
Chapter 12
Control of Ensembles

The purpose of this chapter is to provide an introduction to the emerging field of
ensemble control for linear systems, i.e., the control of families of linear systems.
Ensemble control refers to the task of controlling a large, potentially infinite, number
of states, or systems, using a single-input function or a single-feedback controller.
Thus, controlling ensembles is very much at the core of a robust theory of networks
of systems. The study of ensembles is motivated from quite different applications.

• A classical example from physics concerns the conversion of heat into work by
control of the heat flow and volume. Here the node systems are the gas molecules
whose dynamics are described via the formalism of statistical mechanics. Of
course, the sheer magnitude of the system, consisting roughly of N � 6 ×
1023 molecules per mole, calls for a thermodynamical or statistical mechanics
approach rather than ab initio calculations.

• Quantum control of weakly coupled identical particles in nuclear magnetic
resonance spectroscopy is another interesting area that has attracted much interest
recently. Here the goal is to control a possibly large system of spins by applying
short pulses of an electromagnetic field. The system is described by a controlled
Liouville–von Neumann master equation evolving on density operators or Lie
groups of unitary matrices. A closely related question concerns the control of
parameterized families of systems using open-loop controls that are independent
of the parameters. Open-loop control has recently acquired popularity in quantum
control through the work of Li and Khaneja (2006), for example.

• The task of controlling probability distributions in the state space for a finite-
dimensional control system leads to the control of Liouville transport equations
or, more generally, of Fokker–Planck equations.
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602 12 Control of Ensembles

• Another area of interest is the control of parameter-varying systems using
parameter-independent open-loop or closed-loop controllers. As a specific
instance we mention the so-called blending problem from the late 1970s, which
seeks to find parameter-independent feedback control laws that stabilize a family
of linear systems.

In all these areas the question arises of how to approximately control a family
of systems or of state variables. Thus the key ideas behind studying ensembles of
linear systems are the same as those for studying large-scale systems. For complex
dynamical systems the goals of controlling the entire collection of states is often
asking for too much and needs to be replaced by more realistic goals, such as
controlling, for example, the mean value or covariance of the state variables. This
happens, for example, in the control of open quantum systems where the state
variables are defined by density operators that describe an average of state variables.
It also happens in daily life experience, for example, in cooking a meal in an oven.
Here the interesting task is not so much to control the temperature distribution in
the oven but rather to create an average temperature profile that yields the desired
result. The same issue arises in motion control problems for infinite platoons of
vehicles, as in the work by Rogge and Aeyels (2008), or for spatiotemporal systems
described by partial differential equations (PDEs), on which see Bamieh, Paganini
and Dahleh (2002). Using Fourier-transform techniques, spatially invariant control
systems can be identified with parameter-dependent families of linear systems. This
opens the door to applications of a variety of different approaches to distributed
large-scale systems. Parameter-dependent systems can also be regarded as infinite-
dimensional systems defined on suitable Banach or Hilbert spaces of functions.
This brings about many opportunities for interactions between functional analysis
and parametric systems. We also mention the theory of systems over rings as a
systematic algebraic approach to analyzing parameter-dependent systems.

In this chapter we focus on the specific task of finding open-loop controls that
steer a system from a family of initial states to another family of terminal states
using a single open-loop control function that is independent of the parameters. We
then illustrate how this question arises in a number of different applications, i.e.,
for controlling PDEs, controlling spatially-invariant systems such as platoons or to
the robust control of networks of linear systems. We turn now to a more detailed
description of such issues and begin to explain their mutual relationships.

12.1 Control of Parametric Families of Systems

The starting point for our analysis of ensembles of linear systems are parameter-
dependent linear systems of the form

∂
∂ t

x(t,θ) = A(θ)x(t,θ)+B(θ)u(t), x(0,θ) = 0. (12.1)
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Of course, one could equally well consider families of discrete-time systems

x(t +1,θ) = A(θ)x(t,θ)+B(θ)u(t), x(0,θ) = 0,

and our results apply to this case, too. For simplicity we assume that the system
matrices A(θ) ∈ R

n×n and B(θ) ∈ R
n×m vary continuously in a compact domain

P of parameters θ in Euclidean space R
d . The analysis of such families of linear

systems can be carried out in several directions. A straightforward issue to begin
with is the search for parameter-dependent controls that steer the systems from a
family of initial states to a family of desired terminal states. A restriction here might
be on the degree of continuity or smoothness in the parameters that is imposed
on the controls. For instance, if the system matrices depend polynomially on a
parameter, it may be desirable that the same be true for the feedback controllers
and input functions. This leads to the control problems for systems over rings
that have been discussed intensively in algebraic systems theory during the course
of the past four decades. We refer the reader to the early work of, for example,
Hazewinkel (1981), Sontag (1976), Tannenbaum (1981), and Conte and Perdon
(2000) for further details. Another extreme case of studying families of systems –
and this is the scenario that we will study in the remainder of this chapter – is to
search for input functions or feedback laws that are independent of the parameters of
systems and steer prescribed families of initial and terminal states arbitrarily close
to each other. We refer to this as the ensemble control problem. Thus ensemble
control refers to a specific class of robust control problems, and a priori it is not
obvious whether or not such problems can be solved.

Let p and q be integers, with 1 ≤ p,q ≤ ∞. The input to a state operator of (12.1)
at time T is RT : Lp([0,T ],Rm)−→ Lq(P,Rn)

RT (u)(θ) =
∫ T

0
e(T−s)A(θ)B(θ)u(s)ds.

Note that RT is an integral operator with continuous kernel K : P× [0,T ]−→ R
n,

K(θ ,s) = e(T−s)A(θ)B(θ).

It is a well-known consequence of the assumed continuity of A(·),B(·) on the
compact parameter space P that RT defines a bounded linear operator. In fact, RT

is a compact operator for 1 < p ≤ ∞ and 1 ≤ q < ∞. Moreover, by the continuity
of A(·),B(·), the operator RT is compact, even as an operator from Lp([0,T ]) to
C(P,Rn) and 1 ≤ p ≤ ∞. From the compactness of RT we deduce that RT has a
closed image if and only if RT has finite rank. Clearly, RT has finite rank for each
linear operator of the form K(θ , t) = ∑k

j=1 φ j(t)ψ j(θ). In particular, this is true if
A is parameter independent; however, for general parameter-dependent systems the
finite-rank property cannot be expected.

After these functional analytic generalities, we proceed to introduce the notion
of ensemble reachability that we are interested in.
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Definition 12.1. Let 1 ≤ p ≤ ∞. System (12.1) is uniformly ensemble reachable
if for every continuous function x∗ : P −→R

n and every ε > 0 there exists a control
u ∈ Lp([0,T ],Rm) such that the induced state trajectory satisfies

sup
θ∈P

‖x(T,θ)− x∗(θ)‖< ε . (12.2)

Instead of trying to construct controls that achieve the uniform ensemble
reachability condition (12.2), one can also search for controls u(t) that minimize
the Lq-norms for 1 ≤ q ≤ ∞,

(∫
P
‖x(T,θ)− x∗(θ)‖qdθ

) 1
q

< ε . (12.3)

We then say that the system is Lq-ensemble reachable. If the conditions in (12.2) or
(12.3) are satisfied for ε = 0, then the system is called exactly ensemble reachable.
Of course, the important point here is the ability to choose the input function
independently of the parameter θ , and it is not at all obvious that systems of this
kind do in fact exist.

This notion of ensemble reachability is intimately related to standard concepts
from infinite-dimensional systems theory, such as approximate reachability and
reachability. Let A : X −→ X and B : U −→ X be bounded linear operators on
Banach spaces X and U , respectively. A linear system

ẋ(t) =A x(t)+Bu(t) (12.4)

is called approximately reachable if the reachable set of 0 is dense in X . See
Fuhrmann (1972) and Curtain and Zwart (1995) for the (now classical) character-
izations of approximate reachability in a Hilbert space via the condition that the
reachability operator has a dense image. A result of Trigianni (1975) implies that
parameter-dependent linear systems (12.1) are never exactly ensemble reachable.
Thus the approximate notions of (uniform or Lq-) ensemble reachability are the
only meaningful ones.

The mathematical connection between ensemble reachability and approximate
reachability is easy to describe. Explicitly, for uniform ensemble control, let
X denote the Banach space of R

n-valued continuous functions on the compact
parameter space P, endowed with a supremum norm. Similarly, for Lq-ensemble
reachability, choose X = Lq(P,Rn). In either case, a continuous family of linear
systems (A(θ),B(θ)) defines a linear system of the form (12.4) on a Banach space
X with a finite-dimensional space of control values U = R

m. Here

A : X −→ X , (A x)(θ) := A(θ)x(θ) (12.5)
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denotes the bounded linear multiplication operator, while the input operator

B : Rm −→ X , (Bu)(θ) := B(θ)u (12.6)

is defined via an m-tuple of Banach-space elements, i.e., by the columns of B(·).
Proposition 12.2. Let bounded linear operators A and B be defined as in (12.5)
and (12.6), respectively. The parameter-dependent system (12.1) is uniformly (or
Lq-) ensemble reachable if and only if system (12.4) on the Banach space X is
approximately reachable.

Proof. We focus on uniform ensemble reachability and the Banach space X =
C(P,Rn); the proof for Lq-ensemble reachability goes mutatis mutandis. Let t �→
x(t) ∈ X denote the unique solution to (12.4), with x(0) = 0. Then t �→ x(t;θ) is the
unique solution to (12.1), with x(0;θ) = 0 for θ ∈ P. The approximate reachability
of (12.4) then says that for the continuous function x∗ : P −→ R

n and ε > 0 there
exists T > 0 such that ‖x(T )− x∗‖ = supθ∈P ‖x(T,θ)− x∗(θ)‖. But this is simply
the condition for uniform ensemble reachability. �

Thus the parameter-dependent system (12.1) is uniformly ensemble reachable if
and only if the infinite-dimensional system (12.4) is approximately reachable. In the
same way, by replacing the Banach space X with the Hilbert space H = L2(P,Rn),
one concludes that the L2-ensemble reachability of (12.1) becomes equivalent to the
approximate reachability of the infinite-dimensional system (12.4). Unfortunately,
the conditions for approximate reachability stated in Curtain and Zwart (1995);
Jacob and Partington (2006) depend on an explicit knowledge of a Riesz basis of
eigenvectors for the Hilbert-space operator A . However, except for trivial cases
where, for example, A(θ) has constant eigenvalues, the multiplication operator
A defined by A(θ) does not have a point spectrum, and therefore the spectral
conditions in Curtain and Zwart (1995) are not satisfied here. In the next section,
we will explain how such difficulties can be avoided using tools from complex
approximation theory.

12.2 Uniform Ensemble Reachability

Next we provide necessary, as well as sufficient, conditions for the uniform
ensemble reachability of linear systems (12.1). These conditions are true, verbatim,
for discrete-time systems as well. Let

(zI −A(θ))−1B(θ) = Nθ (z)Dθ (z)
−1

be a right coprime factorization by a rectangular polynomial matrix Nθ (z)∈R
n×m[z]

and a nonsingular polynomial matrix Dθ (z) ∈ R
m×m[z]. We first state the necessary

conditions for uniform ensemble reachability.
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Proposition 12.3 (Necessary Conditions). Let P be a subset of Rd such that the
interior points of P are dense in P. Assume that the family of linear systems
(A(θ),B(θ))θ∈P is uniformly ensemble reachable. Then the following properties
are satisfied:

1. For each θ ∈ P the system (A(θ),B(θ)) is reachable.
2. For finitely many parameters θ1, . . . ,θs ∈ P, the m × m polynomial matrices

Dθ1(z), . . . ,Dθs(z) are mutually left coprime.
3. For m+1 distinct parameters θ1, . . . ,θm+1 ∈ P the spectra of A(θ) satisfy

σ(A(θ1))∩·· ·∩σ(A(θm+1)) = /0.

4. Assume m = 1. The dimension of P satisfies dim P ≤ 2. If A(θ) has a simple real
eigenvalue for some θ ∈ P, then dim P ≤ 1.

Proof. Consider a parameter value θ ∈ P and state vector ξ ∈ R
n. Choose a

continuous map x∗ : P −→R
n, with x∗(θ) = ξ . For ε > 0 there exists by assumption

an input function u : [0,T ]−→ R
m such that

sup
θ∈P

‖x(T,θ)− x∗(θ)‖< ε .

In particular, we obtain ‖x(T,θ)−ξ‖< ε . Thus ξ is in the closure of the reachable
set of 0; since the reachable sets of linear systems are closed in R

n, this shows that
(A(θ),B(θ)) is reachable. By the same reasoning, the ensemble reachability of the
family (A(θ),B(θ))θ implies reachability for the parallel interconnection

Ā :=

⎛
⎜⎝

A(θ1) 0
. . .

0 A(θs)

⎞
⎟⎠ , B̄ :=

⎛
⎜⎝

B(θ1)
...

B(θs)

⎞
⎟⎠ (12.7)

of finitely many linear systems (A(θi),B(θi)), i = 1, . . . ,s. By Theorem 10.2, the
parallel interconnection (12.7) of reachable linear systems is reachable if and only
if the m×m polynomial matrices Dθ1(z), . . . ,Dθs(z) are mutually left coprime. This
completes the proof of the second claim.

The reachability of (12.7) implies that there are at most m Jordan blocks in Ā for
each eigenvalue of Ā. Thus σ(A(θ1))∩·· ·∩σ(A(θs)) = /0 is satisfied for s ≥ m+1
distinct parameters θ1, . . . ,θs, because otherwise there would exist an eigenvalue of
Ā with at least m+1 Jordan blocks. This proves the third claim.

The last claim follows from the third claim. In fact, let λ (θ) denote a branch
of the eigenvalues of A(θ). Since the eigenvalues of a matrix depend continuously
on the parameters θ , one concludes from the fourth claim that the functions θ �→
λ (θ) ∈ C = R

2 are continuous and injective. Therefore, since continuous injective
functions do not increase dimensions, one concludes that dim P ≤ dim R

2 = 2.
Moreover, if there exists a real branch of eigenvalues λ (θ) of A(θ), then dim P ≤ 1.
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If λ (θ0) is a simple eigenvalue of A(θ0), then there exists an open neighborhood U
of θ0 in P such that for all θ ∈ U the eigenvalue λ (θ) is real. This completes the
proof. �

The preceding proof, using Theorem 10.2, shows an interesting connection
between ensemble reachability for finite parameter sets P and reachability for
parallel interconnection schemes of single-input systems.

Corollary 12.4. Assume that P = {θ1, . . . ,θs} ⊂ R
d is finite. Then a family of

single-input systems (A(θ),b(θ))θ∈P is uniformly ensemble reachable if and only if
the following two conditions are satisfied:

1. (A(θi),b(θi)) is reachable for i = 1, . . . ,s.
2. The characteristic polynomials det(zI −A(θi)) and det(zI −A(θ j)) are coprime

for all i �= j.

Proof. This is an obvious consequence of Proposition 12.3. �
In the discrete-time case, as is further explained in Chapter 10.1, one can

strengthen this result by deriving explicit formulas for the inputs that steer to a
desired state. In fact, the minimum-time ensemble control task for finite parameter
sets becomes equivalent to the Chinese remainder theorem. We illustrate this
approach for single-input systems. Let θ1, . . . ,θs ∈ P. The uniform ensemble
reachability of the finite family (A(θi),b(θi)) is equivalent to the systems (Ai,bi) :=
(A(θi),b(θi)), i = 1, . . . ,s being reachable, with pairwise coprime characteristic
polynomials qi(z) = det(zI−Ai). Define q̂i(z) := ∏ j �=i q j(z) and q(z) := ∏ns

j=1 q j(z).
Without loss of generality, we can assume that (Ai,bi) are in controllability
canonical form with local state spaces

Xq j := {p ∈ R[z] | deg p < degq j = n j}.

Consider the parallel connection system

A =

⎛
⎜⎝

A1 0
. . .

0 As

⎞
⎟⎠ , b =

⎛
⎜⎝

b1
...

bs

⎞
⎟⎠ .

The state space of this global system is

Xq := {p ∈ R[z] | deg p < degq = n},

with direct sum decomposition

Xq := q̂1(z)Xq1 ⊕·· ·⊕ q̂s(z)Xqs .



608 12 Control of Ensembles

Assume that local target state vectors x∗j ∈R
n j are chosen. These vectors uniquely

define polynomial elements r j(z) ∈ Xq j of degree < n j via

x∗j = (x∗0 j, . . . ,x
∗
n j−1, j) and r j(z) =

n j−1

∑
i=0

x∗ijz
i.

Thus the components of x∗j are simply the coefficients of the polynomial r j. The
ensemble control goal is then to find a polynomial f (z) ∈ Xq such that its remainder
modulo q j is r j. In fact, the coefficients u0, . . . ,un−1 of the polynomial f (z) =

∑n−1
i=0 un−i−1zi are then simply the desired inputs that steer the system from zero to

the local states x∗j . In particular, the minimum length of such an ensemble control is
n = degq = ∑s

j=1 n j, as it should be. To compute f (z), we apply the Bezout identity.
Thus, by the coprimeness of q j, q̂ j, there exist unique polynomials a j(z) of degree
< n j and b j(z) with

a j(z)q̂ j(z)+b j(z)q j(z) = 1. (12.8)

Define

f (z) =
s

∑
j=1

r j(z)a j(z)q̂ j(z). (12.9)

The Chinese remainder theorem then asserts that f is a unique polynomial of degree
n that has r j as remainder modulo q j. The coefficients of f thus give the desired
controls for (A,b).

Example 12.5. In the discrete-time case and for the parallel connection of s
harmonic oscillators, it is very easy to carry out the calculations. For θ1 < · · ·< θs,
let

A j :=

(
0 −θ 2

j

1 0

)
, b j :=

(
1
0

)
.

Thus (A j,b j) is in controllability canonical form, with q j(z) = z2 +θ 2
j , j = 1, . . . ,s,

pairwise coprime. In this example, the Bezout equation (12.8) is easily solved by
the constant polynomial

ak(z) = ∏
j �=k

(θ 2
j −θ 2

k )
−1, k = 1, . . . ,s.

For the local states r j(z) = ξ1(θ j) + ξ2(θ j)z, formula (12.9) for the remainder
polynomial is then
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f (z) =
s

∑
j=1

(ξ1(θ j)+ zξ2(θ j))∏
k �= j

z2 +θk
2

θ 2
k −θ 2

j

.

Note that this is exactly the degree 2s−1 Lagrange interpolation polynomial that
satisfies

f (±√−1θ j) = r j(±
√−1θ j)

for j = 1, . . . ,s. However, for equidistant choices of the interpolation points, this
solution suffers from the well-known Runge phenomenon. Thus, while f (z) is a
perfect match to the data at z =

√−1θ j, the approximation error will blow up
at the boundary points of the interval P. Better approximants can be obtained by
interpolating at Chebyshev points.

It is considerably harder to establish sufficient conditions for uniform ensemble
control, even if one restricts oneself to single-input systems depending on a scalar
parameter θ . Li (2011) has proposed an operator-theoretic characterization of
L2-ensemble reachability for general time-varying linear multivariable systems.
However, that characterization is stated in terms of the growth rates of singular
values of the input-state operator and, thus, is difficult to verify, even for the time-
invariant linear systems (12.1). We next state a result that leads to easily verifiable
conditions.

Theorem 12.6 (Sufficient Condition). Let P = [θ−,θ+] be a compact interval. A
continuous family (A(θ),b(θ)) of linear single-input systems is uniformly ensemble
reachable (or, more generally, Lq-ensemble reachable for 1 ≤ q ≤ ∞) provided the
following conditions are satisfied:

(a) (A(θ),b(θ)) is reachable for all θ ∈ P.
(b) For pairs of distinct parameters θ ,θ ′ ∈P,θ �= θ ′, the spectra of A(θ) and A(θ ′)

are disjoint:

σ(A(θ))∩σ(A(θ ′)) = /0.

(c) For each θ ∈ P the eigenvalues of A(θ) have an algebraic multiplicity of one.

Conditions (a) and (b) are also necessary for uniform ensemble reachability.

Static output feedback control presents an interesting situation where all these
assumptions fall easily into place. Thus, consider a fixed reachable and observ-
able linear system (A,b,c). Let P = [θ−,θ+] denote a compact interval of gain
parameters. Then, for real values of θ , the closed-loop characteristic polynomial
is det(A−θbc) = q(z)+θ p(z), with p,q coprime and

c(zI −A)−1b =
p(z)
q(z)

.
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In particular, for distinct numbers θ �= θ ′ there exists no complex number z with
q(z) + θ p(z) = 0 = q(z) + θ ′p(z). Theorem 12.6 therefore implies the following
corollary.

Corollary 12.7. Let (A,b,c) be a reachable and observable SISO system. The
(discrete-time or continuous-time) output feedback system (A−θbc,b) is uniformly
ensemble reachable if the eigenvalues of A−θbc are simple for all θ ∈ [θ−,θ+].

�
The proof of Theorem 12.6 is much easier for discrete-time systems, and

therefore we first prove the result for discrete-time single-input systems. In this
situation the uniform ensemble reachability condition can be restated in a more
convenient form.

Lemma 12.8. A family {(A(θ),b(θ)),θ ∈ P} of discrete-time single-input systems
is uniformly ensemble reachable on P if, for all ε > 0 and all continuous functions
x∗ : P → R

n, there exists a real scalar polynomial p(z) ∈ R[z] such that

sup
θ∈P

‖p(A(θ))b(θ)− x∗(θ)‖< ε .

Proof. For an input sequence u(0), . . . ,u(T −1) the solution is

x(T,θ) =
T−1

∑
k=0

A(θ)kb(θ)u(T −1− k) = p(A(θ))b(θ),

where p(z) = ∑T−1
k=0 uT−k−1zk. Thus the input sequence is parameter independent if

and only if the polynomial p(z) is parameter independent. �
Using this basic observation we can characterize the uniform ensemble reacha-

bility property in explicit form as follows.

Proposition 12.9. Assume that the discrete-time system (A(θ),b(θ)) is reachable
for θ ∈ P = [θ−,θ+]. The following statements are equivalent:

(a) (A(θ),b(θ))θ is uniformly ensemble reachable.
(b) For continuous families of polynomials uθ (z) ∈ R[z] of degree < n and ε > 0,

there exists a polynomial p ∈ R[z] with

‖p(A(θ))b(θ)−uθ (A(θ))b(θ)‖< ε .

(c) For continuous families of polynomials uθ (z) ∈ R[z] of degree < n and ε > 0,
there exists a scalar polynomial p(z) ∈ R[z] with ‖(p(A(θ))−uθ (A(θ))‖< ε .

Assume that for each θ ∈ P the eigenvalues of A(θ) are distinct. Let

C := {(z,θ) ∈ C×P | det(zI −A(θ)) = 0}.
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Then each of the preceding conditions is equivalent to the following statements:

(d) For continuous families of polynomials uθ (z) ∈R[z] of degree < n and a ε > 0,
there exists a polynomial p ∈ R[z] with

|p(z)−uθ (z)|< ε ∀(z,θ) ∈C.

Proof. Let

R(A,b) = (b,Ab, . . . ,An−1b)

denote the n× n reachability matrix. By reachability, the matrix R(A(θ),b(θ)) is
invertible for each θ ∈ P. For x∗ : P −→R

n continuous, define a polynomial uθ (z)∈
R[z] of degree < n as

uθ (z) = (1,z, . . . ,zn−1)R(A(θ),b(θ))−1x∗(θ).

Conversely, every continuous family of polynomials uθ (z) of degree < n can
be written in this way. Since uθ (A(θ))b(θ) = x∗(θ), Lemma 12.8 implies the
equivalence of (a) with (b). Obviously, condition (c) implies (b). Assume that
the estimate ‖( f −uθ )(A(θ))b(θ)‖< ε holds. Then ‖( f −uθ )(A(θ))A(θ)kb(θ)‖<
ε · supθ∈P ‖A(θ)‖k. Therefore,

‖( f −uθ )(A(θ))‖< cε

for the constant c = supθ∈P ‖R(A(θ),b(θ))−1‖max0≤k≤n−1 ‖A(θ)‖k. Thus (b)
implies (c). Now consider a matrix X with distinct eigenvalues λ1, . . . ,λn. Then, for
real polynomials F and ε > 0, the operator norm bound ‖F(X)‖ < ε is equivalent
to |F(λi)|< δ (ε), i = 1, . . . ,n. Here δ (ε) goes to zero if and only if ε goes to zero.
This shows that condition (d) is equivalent to (c), and we are done. �
1. Proof of Theorem 12.6 for Discrete-Time Systems. We now prove Theo-
rem 12.6 for discrete-time systems. Our proof depends on Mergelyan’s theorem,
a rather deep theorem from complex approximation theory. It is stated here for
convenience; see Chapter II in Gaier (1987) for a proof. Let Ĉ denote the one-point
compactification of C, i.e., the complex plane which is extended by including the
point ∞.

Theorem 12.10 (Mergelyan). Suppose K is compact in Ĉ such that the comple-
ment Ĉ \K is connected. Suppose that f : K −→ C is a continuous function that
is holomorphic in the interior of K. Then for every ε > 0 there exists a complex
polynomial p(z) ∈ C[x] such that, for all z ∈ K,

| f (z)− p(z)|< ε .
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We note that this theorem applies in particular in the special case where K has no
interior points. In that case, the analyticity condition on f is superfluous.

Proof. The claims in Theorem 12.6 concerning necessity all follow from
Lemma 12.3. Consider the compact set

C := {(z,θ) ∈ C×P | det(zI −A(θ)) = 0}

and the projection map π : C −→ C defined by π(z,θ) = z. Since P is compact, it
follows that C and, therefore, the image K := π(C) are compact. Condition (b) of
Theorem 12.6 is equivalent to π being injective on C, and therefore π : C −→ K is a
homeomorphism onto K. Thus, there exists a continuous map σ : K −→ C,σ(z) =
(z,τ(z)) that is a right inverse of π . The continuous map τ : K −→ P has the
property that z ∈ K ⇐⇒ (z,τ(z)) ∈ C. Since the eigenvalues of A(θ) define the
continuous functions of θ and are assumed to be distinct for each θ ∈ P, one
concludes that K = K1 ∪ ·· · ∪Kn ⊂ C consists of exactly n disjoint homeomorphic
copies Kj of P. Since P is simply connected, so is K, and thus the complement
C \K is connected. Moreover, K has an empty interior. Therefore, one can apply
Mergelyan’s Theorem 12.10 to uniformly approximate continuous functions F on
K by polynomials. For a continuous family of desired states x∗(θ), define the
polynomial uθ in z as

uθ (z) = (1,z, . . . ,zn−1)R(A(θ),b(θ))−1x∗(θ).

Replacing the variable θ in uθ with θ = τ(z) we obtain a continuous function

F : K −→ C, F(z) := uτ(z)(z).

Thus the theorem by Mergelyan asserts that there exists a polynomial p(z), with
|p(z)−F(z)|< ε , uniformly on K. Equivalently, there exists a polynomial p(z) such
that

|p(z)−uθ (z)|< ε ∀(z,θ) ∈C. (12.10)

Note that uθ (z) is a real polynomial. Thus, by a possible replacement of p(z) by
1
2 (p(z)+ p(z)), we can assume that (12.10) is satisfied for a real polynomial p(z).
The result follows from Proposition 12.9. This completes the proof of Theorem 12.6
in the discrete-time case. �
2. Proof of Theorem 12.6 for Continuous-Time Systems. For continuous-time
systems

ẋ = A(θ)x(t,θ)+b(θ)u(t), x0(θ) = 0,

we apply a sampling argument. For each positive sampling period τ > 0, consider
the discrete-time system
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x(t +1,θ) = F(θ)x(t,θ)+g(θ)u(t), x0(θ) = 0, (12.11)

where

F(θ) := eτA(θ), g(θ) =
(∫ τ

0
esA(θ)ds

)
b(θ).

The result now follows from showing the next proposition.

Proposition 12.11. Let (A(θ),b(θ)) satisfy the assumptions of Theorem 12.6. Then
the sampled system (12.11) satisfies the assumptions, too.

Proof. By the compactness of P, there exists τ∗ > 0 such that all conditions of
Theorem 12.6 are satisfied for the discrete-time system (F(θ),G(θ)) and all 0< τ <
τ∗. It is well known that the reachability of a continuous-time linear system (A,b)
implies the reachability of the sampled discrete-time system (F,g) if the sampling
period is sufficiently small. Thus the pointwise reachability condition (a) implies the
same condition for (F(θ),g(θ)). The other conditions follow from the continuity of
the eigenvalues and local injectivity of the matrix exponential function. �

Applying Proposition 12.11, the proof of Theorem 12.6 for the discrete-time
case implies the uniform ensemble reachability of the discrete-time system (12.11).
Note that, under sampling, the continuous- and discrete-time solutions coincide at
the sampling points. Therefore, the finite-length input sequence uk for the uniform
ensemble reachability of (F(θ),g(θ)) induces a piecewise constant input function
uτ : [0,T ]−→R that performs the uniform ensemble control task for the continuous-
time system (12.1). This completes the proof of our main theorem. �

As mentioned earlier, conditions (a) and (b) in Theorem 12.6 are actually
necessary conditions. The next result shows that the ensemble reachability of
discrete-time systems can be shown under weaker assumptions than condition (c).

Proposition 12.12. Let P = [θ−,θ+] be a compact interval. A continuous family
(A(θ),b(θ)) of linear discrete-time single-input systems is uniformly ensemble
reachable provided the following conditions are satisfied:

(a) (A(θ),b(θ)) is reachable for all θ ∈ P.
(b) For pairs of distinct parameters θ ,θ ′ ∈P,θ �= θ ′, the spectra of A(θ) and A(θ ′)

are disjoint:

σ(A(θ))∩σ(A(θ ′)) = /0.

(c) The characteristic polynomial of A(θ) is of the form zn−an−1zn−1−·· ·−a1z−
a0(θ), with a1, . . . ,an−1 constant real numbers.

Proof. Without loss of generality, we can assume that A(θ),b(θ) is in control-
lability normal form for each θ . The polynomial π(z) := zn − an−1zn−1 − ·· · −
a1z satisfies π(A(θ)) = a0(θ)In. Moreover, A(θ)k−1e1 = ek for k = 1, . . . ,n. By
condition (b), we see that a0 : P −→ R is injective, and hence the inverse function
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a−1
0 : a0(P) −→ P exists and is continuous. Using the Weierstrass approximation

theorem there exist polynomials f1(t), . . . , fn(t) ∈ R[t] such that, for k = 1, . . . ,n,

sup
t∈a0(P)

| fk(t)− e�k x∗(a−1
0 (t)|< ε

or, equivalently, supθ∈P | fk(a0(θ))− e�k x∗(θ)| < ε . The real polynomial f (z) :=
∑n

k=1 fk(π(z))zk−1 satisfies

f (A(θ))e1 =
n

∑
k=1

fk(π(A(θ)))A(θ)k−1e1 =
n

∑
k=1

fk(a0(θ))ek.

This implies supθ∈P ‖ f (A(θ))b(θ)− x∗(θ)‖∞ < ε , and the result follows. �
We illustrate the applicability of the preceding results by means of three examples.

Example 12.13 (L2-Ensemble Observability). We briefly discuss the dual version
of ensemble reachability, i.e., ensemble observability. Since duality theory is easier
in a Hilbert-space context, we focus on the notions of L2-ensemble observability.

Definition 12.14. Assume that A(θ) ∈ R
n×n,C(θ) ∈ R

p×n vary continuously in a
compact parameter domain P ⊂ R

d . The parameter-dependent system

∂x(t,θ)
∂ t

= A(θ)x(t,θ), x(0, ·) ∈ L2(P,Rn),

y(t) =
∫

P
C(θ)x(t,θ)dθ

(12.12)

is called L2-ensemble observable if there exists T > 0 such that y(t) = 0 on [0,T ]
implies x(0,θ) = 0 for all θ ∈ P.

Definition 12.14 implies that one can reconstruct the L2-initial state x(0, ·) of
(12.12) from the average values

∫
P

C(θ)x(t,θ)dθ , 0 ≤ t ≤ T,

of the outputs C(θ)x(t,θ). Thus ensemble observability is a rather strong property
that is particularly useful in, for example, biological parameter identification tasks
where often only an averaged type of output information is available.

System (12.12) is equivalent to the linear system

ẋ(t) =A x(t), x(0) ∈ L2(P,Rn),

y(t) = C x(t)
(12.13)
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on the Hilbert space X = L2(P,Rn). Here A : X −→ X ,C : X −→ R
p are bounded

linear operators defined by

(A x)(θ) = A(θ)x(θ), (C x)(θ) =
∫

P
C(θ)x(θ)dθ ,

respectively. Thus, A is a multiplication operator while C is an integration operator.
The preceding notion of ensemble observability is equivalent to the notion of
the approximate observability of (12.13), as defined in Curtain and Zwart (1995),
Definition 4.1.12. Moreover, Lemma 4.1.13 in Curtain and Zwart (1995) implies
that (12.13) is approximate observable if and only if the dual system

∂
∂ t

x(t,θ) = A(θ)�x(t,θ)+C(θ)�u(t), x(0,θ) = 0, (12.14)

is L2-ensemble reachable. Therefore, Theorem 12.6 applies to (12.14) for p = 1.
This shows that every continuous one-parameter family (A(θ),C(θ)),θ ∈ P =
[θ−,θ+], of single-output linear systems is L2-ensemble observable provided the
following three conditions are satisfied:

1. (A(θ),C(θ)) is observable for all θ ∈ P.
2. The spectra of A(·) are pairwise disjoint, i.e.,

σ(A(θ))∩σ(A(θ ′)) = /0, ∀θ ,θ ′ ∈ P,θ �= θ .

3. For each θ ∈ P the eigenvalues of A(θ) have an algebraic multiplicity of one.

Example 12.15 (Robust Numerical Integration.). The simplest numerical integra-
tion method is certainly the Euler-step method. For a continuous-time linear control
system ẋ = Ax+Bu, this yields the discrete-time system

x(t +1,h) = (I +hA)x(t,h)+hBu(t), (12.15)

with a step-size parameter h > 0. One can then ask whether the family of discretized
systems (12.15) can be robustly controlled using a control sequence u(t), t ∈ N,
that is independent of the step-size h > 0. Theorem 12.6 provides a simple answer.
Assume that the pair (A,B) is reachable. Then for each parameter h > 0 the pairs
(I + hA,hB) are also reachable. Moreover, assume that A has only simple, distinct
eigenvalues λ1, . . . ,λn that satisfy

λ j �= cλi (12.16)

for all c > 0 and i �= j. Then the eigenvalues 1+hλ1, . . . ,1+hλn of I +hA are also
simple and satisfy 1+hλi �= 1+h′λ j for h �= h′. Thus the discretized system (12.15)
is ensemble reachable for compact intervals P ⊂ (0,∞) of step-size parameters
provided (A,B) is reachable and A has distinct simple eigenvalues that satisfy
(12.16).
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This shows that the Euler-step approximation (12.15) of a continuous-time
control system ẋ = Ax + Bu inherits the reachability properties in a very strong
sense, i.e., (12.15) can be controlled in a step-size independent way. It would be
interesting to see whether this property carried over to more general, higher-order,
Runge–Kutta methods.

Example 12.16 (Robust Open-Loop Synchronization.). We describe an application
of Theorem 12.6 to the synchronization of N identical harmonic oscillators

ÿ(t)+ω2y(t) = v(t),

with state-space realization

A :=

(
0 −ω
ω 0

)
, b :=

( 1
ω
0

)
, c :=

(
0 1

)
.

The identical frequency ω of the harmonic oscillators is assumed to be known. We
assume that the oscillators are coupled in a ring with unknown coupling strength κ ,
which can vary over a compact interval P := [κ−,κ+]⊂ (0,∞) of positive numbers.
Thus the network topology is described by a directed simple cycle graph with N
nodes and weighted adjacency matrix κS, with the circulant matrix

S :=

⎛
⎜⎜⎜⎜⎝

0 1 0

0
. . .

. . .
. . .

. . . 1
1 0 0

⎞
⎟⎟⎟⎟⎠ .

We assume that the numbering of the harmonic oscillators is such that a single
external input is applied to the first harmonic oscillator. Thus the input-to-state
interconnection matrix is e1 = (1,0, . . . ,0)�. The dynamics of the overall network
is thus of the form

∂
∂ t x(t,κ) =

(
I ⊗A+κS⊗bc

)
x(t,κ)+

(
e1 ⊗b

)
u(t),

x(0,κ) = x0,
(12.17)

where x0 ∈ R
2N denotes the initial state of the network. Let e = (1, . . . ,1)�, and

let x∗ ∈ R
2 denote the desired terminal state to which the harmonic oscillators are

supposed to synchronize. The network of harmonic oscillators (12.17) is called
robustly synchronizable from x0 ∈ R

2N to e⊗ x∗ ∈ R
2N if for every ε > 0 there

exists T > 0 and an input function u : [0,T ]→ R such that the state x(t) of (12.17)
satisfies

sup
κ∈P

‖x(T,κ)− e⊗ x∗‖< ε .
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We emphasize that the input u acts here as a universal input for the parameter-
dependent network that steers x0 to the synchronized state 1⊗ x∗ uniformly for all
coupling strength parameters κ ∈ P.

We next show, using Theorem 12.6, that the network (12.17) of harmonic oscilla-
tors robustly synchronizes from every initial state x0 ∈R

2N at a vector 1⊗x∗ ∈R
2N

of identical terminal states x∗. Let Φ denote the N ×N Fourier matrix (9.39) and
ω = e2π

√−1/N . Thus, using (9.40), it follows that Φ∗SΦ = diag
(
1,ω, . . . ,ωN−1

)
and Φe1 =

1√
N

e. Applying the state-space similarity transformation z := (Φ∗ ⊗ In)x

using the unitary matrix Φ∗ ⊗ In, we see that (12.17) is similar to the decoupled,
parameter-dependent system

∂
∂ t

z j(t,κ) =
(

A+κe2π j
√−1/N)bc

)
z j(t,κ)+

√
Nbu(t), j = 1, . . . ,N

z(0,κ) = Φ∗x0.

This system is the parallel connection of reachable linear systems. Moreover, the
eigenvalues of I ⊗A+κS⊗bc are equal to

N⋃
j=1

{
z ∈ C : z2 +ω2 −κω j = 0

}
.

These eigenvalues are distinct and simple if, for example, 1 �∈ P = [κ−,κ+].
Moreover, under this condition, the eigenvalues for different κ �= κ ′ are distinct. This
implies that I⊗A+κS⊗bc is reachable and conditions (a)–(c) of Theorem 12.6 are
satisfied. One concludes that the network (12.17) is robustly synchronizable from
every initial state provided 1 �∈ [κ−,κ+]. Similarly, robust synchronization can be
established for more complicated network structures.

12.3 Control of Platoons

The Fourier transform provides an elegant way to utilize the preceding results
on uniform ensemble control for the control of partial differential equations and
platoons of systems. Although this point of view has appeared already in previous
work by, for example, Green and Kamen (1985), Bamieh, Paganini and Dahleh
(2002), and Curtain, Iftime and Zwart (2009), the control tasks that we consider
here have not been addressed before. In fact, the previously cited works consider
only scenarios where each subsystem is controlled by individual, independent input
functions. Thus such approaches use an infinite number of control functions and are
therefore severely limited in applicability. In contrast, we focus on the reachability
of systems that employ a finite number of input functions that are distributed over
the entire network. For controlling platoons or swarms of systems this approach
appears to be more appropriate.
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1. Finite Platoons Consider the task of controlling a finite platoon of N vehicles
on a line. If each vehicle is controlled individually by independent input functions,
then clearly the overall system will be reachable. A more interesting situation arises
when one considers inputs that are broadcasted to all systems simultaneously. Thus
all vehicles are controlled by the same input function (or by a small number of input
functions). By assuming nearest-neighbor interactions, we obtain the control system

ẋ1 =−x2 + x1 +u(t)

ẋ2 =−x3 +2x2 − x1 +u(t)

...

ẋN−1 =−xN +2xN−1 − xN−2 +u(t)

ẋN =−xN−1 + xN +u(t).

In matrix form the system is ẋ(t) = Ax(t)+bu(t), where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
...
...
1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (12.18)

To check for reachability, we apply the Hautus test. Recall from Theorem 8.46 that
the eigenvalues of A are nonrepeated and are equal to λk = 2− 2cos (k−1)π

N ,k =

1, . . . ,N. Moreover, ξ (k) = (sin kπ
N+1 , . . . ,sin kNπ

N+1 )
� is an eigenvector for the eigen-

value λk. Define ω = e
√−1π
N+1 . Thus

b�ξ (k) =
N

∑
ν=1

sin
kνπ

N +1
= Im

N

∑
ν=1

ωkν

= Im

(
1−ωk(N+1)

1−ωk −1

)
= Im

(
1− (−1)k

1−ωk −1

)

=

⎧⎨
⎩

0 if k is even,
sin kπ

N+1

1−cos kπ
N+1

if k is odd

is zero if and only if 1 ≤ k ≤ N is even. This implies that the system is not
reachable. In contrast, consider the case where b = ek for some 1 ≤ k ≤ N. From the
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tridiagonal structure of A it is easily seen that (A,e1) is reachable. The subsequent
characterization of reachability shows an interesting connection to elementary
number theory.

Theorem 12.17. Let (A,b) be defined by (12.18).

1. The pair (A,b) is not reachable.
2. (A,ek) is reachable if and only if k and N +1 are coprime.
3. (A,ek + e�) is reachable provided both pairs k + �,N + 1 and k − �,N + 1 are

coprime.
4. The two-input system (A,(ek,e�)) is reachable if and only if there exists no

1 ≤ r ≤ N such that N +1 divides both rk and r�.

Proof. The first part has already been shown. For the second part note that e�k ξ (r) =

sin krπ
N+1 = 0 if and only if N + 1 divides kr. Suppose that k and N + 1 are coprime.

Then N +1 divides kr if and only if N +1 divides k. But this is impossible because
1 ≤ k ≤ N. Thus the coprimeness of k and N + 1 implies e�k ξ (r) �= 0 for all 1 ≤
r ≤ N, i.e., it implies the reachability of (A,ek). Conversely, assume that d ≥ 2 is
the greatest common divisor of k,N +1. Then k = k′d and N +1 = N′d for suitable
integers 1 ≤ k′,N′ ≤ N. Then (N +1)k′ = kr for r := N′ ≤ N. Thus e�k ξ (r) = 0, and
therefore (A,ek) cannot be reachable.

By the Hautus criterion, the reachability of (A,ek + e�) is violated if and only
if there exists 1 ≤ r ≤ N such that sin krπ

N+1 + sin �rπ
N+1 = 0. Recall that sin(πx) =

sin(πy) if and only if either x+ y is an odd integer or x− y is an even integer. Thus,
reachability holds if and only if r(k−�) �∈ (2Z+1)(N+1) and r′(k+�) �∈ 2Z(N+1)
is valid for all 1 ≤ r,r′ ≤ N. Certainly this is the case if k+ �,N +1 are coprime and
k−�,N+1 are coprime. This implies the result. Finally, the reachability of the two-
input system (A,(ek,e�)) is equivalent to the condition that there exists no 1 ≤ r ≤ N
with sin krπ

N+1 = sin �rπ
N+1 = 0. This proves the result. �

Similarly, let us consider the situation where vehicles proceed on a circular
domain. In this case, we obtain the linear control system ẋ(t) = Fx(t)+ gu(t) with
system matrices

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, g =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
...
...
1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (12.19)

See Notarstefano and Parlangeli (2013) and Chapter 9 for reachability results on
closely related linear systems evolving on circular arrays. The eigenvalues of the
circulant matrix F are equal to 2 − 2cos 2kπ

N ,k = 1, . . . ,N. Thus, for N ≥ 2, the
symmetric matrix F always has eigenvalues with a multiplicity of 2. Therefore, the
circulant system (F,g) is not reachable. This also follows directly from the fact that
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Fg= 0. However, contrary to the preceding case of platoons on a line, the occurrence
of eigenvalues with multiplicities ≥ 2 in the Jordan canonical form of F shows that
the system (F,g) is not reachable for each choice of g. Thus we need at least two
independent inputs to control a platoon on a circle. The next result describes some
of the possibilities for controlling with two inputs.

Theorem 12.18. Let 1 ≤ k < � ≤ N and F be defined by (12.19). There exists no
vector g such that (F,g) is reachable. The two-input system (F,(ek,e�)) is reachable
if and only if N and k− � are coprime.

Proof. By Theorem 8.48, the eigenspaces of F are either one-dimensional and
spanned by u := e1 + · · ·+ eN (for r = N) or by u := e1 − e2 + e3 − ·· ·+ eN (for
N = 2m,r = m) or are two-dimensional with a basis

x(r) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
cos( 2rπ

N )

cos( 4rπ
N )

...

cos( 2(N−1)rπ
N )

⎞
⎟⎟⎟⎟⎟⎟⎠
, y(r) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
sin( 2rπ

N )

sin( 4rπ
N )

...

sin( 2(N−1)rπ
N )

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Thus reachability is satisfied whenever the inner products of ek,e� with the basis of
eigenvectors does not vanish. Computing the inner products we obtain

< ek,u >=< e�,u >= 1, < ek,v >= (−1)k, < e�,v >= (−1)�,

< ek,x
(r) >= sin

2(k−1)rπ
N

, < e�,x
(r) >= sin

2(�−1)rπ
N

,

< ek,y
(r) >= cos

2(k−1)rπ
N

, < e�,x
(r) >= cos

2(�−1)rπ
N

.

Thus the inner products with the eigenvectors are nonzero for the simple eigenvalues
λr, with r = N or r = m,N = 2m. For the other cases assume that v = αx(r) +βy(r)

is an eigenvector of F for λr, with < v,ek >=< v,e� >= 0. Then

α sin
2(k−1)rπ

N
+β cos

2(k−1)rπ
N

= 0,

α sin
2(�−1)rπ

N
+β cos

2(�−1)rπ
N

= 0.

This has a nonzero solution (α,β ) if and only if sin 2(k−�)rπ
N = 0. This is equivalent

to the condition that N divides (k− �)r. Since r < N, this implies reachability if and
only if N and k− � are coprime. �

Using the theory developed in Chapter 9, it is easy to extend the reachabil-
ity analysis of platoons from first-order scalar systems to higher-order systems.
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As an example, consider a homogeneous network of identical higher-order systems
of the form

q(
d
dt
)yi(t) = p(

d
dt
)vi(t)

vi(t) = yi+1(t)−2yi(t)+ yi−1(t)+biu(t), i = 1, . . . ,N.

(12.20)

Here b = col (b1, . . . ,bN) ∈ R
N , and p(z) and q(z) denote coprime real scalar

polynomials with deg p < deqq = n. Defining Q(z) = q(z)IN , P(z) = p(z)IN , and
A as in (12.18) we see that (12.20) is equivalent to the homogeneous network

(
Q(

d
dt
)−P(

d
dt
)A

)
y(t) = P(

d
dt
)bu(t).

Applying Theorem 9.15, one concludes that the network (12.20) is reachable if
and only if (A,b) is reachable. Thus, for b = ek, the network (12.20) is reachable
if and only if N + 1 and k are coprime, independently of the choice of coprime
polynomials p(z),q(z). Similarly, reachability results for platoons of higher-order
systems with circulant interconnection matrices are obtained.

2. Infinite Platoons. We now turn to an analysis of infinite platoons and their
reachability properties. Infinite platoons are infinite-dimensional control systems
where the spatial variable is constrained to either N or Z. The coordinates of infinite
platoons are therefore defined by either one-sided infinite sequences (xk)k∈N0 or bi-
infinite sequences (xk)k∈Z of elements xk ∈ R

n. In either case, we obtain a Hilbert
space �2

+(R
n) or �2(Rn) of square summable sequences with norms

‖x‖2 =
∞

∑
k=0

|xk|2, ‖x‖2 =
∞

∑
k=−∞

|xk|2,

respectively. The interpretation of, for example, the set of integers Z with the spatial
domain of a platoon is due to the identification of curves t �→ x(t) in �2(Rn) with
functions x : Z×R −→ R

n,(k, t) �→ x(k, t) := x(t)k. In such an interpretation the
space Z corresponds to the spatial variable, while t corresponds to time. We follow
the work by Curtain, Iftime and Zwart (2009), who developed an operator-theoretic
analysis of infinite platoons in the Hilbert space �2(Rn) of bi-infinite sequences.
We also refer to the more recent work by Feintuch and Francis (2012) for a deeper
analysis of stability problems for platoons in the Banach space of �∞ sequences.
Restricting the coordinates to the Hilbert-space context of �2 sequences enables
us to employ Fourier-transform techniques. In a second step, we then connect
the reachability analysis of infinite platoons to that for parameter-dependent linear
systems.

Restricting the coordinates to the Hilbert-space context of �2 sequences enables
us to employ Fourier-transform techniques. For bi-infinite sequences x of vectors
xk ∈ C

n,k ∈ Z, define the associated Fourier series
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x(e
√−1θ ) :=

∞

∑
k=−∞

x−
√−1kθ

ke .

Conversely, with functions f ∈ L2(S1,Cn) on the unit circle S1 one associates the
sequence of Fourier coefficients

xk( f ) =
1

2π

∫ 2π

0
f (e

√−1θ )e
√−1kθ dθ , k ∈ Z.

The discrete Fourier transform

F : �2(Cn)−→ L2(S1,Cn), F (x) = x(e
√−1θ )

then defines a linear isomorphism whose inverse is defined by the Fourier coeffi-
cients via

F−1 : L2(S1,Cn)−→ �2(Cn), F−1 f = (xk( f ))k∈Z.

By the Plancherel formula, the discrete Fourier transform defines an isometry of
Hilbert spaces, i.e., for all x ∈ �2(Cn),

‖x‖�2 = ‖F x‖L2 .

Similarly, the discrete Fourier transform of a one-sided sequence (xk)k≥0 ∈ �2
+(C

n)
is defined as

x(e
√−1θ ) :=

∞

∑
k=0

x−
√−1kθ

ke ,

which defines an element of the Hardy space H2(D;Cn) on the unit disc D. The
discrete Fourier transform

F : �2
+(C

n)−→ H2(D;Cn), F (x) = x(e
√−1θ )

then maps �2
+(C

n) isometrically onto H2(D;Cn) = H2(D)n, the Hardy space of n-
tuples of holomorphic functions on the open unit disc that are Lebesgue square
integrable on the unit circle.

Following these preliminaries, we now turn to a study of bi-infinite platoons on
Z. The simplest classes of such models are spatially invariant and have the form

ẋk(t) =
∞

∑
j=−∞

A jxk− j(t)+
∞

∑
j=−∞

B juk− j(t), k ∈ Z, (12.21)

where Ak ∈ R
n×n and Bk ∈ R

n×m. Here we assume that the inputs and state
sequences are in �2, i.e., (xi) ∈ X = �2(Cn) and (ui) ∈ U = �2(Cm), respectively.
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To specify conditions that the convolution operators A : X −→ X and B : U −→ X ,
with

(A x)k =
∞

∑
j=−∞

A jxk− j, (Bu)k =
∞

∑
j=−∞

B juk− j,

are well defined, we impose a condition on their Fourier symbols

A(e
√−1θ ) =

∞

∑
j=−∞

A je
−√−1 jθ , B(e

√−1θ ) =
∞

∑
j=−∞

B je
−√−1 jθ .

Assume that both A(·) and B(·) are elements of L∞(S1,Cn×n) and L∞(S1,Cn×m),
respectively. This guarantees that the associated multiplication operators

A : L2(S1,Cn)−→ L2(S1,Cn), x(e
√−1θ ) �→ A(e

√−1θ )x(e
√−1θ ),

B : L2(S1,Cm)−→ L2(S1,Cn), u(e
√−1θ ) �→ B(e

√−1θ )u(e
√−1θ )

are bounded linear operators with operator norms

‖A ‖= ‖A(·)‖∞ = ess sup0≤θ≤2π ‖A(e
√−1θ )‖,

‖B‖= ess sup0≤θ≤2π ‖B(e
√−1θ ).‖

It follows that the infinite-dimensional control system

ẋ(t) =A x(t)+Bu(t) (12.22)

that describes the platoon model (12.21) is well defined on the Hilbert space
L2(S1,Cn). Note that the inputs for (12.22) assume values in the infinite-dimensional
Hilbert space L2(S1,Cm). We present the following Hautus-type condition for
approximate reachability.

Theorem 12.19. The infinite platoon (12.21) is approximately reachable on the
Hilbert space L2(S1,Cn) if and only if the reachability rank condition

rk
(

zIn −A(e
√−1θ ), B(e

√−1θ )
)
= n

is satisfied for all z ∈ C and almost all θ ∈ [0,2π].

Proof. By the isometric properties of the Fourier transform, both systems (12.21)
and (12.22) are similar and thus have identical reachability properties. Character-
izations of the approximate reachability of linear systems on a Hilbert space are
well known; see, for example, the textbook by Curtain and Zwart (1995). In fact,
approximate reachability in finite time T > 0 is guaranteed for (12.22) if and only if
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the image of the reachability operator RT : L2([0,T ],X)−→ L2(S1,Cn),

RT u =
∫ T

0
e(T−s)ABu(s)ds,

is dense in L2(S1,Cn). Since the closure Im RT of the image of RT coincides with
the kernel of the dual operator, we conclude that the approximate reachability of
(12.21) is equivalent to the condition

∫ 2π

0
f (e

√−1θ )∗ exp(tA(e
√−1θ ))B(e

√−1θ )dθ = 0 for all t ≥ 0 =⇒ f (e
√−1θ ) = 0.

Of course, this is equivalent to the familiar Kalman rank condition

rk
(

B(e
√−1θ ), . . . ,A(e

√−1θ )nB(e
√−1θ )

)
= n

for almost all θ ∈ [0,2π]. Thus the result follows by applying the standard Hautus
conditions for linear systems. �

A crucial implication for the convergence dynamics of platoons, when working
in the Hilbert space �2, is that all trajectories (xn(t))n converge to zero as n →±∞.
Of course, this is a very restrictive assumption that is often not desirable in practice.
For such reasons, Feintuch and Francis (2012) started an investigation of platoons
in the Banach space �∞ of bounded bi-infinite sequences in R. We endow �∞ with
the norm

‖x‖∞ = sup
n∈Z

|xn|,

which turns �∞ into a Banach space. Since methods from Fourier analysis cannot be
applied, the analysis becomes more difficult. We do not go into details here but refer
the reader to Feintuch and Francis (2012) for a discussion of several simple cases.

3. Finite-Dimensional Control of Platoons. A further drawback of the preceding
analysis is that it assumes an infinite-dimensional Hilbert space of input values. We
now extend the reachability analysis of platoons to the more difficult, and more
interesting, case of finite-dimensional controls.

We start with a simple example of a one-sided infinite platoon over N0 that was
first described decades ago by Fuhrmann (1972). Consider the discrete-time control
system in �2

+(C)

x(t +1) = Sx(t)+bu(t), (12.23)
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where b ∈ �2
+(C) and

S : �2
+(C)−→ �2

+(C), S(x0,x1,x2, . . .) := (0,x0,x1, . . .),

S∗ : �2
+(C)−→ �2

+(C), S(x0,x1,x2, . . .) := (x1,x2,x3, . . .)

denotes the right shift operator and left shift operator, respectively. Thus S and S∗
are bounded linear operators on �2

+(C). S is an isometry while S∗ is a contraction.
The study of these shift operators is due to Beurling (1949). The spectral properties
of S and S∗ are well known; for example, S does not have eigenvalues. The spectrum
of both S and S∗ is equal to the closed unit disc D. The set of eigenvalues of S∗ is
D, and the associated eigenvector of each eigenvalue λ ∈ D is (1,λ ,λ 2,λ 3, . . .).
Equivalently, expressed in the Hardy space H2(D), the associated eigenfunction is

eλ (z) =

√
1−|λ |2
1−λ z

.

Spelled out in the coordinates of the sequence x(t), system (12.23) is equivalent
to the 2D system [x−1(t) := 0]

xk(t +1) = xk−1(t)+bku(t), t,k ∈ N0.

Let

b(e
√−1θ ) =

∞

∑
k=0

bkek
√−1θ

denote the discrete Fourier transform of b. Since b ∈ �2
+(C), the Fourier transform

b(·) extends to a holomorphic function in D and b(z) ∈ H2(D). Note that if b(z)
is a rational function with no poles and zeros in the closed unit disc, then b is an
outer function. The following result by Beurling (1949) appears as Lemma 4.1 in
Fuhrmann (1972). Since b(z) = 2

2−z = ∑∞
k=0 2−kzk is outer, the result implies that

the platoon system [x−1(t) := 0]

xk(t +1) = xk−1(t)+2−ku(t), t,k ∈ N0.

is approximately reachable.

Theorem 12.20. System (12.23) is approximately reachable in �2
+(C) if and only if

b is an outer function.

Proof. For the convenience of the reader we recall the main arguments from
Fuhrmann (1972). System (12.23) is approximately reachable at zero if and
only if the functions e

√−1kθ b(e
√−1kθ ) span H2. The span V is invariant under

multiplication by e
√−1kθ , and therefore Beurling’s theorem implies that V = qH2
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for an inner function q. Thus b ∈ qH2, i.e., q divides b. Thus V = H2 if and only
if b does not contain a nontrivial inner function. By the inner-outer factorization
theorem, this is equivalent to b being outer. �

The situation becomes quite different if we replace the forward shift operator S
in (12.23) with the backward shift S∗. The approximate reachability of

x(t +1) = S∗x(t)+bu(t) (12.24)

is equivalent to b being a cyclic vector for S∗. The question of characterizing cyclic
vectors for the backward shift was first raised and answered by Douglas, Shapiro and
Shields (1970) and extended to the multivariable case in Fuhrmann (1976b). Their
characterization is, however, not as simple as that for S. A sufficient condition by
Douglas, Shapiro and Shields (1970) for the cyclicity of b for the backward shift is
that the Fourier transform b(z) ∈ H2 can be analytically continued across all points
of an arc in S1, with the exception of an isolated branch point in the arc. An example
of a cyclic vector is b(z) = exp(1/(z−2)). No rational function b(z) ∈ H2 is cyclic,
and therefore rational stable functions lead to a nonreachable system (12.24). In fact,
from Kronecker’s theorem 4.18 one can deduce that the span of the orbit (S∗)nb is
finite-dimensional.

It is possible to extend the analysis to broader classes of one-sided platoon mod-
els. Let a(z) =∑∞

j=0 a jz j denote an analytic function in H2(D), with sup|z|≤1 |a(z)|<
∞, and let b(z) = ∑∞

j=0 b jz j ∈ H2(D). Then the discrete-time single-input linear
control system on �2

+(C) is well defined as

x(t +1) = a(S)x(t)+bu(t) (12.25)

or, equivalently, as

xk(t +1) =
k

∑
j=0

ak− jx j(t)+bku(t), t,k ∈ N0.

Note that for a(z) = z this specializes to (12.23). For the proof of the subsequent
theorem, we apply methods from the theory of composition operators in Hardy
spaces; see, for example, Douglas, Shapiro and Shields (1970) and Shapiro (1993)
for further details. In particular, we make use of the following classical result by
Walsh (1965) for polynomial approximations.

Theorem 12.21 (Walsh). Let a : D −→ C be an injective holomorphic function
such that the boundary of a(D) is a Jordan curve. Then the set {p◦a | p ∈ C[z]} of
polynomials in a is dense in H2(D).

The discussion of the following two examples is taken from Bourdon and Shapiro
(1990).
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Example 12.22. The univalent function a(z)= z
2−z ∈H∞(D) maps the closed disc D

conformally into itself with fixed points 0,1. Note that sup|z|≤1 |a(z)| = 1. The

composition operator Ca : H2(D) −→ H2(D) is bounded but does not have cyclic
vectors. Therefore, system (12.25)

xk(t +1) =
k−1

∑
j=0

2 j−kx j(t)+bku(t), t,k ∈ N0,

is for no b ∈ �2
+(C) approximately reachable in �2

+(C). On the other hand, the
univalent function a(z) = 1

2−z ∈ H∞(D) has z = 1 as its only fixed point and satisfies
sup|z|≤1 |a(z)|= 1. The composition operator Ca : H2(D)−→ H2(D) is bounded and

cyclic. Thus there exists a generic set of elements b ∈ �2
+(C) such that

xk(t +1) =
k

∑
j=0

2 j−k−1x j(t)+bku(t), t,k ∈ N0,

is approximately reachable in �2
+(C).

The following generalization of Theorem 12.20 is a simple consequence of the
Walsh theorem.

Theorem 12.23. Let b ∈ �2
+(C). Assume that a ∈ H2(D) defines an injective

analytic function a : D −→ C such that the boundary of a(D) is a Jordan curve.
Assume further that sup|z|≤1 |a(z)| < 1. System (12.25) is approximately reachable

in �2
+(C) if and only if b is an outer function.

Proof. The reachable set V consists of all functions (p ◦ a)b, where p ∈ C[z] is
a polynomial. By Theorem 12.21 of Walsh, this implies that the closure V of the
reachable set in H2 is equal to bH2. Let b = fg, with f inner and g outer, denote the
inner-outer factorization of b. Then the closure of the reachable set bH2 = fH2 is
equal to H2 if and only if f is constant, i.e., if and only if b is outer. �

Actually, a stronger version of Walsh’s theorem is valid asserting that the
polynomials in a are uniformly dense in the space of uniformly continuous bounded
analytic functions on D. This implies approximate reachability in �2

+(C) with
respect to the sup-norm on H2. We next proceed to show how one can apply such
uniform approximation techniques in a more general context. Consider bi-infinite
platoons with spatial domain Z, where m controls u(t) = (u1(t), . . . ,um(t))� ∈ R

m

are broadcasted to the platoon using

uk(t) = βku(t),
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where βk ∈ R
m×m. This leads to the broadcast control platoon system

ẋk(t) =
∞

∑
j=−∞

A jxk− j(t)+
∞

∑
j=−∞

B jβk− ju(t), k ∈ Z.

We assume that the bi-infinite sequence of matrices β = (βk) defines an L2 Fourier
transform

β (e
√−1θ ) :=

∞

∑
k=−∞

β−√−1kθ
ke ∈ L2(S1;Cm×m).

The assumptions on A and B are as previously. Define matrix-valued functions as

A(e
√−1θ ) =

∞

∑
k=−∞

A−√−1kθ
ke , B̂(e

√−1θ ) = B(e
√−1θ )β (e

√−1θ ).

The associated multiplication operators

A : L2(S1,Cn)−→ L2(S1,Cn) and B̂ : Cm −→ L2(S1,Cn)

are bounded linear operators, whereas the input-state operator B̂ is finite-
dimensional and therefore defines a compact operator. We thus obtain the system
on the Hilbert space L2(S1;Cn) with finite-dimensional controls as

ẋ(t) =A x(t)+ B̂u(t). (12.26)

The associated finite-dimensional, parameter-dependent, linear system on C
n is

ż(t) =A (e
√−1θ )z(t)+B(e

√−1θ )β (e
√−1θ )u(t),

with parameter space S1 being the unit circle. For a compact subset P ⊂ S1 consider
the Hilbert spaces

L2
P(C

n) = { f ∈ L2(S1;Cn) | f = 0 outside P}, �2
P =F−1(L2

P),

with the isomorphism of Hilbert spaces L2
P(C

n)� L2(P,Cn).

By extending square-integrable matrix-valued functions A(e
√−1θ ), B(e

√−1θ ),
and β (e

√−1θ ) on P by zero to functions on S1 one can identify these matrix
functions with unique elements of, for example, L2

P(C
n×n). Then the linear mul-

tiplication operators A and B̂ map L2
P(C

n) and R
m into L2

P(C
n). In particular, the

linear system (12.26) is restricted to a control system on the Hilbert space L2
P(C

n).
In the single-input case we obtain the following approximate reachability result.
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Theorem 12.24. Let m= 1, and let P �= [0,2π] denote a nonempty compact interval
contained in [0,2π]. Assume that the matrix-valued functions θ �→ A(e

√−1θ ),
B(e

√−1θ ), and β (e
√−1θ ) are continuous on P. Assume further that the following

conditions are satisfied:

1. The pair (A(e
√−1θ ),B(e

√−1θ )β (e
√−1θ )) is reachable for all θ ∈ P.

2. The spectra of A(e
√−1θ ) and A(e

√−1θ ′
) are disjoint for each θ ,θ ′ ∈ P,θ �= θ ′.

3. The eigenvalues of A(e
√−1θ ) are simple for each θ ∈ P.

Then the restricted system (12.26) on the Hilbert subspace L2
P(C

n) is approximately
reachable in finite time T > 0.

Proof. Let b(e
√−1θ ) := B(e

√−1θ )β (e
√−1θ ). Theorem 12.6 implies that the

parameter-dependent system

∂x(t,θ)
∂ t

= A(e
√−1θ )x(t,θ)+b(e

√−1θ )u(t), θ ∈ P,

is uniformly ensemble reachable in finite time. Note that

∫ T

0
exp((T − s)A )B̂u(s)ds

coincides with the L2
P function

θ �→
∫ T

0
exp

(
(T − s)A(e

√−1θ )
)

b(e
√−1θ )u(s)ds.

This implies that the image of the reachability operator RT : L2([0,T ];Cm) −→
L2(P,Cn) = L2

P(C
n),

RT (u) =
∫ T

0
exp((T − s)A )B̂u(s)ds,

is dense in L2
P(C

n). This completes the proof. �

12.4 Control of Partial Differential Equations

In this section we explore several instances where the control of PDEs interacts
with networks of systems. This includes the realization of interconnected systems
and platoons as discretizations of PDEs and showing how results from parametric
linear systems can be used to gain further insight into PDEs using Fourier-transform
techniques. Finally, we explain how one can control the state-space probability
distributions of linear systems by solving the associated control task for the
Liouville equation.
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1. Networks as Discretizations of the Heat Equation. Let us consider one of the
simplest PDEs, the classical heat equation in one spatial variable z ∈ [0,1], with
boundary controls

∂ψ(t,z)
∂ t

=
∂ 2ψ(t,z)

∂ z2 ,

ψ(0,x) = 0, ψ(t,0) = u0(t), ψ(t,1) = u1(t).

Here the boundary value functions u0(t) and u1(t) are regarded as control variables.
For each nonnegative integer N and step size h = 1

N we subdivide the domain [0,1]
into N +1 equidistant points zi = ih, i = 0, . . . ,N. Consider a lumped discretization
as x(t) = (ψ(t, 1

N ), . . . ,ψ(t, N−1
N ))� ∈ R

N−1, and assume that the boundary value
functions u(t) = (u0(t),u1(t))� are known. Then the boundary value condition
ψ(0,x) = 0 corresponds to the initial condition x(0) = 0. Using standard Taylor

approximations we can replace the second-order differential operator ∂ 2ψ(t,z)
∂ z2 with

its associated difference operator as

ψ(t,z+h)−2ψ(t,z)+ψ(t,z−h)
h2 .

By neglecting second-order error terms we end up with the discretized form of the
heat equation as

ẋ(t) =
1
h2 (Ax(t)+Bu(t)) . (12.27)

Of course, after rescaling time in x,u via x(h2t),u(h2t) this system becomes
equivalent to the linear system ẋ = Ax+Bu. Here (A,B)∈R

(N−1)×(N−1)×R
(N−1)×2

are the reachable pair

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

1
. . .

. . .
. . .

. . . 1
1 −2 1

1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0
0 0
...

...
...

...
0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (12.28)

Note that (12.27) is an interconnected system for N − 1 identical first-order
integrators ẋi = vi, coupled by interconnection matrices (12.28) for the states and
inputs, respectively. Note further that A defines a Laplacian matrix for a tree, and
its spectrum was analyzed in Chapter 7. It is easily seen that the discretized heat
equation (12.27) is reachable.
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As another example, consider the control of the heat equation on the unit circle,
formulated as a periodic boundary value problem as

∂ψ(t,z)
∂ t

=
∂ 2ψ(t,z)

∂ z2 +u(t)g(z),

ψ(t,0) = ψ(t,1),

where g(z) = g(z+1) is assumed to be periodic with period one. By discretizing this
system using xN = x0,xN+1 = x1 and setting g(ih) = bi we obtain the single-input
control system ẋ = 1

h2 (Ax+bu) with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

1
. . .

. . .
. . .

. . . 1
1 −2 1

1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

b1

b2
...
...

bN

⎞
⎟⎟⎟⎟⎟⎟⎠

. (12.29)

Here, A is a circulant matrix, and the reachability of such systems was analyzed
in Chapter 9 using the module structure on the set of circulant matrices. We refer
to Brockett and Willems (1974) for further discussion of discretized PDEs from a
module-theoretic point of view. Note that (12.29) is, up to sign, identical with the
finite platoon system (12.19). In particular, Theorem 12.18 implies that (12.29) is
not reachable.

The discretization process can be applied to more general boundary value
problems. We illustrate this by the following variant of the controlled heat equation

∂ψ(t,z)
∂ t

=
∂ 2ψ(t,z)

∂ z2 , (t,z) ∈ [0,T ]× [0,1],

∂ψ(t,0)
∂ z

= 0,
∂ψ(t,1)

∂ z
= u(t).

We refer the reader to Chapter 2.5.3 in the book by Coron (2007) for a detailed
discussion of the reachability properties of this system, including an approximate
reachability result Theorem 2.76 that is derived using flatness techniques. Using
Taylor approximations (with step sizes identical to those for the second derivative
term),

ψ(t,h)−ψ(t,0)
h

and
ψ(t,1)−ψ(t,1−h)

h
,

for ∂ψ(t,0)
∂ z and ∂ψ(t,1)

∂ z , respectively, the boundary conditions become ψ(t,h) = ψ
(t,0) and ψ(t,1) = ψ(t,1−h)+hu(t). Thus we arrive at the reachable single-input
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system

ẋ(t) =
1
h2 (Ax(t)+hbu(t)) ,

with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
1 −2 1

1
. . .

. . .
. . .

. . . 1
1 −2 1

1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎝

0
...
...
1

⎞
⎟⎟⎟⎟⎠ .

Again, this system is reachable and can be rescaled to standard form ẋ = Ax+ bu.
The spectral properties of matrix A were discussed in Section 8.7.

Instead of assuming a compact spatial domain, one can also consider the heat
equation on an unbounded domain. This leads to infinite platoons of systems as
their discretizations. Thus, consider, for example, the controlled heat equation on
the nonnegative real line [0,∞):

∂ψ(t,z)
∂ t

=
∂ 2ψ(t,z)

∂ z2 +g(z)u(t),

ψ(0,z) = 0.

Consider a lumped approximation x(t) = (xk(t)) = (ψ(t,k))k∈N0 ∈ �2
+ of ψ , and

(bk)k∈N0 := (g(k))k∈N0 ∈ �2
+ with step size h = 1. Using the standard discretization

for the second-order derivative one obtains the infinite platoon

ẋk(t) = xk+1(t)−2xk(t)+ xk−1(t)(t)+bku(t), k ∈ N0.

This shows that the study of infinite platoons can be of use for the control of PDEs.
The preceding examples illustrate that interesting interconnection matrices arise

as discretizations of PDEs. One can take this idea a step further by considering
discretizations of parametric linear systems coupled by diffusive terms. This leads
to networks of linear systems. Thus, consider, for example, the family of linear
systems

∂ψ(t,z)
∂ t

= αψ(t,z)+βv(t,z),

y(t,z) = γψ(t,z),

v(t,z) =
∂ 2y(t,z)

∂ 2z
+Bu(t),
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where the SISO system (α,β ,γ) ∈ R
n×n ×R

n ×R
1×n is reachable and observable,

z ∈ [0,1] and ψ(t,z) ∈ R
n. By discretizing the second-order differentiation term as

before we arrive at the interconnected linear system

ẋ = (IN ⊗α +A⊗βγ)x+(B⊗β )u(t),

where A is defined in (12.28) and B is arbitrary. By Theorem 9.15, this network is
reachable whenever (A,B) is reachable. If the spatial domain [0,1] is replaced by
the real line R, this leads to infinite networks of linear systems.

2. Fourier-Transform Techniques. The preceding examples showed how large-
scale interconnected control systems arise naturally as discretizations of boundary
control problems for PDEs. Using Fourier-transform techniques, one can associate
families of control systems to such PDEs on R

d . To illustrate this idea, we consider
the controlled heat equation in one spatial variable on the real line R:

∂ψ(t,z)
∂ t

= aψ(t,z)+
∂ 2ψ(t,z)

∂ z2 +u(t)

√
2
π

sin(Rz)
z

,

ψ(0,z) = 0.

(12.30)

Our goal is to find a control function u(t) that steers the initial temperature
distribution ψ(0,z) = 0 to a final distribution ψ(T,z) = ψ∗(z) in finite time T > 0.
More specifically, for ε > 0 and a function ψ∗ in the Sobolev space W 2(R) we want
to find T > 0 and a control u : [0,T ]−→ R such that

∫ ∞

−∞
(ψ(T,z)−ψ∗(z))2 dz < ε . (12.31)

We refer to this as the approximate reachability task for ψ∗ in (12.30). We
emphasize that the control function in our problem is independent of the spatial
variable z. Thus the freedom one has in controlling the system is quite limited. To
approach such reachability questions, it is useful to note that (12.30) has a unique
solution ψ(t,z) ∈C1([0,∞),W 2(R)∩W 1

0 (R)) for piecewise smooth input functions
u(t); see Pazy (1983), Corollary 7.2.8. Thus the control problem is meaningful only
by assuming ψ∗ ∈ W 2(R)∩W 1

0 (R). Since the space C∞
0 (R) of smooth functions

with compact support is dense in W 2(R), one has W 1
0 (R) = W 2(R). Thus the

control problem for the heat equation (12.30) on the real axis takes place in
W 2(R). Our approach now is to replace the heat equation by an ordinary differential
equation using the Fourier transform. This enables us to show that, under suitable
assumptions on ψ∗, such approximate reachability tasks for PDEs are related to the
ensemble control problem for parameter-dependent linear systems.
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Recall that the Fourier transform on R defines the linear isometry F :
L2(R)−→ L2(R),

(Fψ)(θ) :=
1√
2π

∫ ∞

−∞
e−

√−1θzψ(z)dz,

with inverse transform

(F−1 f )(z) :=
1√
2π

∫ ∞

−∞
e
√−1θz f (θ)dθ .

It is well known that F maps the Sobolev space W 2(R) exactly onto the space of
all functions φ(θ) such that (1+ |θ |)2φ(θ) ∈ L2(R). Let

H(x) =

{
1 for x ≥ 0,

0 otherwise

denote the Heaviside function. Note that for each R > 0 the Fourier transform of√
2
π

sin(Rz)
z is equal to H(R− |z|). Thus, by Fourier-transforming equation (12.30),

we obtain for x(t,θ) := (Fψ)(t,θ) the parameter-dependent control system

ẋ = (a−θ 2)x(t,θ)+H(R−|θ |)u(t), x(0,θ) = 0. (12.32)

By restricting ourselves to the compact parameter domain P = [0,R] we obtain the
linear parameter-dependent system

ẋ = (a−θ 2)x(t,θ)+u(t), x(0,θ) = 0. (12.33)

Since the Fourier transform defines an isometry on L2(R), the approximate
reachability of the PDE (12.30) on the spatial domain R is equivalent to the existence
of an input function u(t) that is independent of the parameter θ ∈ [0,R] and has the
following approximation property: For each function θ �→ x∗(θ) of terminal states
in F (W 2) and ε > 0 there exists T > 0 such that the solution of (12.30) satisfies

∫ R

0
(x(T,θ)− x∗(θ))2 dθ < ε .

Thus we see that the approximate reachability task for the heat equation is equivalent
to L2-ensemble reachability for a simple family of first-order linear systems. Our
previous results on uniform ensemble reachability apply and yield corresponding
results on approximate reachability for PDEs. However, there is a “but” insofar
as our results will only imply reachability within a certain frequency band. These
observations are in harmony with stronger positive approximate reachability results
established for the heat equation (12.30) on arbitrary bounded domains; see
Theorem 2.76 in the book by Coron (2007).
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Theorem 12.25. Assume that ψ∗(z) ∈ W 2 is such that its Fourier transform
x∗(θ) = F (ψ∗)(θ) is an even function of θ with support contained in [−R,R].
Then the heat equation (12.30) is approximately reachable to ψ∗.

Proof. We first show that the approximate reachability of the heat equation to ψ∗ is
equivalent to the L2-ensemble reachability of the linear parametric system (12.33)
to x∗. By Theorem 12.6, the family (12.33) is uniform ensemble reachable on the
parameter interval [0,R]. This then completes the proof. To prove the equivalence
of the two notions of reachability, suppose that u is an input such that ψ(T, ·) ∈W 2

satisfies (12.31). Then x(t,θ) = F (ψ(t, ·) is a solution of (12.32). Since F is an
isometry on L2, we obtain for x∗ :=F (ψ∗)

∫ ∞

−∞
(ψ(T,z)−ψ∗(z))2 dz =

∫ ∞

−∞
(x(T,θ)− x∗(θ))2 dθ =

∫ R

−R
(x(T,θ)− x∗(θ))2 dθ

= 2
∫ R

0
(x(T,θ)− x∗(θ))2 dθ < 2ε.

Here the second equation follows from the support property of x∗, while the
third follows from the evenness of the functions x(T,θ) and x∗(θ). Conversely, for
each solution x(t,θ) of (12.33) we note that H(R− |θ |)x(t,θ) defines a solution
of (12.32). Since θ �→ H(R − |θ |)x(t,θ) has compact support, (1 + |θ |)2H(R −
|θ |)x(t,θ) also has compact support. Thus H(R − |θ |)x(t,θ) is an element of
F (W 2(R)) for all t ≥ 0. This shows that the inverse Fourier transform F−1(H(R−
|θ |)x(t,θ)) maps solutions to (12.32) bijectively to the solutions of the heat
equation (12.30). �
3. Control of Liouville Equation. We now present a reachability result by Brockett
on the Liouville equation, restricted to the space of Gaussian distributions. We
begin by deriving the classical Liouville transport equation for time-varying vector
fields. Let f (x, t) be a time-varying complete Ck-vector field on a smooth orientable
Riemannian manifold M. Let dx denote the canonical volume form on M and ρ(0, ·)
denote a smooth function with

∫
M

ρ(0,x)dx = 1.

Let φt,s denote the flow semigroup of f . Thus φt,s is a diffeomorphism on M with
φt,sφs,t = idM and

∂φt,s(x)
∂ t

= f (φt,s(x), t).

Define

ρ(t,x) = ρ(0,φ0,t(x))detDφ0,t(x),
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i.e., ρ(t,x)dx is the pullback of the volume form ρ(0,x)dx by the diffeomorphism
φ0,t . Applying the transformation theorem one concludes that, for all t,

∫
M

ρ(t,x)dx = 1.

Consider a smooth function ψ(x) on M with compact support. By a change of
variables,

∫
M

ψ(x)ρ(t,x)dx =
∫

M
ψ(x)ρ(0,φ0,t(x))detDφ0,t(x)dx =

∫
M

ψ(φt,0(x))ρ(0,x)dx,

and so, by differentiating both sides, we obtain

∫
M

ψ(x)
∂ρ(t,x)

∂ t
dx =

d
dt

∫
M

ψ(x)ρ(t,x)dx =
∫

M

∂ψ(φt,0(x))
∂ t

ρ(0,x)dx

=
∫

M
dψ(φt,0(x)) f (φt,0(x), t)ρ(0,x)dx

=

∫
M

dψ(x) f (x, t)ρ(0,φ0,t(x))detDφ0,t(x)dx

=
∫

M
dψ(x) f (x, t)ρ(t,x)dx.

For time-varying vector fields F , the divergence on M satisfies the well-known iden-
tity div(ψ(x)F(x, t)) = dψ(x)F(x, t) + ψ(x)divF(x, t). Applying the divergence
theorem, we obtain, for F(x, t) = ρ(t,x) f (x, t),

∫
M

ψ(x)
∂ρ(t,x)

∂ t
dx =−

∫
M

ψ(x)div( f (x, t)ρ(t,x))dx+
∫

M
div(ψ(x) f (x, t)ρ(t,x))dx

=−
∫

M
ψ(x)div( f (x, t)ρ(t,x))dx.

Thus we conclude that ρ(t,x) satisfies the transport equation

∂ρ(t,x)
∂ t

=−div( f (x, t)ρ(t,x)), ρ(0,x) = ρ(x). (12.34)

Conversely, if ρ is a Ck-function on R
n, then ρ(t,x) = ρ(φ0,t(x))detDφ0,t(x) is the

unique Ck-solution of the initial value problem (12.34). Applying this equation to a
control affine vector field f (x)+ug(x), a major distinction between open-loop and
closed-loop control becomes manifest. In fact, for open-loop controls we obtain a
control system on the space of density functions as

∂ρ(t,x)
∂ t

=−div( f (x)ρ(t,x))−u(t)div(g(x)ρ(t,x)),
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while smooth feedback control leads to

∂ρ(t,x)
∂ t

=−div( f (x)ρ(t,x))−u(x)div(g(x)ρ(t,x))−du(x)g(x)ρ(t,x).
(12.35)

The difference appears already for linear systems f (x,u) =Ax+Bu in R
n. We obtain

the open-loop transport equation

∂ρ(t,x)
∂ t

=−tr (A)ρ(t,x)− (Ax+Bu)� ∇ρ(t,x), (12.36)

while the closed-loop state feedback u = Kx leads to

∂ρ(t,x)
∂ t

=−tr (A+BK)ρ(t,x)− ((A+BK)x)� ∇ρ(t,x). (12.37)

The open-loop solution of (12.36) is

ρ(t,x) = e−t trAρ
(

0,e−tA(x−
∫ t

0
e(t−s)ABu(s)ds)

)
,

while the closed-loop solution of (12.37) under the state feedback u = Kx is

ρ(t,x) = e−t tr(A+BK)ρ(0,e−t(A+BK)x).

A Gaussian distribution function with positive definite covariance matrix Q =
Q� > 0 and mean value μ ∈ R

n is defined as

gQ,μ(x) =
1√

(2π)n detQ
exp

(
−1

2
(x−μ)�Q−1(x−μ)

)
.

Let P denote the convex set of positive definite real symmetric n × n matrices
Q. Since the map (Q,μ) �→ gQ,μ is injective, we see that the set of Gaussian
distributions forms a smooth manifold G that is diffeomorphic to P ×R

n and
is embedded into C∞(Rn). Moreover, the Gaussian distribution satisfies, for every
invertible transformation S ∈ GL+(n,R) with positive determinant and μ ∈ R

n, the
identity

gSQS�,Sμ(x) =
1

detS
gQ,μ(S

−1x).
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We now consider the effect of transporting a Gaussian distribution by a linear
control system. The solutions of the linear system ẋ = Ax+Bu are

x(t) = φt,0(x) = etAx+
∫ t

0
e(t−s)ABu(s)ds,

with

φ0,t(x) = e−tAx−
∫ t

0
e−sABu(s)ds.

Therefore,

gQ,μ(φ0,t(x)) = et tr(A)gQ(t),μ(t)(x),

with

Q(t) = etAQetA�
, μ(t) = φt,0(μ) = etAμ +

∫ t

0
e(t−s)ABu(s)ds.

This implies the explicit formula for the L2-distance

∫
Rn
(gQ,μ(x)−gQ(t),μ(t)(x))

2dx =
1√

(4π)n detQ
+

e−t trA√
(4π)n detQ

−
2exp

(
− 1

2 (μ −μ(t))�(Q+ etAQetA�
)−1(μ −μ(t))

)
√

(2π)n det(Q+ etAQetA�
)

.

Now consider the bilinear control system

ẋ = (A+BK(t))x+Bu(t),

where K(t) and u(t) act as independent control functions. Thus, by this process, we
combine open-loop and closed-loop controls for the transport equation (12.39) on
Gaussian density functions. This induces the control system on the parameter space
for Gaussian densities as

Q̇(t) = (A+BK(t))Q(t)+Q(t)(A+BK(t))�,

μ̇(t) = (A+BK(t))μ(t)+Bu(t),
(12.38)

which is equivalent to the restriction of (12.39) on G .
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Theorem 12.26 (Brockett (2012)). Assume that (A,B) is reachable. Then the
control system (12.38) on P ×R

n is reachable. For pairs (Q0,μ0) and (Q1,μ1)
in P×R

n there exists T > 0 and control functions u(t) and K(t) on [0,T ] that steer
(12.38) from (Q0,μ0) to (Q1,μ1).

Proof. The tangent space of P at Q consists of all matrices of the form LQ+QL�,
with L ∈ R

n×n. Thus the solutions Q(t) and μ(t) of (12.38) exist for all time and
stay in P×R

n. Every positive definite matrix Q can be factored as Q= XX�, with a
factor X ∈ GL+(n,R) of positive determinant. Thus it suffices to prove reachability
for the lifted system on GL+(n,R)×R

n:

Ẋ(t) = (A+BK(t))X(t),

μ̇(t) = (A+BK(t))μ(t)+Bu(t).

This in turn is reachable if and only if the decoupled system

Ẋ(t) = (A+BK(t))X(t),

μ̇(t) = Aμ(t)+Bu(t)

is reachable. The second subsystem is linear and, thus, by assumption on (A,B),
is reachable on R

n in time T > 0. The first equation is bilinear. The reachability
of this system follows from a beautiful argument by Brockett (2012) that we now
sketch. Recall that a bilinear control system on a Lie group is reachable provided
the system is accessible and there exists a constant control such that the system is
weakly Poisson stable; see Lian, Wang and Fu (1994). Since (A,B) is reachable,
there exists a feedback matrix K such that L := A+BK has distinct eigenvalues that
are integer multiples of 2π

√−1. Thus there exists a (constant) control K such that
etL is periodic. This shows that Ẋ(t) = (A+BK(t))X(t) is weakly Poisson stable
for a suitable constant input. So it remains to prove the accessibility of the system.
To this end, we compute the system Lie algebra g. Thus g contains A together with
every square matrix whose image is contained in that of B. The Lie bracket of A and
BK is [A,BK] = ABK −BKA. Hence, g contains every matrix whose image space
is contained in that of AB. By iterating this argument, we see that g contains all
matrices whose image space is contained in the image space of (B,AB, . . . ,AnB).
By the reachability of (A,B), this implies that g contains all real n× n matrices.
Therefore, the Lie algebra rank condition shows the accessibility of the bilinear
system. �

The preceding proof shows that open-loop control enables one only to control the
mean value of a Gaussian state distribution. To control both the mean and variance of
a Gaussian distribution, one needs to apply both open-loop and closed-loop controls
in the bilinear affine form u(t,x) = K(t)x+ u(t). We conclude with the following
straightforward consequence of Theorem 12.26.
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Theorem 12.27. Assume that (A,B) is reachable. The transport system

∂ρ(t,x)
∂ t

=−tr (A+BK(t))ρ(t,x)− ((A+BK(t))x+Bu(t))� ∇ρ(t,x), (12.39)

with independent controls u(t) and K(t), leaves the manifold G of Gaussian
distributions invariant. Using the controlled flow (12.39), one can steer in finite time
T > 0 two Gaussian distributions gQ1,μ1 and gQ2,μ2 into each other. Thus (12.39) is
reachable on G .

The preceding result can be generalized in several directions. First, one might
consider replacing the set of positive definite matrices by the positive cone in a
Euclidean Jordan algebra. Instead of using state feedback A+BK, one could study
the effects of output feedback A+BKC. Finally, one might consider networks of
systems and try to establish controllability results for the mean and covariance of
state vectors in such interconnected systems. We leave these problems for future
research.

12.5 Exercises

1. Show that the discrete-time system xt+1(θ) = A(θ)xt(θ)+b(θ)ut , with

A(θ) =
(

θ 1
0 θ

)
, b(θ) =

(
0
1

)
,

is not ensemble reachable over P = [0,1].
2. Show that the discrete-time system xt+1(θ) = A(θ)xt(θ)+b(θ)ut , with

A(θ) =
(

0 1
0 θ

)
, b(θ) =

(
0
1

)
,

is ensemble reachable over P = [0,1].
3. Let P = [0,1]. Consider the infinite sequence of systems

Ak(θ) =
(

0 −θ 2 −1/k2

0 2θ

)
, bk(θ) =

(
1
0

)
.

a. Verify that Ak(θ) and bk(θ) are uniformly ensemble reachable for each finite
k, but the limiting system A∞(θ),b∞(θ)) is not uniformly ensemble reachable.

b. Prove that the set of uniformly ensemble reachable SISO systems is neither
open nor closed in the topology of uniform convergence.
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4. Let (A,b,c) ∈ R
n×n ×R

n ×R
1×n be reachable and observable, R > 0 fixed, and

assume that A−θ 2bc has distinct eigenvalues for θ ∈ P = [0,R]. Let x∗(θ) be a
continuous function on P. Prove that there exists T > 0 and a piecewise constant
input function u : [0,T ] −→ R such that the Fourier transform of the unique
solution ψ(t,z) ∈ R

n of the coupled system of PDEs

∂ψ
∂ t

(t,z) = (A+
∂ 2

∂ z2 bc)ψ(t,z)+bu(t)

√
2
π

sin(Rz)
z

, ψ(0,z) = 0,

satisfies

max
θ∈P

‖(Fψ)(T,θ)− x∗(θ)‖< ε .

5. Prove the following formula for the L2-distance of two Gaussian distributions:

F(Q1,Q2,μ1,μ2) :=
∫
Rn
(gQ1,μ1(x)−gQ2,μ2(x))

2dx =
1√

(4π)n detQ1
+

1√
(4π)n detQ2

− 2exp
(− 1

2 (μ1 −μ2)
�(Q1 +Q2)

−1(μ1 −μ2)
)

√
(2π)n det(Q1 +Q2)

.

Show that for fixed values of Q1 and μ1 the function (Q,μ) �→ F(Q1,Q,μ1,μ) is
strictly convex and assumes its minimum value at Q = Q1,μ = μ1.

12.6 Notes and References

Open-loop control issues for ensembles of systems have been studied in order
to design robust compensating pulse sequences in quantum control and NMR
spectroscopy; see, for example, Li and Khaneja (2006). The main motivation here
comes from the known difficulties of quantum mechanical observations, which
makes feedback strategies difficult to implement. Rigorous results for the ensemble
control of infinite-dimensional bilinear systems have been obtained by Beauchard,
Coron and Rouchon (2010). Open-loop control is also of interest for understanding
biological formation control tasks for flocks of systems; see, for example, Brockett
(2010). Perhaps the best control strategies are neither pure open-loop nor feedback
control, and a mixture of the two seems more promising. This point of view has been
stressed in a number of recent papers on minimum attention control, for example, by
Brockett (1997), Brockett (2008), and Brockett (2012). These general control issues
of how to best combine open- and closed-loop control strategies certainly deserve
further study.

A well-studied issue in controlling parameter-dependent systems is that of
robustness, where the goal is to find input functions that achieve a desired control
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objective, irrespective of parameter variations in the system. This can be done either
in closed-loop, using feedback transformations, or open-loop control strategies.
A classical robust feedback control problem is the so-called blending problem,
namely, the task of finding a dynamic output feedback controller that simultaneously
stabilizes a one-parameter family of scalar transfer functions; see, for example,
Khargonekar and Tannenbaum (1985); Tannenbaum (1980) for a solution to special
cases via Nevanlinna–Pick interpolation. To date, no general solution to the blending
problem for families of MIMO systems is known. Proceeding in a different
direction, we mention the pioneering work by Kharitonov on robust stability. In fact,
the paper by Kharitonov (1978) has inspired several researchers to find switching
controllers for the stabilization of polytopic families of linear systems; see, for
example, Ghosh (1985).

The approximation theorem of Mergelyan (1952) is a very natural generalization
of the Stone–Weierstrass theorem, but known proofs as in Gaier (1987) are not
constructive. Runge’s approximation theorem is a weaker version of Mergelyan’s
theorem, where the approximating polynomials get replaced by rational functions.
Error results for the polynomial approximations in Mergelyan’s theorem are
obtained by Saff and Totik (1989). A potentially interesting method for computing
input sequences for ensemble control is provided by the Faber polynomials (we
are grateful to Christian Lubich for suggesting this to us). Faber polynomials
p j(z), j ∈N, allow one to approximate analytic functions f (z) in a complex domain
K by a convergent series of the form c0 +∑∞

j=1 c j p j(z), where only the coefficients
c j depend on f (z). Such polynomials exist if the complement of K in the extended
complex plane is simply connected.

Corollary 12.4 characterizes ensemble reachability for a finite set of parameters.
The proof shows that this statement, i.e., the characterization of reachability for
the parallel connection of finitely many SISO systems, is equivalent to the Chinese
remainder theorem or to Lagrange interpolation. Thus corresponding reachability
results should follow for parallel connections of countably many SISO systems via
interpolation results for analytic functions such as the Mittag–Leffler theorem. We
refer to Helmke and Schönlein (2014) for a proof of Theorem 12.6. Condition (c)
in Theorem 12.6, stating that all eigenvalues of A(θ) are simple, cannot be removed
easily. Exercise 1 gives a counterexample. Proposition 12.12 and Exercises 1 and 3
are due to Scherlein (2014).

It has been shown that, by restricting the set of parameters in (12.1) to a finite
subset, a parametric family of systems is equivalent to the parallel connection of
linear systems. This can be generalized as follows. Consider a mixed differential
and integral Volterra equation of the form

∂
∂ t

x(t,θ) = A(θ)x(t,θ)+
∫

P
K(θ ,θ ′)x(t,θ ′)dθ ′+B(θ)u(t). (12.40)

Here we allow for rather general classes of kernel functions K(x,y). Note that if P
is a compact group and the integral defines a convolution operator with respect to
the Haar measure, then the class of spatially invariant systems studied by Bamieh,
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Paganini and Dahleh (2002) is obtained. Moreover, if one replaces the integral term
with a Riemann sum and restricts oneself to the finite subset of N sampling points
θi, then one obtains

∂
∂ t

x(t,θi) = A(θi)x(t,θi)+
N

∑
j=1

K(θi,θ j)x(t,θ j)+B(θi)u(t),

i.e., one obtains the general equations for a linear network of systems (9.5) studied
in Chapter 9. This shows that spatiotemporal systems of the form (12.40) are
the infinite-network counterparts of the finite system interconnections studied in
Chapter 9. For general existence and uniqueness results for integral equations of the
Volterra type we refer the reader to Väth (2000). We are not aware of systematic
studies of the reachability or observability properties of systems of the form 12.40.

Theorem 12.19 and generalizations to exact reachability are due to Curtain,
Iftime and Zwart (2009). The textbook by Curtain and Zwart (1995), Section 4.2,
provides simple sufficient conditions for approximate reachability in a Hilbert
space. These conditions require knowledge of a Riesz basis of eigenvectors and
therefore do not apply to multiplication operators, which have a continuous
spectrum. Multiplication operators on spaces of L2-functions are not compact;
the spectral approximation properties of such operators using finite-dimensional
operators therefore become a nontrivial issue. We refer to Morrison (1995) for a
nice presentation of results and examples in this direction.

The reachability properties of systems in Hardy spaces of analytic functions
were derived by Fuhrmann (1972) and depend on Beurling’s characterization of
shift-invariant subspaces. We refer the reader to Fuhrmann (2012) for a discussion
of SISO systems in a Hardy-space context that is close to the spirit of this book.
A characterization of cyclic vectors for the backward shift is due to Douglas,
Shapiro and Shields (1970). Composition operators on H2 provide interesting
examples of infinite-dimensional dynamical systems, and indeed of control systems.
Littlewood’s subordination principle, see, for example, Shapiro (1993), asserts that
every composition operator Cφ ( f ) = f ◦ φ by an analytic function φ : D −→ D,
with φ(0) = 0, takes the Hardy space H2 into itself. This implies a generalization
of the situation studied in Section 11.3 to infinite homogeneous networks, i.e., that
the network transfer function Ng(z) = N (h(z)) of a homogeneous network with
interconnection transfer function N ∈ H2 is always in H2 provided h(z) = 1/g(z)
is an inner function with h(0)= 0. A nontrivial control system on spaces of univalent
analytic functions is defined by Löwner’s equation on the unit disc D

∂w(t,z)
∂ t

=−e
√−1u(t) +w(t,z)

e
√−1u(t)−w(t,z)

w(t,z), w(0,z) = z.

Here the complex parameter z varies in the open unit disc. A generalization of this
system on suitable matrix balls and its reachability properties would be interesting
to study. For a study of the cyclicity and hyper cyclicity of composition operators,
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and further connections to universality in a function-theoretic context, we refer
the reader to Grosse-Erdmann (1999). It seems that the connection to questions of
reachability and observability has been overlooked within this circle of ideas.

A generalization of the Liouville equation (12.35) that has been frequently
studied is the Fokker–Planck equation

∂
∂ t

ρ(x, t) =
1
2

n

∑
i, j=1

∂ 2

∂xi∂x j
(aij(x, t,u)ρ(x, t))−

n

∑
i=1

∂
∂xi

(bi(x, t,u)ρ(x, t)) .

It is well known that the Fokker–Planck equation describes the evolution of prob-
ability density functions that are propagated by stochastic differential equations;
see, for example, Hazewinkel and Willems (1981) for a collection of articles on
the subject. Thus, similar to the Liouville equation, the Fokker–Planck equation
is a natural object of study in ensemble control. We refer the reader to Jordan,
Kinderlehrer and Otto (1998) for a demonstration of the connection with steepest
descent flows on spaces of probability measures with respect to the Wasserstein
metric and to Blaquiere (1992) and Poretta (2014) for reachability results on the
Fokker–Planck equation.
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