> 0.

From the polynomial inertia theorem the following root location result can be
deduced.

Theorem 5.52 (Hermite). Let p(z) ∈ C[z] be a monic complex polynomial of
degree n that is coprime with p(−z). Let n+ and n− denote the number of roots
of p(z) that are located in the open right half-plane and open left half-plane,
respectively. Let Hn(p) denote the Hermite–Fujiwara matrix of p(z). Then Hn(p) is
invertible with exactly n− positive eigenvalues and n+ negative eigenvalues.

Proof. Defining r(z) = p(−z) and q(z) = 1
2 p(z), the polynomials r(z) and p(z) are

coprime, and q(z) solves the polynomial Sylvester equation

p(z)q∗(z)+q(z)p∗(z) = r∗(z)r(z).

Thus

V (z,w) :=
p∗(z)q(w)+q∗(z)p(w)− r∗(z)r(w)

z+w
=

p(z)p(w)− p(−z)p(−w)
z+w

coincides with the Hermite–Fujiwara form. Since {1,z, . . . ,zn−1} is a basis of the
polynomial model Xp, the matrix representation of V on Xp is given by Hn(p). The
result follows from Theorem 5.50. �

Theorem 5.52 can be generalized by omitting the coprimeness assumption of
p(z) and p(−z). The result is strong enough for the characterization of asymptotic
stability.

Theorem 5.53. A necessary and sufficient condition for a complex polynomial p(z)
to be a Hurwitz polynomial is that the Hermite–Fujiwara form

p(z)p(w)− p(−z)p(−w)
z+w
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must be positive definite on Xp or, equivalently, that the Hermite–Fujiwara matrix
Hn(p) must be positive definite.

Proof. Assuming that p(z) is a Hurwitz polynomial implies that p(z) and p(−z) do
not have common roots and, hence, are coprime. By Theorem 5.52, the Hermite–
Fujiwara matrix Hn(p) is positive definite. Conversely, assume that Hn(p) is
positive definite or, equivalently, that the Hermite–Fujiwara form

p(z)p(w)− p(−z)p(−w)
z+w

(5.70)

is positive definite on Xp. The change of variable w =−ζ transforms (5.70) into the
Bezoutian form

p(z)p(−ζ )− p(−z)p(ζ )
z−ζ

of p(z) and p∗(z) = p(−z). This shows that the Bezoutian matrix B(p, p∗) of p and
p∗ is equal to the product

B(p, p∗) = Hn(p)S

of the Hermite–Fujiwara matrix with the invertible matrix

S = diag(1,−1, · · · ,(−1)n−1).

Thus B(p, p∗) is invertible and Theorem 5.40 implies that p and p∗ are coprime.
Equivalently, p and p∗ are coprime. Theorem 5.52 is now applied to infer the
stability of p(z). �

In the case of real polynomials, the Hermite–Fujiwara form admits a further
reduction. To this end, the even and odd parts p+(z) and p−(z) of a real polynomial
p(z) = ∑ j≥0 p jz j are introduced. These are defined as the polynomials

p+(z) = ∑
j≥0

p2 jz
j, p−(z) = ∑

j≥0
p2 j+1z j.

Thus

p(z) = p+(z
2)+ zp−(z

2), p∗(z) = p+(z
2)− zp−(z

2). (5.71)

In the next proposition, it will be shown that both the Bezoutian B(p, p∗) and
the Hermite–Fujiwara forms have direct sum decompositions that are useful for
reducing the computational complexity of stability analysis.
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Proposition 5.54. Let p(z) be a real polynomial.

1. The following isomorphisms of quadratic forms are valid: For the Hermite–
Fujiwara form H(p) one has

H(p)� 2B(zp−, p+)⊕2B(p+, p−),

whereas for the Bezoutian B(p, p∗),

B(p, p∗)� 2B(zp−, p+)⊕2B(p−, p+).

2. The Hermite–Fujiwara form is positive definite if and only if the two Bezoutians
B(q+,q−) and B(zq−,q+) are positive definite.

Proof. 1. The polynomial p(z) being real implies p(z) = p(z). From (5.71) it
follows that p(−z) = p+(z2)− zp−(z2). We compute

p(z)p(w)− p(−z)p(−w)
(z+w)

= 2
zp−(z2)p+(w2)+ p+(z2)wp−(w2)

z+w

= 2
z2 p−(z2)p+(w2)− p+(z2)w2 p−(w2)

z2 −w2 −2zw
p−(z2)p+(w2)− p+(z2)p−(w2)

z2 −w2 .

The first summand contains only even terms, while the second contains only
odd ones. This proves the first statement. By a change of variable w = −ζ ,
the Hermite–Fujiwara form transforms into the Bezoutian of p(z) and p(−z).
However, this change of variable affects only the terms in

2zw
p−(z2)p+(w2)− p+(z2)p−(w2)

z2 −w2 ,

and this by a change of sign.
2. Follows from the direct sum representation of the Hermite–Fujiwara form.

�
The following classical result is obtained as a direct corollary of this.

Theorem 5.55. Let p(z) be a monic real polynomial of degree n. The following
statements are equivalent:

(i) p(z) is a Hurwitz polynomial.
(ii) The Hermite–Fujiwara matrix Hn(p) is positive definite.

(iii) The two Bezoutian matrices B(p+, p−) and B(zp−, p+) are positive definite.

5.6 Exercises

1. Compute the tensor product Z2 ⊗Z Z3. For which pairs of integers m,n ∈ N is
Zm ⊗ZZn = {0}? What is Z⊗ZQ?

2. Prove that m⊗ n = 0 is valid in the tensor product M ⊗R N if and only if every
bilinear map B : M×N −→ P vanishes at (m,n).
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3. For ideals I and J in a commutative ring R there exists a unique R-linear map

R/I ⊗R R/J � R/(I + J)

satisfying (x+ I)⊗ (y+ J) �→ xy+(I + J).
4. Let M = Rn be a free module with n ≥ 2 and {e1, . . . ,en} the standard basis.

Check that e1 ⊗ e1 + e2 ⊗ e2 is not an elementary tensor in M ⊗R M, i.e., that
there exists no v ∈ M with e1 ⊗ e1 + e2 ⊗ e2 = v⊗ v.

5. Prove that the tensor product M ⊗R N of torsion modules M and N over a
commutative ring is a torsion module. Prove that the algebraic dual M′ = {0}
for all torsion modules M. What happens if R has zero divisors?

6. Prove the R-module isomorphism M⊗R N � N ⊗R M.
7. Prove that the tensor product f ⊗g of two surjective R-module homomorphisms

f : M1 −→ N1 and g : M2 −→ N2 is surjective. Is this also true if surjectivity is
replaced by injectivity?

8. Explain why the submodule {
(

a b
b c

)
|a,b,c ∈ F[z]} ⊂ F[z]2×2 does not have a

representation of the form D1(z)F[z]2×2 +F[z]2×2D2(z).
9. Let D1(z) ∈ F[z]m×m and D2(z) ∈ F[z]p×p be nonsingular polynomial matrices

with invariant factors d1, . . . ,dm and e1, . . . ,ep, respectively. Let di ∧ e j denote
the greatest common divisor of the polynomials di(z) and e j(z). Prove the
dimension formula

dimF HomF[z](XD1 ,XD2) = ∑
i, j

deg(di ∧ e j).

Deduce

dimF HomF[z](XD1 ,XD1) =
m

∑
i=1

(2i−1)degdi.

10. Let D1(z) ∈ F[z]m×m and D2(z) ∈ F[z]p×p be nonsingular. Show that
HomF[z](XD1 ,XD2) = {0} if and only if detD1(z) and detD2(z) are coprime.

11. Let D1(z) ∈ F[z]m×m and D2(z) ∈ F[z]m×m be nonsingular polynomial matrices
with determinants di(z) = detDi(z). Show that

XD1(z)⊗D2(z) = (D1(z)⊗ I)XI⊗D2(z)⊕XD1(z)⊗I(I ⊗D2(z))

is true if and only if d1(z) and d2(z) are coprime.
12. Let A be a linear transformation in F

n with invariant factors d1, . . . ,dn. Let C (A)
denote the centralizer of A, i.e., the set of all Z ∈ F

n×n, with ZA = AZ. Prove the
following:

a. Show dimFC (A) = n if and only if A is cyclic.
b. Show dimFC (A) = n2 if and only if A is scalar, i.e., A = αI for some α ∈ F.
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c. Let A and B be linear transformations. Show that there exist no nontrivial
maps intertwining them if and only if the minimal polynomials or, equiva-
lently, the characteristic polynomials of A and B are coprime.

13. Show that the discrete-time system xt+1 = Axt on C
n is asymptotically stable

if and only if for each positive definite Hermitian matrix Q = Q∗ there exists a
unique positive definite Hermitian solution P = P∗ of the Stein equation

A∗PA−P =−Q.

14. Prove that a real monic polynomial p(z) of degree n is a Schur polynomial if
and only if

(z−1)n p(
z+1
z−1

)

is a Hurwitz polynomial.
15. Prove that every real Hurwitz polynomial p(z) = zn + pn−1zn−1 + · · ·+ p0

satisfies p0 > 0, p1 > 0, . . . , pn−1 > 0.
16. Prove that ẋ = Ax is asymptotically stable for the tridiagonal matrix

A =

⎛
⎜⎜⎜⎜⎝

− 1
2 a2

1 −a2 . . . 0

a2 0
. . .

...
...

. . .
. . . −an

0 . . . an 0

⎞
⎟⎟⎟⎟⎠

if ai �= 0 for i = 1, . . . ,n.
17. Assume that M and N are real symmetric n×n matrices that are positive definite.

Prove that the second-order system

ẍ(t)+Mẋ(t)+Nx(t) = 0

is asymptotically stable, i.e., limt→∞ x(t) = 0 and limt→∞ ẋ(t) = 0 are true for all
solutions.

5.7 Notes and References

Our exposition of the basic theory of tensor products of modules and quotient
modules follows Lang (1965) and Hungerford (1974). In the paper by Helmke
and Fuhrmann (1998), tensored polynomial and rational models were introduced
to describe tangent spaces of manifolds of rational functions. The systematic study
of tensor products of functional models is due to Fuhrmann and Helmke (2010)
and is continued in Fuhrmann (2010a). The tensor products of polynomial models
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lead to a polynomial approach to the Sylvester and Stein equations and clarifies the
role of Bezoutians in representing solutions. The polynomial approach to Lyapunov
equations is due to Willems and Fuhrmann (1992). For matrix versions of these
equations see also de Souza and Bhattacharyya (1981) and Heinig and Rost (1984).
The study of Bezoutians is old and dates back to the nineteenth century, with
important contributions by Cayley, Jacobi, and Sylvester.

The problem of the stability of a linear (control) system was one of the first
problems of the area of control theory. The interest in stability analysis is usually
traced to J.C. Maxwell’s theory of governors Maxwell (1868). However, the problem
of root location of polynomials has a longer history. Since, with the work of Galois
and Abel, exact determination of zeros of polynomials was proved to be impossible,
interest shifted to the problem of localizing the zeros in some region of the complex
plane. The unit disc and the major half-planes were the regions of greatest interest.
The problem of root location was already solved by Hermite (1856). But in this
connection the work of Routh (1877) turned out to be important because of the
efficiency of the computational algorithm. In the same way, the work of Hurwitz
(1895) was significant for its connection to topological problems. For a derivation
of algebraic stability criteria that is close to the spirit of the chapter we refer the
reader to Fuhrmann (1982).

In a major contribution to the subject, Lyapunov (1893) offered a completely
different approach based on energy considerations. In the linear case, the Lyapunov
theory reduces the study of the stability of a system of first-order homogeneous
constant coefficient differential equations to the positive definiteness of the solution
of the celebrated Lyapunov equation. This reduction is generally attributed to
Gantmacher (1959). Our approach to the stability problem of higher-order systems
of differential equations is based on a strengthened form of the Lyapunov equation,
given in Theorem 5.44, replacing positive definiteness by a reachability, or observ-
ability, assumption. Considering Lyapunov equations in this form is due to Snyders
and M. Zakai (1970) and Wimmer (1974a). Our approach to this reduction is
achieved via the use of polynomial model theory and tensor algebra. The polynomial
matrix analog of the Lyapunov equation is identified, and, with a solution to this
equation, a two-variable polynomial matrix is constructed. In turn, this polynomial
matrix induces an operator between two polynomial models. In the special case of
symmetry, this map induces a quadratic form on a polynomial model, which leads
to the required reduction.

The classic paper by Krein and Naimark (1936), is an excellent source for much
of the older work on root location; however, strangely, no mention of Bezoutians
is made there. The study of scalar Bezoutians goes back to Cayley. Multivariable
Bezoutians were introduced by Anderson and Jury (1976) and used to derive rank
formulas for the McMillan degree and stability test for multivariable linear systems.
Their connection to tensor products and homomorphisms of polynomial models is
central to our approach. Theorem 5.49 and its application to the stability analysis
of higher-order equations are due to Willems and Fuhrmann (1992). The dimension
formula (5.37) appears in Gantmacher (1959) and is attributed to Shoda (1929).
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