
Chapter 11
Synchronization and Consensus

Synchronization is one of the fundamental aspects of self-organization in networks
of systems. More generally, the emergence of macroscopic states is frequently
encountered in dynamical systems when one starts to study coupling effects. Well-
known examples include synchronization of oscillators, the emergence of consensus
states in models that describe the opinion dynamics of social networks or multiagent
systems, or flocking phenomena in biological networks such as swarms of birds or a
school of fish. In all these different network models the dynamics of the individual
states may “cluster” together or “synchronize” toward a common state that exhibits
the system with a unique characteristic identity. The analysis and control of such
synchronized states thus becomes an interesting new task for the design of networks.
The phenomenon of synchrony was apparently noticed first by Huygens, who was,
alongside his scientific activity, also a clock maker. Huygens noticed that two
pendulum clocks hanging on a wall tend to synchronize. With time, a multitude
of synchronization phenomena were observed in different fields, including, for
example, ciliary beating in biology, laser physics, and the firing of neurons as in
Parkinson disease. Although most realistic models are of course nonlinear, it appears
to be of fundamental interest to explore these issues first in the simplified context of
linear systems theory.

The synchronization of interconnected dynamical systems refers to the task of
studying and designing coupling laws that force the state vectors of the node systems
to converge to each other. In a classical model by Vicsek et. al. (1995), a simple
local averaging rule was introduced as a basis for studying the cooperative behavior
of animals. The closely related concept of consensus has emerged through studies
of multiagent systems and social and computer networks. Obviously, the process of
achieving a consensus is a fundamental step that leads to coherent social network
structures. A fundamental model for opinion dynamics is due to Krause (1997)
and exhibits interesting clustering and consensus effects. The Hegselmann–Krause
model is a simplification of the Vicsek model that makes it more attractive for
engineering implementations.
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554 11 Synchronization and Consensus

The coupling structure of a multiagent network is defined by a weighted
graph whose vertices correspond to the agent dynamics, while the weights of
the edges relate to the coupling strengths. Thus the underlying graph structure
plays an important role in investigating synchronization phenomena. In the systems
engineering literature, diffusive coupling models have been popular for studying
synchronization, but more general coupling topologies are of obvious interest,
too. Nondiffusive couplings arise, for instance, in systems biology; an example is
a model of gene-regulatory networks with a cyclic graph structure, as proposed
in Hori, Kim and Hara (2011). In the sequel, we will allow for more general
interconnection structures than diffusive coupling, with the consequence that the
interconnection matrix is no longer a Laplacian matrix. We present a fairly general
approach to problems of synchronization and clustering for networks of identical
linear systems. Since the mathematical problems of consensus are somewhat easier
to describe, we first present an overview of the main models used in this field. We
describe simple autonomous models for mean value consensus and then examine
synchronization, for both first-order and higher-order system dynamics. For the
latter system class, synchronization is often referred to as both partial state and
output synchronization.

11.1 Consensus and Clustering in Opinion Dynamics

Dynamical systems that achieve consensus or clustering may serve as models for
opinion dynamics in social networks. Consensus in a network occurs when the
participants agree upon their opinions, while clustering refers to the formation of
different opinion spectra. We describe simple models for social dynamics using
systems of differential or difference equations that exhibit cooperative dynamics.
Consider a finite number of agents that are allowed to communicate their opinion
on a certain topic. We identify the opinion of the i− th agent with a real variable
xi ∈ R, while communication among the agents is modeled by an interconnection
graph. The topology of the graph is determined by the pattern describing the extent
to which the opinions of each agent are influenced by the opinions of the other
agents. Thus the opinions of N agents in the network are described by the evolution
of a vector x ∈ R

N , while the communication pattern is specified by a real N ×N
matrix A(x). The simplest class of models for consensus that have been described in
the literature is of the form

ẋ = A(x)x, (11.1)

where the equilibrium states of (11.1) correspond to the consensus states with
equal components x1 = · · · = xN . The task is to specify realistic interconnection
matrices A(x) such that all solutions of (11.1) converge to a consensus state.
Thus consensus, or synchronization, is essentially a stabilization problem in a
subspace of desired states. Monotone maps x �→ A(x)x are one method of choice
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here. Another phenomenon of interest is clustering, i.e., the effect that only certain
classes of agents become asymptotically equal to each other. Further related topics
of interest are synchronization of higher-order systems, distributed computing,
formation control and Markov chains on a graph.

In this section we analyze a linear model for mean value consensus and then turn
to a brief description of nonlinear models for consensus. In the subsequent sections
we will then completely focus on the synchronization of identical node systems.

1. Linear Models for Consensus. We describe a simple linear model for
consensus that is already useful for a number of applications. Let Γ = (V,E)
denote a weighted digraph without loops on V = {1, . . . ,N} with adjacency matrix
A = (aij). Every vertex i is thought of as representing a dynamic agent xi ∈ R

n

described by a linear system

ẋi = αxi +βvi,

wi = γxi,
(11.2)

with input vi. A dynamical network with protocol v is then a feedback system

ẋi = αxi +βvi,

vi =
N

∑
j=1

aijw j.
(11.3)

Definition 11.1. System (11.3) solves the consensus problem for a function y =
k(x) if there exists an interconnection matrix A and an asymptotically stable
equilibrium point x∗ ∈ R

nN of

ẋ =
(

IN ⊗α +(IN ⊗β )A(IN ⊗ γ)
)

x

such that x∗1 = · · ·= x∗N = k(x(0)). If k is chosen as the mean value k(x) = 1
N ∑N

i=1 xi,
then this is called the solution to the mean value consensus (MVC) problem.

In its simplest possible form, the mean value consensus system for a system of
integrators (where α = 0 and β = γ = In)

ẋi = vi, i = 1, . . . ,N

is of the form

ẋi =
N

∑
j=1

Aij(x j − xi), i = 1, . . . ,N,
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where A ∈ R
N×N is the adjacency matrix of a digraph Γ . Let

L = diag(Ae)−A

denote the associated Laplacian matrix and e := (1, . . . ,1)� ∈ R
N . Thus, for

interconnection matrices of the form A = L⊗ In, one obtains the standard MVC
system as

ẋ =−(L⊗ In)x. (11.4)

For the general control system (11.2) and interconnection matrix A = L⊗K one
obtains the dynamic MVC system

ẋ =
(
IN ⊗α −L⊗βKγ

)
x.

This model will be studied in more detail in Section 11.2 on synchronization.
We begin with a discussion of (11.4). A directed weighted graph Γ with

adjacency matrix A and Laplacian L is called balanced if

N

∑
j=1

aij =
N

∑
j=1

aji

for all i. This is equivalent to e�L = 0. Note that Le = 0 is always satisfied for
Laplacian matrices. Obviously, an undirected graph is balanced. The following
characterization of systems that achieve mean value consensus is due to Olfati-
Saber, Fax and Murray (2004).

Theorem 11.2. Let Γ be a strongly connected weighted digraph and L the associ-
ated Laplacian. Then Le = 0, and there exists a unique row vector c ∈ R

1×N, with
cL = 0 and ce = 1. Moreover, the following properties are satisfied:

1. Every solution of (11.4) converges to a scalar multiple of e, i.e., for each initial
condition x(0),

lim
t→∞

x(t) = (ec⊗ In)x(0). (11.5)

In particular,

lim
t→∞

e−tL⊗In = ec⊗ In. (11.6)

2. System (11.4) achieves mean value consensus if and only if Γ is balanced, i.e., if
and only if e�L = 0. In that case,

lim
t→∞

e−tL⊗In =
1
N

ee�⊗ In.
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Proof. Since Γ is strongly connected, Theorem 8.36 shows that the Laplacian
matrix L has a simple eigenvalue λ1 = 0, with eigenvector e and N −1 eigenvalues
λ2, . . . ,λN with positive real part. In particular, the left kernel of L is one-
dimensional. After a similarity transformation S, one can assume that

−SLS−1 =

(
0 L12

0 L22

)
,

with L22 Hurwitz. Using the block-diagonal structure of SLS−1, the matrix exponen-
tial of SLS−1 is readily computed. This shows that

lim
t→∞

e−tSLS−1
=

(
1 −L12L−1

22
0 0

)
,

and the row vector λ� = (1,−L12L−1
22 ) satisfies λ�SLS−1 = 0 and λ�e1 = 1. Thus

c := λ�S satisfies cL = 0 and ce = cS−1e1 = λ�e1 = 1. Since the kernel of L is
one-dimensional, c is uniquely determined.

One concludes that limt→∞ e−tL exists and is of the form limt→∞ e−tL = ec. The
identity

e−tL⊗In = e−tL ⊗ In

then implies

lim
t→∞

e−tL⊗In = ec⊗ In.

This proves (11.6), which in turn implies (11.5). The stronger mean value consensus
property is satisfied if and only if

lim
t→∞

e−tL⊗Inx(0) =
1
N
(ee�⊗ In)x(0)

for all initial conditions x(0). By (11.6), this is equivalent to ec⊗ In = 1
N ee� ⊗ In,

i.e., to c = 1
N e�. This completes the proof. �

This result is easily extended as follows to graphs with time-varying intercon-
nections. We present here only one such extension. Let L denote a compact set of
real N ×N matrices such that every element L ∈ L has nonnegative nondiagonal
entries, satisfies Le = 0, e�L = 0, and is irreducible.

Theorem 11.3. Let L : [0,∞)−→L be piecewise continuous. The solutions x(t) ∈
R

nN of

ẋ(t) =−(L(t)⊗ In)x(t) (11.7)
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satisfy

lim
t→∞

x(t) =
1
N
(ee�⊗ In)x(0),

with error bounds

‖x(t)− 1
N
(ee�⊗ In)x(0)‖2 ≤ e−2tκ‖(InN − 1

N
ee�⊗ In)x(0)‖2 ≤ e−2tκ‖x(0)‖2,

where κ := minL∈L λ2(L+L�)> 0.

Proof. Since L is a compact set of irreducible Laplacians, 0 is a simple eigenvalue
of each matrix L ∈L . Moreover, by Theorem 8.36, the assumption e�L = 0 implies
that the symmetric matrix P= L+L� is positive semidefinite with simple eigenvalue
0. Let λ1(P) = 0 ≤ λ2(P)≤ ·· · ≤ λN(P) denote the eigenvalues of P. Thus λk(L+
L�) > 0 for all L ∈L and 2 ≤ k ≤ N. Since L is compact, κ exists and is strictly
positive. Since λ2(L+L�) is the smallest eigenvalue of the restriction of L+L� on
the invariant subspace (e⊗R

n)⊥, we see that

2δ�L⊗ Inδ = δ�
(
(L+L�)⊗ In

)
δ ≥ λ2(L+L�)‖δ‖2 ≥ κ‖δ‖2

for all δ ∈ (e⊗R
n)⊥. Then every solution x(t) of (11.7) satisfies ee�x(t) = ee�x(0)

since (ee�⊗ In)(L⊗ In) = 0. Thus

δ (t) := (Inn − 1
N

ee�⊗ In)x(t) = x(t)− 1
N
(ee�⊗ In)x(0)

is a solution of (11.7). This implies

dδ�δ
dt

= 2δ� dδ
dt

=−2δ�(L⊗ In)δ ≤−2κ‖δ‖2.

Therefore,

‖δ (t)‖ ≤ e−tκ‖δ (0)‖,

and the result follows. �
Similar results are valid in the discrete-time case when the Laplacian matrix L is

replaced by the normalized Laplacian matrix

F = D−1A.
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Here D = diag(Ae) and A denotes the adjacency matrix of a weighted graph. If A is
nonnegative, then the normalized Laplacian is a stochastic matrix. The following
result gives a simple sufficient condition for consensus, which can be generalized in
several directions (see Section 11.7, “Notes and References”).

Theorem 11.4. Let x(0) ∈ R
n and F be a primitive stochastic matrix. Then there

exists a real number x∗ such that the solution

x(t +1) = Fx(t)

satisfies

lim
t→∞

x(t) = x∗e.

In particular, this is satisfied for normalized Laplacians of connected graphs Γ with
at least one loop around a vertex.

Proof. The primitivity of F implies (Theorem 8.18) that limt→∞ Ft = ec for some
c ∈ R

1×n. This implies the result. �
2. Distributed Algorithm for Solving Linear Equations. We illustrate the pre-
ceding analysis by showing how consensus algorithms can be used to design
distributed methods for solving linear systems of equations. Distributed computing
is of course a vast topic, and we leave it to the reader to explore further applications
in this field.

Let us start with a classical problem from linear algebra, i.e., the computation
of intersection points of a finite number of affine linear subspaces Li = ai +Vi, i =
1, . . . ,N, of a d-dimensional Hilbert space H. We are interested in computing points
x∗ ∈ E in the intersection L1 ∩·· ·∩LN . For simplicity, let us assume that the vector
spaces Vi are in general position in the sense that the direct sum decomposition

V⊥
1 ⊕·· ·⊕V⊥

N =H

is satisfied. This implies both V1∩·· ·∩VN = {0} and ∑N
i=1 dimV⊥

i = d. In particular,
whenever L1, . . . ,LN intersect, they intersect at a unique point

L1 ∩·· ·∩LN = {x∗},

and our goal is to compute the unique intersection point x∗. Of course, there
are several methods available to do this, but our focus is on demonstrating how
consensus algorithms can help in computing x∗. To this end, we introduce the
selfadjoint projection operators Pi : H−→Vi ⊂H onto Vi, with kernel V⊥

i . Then the
direct sum P = diag(P1, . . . ,PN) : HN −→ H

N is a selfadjoint projection operator
onto V1 ⊕·· ·⊕VN ⊂H

N .
We next present graph-theoretic ideas relevant for distributed computing. Fix an

undirected and connected graph Γ whose set of vertices V = {1, . . . ,N} is labeled
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by the N linear subspaces Vi, together with a set of M edges E that define which
vertices can interact with each other during the course of running the algorithm. Let
A denotes the associated 0,1-adjacency matrix of the graph. For technical reasons
we assign to each vertex a single self-loop of the graph, so that the diagonal entries
of the adjacency matrix are all equal to 1. Let di ≥ 2 denote the degree of the ith
vertex, and set D := diag(d1, . . . ,dN). Let B = (bij) ∈ R

N×M denote the oriented
incidence matrix of the graph defined by (8.13). Since Γ is connected, the incidence
matrix B has full row rank N −1, and therefore the kernel of B has dimension M−
N +1. The normalized graph Laplacian is the stochastic matrix

L = D−1A= IN −D−1BB�.

We need the following lemma.

Lemma 11.5. Assume that V⊥
1 ⊕·· ·⊕V⊥

N =H. Then

KerP(B⊗ Id) = Ker(B⊗ Id).

Proof. We first prove

Ker(B�⊗ Id)∩ ImP = {0}. (11.8)

In fact, x ∈ Ker(B� ⊗ Id) implies that x = e ⊗ v for a suitable element v ∈ H.
Therefore, x ∈ Ker(B�⊗ Id)∩ ImP if and only if x = e⊗v, and there exist elements
ξ1, . . . ,ξN with v = P1ξ1 = · · ·= PNξN . Equivalently,

v ∈
N⋂

j=1

ImPj =
N⋂

j=1

Vj = {0}.

This proves (11.8). By taking orthogonal complements,

Im(B⊗ Id)+KerP =H
N .

Since rk(B⊗ Id) = d rkB = d(N − 1) and dimKerP = ∑N
i=1 dimV⊥

i = dimH = d,
one concludes that Im(B⊗ Id)∩KerP = {0}. This implies the result. �
Proposition 11.6. Assume that V⊥

1 ⊕ ·· · ⊕V⊥
N = H. Then each eigenvalue λ of

P(L ⊗ Id)P is real and satisfies −1 < λ < 1.

Proof. The normalized Laplacian D−1A has nonzero entries on the diagonal. Thus
Theorem 8.42 applies and implies that all eigenvalues of L ⊗ Id are real and are
contained in the interval (−1,1]. Applying a similarity transformation, we see

that the same property is true for the symmetric matrix D− 1
2 AD− 1

2 ⊗ Id . Since P

is a projection operator, the spectrum of P(D− 1
2 AD− 1

2 ⊗ Id)P is contained in the

convex hull of the spectrum of D− 1
2 AD− 1

2 ⊗ Id , i.e., it is contained in (−1,1]. Using
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D
1
2 P(L ⊗ Id)PD− 1

2 = P(D− 1
2 AD− 1

2 ⊗ Id)P, one concludes that P(L ⊗ Id)P has
all its eigenvalues in (−1,1]. It remains to show that 1 is not an eigenvalue of
P(L ⊗ Id)P. In fact, otherwise there exists v ∈ ImP with P(L ⊗ Id)v = v. Since
D−1A = I − D−1L = I − D−1BB�, this is equivalent to P(D−1BB� ⊗ Id)v = 0.
Since P and D⊗ Id commute, this is equivalent to P(BB� ⊗ Id)v = 0. Thus, using
Lemma 11.5, (BB� ⊗ Id)v = 0 or, equivalently, (B� ⊗ Id)v = 0. This shows that
v ∈ Ker(B�⊗ Id)∩ ImP. By (11.8), thus v = 0, and we are done. �

After these preparatory remarks, we are now ready to introduce and study the
distributed algorithm for subspace intersections. The key idea is very simple to
describe. Suppose one has computed for each t ∈ N and i = 1, . . . ,N an element
xi(t) ∈ Li. Then for each ui(t) ∈H the linear control system

xi(t +1) = xi(t)+Piui(t)

evolves in the affine subspace Li. In fact, the right-hand side describes all elements
of Li. Choose the input vector ui(t) such that the difference

‖xi(t +1)− 1
di

∑
j∈Ni

x j(t)‖2

is minimized. By a straightforward computation, this leads to the recursion

xi(t +1) = (Id −Pi)xi(t)+Pi

(
1
di

∑
j∈Ni

x j(t)

)
, xi(0) ∈ Li, (11.9)

which is clearly in distributed form. Using the vector notation x(t) = col(x1(t),
. . . ,xN(t)), this is equivalent to

x(t +1) = (IdN −P)x(t)+P(L ⊗ Id)x(t), x(0) ∈ L1 ×·· ·×LN .

Theorem 11.7. Assume that V⊥
1 ⊕ ·· · ⊕V⊥

N = H. Then the distributed algorithm
(11.9) converges exponentially fast from every initial point x(0) ∈ L1 ×·· ·×LN to
e⊗ x∗, where x∗ ∈H denotes the unique intersection point of L1 ∩·· ·∩LN.

Proof. Let z(t) := x(t)− e⊗ x∗. Then z(t) satisfies the recursion

z(t +1) = P(L ⊗ Id)z(t).

By Lemma 11.6, the eigenvalues of P(L ⊗ Id) are in the open unit interval (−1,1).
Thus z(t) converges exponentially fast to 0. The result follows. �

Of course, it is trivial to apply the preceding ideas to solving linear equations
Ax = b. Let A ∈ R

n×n, with nonzero row vectors A1, . . . ,An ∈ R
1×n and b =

col(b1, . . . ,bn) ∈ R
n. Defining the affine hyperplanes
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Li = {xi ∈ R
n | Aixi = bi}

with subspaces Vi = KerAi we see that the solutions of Ax = b are just the
intersection points in L1 ∩ ·· · ∩ Ln. Moreover, A is invertible if and only if V⊥

1 ⊕
·· ·⊕V⊥

n = R
n. The projection operators are

Pi = I − A�
i Ai

‖Ai‖2 .

The next consequence of Theorem 11.7 is obvious.

Theorem 11.8. Let A be invertible. Then the distributed algorithm

xi(t +1) =
A�

i bi

‖Ai‖2 +(I − A�
i Ai

‖Ai‖2 )

(
1
di

∑
j∈Ni

x j(t)

)
, Aixi(0) = bi,

converges from each solution of Aixi(0) = bi, i = 1, . . . ,n, exponentially fast to
col(A−1b, . . . ,A−1b).

3. Nonlinear Models for Consensus. Of course, the preceding, rather brief, discus-
sion of linear consensus models can be extended in several directions, including to a
study of the effects of dynamic or stochastic interconnections, allowing for nonlinear
models and analyzing robustness issues. Here we focus on nonlinear models. We
begin with a rather straightforward extension of Theorem 11.3 to nonlinear coupling
models of the form

ẋ =−(L(x)⊗ In)x. (11.10)

Of course, discrete-time models can be considered as well. Here x �→ L(x) denotes
a smooth function of Laplacian N ×N− matrices

L(x) = D(x)−A(x),

where D(x) = diagA(x)e. To define A(x), we introduce an influence function as a
smooth strictly positive function χ : R −→ [0,∞) that is monotonically decreasing
on [0,∞). The function χ is regarded as a measure of how strongly mutual agents
influence each other. Thus, in applications to opinion dynamics, two agents, xi and
x j, are thought of as influencing each other’s opinions if the value of the influence
function χ(xi−x j) is large, and small otherwise. Possible choices for such influence
functions are, for example,

(a) Constant functions;
(b) The indicator function χr = χ[−r,r] on a compact interval [−r,r];

(c) The potential χ(x) = k(1+ x2)−β for β > 0;
(d) The Gaussian distribution χ(x) = e−x2

.
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Let M = (mij) denote a nonnegative matrix, for example, the weighted adjacency
matrix of a graph. Thus M defines the relevant interconnections that are allowed
between the various agents. Consider the adjacency matrix of a time-varying
neighborhood graph defined as

A(x) = (mijχ(‖xi − x j‖) ∈ R
N×N .

Note that A(x) is symmetric for all x whenever the scaling matrix M is symmetric.

Theorem 11.9. Assume that M is irreducible, symmetric, and nonnegative. For
each initial condition x(0) the unique solution x(t) of (11.10) exists for all t ≥ 0.
Moreover, ‖xi(t)− x j(t)‖ converges to 0 as t → ∞.

Proof. Let Δ = e⊗R
n denote the diagonal in R

nN = R
n ⊗·· ·⊗R

n, and let

φ(x) = min
x∈Δ⊥

x�(L(x)⊗ In)x
‖x‖2

denote the Fiedler number, i.e., φ(x) = nλ2(x), where λ2(x) denotes the second
smallest eigenvalue of L(x). Thus

x�(L(x)⊗ In)x =
1
2

N

∑
i, j=1

aij‖xi − x j‖2 ≥ φ(x)‖x‖2.

For each solution of (11.10),

d
dt
‖x‖2 =−2x�(L(x)⊗ In)x ≤−φ(x)‖x‖2 ≤ 0.

Thus the norm ‖x(t)‖ decreases monotonically, and therefore x(t) is positively
bounded. This shows the existence of solutions for all t ≥ 0. To proceed with the
analysis, we need a lower bound on the Fiedler number. This is achieved as follows.
Let LM = DM −M denote the associated Laplacian of M. Since M is assumed to
be irreducible, the Fiedler number μ of LM is strictly positive. Moreover, by the
monotonicity of χ ,

χ(‖xi − x j‖2)≥ χ(
N

∑
i, j=1

‖xi − x j‖2) = χ((2N −1)‖x‖2).

By the symmetry of L, we have that (e�⊗x�)(L⊗In) = 0. Therefore, the orthogonal
complement Δ⊥ is invariant under the flow of (11.10). Thus, for all 0 �= x ∈ Δ⊥,
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d
dt
‖x‖2 =−

N

∑
i, j=1

aij‖xi − x j‖2 =−
N

∑
i, j=1

mijχ(‖xi − x j‖2)‖xi − x j‖2

≤−χ((2N −1)‖x‖2)
N

∑
i, j=1

mij‖xi − x j‖2

=−2x�(LM ⊗ In) xχ((2N −1)‖x‖2)

≤−2μχ((2N −1)‖x‖2)‖x‖2 < 0.

This shows that each solution x(t) of (11.10) satisfies limt→∞ dist(x(t),Δ) = 0. The
result follows. �

The Vicsek model is one of the first nonlinear models for swarm formation
in a multiagent dynamical system. The system studied by Vicsek et. al. (1995)
is described as follows. Consider N agents x1, . . . ,xN ∈ R

2 in Euclidean space,
modeled as simple integrators

ẋi = ui, i = 1, . . .N.

For positive real numbers r > 0, define as follows a time-varying undirected
neighborhood graph Γ (t) = (V,E(t)), with the set of vertices V = {1, . . . ,N}.
The edges are characterized by the property that {i, j} ∈ E(t) if and only if
‖xi(t)− x j(t)‖ ≤ r. Let Ni(t) = { j | ‖xi(t)− x j(t)‖ ≤ r} denote the set of ni(t)
neighbors of agent i at time t. The agents are allowed to move with constant velocity
but varying directions in the plane. The goal is to create a distributed feedback law
that enables agents to synchronize the directions in which they move.

For discrete-time systems, a simple idea about how to achieve this is that each
agent averages over the directions of all other agents within his/her neighborhood
region. Following Jadbabaie, Lin and Morse (2003), this can be formalized in the
following simple mean value consensus model. Fix a desired speed as v > 0 and

θi(t +1) =
1

ni(t)
∑

j∈Ni(t)

θ j(t)

xi(t +1) = xi(t)+ ve
√−1θi(t+1).

(11.11)

Here 0 ≤ θi < 2π denotes the polar angle of xi. This can be conveniently rewritten
as follows. Let θ = (θ1, . . . ,θN)

� ∈ [0,2π]N , and let

χr(t) =

{
1 0 ≤ t ≤ r,

0 t > r

denote the characteristic function. The graph adjacency matrix of Γ (t) is
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A(t) := (χr(‖xi(t)− x j(t)‖).

Let D(t) = diag(A(t)e), and let

F(t) = D(t)−1A(t)

denote the normalized Laplacian. F(t) is also called a flocking matrix. The discrete-
time Vicsek model is then

θ(t +1) = F(t)θ(t). (11.12)

Consensus in the Vicsek system occurs, provided for each initial condition θ(0)
there exists a constant θ∗ ∈ [0,2π] such that the solution of (11.12) satisfies

lim
t→∞

θi(t) = θ∗

for i = 1, . . . ,N. Sufficient conditions for consensus depend on certain connectivity
properties of the time-varying graphs Γ (t), such as, for example, that the flocking
matrix is primitive for all t. Note that the flocking matrix F(t) is a nonnegative
matrix that is congruent to the adjacency matrix A(t). Therefore, F(t) is irreducible
if and only if A(t) is irreducible, or, equivalently, if and only if the graph Γ (t) is
strongly connected. Moreover, F(t)e= e. Therefore, F(t) is a stochastic matrix with
positive entries on the diagonal. Thus, Theorem 8.23 implies that F(t) is primitive
if and only if Γ (t) is strongly connected. Note further that F(t) being a stochastic
matrix for all t implies that the solutions θ(t) of the Vicsek model leave [0,2π]N
invariant.

Although the results on linear consensus provide explicit sufficient conditions
for a consensus of general time-varying systems (11.12), they cannot be directly
applied to the Vicsek model (11.11). In fact, in the Vicsek model (11.11) the entries
of the flocking matrix F(t) depend on the relative distances ‖xi(t)− x j(t)‖ of the
agents and thus depend in turn on θ(t). This shows that connectivity assumptions on
the time-varying neighborhood graph, such as, for example, the primitivity of F(t),
cannot be assumed a priori. What is needed are assumptions on, for example, the
initial positions x1(0), . . . ,xN(0) of the agents that guarantee that F(t) will remain
primitive for all t. This is difficult to verify for the Vicsek model because of the hard
constraints defined by the characteristic function χr(t).

A simplification of the Vicsek model is due to Krause (1997). While the Vicsek
swarm model is a second-order model that describes the evolution of points in the
plane, the Hegselmann–Krause model Hegselmann and Krause (2002) works in
the real line. Its main motivation is drawn from understanding the dynamics of social
networks, in particular the formation and development of opinions in such networks.
We regard an opinion of an agent as a real variable x. Thus the opinion dynamics in a
network of N agents is described by the evolution of N real variables x1, . . . ,xN ∈R.
In its simplest form, the Hegselmann–Krause model is
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xi(t +1) =
∑ j:|xi(t)−x j(t)|≤r x j(t)

|{ j : |xi(t)− x j(t)| ≤ r}| , i = 1, . . . ,N. (11.13)

Here agents i and j are thought of as influencing each other if and only if the distance
between their opinions is small, i.e., |xi − x j| ≤ r. This defines a state-dependent
weighted adjacency matrix A(x) = (aij(x)), with

aij(x) =

{
1 if |xi − x j| ≤ r

0 else.

More generally, using the notion of influence functions, one can define the adjacency
matrix of a time-varying neighborhood graph of opinions as

A(x) = (χ(‖xi − x j‖) ∈ R
N×N

and the flocking matrix as the normalized Laplacian

F(x) = D(x)−1A(x), D(x) = diag(A(x)e).

Thus the ij-entry of A(x) is small whenever agents xi and x j are not influencing each
other’s opinions. The generalized Hegselmann–Krause model for opinion dynamics
is then

x(t +1) = F(x(t))x(t), t ≥ 0.

Thus, while the Hegselmann–Krause model (11.13) looks similar to the Vicsek
model (11.11), the dynamics of (11.13) are simpler than that of (11.11). Without
going into details, we mention that there exists an elegant convergence theory for
the Krause model that is based on the theory of monotone operators.

11.2 Synchronization of Linear Networks

Using the theory of interconnected systems developed in Chapter 9, we now proceed
to a general synchronization analysis of networks of linear systems. We consider
networks of N identical interconnected linear systems, where the dynamics of each
node i = 1,2, . . . ,N are described in state-space form as

ẋi(t) = αxi(t)+βvi(t),

wi(t) = γxi(t).
(11.14)
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Here the node system α ∈ R
n×n, β ∈ R

n×m, γ ∈ R
p×n is assumed to be reachable

and observable. To define a network of such identical linear systems, we fix a state
interconnection structure, defined by a matrix A ∈ R

mN×pN , and input/output
interconnection matrices B = (B�

1 , . . . ,B
�
N )

� ∈ R
mN×q and C = (C1, . . . ,CN) ∈

R
l×pN , with Bi ∈ R

m×q and Ci ∈ R
l×p, respectively. In the sequel, we will consider

A as an N ×N block matrix A = (Aij), with blocks Aij ∈ R
m×p. In particular, A is a

square matrix if and only if p = m. Let u = col(u1, . . . ,uq) ∈R
q denote the external

control input applied to the whole network. The input to node i is then

vi(t) =
N

∑
j=1

Aijw j(t)+Biu(t). (11.15)

Like the external input to the network, the output of the network is a linear combi-
nation of the individual node outputs wi as y(t) =Cw(t), with w = col(w1, . . . ,wN)
and y ∈ R

l . Let x = col(x1, . . . ,xN) ∈ R
nN denote the global state of the network.

A directed weighted state interconnection graph Γ = (V,E) is associated with
the state interconnection structure of the system as follows. The set of vertices V =
{1, . . . ,N} corresponds to node systems (11.14). An edge (i, j) ∈ E from system i
to system j is defined if and only if Aij �= 0. We emphasize that the weights Aij

of the graph are matrices, unless p = m = 1. Similarly, graphs are defined for the
input/output interconnection, respectively. So-called diffusive coupling refers to the
special situation where p = m = 1 and A is the Laplacian matrix of an undirected
weighted graph. Thus aij < 0 if and only if nodes i �= j are connected. Otherwise, for
i �= j we define aij = 0. The diagonal elements of the Laplacian matrix A are defined
by aii =−∑ j �=i aij. Then the interconnection law (11.15), with Bi = 0 and diffusive
coupling, becomes

vi(t) = ∑
j �=i

aij(w j(t)−wi(t)).

In the sequel, unless stated otherwise, we will not make restrictive assumptions on
the structure of A. In particular, we will not assume that A is a Laplacian matrix or
assume that the off-diagonal entries have a specific sign.

Using the interconnection matrices A,B,C and node dynamics α,β ,γ , the
resulting linear network has the form

ẋ(t) =A x(t)+B u(t),

y(t) = C x(t),
(11.16)

where

A = IN ⊗α +(IN ⊗β )A(IN ⊗ γ) ∈ R
nN×nN B = (IN ⊗β )B ∈ R

nN×q,

C =C(IN ⊗ γ) ∈ R
l×nN .
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Stated in terms of transfer functions, one obtains the node transfer function

G(z) = γ(zIn −α)−1β

and associated left and right coprime factorizations

G(z) = D�(z)
−1N�(z) = Nr(z)Dr(z)

−1 =V (z)T (z)−1U(z).

Note that in this special case of a homogeneous network, our notation differs slightly
from the preceding one. The network transfer function is

NG(z) = C (zInN −A )−1B

and

NG(z) =C
(

IN ⊗D�(z)− (IN ⊗N�(z))A
)−1

(IN ⊗N�(z))B

=C(IN ⊗V (z))
(

IN ⊗T (z)− (IN ⊗U(z))A(IN ⊗V (z))
)−1

(IN ⊗U(z))B.

In principle, there exist two different approaches to the design of such networks.
The first one, on which we will mainly focus in the sequel, is to consider the
interconnection terms A,B,C as free design parameters. A natural question in this
direction then concerns the design of networks, i.e., how one can change the system
dynamics of the network (11.16) by a suitable choice of the coupling parameters
A,B,C. This is closely related to feedback control problems, such as stabilization or
self-organization. A second approach would consist in assuming the interconnection
structure to be fixed and designing local controllers for the node system to change
the dynamics of the network.

To treat synchronization issues more broadly, we recall some basic terminology
from geometric control theory. Consider an invariant subspace V ⊂X of a linear
operator A : X −→ X . Then there are two induced linear maps, the restriction
operator A|V : V −→ V and the corestriction A|X /V : X /V −→ X /V . The
invariant subspace V is called outer stable if all eigenvalues of the corestriction
A|X /V have negative real part. Consider a linear system with m inputs and p outputs,

ẋ(t) =A x(t)+B u(t),

y(t) = C x(t),

on an n-dimensional state space X � R
n. A linear subspace V ⊂ X is called

controlled invariant, or (A ,B)− invariant, if

AV ⊂ V + Im B.
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Equivalently, V is controlled invariant if and only if there exists a state feedback
matrix F ∈ R

m×n, with

(A +BF)V ⊂ V .

V is called an outer stabilizable controlled invariant subspace if V is an outer sta-
ble invariant subspace for A +BF . Similarly, V is called conditioned invariant,
or (C ,A )− invariant, if

A (V ∩Ker C )⊂ V

or, equivalently, if there exists an output injection transformation J ∈ R
n×p, with

(A + JC )V ⊂ V .

If V is outer stable for A + JC , then V is called an outer detectable conditioned
invariant subspace. A linear subspace V is called (A ,B,C ) invariant if it is
simultaneously controlled invariant and conditioned invariant.

The term synchronization is usually linked to a concept of stability requiring
that the state trajectories of the coupled node systems converge asymptotically to
each other. Thus, for the interconnected system (11.16) with input u = 0, we require

lim
t→∞

‖xi(t)− x j(t)‖= 0 (11.17)

for all i, j = 1, . . . ,N. Here ‖ · ‖ denotes the Euclidean norm on R
n. Let e =

(1, . . . ,1)� ∈ R
N , and let

Δn = e⊗R
n = {col(ξ , . . . ,ξ ) | ξ ∈ R

n} ⊂ R
nN

be the linear subspace spanned by the column vectors of the matrix e⊗ In. Thus Δn

defines the diagonal in the N-fold direct sum space R
n ⊕ . . .⊕R

n. We refer to Δn as
the synchronization subspace. Let

dist(x,Δ) = min
v∈Δ

‖x− v‖

denote the distance of a point x∈R
nN to Δn. Then, for the global state of the network

x(t), the convergence property (11.17) is equivalent to

lim
t→∞

dist(x(t),Δ) = 0.

For our purposes this property is a bit too weak because it does not imply an
invariance of Δ under the flow. We therefore give the following stricter definition.
The spectrum of a matrix M, that is, the set of eigenvalues, is denoted by σ(M). The
set C− = {z ∈ C | Re(z) < 0} denotes the left half-plane in the field of complex
numbers.
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Definition 11.10. The state interconnection matrix A synchronizes (11.16), or
(11.14), is synchronizable by A provided the following conditions are satisfied:

(i) Synchronization Preservation: The subspace Δ = e⊗R
n is invariant under

A = IN ⊗α +(IN ⊗β )A(IN ⊗ γ).
(ii) Outer Stability: For all initial values x(0) ∈ R

nN and input u(t) = 0, the
solutions of (11.16) satisfy

lim
t→∞

‖xi(t)− x j(t)‖= 0 for all i, j = 1, . . . ,N.

Similarly, system (11.14) is called synchronizable by state feedback, or output
injection, provided conditions (i) and (ii) are true for γ = In and A ∈ R

nN×pN or
β = In and A ∈R

mN×nN , respectively. In either case, the restriction of IN ⊗α+(IN ⊗
β )A(IN ⊗ γ) on the invariant subspace Δn is called the synchronization dynamics.

Obviously, the attractivity condition (ii) for synchronization is equivalent to the
condition that the corestriction A |

RnN/Δ is Hurwitz. Thus one obtains the following
proposition.

Proposition 11.11. The state interconnection matrix A synchronizes (11.16) if and
only if Δn is an outer stable invariant subspace for A = IN ⊗α+(IN ⊗β )A(IN ⊗γ).

Note that A is, in output feedback form,

A = IN ⊗α +(IN ⊗β )A(IN ⊗ γ) (11.18)

for the decoupled system (IN ⊗α, IN ⊗β , IN ⊗γ). Moreover, for γ = In, (11.18) is in
state feedback form, while for β = In one obtains output injection transformations.
Thus, in view of Exercise 1, the synchronizability of (11.14) implies that Δ is
both an outer detectable conditioned invariant and outer stabilizable controlled
invariant subspace of the decoupled system (IN ⊗α, IN ⊗β , IN ⊗ γ). However, this
reformulation in terms of geometric control theory does not take into consideration
the underlying graph structure that defines the network. The problem is that no char-
acterization of conditioned invariant subspaces is known such that the associated
output injection transformations have a prescribed pattern of unconstrained entries
and zero entries.

Definition 11.10 imposes no restrictions on the synchronization dynamics. In
particular, it is very well possible and allowable that the synchronization dynamics
are asymptotically stable, which sounds counterintuitive. In many studies of the
synchronization phenomena, therefore, additional assumptions, such as marginal
stability of the synchronization dynamics, are imposed. In the sequel we will not
require such additional assumptions because they are often easily handled in a
second design step.

The outer stability condition can be replaced by the equivalent condition that
there exists a solution trajectory of the form e⊗ξ (t) ∈ Δ of (11.16) such that
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lim
t→∞

‖xi(t)−ξ (t)‖= 0 for all i = 1, . . . ,N.

The existence of ξ (t) is easily established; see, for example, the proof of Theo-
rem 11.13.

We now aim at characterizing networks that are synchronizable. For simplicity,
we focus on a special class of interconnection matrices that have been treated mainly
in the literature on synchronization and consensus.

Definition 11.12. A state interconnection matrix A is called decomposable if there
exist real matrices L ∈ R

N×N ,K ∈ R
m×p, with

A = L⊗K.

The matrix L then carries the main information about the underlying graph
structure of the network, while K presents a uniform connection structure between
the individual inputs and outputs of the nodes.

Theorem 11.13. Assume that (α,β ,γ) ∈ R
n×n ×R

n×m ×R
p×n satisfies rk β =

m, rk γ = p. Let e = (1, . . . ,1)� ∈R
N. Then (11.16) is synchronized by A = L⊗K if

and only if the following properties are satisfied:

1. Le = λe for some λ ∈ R. Either λ is a simple eigenvalue of L or α +λβKγ is
Hurwitz.

2. α +μβKγ is Hurwitz for all other eigenvalues μ �= λ of L.

Proof. We first prove the sufficiency part. Let SLS−1 = J be in Jordan canonical
form, with eigenvalues λ1, . . . ,λn (counted with multiplicities). Then

(S⊗ I)A (S−1 ⊗ I) = IN ⊗α + J⊗βKγ .

Thus, without loss of generality, one can assume that L is in Jordan canonical form
with a block upper triangular matrix

IN ⊗α + J⊗βKγ =

⎛
⎜⎜⎜⎜⎝

α +λ1βKγ ∗ . . . ∗
0 α +λ2βKγ ∗ ...
...

. . . ∗
0 . . . 0 α +λNβKγ

⎞
⎟⎟⎟⎟⎠
.

Without loss of generality, assume that λ = λ1. Clearly, e is an eigenvector of L if
and only LRe =Re. Equivalently, for all v ∈R

n, we have that A (e⊗v) = (IN ⊗α +
L⊗βKγ)(e⊗ v) = e⊗ (αv+λβKγv) ∈ Δ , i.e., A Δ ⊂ Δ . Thus e is an eigenvector
of L if and only if Δ is A -invariant. If α +λβKγ is Hurwitz, then, by condition 2,
all block matrices α + λiβKγ are Hurwitz. Thus A is Hurwitz. Moreover, Δ is
A -invariant. Thus A = L⊗K synchronizes. If λ = λ1 is a simple eigenvalue of L,
then (S−1 ⊗ I)Δ coincides with the subspace spanned by the first n basis vectors



572 11 Synchronization and Consensus

for the matrix α +λβKγ . By condition 2, all solutions of the transformed system
(IN ⊗α + J⊗βKγ) converge to (S−1 ⊗ I)Δ . This again proves synchronization.

For the converse direction, note that the A -invariance of Δ implies that e is an
eigenvector of L. Assume that λ is not a simple eigenvalue, and α +λβKγ is not
Hurwitz. For simplicity assume, for example, that L contains a Jordan block of the
form

(
λ 1
0 λ

)
.

The other cases are treated similarly. Then I ⊗α + J ⊗βKγ is upper triangular and
contains a diagonal block of the form

(
α +λβKγ βKγ

0 α +λβKγ

)
.

But the system

ẋ1 = (α +λβKγ)x1 +βKγx2,

ẋ2 = (α +λβKγ)x2

is not synchronizing, as can be seen by choosing x2 = 0 and x1 in the unstable
eigenspace of α + λβKγ . This proves the first condition. The second condition
follows by similar reasoning as above. �

Theorem 11.13 shows that the synchronization task for an interconnection matrix
L⊗K is equivalent to a robust output feedback stabilization task. Such problems are
in general hard to solve. In the next section, we derive a sufficient condition in the
SISO case. The problem becomes simpler if we restrict ourselves to state feedback
transformations, i.e., for γ = In and A = L⊗K, with K ∈ R

m×n. In that case, it is
possible to solve the synchronization task by a simple constructive procedure based
on algebraic Riccati equations. This is well known if the network is defined by a
weighted Laplacian; see, for instance, Tuna (2009), and is still a viable approach for
more general interconnection structures. The next result is a simple improvement of
standard linear regulator theory.

Lemma 11.14. Let (α,β ) be stabilizable and P = P� > 0,P ∈R
n×n be the unique

symmetric and positive definite solution of the algebraic Riccati equation

α�P+Pα −Pββ�P+ In = 0. (11.19)

Then for all λ ∈ C, with Re(λ )≥ 1
2 , one obtains

σ(α −λββ�P)⊂ C− .
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Proof. Since (α,β ,γ = In) is stabilizable and detectable, there exists a unique
symmetric positive definite solution P of the algebraic Riccati equation (11.19).
Thus, for complex numbers λ , one obtains

P(α −λββ�P)+(α�− λ̄Pββ�)P

= Pα +α�P−2Re(λ )Pββ�P

=−In +(1−2Re(λ ))Pββ�P.

Since by assumption 1 − 2Re(λ ) ≤ 0, the matrix on the right-hand side of the
equality is negative definite. The assertion then follows from Theorem 5.44 provided
the pair

(F,G) :=
(

α�− λ̄Pββ�, In +(2Re(λ )−1)Pββ�P
)

is reachable. But this is obvious, because G = In + (2Re(λ ) − 1)Pββ�P is
invertible. The result follows. �
Theorem 11.15. Assume that (α,β ) is stabilizable and γ := In. Let P = P� be the
unique positive definite symmetric solution of the algebraic Riccati equation

α�P+Pα −Pββ�P+ In = 0.

Let L ∈ R
N×N be a matrix with Le = λe and simple eigenvalue λ . Assume that

all other eigenvalues μ �= λ of L satisfy Re(μ) > 0 [or satisfy Re(μ) < 0 for all
eigenvalues μ �= λ ]. Choose τ ∈R such that for all eigenvalues μ �= λ the inequality
τ Re(μ)≥ 1

2 is fulfilled, and set K := τβ�P ∈R
m×n. Then the state interconnection

matrix A = L⊗K synchronizes the network (11.16).

Proof. Re(τμ)≥ 1
2 , and thus, by Lemma 11.14, we obtain

σ(α −μβK) = σ(α −μτββ�P)⊆ C− .

The result follows from Theorem 11.13. �
The preceding result leads to an explicit sufficient condition for synchronization.

Corollary 11.16. Assume that (α,β ) is stabilizable and γ := In. Let P = P� be the
unique positive definite symmetric solution of the algebraic Riccati equation

α�P+Pα −Pββ�P+ In = 0.

Let L be the graph Laplacian of a weighted strongly connected digraph Γ , and let
λ2 denote the eigenvalue of L with smallest positive real part. Then A = τL⊗β�P
synchronizes (11.16) for
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τ ≥ 1
2Re λ2

> 0.

Proof. By Theorem 8.36, λ1 = 1 is simple and all other eigenvalues λi �= 1 have
positive real part. Thus the result follows from Theorem 11.15. �

Stronger results can be obtained for restricted classes of node transfer functions.
Recall that a square m×m strictly proper rational transfer function G(z) = γ(zIn −
α)−1β is positive real if G has only poles in the closed left half-plane and

G(z)+G(z)� � 0 (11.20)

is positive semidefinite for all complex numbers z, with Re z > 0. Let (α,β ,γ)
be reachable and observable. The Positive Real Lemma then asserts that G(z) is
positive real if and only if there exists a positive definite symmetric matrix P such
that

−Pα −α�P � 0,

γ = β�P.
(11.21)

Moreover, G(z) is strictly positive real, i.e., (11.20) is valid for all z, with Re z ≥ 0,
if and only if (11.21) is satisfied with −Pα −α�P � 0 being replaced by −Pα −
α�P � 0.

The following lemma is proven next.

Lemma 11.17. Assume that (α,β ,γ) is reachable and observable, with m= p such
that G(z) = γ(zIn −α)−1β is positive real. Then for all complex numbers λ with
Re λ > 0, the spectrum of α −λβγ satisfies

σ(α −λβγ)⊂ C−.

Proof. By the Positive Real Lemma, a positive definite symmetric matrix P exists,
with

−(α −λβγ)∗P−P(α −λβγ) =−α�P−Pα +λγ�β�P+λPβγ

=−α�P−Pα +2Reλγ�γ

� 2Reλγ�γ .

The pair (α −λβγ ,γ) is observable. Thus every complex eigenvector v of α −λβγ
with eigenvalue w satisfies γv �= 0 and

−2Re(w)v∗Pv ≥ 2Re λ‖γv‖2 > 0. �

This leads to the following simple sufficient condition for synchronization.
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Theorem 11.18. Let (α,β ,γ) be reachable and observable, with m = p such that
G(z) = γ(zIn −α)−1β is positive real. Let L be the graph Laplacian of a weighted
strongly connected digraph Γ . Then the state interconnection matrix A = L⊗ Im

synchronizes the network (11.16).

Proof. The eigenvalues of L are λ1 = 0,λ2, . . . ,λN , with 0<Re(λ2)≤ . . .≤Re(λN).
Applying Lemma 11.17 one concludes that the eigenvalues of α − λiβγ have
negative real part for i = 2, . . . ,N. Thus the result follows from Theorem 11.13. �

11.3 Synchronization of Homogeneous Networks

In this section, we consider networks of linear systems that are SISO, that is, the
node systems (11.14) are defined by reachable and observable systems α ∈ R

n×n,
β ∈ R

n, and γ ∈ R
1×n. Let g(z) := γ(zIn −α)−1β denote the scalar strictly proper

transfer function of the node system. Let

h(z) =
1

g(z)

be the reciprocal of the transfer function. We allow for arbitrary multivariable
interconnection matrices (A,B,C) ∈ R

N×N ×R
N×m ×R

p×N , with interconnection
transfer function N (z) =C(zIN −A)−1B. Thus the network transfer function is

Ng(z) =C(h(z)IN −A)−1B,

i.e., can be represented as the composition

Ng(z) =N (h(z))

of the interconnection transfer function N (z) with h(z). It is shown in Theorem 9.15
that a homogeneous network (A ,B,C ) is reachable and observable if and only if
(A,B,C) is reachable and observable. In the sequel we will always assume this. We
next prove a simple frequency-domain characterization of the synchronizability of
SISO node systems.

Theorem 11.19. Assume that A satisfies Ae= λe, with λ a simple eigenvalue. Then
A synchronizes the homogeneous network (11.16) if and only if

h(C+)∩σ(A)\{λ}= /0. (11.22)

Proof. Let g(z) = p(z)
q(z) be a coprime factorization. Suppose A synchronizes (11.16).

Let λ1 := λ ,λ2, . . . ,λN denote the eigenvalues of A. By Theorem 11.13, the
characteristic polynomials
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det(zIn − (α +λiβγ)) = q(z)−λi p(z)

are Hurwitz for i = 2, . . . ,N. This shows condition (11.22). Conversely, assume that
(11.22) is satisfied. Then, for all z ∈ C+ and all 2 ≤ i ≤ N, one obtains h(z) �= λi,
i.e., q(z)−λi p(z) �= 0. Thus q(z)−λi p(z) is a Hurwitz polynomial for all 2 ≤ i ≤ N.
This completes the proof. �

This leads to the following explicit description of synchronizing homogeneous
networks.

Theorem 11.20. N identical SISO minimal systems

ẋi(t) = αxi(t)+βui(t),

yi(t) = γxi(t)
(11.23)

are synchronizable if and only if there exists a scalar proper rational real transfer
function f (z) ∈ R(z) of McMillan degree N −1 with

f−1(∞)∩h(C+) = /0.

Proof. Suppose (11.23) is synchronizable through an interconnection matrix A,
where λ is a simple eigenvalue of A and Ae = λe. Thus A is similar to an upper
triangular matrix

(
λ A12

0 A22

)

such that IN−1 ⊗α +A22 ⊗ βγ is Hurwitz. The set of such matrices L22 is open,
and therefore one can assume, without loss of generality, that A22 has N −1 distinct
eigenvalues λ2, . . . ,λN that are distinct from λ . Thus we constructed a self-conjugate
set of complex numbers λ2, . . . ,λr such that q(z)−λi p(z) is Hurwitz for i = 2, . . . ,r.
Choose a real transfer function f (z) of McMillan degree N − 1 that has its poles
exactly at λ2, . . . ,λN . Then f−1(∞)∩ h(C+) = /0. Conversely, assume that f (z) is
a real rational transfer function whose poles are disjoint from h(C+). Choose a
minimal realization f (z) = c(zIN−1 −M)−1b, and let λ be a real number disjoint
from the poles of f . Let S ∈ GLN(R) be such that Se1 = e. Then

A = S

(
λ 0
0 M

)
S−1

is an interconnection matrix that synchronizes. �
The proof shows that the existence of synchronizing interconnection matrices is

equivalent to an inverse eigenvalue problem with spectral constraints. For instance,
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to construct an interconnection matrix A with nonnegative entries requires solving
the inverse eigenvalue problem of finding a nonnegative matrix with spectrum in
h(C+).

11.4 Polynomial Model Approach to Synchronization

Synchronization is usually defined and studied in the state-space context. However,
our example of coupled oscillators from the introduction shows that it might be
preferable to perform the study in a functional context and use the concept of state
maps to see the connection with the state-space analysis. In this section we recall the
preceding chapters to aim at a polynomial approach to synchronization. Our starting
point is a polynomial matrix representation of the node system by taking N identical
higher-order systems of differential equations

D�(σ)ξi = N�(σ)vi, i = 1, . . . ,N. (11.24)

Here σ = d
dt denotes the differentiation operator, and N�(z) ∈ R[z]p×m and D�(z) ∈

R[z]p×p are polynomial matrices, with D�(z) nonsingular. We assume that the
associated transfer function

G(z) = D�(z)
−1N�(z)

is strictly proper. More generally, one could incorporate outputs by considering the
general class of Rosenbrock systems

T (σ)ξi =U(σ)vi,

w =V (σ)ξi +W (σ)vi.

We will consider these systems later on. Of course, one can always replace the
differentiation operator σ with the backward shift, thereby studying higher-order
systems of difference equations. We freely use the terminology and results from
Chapter 4.

To simplify our discussion, we will initially assume that the couplings between
these systems are defined by a decomposable state interconnection matrix A = L⊗
K ∈ R

mN×pN , leading to a state feedback transformation

v = (L⊗K)ξ +Bu.

As previously, matrix L incorporates the underlying interconnection structure
defined by the graph of the network. The resulting interconnected system is then
of the form

(
IN ⊗D�(σ)−L⊗N�(σ)K

)
ξ =

(
IN ⊗N�(σ)

)
Bu. (11.25)
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Defining

T (z) = IN ⊗D�(z)−L⊗N�(z)K,

U (z) =
(
IN ⊗N�(z)

)
B,

one obtains the associated transfer function of the network (11.25) as

Φ(z) =T (z)−1U (z) =
(

IN ⊗D�(z)−L⊗N�(z)K
)−1(

IN ⊗N�(z)
)
B.

Note that T (z) is factored as

T (z) = (IN ⊗D�(z))(IpN −L⊗G(z)K),

and IpN − L ⊗ G(z)K is biproper. Thus T (z) is nonsingular and Φ(z) =
T (z)−1U(z) = (IpN −L⊗G(z)K)(IN ⊗G(z))B) is strictly proper.

To study the effects of couplings, it is crucial to compare the relevant polynomial
model spaces. Let XD�

denotes the polynomial model of the individual node system
(11.24), so that

XIN⊗D�
= XD�

⊕·· ·⊕XD�

denote the state space of the decoupled system. Similarly,

XT = XIN⊗D�−L⊗N�K

denotes the state space of the interconnected system. The connection between these
two spaces is clarified by the following lemma.

Lemma 11.21. 1. Let V (z)∈R[z]r×r,U(z)∈R[z]r×m be polynomial matrices, with
V (z) nonsingular, such that the transfer function V (z)−1U(z) is strictly proper.
Then, for a matrix A ∈ R

m×r, the polynomial model spaces XV and XV−UA are
equal as sets and the map

πV−UA : XV −→ XV−UA,

πV−UA( f ) = (V −UA)π−((V −UA)−1 f )

defines an isomorphism of vector spaces (but in general not of R[z]-modules).
2. In particular, XIN⊗D�

= XT as sets and the map

πT : XIN⊗D�
−→ XT , πT ( f ) =T (z)π−(T (z)−1 f (z))
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is an isomorphism of vector spaces. Moreover, each f ∈ XD�
satisfies

πT (e⊗ f ) = e⊗ f . (11.26)

Proof. By the strict properness of V (z)−1U(z), we see that

(V (z)−U(z)A)−1 = (Ir −V (z)−1U(z)A)−1V (z)−1

is fulfilled, with Ir − V (z)−1U(z)A biproper. Therefore, if f is a vector of
polynomials, then V (z)−1 f (z) is strictly proper if and only if (V (z)−U(z)A)−1 f (z)
is strictly proper. This shows the equality of the polynomial models XV =
XV−UA as sets. The linearity of πV−UA is obvious. Suppose f ∈ XV satisfies
(V − UA)π−((V − UA)−1 f ) = 0. Then g(z) = (V (z) − U(z)A)−1 f (z) = (Ir −
V (z)−1U(z)A)−1V (z)−1 f (z) is a polynomial. Since V (z)−1 f (z) is strictly proper
and Ir − V (z)−1U(z)A is biproper, this implies that the polynomial g(z) =
(V (z)−U(z)A)−1 f (z) is strictly proper. Therefore, f = 0. This shows the injectivity
of πV−UA. For surjectivity, let f be an element of XV−UA = XV . Since πV−UA is
a projection operator, πV−UA( f ) = f . This shows the surjectivity of πV−UA and
completes the proof of the first claim.

The second claim is a simple consequence of the first claim by setting V = IN ⊗
D�,U = IN ⊗N�,A = L⊗K. Finally, (11.26) follows from a simple calculation

πT (e⊗ f ) =T π−(T −1e⊗ f ) =T π−
(
(IpN −L⊗G(z)K)−1(e⊗D−1

� f )
)

=T ((IpN −L⊗G(z)K)−1e⊗D−1
� f )

= (IN ⊗D�)e⊗D−1
� f

= e⊗ f .

Here the third equation is true since D−1
� f is strictly proper and (IpN −L⊗G(z)K)−1

is biproper. �
One can identify XD�

with the diagonal in the direct sum XIN⊗D�
= XD�

⊕ . . .⊕XD�
,

i.e.,

XD�
� {e⊗ f (z) | f ∈ XD�

} ⊂ XIN⊗D�
.

Similarly, using the identity (11.26), we define the diagonal in XT as

Δ := {e⊗ f (z) ∈ XT | f ∈ XD�
}.

Δ is called the synchronization space of the network (11.25). Let SIN⊗D�
and ST

denote the shift operators on the polynomial models XIN⊗D�
and XT , respectively.

By Lemma 11.21, we know that the vector space isomorphism πT is not a module
homomorphism, i.e., πT is not commuting with the shifts. We now show that by
restricting πT to the respective diagonal spaces a module isomorphism is obtained.
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Lemma 11.22. Assume that e is an eigenvector of L with eigenvalue λ .

1. The restriction of πT on the diagonal XD�
of XIN⊗D�

τ : XD�
−→ Δ , τ( f ) = e⊗ f

is an isomorphism of R-vector spaces.
2. Δ is an invariant subspace of the shift, i.e., ST (Δ)⊂ Δ .
3. There is a conjugacy of the shift operators

ST |Δ � SD�−λN�K .

In particular,

det(zI −ST |Δ) = det(D�(z)−λN�(z)).

Proof. That τ defines an isomorphism of vector spaces is an obvious consequence of
Lemma 11.21. Each vector of polynomials g(z) satisfies the identity T (z)e⊗g(z) =
e⊗D�(z)g(z)−Le⊗N�(z)Kg(z) = e⊗ (D�(z)−λN�(z)K)g(z). Thus each vector of
polynomials f satisfies T (z)e⊗ (D�−λN�K)−1 f = e⊗ f , and therefore

T (z)−1(e⊗ f (z)) = e⊗ (D�(z)−λN�(z)K)−1 f (z).

For vector polynomials f , Lemma 11.21 implies that f ∈ XD�
if and only if f ∈

XD�−λN�K . Thus f ∈ XD�
satisfies

ST (e⊗ f ) =T π−(T −1(e⊗ zf )

= (IN ⊗D�−L⊗N�K)π−(e⊗ (D�−λN�K)−1zf )

= e⊗D�π−((D�−λN�K)−1zf )− e⊗λN�Kπ−((D�−λN�K)−1zf )

= e⊗πD�−λN�K(zf ) ∈ Δ .

Here the second equation follows from identity (11.4). This shows the invariance
of Δ under the shift ST as well as the conjugacy of ST |Δ , with SD�. This completes
the proof. �

With all these facts at hand, we proceed to define synchronization for a higher-
order system as follows.

Definition 11.23. Let G(z) = D�(z)−1N�(z) be a left coprime factorization of the
strictly proper transfer function G(z), and let T (z) = IN ⊗ D�(z)− L ⊗ N�(z)K.
The network (11.25) of higher-order systems synchronizes with the interconnection
matrix L⊗K if it synchronizes for the shift realization on XT . Equivalently, then
Δ ⊂ XT is an outer stable invariant subspace for the shift operator ST on XT .
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We thus have defined the synchronization of polynomial models (11.25) by the
synchronization of the associated shift realizations. For further clarification, let us
consider the polynomial models and associated shift operators in more detail. Let
(α,β ,γ) denote the shift realization of the node identical transfer function G(z) =
D�(z)−1N�(z). Thus the shift realization of the decoupled transfer function IN ⊗
D�(z)−1N�(z) on the state space XIN⊗D�

is

(IN ⊗α) f = SIN⊗D�
f = πIN⊗D�

(zf ),

(IN ⊗β )ξ = πIN⊗D�
(IN ⊗N�(z)ξ ) = (IN ⊗N�(z))ξ ,

(IN ⊗ γ) f = ((IN ⊗D�)
−1 f )−1.

Similarly, the shift operator of the transfer function T (z)−1U (z) = (IN ⊗D�(z)−
L⊗N�(z)K)−1N�(z)B on the state space XT is

ST f = πT (zf ).

Note that for f ∈ XIN⊗D�
one has (T −1 f )−1 = ((IN ⊗D�)

−1 f )−1. Therefore,

ST f = T π−(zT −1 f )

= zf −T π+(zT
−1 f )

= zf −T (T −1 f )−1

= zf −T ((IN ⊗D�)
−1 f )−1.

Similarly, for f ∈ XIN⊗D�
,

SIN⊗D�
f = IN ⊗D�π−(z(IN ⊗D�)

−1 f ) = zf − (IN ⊗D�)(IN ⊗D−1
� f )−1.

Using T (z) = IN ⊗D�(z)−L⊗N�(z)K, this shows the identity of linear operators
on XIN⊗D�

= XT :

ST f = SIN⊗D�
f +L⊗N�K(D−1

� f )−1.

Using the N-fold direct sum decomposition XIN⊗D�
= XD�

⊕ ·· · ⊕ XD�
, the shift

operator ST has the form

ST = IN ⊗α +(IN ⊗β )(L⊗K)(IN ⊗ γ)

= IN ⊗α +L⊗βKγ .

Therefore, Δ is an outer stable invariant subspace for the shift ST if and only if
Δ ⊂ XIN⊗D�

is an outer stable invariant subspace for IN ⊗α +L⊗βKγ . This leads us
to the following characterization of synchronization in the polynomial model XT .
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Theorem 11.24. Let G(z) = D�(z)−1N�(z) be a left coprime factorization of the
strictly proper transfer function, and let (α,β ,γ) be a minimal realization of G(z).
Let A= L⊗K be a decomposable state interconnection matrix. Assume that Le= λe
for a simple eigenvalue λ . The following statements are equivalent:

(a) The network (11.16) of higher-order systems synchronizes.
(b) Δ is an outer stable subspace for IN ⊗α +L⊗βKγ .
(c) The following two conditions are satisfied:

(c1) ST (Δ)⊂ Δ .
(c2) For all eigenvalues μ �= λ of L,

det (D�(z)−μN�(z)K)

is a Hurwitz polynomial.

Proof. The shift operator ST is isomorphic to A = IN ⊗α+L⊗βKγ . Thus ẋ =A x
synchronizes if and only if ST (Δ) ⊂ Δ and the corestriction of ST on XT /Δ has
only eigenvalues with negative real part. Thus (a) and (b) are equivalent. It was
shown in Lemma 11.22 that the restriction operator ST |Δ is conjugate to the shift
operator SD�(z)−λN�(z)K . Therefore, detT (z) = det(zI −ST ) and

det(zI −ST |Δ) = detSD�(z)−λN�(z)K = det(D�(z)−λN�(z)K).

Let λ = λ1, . . . ,λN denote the not necessarily distinct eigenvalues of L. Following
the proof of Theorem 11.13 we see that

detT (z) =
N

∏
i=1

det(D�(z)+λiN�(z)K).

Since det(ST |Δ) = det(D�(z)−λN�(z)K), we conclude from

detT = det(ST |Δ)det(ST |(XT /Δ))

that

N

∏
i=2

det(D�(z)−λiN�(z)K)

equals the characteristic polynomial of the corestriction ST |(XT /Δ). This com-
pletes the proof. �

In the preceding approach, synchronization of a higher-order system (11.24) was
defined via synchronization of the associated shift realization. One wonders if a
direct approach is possible. We consider the synchronization task for Rosenbrock
node systems of the general form
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T (σ)ξi =U(σ)vi,

wi =V (σ)ξi +W (σ)vi, i = 1, . . . ,N.
(11.27)

We assume that T (z) is a nonsingular r× r polynomial matrix and that the transfer
function

G(z) =V (z)T (z)−1U(z)+W (z)

is strictly proper. We use the following simplified notation for the decoupled
system as

T = IN ⊗T, U = IN ⊗U, V = IN ⊗V.

We consider couplings among the partial state components defined by a coupling
matrix A ∈ R

mN×pN . In the sequel, we will restrict ourselves to a special class of
interconnection matrices.

Definition 11.25. An N×N block matrix A= (Aij) with blocks Aij ∈R
m×p is called

admissible provided

< A >:=
N

∑
j=1

A1 j = · · ·=
N

∑
j=1

ANj.

This definition is general enough to cover all preceding cases of interest. Thus every
decomposable matrix A= L⊗K, with L a Laplacian matrix, is admissible, as is every
finite sum A = L1 ⊗K1 + . . .⊗+Ls ⊗Ks, with N ×N Laplacian matrices L1, . . . ,Ls.
Thus the interconnected closed-loop system on partial states is

(
T (σ)−U (σ)AV (σ)

)
ξ = 0. (11.28)

Define the partial state synchronization space of (11.27) as

Δps := {(ξ , . . . ,ξ ) | ξ ∈ R
r} ⊂ R

rN .

Similarly, we define the state synchronization space as

Δ := {( f1, . . . , fN) ∈ XT −U AV | f1 = · · ·= fN}.

Here XT −U AV denotes the polynomial model associated with the nonsingular
polynomial matrix T (z)−U (z)AV (z). Note that, in general, the two spaces do not
have the same dimension. For admissible interconnection matrics the polynomial
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matrix T (z)−U (z)AV (z) is nonsingular and maps polynomial vectors of the form
e⊗ f (z) onto polynomial vectors e⊗g(z). More precisely, for f (z) ∈R[z]r, one has

(
T (z)−U (z)AV (z)

)
e⊗ f (z) = e⊗ (T −U < A >V ) f . (11.29)

We proceed by giving two definitions of synchronization, one for the partial states
and the other one in the state space.

Definition 11.26. Let A be an admissible interconnection matrix.

(a) The partial state system (11.28) synchronizes provided all solutions ξ (t) =
(ξ1(t), . . . ,ξN(t)) of (11.28) satisfy

lim
t→∞

‖ξi(t)−ξ j(t)‖= 0. (11.30)

(b) The shift realization of (11.28) synchronizes provided Δ ⊂ XT −U AV is an
outer stable invariant subspace of the shift operator ST −U AV : XT −U AV −→
XT −U AV .

We next prove that these two definitions are actually equivalent and derive a poly-
nomial matrix characterization. Our result is a natural extension of Theorem 11.24.

Theorem 11.27. Partial state synchronization of the Rosenbrock system (11.28) is
equivalent to the synchronization of the associated shift realization. In either case,
synchronization is satisfied if and only if

det(T (z)−U (z)AV (z))
det(T (z)−U(z)< A >V (z))

is a Hurwitz polynomial.

Proof. By assumption on A, the higher-order system (11.28) induces a higher-order
system on the quotient space R

rN/Δps. Thus the asymptotic stability condition
(11.30) is equivalent to the asymptotic stability of the induced system on R

rN/Δps.
In view of (11.29), this in turn is equivalent to the polynomial

det(T (z)−U (z)AV (z))
det(T (z)−U(z)< A >V (z))

being Hurwitz. Similarly, (11.28) synchronizes for the shift realization if and only if
Δ is an outer stable invariant subspace for the shift operator ST −U AV on XT −U AV .
The assumption on A implies that Δ is invariant under the shift. In fact, for f =
( f1, . . . , fN) = e⊗g ∈ Δ , and writing T̂ :=T −U AV for short,
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ST̂ ( f ) = T̂ π−(T̂−1zf )

= T̂ π−(e⊗ (T −U < A >V )−1zg)

= e⊗ (T −U < A >V )π−(e⊗ (T −U < A >V )−1zg)

= e⊗ST−U<A>V ( f ) ∈ Δ .

(11.31)

This proves the invariance of Δ . For a nonsingular polynomial matrix D�(z),
the characteristic polynomial of the shift operator SD�

on XD�
coincides with

detD�(z). By (11.31), the restriction of the shift ST̂ on Δ is conjugate to the shift
operator ST−U<A>V . Therefore, the characteristic polynomial of the ST̂ |Δ is equal to
det(T (z)−U(z)<A>V (z)). Thus the characteristic polynomial of the corestriction
ST̂ on XT̂/Δ is equal to

det(ST̂ )

det(ST̂ |Δ)
=

det(ST̂ )

det(T (z)−U(z)< A >V (z))
.

This completes the proof. �
The following invariance principle states that partial state synchronization holds

irrespective of the choice of coprime factorization for the node models.

Theorem 11.28. Suppose that the Rosenbrock node systems ΣVT−1U+W and
Σ

V T−1U+W
are strictly system equivalent. Let A be an admissible interconnection

matrix. Then partial state synchronization for T (z)−U (z)AV (z) is satisfied if and
only if it is satisfied for T (z)−U (z)AV (z).

Proof. By Corollary 9.6, the two networks obtained from ΣVT−1U+W and Σ
V T−1U+W

by coupling them with the same interconnection matrix A are strictly system
equivalent. In fact, by a careful inspection of the proof of Corollary 9.6, the strict
system equivalences can be seen to preserve the sets of synchronized states Δ and
Δ , respectively. Thus

det(T (z)−U (z)AV (z)) = det(T (z)−U (z)AV (z)).

Moreover, the same is true of the determinants of the corestrictions. The result
follows. �
Output Synchronization The preceding results lead to a simple characterization
of output synchronization. To simplify matters, we will work with discrete-time
state-space systems. We begin with deriving a simple version of the internal model
principle. Consider a linear discrete-time system

x(t +1) = Ax(t),

y(t) = Cx(t).
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Then the set of possible output sequences (y(t)|t ∈ N) is

Y = {(CAtx0) | x0 ∈ R
n}

or, equivalently,

Y = CXzI−A.

We refer to Y as the output behavior of (C,A). If (C,A) is observable, then clearly
this defines an autonomous behavior. In fact, for a left coprime factorization

C(zI −A)−1 = D�(z)
−1N�(z)

and (C,A) observable, Proposition 4.36 implies that

CXzI−A = XD� .

Next we consider a second discrete-time system in first-order form as

x1(t +1) = A1x1(t),

y1(t) =C1x1(t).

Let Y1 = C1XzI−A1 denote the associated output behavior. We say that the output
behavior Y is a subbehavior of Y1 whenever Y ⊂ Y1 or, equivalently, whenever

CXzI−A ⊂C1XzI−A1 .

We arrive at the following version of the internal model principle, i.e., the
characterization of subbehaviors of an autonomous behavior.

Proposition 11.29. Assume that the pairs (C,A) and (C1,A1) are observable. Then
Y is a subbehavior of Y1 if and only if there exists an invertible transformation
T ∈ GLn1(R) such that

TA1T−1 =

(
A A′′

1
0 A′

1

)
, C1T−1 =

(
C C′

1

)
.

Proof. Using the observability of (C1,A1), one obtains the left coprime
factorizations

C1(zI −A1)
−1 = D�,1(z)

−1N�,1(z).
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Moreover, (C1,A1) is isomorphic to the shift realization of D−1
�,1 N�,1, and similarly

for (C,A). Proposition 4.36 implies that Y1 = XD�,1 . Therefore, Y is a subbehavior
of Y1 if and only if the inclusion

XD� ⊂ XD�,1 .

By Theorem 3.35, the subspace XD� is a submodule of XD�,1 , i.e., SD�,1 XD� ⊂ XD� .
In particular, from Theorem 4.26 one obtains the equivalence of shift realizations
A1|XD� � SD�,1 |XD� � SD�

� A, and C1|XD� �C. This completes the proof. �
Now we apply these ideas to output synchronization. Consider an observable pair

(γ ,α) with left coprime factorization

γ(zI −α)−1 = D�(z)
−1N�(z).

Then the interconnected system with coupling matrix A = L⊗K is

x(t +1) =A x(t),

y(t) = C x(t),
(11.32)

where A = IN ⊗ α + L ⊗ Kγ and C = I ⊗ γ . Note that this system is output
injection equivalent to the direct sum system (IN ⊗ γ , IN ⊗α), and therefore (C ,A )
is observable. Let Y denote the output behavior of (11.32). From the left coprime
factorization

C (zI −A )−1 =T (z)−1U (z),

with

T (z) = IN ⊗D�(z)−L⊗N�(z)K, U (z) = IN ⊗N�(z),

we obtain

Y = CXzI−A = XT (z).

Definition 11.30. The synchronized output behavior of (11.32) is defined as the
intersection of the diagonal in z−1

R[[z−1]]pN with Y , i.e.,

Ysync := {(h1(z), . . . ,hN(z)) ∈ XT | h1(z) = · · ·= hN(z)}.

System (11.32) is called output synchronized if the following requirements are
satisfied:

1. There exists an initial state x0 with output y(t) = col(y1(t), . . . ,yN(t)) satisfying
ysync(t) := y1(t) = · · ·= yN(t) for all t ≥ 0.
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2. For all initial conditions,

lim
t→∞

‖y(t)− e⊗ ysync(t)‖= 0.

Arguing as in the proof of Theorem 11.27, it is easily seen that Ysync is a sub-
module of Y . We obtain a very simple characterization of output synchronizability.

Theorem 11.31. Assume Le = λe. System (11.32) is output synchronizable if and
only if

1. The synchronized output behavior is nonempty, i.e., Ysync �= /0. Moreover,

XD�−λN�K � Ysync ⊂ XT .

2. det(D�(z)−μN�(z)K) is a Hurwitz polynomial for all eigenvalues μ �= λ of L.

Proof. Clearly, condition 1 is equivalent to the existence of an element in the
output behavior Y of (11.32), with all components being equal. This proves the
equivalence of condition 1 with Ysync �= /0. For the other points, note that output
synchronization is equivalent to partial state synchronization of the system

T (σ)ξ = 0.

Using KerT (σ) = XT , Theorem 11.27 implies that output synchronization is
equivalent to synchronization of the associated shift realization of XT , i.e., that

det(I ⊗D�(z)−L⊗N�(z)K)

det(D�(z)−λN�(z)K)
= ∏

μ∈σ(L)\{λ}
det(D�(z)−μN�(z)K)

is a Hurwitz polynomial. This completes the proof. �
Clustering. Finally, let us briefly discuss the more difficult question of clustering
partial state vectors. While synchronization deals with the issue of driving the states
of all the node systems of a network to each other, clustering is concerned with
the more general task of allowing for different states to which the system can
be driven. For simplicity, we focus on just two clusters; the general case can be
treated similarly at the expense of more involved notation. Thus, for I = {1, . . . ,r}⊂
{1, . . . ,N},J := {r+1, . . . ,N}, let

Δps(IJ) = {(ξ1, . . . ,ξN) | ξ1 = · · ·= ξr, ξr+1 = · · ·= ξN}

denote the set of IJ-clustered partial states. Taking the union of all nontrivial
subsets I one obtains the set of 2-clustered partial states as

Δ [2]
ps =

⋃

0<|I|<N

Δps(IJ).
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Similarly, we define the set of I-clustered states as

Δ(IJ) = {( f1, . . . , fN) | f1 = · · ·= fr, fr+1 = · · ·= fN}

in the polynomial model XT −U AV . The same made be said of the subset of 2-
clustered states. The counterpart to the set of admissible interconnection matrices
is defined as follows (for IJ clustering only).

Definition 11.32. A block matrix A = (Aij) with m × p blocks Aij is called
IJ-admissible if there are m× p matrices AII ,AIJ ,AJI ,AJJ , with

r

∑
j=1

A1 j = · · ·=
r

∑
j=1

Arj := AII ,
N

∑
j=r+1

A1 j = · · ·=
N

∑
j=r+1

Arj := AIJ ,

r

∑
j=1

Ar+1, j = · · ·=
r

∑
j=1

ANj := AJI ,
N

∑
j=r+1

Ar+1, j = · · ·=
N

∑
j=r+1

Ar+1, j := AJJ .

Define

< A >IJ=

(
AII AIJ

AJI AJJ

)
.

The definition of IJ clustering then reads as follows.

Definition 11.33. Let A be an IJ-admissable interconnection matrix.

(a) The partial state system (11.28) IJ-clusters provided all solutions ξ (t) =
(ξ1(t), . . . ,ξN(t)) of (11.28) satisfy

lim
t→∞

‖ξi(t)−ξ j(t)‖= 0 for all i, j = 1, . . . ,r,

lim
t→∞

‖ξi(t)−ξ j(t)‖= 0 for all i, j = r+1, . . . ,N.

(b) The shift realization of (11.28) IJ-clusters provided Δ(IJ) ⊂ XT −U AV is an
outer stable invariant subspace of the shift operator ST −U AV : XT −U AV −→
XT −U AV .

Following the preceding analysis, one can then easily prove the next result; we omit
the straightforward details.

Theorem 11.34. Let A be IJ-admissible. Partial state IJ-clustering of the Rosen-
brock system (11.28) is equivalent to IJ-clustering of the associated shift realization.
In either case, IJ-clustering occurs if and only if

det(T (z)−U (z)AV (z))
det(T (z)−U(z)< A >IJ V (z))
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is a Hurwitz polynomial. The eigenvalues of the interconnected system on the IJ-
clustered states are the roots of the polynomial

det(T (z)−U(z)< A >IJ V (z)).

In the special case of a decomposable interconnection matrix A = L ⊗ K, the
result can be stated in a more convenient form as follows.

Theorem 11.35. Let K be arbitrary, and assume there are real numbers
λ11,λ12,λ21,λ22 such that

L =

(
L11 L12,

L21 L22,

)
,

with L11 ∈ R
r×r,L22 ∈ R

(N−r)×(N−r) and LijE = λijE for all ij. Here E denotes the
matrix of appropriate size, with all entries equal to 1. Let

Δcl(z) := det

(
T (z)− rλ11U(z)KV(z) −(N − r)λ12U(z)KV(z)

−rλ21U(z)KV(z) T (z)− (N − r)λ22U(z)KV(z)

)
.

Then IJ-clustering occurs in the Rosenbrock system (11.28) and A = L⊗K if and
only if

det(IN ⊗T (z)−L⊗U(z)KV(z))
Δcl(z)

(11.33)

is a Hurwitz polynomial. The eigenvalues of the interconnected system on the
IJ-clustered states are the roots of the polynomial

det

(
T (z)− rλ11U(z)KV(z) −(N − r)λ12U(z)KV(z)

−rλ21U(z)KV(z) T (z)− (N − r)λ22U(z)KV(z)

)
. (11.34)

Example 11.36. We investigate clustering for the case of three symmetrically
coupled oscillators (λ �= 0):

ẍ1 +aẋ1 +bx1 = λ ẋ2,

ẍ2 +aẋ2 +bx2 = λ (ẋ1 + ẋ3),

ẍ3 +aẋ3 +bx3 = λ ẋ2.

Thus T (z) = z2 + az + b,U(z) = 1,V (z) = z. The interconnection matrix is
A = L⊗K = L, with K = 1 and
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L = λ

⎛
⎝

0 1 0
1 0 1
0 1 0

⎞
⎠

having the characteristic polynomial z(z2 − 2λ 2). Note that e is not an eigenvector
of A = L, and therefore the network does not synchronize independently of the
parameter value. By permuting the second and third columns and rows of L, we
see that L is permutation equivalent to

(
L11 L12

L21 L22

)
= λ

⎛
⎝

0 0 1
0 0 1
1 1 0

⎞
⎠ .

Thus L is admissible for I = {1,3},J = {2} with λ11 = 0,λ12 = λ ,λ21 = λ ,λ22 = 0.
The characteristic polynomial for the coupled system is

det(T (z)I3 −LU(z)V (z)) = T (z)(T (z)2 −2λ 2z2),

which is Hurwitz if and only if a >
√

2|λ | and b > 0. Polynomial (11.34) is

T (z)2 −2λ 2z2.

Thus the quotient (11.33) is the polynomial T (z). One concludes that asymptotic
clustering occurs if and only if T (z) is Hurwitz, i.e., a > 0,b > 0.

11.5 Examples: Arrays of Oscillators

Because synchrony is usually connected to periodic phenomena, the basic com-
ponents for modeling are mostly taken to be nonlinear oscillators. However,
simpler linear system models, such as the classical harmonic oscillator, can be
used for the same purpose. Of course, because its failure is structurally stable, the
harmonic oscillator is an unsuitable model for most periodic physical phenomena.
Nevertheless, the analysis of synchronization phenomena for the harmonic oscillator
provides important insights into the general theory of synchronization. Arrays of
coupled damped oscillators are perhaps the simplest models for synchronization of
linear systems. The theory of such networks can be developed quite generally using
tools from spectral graph theory developed in Chapter 8. Here we focus on applying
such an analysis to the case of a finite number of damped harmonic oscillators
that are ordered either linearly or circularly. The exposition is largely based on
Fuhrmann, Priel, Sussmann and Tsoi (1987).



592 11 Synchronization and Consensus

I. Linear Arrays of Oscillators. We begin by discussing an extension of the
example in the introduction to a linear chain of N coupled identical oscillators. Thus,
consider the dynamic equations

ẍ1 +aẋ1 +bx1 = 0,

ẍ2 +aẋ2 +bx2 = λ ẋ1

...

ẍN +aẋN +bxN = λ ẋN−1.

Here λ �= 0 is assumed to be constant. Each SISO node system is in first-order
form as

α =

(
0 1
−b −a

)
, β =

(
0
1

)
, γ =

(
0 1

)
, (11.35)

or, equivalently, via the strictly proper transfer function

g(z) = γ(zI2 −α)−1β =
z

z2 +az+b
.

Assuming b �= 0, which we will assume from now on, ensures the coprimeness of
the factors z and z2 +az+b (Figure 11.1). The state interconnection matrix for this
system is decomposable as A = L⊗K = L, with K = 1 and

L = λ

⎛
⎜⎜⎜⎝

0
1 0

. . .
. . .

1 0

⎞
⎟⎟⎟⎠ .

In particular, L is nilpotent and e is not an eigenvector of L. Thus synchronization
for this chain of oscillators does not occur. We rewrite this vectorially as a first-order
system ẋ =A x, where A ∈ R

2n×2n has the block lower triangular form

1 2 3 4 5

Fig. 11.1 Directed simple path
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
−b −a
0 0 0 1
0 λ −b −a

. . .
. . .

. . .
. . .

0 0 0 1
0 λ −b −a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In this case, the spectral analysis becomes particularly simple because, by the lower
triangular structure, one obtains

det(zI −A ) = (z2 +az+b)N .

Clearly, this is also the minimal polynomial of our system. The system becomes
a bit more interesting if we add inputs u(t) to the system. For example, we might
consider the case where only the first node is controlled, i.e., we consider

ẍ1 +aẋ1 +bx1 = u(t),

ẍ2 +aẋ2 +bx2 = λ ẋ1

...

ẍN +aẋN +bxN = λ ẋN−1.

(11.36)

The network transfer function N (z) from the input to the states then becomes

⎛
⎜⎜⎜⎜⎝

z2 +az+b

−λ z
. . .
. . .

. . .

−λ z z2 +az+b

⎞
⎟⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎜⎜⎝

1
0
...
0
0

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

(z2 +az+b)−1

λ z(z2 +az+b)−2

...
(λ z)N−2(z2 +az+b)−N+1

(λ z)N−1(z2 +az+b)−N

⎞
⎟⎟⎟⎟⎟⎠

.

Obviously, for λ �= 0, this is a left coprime factorization, and thus (11.36) is
reachable.

Next we move on to symmetrically coupled arrays of oscillators (Figure 11.2).

1 2 3 4 5

Fig. 11.2 Undirected simple path
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Specifically, we consider the system

ẍ1 +aẋ1 +bx1 = λ ẋ2,

ẍ2 +aẋ2 +bx2 = λ (ẋ1 + ẋ2)

...

ẍN−1 +aẋN−1 +bxN−1 = λ (ẋN−1 + ẋN),

ẍN +aẋN +bxN = λ ẋN−1.

(11.37)

We assume that λ > 0. The matrix A has again the tensor product structure A :=
In ⊗α +L⊗βγ , but L has the symmetric matrix representation

L = λ

⎛
⎜⎜⎜⎜⎜⎝

0 1
1 0 1

1
. . .

. . .
. . .

. . . 1
1 0

⎞
⎟⎟⎟⎟⎟⎠

.

Matrix L has a tridiagonal symmetric Toeplitz structure. By Theorem 8.45, we know
that the eigenvalues of L are distinct and equal to 2cos kπ

N+1 for k = 1, . . . ,N, with
an explicit formula for the eigenvectors, too. Thus the solutions of (11.37) can be
written down in closed form. We will not do that here. Since e is not an eigenvalue
of L, the system does not synchronize.

II. Circular arrays of oscillators. In the circularly oriented case, the interconnec-
tion structure is depicted as in Figure 11.3. Explicitly, we consider the system

Fig. 11.3 Directed cycle
graph

1

2

3

4

5
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ẍ1 +aẋ1 +bx1 = λ ẋN ,

ẍ2 +aẋ2 +bx2 = λ ẋ1

...

ẍN +aẋN +bxN = λ ẋN−1.

(11.38)

Obviously, its state space is 2N-dimensional and the dynamic equations can be
written in first-order block circulant form, ẋ =A x, as follows:

d
dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

ẋ1
...
...
...

xN

ẋN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
−b −a 0 λ
0 0 0 1
0 λ −b −a

. . .
. . .
. . .

. . .

0 0 0 1
0 λ −b −a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

ẋ1
...
...
...

xN

ẋN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using the special structure of matrix A , its characteristic polynomial turns out to be

dA (z) = (z2 +az+b)N −λ NzN .

It is more convenient to analyze the system using the associated polynomial system
matrices. We note that the coupling under consideration has a preferential direction.
Later, we will also study more symmetric couplings. The interconnection matrix is
A =C, where

C =

⎛
⎜⎜⎜⎜⎝

0 1

1
. . .
. . .

. . .

1 0

⎞
⎟⎟⎟⎟⎠

.

Note that C has the structure of a circulant matrix and thus can be diagonalized
by the Fourier matrix. Its eigenvalues are exactly the N − th roots of unity

1,ω, . . . ,ωN−1, where ω = e
2π

√−1
N denotes the primitive root of unity. Note further

that 1 is always an eigenvalue of C with associated eigenvector e. To analyze
the synchronization of (11.38), we consider the closed-loop polynomial system
matrix T (z) := (z2+az+b)IN −zλC. The characteristic polynomial of A coincides
with the determinant of T (z). The zeros of detT (z) are equal to the roots of
z2 +(a−λωk)z+b for k = 0, . . . ,N −1.
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Theorem 11.37. Let a,λ > 0. System (11.38) synchronizes if and only if

a > λ cos
2π
N

, b > 0.

Proof. Using the stability test for complex polynomials via the positivity of the
Hermite–Fujiwara matrix (Theorem 5.52), a complex polynomial p(z) = z2+uz+v
is Hurwitz if and only if the Hermite–Fujiwara matrix

H2(p) = 2

(
Re(uv̄) −i Imv
i Imv Reu

)

is positive definite, i.e., if and only if

Re(u)> 0, Re(u)Re(uv̄)> Im2(v).

In our situation, u = a−λωk,v = b, with a,b,λ > 0 real. Thus z2 +(a−λωk)z+b
is Hurwitz for k = 1, . . . ,N − 1 if and only if b > 0 and a−λ cos 2kπ

N > 0 for k =
1, . . . ,N −1. The result follows. �

Note that, under our assumption that a,b,λ > 0, the inequality |a − λωk| ≤
a+ λ is valid for all 1 ≤ k ≤ N. Thus, if (a+ λ )2 < 4b, then there is oscillatory
motion, with the different modes having damping terms of the form e−σkt , with
σk = Re a−λωk

2 . Obviously, the mode with the slowest rate of decay is the one where
σk is (algebraically) the largest, and this occurs when ωk = 1, i.e., for k = 0. It is of
interest to identify this mode. Indeed, if we look for eigenvectors of A of the form
(ξ , . . . ,ξ ,η , . . . ,η)�, then A x = λx reduces to the pair of equations

η = λξ ,
−b−aη +λη = λη ,

which leads to the equation

(λ 2 +(a−λ )λ +b)ξ = 0,

whose roots are eigenvalues of A . Thus we see that the slowest rate of decay is in
the synchronized mode.

If we apply symmetric nearest-neighbor coupling, we obtain

ẍk +aẋk +bxk = λ (ẋk−1 + ẋk+1) k = 1, . . . ,N, (11.39)

with the understanding that x0 = xN and xN+1 = x1. The interconnection matrix A is
the symmetric, circulant Toeplitz matrix
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A =−λΓ =−λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1
1 0 1

1
. . .

. . .
. . .

. . . 1
1 0 1

1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

which has e as an eigenvector. The associated eigenvalue −2λ is simple. By
Theorem 8.48, the eigenvalues of A are −2λ cos( 2kπ

N ) for k = 1, . . . ,N. The
polynomial system matrix is T (z) = (z2 + az+ b)IN −λ zΓ . System (11.39) can be
written in state-space form as ẋ =A x, where

A = IN ⊗α −λΓ ⊗βγ .

Here (α,β ,γ) are as in (11.35). We observe that the eigenvalues of A are equal to
the roots of the determinant detT (z), i.e., to the roots of

z2 +(a−2λ cos(
2kπ
N

))z+b = 0.

Note that k = N corresponds to the synchronized mode e. Note further that a −
2λ cos 2kπ

N < a−2λ for all 1 ≤ k < N. We arrive at the following theorem.

Theorem 11.38. The symmetrically connected cycle (11.39) synchronizes if and
only if z2 + (a− 2λ cos( 2kπ

N ))z+ b is Hurwitz for k = 1, . . . ,N − 1. Equivalently,
synchronization occurs if and only if b > 0 and a > 2λ cos 2π

N . The eigenvalues for
the synchronized dynamics are equal to the roots of z2 +(a− 2λ )z+ b. All other
eigenvalues of the system matrix A have real part < a−2λ .

11.6 Exercises

1. Prove the following result from Trentelmann, Stoorvogel and Hautus (2001):
A linear subspace V ⊂ X is (A,B,C)-invariant if and only if there exists an
output feedback transformation K such that (A+BKC)V ⊂ V .

2. (a) Show that a homogeneous synchronizing network for the real rational node
transfer function

g(z) =
αz+β

z2 +az+b
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exists if and only if there is a complex number λ ∈ C satisfying the
inequalities

a|λ |2 −α Reλ > 0,
(
a|λ |2 −α Reλ

)(
ab|λ |2 +αβ − (aβ +bα)Reλ

)
> β 2(Imλ )2.

(b) Deduce that a homogeneous synchronizing network for

g(z) =
εz+1
z2 +1

exists if and only if ε �= 0.
3. Give necessary and sufficient conditions when the system of four coupled

second-order systems

ẍ1 +aẋ1 +bx1 = λ ẋ2,

ẍ2 +aẋ2 +bx2 = λ (ẋ1 + ẋ3),

ẍ3 +aẋ3 +bx3 = λ (ẋ2 + ẋ4),

ẍ4 +aẋ4 +bx4 = λ ẋ3

clusters at x1,x4 and x2,x3, respectively.

11.7 Notes and References

There exists a huge literature from physics and systems engineering on synchro-
nization, clustering, and consensus; we refer the reader to the survey paper by
Doerfler and Bullo (2014) and the references therein. A new idea was recently
proposed by R.W. Brockett in his 2014 Bernoulli lecture at the International
Symposium on the Mathematical Theory of Networks and Systems (MTNS 2014)
in Groningen, the Netherlands. Brockett asks a fundamental question concerning
the potential mechanisms for synchronization: Given a symmetric matrix Q with
distinct eigenvalues and a second-order system of the form

ẍ+η(x, ẋ)+Qx = f (x, ẋ,z),

ż = g(x, ẋ,z),

what are the simplest, physically plausible choices of f and g that result in
synchronization? He argues that the system

ẍ+η(x, ẋ)+(Q+Z)x = 0,

Ż =−αZ + xẋ�− ẋx�
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should be an interesting candidate. See Brockett (2003) and Brockett (2013) for a
study of closely related equations that underpin this belief.

Theorem 11.4 can be extended to normalized Laplacians of time-varying graphs
Γ (t) under weak connectivity assumptions. Let Γi = (V,Ei), i = 1, . . . ,m, denote
finitely many weighted directed graphs on the same vertex set V with associated
adjacency matrices A1, . . . ,Am. The union Γ = Γ1 ∪ ·· ·∪Γm is the graph Γ = (V,E)
with edge set E = E1 ∪ ·· · ∪Em. Consensus results for time-varying graphs were
established by Jadbabaie, Lin and Morse (2003) under the assumption that there
exists T ∈ N such that the union of graphs Γ (kT)∪Γ (kT +1)∪·· ·∪Γ (kT +T )
is connected for all k ∈ N0. Cao, Morse and Anderson (2008) have derived more
generally sufficient conditions for consensus if the time-varying graph of each
flocking matrix F(t) has a root for all t.

There exists by now a rich and rapidly growing literature on distributed control
and distributed optimization. We refer the reader to Tsitsiklis, Bertsekas and Athans
(1986) and the book by Bertsekas and Tsitsiklis (1989) for early contributions and
further references. The distributed algorithm (11.9) for finding intersection points
of affine subspaces has appeared several times in more general contexts; see, for
example, Nedic, Ozdaglar and Parrilo (2010) for intersections of convex sets and for
an explanation of the connection with the classical alternating projection method by
von Neumann. Theorem 11.8 is due to Mou and Morse (2013).

Simple simulation experiments – see, for example, Blondel, Hendrickx and
Tsitsiklis (2009) – show that trajectories in the Hegselmann–Krause model (11.13)
do not converge to a common consensus state; instead, they cluster around certain
limit points. Thus the Hegselmann–Krause model is really more a model for
clustering rather than for consensus. The fine structure of the cluster states is quite
interesting and requires further mathematical analysis. For example, it has been
experimentally observed, and is conjectured to be true in general, that the solutions
of (11.13) actually cluster in distances of |x∗i − x∗j | ≥ 2r. Moreover, the distribution
of the cluster points is not exactly evenly distributed, even for uniform distributions
of the initial conditions. For extensions of the Krause model to continuous-time
models, see Blondel, Hendrickx and Tsitsiklis (2009, 2010).

Consensus problems for second-order systems, including consensus among
velocities, have been treated by, for example, Anderson, Lin and Deghat (2012) and
Ren (2008). Cucker and Smale (2007) proposed a new consensus algorithm for the
velocities of N second-order agents in R

3 using the state-dependent graph adjacency
matrix and Laplacian

A(x) =
(
(1+‖xi − x j‖2)−β

)
i, j

and L(x) = diag(A(x)e)−A(x),

respectively. They established asymptotic convergence results for the velocities in
the network of second-order systems

ẍ+(I3N −L(x)⊗ I3)ẋ = 0,
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depending on whether β < 1
2 or β ≥ 1

2 . Extensions to general interconnection graphs
are in Cucker and Smale (2007a).

From a systems engineering point of view, synchronization is a property that is
desirable for the purpose of using feedback strategies. A well-known decentralized
control approach to synchronization assumes a fixed diffusive coupling, together
with N local feedback controllers around the node systems. The synchronization
task then becomes to tune the local feedback controllers so that the network
synchronizes. This design strategy is quite different from the approach taken
here, where one aims to achieve synchronization via appropriate selections of the
coupling terms. Whatever approach one prefers, there is plenty of room for further
improvements. For example, one might replace the local feedback controllers by
adaptive ones. Such an approach has been proposed by Helmke, Prätzel-Wolters
and Schmidt (1991) and Ilchmann (2013), where synchronization is modeled as an
adaptive tracking problem for networks of systems. This leads to synchronization
results that are robust with respect to variations in both the interconnection and
system parameters.

Synchronization problems for homogeneous networks of linear systems using
state feedback transformations have been explored by Scardovi and Sepulchre
(2009) and Tuna (2008), for example. Robust synchronization tasks using state
feedback and output injection are studied in Trentelmann, Takaba and Monshizadeh
(2013). Variants of Theorem 11.13 for diffusive coupling have been shown by
several researchers, including Ma and Zhang (2010) and Lunze (2011). For net-
works with diffusive couplings and using state feedback with γ = In, Ma and Zhang
(2010) have shown that synchronizability is equivalent to (α,β ) being stabilizable
and the graph being connected. Other versions of synchronizability via output
injection were studied by Tuna (2009). Versions of the internal model principle for
synchronization have been considered by Wieland, Sepulchre and Allgöwer (2011)
and Lunze (2012), who proved a special case of Proposition 11.29. Using state-space
methods, Lunze (2012) proved an extension of Theorem 11.31 for heterogenous
networks, however under the strong additional assumption that the system matrices
of the agents are diagonalizable. We believe that the results for higher-order systems
introduced in Section 11.4 lead to a more natural approach to synchronization than
standard state-space methods.
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