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Preface

The task of controlling large-scale networks of interconnected dynamic systems
poses fascinating challenges, in terms of both the mathematical foundations and
future technological implementations. Dynamic networks of systems is a very
active area of current research that lies at the crossroads of diverse disciplines
such as biology, physics, computer science, and systems engineering. Examples of
areas in which research is being conducted can be found everywhere in science
and technology, including synchronization phenomena in laser physics, neural
and genetic networks, Internet research, social networks, and cooperating sensor-
actor networks in robotics. This line of research fits very well into current trends
in systems engineering of analyzing heterogeneous networks of cyber-physical
systems by combining methods from mathematics, control theory, and information
theory.

How does one stably form a flock of birds or a school of fish? How does one
control ensembles of quantum mechanical systems using open-loop control? How
can one identify nodes with the strongest control potentials in a huge social network,
and what are the fastest means to achieve consensus among network participants?
How does one control macroscopic phenomena such as synchronization and
clustering? Would the information flow in a big company or a stock market be
better organized tall or flat? These are some of the immediate questions that come to
mind when dealing with large-scale dynamic systems. Of course, one first needs to
come up with precise mathematical models for the node systems as well as for the
interconnection devices. Where better to start than with networks of linear systems?

The study of interconnected systems is not new. An early instance is the classic
network synthesis problem of realizing electrical circuits using resistors, capacitors,
and inductive elements, with pioneering contributions due to, for example, Foster
(1924), Brune (1931), and Bott and Duffin (1949). The circuit synthesis problem
remains unsolved to this day, but the subject has attracted some attention recently;
see, for example, Kalman (2010) and Jiang and Smith (2011). The simplest
coupling structures of linear systems are the series, parallel, and feedback intercon-
nections. They have been studied since the very beginning of mathematical systems
theory in the 1960s. Early work includes that by Callier and Nahum (1975) and
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Fuhrmann (1975), who found frequency domain characterizations of controllability
and observability for the three interconnection types. This early focus on simple
interconnection schemes seemed a natural starting point for the analysis of more
complicated interconnection structures, as is exemplified by the work of Rosenbrock
and Pugh (1974) on the control of hierarchical systems. Though it is clear that the
control theory for these special coupling structures can be deduced from a more
general analysis of networks of interconnected systems, it may come as a surprise
that the study of dynamic networks is in fact very closely related to feedback
connection.

When analyzing large-scale interconnected systems one is faced with at least two
different approaches that have been developed over the decades. A standard one is
that of decentralized control, as covered in the book by Siljak (1991). Here one
considers a multivariable plant that is to be controlled by a structured controller.
The design of such decentralized controllers then becomes the main issue, whereas
the interconnection between controllers and subsystems is often thought of as being
fixed and does not constitute the central purpose of design. The situation is quite
different than in the analysis of, for example, switching circuits, as in Leonard
and Krishnaprasad (1994). Here the interconnections are regarded as active control
elements that are tuned to achieve better performance of the overall network.
This leads to a scenario that is almost dual to decentralized control, i.e., to the
study of feedback connections, where the plant model has a decoupled structure,
whereas the controller represents the network parameters that are to be tuned.
Interesting cases in point are the control of the parallel interconnection of finitely
many nonlinear systems using broadcast input signals, as in Brockett (2010); the
control of spatially invariant systems and platoons of systems, for example Bamieh,
Paganini and Dahleh (2002); the identification of driver nodes in very large-scale
networks of linear systems, as in Liu, Slotine and Barabasi (2011), or the ensemble
control of quantum dynamical systems, for example Li and Khaneja (2006). In all
such applications, the plant consists of a finite or infinite number of decoupled
node systems that may or may not be interconnected. External control signals are
designed to be broadcasted to all node systems, and one is asked to characterize the
controllability and observability properties of the network.

In practical implementations of network control systems, models for the node
systems may be represented by first-order or higher-order difference and differential
equations. This concerns a classical question from control theory, first discussed
by Rosenbrock (1970), of the equivalence between first-order and higher-order
system representations. Of course, by writing down first-order representations of
both the node systems and the interconnection dynamics, one can apply standard
controllability and observability tests for closed-loop systems. However, such an
approach using the Hautus criterion or the Kalman rank test is problematic because
it requires rank tests for large matrices. Moreover, the linear interconnection
structure of the network is lost through the repeated appearance of matrix powers
in the Kalman reachability or observability matrices. Thus, this approach quickly
becomes inefficient with respect to, for example, medium-scale networks of high-
dimensional subsystems. In contrast, we show that using polynomial matrix fraction
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representations leads to very efficient coprimeness conditions for the reachability
and observability of networks of systems. To this end we develop a permanence
principle for the strict system equivalence of networks. Although this permanence
principle is already known from earlier work by Rosenbrock and Pugh (1974),
it has apparently been forgotten in the network control community over the past
few years. We present a reformulation and extension of this principle to dynamic
interconnections within the unifying framework of polynomial models. From this
principle one can easily deduce full characterizations on the controllability and
observability of interconnected systems. Applied to classical parallel, series, and
feedback interconnections, this leads to elegant new proofs for controllability and
observability.

Our approach is based on polynomial model representations of linear systems
constructed on the basis of coprime factorizations of the transfer function of the
system. Using the shift realization, as in Fuhrmann (1976), such factorizations
lead to powerful techniques for analyzing controllability properties of higher-order
systems. Somewhat less attention has been paid to the problem of computing the
controller, or controllers, that steer the system to a required state. In principle,
this can be achieved by computing a right inverse to the reachability map. If
the McMillan degree of the system under consideration is large, then this may
be a daunting task. This problem may arise when the system is the result of
interconnecting a large number of smaller systems. Our intention in this book is, in
order to reduce the complexity of computation, to efficiently utilize controllability
information on individual nodes in order to compute a minimal controller that
steers the system to a given state. In its full generality, this goal remains elusive.
For the inversion of a reachability map, which is a module isomorphism over a
ring of polynomials, the main instruments are doubly coprime factorizations, i.e.,
the embedding of an intertwining relation, which is a consequence of coprime
factorizations, in two unimodular polynomial matrices that are related by inversion.
This presents us with the problem of constructing a doubly coprime factorization for
a large-scale interconnected system from the doubly coprime factorizations related
to the individual nodes. We treat this construction in full detail for the case of
systems connected in parallel. This analysis brings to light the complexity of the
problem. A side benefit is the clarification of the role of interpolation theory in the
construction of the required control sequences.

This book aims at providing the mathematical foundations of networks of linear
control systems, developed from an algebraic systems theory perspective. This
includes a thorough treatment of questions of controllability, observability, and
realization theory, as well as feedback control and observer theory. The material
covered is quite extensive and is not intended as a textbook for a single course. Part I
can be used as the basis for a first course in algebraic systems theory. The approach
presented has the advantage that, with suitable modifications, it can be used in
connection with the study of some infinite-dimensional systems, for example, H∞-
control. It also has proved itself to be instrumental in bringing together state space,
polynomial system matrices, and geometric control methods. Part II could be used
for a second, advanced, course on linear systems. Finally, Part III, which is largely
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independent of the previous parts, is ideally suited for advanced research seminars
aimed at preparing graduate students for independent research. It addresses some
of the basic research questions and approaches pertinent to analyzing networks of
linear systems, such as, for example, synchronization, clustering, ensemble control,
and controlling infinite platoons.

This book, which was written over the course of the past 2 years, is the culmi-
nation of our long-term joint research project that we carried out together over the
past few decades. Our interest in networks started with the realization that functional
models provide a very convenient setting for studying system interconnections. This
led to a joint paper on the controllability of linear networks, and new insights for
tackling other problems arose. Very quickly we became fascinated by the extremely
rich facets, insights, and enormous intellectual challenges that the field of networks
of systems offers. The book is a partial summary of what we have learned so far.
Several short mutual visits in Tel Aviv and Würzburg helped to keep the stream of
ideas flowing. The research for this book was supported by several people and grant
organizations. We thank the Marina Hotel at Tel Aviv, and in particular the staff
of the business lounge, for providing such convenient surroundings and a pleasant
atmosphere for our research. Partial support was provided by Grant HE 1805/12-2
from the German Research Foundation within Priority Program SPP 1305, “Control
Theory for Digitally Networked Dynamical Systems.” We thank our colleagues,
collaborators, and (former) students Gunther Dirr, Anna von Heusinger, Knut
Hüper, Jens Jordan, Christian Lageman, Julia Lieb, Frederike Rüppel, and Michael
Schönlein from Würzburg for helpful discussions, corrections, and proofreading of
the manuscript. Rudolf Sailer and Frederike Rüppel helped as well with the figures
and matrices. Thank you all! Finally, we would like to thank our families. Without
their continual support and love this project would not have been possible. To them
this book is dedicated.

Beer-Sheva, Israel Paul A. Fuhrmann
Würzburg, Germany Uwe Helmke



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Control of Parallel Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Synchronization of Coupled Harmonic Oscillators . . . . . . . . . . . . . . . . . 6
1.3 Outline of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Part I Algebraic Systems Theory: Foundations

2 Rings and Modules of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Rings and Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Divisibility and Coprimeness of Polynomials . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Minimal Basis of Modules of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Divisibility and Coprimeness of Polynomial Matrices . . . . . . . . . . . . . 45
2.6 Coprime Factorizations of Rational Matrix Functions . . . . . . . . . . . . . 50
2.7 Wiener–Hopf Factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.8 Hermite and Smith Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.9 Equivalence of Polynomial Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.10 Structure Theorem and Quotient Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.11 Rings of Rational Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.13 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Functional Models and Shift Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.1 Polynomial Models and the Shift Operator . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2 The Lattice of Shift-Invariant Subspaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3 Module Homomorphisms and Intertwining Maps . . . . . . . . . . . . . . . . . . 102
3.4 Classification of Shift Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.5 Rational Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.6 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.7 The Matrix Chinese Remainder Theorem .. . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.8 Toeplitz Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xi



xii Contents

3.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.10 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.1 System Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.2 Reachability and Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.3 Abstract Realization Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.4 Equivalence of Realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.5 The Shift Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.6 Strict System Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.7 Poles and Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
4.8 Open-Loop Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
4.10 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Part II Algebraic Systems Theory: Advanced Topics

5 Tensor Products, Bezoutians, and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.1 Tensor Products of Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.2 Tensored Polynomial and Rational Models . . . . . . . . . . . . . . . . . . . . . . . . . 224
5.3 Polynomial Sylvester Equation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
5.4 Generalized Bezoutians and Intertwining Maps . . . . . . . . . . . . . . . . . . . . 244
5.5 Stability Characterizations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
5.7 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

6 State Feedback and Output Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
6.1 State Feedback Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
6.2 Polynomial Characterizations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
6.3 Reachability Indices and the Brunovsky Form .. . . . . . . . . . . . . . . . . . . . 291
6.4 Pole Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
6.5 Rosenbrock’s Theorem.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
6.6 Stabilizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
6.7 Dynamic Output Feedback Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
6.8 Controlled Invariant Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
6.9 Conditioned Invariant Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
6.10 Zeros and Geometric Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
6.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
6.12 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

7 Observer Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
7.1 Classical State Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
7.2 Observation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
7.3 Functional State Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
7.4 Existence of Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
7.5 Construction of Functional Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398



Contents xiii

7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
7.7 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Part III Networks of Linear Systems

8 Nonnegative Matrices and Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
8.1 Nonnegative Matrices and Contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
8.2 Perron–Frobenius Theorem .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
8.3 Stochastic Matrices and Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
8.4 Graphs and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
8.5 Graph Rigidity and Euclidean Distance Matrices . . . . . . . . . . . . . . . . . . 434
8.6 Spectral Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
8.7 Laplacians of Simple Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
8.8 Compressions and Extensions of Laplacians . . . . . . . . . . . . . . . . . . . . . . . 457
8.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
8.10 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

9 Interconnected Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
9.1 Interconnection Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
9.2 Equivalence of Interconnected Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
9.3 Reachability and Observability of Networks of Systems. . . . . . . . . . . 484
9.4 Homogeneous Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
9.5 Special Coupling Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
9.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
9.7 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

10 Control of Standard Interconnections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
10.1 Standard Interconnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
10.2 Open-Loop Controls for Parallel Connections . . . . . . . . . . . . . . . . . . . . . . 523
10.3 Open-Loop Control and Interpolation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
10.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
10.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

11 Synchronization and Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
11.1 Consensus and Clustering in Opinion Dynamics . . . . . . . . . . . . . . . . . . . 554
11.2 Synchronization of Linear Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
11.3 Synchronization of Homogeneous Networks . . . . . . . . . . . . . . . . . . . . . . . 575
11.4 Polynomial Model Approach to Synchronization . . . . . . . . . . . . . . . . . . 577
11.5 Examples: Arrays of Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
11.7 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

12 Control of Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
12.1 Control of Parametric Families of Systems . . . . . . . . . . . . . . . . . . . . . . . . . 602
12.2 Uniform Ensemble Reachability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
12.3 Control of Platoons .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617



xiv Contents

12.4 Control of Partial Differential Equations .. . . . . . . . . . . . . . . . . . . . . . . . . . . 629
12.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
12.6 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657



Chapter 1
Introduction

In this introductory chapter, the subject of the book is explained in more detail by
focusing on two central issues of the control of networks: open-loop control of
interconnected systems and synchronization. While the first topic emphasizes the
computational aspects involved in controlling interconnected systems, the second
theme of synchronization discusses the impact of couplings on the shaping of
macroscopic properties that are pertinent in self-organizing systems. Instead of
aiming for a more complete analysis, which is postponed to later chapters of the
book, we confine ourselves to the discussion of some illustrative examples. At the
end of the chapter the main new achievements of this book will be discussed and a
brief overview of the contents presented.

1.1 Control of Parallel Connections

Parallel coupling is certainly one of the easiest ways to interconnect linear systems.
However, controlling such a network is not that easy. Thus, for a finite number of
linear control systems

ẋk(t) = Akxk(t)+Bkuk(t), k = 1, . . . ,N, (1.1)

with system matrices (Ak,Bk) ∈ R
nk×(nk+m), consider the parallel interconnected

system

ẋ1(t) = A1x1(t)+B1u(t)

...

ẋN(t) = ANxN(t)+BNu(t).

(1.2)

© Springer International Publishing Switzerland 2015
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We refer to the subsystems (Ak,Bk) as the node systems of system (1.2).
Of course, the difference between the two systems (1.1) and (1.2) is that the first one
is completely decoupled, having independent input functions, while in the second
one all subsystems share the same input. One could say that the input u(t) ∈ R

m

is broadcast to all systems. When is such a system reachable, and how does one
control such a system? The first question is, of course, a classical one whose answer
goes back to the very beginnings of state-space theory in the 1970s. The reachability
of a linear system

ẋ(t) = Ax(t)+Bu(t)

refers to the ability to choose a piecewise continuous input function u : [0,T ]−→R
m

that steers the initial state x(0) = 0 to an arbitrarily prescribed terminal state vector
x∗ = x(T ) in finite time T > 0. Already in one of the first contributions to linear
systems theory, Gilbert (1963) characterized the reachability properties of (1.2) for
scalar first-order single input node systems. The general case turned out to be more
difficult and was first solved by Fuhrmann (1975) for N = 2. It was subsequently
extended by Fuhrmann (1976a) to certain classes of infinite-dimensional systems.
The solution depends on polynomial algebra methods and coprime factorizations.
Thus, let

(zIn1 −A1)
−1B1 = N1(z)D1(z)

−1, (zIn2−A2)
−1B2 = N2(z)D2(z)

−1

be two factorizations by polynomial matrices Nk(z) ∈ R[z]nk×m,Dk(z) ∈ R[z]m×m

such that D1(z),D2(z) are nonsingular polynomial matrices and the pairs
N1(z),D1(z) and N2(z),D2(z) are right coprime for the respective matrices (for
the algebraic terminology see Chapter 2).

Theorem 1.1 (Fuhrmann (1975)). The parallel connection (1.2) of two linear
systems (A1,B1),(A2,B2) is reachable if and only if

1. Both systems (A1,B1) and (A2,B2) are reachable;
2. The m×2m polynomial matrix (D1(z),D2(z)) has full row rank m for all complex

numbers z ∈ C.

The proof by Fuhrmann, although concise, is not trivial and depends crucially
on the theory of polynomial models that was developed by him around the
same time (1975); see Fuhrmann (1976). It should be emphasized that, while
equivalent state-space characterizations of the reachability of (1.2) are possible,
these depend on more complicated formulations using the Jordan canonical forms
of (A1,B1),(A2,B2). Of course, in the single-input case where m = 1, everything
is easy. In fact, then Di(z) = det(zI − Ai), and condition 2 is equivalent to the
coprimeness of the characteristic polynomials det(zI − Ai), i = 1,2. Thus, Theo-
rem 1.1 implies the following corollary.

Corollary 1.2. Let m = 1. The parallel connection (1.2) of two linear single-input
systems (A1,b1),(A2,b2) is reachable if and only if
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1. The systems (A1,b1),(A2,b2) are reachable;
2. The spectra of A1 and A2 are disjoint.

In Chapter 9 we will prove a general reachability result for parallel connections
of a finite number of systems that contains Theorem 1.1 and Corollary 1.2 as special
cases. While Theorem 1.1 effectively solves the reachability problem for the parallel
interconnection of two systems, the question remains as to how one can compute a
control function u : [0,T ] −→ R

m for the parallel connection (1.2) that steers the
zero state x = 0 in finite time T > 0 to a desired vector x∗ = col(x∗1, . . . ,x

∗
N) ∈

R
n1+···+nN of terminal states. Moreover, one would like to be able to compute

such a control u for (1.2) from a knowledge of local controls u∗k : [0,T ] −→ R
m

that steer node systems (1.1) from the zero state to the local terminal states x∗k ,
k = 1, . . . ,N. Although such a problem looks daunting at first glance, we will
develop in Chapter 10.1 an approach that will enable us to tackle such problems.
To explain the basic idea of the open-loop control of parallel interconnection, we
now focus on single-input/single-output (SISO) systems, defined in a discrete-time
case, because these are slightly easier to handle than continuous-time systems. We
first establish some useful notation.

Consider an nth-order, discrete-time, single-input system

x(t + 1) = Ax(t)+ bu(t), t = 0,1,2, . . . .

Then a finite input sequence u0,u1, . . . ,uT−1 steers the zero state to a desired state
x(T ) = x∗ ∈ R

n if and only if the scalar polynomial

u(z) =
T−1

∑
k=0

uT−1−kzk

satisfies

u(A)b = x∗.

We refer to u(z) as the input polynomial for x∗. The reachability of (A,b) is
equivalent to the existence of an input polynomial for every x∗ ∈ R

n. Moreover,
assuming the reachability of (A,b), the unique input polynomial of minimal degree
n− 1 is given by

u∗(z) = (1, . . . ,zn−1)(b,Ab, . . . ,An−1b)−1x∗.

Now consider the interconnected single-input systems

x1(t + 1) = A1x1(t)+ b1u(t),

x2(t + 1) = A2x2(t)+ b2u(t),
(1.3)
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where Ai ∈ R
ni×ni and bi ∈ R

ni for i = 1,2. Assume that system (1.3) is reachable,
i.e., that (A1,b1) and (A2,b2) are both reachable and the characteristic polynomials

q1(z) = det(zI−A1), q2(z) = det(zI−A2)

are coprime. For local state vectors x∗1 ∈ R
n1 ,x∗2 ∈ R

n2 there exist unique input
polynomials u∗1(z) and u∗2(z) of degrees n1− 1 and n2− 1, respectively, with

u∗1(A1)b1 = x∗1, u∗2(A2)b2 = x∗2.

By the coprimeness of the characteristic polynomials q1(z) and q2(z), there exist
unique polynomials c(z),d(z) ∈ R[z] of degrees degc(z) < n2,degd(z) < n1 that
satisfy the Bezout identity

c(z)q1(z)+ d(z)q2(z) = 1.

By the Cayley–Hamilton theorem, qi(Ai) = 0 for i = 1,2. Thus, by substituting A1

and A2 into the Bezout identity, we obtain d(A1)q2(A1) = I and c(A2)q1(A2) = I.
Consider the polynomial

u(z) = d(z)q2(z)u∗1(z)+ c(z)q1(z)u∗2(z).

Again, by substituting the matrices Ai into both sides of this equation, we obtain

u(A1)b1 = d(A1)q2(A1)u
∗
1(A1)b1 = x∗1,

u(A2)b2 = c(A2)q1(A2)u
∗
2(A2)b2 = x∗2.

Thus the (reverse) coefficients of the polynomial u(z) yield an input sequence that
steers (1.3) to the desired states.

The preceding approach can be extended in several directions. First, note that it is
very closely related to the Chinese remainder theorem; see Chapter 2, Theorem 2.11,
for a statement and proof of this central algebraic result. Second, the degree of u(z)
can be upper bounded by n1 + n2 by replacing the factors d(z)u∗1(z) and c(z)u∗2(z)
with their remainders modulo q1(z) and q2(z), respectively. Third, the construction
of the control can be easily carried out for an arbitrary number of parallel connected
reachable SISO systems:

x1(t + 1) = A1x1(t)+ b1u(t)

...

xN(t + 1) = ANxN(t)+ bNu(t).

(1.4)
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Assume that for each of the N local subsystems (A j,b j) local control sequences
u j are known that steer the zero state to a desired terminal state x∗j . How can one
compute from such local controls a single global input sequence u that steers all
subsystems simultaneously to the desired terminal states? Ideally, one would like to
obtain a formula, u =∑N

j=1F ju j , that expresses the desired control as the weighted
sum of local controls, where F j are suitable filter operators that act on the local
inputs. To answer this question, we need just a little bit more notation.

Let q j(z) = det(zI − A j) denote the characteristic polynomial of A j, and
define q̂ j(z) = ∏i�= j qi(z). Assume that the pairs (A j,b j) are reachable for each
j = 1, . . . ,N. The reachability of the parallel connection (1.4) is then equivalent to
the coprimeness of q j, q̂ j for each j = 1, . . . ,N. Let the polynomials c j(z) and d j(z)
denote the unique solutions of the Bezout equation

c j(z)q j(z)+ d j(z)q̂ j(z) = 1, j = 1, . . . ,N,

with degrees degd j < n j. Proceeding as before, we store the input sequences
u0, . . . ,uM−1 for controlling (1.4) as coefficients of the associated input polynomial
u(z) = ∑M−1

j=0 uM− j−1z j. Our basic control result for (1.4) is stated as follows.

Theorem 1.3. Assume that (1.4) is reachable. For local state vectors x∗1, . . . ,x
∗
N let

u1(z), . . . ,uN(z) ∈ R[z] be polynomials with

u1(A1)b1 = x∗1, . . . , uN(AN)bN = x∗N .

Then

u(z) =
N

∑
j=1

d j(z)q̂ j(z)u j(z) (1.5)

satisfies u(A j)b j = x∗j for all j.

Proof. From the Bezout equation we obtain dk(Ak)q̂k(Ak) = I and d j(Ak)q̂ j
(Ak) = 0 for j �= k. This implies

u(Ak)bk =
N

∑
j=1

d j(Ak)q̂ j(Ak)u j(Ak)bk = dk(Ak)q̂k(Ak)uk(Ak)bk = uk(Ak)bk = x∗k .

�
The preceding result exhibits a very simple formula (1.5) for the global control

of (1.4) in terms of a weighted sum of the given local controls for the decoupled
systems (A j,b j). The polynomial weights d j(z)q̂ j(z) are independent of the desired
local states x∗j and can be computed beforehand by solving N Bezout equations.
Since multiplication by the polynomials p(z) �→ a(z)p(z) acts as a Toeplitz operator
on the space of coefficients of polynomials p(z) of bounded degrees, formula (1.5)
represents the desired filter operator u = ∑N

j=1F ju j for computing global controls
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from local ones. Moreover, by replacing u(z) with the remainder polynomial u∗(z)
obtained by division with the remainders u(z) = m(z)q1(z) · · ·qN(z) + u∗(z), one
obtains an input polynomial of minimal degree bounded by n1 + · · ·+ nN . All this
requires only elementary operations from polynomial algebra (Euclidean algorithm,
division with remainders) for which efficient implementations are known.

At this stage the reader may wonder why we did not simply invert the reachability
matrix of the parallel interconnection scheme (1.3) to compute the minimal length
input sequence. The reason for this is that we wanted to find controls that are
computed from local control sequences, and the inversion of the global reachability
matrix does not allow one to do so. In fact, our solution, although of higher degree
than necessary, has an advantage in comparison to the global inversion method.
The solutions c j(z),d j(z) to the N Bezout equations must be computed only once.
Choosing solutions of the Bezout equations in an appropriate way, for example, by
using a Newton interpolation, may even open the way to recursive computations of
u(z). This scheme is therefore favorable if the number of parallel connected systems
changes or, more generally, if the effects of changing the coupling parameters in an
interconnected system are of interest. For a general analysis of open-loop control
for linear systems we refer the reader to Chapter 4. The multivariable case poses
more difficulties and will be treated in full generality in Chapter 10.1.

1.2 Synchronization of Coupled Harmonic Oscillators

We next turn to a different topic, that of synchronization in the self-organization
of coupled systems. This subject has attracted a lot of attention because synchro-
nization is a fundamental process in nature that is observed in many interconnected
systems. In the computer science literature, the synchronization property is often
referred to as consensus, with obvious appeal to areas such as social networks and
opinion dynamics. Being in a synchronized state is a truly macroscopic property
that is often due to the coupling effects inherent in a network. We refer the
reader to Chapter 11 for a detailed analysis of synchronization phenomena and
clustering effects. Here we restrict ourselves to a short discussion of a simple model
for synchronization: the case of two coupled linear oscillators. The subsequent
elementary discussion of synchronization is based on Fuhrmann, Priel, Sussmann
and Tsoi (1987), an unpublished manuscript dating back to the mid-1980s. We are
grateful to M. Pavon for providing us with fragments of it.

The coupling of two damped harmonic oscillators is related to resonance
phenomena. Consider a damped harmonic oscillator (r > 0,ω > 0) acted on by a
periodic force of the form F cosΩ t, i.e.,

ẍ+ rẋ+ω2x = F cosΩ t.
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Resonance in system (1.2) is probably the simplest example of synchronization.
It is well known that the solutions of (1.2) converge from all initial conditions
x(0), ẋ(0) to the periodic trajectory MF cos(Ω t−φ). Here the magnification factor
M is

M =
1

√
(Ω 2−ω2)2 + r2Ω 2

,

and the phase delay 0≤ φ ≤ π is determined through the equations

sinφ =
rΩ

√
(Ω 2−ω2)2 + r2Ω 2

, cosφ =
ω2−Ω 2

√
(Ω 2−ω2)2 + r2Ω 2

.

Let us next study in some detail the interconnection of two linear oscillators.
The model for a single, damped oscillator is

ẍ(t)+ rẋ(t)+ω2x(t) = v(t),
w(t) = ẋ(t).

(1.6)

Here v(t) is the input acting on the oscillator while the velocity term w = ẋ is
regarded as the output of the system. In contrast to standard approaches, we do not
want to transform the system into first-order state-space form but rather try to retain
the second-order structure by associating to (1.6) the polynomial system matrix

(
z2 + rz+ω2 −1

z 0

)
.

On the other hand, using the standard procedure for reducing (1.6) to a first-order

system and defining X =

(
x
ẋ

)
, we obtain

Ẋ = αX +βv,
w = γX ,

(1.7)

where α,β ,γ are defined by

α =

(
0 1
−ω2 −r

)
, β =

(
0
1

)
, γ =

(
0 1

)
. (1.8)

The transfer function of system (1.7) is

g(z) = γ(zI−α)−1β =
z

z2 + rz+ω2 .
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Before proceeding to analyze the case of two identical, symmetrically coupled
(damped) oscillators, consider first the decoupled system of uncontrolled oscillators

ẍi(t)+ rẋi(t)+ω2xi(t) = 0,
wi(t) = ẋi(t), i = 1,2.

(1.9)

The state space of the coupled system is four-dimensional and can be coordinated
by x = (x1, ẋ1,x2, ẋ2)

�. The state system representation of (1.9) becomes

d
dt

⎛

⎜
⎜
⎝

x1

ẋ1

x2

ẋ2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0 1 0 0
−ω2 −r 0 0

0 0 0 1
0 0 −ω2 −r

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x1

ẋ1

x2

ẋ2

⎞

⎟
⎟
⎠ .

We observe for r < ω2 that the state transition matrix of this autonomous system
has two identical pairs of complex conjugate eigenvalues (i :=

√−1):

λ± =
−r± i

√
4ω2− r2

2
.

When considering couplings there are various possibilities. In the sequel we assume
that the coupling mechanism transmits the effect of the motion of the oscillators
from one to the other. Furthermore, let us assume the absence of an external driving
force, i.e., we consider an autonomous system. Thus, in our model, the equations of
motion for the two coupled oscillators are

ẍ1 + rẋ1 +ω2x1 = κ ẋ2,

ẍ2 + rẋ2 +ω2x2 = κ ẋ1.
(1.10)

Again, the state space of the coupled system is four-dimensional. Hence, equa-
tion (1.10) can be rewritten in first-order form Ẋ =AκX as

d
dt

⎛

⎜
⎜
⎝

x1

ẋ1

x2

ẋ2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0 1 0 0
−ω2 −r 0 κ

0 0 0 1
0 κ −ω2 −r

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x1

ẋ1

x2

ẋ2

⎞

⎟
⎟
⎠ .

Computing the characteristic polynomial of Aκ yields

det(zI−Aκ) = (z2 + rz+ω2)2−κ2z2

= (z2 +(r−κ)z+ω2)(z2 +(r+κ)z+ω2).
(1.11)
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We conclude, under the assumption that r + |κ | ≤ 2ω , that the eigenvalues of
Aκ are

−(r±κ)± i
√

4ω2− (r±κ)2

2
.

Our next step is to compute the corresponding eigenvectors. The eigenvector
equations are

⎛

⎜⎜
⎝

λ −1 0 0
ω2 λ + r 0 −κ
0 0 λ −1
0 −κ ω2 λ + r

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

a
b
c
d

⎞

⎟⎟
⎠=

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠ .

If the two oscillators were synchronized, then x2(t) = x1(t) and ẋ2(t) = ẋ1(t).
Therefore, we look for an eigenvector of the form X = (ξ ,η ,ξ ,η)�. The character-
istic equation AκX = λX is given by

⎛

⎜
⎜
⎝

0 1 0 0
−ω2 −r 0 κ

0 0 0 1
0 κ −ω2 −r

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ξ
η
ξ
η

⎞

⎟
⎟
⎠= λ

⎛

⎜
⎜
⎝

ξ
η
ξ
η

⎞

⎟
⎟
⎠ ,

which reduces to the pair of equations

η = λξ ,
−ω2ξ − rη +κη = λη .

By substitution, we obtain (λ 2 +(r−κ)λ +ω2)ξ = 0. Since ξ �= 0 for a nontrivial
eigenvector, λ 2 +(r−κ)λ +ω2 = 0. This implies

λ =
−(r−κ)± i

√
4ω2− (r−κ)2

2
.

Thus, the synchronized eigenvalues are one pair of complex conjugate eigenvalues
of Aκ . In fact, assuming κ < r, they correspond to the pair with the larger,
though negative, real part. In a completely analogous fashion, we consider the
antisynchronized solution x = (ξ ,η ,−ξ ,−η)�. In this case, the characteristic
equation is given by

⎛

⎜
⎜
⎝

0 1 0 0
−ω2 −r 0 κ

0 0 0 1
0 κ −ω2 −r

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ξ
η
−ξ
−η

⎞

⎟
⎟
⎠= λ

⎛

⎜
⎜
⎝

ξ
η
−ξ
−η

⎞

⎟
⎟
⎠ .
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This reduces to the pair of equations

η = λξ ,
−ω2ξ − rη−κη = λη ,

and thus leads to (λ 2 + (r + κ)λ + ω2) = 0. This shows that the eigenvalues
corresponding to the antisynchronized solution are

λ± =
−(r+κ)± i

√
4ω2− (r+κ)2

2
.

So the antisynchronized modes correspond to a pair of complex conjugate eigenval-
ues of Aκ . We note that if the coupling term, measured by κ , is too large, i.e., κ > r,
then the system becomes unstable.

The moral of the spectral analysis, in the case of a symmetrically coupled pair
of identical damped harmonic oscillators, is that there are two basic eigenmodes,
the synchronized and the antisynchronized. Moreover, because the real part of the
antisynchronized mode is to the left of the real part of the synchronized mode, this
mode decays faster with time. Thus, asymptotically, the dominant mode would be
the synchronized one. Of course, in the absence of a forcing term that provides
energy to the system to offset the energy dissipated by friction, the solution would
tend asymptotically to zero. We see from this example that synchronization is the
way the coupled system organizes itself to minimize energy consumption. This
leads one to conjecture the existence of a variational principle that determines the
dynamics of the system. Moreover, a comparison of the case of coupled versus
uncoupled pairs of oscillators suggests strongly that synchronization is related to
the problem of pole placement by output feedback.

A natural question arises now: Is it necessary for the spectral analysis to go over
to a first-order, or state, representation? Synchronization phenomena are usually
defined and studied in the state-space context. However, our example of coupled
oscillators shows that it might be preferable to perform the study in a functional
context and use the concept of state maps to connect with the state-space analysis. To
do this, we go back to the system equations (1.10) and rewrite them into differential
operator form as

(
d2

dt2
+ r d

dt +ω2 id −κ d
dt

−κ d
dt

d2

dt2
+ r d

dt +ω2 id

)(
x1

x2

)
=

(
0
0

)
. (1.12)

However, if we apply the Laplace transform to equation (1.12), we can identify, with

Q(z) =

(
z2 + rz+ω2 −κz
−κz z2 + rz+ω2

)
,



1.2 Synchronization of Coupled Harmonic Oscillators 11

the solution space with the space of tuples of strictly proper rational functions,

XQ = {h =

(
h1

h2

)
| hi strictly proper rational, Q(z)h(z) is a polynomial},

referred to as the rational model of (1.12). The space XQ has a natural structure
as a module over the ring R[z] of polynomials, and we develop in Chapter 3 a
comprehensive algebraic theory of such modules. In fact, differentiation leaves
invariant the space of solutions of (1.12). Via the Laplace transform this corresponds
exactly to the shift operator σ : XQ −→ XQ

σ(h) = π−(zh(z)),

where π− denotes projection onto the strictly proper part. Clearly,

det

(
z2 + rz+ω2 −κz
−κz z2 + rz+ω2

)
= (z2 +(r−κ)z+ω2)(z2 +(r+κ)z+ω2).

(1.13)

A comparison of (1.13) with (1.11) shows that it might be possible to derive state
representations directly from polynomial data. Indeed, this is achieved by using
polynomial and rational models as well as shift realization, a topic that will be

discussed extensively in Chapter 4. Note that, defining ω± =

√
ω2− (r±κ)2

4 , the
factors in (1.13) can be further factored as

z2 +(r−κ)z+ω2 = (z+
r−κ

2
+ iω−)(z+

r−κ
2
− iω−),

z2 +(r+κ)z+ω2 = (z+
r+κ

2
+ iω+)(z+

r+κ
2
− iω+).

Thus, the zeros of Q(z), i.e., the points at which Q(z) drops rank, are −(r±κ)
2 ± iω±.

This is relevant to the computation of the eigenvectors of the shift in XQ. An element
h ∈ XQ is an eigenvector of the backward shift σ if and only if there exists a λ ∈ C

for which σh(z) = π−(zh) = λh(z), which is the case if and only if h(z) = ξ
z−λ for

some constant vector ξ . Furthermore, h(z) ∈ XQ if and only if

π−
Q(z)ξ
z−λ

=
Q(λ )ξ
z−λ

= 0,

which is the case if and only if Q(λ )ξ = 0. Taking note of factorizations (1.13), we
clearly have z2 + rz+ω2|z=− r−κ

2 +iω− = κz|z=− r−κ
2 ±iω− . This allows us to evaluate

Q(z) at z =− r−κ
2 ± iω− to obtain

Q(− r−κ
2
± iω−) = κ

(− r−κ
2 ± iω− r−κ

2 ∓ iω−
r−κ

2 ∓ iω− − r−κ
2 ± iω−.

)



12 1 Introduction

This implies that ξ = col(ξ1,ξ2) ∈KerQ(− r−κ
2 ± iω−) if and only if ξ2 = ξ1. In an

analogous fashion, ξ = col(ξ1,ξ2) ∈ KerQ(− r+κ
2 ± iω+) if and only if ξ2 = −ξ1.

The implications, as far as synchronization is concerned, are now clear.
So far, we have studied a pair of coupled oscillators independently in state space

as well as in polynomial terms. It is time to elaborate on the connection between the
two methods. Let us start with the autonomous system

ẍ+ rẋ+ω2x = 0,
y = x.

Defining α and γ as in (1.8), the state to output transfer function is easily computed:

(
1 0

)
(

z −1
ω2 z+ r

)−1

= (z2 + rz+ω2)−1
(

z+ r 1
)
.

The intertwining relation

(
z+ r 1

)
(

z −1
ω2 z+ r

)
= (z2 + rz+ω2)

(
1 0

)
(1.14)

is embeddable in a doubly coprime factorization as

⎛

⎝
z −1 0

ω2 z+ r 1
1 0 0

⎞

⎠

⎛

⎝
0 0 1
−1 0 z

−(z+ r) −1 z2 + rz+ω2

⎞

⎠=

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ .

This embedding allows one to construct a state map X(σ) that reconstructs a state
from the output y via

X = X(σ)y =

(
1
σ

)
x =

(
x
ẋ

)
.

In the case of two uncoupled oscillators, the intertwining relation (1.14) is
replaced by

(
z+ r 1 0 0

0 0 z+ r 1

)
⎛

⎜
⎜
⎝

z −1 0 0
ω2 z+ r 0 0
0 0 z −1
0 0 ω2 z+ r

⎞

⎟
⎟
⎠

=

(
z2 + rz+ω2 0

0 z2 + rz+ω2

)(
1 0 0 0
0 0 1 0

)
.

(1.15)
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Proceeding to the case of two identical coupled harmonic oscillators

ẍ1 + rẋ1 +ω2x1 = κv1,

ẍ2 + rẋ2 +ω2x2 = κv2,
(1.16)

v1 =
(

0 d
dt

)( x1

x2

)
, v2 =

(
d
dt 0

)( x1

x2

)
,

y1 =
(

1 0
)
(

x1

x2

)
, y2 =

(
0 1

)
(

x1

x2

)
.

Note that here there are two distinct kinds of output. The first, specified by vi, is
used to describe the interconnection, whereas the second, specified by yi, is the
observed output. We encounter a similar situation in observer theory; see Fuhrmann
(2008). We say that system (1.16) synchronizes if y2(t)−y1(t) tends asymptotically
to zero. Of course, for a meaningful definition this must be expressed in terms of
precise stability requirements, a topic we shall discuss in Chapter 11.

In analogy to (1.15), we consider the intertwining relation

(
z+ r 1 0 0

0 0 z+ r 1

)
⎛

⎜
⎜
⎝

z −1 0 0
ω2 z+ r −κz 0
0 0 z −1
−κz 0 ω2 z+ r

⎞

⎟
⎟
⎠

=

(
z2 + rz+ω2 −κz
−κz z2 + rz+ω2

)(
1 0 0 0
0 0 1 0

)
.

(1.17)

This connects frequency-domain and state-space descriptions of the interconnected
system. In fact, a state map that reconstructs the state from the output x1,x2 can be
obtained from the embedding of (1.17) in a doubly coprime factorization. We will
elaborate on this in Chapters 4 and 11.

1.3 Outline of the Book

We aim at developing a coherent approach to the system-theoretic analysis of inter-
connected linear dynamic control systems. While previous research on networks
of systems primarily focused on state-space models, our approach is motivated
by the early work of Rosenbrock, who emphasized as early as the 1970s the
need for a systematic investigation of coupled higher-order system representations.
Historically, the early investigation of higher-order system representations led
naturally to the development of methods from algebraic systems theory and operator
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theory, such as polynomial and rational models. We are therefore convinced that
such an algebraic approach might serve to properly lay the foundations for a
mathematical theory of networks of linear systems. Indeed, our very motivation for
writing this book was to provide such foundations.

Our main achievements are as follows.

• We develop a general polynomial model approach to the study of the reachability
and observability properties of networks of linear systems. The models for
the node subsystems in a network can be defined either in the state space or
using higher-order polynomial matrix representations. There is a considerable
advantage in allowing for different system representations; it opens the way to
studying the distinct effects caused by the coupling parameters and the dynamics
of node systems. Including discrete-time linear system representations defined
over, for example, finite fields, could lead to new extensions of the theory to
other research areas, such as, for example, network coding.

• We develop a comprehensive theory of open-loop controls, for both single
systems and networks of systems. While there are numerous ways to analyze
the reachability of linear systems, the computational aspect of determining open-
loop controls has been somehow neglected in the literature. This is in contrast
to feedback control, where quite a bit of research has been done on numerical
computations of stabilizing state feedback or output feedback controllers. Similar
work on open-loop control is lacking.

• We present a unified approach to synchronization and clustering for both
first-order and higher-order systems. Previous work on synchronization mainly
addressed the problem in the state space, whereas we consider synchronization
for partial states as well.

• We present a number of new ideas for controlling the macroscopic properties
of networks. Here we only scratch the surface. Our main focus is on ensemble
control for parameter-dependent families of linear systems. Such systems consti-
tute the simplest kinds of infinite networks, i.e., networks possessing an infinite
number of node systems. Our tools here are mainly function theoretic. We show
the connection with controlling partial differential equations, infinite platoons,
and systems defined by the action of composition operators on Hardy spaces of
analytic functions.

During the process of writing this book we became increasingly aware of how
vast the subject of networks of linear systems really is. Therefore, the table of
contents not only reflects our own choices of topics but also indicates what material
has been left out. Thus, one should regard this book more as a first step rather than
as a definitive treatment of the subject. We list a few of the most desirable items that
are missing from this book. The reasons for their omission are, of course, varied,
one of the most important being simply our lack of sufficient energy and time.

• The first issue to mention is the use of behaviors as general models for dynamics
and interconnections. Clearly, it is very desirable to consider interconnections
of behaviors rather than of input–output models and thus develop a theory
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of networks of behaviors. However, a problem that we encountered in such a
behavioral approach is that the interconnection structure becomes more exposed
in an input–output framework and less so in a behavioral context. For example,
it is very easy to define a directed interconnection graph for networks of input–
output systems. For these reasons we decided to focus on the simpler problem of
studying the interconnections of systems with inputs and outputs.

• Another topic to mention here is that of infinite-dimensional systems. We
briefly address such systems when discussing infinite platoons and spatially
invariant systems. Including systematically infinite-dimensional systems would
require expanding all chapters by including material on Hardy spaces of analytic
functions and operator theory. While this would have been possible, it would
have required us to expand our exposition in much vaster generality.

• Somehow related to the preceding point is our focus on modules over the ring of
polynomials F[z] in a single variable z over the field F. Of course, one can try to
replace this ring by localizations of F[z], because this would, for example, include
the principal ideal domain of stable proper rational functions. Thus proceeding
in this direction would have allowed us to include rational Hardy spaces in our
framework. Again, we feel that the level of generality that would have been
gained might not have been in perfect balance with the level of abstractions
required.

• The field of networked control systems is currently in a very rapid development,
with major results being derived by various methods, analytic, algebraic, and
graph-theoretic. Thus, we obviously had to leave out several other research direc-
tions from the text in order to achieve a somewhat coherent description. Such
topics include, for example, distributed optimization (Nedic, Ozdaglar and Par-
rilo (2010)), structural reachability (Dion, Commault and van der Woude (2013),
Meshbahi and Egerstedt (2010)), and formation control (Anderson et. al. (2007),
Jadbabaie, Lin and Morse (2003)).

We now turn to a more detailed description of the contents of this book. The book
makes heavy use of the results and techniques of algebraic systems theory and,
in particular, the theory of functional models. For an elementary introduction to
scalar functional models and background material on linear algebra we refer to the
book on linear algebra by Fuhrmann (2012), where the focus is on SISO systems.
The functional model approach to multivariable linear systems has been treated so
far only in various journal publications; it has never received systematic treatment
in a textbook. This book serves to fill that gap and presents a general account of
those aspects of the theory of polynomial and rational models that we regard as
important for analyzing networks of systems. Other textbooks, for example, those
by Rosenbrock (1970), Wolovich (1974), Kailath (1980), Vardulakis (1991), and
Antsaklis and Michel (2005), offer complementary material and viewpoints on
polynomial approaches to systems theory.

The book is divided into three parts. Part I provides the necessary background
on linear algebra over rings of polynomials, functional model spaces, and algebraic
systems theory. Part II discusses more advanced topics, such as stability theory,
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feedback control, and observer theory, and provides a brief introduction to con-
ditioned and controlled invariant subspaces. The material in these two parts can
be used as a self-contained course in linear systems, with a special focus on the
structure theory of linear systems. The later chapters provide additional material for
seminars and advanced courses in linear systems theory.

Chapter 2 summarizes the basic tools from linear algebra over rings and modules
that are necessary for our subsequent analysis. Our focus is on modules over the ring
of polynomials F[z]. Although most of the results in this chapter can be extended
to principal ideal domains, we refused the temptation of trying to develop linear
systems theory over a general principal ideal domain and preferred to stick to the
ring of polynomialsF[z]. We define the coprimeness and divisibility of polynomials,
for both scalar and matrix polynomials, and introduce basic equivalence notions
for polynomial matrices. Proofs of the Hermite and Smith canonical forms are
provided. We then study quotient modules of the free module F[z]m by a full
submodule. They serve as abstract versions of the polynomial models introduced in
Chapter 3. Theorem 2.54 is an algebraic version of the celebrated commutant lifting
theorem and allows us to characterize module homomorphisms on quotient modules
and polynomial models via intertwining relations. We introduce doubly coprime
factorizations and characterize them via unimodular extensions and the solvability
of associated matrix Bezout equations. An important notion in a mathematical
theory is that of an isomorphism. For quotient modules this leads to two different
notions of the equivalence of polynomial matrices: by unimodular equivalence or
using polynomial equivalence via left and right coprime intertwining relations.
Theorem 2.46 shows that these two definitions are essentially equivalent. In our
subsequent discussion of isomorphism notions for linear systems representations,
this theorem basically proves the equivalence of the two notions on strict system
equivalence proposed by Rosenbrock (1970) and Fuhrmann (1977).

Chapter 3 introduces the two main players in our algebraic approach to linear
systems, i.e., polynomial models XD and their dual counterpart, rational models XD.
While rational models XD correspond to solution spaces of systems of higher-order
differential or difference equations, polynomial models serve as a concretization
of quotient modules. The basic idea behind studying the two spaces comes from
operator theory; the connection to systems theory was first expounded by Fuhrmann
(1976). Both spaces XD and XD are F[z]-modules that are associated with a
nonsingular polynomial matrix D(z). The module structure endows both spaces
with the action of a shift operator SD and SD, respectively. Understanding the
algebraic properties of these functional model spaces, together with the action of
the shift operators, is key to all subsequent analysis. The invariant subspaces of
the shift are naturally identified with polynomial matrix factorizations and direct
sum decompositions into shift-invariant subspaces correspond to mutually coprime
or skew-prime factorizations. Theorem 3.14 establishes a bijective correspondence
between the Boolean lattices of invariant subspaces and polynomial matrix fac-
torizations. The module homomorphisms of polynomial models are characterized
via the intertwining relations among polynomial matrices. The standard properties
of such module homomorphisms are injective, surjective, or bijective and are
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characterized in terms of left and right coprimeness. Dual results are obtained for
rational model spaces and their associated module homomorphisms. Finally, we
prove a version of the Chinese remainder theorem for polynomial matrices.

Chapter 4 contains a concise treatment of linear systems theory, with a spe-
cial focus on structural issues such as system representations, realization theory,
reachability, and observability. We focus on discrete-time systems, which enables
us to work over an arbitrary field. Various system models are introduced, such
as input/output representations, state-space models, and higher-order polynomial
matrix descriptions, such as Rosenbrock models. We briefly discuss behaviors, as
introduced by J.C. Willems, and identify them with rational models associated
with rectangular polynomial matrices. Although behaviors define a very elegant and
powerful approach to modeling linear systems, we will not treat them systematically
in the book and restrict ourselves to input–output or state-space descriptions.

Following a self-contained discussion of realization theory, we introduce the shift
realization for polynomial matrix representations. The reachability and observabil-
ity of the shift realization are characterized in terms of the left and right coprimeness
of polynomial matrix representations. We construct a reachability map and compute
its kernel. Polynomial system matrices are shown to be polynomially equivalent if
and only if the respective shift realizations are similar. Thus the full counterpart
to Kalman’s realization theorem is developed for the more general Rosenbrock
representations. Poles and zeros of linear systems are defined and characterized for
polynomial system representations.

We then turn to the problem of open-loop control. Surprisingly, at least to us, this
problem has not been solved in textbooks on linear systems, at least to the best of
our knowledge. Thus, Section 4.8 is devoted to the solution of this problem. We do
so by inverting the restricted reachability map, using the technique of embedding
polynomial intertwining relations into suitable doubly coprime factorizations. An
explicit inversion formula for the restricted reachability map is given in terms
of appropriate doubly coprime factorizations. Thus, without being overly explicit
at this point, we realize flatness as a special case of our construction. Explicit
formulas for open-loop control of higher-order Rosenbrock models are derived.
Characterizations of minimal-degree solutions via reachability indices are given.
Open-loop controls for steering into a subspace are discussed, as is the dual problem
of state reconstruction.

Chapter 5 introduces a new tensor product approach to the classical stability
criteria of Routh–Hurwitz and Hermite–Fujiwara. We consider tensor products of
polynomial and rational models, both for the underlying vector space structures
and for the module structures of functional spaces. Identifying the space of module
homomorphisms between polynomial models with a suitable tensor product repre-
sentation leads us to a coordinate-free approach to Bezoutian maps and associated
polynomial Sylvester equations. We are convinced that the potential of this tensor
product approach to Bezoutians has not been exhausted. A polynomial extension of
the classical Ostrowski–Schneider inertia theorem is proven, from which we then
deduce the Hermite–Fujiwara stability criterion.
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Chapter 6 provides a study of state feedback control, and contains complete
proofs of basic pole placement results, such as Wonham’s theorem and Rosen-
brock’s theorem. A study of reachability indices and the Brunovsky canonical form
is developed from a polynomial point of view. We then consider the stabilization
task by dynamic feedback controllers. Thus, we introduce coprime factorizations
over the ring RH∞ of stable proper rational functions and derive the Youla–
Kucera parameterization of stabilizing controllers. We include an introduction to
the standard notions and results from geometric control theory, such as conditioned
and controlled invariant subspaces. These subspaces generalize the familiar notion
of an invariant subspace for a linear operator. Using functional models, polynomial
characterizations of controlled and conditioned invariant subspaces are developed.
These concepts will appear again in Chapter 7 on observer theory and in Chapter 11
on the synchronization of networks.

The main focus of Chapter 7 is observer theory. In contrast to many textbooks,
here the theory is developed for general functional observers, i.e., for the task of esti-
mating a linear function of states. Following a discussion of the central properties of
the observation process, such as trackability, detectability, or reconstructibility, we
then turn to a study of various classes of functional observers and characterize them
in purely polynomial terms. Asymptotic tracking observers are characterized either
in terms of the solvability of an associated Sylvester equation, using conditioned
invariant subspaces, or via the solvability of certain linear equations of rational
functions. Theorem 7.30 seems to be new and allows for a constructive approach
to functional observers via shift realizations.

The third part of the book is devoted to an analysis of networks of systems.
The analysis of interconnected systems, in particular with respect to stability
properties and synchronization phenomena, often requires the use of methods from
graph theory. Thus, we summarize in Chapter 8 several results and concepts from
graph theory. This includes a discussion of the Perron–Frobenius theorem and
weighted adjacency and Laplacian matrices and their spectral properties. Our proof
of the Perron–Frobenius theorem depends on the properties of the Hilbert metric
on convex cones, together with a contraction mapping theorem on pointed convex
cones. We believe that this approach, due to Birkhoff (1957), is of independent
interest. From the Perron–Frobenius theorem we obtain a simple finite-dimensional
version of the ergodic theorem, which suffices for a study of the elementary
stochastic properties of Markov chains. We characterize connectivity properties both
for directed and undirected graphs and introduce weighted adjacency matrices and
Laplacians for directed graphs. Although we do not discuss aspects of formation
control in detail, we present a brief introduction to Euclidean distance geometry and
relevant notions from graph theory, such as graph rigidity. We then study the spectral
properties of the Laplacian of a strongly connected weighted digraph. Explicit
formulas for the eigenvalues and eigenvectors of Laplacians of simple graphs such
as paths and cycles are given. Following Doerfler and Bullo (2013), we introduce
the Kron reduction of a graph and relate it to the Schur complement of the graph
Laplacian. This may be of interest when studying the model reduction of networks.
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Chapter 9 goes beyond the previous theory and starts with a reachability and
observability analysis of networks of linear systems. The basic network model
that we adopt consists of a finite number of dynamic node systems that are
interconnected, either statically or dynamically, by coupling parameters. We assume
that one knows how to control such node systems individually and that one knows
the interconnection structure between the node systems. Using these data, we
address the problem of how to construct a control for the entire network. This calls
for finding reachability criteria for interconnected systems that reveal the impact
of the interconnection structure as clearly as possible. To obtain such informative
conditions for the reachability and observability of networks is in fact the very
purpose of this chapter.

Following a discussion of simple examples, we introduce the basic models
for representations of interconnected systems. Both state-space formulations and
higher-order polynomial system representations are considered. We prove an equiv-
alence principle that basically asserts that the system-theoretic properties of such
networks are independent of the various representations of the node systems. This
principle was first established by Rosenbrock and Pugh (1974) and is here extended
to a general tool analyzing the strict system equivalence for interconnected systems.
As a consequence, we derive explicit Hautus-type characterizations of reacha-
bility and observability for interconnected systems, possibly including dynamic
couplings. Next, we study the influence of coupling structure on a network. The
easiest networks are homogeneous ones, namely, those where the node systems are
all identical SISO systems. A simple reachability characterization of homogeneous
networks appears in Theorem 9.15, thereby reproving a result by Hara, Hayakawa
and Sugata (2009) and, earlier, by Sontag (1979). Subsequent sections deal with the
goal of characterizing the reachability of networks with coupling patterns defined
by trees or circular or periodic couplings.

Chapter 10 discusses in detail reachability and observability properties for stan-
dard interconnection structures, such as parallel, series, and feedback connections,
leading to new, elegant proofs for the classical characterizations of reachability and
observability by Callier and Nahum (1975) and Fuhrmann (1975). The remaining
parts of the chapter then focus on the problem of computing open-loop controls for
standard interconnections of systems. This is already considered in the preceding
Section 1.1 for the special case of parallel connected SISO systems. Here we
are interested in the general multivariable situation described as follows. Suppose
that “local” controls are known that steer N linear systems from the zero state
individually to given states. If the systems are coupled, how does one compute
from the local controls a single global input function that steers the zero state of
the network to the terminal states of the node systems? More precisely, can one
derive a formula that inputs the local controls and the coupling parameters and
outputs the desired global control? In Section 10.2, we solve this problem for
parallel interconnections. In between, we discuss the relation of computing open-
loop controls to the problem of tangential interpolation. Our solution minimizes
the complexity of computations by efficiently using local information on the
interconnected nodes.
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The last two chapters shift the focus by turning to an analysis of the control
of macroscopic states, such as synchronization and consensus, clustering, and
ensemble control. Chapter 11 presents a brief introduction to the tasks of consensus
and synchronization for networks of linear multiagent systems. Following a brief
review of established linear models for consensus, we describe two nonlinear
models, those by Vicsek and Krause–Hegselmann. We illustrate how consensus
algorithms can be used to design distributed solution methods for linear systems
of equations. The remaining parts of Chapter 11 then focus on the important issue
of synchronization in networks of linear systems. We first define synchronizability
in the state space for first-order representations of nodes and derive necessary and
sufficient conditions for the interconnection parameters to achieve synchronization
and clustering. We then develop an independent and equivalent approach to the
synchronization of higher-order node systems, where synchronizability is defined
for the partial states. Specific conditions for synchronization are obtained for various
arrays of second-order oscillators.

Chapter 12 deals with the task of controlling ensembles of states. To get an idea
of what is meant by that, consider a task where a probability distribution on the
state space is to be steered to a terminal distribution using a linear control system.
This is an infinite-dimensional control problem for the induced transport equation
on the space of probability density functions. In simplified form, this problem arises
in the control of parameter-dependent linear systems, where a single, parameter-
dependent input function is sought that steers the zero state arbitrarily close to a
desired family of terminal states. This property is termed ensemble reachability and
has been studied in the context of quantum control and nuclear magnetic resonance
spectroscopy; see Li and Khaneja (2006). Ensemble control is the open-loop version
of what used to be called the blending problem in robust feedback control. We
derive necessary as well as sufficient conditions for ensemble reachability for
single-input systems. One can view a parameter-dependent family of systems as an
associated system in a Hilbert space and, thus, apply tools from infinite-dimensional
systems theory. Using the Fourier transform, this implies, for example, a weak
version of reachability for certain partial differential equations, such as the one-
dimensional heat equation. By sampling a parameter-dependent family of systems at
an infinite set of parameter values, an infinite network of linear systems is obtained.
This connects to recent work on controlling infinite platoons or spatially invariant
systems. From an operator-theoretic viewpoint, this amounts to studying control
problems defined by the action of composition operators on Hardy spaces. Since
reachability is equivalent to the cyclicity of a state-transition operator, there are
connections with the work by Beurling on cyclic shifts. A sufficient condition for
the reachability of such composition operators is shown in a very special situation.
It should be interesting to extend these results to linear systems defined on vectorial
Hardy spaces.
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Chapter 2
Rings and Modules of Polynomials

Since concepts from algebra such as rings and modules play a dominant role in
our polynomial approach to linear systems, it seems useful to collect in this chapter
some of the most relevant concepts and results from linear algebra. We assume
that the reader is already familiar with the basic definitions and facts of linear
algebra over a field. Starting from such a background, our aim is to generalize
the well-known theory of vector spaces and linear operators over a field to an
analogous theory of modules, defined over the ring of polynomials in one variable.
From a system-theoretic point of view this corresponds to passing from a state-
space point of view to a frequency-domain description of linear systems, and
even further on to a module-theoretic approach. This algebraic approach to linear
systems theory was first expounded in the very influential book by Kalman, Falb
and Arbib (1969) and has led to a new area in applied mathematics called algebraic
systems theory. It underpins our work on the functional model approach to linear
systems, a theory that forms the mathematical basis of this book. In doing so it
proves important to be able to extend the classical arithmetic properties of scalar
polynomials, such as divisibility, coprimeness, and the Chinese remainder theorem,
to rectangular polynomial matrices. This is done in the subsequent sections of
this chapter. Key facts are the Hermite and Smith canonical forms for polynomial
matrices and rational matrices, respectively, Wiener–Hopf factorizations, and the
basic existence and uniqueness properties for left and right coprime factorizations
of rational matrix-valued functions. We study doubly coprime factorizations that
are associated with intertwining relations between pairs of left and right coprime
polynomial matrices. The existence of such doubly coprime factorizations will play
a crucial role later on in our approach to open-loop control.

Notation. Throughout this book we denote by N = {0,1,2, . . .} and N+ =
{1,2,3, . . .} the sets of nonnegative and positive integers, respectively, while
Z = {. . . ,−2,−1,0,1,2, . . .} denotes the ring of integers. The fields of rational,
real, and complex numbers are denoted by Q, R, and C, respectively. A general
field is denoted by F, while F denotes its algebraic closure.
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2.1 Rings and Ideals

We assume that the reader knows the definitions of groups, rings, and fields from
basic courses on abstract linear algebra; the elementary textbook by Fuhrmann
(2012) provides an introduction to linear algebra that is very much in the spirit
of this book. Recall that a ring R is a set with two operations, “addition” + and
“multiplication” ·, such that the following rules apply:

1. (R,+) is an abelian group with additive identity element 0;
2. Multiplication is associative and distributive, i.e., x · (y+ z) = x · y+ x · z for all

x,y,z ∈ R. There exists an identity element 1 ∈ R such that 1 · x = x for all x ∈ R.

In the sequel the shorter notation xy will be used to denote the product x · y of two
ring elements. Throughout this book a ring is always assumed to be commutative,
i.e., R satisfies the following additional property:

3. xy = yx for all x,y ∈ R.

The identity element 1 for multiplication is allowed to be equal to 0. In this case,
one obtains the zero ring R = {0}.

An element b∈ R is called a divisor of a∈ R if there exists c∈ R, with a = bc. A
zero divisor in R is an element a∈ R for which there exists a nonzero element x∈ R,
with ax = 0. A ring R (with 1 �= 0) is called an integral domain if R possesses no
zero divisor a �= 0. Standard examples of integral domains are the ring Z of integers
and the ring F[z] of polynomials in a single variable z over a field F.

The most interesting subsets in a ring are the ideals. An ideal I of R is a nonempty
subset I ⊂ R with the properties

a,b ∈ I =⇒ a+ b∈ I,

a ∈ I and r ∈ R =⇒ ra ∈ I.

Obviously, I = R is an ideal; every other ideal is called proper. The zero ideal
{0} is another trivial example of an ideal; it is contained in every ideal. The set of
zero divisors in a ring R �= {0} is an ideal, too. A very important construction of
ideals is as follows. Let a1, . . . ,an be ring elements. Then the set

(a1, . . . ,an) := a1R+ · · ·+ anR =
{ n

∑
i=1

airi | r1, . . . ,rn ∈ R
}

defines an ideal in R. It is called the ideal generated by a1, . . . ,an. Ideals

(a) = aR := {ar | r ∈ R }
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that are generated by single ring elements a are called principal ideals. A principal
ideal domain (PID) is an integral domain such that every ideal of the ring is a
principal ideal. Standard examples of PIDs are the ring of integers and the ring of
polynomials in a single variable over a field.

Since the additive group (R,+) of a ring is abelian, every ideal I of R is a normal
subgroup of (R,+). Therefore, the factor group of coset elements

R/I := {x+ I | x ∈ R}

is a group. Here we use the notation

x+ I := {x+ a | a ∈ I}.

The elements x+ I of R/I are called residue classes (or cosets) of x modulo I. The
equality of residue classes defines an equivalence relation

x≡ a mod I ⇐⇒ x− a∈ I.

The sum and product of two elements in R/I are defined by

(x+ I)+ (y+ I) := (x+ y)+ I (2.1)

and

(x+ I) · (y+ I) := xy+ I, (2.2)

respectively. Note that (2.2) makes sense only because of the second closure
property that defines the notion of an ideal. A map f : R−→ S between rings is called
a ring homomorphism if it satisfies f (x + y) = f (x) + f (y), f (xy) = f (x) f (y),
and f (1) = 1 for all x,y ∈ R. This implies f (0) = 0 and f (−x) = − f (x). A ring
isomorphism is a bijective ring homomorphism. The inverse of a ring isomorphism
is then an isomorphism, too. The kernel of a ring homomorphism f is defined as

Ker f = {x ∈ R | f (x) = 0}.

Thus the kernel of a ring homomorphism on R is an ideal. It is the zero ideal if and
only if f is injective. The next result shows that every ideal of R is the kernel of a
suitable ring homomorphism f : R−→ S.

Theorem 2.1. Let I be an ideal of R. Then the operations (2.1), (2.2) define a ring
structure on R/I such that the quotient map

π : R→ R/I, π(x) := x+ I



26 2 Rings and Modules of Polynomials

becomes a surjective ring homomorphism with kernel Ker π = I. The ring R/I is
called the quotient ring of R by I. The zero element of R/I is the coset 0+ I = I, and
the identity element of R/I is 1+ I.

Consider a ring homomorphism f : R−→ S and an ideal I of R, with I ⊂ Ker f .
Then f (a+ x) = f (a) for x ∈ I. This shows that the map f̄ : R/I −→ S, f̄ (a+ I) :=
f (a), is well defined and is in fact a ring homomorphism. We obtain the following
commutative diagram of homomorphisms:

The kernel of the induced map f̄ on the quotient ring R/I is equal to

Ker f̄ = {a+ I | a ∈ Ker f}

and, hence, is isomorphic to Ker f/I. In particular, for a surjective homomorphism
f : R−→ S the induced map f̄ : R/Ker f −→ S defines a ring isomorphism.

The ideals in a quotient ring are characterized as follows.

Proposition 2.2. Let I be an ideal of a ring R and π : R−→ R/I denote the quotient
map. Then J �→ J′ := π−1(J) defines a bijective correspondence between ideals J of
R/I and ideals J′ of R that contain I.

Proof. For ideals J of R/I one verifies that π−1(J) is an ideal of R that contains I.
Conversely, if J′ is an ideal of R with I ⊂ J′, then J = π(J′) is an ideal of R/I with
J′ = π−1(J). �

The units of a ring are defined as the invertible elements of R, i.e., the elements
u ∈ R for which there exists b ∈ R, with ub = 1. The set of units of R forms an
abelian group R× under multiplication. A ring R �= {0} is a field if and only if the
set of units is equal to R−{0}. The group of units of Z is {−1,1}, while the units of
the ring of polynomials F[z] are the nonzero constant polynomials. A prime of an
integral domain R is a nonzero element p ∈ R\R× with the property that whenever
p divides a product ab of ring elements a,b ∈ R, then p divides a or p divides b. In
the ring of integers, the primes are ±p for p a prime number. A generalization of
the notion of primes is that of irreducibility. An element a∈ R\{0} that is not a unit
is called irreducible if it cannot be written as a product a = bc of elements b,c ∈ R
that are not units. It is easily seen that the primes in a ring are irreducible. In a PID,
the converse is true, too. We next determine the units of a quotient ring.

Lemma 2.3. Let I be an ideal of a ring R. A coset a+ I is a unit of R/I if and
only if

aR+ I = R.
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Proof. a+ I is a unit of R/I if and only if there exists b ∈ R, with ab+ I = 1+ I.
But this is equivalent to 1 ∈ aR+ I, i.e., to aR+ I = R. �

If an ideal I contains a unit u of R, then 1 = uu−1 ∈ I, which is equivalent to
I = R. A proper ideal I of R is called prime if

ab ∈ I =⇒ a ∈ I or b ∈ I.

Thus the zero ideal I = {0} is prime if and only if R is an integral domain. A nonzero
element p of an integral domain R is prime if and only if pR is a prime ideal. An ideal
I �= R is called maximal if I is maximal with respect to the inclusion of ideals, i.e., if
I is not strictly contained in a proper ideal J of R. By Zorn’s lemma, or equivalently
by the axiom of choice, every ring R �= {0} has a maximal ideal; more precisely,
every proper ideal I is contained in a maximal ideal.

There is a simple characterization of maximal and prime ideals in a ring.

Proposition 2.4. Let I denote an ideal in a ring R.

1. I is maximal if and only if R/I is a field.
2. I is prime if and only if R/I is an integral domain.

Proof. I is a maximal ideal if and only if aR+ I = R for all a∈ R\ I. By Lemma 2.3,
this is equivalent to a+ I being a unit in R/I for all a+ I �= I. Thus I is maximal
if and only if all nonzero elements in R/I are invertible, i.e., if and only if R/I is
a field. For the second claim, note that a ring element a satisfies a /∈ I if and only
if a+ I is nonzero in R/I. Therefore, the condition ab ∈ I =⇒ a ∈ I or b ∈ I is
equivalent to (a+ I)(b+ I) = I =⇒ a+ I = I or b+ I = I, i.e., to the zero divisor
property. The result follows. �

Proposition 2.4 implies that every maximal ideal is prime, but the converse is
not true in general. For the ring of integers Z, the maximal ideals coincide with the
nonzero prime ideals and are of the form pZ for p≥ 1 a prime number. The reason is
that Z is a PID. In fact, in a PID the nonzero prime ideals coincide with the maximal
ideals.

2.2 Divisibility and Coprimeness of Polynomials

The divisibility of elements in a ring is an algebraic notion that is defined in exactly
the same way as it is for integers. Here we focus on explaining this concept for
the ring of polynomials F[z] in a single variable z. Thus the elements of F[z] are
polynomials p(z) = p0 + · · ·+ pnzn with coefficients p0, . . . , pn in the field F. In the
sequel we will often denote a polynomial p(z) simply by p whenever this notation
is more convenient. The sums and products of two polynomials p(z),q(z) ∈ F[z] are
defined in the usual way. The zero polynomial is the constant polynomial p(z) = 0,
while the constant polynomial p(z) = 1 is the multiplicative unit of F[z]. Thus F[z]
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is a ring that has no nonzero zero divisors. If the leading coefficient pn ∈ F of the
polynomial p(z) is nonzero, then n is called the degree of p(z) and is denoted by
deg p = n. The degree of the zero polynomial is defined as deg 0 = −∞, with the
convention that −∞ < n for each nonnegative integer n ∈ N. A polynomial d(z) ∈
F[z] is called a divisor of a(z) ∈ F[z] (symbolically: d|a) if there exists b(z) ∈ F[z],
with a(z) = d(z)b(z). Using the notion of ideals, one sees that the divisibility of ring
elements is equivalent to the inclusion of principal ideals, i.e.,

d|a ⇐⇒ aF[z]⊂ dF[z].

Let a1, . . . ,an ∈ F[z] be polynomials that are not all equal to zero. A polynomial
d = gcd(a1, . . . ,an) ∈ F[z] is called the greatest common divisor of a1, . . . ,an if

1. d|a1, d|a2, . . ., d|an;
2. If d′ ∈ F[z] divides a1,a2, . . . ,an, then d′ is a divisor of d.

Similarly, the least common multiple of a1, . . . ,ar ∈ F[z] \ {0} is defined as a
polynomial c = lcm(a1, . . . ,an) ∈ F[z]\ {0} satisfying

1. a1|c, a2|c, . . ., an|c;
2. If c′ ∈ F[z] satisfies a1|c′,a2|c′, . . . ,an|c′, then c divides c′.

It follows directly from the definition that two polynomials d,d′ are greatest
common divisors of a1, . . . ,an ∈ F[z] (not all zero) if and only if there exists a
nonzero constant u ∈ F with d′ = ud. Similarly, two least common multiples c and
c′ of a1, . . . ,an ∈ F[z] \ {0} are unique up to multiplication by nonzero constants,
i.e., c′ = uc for u ∈ F nonzero. Polynomials a1, . . . ,an ∈ F[z] that are not all zero
are called coprime if the greatest common divisor is a unit of F[z]. They are called
mutually coprime or pairwise coprime if ak and al are coprime for all k �= l. The
mutual coprimeness of finitely many polynomials implies coprimeness, but not the
other way around. In fact, the polynomials (z−1)(z−2),(z−1)(z−3),(z−2)(z−3)
are clearly coprime but not mutually coprime.

We next prove that F[z] is a PID. It is easy to check that the degree satisfies the
following two properties:

1. deg (pq) = deg (p)+ deg (q);
2. deg (p+ q)≤max{deg (p),deg (q)}.
This leads to a proof of a very important property of a ring of polynomials, i.e.,
uniqueness by division with remainders.

Lemma 2.5 (Division with Remainders). Let p(z),q(z) ∈ F[z] be polynomials,
with p not the zero polynomial. Then there exists a unique representation

q(z) = a(z)p(z)+ r(z), (2.3)

with polynomials a(z),r(z) ∈ F[z] satisfying deg r < deg p.
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Proof. Let p(z) = ∑m
j=0 p jz j and q(z) = ∑n

j=0 q jz j. For deg q < deg p the unique
choice in (2.3) is a = 0,r = q. Assume n := deg q ≥ deg p = m. To show the
existence of the representation, we proceed by induction on n. The polynomial
q1(z) := q(z)− qn p−1

m zn−m p(z) has degree ≤ n− 1. Therefore, by induction, q1 =
a1 p+ r1, with deg r1 < deg p. This implies q = ap+ r1, with a = a1 + qnp−1

m zn−m.
For the uniqueness, assume that q = a1 p+ r1 = a2 p+ r2. Thus (a1−a2)p = r1− r2.
But the right-hand side has degree smaller than that of p. Thus a1 = a2 and,
therefore, also r1 = r2. �
Theorem 2.6. The ring of polynomials F[z] is a PID. Moreover, for coprime
polynomials p,q ∈ F[z] there exist unique polynomials a,b ∈ F[z], with

p(z)a(z)+ q(z)b(z) = 1, deg(b)< deg(p).

Proof. The trivial ideal I = {0} is a principal ideal. If I �= {0} is a nonzero ideal in
F[z], then there exist b∈ I \{0} such that deg(b)≥ 0 has the smallest possible value.
Obviously, bF[z] ⊂ I. Let a ∈ I \ {0}. Using division with remainders we obtain
a = qb+ r and r = 0 or deg(r) < deg(b). Clearly, deg(r) < deg(b) is impossible
because otherwise r = a− qb ∈ I \ {0}, in contradiction to the choice of b. Hence,
r = 0, and therefore a = qb ∈ bF[z]. Since a was chosen arbitrarily, we conclude
I ⊂ bR. Thus bF[z]⊂ I implies that I = bF[z] is a principal ideal.

Since F[z] is a PID, there exist solutions ū, v̄ ∈ F[z] of a(z)ū(z)+ b(z)v̄(z) = 1.
By division with remainder, v̄ = αa+ r for elements α,r ∈ F[z], with deg (r) <
deg (a). Thus u := ū+ bα and v := r satisfy au+ bv = 1, with deg (v) < deg (a).
For uniqueness, consider two solutions of aui +bvi = 1,deg (vi)< deg (a), i = 1,2.
Then u := u1− u2 and v := v2− v1 satisfy au = bv. Since a and b are coprime, a
must divide v, and therefore deg (a) ≤ deg (v). Assume y �= 0. Using deg (−v1) =
deg (v1), we obtain deg (v) = deg (v2− v1) ≤ max{deg (v2),deg (v1)} < deg (a).
But this is a contradiction. Thus v = 0, and therefore also u = 0. �

The next result characterizes the main divisibility properties of the ring of
polynomials.

Proposition 2.7. 1. The greatest common divisor and the least common multiple
of a finite number of elements a1, . . . ,an ∈ F[z]\ {0} always exist.

2. An element d ∈ F[z] is the greatest common divisor of a1, . . . ,an ∈ F[z] \ {0} if
and only if

a1F[z]+ · · ·+ anF[z] = dF[z].

In particular, if a polynomial d(z) is a greatest common divisor of a1, . . . ,an ∈
F[z]\ {0}, then there exist polynomials f1, . . . , fn ∈ F[z] such that

a1(z) f1(z)+ · · ·+ an(z) fn(z) = d(z). (2.4)
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3. Polynomials a1, . . . ,an ∈ F[z], not all zero, are coprime if and only if the principal
ideals a1F[z], . . . ,anF[z] satisfy

a1F[z]+ · · ·+ anF[z] = F[z]. (2.5)

Equivalently, there exist polynomial solutions f1, . . . , fn ∈ F[z] to the Bezout
equation

a1(z) f1(z)+ · · ·+ an(z) fn(z) = 1. (2.6)

4. d(z) ∈ F[z] is a least common multiple of a1, . . . ,an ∈ F[z]\ {0} if and only if

a1F[z]∩·· ·∩anF[z] = dF[z].

Proof. An element d′ of F[z] is a divisor of a1, . . . ,an ∈ F[z] \ {0} if and only if d′
divides every element ai. But this is equivalent to the condition that a1F[z]+ · · ·+
anF[z]⊂ d′F[z]. Since F[z] is a PID, the ideal a1F[z]+ · · ·+anF[z] is a principal ideal,
i.e., there exists δ ∈F[z], with a1F[z]+ · · ·+anF[z] = δF[z]. The preceding argument
implies that each common divisor d′ satisfies δF[z] ⊂ d′F[z], i.e., d′ divides
δ . Moreover, δ is a common divisor and therefore a greatest common divisor.
Conversely, if d = gcd(a1, . . . ,an), then a1F[z]+ · · ·+ anF[z] = δF[z] ⊂ dF[z], and
therefore d divides δ . Since d is the greatest common divisor, we conclude d = cδ ,
for a nonzero constant c ∈ F \ {0}. This proves both the first and second claims.
It also proves that a greatest common divisor d satisfies (2.4). Equation (2.6)
implies that 1 is a greatest common divisor of a1, . . . ,an, and therefore a1, . . . ,an

are coprime. Conversely, if they are coprime, then 1 is a greatest common divisor
and, therefore, by (2.5), satisfies the Bezout equation. The last claim concerning the
least common multiple is proven analogously. �

We briefly address some computational issues concerning greatest common
divisors and the Bezout identity. The classical Euclidean algorithm enables us to
determine the greatest common divisor of a pair of polynomials.

Theorem 2.8 (Euclidean Algorithm). For nonzero polynomials a(z),b(z) ∈ F[z]\
{0} there exist uniquely determined polynomials ri(z) ∈ F[z] and qi(z) ∈ F[z], with
0≤ deg ri+1 < deg ri, r0 = a,r1 := b,rn−1 := 0, and

r0(z) = q1(z)r1(z)+ r2(z),

r1(z) = q2(z)r2(z)+ r3(z),

...

rn−1(z) = qn(z)rn(z),

where rn(z) �= 0. The polynomial rn(z) is a greatest common divisor of a(z) and b(z).
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Proof. rn(z) is a divisor of rn−1(z), and rn−2(z) = qn−1(z)rn−1(z) + rn(z) implies
that the polynomial rn(z) divides rn−2(z). Proceeding inductively backward in n,
we obtain that rn(z) is a common divisor of r0(z), . . . ,rn−1(z) and, in particular,
is a common divisor of a(z),r1(z) = b(z). Suppose that d(z) is a common divisor
of a(z),b(z). Then d(z) is a common divisor of r2(z) = a(z)− q1(z)r1(z) = a(z)−
q1(z)b(z). We conclude that d(z) is a common divisor of r0(z),r1(z),r2(z). Thus,
proceeding by induction, we see that d(z) is a common divisor of r0(z), . . . ,rn(z).
Every common divisor of a(z),b(z) therefore divides rn(z). Thus rn(z) is a greatest
common divisor. The uniqueness of ri,qi follows from the uniqueness property of
division with remainders. �

The Euclidean algorithm can be used to compute a solution to the Bezout identity.
Thus, for polynomials a(z),b(z) ∈ F[z], assume that rk(z),qk(z) ∈ F[z] have been
computed using the Euclidean algorithm, k = 0, . . . ,n. Consider for k = 0, . . . ,n−2
the pair of second-order recursions in F[z]:

uk+2(z) = uk(z)− qk+1(z)uk+1(z),

vk+2(z) = vk(z)− qk+1(z)vk+1(z),

with initial conditions u0(z) = 1,u1(z) = 0,v0(z) = 0,v1(z) = 1. By the Euclidean
algorithm, rk+2 = rk − qk+1rk+1 for k = 0, . . .n− 1. Thus sk := uka+ vkb satisfies
the same recursion sk+2 = sk−qk+1sk+1 with s0 = a = r0,s1 = b = r1. This implies
rk = sk for k = 0, . . . ,n− 1. We conclude that un(z),vn(z) is the solution to the
Diophantine equation rn = una + vnb, where rn is a greatest common divisor of
a,b. If a(z) and b(z) are coprime, then rn ∈ F is a nonzero constant, and therefore
u(z) = r−1

n un(z),v(z) = r−1
n vn(z) solves the Bezout identity u(z)a(z)+ v(z)b(z) = 1.

Another application of the Euclidean algorithm is to compute continued fraction
expansions of rational functions. A rational function is expressed uniquely as a
quotient of polynomials,

g(z) =
p(z)
q(z)

, (2.7)

with q(z) monic and p(z),q(z) ∈ F[z] coprime. Addition and multiplication of
rational functions are defined in the usual way as

p1(z)
q1(z)

+
p2(z)
q2(z)

=
p1(z)q2(z)+ p2(z)q1(z)

q1(z)q2(z)
,

p1(z)
q1(z)

· p2(z)
q2(z)

=
p1(z)p2(z)
q1(z)q2(z)

,

and with such operations the set of all rational functions F(z) becomes a field, the
rational function field. The McMillan degree δ (g) of a rational function g(z) is
defined as

δ (g) = max{deg p,deg q}.
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A rational function g(z) is called proper or strictly proper whenever deg p ≤
deg q or deg p < deg q, respectively. For a proper rational function g(z) ∈
F(z) with coprime factorization (2.7), the Euclidean algorithm yields the unique
representation

q(z) = a1(z)p(z)+ r1(z),

p(z) = a2(z)r1(z)+ r2(z),

...

rN−1(z) = aN+1(z)rN ,

with rN ∈ F a nonzero constant. From the first equation we obtain

p(z)
q(z)

=
1

a1(z)+
r1(z)
p(z)

.

Proceeding recursively yields the continued fraction expansion as

p(z)
q(z)

=
1

a1(z)+
1

a2(z)+
1

a3(z)+ . . .+
1

aN+1(z)

.

Note that deg q = ∑N+1
j=1 deg a j, as is easily verified by induction on N.

Simple conditions for the coprimeness of polynomials are available in terms of
rank tests for associated resultant matrices. For simplicity we focus on the case of
two polynomials. We associate with scalar polynomials p(z) = ∑m

j=0 p jz j,q(z) =

∑n
j=0 q jz j ∈ F[z] the Sylvester resultant matrix (plotted here for m≤ n):

Res(p,q) =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

p0 q0

p1 p0 q1 q0
... p1

. . .
... q1

. . .
...

...
. . .

. . .
...

...
. . . q0

pm
...

. . . p0
...

... q1

pm . . . . . . p1 qn
...

...
. . .

... qn
...

. . .
...

. . .
...

pm qn

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

∈ F
(m+n)×(m+n) .
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Notice that the first block of columns of Res(p,q) has n columns while the second
block has m columns.

Theorem 2.9. Two polynomials p(z),q(z) ∈ F[z] are coprime if and only if the
Sylvester resultant Res(p,q) is invertible.

Proof. Let F[z]<k denote the k-dimensional F-vector space consisting of all polyno-
mials of degree < k. The Sylvester resultant then is the matrix representation of the
F-linear map

Rpq : F[z]<n⊕F[z]<m −→ F[z]<n+m, (a,b) �→ a(z)p(z)+ b(z)q(z)

with respect to the basis {(1,0), . . . ,(zn−1,0),(0,1), . . . ,(0,zm)} and {1, . . . ,
zn+m−1} of F[z]<n ⊕ F[z]<m and F[z]<n+m, respectively. Both vector spaces
F[z]<n ⊕ F[z]<m and F[z]<n+m have the same dimension m + n. Thus injectivity
of Rpq is equivalent to surjectivity and is, hence, equivalent to bijectivity.
If Rpq is bijective, then there exist polynomials a(z) ∈ F[z]<n,b(z) ∈ F[z]<m,
with a(z)p(z) + b(z)q(z) = 1. This implies the coprimeness of p(z) and q(z).
Conversely, assume that p(z) and q(z) are coprime. Consider the polynomials
a(z) ∈ F[z]<n,b(z) ∈ F[z]<m, with a(z)p(z)+ b(z)q(z) = 0. Then p(z) must divide
b(z) and q(z) must divide a(z). Therefore, deg p≤ degb < m and degq≤ dega < n.
This implies a(z) = 0,b(z) = 0 and, therefore, the injectivity of Rpq. Thus the
coprimeness of p(z) and q(z) is equivalent to the invertibility of Rpq. This completes
the proof. �

An important consequence of the Bezout identity is the ability to glue local
objects to global ones. We illustrate this property using the Chinese remainder
theorem. It is closely related to the interpolation theory of polynomials. Consider
the nonzero polynomials a1, . . . ,an ∈ F[z] and so-called remainder polynomials
r1, . . . ,rn ∈ F[z]. The Chinese remainder theorem in its most basic form asks for
the existence of a polynomial f ∈ F[z] that satisfies the divisibility relations

a1|( f − r1), . . . , an|( f − rn).

Equivalently, f must satisfy the relations

f ∈ r1 + a1F[z], . . . , f ∈ rn + anF[z],

or

f ≡ r1 mod a1, . . . , f ≡ r1 mod an

must be satisfied. Here and in the sequel we write f ≡ amodb for polynomials
a,b, f if and only if b divides f − a. Using this congruence notation we prove the
following existence result.
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Theorem 2.10. Let a1, . . . ,an ∈ F[z] \ {0} and r1, . . . ,rn ∈ F[z]. A solution
f ∈ F[z] of

f (z) ≡ r1(z) mod a1(z)

...

f (z) ≡ rn(z) mod an(z)

(2.8)

exists if and only if, for all i �= j,

ri− r j ∈ aiF[z]+ a jF[z].

Equivalently, gcd(ai,a j) divides ri− r j for 1≤ i �= j ≤ n.

Proof. For simplicity we give the argument only for n= 2; the general case is treated
by induction on n. Suppose a solution f exists with f − ri ∈ aiF[z]. Then clearly for
i �= j one has r j − ri = ( f − ri)− ( f − r j) ∈ aiF[z] + a jF[z]. Conversely, consider
an element f := r1 + ca1 ∈ r1 + a1F[z] for a to-be-determined c ∈ F[z]. Then f ∈
r2 + a2F[z] if and only if f − r2 = ca1 + r1− r2 ∈ a2F[z]. By assumption, r1− r2 =
a1r + a2s for suitable r,s ∈ F[z]. Thus f − r2 = (c+ r)a1 + sa2 ∈ a2F[z], provided
c =−r. Thus f = r1− ra1 does the job. �

Note that the pairwise coprimeness of a1, . . . ,an ∈ F[z] implies aiF[z]+ a jF[z] =
F[z] for all i �= j. Thus pairwise coprimeness implies the sufficient condition ri−r j ∈
aiF[z]+ a jF[z] for the existence of solutions to (2.8).

Theorem 2.11 (Chinese Remainder Theorem). Let q1, . . . ,qn ∈ F[z] be pairwise
coprime, and let r1, . . . ,rn ∈ F[z] satisfy deg ri < deg qi, i = 1, . . . ,n. Define q :=
q1 · · ·qn and q̂i = ∏ j �=i q j, i = 1, . . . ,n. For j = 1, . . . ,n choose unique solutions
a j,b j ∈ F[z],deg a j < deg q̂ j, to the Bezout equation

q j(z)a j(z)+ q̂ j(z)b j(z) = 1.

Let u j(z),v j(z) ∈ F[z],deg v j < deg q j, be the unique polynomials obtained by
division with remainder

r j(z)b j(z) = u j(z)q j(z)+ v j(z).

Then

r(z) =
n

∑
j=1

q̂ j(z)v j(z)

is the unique solution, with deg r < deg q, such that

q1|(r− r1), . . . , qn|(r− rn).
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Proof. Each summand of r has degree deg q̂ jv j = deg q̂ j + deg v j < deg q̂ j +
deg q j = deg q. Thus deg r < deg q. Moreover, for each i = 1, . . . ,n,

r =
n

∑
j=1

q̂ jv j = ribiq̂i− uiq+∑
j �=i

q̂ jv j.

The first term satisfies

ribiq̂i− uiq+ qiF[z] = ribiq̂i + qiF[z] = ri(1− qiai)+ qiF[z] = ri + qiF[z].

For j �= i, the fraction q−1
i q̂ j = ∏k �=i, j qk ∈ F[z] is a polynomial, and therefore each

summand of the second term satisfies q̂ jv j ∈ qiF[z]. Thus

r+ qiF[z] = ri + qiF[z]

for all i = 1, . . . ,n. This completes the proof. �
The following abstract version of the Chinese remainder theorem has the

advantage of being valid in every ring R.

Theorem 2.12 (Abstract Chinese Remainder Theorem). Let R be a ring and
I1, . . . , In ideals of R satisfying

Ik + Il = R for all k �= l.

Then

ρ : R−→ (R/I1)×·· ·× (R/In), ρ(x) = (x+ I1, . . . ,x+ In)

is a surjective ring homomorphism, with kernel equal to the ideal

I1 · · · In =

{
m

∑
j=1

x j1 · · ·xjn | xjk ∈ Ik, k = 1, . . . ,n

}

generated by the products of elements of I1, . . . , In. In particular, ρ induces a ring
isomorphism

R/I1 · · · In � (R/I1)×·· ·× (R/In)

that maps the group of units (R/I1 · · · In)
× isomorphically to the direct product

(R/I1)
×× ·· ·× (R/In)

× of the groups of units of R/Ik.

Proof. Obviously, ρ is a ring homomorphism with kernel equal to the intersection
of ideals I1∩·· ·∩ In ⊃ I1 · · · In. We proceed by induction on n, the case n = 1 being
trivially satisfied. Assume that the theorem is true for ideals I1, . . . In−1. Then J1 :=
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I1 ∩ ·· · ∩ In−1 = I1 · · · In−1. Trivially, J1In ⊂ J1 ∩ In and (J1 + In)(J1 ∩ In) ⊂ J1(J1 ∩
In) + In(J1 ∩ In) ⊂ J1In. By mutual coprimeness, there exist elements xk ∈ Ik,zk ∈
In,k = 1, . . . ,n− 1, with xk + zk = 1. This implies x1 · · ·xn−1− 1 = (1− z1) · · · (1−
zn−1)−1 ∈ In and, therefore, J1 + In = R. Hence, I1 · · · In = J1In = (I1∩·· ·∩ In−1)∩
In. This shows the induction step for the kernel formula. Since J1 + In = R, there
exist a ∈ I1 · · · In−1,b ∈ In, with a+ b = 1. Now consider elements r1, . . . ,rn. By
induction, there exists y ∈ R satisfying y− rk ∈ Ik for k = 1, . . . ,n− 1. Set

x := by+ arn.

For k = 1, . . . ,n− 1, we have x− rk = by− rk + arn = y− rk + a(rn− y) ∈ Ik since
a(rn− y) ∈ J1 ⊂ Ik. For k = n, thus, x− rn = by+ arn− rn = b(y− rn) ∈ In. This
shows that ρ(x) = (r1 + I1, . . . ,rn + In), and we are done. �

2.3 Modules

A (left) module M over a ring R is an abelian group, endowed with an operation
R×M −→ M,(r,x) �→ rx, of R on M (called the scalar multiplication on M) that
satisfies the following conditions for all x,y ∈M and r,s ∈ R:

r(x+ y) = rx+ ry,

(r+ s)x = rx+ sx,(rs)x = r(sx),

1x = x.

Thus modules over a field are simply the vector spaces. Moreover, if R is a
ring, then multiplication in R turns it into a module. An abelian group can be
regarded in a natural way as a Z-module by defining the scalar multiplation n · g
for each n ∈ N as the n-fold sum g+ · · ·+ g and by setting (−n) · g := n · (−g).
Thus the theory of modules comprises in a very natural way both the theory of
vector spaces and that of abelian groups. An additive subgroup N ⊂ M that is
closed under scalar multiplication, i.e., satisfies RN ⊂ N, is called a submodule
of M. The R-submodules of a ring R are therefore simply the ideals. A module
homomorphism, or an R-linear map, between R-modules M,N is a map f : M −→
N that satisfies

f (x+ y) = f (x)+ f (y),

f (rx) = rf (x)

for all x,y ∈M and r ∈ R. For R-linear maps the kernel and image spaces

Ker f = {x ∈M | f (x) = 0},
Im f = { f (x) ∈ N | x ∈M}
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are submodules of M and N, respectively. A module isomorphism is a bijective
R-linear map f : M −→ N. Note that the inverse of a module isomorphism is
automatically R-linear. The set of all R-linear maps between modules M,N is an
R-module denoted by Hom(M,N). Scalar multiplication on Hom(M,N) is defined
pointwise via (r · f )(m) = rf (m). The algebraic dual space of M is the R-module
M′ := Hom(M,R). A sequence of R-module homomorphisms

M
g−→ N

f−→ P

is called exact at N if Ker f = Im g.
Direct products and quotient modules are defined in the same way as for vector

spaces. Thus, for R-modules M,N scalar multiplication r · (m,n) := (rm,rn) defines
the unique R-module structure on M × N such that the projections M ×N −→
M,(x,y) �→ x and M × N −→ N,(x,y) �→ y are module homomorphisms. The
R-module M × N is called the direct product of M with N. In particular, the
n-fold direct product Rn is an R-module. If N ⊂ M is a submodule, then scalar
multiplication r · (x+N) := rx+N defines the unique R-module structure on the
coset space

M/N := {x+N | x ∈M}

such that π : M −→M/N,x �→ x+N, becomes a module homomorphism. We refer
to M/N as the quotient module of M by N. One obtains an exact sequence of
module homomorphisms as

0−→ N
i−→M

π−→M/N −→ 0.

The following isomorphism result is standard.

Theorem 2.13 (Isomorphism Theorem). Let N ⊂M be a submodule with canon-
ical projection map π : M −→M/N. For each module homomorphism f : M −→ P,
with N ⊂ Ker f , there exists a unique module homomorphism f̄ : M/N −→ P such
that the diagram commutes

M
f

P

M/N
f̄

In particular, every surjective module homomorphism f : M −→ P induces an
isomorphism of modules

f̄ : M/Ker f −→ P.
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A family (xi|i ∈ I) of elements of an R-module M is said to generate M if every
element x of M can be written as a finite linear combination,

x = ri1 xi1 + · · ·+ rinxin ,

for suitable indices i j ∈ I and coefficients ri j ∈ R. A module M is called finitely
generated if it has a finite system of generators. A family (xi|i ∈ I) of elements in
M is called linearly independent if every finite subsequence (xi1 , . . . ,xin) satisfies

ri1xi1 + · · ·+ rinxin = 0 =⇒ ri1 = · · ·= rin = 0.

A linearly independent system of generators is called a basis of M. A module M is
called free if a basis of M exists. The free modules M with a finite basis are exactly
those that are isomorphic to Rn for some n∈N. One main difference between vector
spaces and modules is that a module may not necessarily have a basis. Moreover, a
minimal system of generators for a module is not necessarily linearly independent.
The general theory of modules is full of pathologies. The following example exhibits
such phenomena very clearly.

Example 2.14. Let R = C[x,y,z] denote the ring of complex polynomials in three
variables. Then the R-module

M = {(u,v,w) ∈ C[x,y,z]3 | ux+ vy+wz = 0}

does not have a basis. The three vectors (y,−x,0),(z,0,−x),(0,z,y) are linearly
dependent and form a minimal system of generators for M.

We proceed with a statement of a general fact concerning the existence of a
basis for modules over the ring of polynomials F[z]. The subsequent result (and
its proof) extends to modules over a PID; see, for example, Hungerford (1974),
Theorem IV. 6.1.

Theorem 2.15. Each submodule M of F[z]n is free with a basis of k ≤ n elements.
Two bases of M have the same number of elements.

Proof. The proof is by induction on n. For n= 1, the submodules M of F[z] coincide
with the ideals. Since F[z] is a PID, every submodule M ⊂ F[z] is generated by
a single element x1 ∈ M. This completes the proof for n = 1. Now assume n ≥
2. Consider the projection π : F[z]n −→ F[z]n−1 onto the first n− 1 components.
Then N := π(M) is a submodule of F[z]n−1 and thus, by induction, has a basis
y1, . . . ,yk of k≤ n−1 elements. Moreover, the kernel of the restriction πM : M−→N
coincides with M∩F[z]en, where en denotes the last standard basis vector of F[z]n.
Thus M∩F[z]en is isomorphic to the ideal

{ f (z) ∈ F[z] | f (z)en ∈M}
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of F[z]. Since F[z] is a PID, there exists d(z) ∈ F[z], with M ∩F[z]en = d(z)F[z]en.
Consider the preimages x1, . . . ,xk ∈ M with π(xi) = yi, i = 1, . . . ,k. Obviously,
x1, . . . ,xk are linearly independent. Let x ∈M. Then

y = π(x) = a1y1 + . . .+ akyk

for suitable a1, . . . ,ak ∈ F[z]. Thus

x = a1x1 + . . .+ akxk + bd(z)en

for a suitable polynomial b. Therefore, {x1, . . . ,xk,den} generates M. If d = 0, i.e.,
if M∩F[z]en = {0}, then {x1, . . . ,xk} is a linearly independent system of generators,
i.e., a basis of M. If d(z) �= 0, then every linear combination a1x1 + . . .akxk +
bd(z)en = 0 implies 0 = π(a1x1 + . . .+ akxk + bd(z)en) = a1y1 + . . .+ akyk. Thus
a1 = · · · = ak = 0, and therefore also b = 0. Thus {x1, . . . ,xk,den} is a basis of M.
This shows that M is free with at most k≤ n basis elements. To see that two bases of
M have the same cardinality, we refer the reader to the proof of Corollary IV. 2.12
in Hungerford (1974). �

The second statement in Theorem 2.15 is valid in greater generality. In fact, it is
known that two bases of a free module M over a commutative ring have the same
cardinalities; see Hungerford (1974), Corollary IV. 2.12. This common cardinality
is called the rank of M and is denoted by rk M.

In the sequel we continue to denote polynomial matrices A(z) ∈ F[z]n×m also
simply by A. This should cause no serious confusion but rather will help to avoid
otherwise excessive notation. The rank of a polynomial matrix A ∈ F[z]n×m is
defined as the rank of the free submodule AF[z]m ⊂ F[z]n. This coincides with the
vector space rank when A(z) is considered as a matrix A(z) ∈ F(z)n×m over the
field of rational functions F(z). This in turn is equal to the normal rank, i.e., for F
denoting the algebraic closure,

rk A = max
z∈F

rk A(z).

In particular, rk A = r ≤ min{m,n}. Note that we can always choose a full column
rank matrix B(z) ∈ F[z]n×r, with Im A = Im B. Recognizing a basis matrix for a
submodule of F

n is easy. In fact, a matrix A ∈ F
n×k is a basis matrix of AFk if

and only if rkA = k. A submodule M ⊂ F[z]n is called full if M has a basis of n
elements. This is equivalent to the existence of a nonsingular polynomial matrix
D(z) ∈ F[z]n×n such that

M = D(z)F[z]n.

Note that a polynomial matrix D(z) ∈ F[z]n×k is called nonsingular if k = n and the
determinant det D(z) is not the zero polynomial. Thus the full submodules of F[z]n



40 2 Rings and Modules of Polynomials

correspond to nonsingular polynomial matrices. The equivalent characterizations
of the rank of a polynomial matrix are summarized as follows (the trivial proof is
omitted).

Proposition 2.16. For a polynomial matrix A(z)∈ F[z]n×m the following properties
are equivalent:

1. The rank of A(z) is equal to r;
2. The normal rank is maxz∈F rk A(z) = r;
3. The rank of the F(z)-linear map A(z) : F(z)m −→ F(z)n is equal to r.

A square matrix S(z) ∈ F[z]n×n is called unimodular if there exists T (z) ∈
F[z]n×n such that S(z)T (z) = In. It follows then that also T (z)S(z) = In. Thus the
unimodular matrices are exactly the matrices that are invertible over the ring F[z].
Using the multiplicative property of the determinant, this implies the well-known
fact that a matrix S(z)∈F[z]n×n is unimodular if and only if the determinant detS∈F

is a nonzero constant. Let GLn(F[z]) denote the group of unimodular n×n matrices
over F[z]. The following result is often used.

Proposition 2.17. Every submodule M ⊂ F[z]n is of the form

M = AF[z]k

for a polynomial matrix A(z) of full column rank k. Suppose that at least one of the
matrices A(z),B(z) ∈ F[z]n×k has full column rank. Then AF[z]k = BF[z]k if and only
if there exists a unimodular matrix U(z) ∈ GLk(F[z]), with A(z) = B(z)U(z).

Proof. Theorem 2.15 implies that M has a basis consisting of k ≤ n elements
a1(z), . . . ,ak(z) ∈ F[z]n. Let A(z) denote the n× k polynomial matrix with columns
a1(z), . . . ,ak(z). Then M = AF[z]k and A(z) has rank k. AF[z]k = BF[z]k implies that
B(z) = A(z)U(z) and A(z) = B(z)V (z) for matrices U(z),V (z) ∈ F[z]k×k. Thus
A(z) = A(z)U(z)V (z) and B(z) = B(z)V (z)U(z). Since A(z) has full column rank,
this implies U(z)V (z) = Ik, and therefore U(z) and V (z) are unimodular. �

2.4 Minimal Basis of Modules of Polynomials

In this section we show the existence of certain special basis matrices in modules
of polynomial matrices. The existence of such basis matrices for F[z]-modules of
rational function spaces goes back to the early work by Dedekind and Weber (1882),
where they are called normal bases. More recent contributions have been made by
Forney (1975) and Münzner and Prätzel-Wolters (1979).

We introduce basis representations of a submodule M = H(z)F[z]k that are
minimal with respect to their column degrees. Thus, starting with a submodule of
F[z]n, we construct a specific set of generators. The basis thus constructed is closely
associated with, for example, state feedback, reachability indices, and Wiener–Hopf
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factorizations. These connections will be clarified later. We define the degree of a
polynomial vector f (z) = ( f1(z), . . . , fn(z))� ∈ F[z]n by

deg f = max
1≤i≤n

deg fi.

If h1(z), . . . ,hk(z) are the columns of an n× k polynomial matrix H(z), then the
numbers γi = deghi, i = 1, . . . ,k, are called the column degrees of H(z), and the
sum γ = ∑k

i=1 γi is called the order of H(z). A polynomial basis matrix H(z) ∈
F[z]n×k is called a minimal basis if its order is minimal among all basis matrices
of M = H(z)F[z]k. We will always assume, by rearranging the basis elements, that
they are ordered so that γ1 ≥ ·· · ≥ γk. Since the order of a polynomial matrix is a
nonnegative integer, minimal bases of a submodule of F[z]n always exist.

Proposition 2.18. Every submodule of F[z]n has a minimal basis.

For a polynomial vector f (z) = ( f1(z), . . . , fn(z))� ∈ F[z]n, with deg f = γ , let
[ f ] denote the coefficient of zγ in the expansion of f (z) as a vector polynomial. If
H(z) ∈ F[z]n×k denotes a matrix polynomial with columns hi(z), then define

[H]hc = ([h1], . . . , [hk]) ∈ F
n×k

and call it the highest column degree coefficient matrix. A polynomial matrix
H(z) is called column proper if [H]hc has full column rank. Clearly, [H]hc has full
column rank if and only if at least one of its k× k minors is nonzero.

A basis matrix for a submodule M ⊂ F[z]n is unique up to a right unimodular
factor. By the Smith form, every unimodular polynomial matrix is the product of
elementary unimodular polynomial matrices, which in turn represent elementary
column operations.

Proposition 2.19. Every full column rank polynomial matrix H(z)∈ F[z]n×k can be
reduced to column proper form by elementary column operations.

Proof. Assume the column degrees γi = deg pi satisfy γ1 ≥ ·· · ≥ γk. If [H]hc has
full column rank, then we are done. Otherwise, there exists a nontrivial linear
combination satisfying

k

∑
j=1

c j[h j] = 0. (2.9)

Let i = min{ j|c j �= 0}. By dividing (2.9) by ci, we may assume without loss of
generality that ci = 1. Clearly, h′i = hi +∑k

j=i+1 c jzγi−γ j h j satisfies degh′i < deghi.

Thus H ′ = (h1, . . . ,h′i, . . . ,hk) satisfies orderH ′ <∑k
i=1 γi. The proof is completed by

induction. Note that H ′(z) = H(z)U(z), where
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U(z) =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

1
. . .

1
ci+1zγi−γi+1

...
. . .

ckzγi−γk 1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

is unimodular. �
Theorem 2.20. Let H(z) be an n× k polynomial matrix with full column rank
and column degrees γ1 ≥ ·· · ≥ γk; γ = γ1 + · · ·+ γk. The following statements are
equivalent.

1. H(z) is a minimal basis for the submodule H(z)F[z]k of F[z]n.
2. H(z) is column proper, i.e., rk[H]hc = k.
3. The maximal degree of the k× k minors of H(z) is γ .
4. For all nonzero polynomials p = (p1, . . . , pk)

� ∈ F[z]k,

degH(z)p(z) = max
i

(deg pi + γi) .

5. For all d ∈N,

dimMd = ∑
i:γi≤d

(d− γi),

where

Md = { f (z) ∈ F[z]k | deg H(z) f (z) < d}.

Proof. That statement 1 implies statement 2 is a straightforward consequence of
Proposition 2.19. To prove the equivalence of statements 2 and 3, let E(z) be a k×k
submatrix of H(z), and let [E]∗ denote the corresponding k× k submatrix of [H]hc.
Note that [E]∗ is not necessarily equal to the highest coefficient matrix [E]hc of E(z).
It is easily verified that

detE(z) = det[E]∗zγ + p(z), (2.10)

with deg p(z)< γ . Thus the degree of detE(z) for each k×k submatrix E(z) of H(z)
is at most γ . If [H]hc has full rank, then there exists a nonsingular k× k submatrix
[E]∗, and the degree of detE(z) is equal to γ . Therefore, the maximal degree is γ .
Conversely, assuming the maximal degree is γ , then there exists a k× k submatrix
E(z) whose determinant detE(z) has degree γ . By (2.10), therefore, det[E]∗ �= 0.
Thus [H]hc has full rank. This shows that statements 2 and 3 are equivalent.
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Next let p(z) = (p1(z), . . . , pk(z))� ∈ F[z]k; then

H(z)p(z) =
k

∑
i=1

pi(z)hi(z).

Thus

deg(Hp) = deg
k

∑
i=1

pihi ≤max
i

deg(pihi) = max
i
(deg pi + γi) = δ .

Hence, H(z)p(z) has degree bounded by δ . We show now that the upper bound δ
is achieved. Let I = {i | pi �= 0,deg pi + γi = δ}, and let [pi] ∈ F denote the leading
coefficients of the scalar polynomials pi(z), i ∈ I. Then

H(z)p(z) = zδ ∑
i∈I
[pi][hi]+ f (z),

with deg f < δ . If we assume [H]hc to be of full rank, then the column vectors
[hi], i ∈ I are linearly independent, and therefore

k

∑
i=1

[pi][hi] �= 0,

and so statement 2 implies statement 4.
Next assume that statement 4 is satisfied. Suppose there exist αi such that

k

∑
i=1

αi[hi] = 0;

then

k

∑
i=1

αiz
γ1−γihi(z) = zγ1

k

∑
i=1

αi[hi]+ lower degree terms.

However, by (4), then

deg
k

∑
i=1

αiz
γ1−γi hi(z) = max[deg(αiz

γ1−γi)+ γi].

But the last term is equal to γ1 if not all αi are zero. Thus statement 4 implies
statement 2.
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For every polynomial vector p(z) ∈ F[z]k and d ∈ N, the bound degH(z)p(z) <
d if and only if maxpi �=0 (deg pi + γi) < d or, equivalently, if and only if deg pi <
d− γi for all i = 1, . . . ,k. The dimension of the space of such polynomial vectors
(p1(z), . . . , pk(z))� is equal to ∑i:γi≤d(d− γi), and hence

dimMd = ∑
i:γi≤d

(d− γi).

This shows that statement 4 implies statement 5. Moreover, the same argument
shows that every full column rank matrix H(z) ∈ F[z]n×k satisfies degH(z)p(z) ≤
maxpi �=0[deg pi + γi]. This implies the inequality

dimMd ≥ ∑
i:γi≤d

(d− γi)

for all d ∈ N0 and all full column rank matrices H(z).
To prove that statement 5 implies statement 1, let σ(d) denote the number of

indices j of H(z), with γ j = d. Thus, for each d ∈ N0, statement 5 implies that

dimMd+1 = ∑
i:γi≤d+1

(d + 1− γi) = ∑
i:γi≤d

(d + 1− γi)

= ∑
i:γi≤d

(d− γi)+ ∑
i:γi≤d

1

= dimMd +
d

∑
r=0

σ(r).

By adding and subtracting terms we conclude that

σ(d) = dimMd+1 + dimMd−1− 2dimMd

for all d. By definition of σ(d), γ = ∑k
i=1 γi = ∑∞

d=0 dσ(d), and therefore γ assumes
the same value for all full column rank matrices H(z) that satisfy statement 5. By the
preceding arguments, statement 5 is satisfied for each minimal basis H(z). Thus γ
is the same for all minimal basis matrices of H(z)F[z]k. This shows that statement 5
implies statement 1, and the proof is complete. �

Note that knowledge of the numbers γ1 ≥ . . .≥ γk is equivalent to knowledge of
the function d �→ σ(d). In particular, the column degrees of a minimal basis matrix
H(z) depend only on the module H(z)F[z]k.

Corollary 2.21. The column degrees of a minimal basis for submodule M are an
invariant of the module.



2.5 Divisibility and Coprimeness of Polynomial Matrices 45

We therefore define, for a submodule M ⊂ F[z]n, the order indices, or minimal
indices, of M as the column degrees of a minimal basis of M. The order of a
submodule M is defined as the order of a minimal basis of M.

One can characterize all unimodular transformations U(z) = (uij(z))∈GLk(F[z])
that transform a minimal basis matrix H(z) ∈ F[z]n×k into a minimal basis matrix
H(z)U(z). The class of all such transformations forms a subgroup of the group of
unimodular transformations.

Theorem 2.22. Let H(z) ∈ F[z]n×k be a minimal basis with column indices γ1 ≥
. . .≥ γk, and let U(z)∈GLk(F[z]) be unimodular. Then H(z)U(z) is a minimal basis
if and only if

1. deguij(z)≤ γ j− γi for γi ≤ γ j .
2. uij(z) = 0 for γi > γ j .

Proof. If G(z) := H(z)U(z) is minimal, then the j− th column g j(z) of G satisfies

degg j = deg
k

∑
i=1

hi(z)uij(z) = max
i
(deguij + γi) = γ j.

This implies deguij ≤ γ j− γi for γi ≤ γ j, and uij = 0 otherwise. Conversely, suppose
that the unimodular matrix U(z) satisfies statements 1 and 2. Let U∗ = (u∗ij) ∈ F

k×k

denote the constant matrix whose ij-entry u∗ij is defined by the coefficient of zγ j−γi

in uij(z). Then U(z) and U∗ are lower block-triangular invertible matrices, and the
leading coefficient matrices [G]hc and [H]hc satisfy

[G]hc = [H]hcU
∗.

Thus [G]hc is full column rank, and therefore G(z) is a minimal basis. �

2.5 Divisibility and Coprimeness of Polynomial Matrices

There is a very close connection between the geometry of the lattice of submodules
of F[z]m and the arithmetic of polynomial matrices. This connection will be a com-
mon thread throughout this book. We will return to this topic in Theorem 3.14 when
we examine the lattice of invariant subspaces of polynomial, or rational, models.
We begin by defining the appropriate notions of divisibility and coprimeness for
rectangular polynomial matrices. The noncommutativity of matrices forces one to
distinguish between left and right divisors.

Definition 2.23. A polynomial matrix D(z) ∈ F[z]n×q is called a common left
divisor of matrices Ai(z) ∈ F[z]n×mi , i = 1, . . . ,r, if there exist matrices Xi(z) ∈
F[z]q×mi , i = 1, . . . ,r, with

Ai(z) = D(z)Xi(z), i = 1, . . . ,r.
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A common left divisor D(z) is called a greatest common left divisor, denoted
by D(z) = gcld(A1(z), . . . ,Ar(z)), if for every other common left divisor D′(z) ∈
F[z]n×q′ there exists Q(z)∈ F[z]q

′×q with D(z) =D′(z)Q(z). A matrix E(z)∈F[z]n×q

is called a common right multiple if there exist matrices Xi(z) ∈ F[z]mi×q, i =
1, . . . ,r, with

Ai(z)Xi(z) = E(z), i = 1, . . . ,r.

A common right multiple E(z) is called a least common right multiple, and is
denoted by E(z) = lcrm(A1(z), . . . ,Ar(z)), if for every other common right multiple
E ′(z) ∈ F[z]n×q′ there exists Q(z) ∈ F[z]q

′×q, with E(z)Q(z) = E ′(z). A matrix
D(z) ∈ F[z]q×m is a common right divisor of matrices Ai(z) ∈ F[z]ni×m, i = 1, . . . ,r,
if there exist matrices Xi(z) ∈ F[z]ni×q, i = 1, . . . ,r, with

Ai(z) = Xi(z)D(z), i = 1, . . . ,r.

A greatest common right divisor D(z) := gcrd(A1(z), . . . ,Ar(z)) ∈ F[z]q×m is a
common right divisor such that for every other common right divisor D′(z) ∈
F[z]q

′×m there exists Q(z) ∈ F[z]q
′×q, with D(z) = Q(z)D′(z). A matrix E(z) ∈

F[z]q×m is called a common left multiple if there exist matrices Xi(z)∈ F[z]q×ni , i =
1, . . . ,r, with

Xi(z)Ai(z) = E(z), i = 1, . . . ,r.

A common left multiple E(z) is called a least common left multiple, and is denoted
by E(z) = lclm(A1(z), . . . ,Ar(z)), if for every other common left multiple E ′(z) ∈
F[z]q

′×m there exists Q(z) ∈ F[z]q
′×q, with Q(z)E(z) = E ′(z).

Observe that the matrices A(z) ∈ F[z]n×q, B(z) ∈ F[z]n×q′ , C(z) ∈ F[z]q×m, and
D(z) ∈ F[z]q

′×m satisfy the following conditions:

AF[z]q ⊂ BF[z]q
′ ⇐⇒ B(z) is a left divisor of A(z);

F[z]1×qC ⊂ F[z]1×q′D ⇐⇒ C(z) is a right divisor of D(z).
(2.11)

This basic property leads to the following polynomial module characterizations
of left and right divisors.

Theorem 2.24. Greatest common left/right divisors and least common left/right
multiples of rectangular polynomial matrices A1, . . . ,Ar exist. They are character-
ized as follows.

1. Let Ai(z)∈F[z]n×mi , i = 1, . . . ,r. A matrix D(z)∈F[z]n×q is a common left divisor
if and only if

A1F[z]
m1 + · · ·+ArF[z]

mr ⊂ DF[z]q. (2.12)
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D(z) ∈ F[z]n×q is a greatest common left divisor if and only if

A1F[z]
m1 + · · ·+ArF[z]

mr = DF[z]q. (2.13)

E(z) ∈ F[z]n×q is a common right multiple if and only if

EF[z]q ⊂ A1F[z]
m1 ∩·· ·∩ArF[z]

mr . (2.14)

E(z) ∈ F[z]n×q is a least common right multiple if and only if

EF[z]q = A1F[z]
m1 ∩·· ·∩ArF[z]

mr . (2.15)

2. Let Ai(z) ∈ F[z]ni×m, i = 1, . . . ,r. A matrix D(z) ∈ F[z]q×m is a common right
divisor if and only if

F[z]1×n1A1 + · · ·+F[z]1×nrAr ⊂ F[z]1×qD. (2.16)

D(z) ∈ F[z]q×m is a greatest common right divisor if and only if

F[z]1×n1A1 + · · ·+F[z]1×nrAr = F[z]1×qD. (2.17)

E(z) ∈ F[z]q×m is a common left multiple if and only if

F[z]1×qE ⊂ F[z]1×n1A1∩·· ·∩F[z]1×nr Ar. (2.18)

E(z) ∈ F[z]q×m is a least common left multiple if and only if

F[z]1×qE = F[z]1×n1A1∩·· ·∩F[z]1×nr Ar. (2.19)

Proof. Define A = (A1, . . . ,Ar) ∈ F[z]n×m,m = ∑r
i=1 mi. Then D is a greatest

common left divisor of A1, . . . ,Ar if and only if D is a left divisor of A. Using (2.11)
we see that this is equivalent to A1F[z]m1 + · · ·+ArF[z]mr = AF[z]m ⊂ DF[z]q. This
proves (2.12). Similarly, characterizations (2.14), (2.16), and (2.18) are shown. We
prove (2.13). If D = gcld(A1, . . . ,Ar), then (2.12) implies the inclusion A1F[z]m1 +
· · ·+ArF[z]mr ⊂ DF[z]q. Since A1F[z]m1 + · · ·+ArF[z]mr is a submodule of F[z]n,
Theorem 2.15 implies that A1F[z]m1 + · · ·+ArF[z]mr has a basis. Thus there exists
D′ ∈ F[z]n×q′ , with

A1F[z]
m1 + · · ·+ArF[z]

mr = D′F[z]q
′
. (2.20)

Thus D′ is a common left divisor. Since D is the greatest common left divisor,
D=D′Q for some Q∈F[z]q

′×q. This implies DF[z]q⊂D′F[z]q′ . Therefore, DF[z]q =
D′F[z]q′ = A1F[z]m1 + · · ·+ArF[z]mr . Conversely, from A1F[z]m1 + · · ·+ArF[z]mr =
DF[z]q we conclude that D is a common left divisor. Moreover, by (2.12), each
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common left divisor D′ satisfies DF[z]q = A1F[z]m1 + · · ·+ ArF[z]mr ⊂ D′F[z]q′ ,
and therefore D = D′Q for some Q ∈ F[z]q

′×q. Thus D is a greatest common
left divisor. This completes the proof of (2.13). One proves (2.17) similarly.
For (2.15) we proceed as follows. If E is the least common right multiple, then
EF[z]q ⊂ A1F[z]m1 ∩ ·· · ∩ArF[z]mr . The intersection A1F[z]m1 ∩ ·· · ∩ArF[z]mr is a
free submodule of F[z]n, and thus there exists a matrix E ′ ∈ F[z]n×q′ , with EF[z]q ⊂
A1F[z]m1 ∩·· ·∩ArF[z]mr = E ′F[z]q′ . Thus E = E ′X for some X ∈ F[z]q

′×q. Since E
is the least common right multiple, there exists Q ∈ F[z]q×q′ with EQ = E ′. But then
E ′F[z]q′ = EQF[z]q

′ ⊂ EF[z]q, and therefore EF[z]q = A1F[z]m1 ∩·· ·∩ArF[z]mr . The
converse is proven similarly. The case (2.19) runs similarly and is omitted. �

We now establish the existence and uniqueness properties of greatest common
divisors of matrices; we omit the obvious statements for least common multiples.

Theorem 2.25. Let Ai ∈ F[z]n×mi , i = 1, . . . ,r, with rank q := rk(A1, . . . ,Ar).

1. There exists a greatest common left divisor D∈ F[z]n×q of A1, . . . ,Ar, with rk D=

q. If D and D′ ∈F[z]n×q′ are greatest common left divisors with full column ranks,
then q = q′, and there exists a unique unimodular transformation U ∈GLq(F[z]),
with D′ = DU. Similarly for greatest common right divisors.

2. A square greatest common left divisor D ∈ F[z]n×n, with det D �= 0, exists if and
only if A1F[z]m1 + · · ·+ArF[z]mr is a full submodule of F[z]n, i.e., if and only if
rk(A1, . . . ,Ar) = n. Similarly for square greatest common right divisors.

Proof. The submodule A1F[z]m1 + · · ·+ArF[z]mr ⊂ F[z]n is free and has rank q≤ n.
Thus there exists a full column rank matrix D ∈ F[z]n×q, with

A1F[z]
m1 + · · ·+ArF[z]

mr = DF[z]q.

Thus D(z) is a greatest common left divisor. Let D′ ∈ F[z]n×q′ denote another
greatest common left divisor of full column rank. Then D′F[z]q′ = A1F[z]m1 + · · ·+
ArF[z]mr = DF[z]q, which implies rk D′ = q, as well as D′ = DX and D = D′Y for
suitable matrices X ∈ F[z]q×q′ ,Y ∈ F[z]q

′×q. Thus D′ = D′YX and D = DXY. Since
D has full column rank, we obtain XY = Iq. Similarly, YX = Iq′ . Thus q = q′ and
X ,Y are unimodular. This proves the first claim. The second claim follows from the
first one. �

We next define coprimeness for polynomial matrices.

Definition 2.26. 1. Polynomial matrices Ai ∈ F[z]n×mi , i = 1, . . . ,r, are called left
coprime if there exists a matrix X ∈ F[z]q×n such that D = gcld(A1, . . . ,Ar)
satisfies DX = In or, equivalently, if and only if

DF[z]q = F[z]n.
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2. The polynomial matrices Ai ∈ F[z]ni×m, i = 1, . . . ,r, are called right coprime if
there exists a matrix X ∈F[z]m×q such that D= gcrd(A1, . . . ,Ar) satisfies XD= Im

or, equivalently, if and only if

F[z]1×qD = F[z]1×m.

The preceding definition applies to single matrices as well. Thus a polynomial
matrix A(z) ∈ F[z]m×n is called left prime (or right prime) if there exists a
polynomial matrix X(z) ∈ F[z]m×n [or X(z) ∈ F[z]n×m], with A(z)X(z) = In [or
X(z)A(z) = Im], respectively. The coprimeness of polynomial matrices is charac-
terized as follows. Let F denote the algebraic closure of the field F.

Theorem 2.27. 1. The matrices Ai ∈ F[z]n×mi , i = 1, . . . ,r, are left coprime if and
only if there exist solutions Xi ∈ F[z]ni×n, i = 1, . . . ,r, to the matrix Bezout
equation

A1(z)X1(z)+ · · ·+Ar(z)Xr(z) = In (2.21)

or, equivalently,

rk (A1(z), . . . ,Ar(z)) = n ∀z ∈ F.

2. The matrices Ai ∈ F[z]ni×m, i = 1, . . . ,r, are right coprime if and only if there exist
solutions Yi ∈ F[z]m×ni , i = 1, . . . ,r, to the matrix Bezout equation

Y1(z)A1(z)+ · · ·+Yr(z)Ar(z) = Im

or, equivalently,

rk

⎛

⎜
⎝

A1(z)
...

Ar(z)

⎞

⎟
⎠= m ∀z ∈ F.

Proof. We only prove the claims concerning left coprimeness. The proof for right
coprimeness proceeds by similar arguments. Polynomial matrices A1, . . . ,Ar are left
coprime if and only if A1F[z]m1 + · · ·+ArF[z]mr = F[z]n. But this is equivalent to
the solvability of the Bezout identity (2.21). The same argument shows that A =
(A1, . . . ,Ar) is left prime if and only if there exists a polynomial matrix X , with
AX = In. But then clearly A(z)X(z) = In for all z ∈ F. Thus rk A(z) = n for all z ∈ F.
Conversely, assume the rank conditions are satisfied. For this direction of the proof
we refer to a result that is developed later in this chapter, i.e., to the Smith canonical
form of a matrix; see Theorem 2.42. Without loss of generality we can assume that
A is in Smith normal form; let d1, . . . ,dn ∈ F[z] be the invariant factors. Since A(z)
has full row rank for all z ∈ F, it follows that the invariant factors cannot have a zero
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in the algebraic closure F. But then d1, . . . ,dn must be nonzero constants, which
implies that the Smith normal form is equal to [In,0]. But then A(z) is left coprime,
and we are done. �

2.6 Coprime Factorizations of Rational Matrix Functions

Left and right coprime factorizations of polynomial matrices enable one to construct
unique factorizations of rational matrix functions. We begin with the following
useful lemma.

Lemma 2.28. Let N(z),D(z),M(z),P(z) be polynomial matrices and D(z) be
nonsingular. Assume that P(z) = N(z)D(z)−1M(z). If N and D are right coprime,
then M(z) = D(z)M1(z) for some polynomial matrix M1.

Proof. From the Bezout identity X(z)N(z)+Y (z)D(z) = I we conclude that

X(z)N(z)D(z)−1 +Y (z) = D(z)−1

and therefore X(z)P(z)+Y (z)M(z) = D(z)−1M(z). Thus

M(z) = D(z)(X(z)P(z)+Y (z)M(z)) = D(z)M1(z).

�
We now examine coprime factorizations of matrices of rational functions.

Theorem 2.29. Let G(z) ∈ F(z)p×m.

1. There exist right coprime polynomial matrices N(z) ∈ F[z]p×m,D(z) ∈ F[z]m×m,
with det D �= 0, such that

G(z) = N(z)D(z)−1. (2.22)

If N1(z) ∈ F[z]p×m,D1(z) ∈ F[z]m×m are right coprime with det D1 �= 0 and

N1(z)D1(z)
−1 = N(z)D(z)−1 = G(z),

then there exists a unique unimodular matrix U ∈GLm(F[z]) with (N1(z),D1(z))=
(N(z)U(z),D(z)U(z)).

2. There exist left coprime matrices N�(z)∈F[z]p×m,D�(z)∈F[z]p×p, with det D� �=
0, such that

G(z) = D�(z)
−1N�(z).

If N�,1(z) ∈ F[z]p×m,D�,1(z) ∈ F[z]p×p are left coprime with det D�,1(z) �= 0 and
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D�,1(z)
−1N�,1(z) = D�(z)

−1N�(z) = G(z),

then there exists a unique unimodular matrix U ∈ GLm(F[z]) with (N�,1(z),
D�,1(z)) = (U(z)N�(z),U(z)D�(z)).

Proof. We focus on the first claim; the proof of the second claim runs similarly. Let
G = (gij), with gij =

pij
qij

, and let q(z) ∈ F[z]\{0} denote the least common multiple

of the denominators qij. Then N(z) := q(z)G(z)∈F[z]p×m, and thus the factorization
G(z) = N(z)(q(z)Im)

−1 exists. The submodule

M := F[z]1×pN +F[z]1×m(qIm)⊂ F[z]1×m

contains the linearly independent elements qe�i , i = 1, . . . ,m, and therefore has
rank ≥ m. Since M is a submodule of F[z]1×m, one also has rk M ≤ m. Thus
M ⊂ F[z]1×m is a full submodule and, due to Theorem 2.25, there exists a greatest
common right divisor Δ ∈ F[z]m×m, det Δ �= 0, of N,qIm. Therefore, there exist
Ñ ∈ F[z]p×m and D̃ ∈ F[z]m×m, with

N = ÑΔ , qIm = D̃Δ .

From

F[z]1×pÑΔ +F[z]1×mD̃Δ = F[z]1×mΔ ,

and observing that Δ is nonsingular, we conclude

F[z]1×pÑ +F[z]1×mD̃ = F[z]1×m.

Thus Ñ(z) and D̃(z) are right coprime. Moreover,

G(z) = N(qIm)
−1 = (ÑΔ)(D̃Δ)−1 = ÑD̃−1.

This proves the existence of right coprime factorizations (2.22). If (N(z),D(z))
and (N1(z),D1(z)) are right coprime factorizations of G(z), then N(z)D(z)−1 =
G(z) =N1(z)D1(z)−1. Thus N1(z) =N(z)D(z)−1D1(z), and Lemma 2.28 implies the
existence of U(z) ∈ F[z]m×m, with D1(z) = D(z)U(z). Similarly, D(z) = D1(z)V (z)
for a suitable matrix V (z) ∈ F[z]m×m. This implies D(z) = D(z)U(z)V (z). Since
det D �= 0, the matrix D(z) is invertible in F(z)m×m, and therefore U(z)V (z) = Im.
Thus U(z) and V (z) are unimodular, with

N1(z) = N(z)D(z)−1D1(z) = N(z)U(z), D1(z) = D(z)U(z).

This completes the proof. �
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Unlike the scalar case, it is in general not possible to bound the degrees of
the entries of matrix polynomials N(z),D(z) in a coprime factorization G(z) =
N(z)D(z)−1. In fact, this requires special coprime factorizations where, for example,
D(z) is in column proper form. Recall that for rectangular polynomial matrices
P(z) ∈ F[z]p×m we define the jth column degree deg j P(z) as the column degree of
the jth column of P(z). Generalizing from the scalar case, a rational matrix-valued
function G(z) ∈ F(z)p×m is called proper if G(z) has a Laurent expansion of the
form

G(z) =
∞

∑
j=0

G jz
− j.

Rational functions of the form

G(z) =
∞

∑
j=1

G jz
− j

are called strictly proper. G(z) is called biproper provided m = p and both G(z)
and G(z)−1 are proper. Equivalently, the Laurent expansion is of the form G(z) =
∑∞

j=0 G jz− j, with G0 invertible.

Proposition 2.30. Let G(z) = N(z)D(z)−1 ∈ F(z)p×m, with N(z) ∈ F[z]p×m and
D(z) ∈ F[z]m×m column proper. Then G(z) is proper (or strictly proper) if and only
if, for all j = 1, . . . ,m,

deg j N(z) ≤ deg j D(z) (or deg j N(z)< deg j D(z)). (2.23)

In particular, this shows that D(z)−1 is proper whenever D(z) is row proper or
column proper.

Proof. Let γ1 ≥ . . . ≥ γm denote the column degrees of D(z), and let Δ(z) =
diag(zγ1 , . . . ,zγm). Then D(z)Δ(z)−1 is biproper, i.e., D(z)Δ(z)−1 and Δ(z)D(z)−1

are proper. Therefore, G(z) = N(z)Δ(z)−1(Δ(z)−1D(z))−1 is proper or strictly
proper if and only if N(z)Δ(z)−1 is proper or strictly proper, respectively. But this
is equivalent to condition (2.23). �

We can now prove a version of division with remainders for matrix polynomials.

Theorem 2.31. Let D(z) ∈ F[z]m×m be nonsingular. For every N(z) ∈ F[z]p×m there
exist unique polynomial matrices Q(z) ∈ F[z]p×m,R(z) ∈ F[z]p×m, with

N(z) = Q(z)D(z)+R(z),

such that R(z)D(z)−1 is strictly proper. If D(z) is column proper with column degrees
γ1 ≥ ·· · ≥ γm, then such a decomposition exists, with deg j R(z)< γ j, j = 1, . . . ,m.
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Proof. A rational matrix function has a unique decomposition N(z)D(z)−1 =
Q(z) + F(z) into a polynomial Q(z) and strictly proper part F(z). Thus R(z) :=
F(z)D(z) = N(z) − Q(z)D(z) is a polynomial matrix, with R(z)D(z)−1 = F(z)
strictly proper. This completes the proof of the first part. The second part follows
from Proposition 2.30. �

A similar version of Theorem 2.31 is true for the solutions of the dual equation

N�(z) = D�(z)Q(z)+R(z),

provided D�(z) is row proper with minimal row indices ν1, . . . ,νm. This implies the
following result.

Proposition 2.32. Let D�(z) ∈ F[z]m×m be nonsingular and row proper with row
degrees ν1, . . . ,νm. Let f ∈ F[z]m. Then f (z) can be uniquely represented in the
form

f (z) = D�(z)g(z)+ r(z), (2.24)

with g(z) ∈ F[z]m, r(z) = (r1(z), . . . ,rm(z))� ∈ F[z]m, and degri < νi. Moreover, if
γ = max1≤i≤m(deg fi−νi)≥ 0, then degg = γ . Otherwise g = 0.

We next relate coprimeness to the very important concept of doubly coprime
factorizations. Let

G(z) = Nr(z)Dr(z)
−1 = D�(z)

−1N�(z)

be a right and left coprime factorization of G(z) ∈ F(z)p×m, respectively. This
implies the intertwining relation

N�(z)Dr(z) = D�(z)Nr(z). (2.25)

By the assumed coprimeness, one deduces the existence of polynomial matrices
X(z) ∈ F[z]m×p, X̄(z) ∈ F[z]p×m,Y (z) ∈ F[z]m×m,Ȳ (z) ∈ F[z]p×p, with

X(z)Nr(z)+Y (z)Dr(z) = Im

N�(z)X(z)+D�(z)Y (z) = Ip.
(2.26)

Equations (2.25) and (2.26) are equivalent to the matrix identity

(
Y (z) X(z)

−N�(z) D�(z)

)(
Dr(z) −X(z)
Nr(z) Y (z)

)
=

(
I Z
0 I

)
, (2.27)
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where Z := XY − YX . Therefore, the polynomial matrix

(
Dr(z) −X(z)
Nr(z) Y (z)

)
is

unimodular. Multiplying (2.27) on the right by

(
I −Z
0 I

)
, and modifying X(z) and

Y (z) accordingly, leads directly to the following central result.

Theorem 2.33 (Doubly Coprime Factorization). Let N�(z) ∈ F[z]p×m and
D�(z) ∈ F[z]p×p be right coprime and Nr(z) ∈ F[z]p×m and Dr(z) ∈ F[z]m×m be
left coprime, with

D�(z)Nr(z) = N�(z)Dr(z).

Then there exist unique polynomial matrices X(z)∈F[z]m×p,X(z)∈ F[z]m×p,Y (z)∈
F[z]m×m,Y (z) ∈ F[z]p×p, with

(
Y (z) X(z)

−N�(z) D�(z)

)(
Dr(z) −X(z)
Nr(z) Y (z)

)
=

(
Im 0
0 Ip

)
,

(
Dr(z) −X(z)
Nr(z) Y (z)

)(
Y (z) X(z)

−N�(z) D�(z)

)
=

(
Ip 0
0 Im

)
,

such that X(z)D�(z)−1 and Dr(z)−1X(z) are strictly proper.

Proof. The existence of doubly coprime factorizations has been shown already.
By Theorem 2.31, there exist unique polynomial matrices L(z) and X1(z) such
that X(z) = L(z)D�(z)+X1(z) and X1(z)D�(z)−1 is strictly proper. Define Y1(z) =
Y (z) + L(z)N�(z), with (Y,X) = L(−N�,D�) + (Y1,X1). Then X1,Y1 and X1 :=
X + DrL,Y 1 := Y is a doubly coprime factorization, with X1D−1

� strictly proper.
The equality DrX1 = X1D� shows that

X1(z)D�(z)
−1 = Dr(z)

−1X(z).

Thus the strict properness of X1D−1
� implies that of D−1

r X1. To prove uniqueness
observe that the difference X = X1− X2,Y = Y1−Y2,X = X1− X2,Y = Y 1−Y 2

of solutions Xi,Yi,Xi,Y i for the doubly coprime factorizations solves the Sylvester
equation

D�(z)Y (z)+N�(z)X(z) = 0.

Thus

D�(z)Y (z)+N�(z)Dr(z)Dr(z)
−1X(z) = 0.
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Since N�(z)Dr(z) = D�(z)Nr(z), we obtain

D�(z)(Y (z)+Nr(z)Dr(z)
−1X(z)) = 0.

Therefore, Nr(z)Dr(z)−1X(z) = −Y (z) is a polynomial. Lemma 2.28 implies,
together with the right coprimeness of Nr(z),Dr(z), that there exists a polynomial
matrix P(z), with X(z) = Dr(z)P(z). But then P(z) is strictly proper and a polyno-
mial, hence P(z) = 0. Therefore, X(z) = 0 and Y (z) = 0. Similarly, we conclude that
X(z) = 0 and Y (z) = 0, and the uniqueness part is shown. �

Theorem 2.33 easily implies the following result.

Corollary 2.34. Let Nr(z) ∈ F[z]p×m, Dr(z) ∈ F[z]m×m be right coprime, with
det Dr �= 0. Then there exists a unique extension to a unimodular matrix

(
Dr(z) −Xr(z)
Nr(z) Yr(z)

)
∈ GLm+p(F[z]) (2.28)

such that Dr(z)−1Xr(z) is strictly proper.

Proof. Let D�(z)−1N�(z) = G(z) be a left coprime factorization of the rational
matrix function G(z) := Nr(z)Dr(z)−1. Choose the unique solution Xr(z),Yr(z) of
the Bezout equation D�(z)Yr(z)+N�(z)Xr(z) = Ip such that Dr(z)−1Xr(z) is strictly
proper. The preceding calculation shows that, with this choice of Xr(z) and Yr(z),
matrix (2.28) is unimodular. �

Doubly coprime factorizations will play a fundamental role in our subsequent
approach to open-loop control.

2.7 Wiener–Hopf Factorizations

Wiener–Hopf factorizations, and the corresponding factorization indices, play a
central role in algebraic systems theory, in particular in the study of state feedback.
They are also of independent interest in the study of the invertibility of Toeplitz oper-
ators and systems of singular integral operators. A basic existence and uniqueness
result for Wiener–Hopf factorizations is due to Dedekind and Weber (1882), with
subsequent studies by, for example, Gohberg and Krein (1960), Gohberg, Lerer and
Rodman (1978), and Fuhrmann and Willems (1979).

Definition 2.35. Let G(z) ∈ F(z)p×m be rational. A left Wiener–Hopf factoriza-
tion at infinity is a factorization of the form

G(z) = G−(z)D(z)G+(z), (2.29)

with G+(z) ∈ F[z]m×m unimodular, G−(z) ∈ F[[z−1]]p×p biproper rational, and
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D(z) =

(
Δ(z) 0

0 0

)
,

where Δ(z) = diag(zκ1 , . . . ,zκr). The integers κi ∈Z, assumed decreasingly ordered,
are called the left factorization indices at infinity, or the left Wiener–Hopf indices.
Right Wiener–Hopf factorization and right factorization indices are defined
analogously, with the roles of G+ and G− in (2.29) interchanged.

Theorem 2.36. Let G(z) ∈ F(z)p×m be rational.

1. There exist left and right Wiener–Hopf factorizations of G(z).
2. The left and right Wiener–Hopf factorization indices are uniquely determined, up

to permutations.
3. If G(z) is polynomial, then all its right (left) Wiener–Hopf factorization indices

are nonnegative. Similarly, if G(z) is a proper rational function, then all its right
(left) Wiener–Hopf factorization indices are nonpositive.

Proof. We prove statement 1. Let us assume first that G(z) ∈ F[z]p×m. By Proposi-
tion 2.19, there exists a unimodular matrix V (z) such that G(z)V (z) = (G1(z) 0),
where G1(z) is a p×r column proper matrix with column degrees κ1≥ ·· · ≥ κr. The
column properness of G1(z) implies the left invertibility of the highest coefficient
matrix [G1]hc, and we denote by E0 a left inverse of [G1]hc. Let E be an invertible
p× p matrix whose first r rows coincide with E0. Then E

(
G1(z) 0

)
is of the form

E
(

G1(z) 0
)
=

(
Ω11(z) 0
Ω21(z) 0

)(
Δ(z) 0

0 Im−r

)
=

(
Ω11(z) 0
Ω21(z) Ip−r

)(
Δ(z) 0

0 0

)
,

where

Ω11(z) = I +Ω ′
11(z),

and Ω ′
11(z) ∈ z−1

F[[z−1]]r×r, Ω21(z) ∈ F[[z−1]](p−r)×r,

Δ(z) = diag(zκ1 , . . . ,zκr) ∈ F[z]r×r.

Since Ω11(z) is biproper, it has a proper inverseΓ11(z). Define Γ0(z)∈F[[z−1]]p×p by

Γ0(z) =

(
Γ11(z) 0

−Ω21(z)Γ11(z) I

)
;

then

Γ0(z)

(
Ω11(z) 0
Ω21(z) I

)(
Δ(z) 0

0 0

)
=

(
Δ(z) 0

0 0

)
.
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Altogether, (Γ0(z)E)G(z)V (z) =

(
Δ(z) 0

0 0

)
, implying the factorization G(z) =

G−(z)D(z)G+(z), with

G−(z) = (Γ0(z)E)
−1, G+(z) =V (z)−1, D(z) =

(
Δ(z) 0

0 0

)
.

We note that the proof also shows that the polynomial matrix G(z) has nonnegative
left Wiener–Hopf indices, which are the column degrees of G.

If G(z) is rational, then there exists a nonzero scalar polynomial g(z) = zn +
gn−1zn−1 + · · ·+ g0 such that g(z)G(z) is a polynomial matrix. Let g(z)G(z) =
H−(z)D(z)H+(z) be a left factorization. Since g(z) = znγ(z), with

γ(z) = 1+ gn−1z−1 + · · ·+ g0z−n,

it follows that a left factorization of G(z) exists, with G−(z) = γ(z)−1H−(z),
G+(z) = H+(z), and D1(z) = z−nD(z). This proves the existence of left factoriza-
tions. To obtain a right factorization of G(z), we transpose a left factorization of
G(z)�. This completes the proof of statement 1.

To prove the uniqueness of Wiener–Hopf indices, we can assume without loss
of generality that p = m. Thus, assume that G(z) = Γ1(z)Δ1(z)U1(z) and G(z) =
Γ2(z)Δ2(z)U2(z) are two left Wiener–Hopf factorizations, with Γ1(z),Γ2(z) biproper,
U1(z),U2(z) unimodular, and Δ1 = diag(zκ1 , . . . ,zκm), Δ2 = diag(zλ1 , . . . ,zλm).
Define |κ |= ∑m

i=1 κi and |λ |= ∑m
i=1 λi. Taking the determinant of G(z) we obtain

detΓ1(z)z
|κ | = cdetΓ2(z)z

|λ | (2.30)

for a nonzero constant c ∈ F. Since Γ1(z) is biproper, so is the determinant
detΓ1(z). Thus detΓ1(z) = ∑∞

j=0 γ jz− j,γ0 �= 0, and similarly for detΓ ′(z). Com-
paring coefficients in (2.30) we conclude that |κ | = |λ |. From Γ1(z)Δ1(z)U1(z) =
Γ2(z)Δ2(z)U2(z), we have

Γ (z) = Δ2(z)U(z)Δ1(z)
−1

for Γ (z) = Γ2(z)−1Γ1(z) biproper and U(z) = U2(z)U1(z)−1 unimodular. Thus the
entries uij(z) of the unimodular polynomial matrix U(z) satisfy

uij(z)z
λi−κ j = γij(z)

for the biproper rational functions γij(z). Thus either uij = 0 or λi≤ κ j. Since U(z) is
nonsingular, there exists a permutation π such that uiπ(i) �= 0 for all i= 1, . . . ,m. This
implies that λi ≤ κπ(i) for i = 1, . . . ,m. Since |λ |= |κ |, we conclude that λi = κπ(i)
for all i. Thus the Wiener–Hopf indices coincide up to a permutation π . This proves
the second part.
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By the preceding argument for the first part, every polynomial matrix has
nonnegative left (or right) Wiener–Hopf indices. Now assume that G(z) is a strictly
proper rational function. We set G(z) = K(z)/t(z), with K(z) a polynomial matrix
and t(z) the lowest common multiple of the denominators of all entries of G(z).
Clearly, t(z) = zτγ(z) for some nonnegative τ and a scalar, rational biproper
γ(z). Let K(z) = Γ (z)Δ(z)U(z) be a left Wiener–Hopf factorization and Δ(z) =
diag(zν1 , . . . ,zνp). Thus

G(z) =
Γ (z)
γ(z)

diag(zν1−τ , . . . ,zνp−τ)U(z).

This shows that

diag(zν1−τ , . . . ,zνp−τ)U(z) = γ(z)Γ (z)−1G(z)

is strictly proper. Since U(z) is a polynomial matrix, we must have νi− τ < 0, and
these are the factorization indices of G(z). �

It is clear that if G(z) is singular, then the right and left factorizations of G(z) are
not unique, although the Wiener–Hopf indices are. However, even in the nonsingular
case we do not have uniqueness of the factorization. The next result is due to
Gohberg and Krein (1960).

Theorem 2.37. Let G(z) ∈ F(z)m×m be rational and nonsingular, and let

G(z) = G−(z)Δ(z)G+(z) = G′−(z)Δ
′(z)G′+(z)

be two left factorizations. Then Δ(z) = Δ ′(z), and there exists a unimodular matrix
U(z) ∈ F[z]m×m satisfying

uij = 0 if κi > κ j,

deg(uij)≤ κ j−κi if κ j ≥ κi,
(2.31)

for which G′+(z) =U(z)G+(z) and G′−(z) = G−(z)Δ(z)U(z)−1Δ(z)−1.

Proof. The equality Δ(z) = Δ ′(z) follows from Part 2 of Theorem 2.36. Thus
U(z) := G′+(z)G+(z)−1 is unimodular and satisfies G′+(z) = U(z)G+(z) and
G′−(z) = G−(z)Δ(z)U(z)−1Δ(z)−1. Moreover, each entry uij(z) of U(z) is a
polynomial such that uij(z)zκi−κ j is biproper. Therefore,

deguij +κi−κ j ≤ 0

for all i, j. The result follows. �
Clearly, the set of all unimodular matrices U(z) ∈ F[z]m×m satisfying condi-

tion (2.31) forms a multiplicative group, which we will call the left factorization
group. An analogous result is true for right factorizations.
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2.8 Hermite and Smith Normal Forms

In this section we explain one of the main structural tools for analyzing modules of
polynomials, the Smith normal form of matrices.

Definition 2.38. Let A(z) and B(z) be polynomial matrices in F[z]m×n. We say
A(z) and B(z) are unimodularly equivalent if there exist unimodular polynomial
matrices U(z) ∈ F[z]m×m and V (z) ∈ F[z]n×n such that B(z) = U(z)A(z)V (z).
Similarly, A(z) and B(z) are called unimodular left equivalent (or unimodular
right equivalent) if there exists a unimodular matrix U(z) ∈ GLm(F[z]) [or V (z) ∈
GLn(F[z])], with B(z) =U(z)A(z) [or B(z) = A(z)V (z)].

Clearly, unimodular equivalence defines an equivalence relation on the set of
rectangular polynomial matrices, i.e., it is a reflexive, symmetric, and transitive
relation. From standard linear algebra it is known that two matrices A and B over
a field are unimodularly equivalent if and only if they have the same rank. In
fact, every matrix A over a field is unimodularly equivalent to diag(Ir,0), with
r = rkA. For matrices over rings the situation is not so easy, and deciding unimodular
equivalence of matrices can become difficult. However, for PIDs there is a simple
answer. We begin with the somewhat simpler problem of finding normal forms for
unimodular left equivalence. The next theorem is stated only for full column rank
polynomial matrices. A similar result is true for full row rank polynomial matrices
A(z) ∈ F[z]m×n, with m≤ n.

Theorem 2.39 (Hermite Normal Form). Let A(z) ∈ F[z]m×n be full column rank.
Then there exists a unimodular matrix U(z) ∈GLm(F[z]) such that B(z) =U(z)A(z)
has the form

B(z) =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

b11 b12 . . . b1n

0 b22 . . . b2n
...

...
. . .

...
0 0 . . . bnn

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.

The polynomials bij(z) are uniquely determined, with bii(z) monic and degbij(z) <
degbjj(z), for 1≤ i < j ≤ n.

Proof. Using an elementary row operation one can bring the entry in the first
column of A(z) with the smallest degree to position 11. By division with remainders,
one then has ai1(z) = qi(z)a11(z) + ri(z) for i = 2, . . . ,m. Applying elementary
row operations we can thus achieve b11 = a11,bi1 = ri, where degbi1 < degb11.
Repeating the process of moving the entry of smallest degree to the 11-position and
reducing degrees in the entries one obtains after finitely many steps a unimodular
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left equivalent matrix of the form

B(z) =

(
b11(z) B12(z)

0 B22(z)

)
,

with bi1 = 0 for i = 2, . . . ,m and B12(z) ∈ F[z]1×(n−1). Here B22(z) ∈ F[z](m−1)×(n−1)

has full column rank. Proceeding with B22(z), one sees that it is left unimodularly
equivalent to a matrix B′22(z) with entries bi2 = 0 for i > 2. Suppose that degb12 ≥
degb22. Using division with remainders and adding a suitable multiple of the second
row to the first one, one obtains degb12 < degb22. Proceeding inductively with
the other columns the Hermite form is obtained. The uniqueness property of the
polynomials bij(z) in the Hermite normal form is easily established. �

Theorem 2.20 implies that every full column rank polynomial matrix can be
reduced to column proper form by right multiplication with a unimodular matrix.
Because the column proper form is not unique, one can use the extra freedom
to reduce it to a canonical form. This can be done by the Kronecker–Hermite
form, which is stated in the following theorem. For proofs we refer the reader
to Hinrichsen and Prätzel-Wolters (1983) and Fuhrmann and Helmke (2001), for
example.

Theorem 2.40. Let A(z) ∈ F[z]m×n be full column rank. Let a1, . . . ,an denote the
columns of A(z), and let aij denote the ith element of a j. Then there exists a
unimodular transformation V (z) such that A(z)V (z) is in Kronecker–Hermite
canonical form, i.e., there exists a uniquely determined set of indices 1 ≤ μ1 <
· · ·< μn ≤ m such that

(a) aμ j j is monic with degree δ j := degaμ j j = dega j;
(b) degaμ jk < δ j for 1≤ k ≤ n,k �= j.
(c) If i > μ j , then degaij < δ j for j = 1, . . . ,n.

When Theorems 2.39 and 2.40 are specialized to nonsingular polynomial
matrices, the following canonical representations are obtained.

Corollary 2.41. Let A(z) ∈ F[z]m×m denote a nonsingular polynomial matrix. Then
there exists a unimodular matrix W (z) ∈ GLm(F[z]) such that

A(z)W (z) =

⎛

⎜
⎜
⎜
⎝

b11 0 . . . 0
b21 b22 . . . 0

...
...

. . .
...

bm1 bm2 . . . bmm.

⎞

⎟
⎟
⎟
⎠

The polynomials bij(z) are uniquely determined, with bii(z) monic and degbij(z) <
degbii(z), for 1≤ j < i≤ m.

Moreover, there exists a unimodular transformation V (z) ∈ GLm(F[z]) and
polynomials bij(z) such that
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A(z)V (z) =

⎛

⎜
⎜
⎜
⎝

b11 b12 . . . b1m

b21 b22 . . . b2m
...

...
. . .

...
bm1 bm2 . . . bmm

⎞

⎟
⎟
⎟
⎠

satisfies the following conditions:

(a) bjj(z) is monic with degree δ j = maxi degbij;
(b) degbjk < δ j for all k �= j;
(c) If i > j, then degbij < δ j .

Equivalently, A(z)V (z) is in both row proper and column proper form.

It is in general not possible, using elementary row operations, only to reduce
the structure of a rectangular polynomial matrix to diagonal form. This is achieved
by the Smith canonical form, which employs both elementary row and column
operations.

Theorem 2.42 (Smith Normal Form). Let A(z) ∈ F[z]m×n. Then there exist
nonzero polynomials d1(z), . . . ,dr(z) ∈ F[z] \ {0}, with d1(z)|d2(z)| · · · |dr(z) and
unimodular matrices U(z) ∈ GLm(F[z]) and V (z) ∈ GLn(F[z]), such that

U(z)A(z)V (z) = diag(d1(z), . . . ,dr(z),0, . . . ,0).

Proof. Without loss of generality, assume that A �= 0. The ring of polynomials is
a unique factorization domain, and therefore every nonzero element f (z) ∈ F[z]
has a unique prime factor decomposition as f (z) = p1(z)n1 · · · pr(z)nr , with pi(z)
irreducible polynomials in F[z]. Define the height of f as h( f ) := ∑r

i=1 ni. Then h
satisfies the following obvious properties (for x,y ∈ F[z]):

• h(xy) = h(x)+ h(y);
• x|y =⇒ h(x)≤ h(y);
• x|y and h(x) = h(y) are valid if and only if y = ux for a nonzero constant u ∈ F.

Let δ ∈ N0 denote the smallest value among all heights h(bij) of nonzero entries
bij, i = 1, . . .m, j = 1, . . . ,n, of polynomial matrices B = UAV , where U and V
vary independently over all unimodular matrices in GLm(F[z]) and GLn(F[z]),
respectively. Without loss of generality, one can assume that U = Im,V = In, and
δ = h(a11). We now prove the following claims:

1. For all j = 1, . . . ,n, either a1 j = 0 or a11|a1 j.
2. For all i = 1, . . . ,m, either ai1 = 0 or a11|ai1.

To prove the first claim, let j = 2, and assume that a12 �= 0 and a11 does not
divide a12. Let d be the greatest common divisor of a11,a12. Thus a11 = da,a12 = db
for suitable coprime elements a,b ∈ F[z]. By coprimeness, there exists a solution
x,y ∈ F[z] to the Bezout equation ax+ by = 1. This implies that the 2× 2 matrix
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U =

(
x −b
y a

)

is unimodular and, therefore, Q := diag(U, In−2) is unimodular, too. We conclude
that the 11-entry of AQ is d and the 12-entry of AQ is 0. Since a11 does not divide
a12, we conclude h(d) < h(a11). But this is a contradiction to the choice of a11.
Thus a11|a12. Similarly for j > 2 and claim 2. Similarly to the preceding procedure
in constructing U , we obtain after finitely many steps the unimodular matrices P
and Q such that PAQ is block-diagonal of the form diag(a11,A22), where A22 ∈
F[z](m−1)×(n−1). Proceeding by induction, one obtains the existence of unimodular
matrices P and Q and nonzero ring elements d1, . . . ,dr such that PAQ has the form
of a generalized diagonal matrix diag(d1, . . . ,dr,0, . . . ,0), possibly augmented by
zero columns or rows. Moreover, by construction, h(d1)≤ . . .≤ h(dr). It remains to
show that d1| · · · |dr. Suppose that d1 does not divide d2. Certainly the 2×2 matrices

A :=

(
d1 0
0 d2

)
, B :=

(
d1 d2

0 d2

)

are equivalent. Arguing as before, one can reduce the height of d1 and eliminate
the 12-entry in the second matrix. Therefore, A is equivalent to a diagonal matrix
diag(d′1,d2), with h(d′1) < h(d1). But this contradicts the minimality of h(d1).
Therefore, d1|d2, and similarly di|d j for i < j. �

The polynomials d1, . . . ,dr are called the invariant factors of A. They are
uniquely determined up to multiplication by nonzero constants. In fact, it is known
that for each i = 1, . . . ,r the product d1(z) · · ·di(z) defines the principal ideal
d1(z) · · ·di(z)F[z], which is generated by the i× i-minors of A(z). We conclude with
the following corollary.

Corollary 2.43. Two matrices A,B ∈ F[z]m×n are unimodularly equivalent if and
only if they have the same invariant factors.

The Smith form extends as follows to matrices of rational functions.

Theorem 2.44 (Smith–McMillan Form). Let A(z) ∈ F(z)m×n be a matrix of
rational functions. Then there exist unimodular matrices U(z) ∈ GLm(F[z]) and
V (z) ∈ GLn(F[z]) and pairwise coprime polynomials ai,bi ∈ F[z], i = 1, . . . ,r, with
a1| · · · |ar, br| · · · |b1, such that

U(z)A(z)V (z) = diag(
a1(z)
b1(z)

, . . . ,
ar(z)
br(z)

,0, . . . ,0).

The rational functions a1
b1
, . . . , ar

br
∈ F(z) are uniquely determined by A and r =

rkF(z) A.

Proof. Let A = (
aij
bij
) and d ∈ F[z] be a least common multiple of the bij. Then dA ∈

F[z]m×n. By the Smith form, there exist unimodular matrices U and V and uniquely
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determined elements d1, . . .dr ∈ F[z],d1| · · · |dr such that

dUAV = diag(d1, . . . ,dr,0, . . . ,0).

Choose coprime elements ai,bi ∈ F[z], with

ai

bi
=

di

d
, i = 1, . . . ,r.

Then a1| · · · |ar and br| · · · |b1. The result follows. �

2.9 Equivalence of Polynomial Matrices

It is possible to generalize the concept of unimodular equivalence to the case of
nonsingular polynomial matrices of different sizes. We formalize this as follows.

Definition 2.45. Let D1(z) and D2(z) be nonsingular polynomial matrices in
F[z]m×m and F[z]p×p, respectively. We say D1(z) and D2(z) are polynomially
equivalent if there exist polynomial matrices N2(z) and N1(z) such that

N2(z)D1(z) = D2(z)N1(z)

and

1. N2(z) and D2(z) are left coprime,
2. D1(z) and N1(z) are right coprime.

It is easily seen from the coprimeness conditions and use of Bezout equations
that polynomial equivalence is a bona fide equivalence relation, i.e., it is reflexive,
symmetric, and transitive. Clearly, the unimodular equivalence of D1(z) and D2(z)
implies polynomial equivalence.

One situation we have in mind for applying this concept is as follows. Consider
a rational matrix function G(z) ∈ F(z)p×m with left and right coprime factorizations
by polynomial matrices

D�(z)
−1N�(z) = G(z) = Nr(z)Dr(z)

−1.

Then Dr(z) ∈ F[z]m×m and D�(z) ∈ F[z]p×p are polynomially equivalent, and we are
interested in deducing consequences of this fact. For instance, the next result implies
that the determinants detD�(z) and detDr(z) differ by a constant and therefore have
the same zeros.

Theorem 2.46. For nonsingular polynomial matrices D1(z)∈F[z]m×m and D2(z)∈
F[z]p×p the following conditions are equivalent:
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1. D1(z) and D2(z) are polynomially equivalent;
2. D1(z) and D2(z) have the same nonconstant invariant factors;
3. For integers q≥max{m, p} the extended polynomial matrices

(
D1(z) 0

0 Iq−m

)
,

(
D2(z) 0

0 Iq−p

)
(2.32)

are unimodularly equivalent.
4. There exists an integer q ≥ max{m, p} such that the extended polynomial

matrices (2.32) are unimodularly equivalent.

Proof. Let D1(z) and D2(z) be polynomially equivalent. By Theorem 2.33, there
exist polynomial matrices X(z) and Y (z) such that

U(z) =

(−N2(z) D2(z)
Y (z) X(z)

)
∈ F[z](m+p)×(m+p)

is unimodular, with

(−N2(z) D2(z)
Y (z) X(z)

)(
D1(z)
N1(z)

)
=

(
0

Im

)
.

Therefore,

U(z)

(
D1(z) 0

0 Ip

)
=

(−N2(z) D2(z)
Y (z) X(z)

)(
D1(z) 0

0 Ip

)
=

(−N2(z)D1(z) D2(z)
Y (z)D1(z) X(z)

)

=

( −D2(z)N1(z) D2(z)
Im−X(z)N1(z) X(z)

)
=

(
D2(z) 0

0 Im

)
V (z),

where

V (z) :=

( −N1(z) Ip

I−X(z)N1(z) X(z)

)
=

(
0 I
I X

)(
I 0

−N1 I

)

is a product of unimodular matrices and, therefore, is unimodular. It follows that

(
D1(z) 0

0 Ip

)
,

(
D2(z) 0

0 Im

)
(2.33)

are unimodularly equivalent; hence they have the same invariant factors. By the
uniqueness of the Smith form, the matrices in (2.33) have the same nonconstant
invariant factors as D1(z) and D2(z), respectively. Thus the nonconstant invariant
factors of D1(z) and D2(z) coincide. This shows the implication condition 1 =⇒
condition 2.
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Suppose that D1(z) and D2(z) have the same nonconstant invariant factors.
The uniqueness of the invariant factors thus implies that the extended polynomial
matrices (2.32) have the same invariant factors and therefore are unimodularly
equivalent. This proves that condition 2 =⇒ condition 3. Obviously, condition 3
=⇒ condition 4. Finally, assume that condition 4 is satisfied. Without loss of
generality, we can assume that m ≤ p and D1(z) = diag(d1, . . . ,dm) and D2(z) =
diag(δ1, . . . ,δp) are in Smith canonical form. By condition 4, the nonconstant
invariant polynomials of D1(z) and D2(z) coincide, and therefore d1 = δ1, . . . ,dm =
δm, δm+1 = . . .= δp �= 0. Thus N2(z)D1(z) = D2(z)N1(z) for the constant matrices

N1 = N2 =

(
Im

0

)
.

Since N1(z) and D1(z) are right coprime and N2(z) and D2(z) are left coprime,
we conclude that D1(z) and D2(z) are polynomially equivalent. This completes the
proof. �

2.10 Structure Theorem and Quotient Modules

The reduction to Smith form in Theorem 2.42 leads directly to the structure theory of
finitely generated modules over F[z]. The subsequent proof of the structure theorem
is based on the following lemma.

Lemma 2.47. Let M be a free module of rank s over F[z]. Let N ⊂ M be a
submodule. Then there exists a basis {m1, . . . ,ms} of M and polynomials d1, . . . ,ds ∈
F[z] satisfying d1| · · · |ds such that

{d1m1, . . . ,dsms}

is a basis of N.

Proof. If N = {0}, then we are done. Thus, assume N �= {0}. Choose a basis
m′1, . . . ,m

′
s of M. Since N is free, there exists a basis {n′1, . . . ,n′t} of N. Representing

the basis vectors n′j in terms of the m′i as

n′j =
t

∑
i=1

aijm
′
i, j = 1, . . . ,s

yields a matrix A ∈ F[z]t×s. Equivalently, we can write these equations in a
condensed matrix form as

(n′1, . . . ,n
′
s) = (m′1, . . . ,m

′
t)A.
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Bringing A into Smith form as

UAV = diag(d1, . . . ,dr,0, . . . ,0)

via unimodular matrices U ∈GLt(F[z]),V ∈ GLs(F[z]) produces new bases

(m1, . . . ,mt) = (m′1, . . . ,m
′
t)P

−1, (n1, . . . ,ns) = (n′1, . . . ,n
′
s)Q

of M and N, respectively, with ni = dimi for i = 1, . . . ,s. �
We can now state and prove the main result on finitely generated F[z]-modules.

The result actually is true for finitely generated R-modules over a PID R.

Theorem 2.48 (Structure Theorem). Every finitely generated F[z]-module M is
isomorphic to a finite direct sum

M � F[z]r⊕F[z]/d1F[z]⊕·· ·⊕F[z]/dtF[z],

with nonzero polynomials di(z) satisfying d1(z)| · · · |dt(z). The integers r, t ∈ N0 and
d1, . . . ,dt are uniquely determined, up to possible factors by nonzero constants. The
di(z) are called the invariant factors of the module M.

Proof. Since M is finitely generated, there exists a surjective module homomor-
phism f : F[z]k −→ M. The kernel Ker f is a submodule of the free module F[z]k.
By Lemma 2.47, there exists a basis {e1, . . . ,ek} of F[z]k and nonzero elements
d1, . . . ,dt ∈ F[z],d1| · · · |dt , t ≤ k such that {d1e1, . . . ,dtet} form a basis of Ker f . Set
r = k−t. Then

⊕k
i=t+1F[z]ei� F[z]r is free and Ker f =

⊕t
i=1F[z]diei. We conclude

M � F[z]r⊕F[z]t/Ker f .

The result follows since

F[z]t/Ker f � F[z]/d1F[z]⊕·· ·⊕F[z]/dtF[z].
�

Using the fact that every PID is a unique factorization domain, one can
decompose the invariant factors uniquely (i.e., up to units and permutations) into
prime factors. Taken together with the Chinese remainder theorem 2.11, this yields
the following variant of the structure theorem.

Theorem 2.49. Every finitely generated F[z]-module M is isomorphic to

M � F[z]r⊕F[z]
/

p1(z)
n1F[z]⊕·· ·⊕F[z]

/
pk(z)

nkF[z],

where the polynomials p1(z), . . . , pk(z) are primes of F[z]. The polynomials
p1, . . . , pk are called the elementary divisors of M.
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Recall that a submodule M ⊂ F[z]n is called full if M has a basis of exactly n
elements. Thus M is full if and only if there exists a nonsingular polynomial matrix
D(z) ∈ F[z]n×n, with M = D(z)F[z]n. Two nonsingular polynomial matrices D1(z)
and D2(z), with D1(z)F[z]n = M = D2(z)F[z]n, are related as D2(z) = D1(z)U(z) by
a uniquely unimodular n× n matrix U(z).

Since F[z] has no nontrivial zero divisors, the torsion submodule of an F[z]-
module M is

Tor(M) = {x ∈M | ∃r ∈ F[z]\ {0}with rx = 0}.

The elements of Tor(M) are called torsion elements. M is called torsion free if
Tor(M) = {0}; M is a torsion module whenever Tor(M) = M. Thus the quotient
M/Tor(M) is torsion free and M/Tor(M) � F[z]r.

For a nonzero ring element d ∈ F[z], the quotient F[z]/dF[z] is a torsion module,
with Tor(F[z]/dF[z])= dF[z]. Therefore, the structure theorem for finitely generated
F[z]-modules yields

M � F[z]r⊕Tor(M),

and the torsion submodule is Tor(M) =
⊕s

j=1F[z]/d jF[z]. This implies the follow-
ing corollary.

Corollary 2.50. Finitely generated F[z]-modules M are free if and only if they are
torsion free.

The preceding result implies the following characterization of torsion modules.

Theorem 2.51. Let D(z) be an n× n polynomial matrix. For a quotient module
M = F[z]n/D(z)F[z]n the following statements are equivalent:

(a) M is a torsion module.
(b) The polynomial matrix D(z) is nonsingular.
(c) M is a finite-dimensional F-vector space.

In each of these cases the dimension of M as an F-vector space is equal to

dim F[z]n/D(z)F[z]n = deg det D(z).

Proof. Without loss of generality, we can assume that

D(z) = diag(d1(z), . . . ,dr(z),0, . . . ,0), 0≤ r ≤ n,

is in Smith canonical form, with di nonzero polynomials. Then M is isomorphic to
the direct sum of F[z]-modules F[z]/d1F[z]⊕·· ·⊕F[z]/drF[z]⊕F[z]n−r. Thus M is a
torsion module if and only if r = n, i.e., if and only if D(z) is nonsingular. Moreover,
for a polynomial q(z) ∈ F[z] of degree n, the coset classes
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[z]i := zi + q(z)F[z], i = 0, . . . ,n− 1

form a basis of the quotient module F[z]/q(z)F[z]. Thus F[z]/q(z)F[z] is a finite-
dimensional F-vector space of dimension equal to degq. Therefore, M is a finite-
dimensional F-vector space if and only if D(z) is nonsingular. Moreover, in each
of these cases the torsion module M has F-dimension equal to ∑n

i=1 degdi =
degdetD(z). �

We characterize the case where a submodule has a kernel representation.

Theorem 2.52. Let A(z) ∈ F[z]n×r be full column rank r. The following conditions
are equivalent:

(a) The image space Im A ⊂ F[z]n has a kernel representation, i.e., there exists
B ∈ F[z](n−r)×n, with Im A = Ker B.

(b) The cokernel F[z]n/ Im A is torsion-free.
(c) A is right prime.

Proof. Without loss of generality, we can assume that A is in Smith normal
form, i.e.,

A(z) =

(
D(z)

0

)
,

with D = diag(a1, . . . ,ar) and a1| · · · |ar, ai �= 0. Thus the cokernel is isomorphic to

F[z]n/ Im A� F[z]/a1F[z]⊕·· ·⊕F[z]/arF[z]

and, therefore, is torsion free if and only if a1, . . . ,ar are units of F[z]. Equivalently,
the Smith form of A is equal to

(
Ir

0

)
.

The result follows. �
We next characterize the submodules of the quotient modules

M = F[z]m/D(z)F[z]m.

Theorem 2.53. Let D(z) ∈ F[z]m×m be a nonsingular polynomial matrix. A subset
X ⊂ F[z]m/D(z)F[z]m is a submodule if and only if there exist nonsingular polyno-
mial matrices E(z),F(z)F[z]m×m, with D(z) = E(z)F(z) and

X = E(z)F[z]m/D(z)F[z]m.

Proof. Let π : F[z]n −→ F[z]n/DF[z]n,x �→ x +DF[z]n, denote the canonical pro-
jection map. Then X is a submodule of F[z]n/DF[z]n if and only if π−1(X) is a
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submodule of F[z]n that contains DF[z]n. Since F[z] is a PID, a submodule of F[z]n

is free and π−1(X) is finitely generated. Since DF[z]n ⊂ π−1(X) is a full submodule
of F[z]n, this implies that π−1(X) is a full submodule, too. Thus there exists a
nonsingular polynomial matrix E ∈ F[z]n×n with π−1(X) = EF[z]n. The condition
DF[z]n ⊂ EF[z]n is equivalent to the existence of a polynomial matrix F ∈ F[z]n×n,
with D(z) = E(z)F(z). That D is nonsingular implies that F is nonsingular. The
result follows since X = π(EF[z]n) = EF[z]n/DF[z]n. �

The module homomorphisms of quotient modules M = F[z]n/D(z)F[z]n of full
submodules D(z)F[z]n are easily characterized. We will study such quotient modules
more concretely in Chapter 3 on functional model spaces.

The next result is an algebraic version of the celebrated commutant lifting
theorem from operator theory. It states that every F[z]− module homomorphism
on quotient modules Z : F[z]m/D1F[z]m −→ F[z]p/D2F[z]p has a lift to a module
homomorphism Ẑ : F[z]m −→ F[z]p, defined by multiplication with a polynomial
matrix N2(z). Let πD : F[z]n −→ F[z]n/D(z)F[z]n denote the quotient map.

Theorem 2.54 (Algebraic Commutant Lifting Theorem). Let D1(z) ∈ F[z]m×m

and D2(z) ∈ F[z]p×p be nonsingular polynomial matrices. A map

Z : F[z]m/D1(z)F[z]
m −→ F[z]p/D2(z)F[z]

p

is an F[z]-homomorphism if and only if there exist N1(z),N2(z) ∈ F[z]p×m such that

N2(z)D1(z) = D2(z)N1(z) (2.34)

and

Z(πD1 f ) = πD2(N2 f ) for all f ∈ F[z]m. (2.35)

Proof. Z is a module homomorphism if and only if Z := Z ◦ πD1 : F[z]m −→
F[z]p/D2(z)F[z]p is a module homomorphism. Let N2(z) ∈ F[z]p×m be a polynomial
matrix whose ith column ni(z) ∈ F[z]m satisfies

Z(ei) = ni(z)+D2(z)F[z]
p.

Since Z is F[z]-linear, we obtain for all i= 1, . . . ,m and j≥ 0 that Z(z jei) = z jni(z)+
D2(z)F[z]p. This shows that

Z( f ) = N2(z) f (z)+D2(z)F[z]
p = πD2(N2 f )

for all f (z) ∈ F[z]m. Since the kernel of Z := Z ◦ πD1 contains D1(z)F[z]m, then
N2(z)D1(z)g(z) ∈ D2(z)F[z]p for all g(z) ∈ F[z]m. Thus there exists a polyno-
mial matrix N1(z) ∈ F[z]p×m, with N2(z)D1(z) = D2(z)N1(z). This proves (2.34)
and (2.35). Conversely, assume that (2.34) and (2.35) are satisfied. Then the map
Ẑ : F[z]m −→ F[z]p, Ẑ f = N2(z) f (z) is F[z]-linear and satisfies
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Ẑ(D1(z)F[z]
m)⊂ D2(z)F[z]

p.

Thus Ẑ induces a well-defined map Z : F[z]m/D1(z)F[z]m −→ F[z]p/D2(z)F[z]p and,
indeed, an F[z]-homomorphism, with πD2 ◦ Ẑ = Z ◦πD1 . This completes the proof.

�

2.11 Rings of Rational Functions

In this last section we mention an important construction from algebra, the
localization of rings and modules. This leads to a straightforward construction of
PIDs of rational functions. Although the material in this section will not be of
much use in this book (except for the Youla–Kucera parameterization of stabilizing
controllers in Chapter 6), it is of considerable interest in applications to, for example,
rational H∞-theory, model reduction, and spectral factorizations.

1. Localization of Rings and Modules.

The construction of the fraction field of a ring very much resembles that of the field
of rational numbers from the ring of integers. A subset S⊂R of an integral domain R
is called multiplicatively closed, provided the following conditions are satisfied:

• 0 /∈ S;
• 1 ∈ S;
• a,b ∈ S =⇒ ab ∈ S.

Define an equivalence relation on R× S via

(a,s)∼ (b, t) ⇐⇒ at− bs = 0.

It is easily seen that this indeed defines an equivalence relation on R× S; the
equivalence classes are denoted by a

s . The set of all such equivalence classes is
denoted by

RS = S−1R := {a
s
| s ∈ S}

and is called the localization or the ring of fractions of R by S. Two fraction
elements are added and multiplied according to the usual rules:

a
s
+

b
t
=

at+ bs
st

,

a
s
· b

t
=

ab
st
.
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Endowed with these operations, one easily verifies that S−1R becomes a ring with
identity element 1

1 . By a simple modification of the preceding equivalence relation
one can extend this construction of the ring of fractions to more general rings than
integral domains. In this more general context one then checks that the ring of
fractions S−1R is an integral domain if and only if R is an integral domain.

The well-known field of fractions is obtained by choosing S to be R\ {0}. Since
R is assumed to be integral, R \ {0} is multiplicatively closed, and we obtain the
field of fraction of R as

K= (R\ {0})−1R := { r
s
| r,s ∈ R, s �= 0}.

In fact, K is a field that contains R as a subring obtained by identifying ring elements
r ∈ R with fractions r

1 . Notice that for general rings R the map r �→ r
1 from R to S−1R

need not be injective; however, for integral domains R this is true.
Many desirable properties of rings are preserved by localization; a sample is

summarized as follows.

Proposition 2.55. Let S be a multiplicatively closed subset of an integral
domain R.

1. I is an ideal of R if and only if

S−1I := { r
s
| r ∈ I, s ∈ S}

is an ideal of S−1R. Ideals I and J of R satisfy the identities

S−1(I + J) = S−1I + S−1J,

S−1(I∩ J) = S−1I∩S−1J,

S−1(R/I) = S−1R/S−1I.

2. If R is a PID, then S−1R is a PID.
3. If R is a factorial ring, then S−1R is factorial, too. The prime elements of RS are

those primes p of R with pR∩S = /0.

Proof. We only prove the second claim and leave the others as an exercise to the
reader. Let R be a PID and i : R−→ RS, i(a) = a

1 the canonical inclusion map. If I ⊂
RS is an ideal, then J := i−1(I) = i(R)∩ I is an ideal in R and is therefore of the form
J = dR, d ∈ R. We show that

dRS = {a
s
| a ∈ dR, s ∈ S}= I,

which then completes the proof. Obviously, a ∈ dR implies a
1 ∈ I. Since I is an

ideal, we conclude that a
s = 1

s
a
1 ∈ RSI ⊂ I for all s ∈ S. Thus dRS ⊂ I. Conversely,
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if a
s denotes an element of I ⊂ RS, then s

1 ∈ RS, and therefore a
1 = s

1
a
s ∈ I. Thus

I ⊂ dRS, and we are done. �
A simple example of the process of localization is the ring of Laurent polynomi-

als F[x,x−1]. This ring is the localization

F[x,x−1] = F[x]S

of the polynomial ring F[x] with respect to the multiplicatively closed subset S =
{1,x,x2, . . .}. Proposition 2.55 thus implies that F[x,x−1] is a PID.

A very important case arises when S is the complement of a prime ideal p of R.
It is easy to show that the complement S := R\ I of an ideal I of R is multiplicatively
closed if and only if I is a prime ideal.

Definition 2.56 (Localization by a Prime Ideal). The localization of a ring R by
a prime ideal p is

Rp := (R\ p)−1R = { r
s
| r ∈ R, s �∈ p}.

If p ∈ R is a prime element and p= pR the associated prime ideal, then we write

R(p) := Rp = { r
s
| r ∈ R, p � | s}.

Thus Rp is a ring. In fact, it is a local ring, as the next result shows. A local ring
R is defined by the property that R has a unique maximal ideal m. The quotient field
K = R/m is called the residue field.

Theorem 2.57. Let p �= {0} be a prime ideal of a ring R. Then the localization Rp

satisfies the following claims:

1. I ⊂ Rp is a prime ideal if and only if

I = qRp = { r
s
| r ∈ q, s �∈ p},

for a (unique) prime ideal q contained in p;
2. Rp is a local ring, i.e., it has a unique maximal ideal pRp = { r

s | r ∈ p, s �∈ p};
the units of Rp are the elements rs−1, with r �∈ p;

3. For every maximal ideal m of R, the quotient field R/mR is isomorphic to
Rm/mRm.

Proof. The first claim is an immediate consequence of Proposition 2.55. Thus the
prime ideals of Rp are of the form qRp, where q⊂ p is a prime ideal of R. It follows
that the only maximal ideal of Rp is pRp. Thus Rp is a local ring. For the third
statement consider the map
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τ : R−→ Rm/mRm, r �→ r
1
+mRm.

Since m is a maximal ideal, mR+ sR = R for s �∈m. Therefore, every element r ∈ R
can be written as r = sr1 +mr2 for suitable r1,r2 ∈ R. Thus, the elements r

s ∈ Rm

are equal to

r
s
=

r1

1
+

mr2

s
,

and therefore τ(r1) =
r
s +mRm. This shows that τ is surjective. An element r ∈ R is

in the kernel of τ if and only if r
1 ∈mRm. Equivalently, there exists m∈m,a∈ R,s �∈

m, with rs = ma ∈mR. Since s �∈m, this is equivalent to r ∈m. Thus the kernel of τ
is equal to m, and we are done. �

The localizations of the ring of integers are the subsets of rational numbers

Z(p) = {
m
n
| m ∈ Z, n ∈N, p � | n}

for p a prime number. The only nontrivial ideal of Z(p) is the maximal ideal

pZ(p) = {
m
n
∈Q | p| m, p � | n},

whose quotient field is the finite field Z/pZ of integers modulo p. We note in passing
that the p-adic completion of Z(p) yields the local ring of p-adic integers Zp.

Localization of Modules. We begin with an explanation of how the technique
of ring localization can be extended to modules. Let M be a module over a ring R,
and let S be a multiplicative subset of R. We then define the S-localization of M as
the module MS, whose elements are the fractions m

s of module elements m ∈M by
ring elements s ∈ S. The usual rules for addition and scalar multiplication fraction
elements in MS are imposed. By defining

r
s

m
s′

=
rm
ss′

∀r ∈ R,s,s′ ∈ S,m ∈M,

we see that MS becomes a module over the rings of fractions RS. The RS-module MS

is called the S-localization of the R-module M. It is easily seen that an R-linear map
f : M −→ N defines an RS-linear map

fS : MS −→ NS, f (
m
s
) :=

f (m)

s
,

called the localization of f . The operation of localization satisfies the usual
functorial properties, i.e., ( f ◦g)S = fS ◦gS and (idM)S = idMS . Moreover, it is easily
seen that fS : MS−→NS is injective, surjective, or bijective if and only if f : M−→N
is injective, surjective, or bijective. A localized module MS can be trivial without M
being trivial. More precisely, define the torsion submodule of M as
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Tor(M) = {m ∈M | ∃s ∈ R0 with sm = 0}.

Here R0⊂R denotes the subset of all ring elements of R that are not zero divisors.
The elements of Tor(M) are called torsion elements. M is called torsion free if
Tor(M) = {0}; M is a torsion module whenever Tor(M) = M. It follows that MS =
{0} if and only if for every m ∈M there exists s ∈ S, with sm = 0. If R is an integral
domain and S = R \ {0}, then MS = {0} if and only if M is a torsion module. The
reader is referred to the book by Atiyah-Macdonald (1969) for proofs of the next
three results.

Proposition 2.58. 1. If M is finitely generated, then so is MS. If every submodule
of M is finitely generated, then every submodule of MS is finitely generated.

2. Let N be a submodule of M. Then NS is a submodule of MS with the isomorphism
of RS-modules

f : (M/N)S −→MS/NS,
m+N

s
�→ m

s
+NS.

3. The RS-submodules of MS are exactly of the form NS, where N denotes a R-
submodule of M.

4. If M
f−→ N

g−→ P is an exact sequence of R-modules, then

MS
fS−→ NS

gS−→ PS

is an exact sequence of RS-modules.

The local-global principle asserts the following.

Theorem 2.59 (Local-Global Principle). Let M be an R-module.

1. Then M = {0} if and only if Mm = 0 for all maximal ideals m of R.
2. An element x ∈M is an element of a submodule N ⊂M if and only if m

1 ∈ Nm for
all maximal ideals m of R.

3. An R-linear map f : M −→ N between R-modules is surjective (resp. injective,
bijective) if and only if the localizations

fm : Mm −→ Nm

are surjective (resp. injective, bijective) for all maximal ideal m of R.

The preceding result can be restated in a more applicable form to check the
surjectivity of a module homomorphism. Note that the factor ring Rm is a local
ring with unique maximal ideal mRm = { p

s | p∈m, s ∈ R\m}. Thus in part 3 of the
local-global principle it suffices to check surjectivity (resp. injectivity, bijectivity)
for linear maps fm : Mm −→ Nm over local rings. Alternatively, one can consider
the family of induced linear maps
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f̄ : M/mM −→ N/mN (2.36)

over the fraction field R/m. We emphasize that if M is finitely generated, then
M/mM is a finite-dimensional vector space over R/m. Checking the surjectivity
of (2.36) thus becomes a standard matter of linear algebra over a field. A central
result for modules over local rings is the following well-known lemma.

Lemma 2.60 (Nakayama Lemma). Let R be a local ring with unique maximal
ideal m. Let M be a finitely generated R-module with canonical projection map
π : M −→M/mM,π(x) = [x] := x+mM. Then {x1, . . . ,xn} generates M if and only
if {[x1], . . . , [xn]} generates M/mM.

Using this lemma it is easy to verify the following useful criterion for surjectivity
and injectivity. We recall that the Jacobson radical of a ring is defined as the
intersection of all maximal ideals m of R, i.e., rad R =

⋂
mm.

Theorem 2.61. Let M and N be finitely generated R-modules and f : M −→ N be
R-linear.

1. f is surjective if and only if the induced R/m-linear maps

f̄ : M/mM −→ N/mN

are surjective for all maximal ideals m of R.
2. Assume that the Jacobson radical of R satisfies rad (R) = {0}. Then f is injective,

provided the induced maps (1) are injective for all maximal ideals m of R. The
converse is false.

Proof. It is trivial to check that the surjectivity of f : M −→ N implies the
surjectivity of f̄ : M/mM −→ N/mN for all maximal ideals m. Conversely, assume
that f̄ : M/mM −→ N/mN is surjective for a maximal ideal m. Let πM : M −→
M/mM denote the canonical projection map. Then g = f̄ ◦ πM : M −→ N/mN is
surjective and defines an R-linear map. This implies that the induced Rm-linear
map gm : Mm −→ (N/mN)m is surjective. There is the canonical Rm-module
isomorphism (N/mN)m � Nm/mNm via n+mN

s �→ n
s +mNm. Note that g factorizes

as g = πN ◦ f , with πN : N −→ N/mN the canonical quotient map. Therefore,
the localized map gm : Mm −→ Nm/mNm is surjective and coincides with the
composition of the Rm-linear map

fm : Mm −→ Nm (2.37)

and the canonical quotient map Nm −→ (N/mN)m = Nm/mNm. Thus we are in the
situation of the Nakayama lemma and conclude that fm : Mm −→ Nm is surjective.
Thus the result follows from the local-global principle.

Note that the preceding characterization does not apply for injectivity. In fact, the
map f : Z−→ Z,x �→ 2x, is injective, while the induced map f̄ : Z/2Z−→ Z/2Z is
a zero map. Now suppose that an R-linear map f : M −→ N is such that the quotient
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map f̄ : M/mM−→N/mN is injective for every maximal ideal m of R. Let x,y∈M,
with f (x) = f (y). Then f̄ ([x−y]m = 0, and therefore the injectivity of f̄ implies that
x− y ∈mM for all maximal ideals m. Thus x− y ∈ rad (R)M. Since rad (R) = {0},
we conclude that x = y. The result follows. �

The elements x∈ rad (R) of the Jacobson radical are characterized by the property
that 1−rx is a unit of R for all elements r ∈ R. In particular, rad (R) = {0} for R =Z

and R = F[x]. More generally, rad (R) = {0} is satisfied if R is a semisimple ring.
For a local ring R, the Jacobson radical rad (R) coincides with the unique maximal
ideal. In particular, for local rings the condition for injectivity is not satisfied.

Corollary 2.62. A system of linear equations over a ring R

a11x1 + · · ·+ a1nxn = b1

...

am1x1 + · · ·+ amnxn = bm

is solvable in R if and only if the system of congruences

a11x1 + · · ·+ a1nxn ≡ b1 mod m

...

am1x1 + · · ·+ amnxn ≡ bm mod m

is solvable in the fraction field R/m for all maximal ideals m of R.

2. Rings of Rational Functions
We now illustrate the technique of localization by constructing several rings of

rational functions and prove that they are PIDs. For simplicity we focus on the field
R of real numbers with algebraic closure C. Let Ω ⊂C∪{∞} be a nonempty subset
of complex numbers. Define

R(z)Ω := { f ∈ R(z) | f (z) �= ∞ ∀z ∈Ω}.
Thus R(z)Ω consists of all real rational functions with no pole in Ω .

Theorem 2.63. R(z)Ω is a PID. The units of R(z)Ω are exactly those real rational
functions f (z) that have no poles or zeros in Ω .

Proof. The set

S = SΩ := { f ∈R[z] | f (z) �= 0 ∀z ∈Ω}
is multiplicatively closed. Since R[z] is a PID, the localization

R[z]S = R(z)Ω
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is a PID. The units are characterized by f and 1/ f being elements of R(z)Ω . The
result follows. �

Theorem 2.63 implies the following result for rings of proper rational functions.

Corollary 2.64. Let Ω denote a nonempty subset of C. Then

R(z)pr
Ω := { p

q
∈R(z) | deg p ≤ deg q, q(z) �= 0 ∀z ∈Ω}

is a PID.

Proof. Applying Theorem 2.63 for Ω ∪{∞} yields the result. �
One can even show that a stronger property is shared by the rings R(z)pr

Ω .

Definition 2.65. An integral domain R is called a Euclidean ring if there exists a
function δ : R\ {0}→N0, δ (0) :=−∞, with the following properties:

1. Monotonicity: a|b =⇒ δ (a)≤ δ (b) for a,b ∈ R\ {0};
2. Division with remainder: For a ∈ R,b ∈ R\{0} there exist q,r ∈ R such that

a = qb+ r,

with r = 0 or 0≤ δ (r)< δ (b).

The function δ is called a Euclidean valuation. A Euclidean ring (R,δ ) is called
strict if the second condition is satisfied for unique elements q,r.

The standard example for a strict Euclidean ring is the ring of polynomials, with the
degree as the Euclidean valuation function δ ( f ) = deg f . This valuation δ satisfies
the ultrametric inequality

deg ( f + g)≤max{deg ( f ),deg (g)}.

Unlike the ring of polynomials F[z], the uniqueness property in division with
remainders gets lost in the localizations R(z)Ω . To show that they are nevertheless
Euclidean rings, we first introduce the valuation function.

Definition 2.66. For f ∈ R(z)Ω let δ ( f ) denote the number of zeros of f in Ω ,
counted with multiplicities. Then δ is called the valuation function on R(z)Ω .

One has δ (0) = ∞, δ (1) = 0 and δ (fg) = δ ( f )δ (g) for all f ,g ∈ R(z)Ω . However,
δ ( f + g) ≤ max{δ ( f ),δ (g)} is not always satisfied, as the example f (z) =
4−z
z−1 ,g(z) =

2z−3
z−1 ∈ R(z)C− for the open left half-plane C− shows. In fact, δ ( f ) =

δ (g) = 0 and δ ( f + g) = 1. This shows that (R(z)Ω ,δΩ ) is not a strict Euclidean
ring and the uniqueness of division with remainders in R(z)Ω does not apply.

One can even show that R(z)Ω and R(z)pr
Ω are Euclidean rings.

Theorem 2.67. R(z)Ω is a Euclidean ring for every nonempty set Ω with R �⊂
Ω ⊂ C.
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Proof. One must establish the existence of division with remainders for δ . Consider
elements f and g, with g �= 0. If δ ( f )< δ (g), then we are done because f = 0g+ r,
with δ (r) < δ (g). Next assume that δ ( f ) ≥ δ (g). If δ (g) = 0, then g is a unit, and
we are done. Thus suppose δ (g)≥ 1. Write

f =
pΩ pΩ ′

q
,

g =
uΩuΩ ′

v
,

where the polynomials pΩ ,uΩ and pΩ ′ ,uΩ ′ ,q,v are assumed to have all their roots
in Ω and Ω ′ := C\Ω , respectively. Choose α ∈Ω ′ ∩R and t = δ (g). Then

e =
uΩ ′(z−α)t

v
∈ R(z)Ω

is a unit and, therefore, invertible in R(z)Ω . Since uΩ and q are coprime polynomi-
als, there exist real polynomials φ(z) and ψ(z), with deg ψ < deg uΩ , that satisfy
the Bezout identity

uΩφ + qψ = p(z−α)t−1.

Dividing both sides of this equation by p(z−α)t−1 we obtain f = ag+ r, with

a =
1
e

φ(z−α)

q
,r =

ψ
(z−α)t−1 .

Since e is a unit, a is an element of R(z)Ω . Also, r ∈R(z)Ω :

δ (r)≤ deg ψ < deg uΩ ≤ t.

This completes the proof. �
Finally, let us consider one example that will be important in Chapter 6 when

we discuss the feedback stabilization of linear systems. Let Ω = C+ := {z ∈
C | Re (z)≥ 0}∪{∞} denote the extended right half-plane. Let

RH∞ := R(z)Ω

denote the set of stable proper rational functions.

Theorem 2.68. 1. RH∞ is a PID and even a Euclidean ring.
2. f1, . . . , fr ∈ RH∞ are coprime if and only if there exists a solution a1, . . . ,ar ∈

RH∞ to the Bezout equation

a1 f1 + · · ·+ ar fr = 1.

3. The units of RH∞ are all rational functions p
q , with deg p = deg q, such that p

and q have only zeros in the open left half-plane C−.
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4. f ∈ RH∞ divides g∈ RH∞ if and only if the following conditions are satisfied:

(a) The relative degree of f is less than or equal to the relative degree of g;
(b) Every finite zero of f with multiplicity m in C+ is a finite zero of g with

multiplicity ≥ m.

5. The maximal ideals of RH∞ coincide with the prime ideals and are equal to fRH∞,
where f is one of the following rational functions:

f (z) =
1

z−α
, α < 0;

f (z) =
z−α
z−β

, α ≥ 0,β < 0;

f (z) =
(z−λ )(z− λ̄)

z2 +αz+β
, Re λ ≥ 0, Im λ > 0,α > 0,β > 0.

Proof. Theorem 2.63 implies that RH∞ is a PID; Theorem 2.67 shows that it is
a Euclidean ring. The characterization of coprimeness via the Bezout equation is
valid in an arbitrary PID, and hence also here. A rational function p/q is a unit if and
only if p/q,q/p ∈ RH∞, i.e., if and only if deg p = deg q and p and q are Hurwitz
polynomials. Since RH∞ is a PID, the maximal ideals coincide with the prime ideals.
RH∞ = AS is the localization of the PID A=R(z)z−1 := { p(z)

q(z) | deg p≤ deg q} at the

multiplicatively closed set S+ = { f ∈ A | f (z) �= 0 ∀z ∈C+}. By Proposition 2.63,
the prime ideals are of the form fRH∞, where f is a prime in A satisfying f A∩S+ =
/0. These in turn are characterized by all primes in A, with f (z) = 0 for some z∈C+.
Since the rational function f is prime, it has degree either one or two. If z = ∞, then
f is strictly proper, and therefore f is of the first form. Let z be finite, with Re z≥ 0.
If z = α is real, then we obtain the second form. If z = λ is complex, then f must
be of the third form. The result follows. �

2.12 Exercises

1. Find solutions x,y ∈ Z of 49x+ 13y= 1.
2. Describe all integer solutions of the following system of congruences:

2x+ 4y≡ 7 mod3,

3x− y+ 2z≡ 6 mod3,

−8x+ 2y− z+ 2≡ 4 mod3.

3. Let m1, . . . ,ms ∈N be mutually prime integers. Prove that for integers a1, . . . ,as

the system of congruences
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x≡ a1 modm1

...

x≡ as modms

has an integer solution. It is unique up to multiples of m1 · · ·ms.
4. For n ∈N,n ≥ 2, define the additive factor group Zn := Z/nZ. Prove:

(a) Zn is a field if and only if n is a prime number;
(b) The additive subgroups of Zn are exactly of the form

Ht = tZn/t := {[0], [t], [2t], . . . , [(a− 1)t]}

for a divisor t of n and a := n/t. For divisors s, t of n show that

Ht ⊂Hs ⇐⇒ s|t.

5. Determine the greatest common divisor of z3− 1 and z3− 2z+ 1 in R[z].
6. Prove that z4 + z+ 1 is irreducible in Z2[z] and reducible in Z3[z].
7. Calculate the generator polynomial of the ideal

< z3 + z2− 4z− 4,z3− z2− 4z+ 4,z3− 2z2− z+ 2 >,

and decide whether or not the polynomial z2− 4 belongs to the ideal.
8. For the polynomials p(z) = 1+z2 and q(z) = 1+z+z3 find a unimodular matrix

U(z) ∈ F
2×2[z] such that (p(z),q(z)) is the first row vector of U(z).

9. Let F[z]<m denote the F-vector space of polynomials of degree < m, m ∈ N.
Consider the polynomials p(z),q(z) ∈ F[z], with deg p = m,deg q = n. Prove
that there exist nonzero polynomials a(z) ∈ F[z]<n and b(z) ∈ F[z]<m, with
a(z)p(z)+ b(z)q(z) = 0, if and only if p and q are not coprime.

10. Show that the polynomials a1(z), . . . ,aN(z) ∈ F[z] are coprime if and only if
there exists a unimodular matrix U(z) ∈ F

N×N [z] such that (a1(z), . . . ,aN(z)) is
the first row of U(z).

11. Let q1(z), . . . ,qN(z) ∈ F[z] have degrees d1, . . . ,dN . Define the polynomials
q̂i(z) = ∏ j �=i q j(z), i = 1, . . . ,N. Let F[z]<k denote the set of polynomials with
degree < k. Show that the following conditions are equivalent:

(a) q1(z), . . . ,qN(z) are coprime.
(b) q̂1(z), . . . , q̂N(z) are coprime.
(c) The F-linear map

R : F[z]<d1⊕ . . .⊕F[z]<dN −→ F[z]<d1+...+dN ,(a1, . . . ,aN) �→
N

∑
j=1

a jq̂ j

is invertible.
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Deduce a matrix resultant test for the coprimeness of q1(z), . . . ,qN(z).
12. Prove that an element of a PID is irreducible if and only if it is prime.
13. Prove that the prime ideals in a PID coincide with the maximal ideals.
14. Determine whether the following pairs of polynomial matrices are right

coprime. If they are not, compute a greatest common right divisor.

(a)

Nr(z) =

(
0 z2

−z z2

)
, Dr(z) =

(
0 (z+ 1)2(z+ 3)

(z+ 3)2 z+ 3

)
;

(b)

Nr(z) =

(
z z
0 z(z+ 1)2− z

)
, Dr(z) =

(
(z+ 1)2(z+ 2)2 0

0 (z+ 2)2

)
.

15. Obtain a coprime column-reduced right polynomial fraction description for

G(z) =

(
z z+ 2
1 z+ 1

)(
z2 + 2 (z+ 1)2

z+ 1 z

)−1

.

16. Show that the polynomial matrix

D(z) =

⎛

⎝
z2 + 2 z3 z5 + z+ 1
2z+ 1 z4 + 3z+ 1 2z2

z+ 2 2z2 + 1 z6− 2z4

⎞

⎠

is nonsingular and column proper with column indices 2,4,6.
17. Let A,B ∈ F

n×n be square matrices that satisfy U(z)(zI−A) = (zI−B)V (z) for
suitable unimodular polynomial matrices U(z),V (z) ∈ F[z]n×n. Show that there
exists a constant invertible matrix S ∈ GLn(F), with B = SAS−1.

18. Prove that a polynomial matrix A(z) ∈ F[z]p×m is left and right coprime if and
only if p = m and A(z) is unimodular.

19. Show that a regular matrix pencil zE−F ∈ F[z]n×n is unimodular if and only
if there exists a nilpotent matrix N ∈ F

n×n such that zE− F is unimodularly
equivalent to I− zN.

20. Let A(z) ∈ R[z]m×n be a full column rank polynomial matrix. Show that
the linear equation A(z)x(z) = b(z) has for each b(z) ∈ R[z]m ∩ A(z)R(z)n a
polynomial solution x(z) ∈ R[z]n if and only if the matrix A(z) has full column
rank n for all z ∈C.

21. Let A(z) ∈ R[z]m×n be a polynomial matrix and b(z) ∈ R[z]m. Prove that
A(z)X(z) = b(z) has a polynomial solution X(z) ∈ R[z]n if and only if, for all
z ∈C,

rk (A(z), b(z)) = rk A(z).
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22. Prove the following abstract version of the Chinese remainder theorem for
modules. Let M be a module over a ring R, and let I1, . . . , In be ideals of R
satisfying Ii + I j = R for all i �= j. Let I1 · · · In denote the ideal generated by the
products of elements in I1, . . . , In. Then I1 · · · InM = I1M∩·· ·∩InM, and the map

f : M/(I1 · · · InM) −→
n

∏
j=1

(M/I jM)

x+ I1 · · · InM �→ (x+ I1M, . . . ,x+ InM)

is a module isomorphism.
23. Let A ∈ F[z]m×n. Show that the following conditions are equivalent:

(a) A : F[z]n −→ F[z]m is surjective.
(b) A has a right inverse, i.e., there exists B ∈ F[z]n×m, with AB = Im.
(c) The m×m subminors of A generate F[z].

24. Let P(z) ∈ F[z]p×m be full column rank. Show that there exist a right prime
polynomial matrix M(z) ∈F[z]p×m and a nonsingular polynomial matrix Δ(z)∈
F[z]m×m such that

P(z) = M(z)Δ(z).

25. Let A(z) ∈R[z]m×n be a real polynomial matrix. Prove that the quotient module
R[z]m/A(z)R[z]n is free of rank r if and only if rk A(z) = m− r for all z ∈ C.

2.13 Notes and References

The use of polynomial matrices for a study of linear algebra is not new and goes
back to E. Noether; see MacDuffee (1933).

Jodeit (1967) has shown that F[z] is the only Euclidean ring for which division
with remainders is unique. All results in this chapter, as well as the proofs, remain
true if one replaces the ring of polynomials F[z] by a PID. The only exceptions are
the results in Section 2.4 (Minimal Basis) and 2.7 (Wiener–Hopf Factorizations),
which would require appropriate modifications. In particular, the existence of
doubly coprime factorizations is valid for the PID RH∞ of proper rational stable
transfer functions. A discussion of doubly coprime factorizations can be found in
Kailath (1980) or Vidyasagar (1987). Doubly coprime factorizations are key to
many duality considerations as well as to different applications; see, for example,
Fuhrmann (1994b) and Fuhrmann and Ober (1993). Skew primeness was consid-
ered in Wolovich (1978), and its geometric interpretation is due to Khargonekar,
Georgiou and Özgüler (1983); see also Fuhrmann (2005) for additional work.

Minimal bases were first introduced in the famous work by Dedekind and Weber
(1882). That classical paper introduced valuation theory for the first time and
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proved an equivalent form of the Wiener–Hopf factorization. An elegant approach
to minimal bases via filtrations of subspaces is due to Mackey (2012). Wiener–
Hopf factorizations in analysis are a central tool in the solution of several classes
of integral equations; see Gohberg and Feldman (1971). Our focus is on the
purely algebraic theory of Wiener–Hopf factorizations at infinity. This is based
on Fuhrmann and Willems (1979). These factorizations are closely related to the
reduction of polynomial matrices to row or column proper form. In the systems
theory context, proper bases were rediscovered by Forney (1975), with subsequent
contributions by Münzner and Prätzel-Wolters (1979).

The classical Bezout equation ax + by = 1 can be viewed as the problem of
extending the 1× 2 matrix (a,b) over a ring to a 2× 2 matrix of determinant
one. More general extension problems of this kind have been studied in algebraic
K-theory; see, for example, Newman (1985) and Vaserstein (1986) on matrix
completion problems over a PID.

Localizations of rings and modules are an important tool from algebra and
appear in several textbooks on commutative algebra; see, for example, Atiyah-
Macdonald (1969) and Kunz (1980). An interesting application for solving
parameter-dependent linear equations can be found in Adkins (1985) and Mather
(1973). For applications to families of linear control systems, see, for example,
Hazewinkel and Perdon (1981). Rings of stable rational functions were studied in a
systems theory context using valuation theory by Vidyasagar (1987); see also Morse
(1975).



Chapter 3
Functional Models and Shift Spaces

Some mathematical problems can be treated efficiently in one context but may
remain intractable in a different context. An example, relevant to our interests, is the
characterization and parameterization of invariant subspaces of shift operators. If the
problem is set in the Hilbert space l2(N) of one-sided square summable sequences,
it looks intractable; however, after a Fourier transformation into a suitable Hardy
space, one has the full machinery of complex analytic functions at one’s disposal.
This enabled Beurling (1949) to solve the problem. This example shows clearly
the advantage of using functional spaces rather than spaces of scalar sequences, an
advantage that is the result of having extra structure. It is the same basic idea that
underpins our algebraic approach to the analysis of linear systems. Basically, this is
the idea, traceable to Emmy Noether, of studying a linear operator in terms of the
module structure induced by it.

Our approach, however, is different in that we emphasize computational aspects.
The underlying idea is that a linear transformation is replaced by a functional
model of it, that is, by an equivalent transformation that acts on an appropriate
function space, which in our case is going to be a space of polynomials or rational
functions. This idea goes back to the pioneering work of Livsic, Sz.-Nagy and
Foias, and De Branges, and it gave great impetus to research in the theory of
nonselfadjoint operators. These techniques were quickly applied to system theory
and culminated in the widely used H∞-control theory; see, for example, Vidyasagar
(1987). Operator-theoretic methods were adapted to the finite-dimensional, alge-
braic context in Fuhrmann (1976, 1977) and proved themselves a very useful tool
for the study of linear systems. In later chapters, these methods will be applied to
the investigation of problems arising in the study of interconnected linear systems,
especially to problems not very amenable to state-space techniques.

© Springer International Publishing Switzerland 2015
P.A. Fuhrmann, U. Helmke, The Mathematics of Networks
of Linear Systems, Universitext, DOI 10.1007/978-3-319-16646-9_3
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3.1 Polynomial Models and the Shift Operator

In Chapter 2, the study of nonsingular polynomial matrices and associated quotient
modules was approached from a rather abstract algebraic point of view. This study
depended on the fact that the ring of polynomials F[z] is a principal ideal domain.
The familiar process of division with remainders that utilizes the Euclidean ring
structure of F[z] allows for a much more concrete approach by identifying coset
classes in a quotient module with polynomials obtained by division with remainders.
This rather concrete theory of polynomial and rational models has been developed
in various papers and books during the past 40 years; see Fuhrmann (1976, 2012). It
leads to a very efficient computational approach to modules of polynomial matrices
and constitutes our basic approach to the analysis of networks of systems. In the
following sections, we present a review of the basic results on polynomial and
rational models and introduce concrete representations of homomorphisms between
such spaces.

We start by recalling some general facts about Laurent series and formal power
series. Let F((z−1))m denote the vector space of truncated Laurent series in z−1,
i.e., the elements of F((z−1))m are f (z) = ∑

n f
j=−∞ f jz j, with coefficients f j ∈ F

m.

The residue of f (z) is the coefficient of z−1, i.e., the coefficient vector f−1. If
m = 1, then the sum, product, and quotient of two scalar Laurent series are again a
Laurent series. This shows that F((z−1)) is a field that is in fact the quotient field of
z−1

F[z−1]. By construction, F((z−1))m contains the sets of polynomials F[z]m and
of strictly proper power series z−1

F[z−1]m as subspaces, leading to the following
direct sum decomposition of F-vector spaces:

F((z−1))m = F[z]m⊕ z−1
F[[z−1]]m. (3.1)

Denote by

π− : F((z−1))m −→ z−1
F[[z−1]]m and π+ : F((z))m −→ F[z]m

the canonical projections onto the strictly proper and polynomial parts, respectively.
With these projection operators at hand, it is easy to derive an explicit formula

for division with remainders. In fact, by applying division with remainders to scalar
polynomials f (z),d(z) ∈F[z], there is a unique representation f (z) = a(z)d(z)+r(z)
by polynomials a(z),r(z) ∈ F[z], once we require deg r(z) < deg d(z). Thus the
rational function r(z)/d(z) is strictly proper, and therefore r(z)/d(z) and a(z) are
the strictly proper and the polynomial parts of the rational function f (z)d(z)−1,
respectively. This implies r(z) = d(z)π−(d(z)−1 f (z)). Note that

πd : F[z]−→ F[z], πd( f ) = d(z)π−(d(z)−1 f (z))
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defines a projection operator onto the F-linear subspace of F[z],

Xd := { f (z) ∈ F[z] | deg f < deg d},

of all polynomials f (z) that have degree < deg d. Note that although Xd does define
a finite-dimensional subspace of F[z], it is not a submodule of F[z].

Polynomial models are a natural extension of this construction for nonsingular
matrix polynomials D(z) ∈ F[z]m×m. Thus, polynomial models define concrete
representations of quotient modules F[z]m/M, where M ⊂ F[z]m is a full submodule,
i.e., F[z]m/M is required to be a torsion module. By Theorem 2.51, this is equivalent
to a representation M = D(z)F[z]m, with D(z) ∈ F[z]m×m nonsingular.

Definition 3.1. The polynomial model associated with D(z) is defined as

XD = { f (z) ∈ F[z]m | D(z)−1 f (z) strictly proper}. (3.2)

By definition, a polynomial vector f (z) ∈ F[z]m satisfies f (z) ∈ XD if and only
if D(z)−1 f (z) is strictly proper. It follows that polynomial models XD are F-vector
subspaces of F[z]m. To clarify the connection of this construction to modules, and in
particular to quotient modules, consider the F-linear map

πD : F[z]m −→ F[z]m

defined by

πD f = D(z)π−(D(z)−1 f (z)), f (z) ∈ F[z]m. (3.3)

The basic properties of πD are summarized in the next result.

Lemma 3.2. Let D(z) ∈ F[z]m×m be a nonsingular polynomial matrix. Then:

1. πD, defined by (3.3), is an F-linear projection operator onto XD;
2. The kernel of πD is equal to D(z)F[z]m;
3. The following is a direct sum decomposition of F-vector spaces:

XD⊕D(z)F[z]m = F[z]m.

Proof. The linearity of πD is obvious, and the identity

Dπ−(D−1 f ) = f −Dπ+(D
−1 f )

shows that, for polynomials f (z) ∈ F[z]m, πD( f ) is a polynomial. For f (z) ∈ F[z]m,

πD(πD( f )) = Dπ−(π−(D−1 f )) = Dπ−(D−1 f ) = πD( f ),
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which shows that πD is a projection operator. Every element f = πD(g) in the
image space of πD is a polynomial such that D−1 f = π−(D−1g) is strictly proper.
Conversely, if f ∈ F[z]m is a polynomial such that D−1 f is strictly proper, then
π−(D−1 f ) = D−1 f . Therefore, πD( f ) = Dπ−(D−1 f ) = DD−1 f = f is in the image
of πD. This proves statement 1. Let f (z) ∈ F[z]m. Then πD( f ) = 0 if and only if
π−(D−1 f ) = 0, i.e., if and only if D(z)−1 f (z) is a polynomial. Therefore, f (z) ∈
Ker πD if and only if f (z) ∈D(z)F[z]m. Finally, statement 3 is a trivial consequence
of statements 1 and 2. This completes the proof. �

In the sequel, the notation

[ f ]D = f (z)+D(z)F[z]m

will be frequently used for the associated coset class of a polynomial f (z) in the
quotient space F[z]m/D(z)F[z]m. Lemma 3.2 implies that the projection operator πD

induces an F-vector space isomorphism

πD : F[z]m/D(z)F[z]m −→ XD, πD([ f ]D) = πD( f ). (3.4)

Next, using the shift operator, a module structure on XD is defined so that π̄D

becomes an F[z]-module isomorphism.

Definition 3.3. The shift operator SD : XD −→ XD is the F-linear map defined by

SD f = πD(zf ), f (z) ∈ XD.

The polynomial model XD becomes an F[z]-module using the SD-induced module
structure, i.e., by defining

p · f = πD(pf ), p(z) ∈ F[z], f (z) ∈ XD. (3.5)

The preceding analysis is summarized by the following result.

Theorem 3.4. Let D(z) be a nonsingular element in F[z]m×m. Then:

1. πD is a projection in F[z]m and KerπD = DF[z]m;
2. A vector polynomial f (z) ∈ F[z]m belongs to XD if and only if D(z)−1 f (z) ∈

z−1
F[[z−1]]m, i.e., if and only if D(z)−1 f (z) is a strictly proper rational vector

function; so

XD = { f (z) ∈ F[z]m | π+(D(z)−1 f (z)) = 0};

an alternative description of the polynomial model XD is the following:

XD =
{

f (z) ∈ F[z]m| f (z) = D(z)h(z), h(z) ∈ z−1
F[[z−1]]m

}
.
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3. The module structure in XD defined by (3.5) implies the isomorphism

XD � F[z]m/DF[z]m, (3.6)

with the isomorphism πD : F[z]m/DF[z]m −→ XD defined by (3.4).

Proof. 1. This follows from Lemma 3.2.
2. If f ∈ XD, then πD f = f , and so Dπ−D−1 f = f or π−D−1 f = D−1 f , which

implies that π+D−1 f = 0. Conversely, if f (z) ∈ F[z]m and π+D−1 f = 0, then,
as π+ + π− = I, the equality π−D−1 f = D−1 f follows, which implies f =
Dπ−D−1 f = πD f , that is, f (z) ∈ XD.

3. By definition, the projection πD is actually an F[z]-homomorphism. It is surjec-
tive, and KerπD = DF[z]m. Hence, the isomorphism (3.6) follows. �
Note that the shift operator SD becomes a module homomorphism with respect

to this module structure on XD. In fact, z · f = πD(zf ) = SD f . Moreover, the module
structure (3.5) is a unique one such that πD becomes a module isomorphism.

Theorem 3.5. The polynomial model XD is a finite-dimensional F-vector space of
dimension

dimXD = degdetD(z).

Moreover, (3.5) defines the unique module structure on XD such that

πD : F[z]m/D(z)F[z]m −→ XD

becomes an F[z]-module isomorphism. The inverse of πD is given by

π−1
D ( f ) = f (z)+D(z)F[z]m.

In particular, XD is a finitely generated F[z] torsion module.

Proof. By Theorem 2.51, the quotient module F[z]m/D(z)F[z]m is a finitely gen-
erated torsion module and has vector space dimension deg det D(z). Endow XD

with the module structure defined by (3.5). Then the vector space isomorphism
πD : F[z]m/D(z)F[z]m −→ XD becomes an F[z]-module isomorphism. The result
follows. �

As a simple computational example, one may consider the nonsingular polyno-
mial matrix

D(z) = zI−A

defined by a constant matrix A∈ F
n×n. The elements of the polynomial model XzI−A

are then all vector polynomials f (z) ∈ F[z]n such that (zI − A)−1 f (z) is strictly
proper. This implies that f (z) = f0 is constant, and therefore

XzI−A = F
n
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consists of all constant polynomial vectors ξ ∈ F
n ⊂ F[z]n. The action of the

shift operator SzI−A on XzI−A is computed as follows. Let f (z) = ξ be a constant
polynomial. Then

SzI−Aξ = (zI−A)π−(z(zI−A)−1ξ ) = (zI−A)π−(ξ )+ (zI−A)π−(A(zI−A)−1ξ )

= Aξ .

Therefore, the shift operator on XzI−A is conjugate, i.e., similar to the linear operator
A acting in F

n. Conversely, this proves the next result which states that every square
matrix A can be regarded as the shift operator of the associated matrix pencil.

Proposition 3.6. Every matrix A∈ F
n×n is conjugate to the shift operator of zI−A,

i.e.,

SzI−A � A.

For a slightly more advanced example, consider nonsingular matrix pencils

D(z) = zE−A,

with E,A ∈ F
n×n and det(zE−A) not identical to zero. Then a polynomial f (z) ∈

F[z]n is contained in XD if and only if there exists a strictly proper formal power
series h(z) = ∑∞

j=1 h jz− j, with

(zE−A)h(z) = f (z).

This implies that f (z) = f0 ∈ ImE is constant. Therefore, it follows that XD ⊂ F
n.

Using the Weierstrass decomposition

LER−1 =

(
Ir 0
0 N

)
, LAR−1 =

(
A1 0
0 I

)

with suitable invertible matrices L,R, and N nilpotent, we can rewrite the linear
descriptor system

Ext+1 = Axt (3.7)

equivalently as a decoupled system,

x1,t+1 = Ax1,t ,

Nx2,t+1 = x2,t .
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Here the first dynamics of (3.7) refers to the so-called slow dynamics, whereas the
second equation refers to the fast dynamics of the descriptor system. This implies
that the elements of the polynomial model XD correspond exactly to the states of the
slow dynamics of (3.7). In particular, this implies dimXD = rankE . An equivalent
characterization of XD is stated without proof.

Proposition 3.7. The polynomial model XzE−A is the largest linear subspace V ⊂
F

n satisfying AV ⊂ EV .

This example shows that the theory of polynomial models captures in a very
natural way interesting properties of the dynamics of higher-order differential
equations.

3.2 The Lattice of Shift-Invariant Subspaces

In this section, the lattice of submodules of polynomial models XD, i.e., the lattice of
shift-invariant subspaces of XD, will be explored. To begin, some basic results on the
geometry of subspaces of a linear space X are recalled. The natural set operations
on subspaces are sums and intersections of which a special case is that of direct
sums. This is in line with the strategy of reducing, if possible, the study of a complex
object to the study of a bunch of simpler ones. If A is a linear transformation acting
in X , then the subspaces of interest are the invariant subspaces, namely, subspaces
for which AV ⊂ V . As is the case for subspaces, the set of invariant subspaces is
closed under sums and intersections. In the sequel, the following lemma from linear
algebra, whose elementary proof is left to the reader, will be frequently referred to.

Lemma 3.8. Let A : X −→X and W,Z : X −→ Y be F-linear transformations
of vector spaces X , Y . The following statements are equivalent:

(a)

AKerW ⊂ KerZ.

(b)

KerW ⊂ KerZA.

(c) There exists a linear transformation F : Y −→ Y such that

ZA = FW.
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Recall that, for a linear space X and a finite number of F-linear subspaces V j,
j = 1, . . . ,s, a subspace V ⊂X is the direct sum of the Vi, written as

V = V1⊕·· ·⊕Vs =
s⊕

j=1

V j,

if every x ∈ V has a unique representation of the form x = ∑s
j=1 x j, with x j ∈ V j. A

subspace V = V1∩·· · ∩Vs is called the transversal intersection of the V1, . . . ,Vs

whenever

X = Vi +
⋂

j �=i

V j (3.8)

for i = 1, . . . ,s. Direct sums and transversal intersections are characterized as
follows.

Proposition 3.9. Let Vi, i= 1, . . . ,s, be linear subspaces of an F-linear spaceX .

1. A linear subspace V ⊂X is the direct sum V =
⊕s

j=1V j if and only if the
following conditions are satisfied:

(a) The subspace V is equal to the sum ∑s
j=1V j;

(b) Vi∩∑s
j �=iV j = {0} for all i = 1, . . . ,s.

2. Define

V =
s⋂

j=1

V j, Wi =
⋂

j �=i

V j.

V is the transversal intersection of V1, . . . ,Vs if and only if one has the direct
sum decomposition

X /V =W1/V ⊕·· ·⊕Ws/V . (3.9)

Proof. The proof of the first part is obvious and is omitted. Assume that the direct
sum decomposition (3.9) is true. This can be rewritten as X /V = (⊕ j �=iW j/V )⊕
Wi/V . The inclusions Vi ⊃W j, valid for j �= i, imply Vi ⊃ ∑ j �=iW j. So

X /V = Vi/V +Wi/V ,

which clearly implies X = Vi +Wi. Since Vi ∩Wi = V is satisfied, V is the
transversal intersection of the Vi.

To prove sufficiency, one proceeds by induction on s. Assume the statement
is true for all integers up to s− 1 and that (3.8) is satisfied for all i = 1, . . . ,s.
One concludes that X /V =Ws/V ⊕Vs/V . Clearly, the inclusions Wi ⊂ Vs, valid
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for i = 1, . . . ,s− 1, imply ∑s−1
i=1 Wi ⊂ Vs. This yields the direct sum X /V = ∑s−1

i=1
Wi/V ⊕Ws/V . The fact that, for i �= j, Wi∩W j =V , implies, using a dimensionality
argument, that ∑s−1

i=1 Wi/V = ⊕s−1
i=1Wi/V , and hence the direct sum representa-

tion (3.9) follows. �
By identifying the direct sum of free modules F[z]m⊕F[z]n with F[z]m+n, one

obtains the following useful decomposition result, which will be used later on to
characterize the module structure of polynomial models XD via the Smith normal
form.

Proposition 3.10. Let Di(z) ∈ F[z]mi×mi , i = 1,2, be nonsingular polynomial matri-
ces. This implies the following equality of polynomial models:

X(
D1 0
0 D2

) = XD1 ⊕XD2 .

Proof. For polynomials f1(z) ∈ F[z]m1 , f2(z) ∈ F[z]m2 ,

f =

(
f1

f2

)
∈ X(

D1 0
0 D2

)

is true if and only if Di(z)−1 fi(z) are strictly proper for i= 1,2. But this is equivalent
to fi ∈ XDi , i = 1,2. �

Using isomorphism (3.4) between a polynomial model XD and the associated
quotient module, it becomes a trivial exercise to translate results about quotient
modules into corresponding results about polynomial models. To illustrate this
process, consider the simple but very important case of characterizing submodules.

Theorem 3.11. Let D(z) be a nonsingular m×m polynomial matrix. The submod-
ules V of XD are exactly the subspaces of the form

V = EXF ,

where E(z),F(z) are nonsingular m×m polynomial matrices satisfying D(z) =
E(z)F(z).

Proof. By Theorem 2.53, the submodules of F[z]m/DF[z]m are of the form X =
EF[z]m/DF[z]m for nonsingular polynomial matrices E,F satisfying D = EF. For
g ∈ F[z]m and f = Eg, one computes

πD( f ) = Dπ−(D−1Eg) = Dπ−(F−1g) = EπF(g).

Therefore, the isomorphism π̄D :F[z]m/DF[z]m−→XD in (3.4) maps EF[z]m/DF[z]m

isomorphically onto EXF . This proves the statement. �
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With XD being recognized as a module, its submodules and module isomor-
phisms are at our disposal. Two polynomial model spaces XD1 and XD2 are called
isomorphic if there exists an F[z]-module isomorphism Z : XD1 −→ XD2 between
them. Subsequently, isomorphisms of polynomial models will be characterized via
coprimeness and intertwining relations. The following lemma is instrumental for
studying the direct sum decompositions of the shift operator.

Lemma 3.12. Let D(z),R(z) ∈ F[z]m×m be nonsingular polynomial matrices. Then

RXD ⊂ XRD

is a submodule and ZR : XD−→XRD, f �→R f is an injective module homomorphism.
The subspace RXD is invariant under the shift SRD, and one obtains the conjugacy
of shifts

SRD|RXD � SD.

Proof. Let f ∈ F[z]m and g = R f . Then (RD)−1g = D−1 f is strictly proper if and
only if f ∈ XD. Thus f ∈ XD if and only if g ∈ XRD. This shows that RXD ⊂ XRD and
that f �→ R f is an injection from XD onto XRD. Thus it suffices to show that ZR is a
module homomorphism. For f ∈ XD, one computes

ZR(z · f ) = RπD(zf ) = RDπ−(D−1zf ) = πRD(zRf ) = z ·ZR f .

Moreover, for g ∈ XD,

SRD(Rg) = πRD(zRg) = RDπ−(zD(z)−1g(z)) = RSD(g).

Thus one obtains the conjugacy of shift operators ZR ◦ SD = (SRD|RXD) ◦ ZR. The
result follows. �

To study the decomposition of a polynomial model XD into a direct sum of SD-
invariant subspaces or, equivalently, submodules, one needs a weaker concept than
coprimeness.

Definition 3.13. 1. Let Ei(z) ∈ F[z]m×m, i = 1, . . . ,s, be nonsingular polynomial
matrices. The Ei(z) are called mutually left coprime if, for each i, Ei(z) is left
coprime with Eμi = l.c.r.m.{E j} j �=i, the unique, up to a right unimodular factor,
least common right multiple (l.c.r.m.) of all {E j(z)} j �=i.

2. Let Fi(z) ∈ F[z]m×m, i = 1, . . . ,s, be nonsingular polynomial matrices. One says
that the Fi(z) are mutually right coprime if, for each i, Fi(z) is right coprime
with Fνi = l.c.l.m.{Fj} j �=i, the unique, up to a left unimodular factor, least
common left multiple (l.c.l.m.) of all {Fj(z)} j �=i.

The notion of mutual coprimeness is closely related to transversality conditions.
In fact, nonsingular polynomial matrices E1(z), . . . ,Es(z) ∈ F[z]m×m are mutually
left coprime if and only if the submodules E1(z)F[z]m, . . . ,Es(z)F[z]m intersect
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transversally in F[z]m. Similarly, F1(z), . . . ,Fs(z) ∈ F[z]m×m are mutually right
coprime if and only if the submodules F[z]1×mF1(z), . . . ,F[z]1×mFs(z) intersect
transversally in F[z]1×m. These observations follow directly from the identities

(l.c.r.m. j �=iE j)F[z]
m =

⋂

j �=i

E j(z)F[z]
m,

F[z]1×m(l.c.l.m.{Fj | j �= i}) =
⋂

j �=i

F[z]1×mFj(z).

Mutual coprimeness can also be characterized in terms of a full rank condition on
Sylvester-type matrices; see Chapter 9. Note that in the matrix case, mutual left
coprimeness is a stronger condition than pairwise left coprimeness. The same is
true, of course, of mutual right coprimeness. Another thing worth pointing out is
that every subset of a mutually left coprime set of polynomials is itself mutually left
coprime.

Following the analysis carried out in Theorem 2.24, the next result explores the
close relationship between factorizations of polynomial matrices and shift-invariant
subspaces. Thus it provides a link between vector space geometry and the arithmetic
of polynomial matrices. It is one of the principal results that makes the study of
polynomial models so useful.

Theorem 3.14. Let V1, . . . ,Vsi be submodules of XD, i.e., SD-invariant subspaces
Vi = EiXFi that correspond to the factorizations

D(z) = Ei(z)Fi(z), i = 1, . . . ,s.

Then:

1. V1 ⊂ V2 if and only if there exists a nonsingular polynomial matrix R(z), with
E1(z) = E2(z)R(z), i.e., if and only if E2(z) is a left factor of E1(z);

2.
⋂s

i=1Vi has the representation EνXFν , with Eν(z) a l.c.r.m. of the Ei(z) and Fν(z)
a greatest common right divisor (g.c.r.d.) of the Fi(z);

3. The equality
⋂s

i=1 EiXFi = 0 is valid if and only if the Fi(z) are right coprime;
4. The sum V1 + · · ·+ Vs has the representation EμXFμ , with Eμ(z) a greatest

common left divisor (g.c.l.d.) of the Ei(z) and Fμ(z) a l.c.l.m. of all the Fi(z);
5. The factorizations D(z) = Ei(z)Fi(z), i = 1, . . . ,s, imply

XD = E1XF1 + · · ·+EsXFs

if and only if the Ei(z) are left coprime;
6. The factorizations D(z) = Ei(z)Fi(z), i = 1, . . . ,s, imply the direct sum

XD = E1XF1⊕·· ·⊕EsXFs

if and only if the Ei(z) are left coprime and the Fi(z) are mutually right coprime.
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Proof. 1. Assume E1(z) = E2(z)R(z). Clearly, D(z) = E1(z)F1(z) = E2(z)
R(z)F1(z) = E2(z)F2(z), so R(z)F1(z) = F2(z). Hence, E1XF1 = E2RXF1 ⊂
E2XRF1 = E2XF2 .

Conversely, assume

E1XF1 ⊂ E2XF2 . (3.10)

Both E1XF1 +DF[z]m and E2XF2 +DF[z]m are submodules of F[z]m and satisfy

EiXFi +DF[z]m = EiXFi +EiFiF[z]
m = Ei[XFi +FiF[z]

m] = EiF[z]
m.

Thus (3.10) implies the inclusion

E1F[z]
m ⊂ E2F[z]

m.

From this the factorization E1(z) = E2(z)R(z) follows.
2. The intersection of submodules is a submodule. Hence, letting Vν =

⋂s
i=1Vi, the

representation Vν = EνXFν follows for some factorization D(z) = Eν (z)Fν(z).
The inclusions Vν ⊂ Vi, for i = 1, . . . ,s, imply EνXFν ⊂ EiXFi and, hence, the
factorizations

Eν(z) = Ei(z)Ri(z).

In turn, these imply

Fi(z) = Ri(z)Fν (z).

This shows that Eν(z) is a common right multiple of the Ei(z) and Fν(z) a
common right divisor of the Fi(z). Clearly, D(z) is a common left multiple of
all the Ei(z), and hence, the l.c.r.m. of all the Ei(z) must be a left factor of D(z).
Thus, let E(z) be a common right multiple of the Ei(z), which is also a left factor
of D(z). Then E(z) = Ei(z)Qi(z) and D(z) = E(z)F(z). Clearly,

EXF = EiQiXF ⊂ EiXQiF = EiXFi ,

so

EXF ⊂
s⋂

i=1

EiXFi = EνXFν ,

and this implies E(z) = Eν (z)G(z). The last equality shows that Eν(z) is the
l.c.r.m. of the Ei(z).
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Similarly, let F(z) be another common right divisor of the Fi(z). This implies
the existence of factorizations D(z) = E(z)F(z) = Eν(z)Fν (z), from which the
inclusion EνXFν ⊃ EXF follows. In particular, F(z) is a right divisor of Fν(z),
which shows that Fν(z) is the g.c.r.d. of the Fi(z).

3. Follows from Theorem 3.11.
4. Let Vμ =V1+ · · ·+Vs = EμXFμ . Since Vi⊂Vμ , there exist factorizations Ei(z) =

Eμ(z)Si(z) for all i. This means that Eμ(z) is a common left divisor of all Ei(z).
Let E(z) be another common left divisor of the Ei(z). Thus the factorizations

Ei(z) = E(z)Ri(z) (3.11)

and

Ei(z)Fi(z) = E(z)Ri(z)Fi(z) = E(z)F(z)

exist, with

F(z) = Ri(z)Fi(z), 1≤ i≤ s.

Now equations (3.11) imply EiXFi ⊂ EXF , and hence

EμXFμ = V1 + · · ·+Vs ⊂ EXF .

But this implies, by part 1, that Eμ(z) = E(z)G(z) and, hence, that Eμ(z) is a
g.c.l.d. of the Ei(z). Similarly, one can show that Fμ(z) is the l.c.l.m. of all the
Fi(z).

5. Follows from the previous theorem.
6. The left coprimeness condition is equivalent to XD = E1XF1 + · · · + EsXFs ,

whereas the mutual right coprimeness condition is equivalent to EiXFi ∩
∑ j �=i E jXFj = {0}.

�
One way to obtain direct sum decompositions of a polynomial model is by

factoring its characteristic polynomial. This is our first encounter with spectral
factorizations and spectral decompositions.

Theorem 3.15. Let D(z)∈F[z]n×n be nonsingular, and let d(z) = detD(z). Suppose
d(z) has a factorization d(z) = e1(z) · · ·es(z), with the ei(z) pairwise coprime.
Then:

1. D(z) admits factorizations

D(z) = Di(z)Ei(z),
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with detDi(z) = di(z), detEi(z) = ei(z), and such that

XD = D1XE1⊕·· ·⊕DsXEs ; (3.12)

2. The characteristic polynomial of SD|DiXEi is ei(z) = detEi(z).

Proof. 1. Define subspaces Xi of XD by

Xi = { f ∈ XD|πDei f = ei(SD) f = 0}= Kerei(SD).

Clearly, the Xi are submodules of XD, so there exist factorizations D(z) =
Di(z)Ei(z) such that Xi = DiXEi . Note that di(z) = Π j �=ie j(z). In particular,
d1(z), . . . , ds(z) are coprime, and there exist polynomials g1(z), . . . , gs(z) for
which ∑s

i=1 di(z)gi(z) = 1. This implies that every f ∈ XD has a representation
f = ∑s

i=1 di(SD)gi(SD) f . Now, di(SD)gi(SD) f ∈ Kerei(SD) as, by the Cayley–
Hamilton theorem,

ei(SD)di(SD)gi(SD) f = d(SD)gi(SD) f = 0.

This shows that XD = ∑s
i=1 DiXEi . Furthermore, letting EiXDi

= ∑ j �=i D jXE j , for
i �= j, implies the coprimeness of Ei(z) and Di(z). This implies DiXEi ∩E jXDi

=
{0}, and hence the direct sum representation (3.12) is proved.

2. Follows from the isomorphism of SD|DiXEi and SEi , as proven in Lemma 3.12,
and from the spectral mapping theorem.

�
The preceding discussion reveals that one feature that accounts for the appli-

cability of polynomial models is the relation between the geometry of polynomial
models and the factorizations of polynomial matrices. To see this, note that, for a
nonsingular polynomial matrix D(z) ∈ F[z]m×m, a subspace V ⊂ XD is a submodule
or, equivalently, an SD-invariant subspace if and only if it has a representation
V = D1XD2 for some factorization D(z) = D1(z)D2(z). In Theorem 3.14, it was
shown that direct sum decompositions of polynomial models XD are related to
the notion of mutual coprimeness. Another closely related notion is that of skew
primeness, which is introduced next.

Definition 3.16. Let D1(z),D2(z) ∈ F[z]m×m be nonsingular polynomial matrices.
The ordered pair (D1(z),D2(z)) is called skew prime if there exist polynomial
matrices D1(z) and D2(z) such that:

1. The intertwining relation

D1(z)D2(z) = D2(z)D1(z) (3.13)

is satisfied;
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2. D1(z) and D2(z) are left coprime;
3. D2(z) and D1(z) are right coprime.

In this case, one says that the pair (D2(z),D1(z)) is a skew complement
of (D1(z),D2(z)). Note that a sufficient, but not necessary, condition for a pair
(D1(z),D2(z)) to be skew prime is that det D1(z) and det D2(z) are coprime.

The following result is due to Fuhrmann (2005); for a geometric interpretation of
skew primeness, see Khargonekar, Georgiou and Özgüler (1983).

Proposition 3.17. Let D(z) = D1(z)D2(z), with D1(z),D2(z) ∈ F[z]m×m nonsingu-
lar polynomial matrices. The following statements are equivalent:

(a) D1(z) and D2(z) are skew prime with skew complement (D2(z),D1(z)).
(b) The following is a direct sum decomposition:

XD = D1XD2⊕D2XD1
.

(c) The intertwining relation (3.13) is embeddable in a doubly coprime factoriza-
tion:

(
D2(z) D1(z)
X(z) −Y (z)

)(
Y (z) D1(z)
X(z) −D2(z)

)
=

(
I 0
0 I

)
.

(d) The equation

X(z)D1(z)+D2(z)Y (z) = I (3.14)

has a polynomial solution.

Proof. (a)⇔ (b). D1(z),D2(z) are skew prime with skew complement D2(z),D1(z)
if and only if D1(z),D2(z) are left coprime and D2(z),D1(z) are right coprime.
Theorem 3.14 thus implies the equivalence.

(a)⇔ (c). That (a) implies (c) follows from Theorem 2.33. Conversely, from
the doubly coprime factorization (c) one obtains the Bezout identities D1(z)X(z)+
D2(z)Y (z) = I and Y (z)D2(z)+X(z)D1(z) = I. Thus D1(z),D2(z) are left coprime
and D2(z),D1(z) are right coprime. Hence, (a) and (c) are equivalent.

(c)⇔ (d). Finally, equation (3.14) follows immediately from the doubly coprime
factorization (c). Conversely, from (3.14) one concludes that D1(z),Y (z) are left
coprime and X(z),D2(z) are right coprime. Embed D1(z),−Y (z) into a unimodular
matrix

V (z) =

(
D2(z) D1(z)
X(z) −Y (z)

)



100 3 Functional Models and Shift Spaces

such that

(X(z) −D(z))

(
D2(z) D1(z)
X(z) −Y (z)

)
= (0 I).

This is clearly possible. Choosing an embedding of (X ,−D2) in a unimodular matrix

U(z) =

(
V (z) W (z)
X(z) −D2(z)

)

yields the unimodularity of

L(z) :=U(z)V (z) =

(
M(z) N(z)

0 I

)
.

In particular, M(z) is unimodular. Define Y (z) := M(z)−1V (z)−M(z)−1N(z)X(z)
and D1(z) := M(z)−1W (z)+M(z)−1N(z)D2(z). Then

(
Y (z) D1(z)
X(z) −D2(z)

)(
D2(z) D1(z)
X(z) −Y (z)

)
=

(
I 0
0 I

)
.

Thus the unimodular embedding in (c) has been obtained. �
The following technical lemma shows the existence of a special solution

to (3.14).

Lemma 3.18. Let D1(z) and D2(z) be nonsingular polynomial matrices such that
D2(z)−1D1(z)−1 is strictly proper. If

X(z)D1(z)+D2(z)Y (z) = I

has a polynomial matrix solution X(z),Y (z), then it has one with D2(z)−1X(z) and
Y (z)D1(z)−1 strictly proper.

Proof. Let X(z) = X1(z) + D2(z)X2(z) and Y (z) = Y1(z) + Y2(z)D1(z), with
D2(z)−1X(z) and Y (z)D1(z)−1 strictly proper. Then (3.14) implies

X1(z)D1(z)+D2(z)Y1(z)+D2(z)(X2(z)+Y2(z))D1(z) = I.

Equivalently,

D2(z)
−1X1(z)+Y1(z)D1(z)

−1 +X2(z)+Y2(z) = (D1(z)D2(z))
−1.

This implies X2(z)+Y2(z) = 0 and X1(z)D1(z)+D2(z)Y1(z) = I. �
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Next, a useful characterization of direct sum decompositions of polynomial
models is proved.

Theorem 3.19. Let Di(z) ∈ F[z]m×m, i = 1, . . . ,N, be nonsingular polynomial
matrices. Define

D(z) = l.c.l.m.{Di(z)|i = 1, . . . ,N}
Li(z) = l.c.l.m.{D j(z)| j �= i}, (3.15)

and let Li(z) and Di(z) denote the unique polynomial matrices defined by the
factorizations

D(z) = Li(z)Di(z) (3.16)

and

D(z) = Di(z)Li(z), (3.17)

respectively. The following statements are equivalent:

(a) The dimension formula dimXD = ∑N
i=1 dimXDi is valid.

(b) Factorizations (3.16) are skew prime factorizations.
(c) The polynomial matrices Di(z), i = 1, . . . ,N, are mutually right coprime.
(d) The polynomial matrices Di(z), i = 1, . . . ,N, are mutually left coprime.
(e) The following is a direct sum representation:

XD = L1XD1 ⊕·· ·⊕LNXDN . (3.18)

Proof. (a) ⇔ (e). By the construction of D(z), the polynomial matrices
L1(z), . . . ,LN(z) in (3.16) are left coprime. By the same reasoning, the matrices
L1(z), . . . ,LN(z) are right coprime. Therefore, using Theorem 3.14, XD = L1XD1

+ · · ·+LNXDN . This implies dimXD ≤ ∑N
i=1 dimXDi . Thus (a) is valid if and only if

XD = L1XD1 + · · ·+LNXDN is a direct sum, i.e., if and only if (e) is true.
(c)⇔ (e). This equivalence is a direct consequence of Theorem 3.14.
(b)⇔ (c). Assume the Di(z) are mutually right coprime, and let Li(z) be defined

by (3.15). Clearly, this implies, for all i, the right coprimeness of Di(z),Li(z).
On the other hand, Li(z),Di(z) are left coprime as D(z) = l.c.l.m.{Di(z),Li(z)}.
This shows that the factorizations D(z) = Li(z)Di(z) are skew prime. Conversely,
assume the factorizations D(z) = Li(z)Di(z) are skew prime. Let D(z) = Di(z)Li(z)
be complementary factorizations. This implies the direct sum XD = LiXDi ⊕DiXLi

and, hence, also the equality degdetD = degdetDi + degdetLi. Now, ∑ j �=i L jXDj ⊂
DiXLi

, and it follows that

degdetD = dimXD = dim∑N
j=1 LjXDj ≤ dimLiXDi + dimDiXLi

= degdetDi + degdetLi = degdetD.
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Necessarily, the equality holds throughout, which implies that ∑ j �=i L jXDj is a direct
sum and

⊕
j �=i L jXDj = DiXLi

. This implies the direct sum (3.18) and, consequently,
the mutual right coprimeness of the Di(z).

(c)⇔ (d). Follows from duality considerations. �

3.3 Module Homomorphisms and Intertwining Maps

In the class of linear spaces, natural homomorphisms are linear transformations.
Similarly, for the class of modules, module homomorphisms become a natural
object. For close to a century it was apparent that the most efficient way to study
linear transformations is via module theory. Specifically, for a linear space X over
the field F, a linear transformation A : X −→X induces an F[z]-module structure
on X defined by

p · x = p(A)x, p(z) ∈ F[z],x ∈X .

By XA will be denoted the space X with an A-induced module structure. Let
XA and YB be vector spaces, with the module structures induced by A and B,
respectively. It is easily verified that a linear map Z : X −→ Y is an F[z]-
homomorphism if and only if

BZ = ZA,

i.e., Z is a solution to a homogeneous Sylvester equation. In this case, one says that
Z intertwines A and B. The set of all linear transformations intertwining A and B is
a linear space that we denote by Intw(A,B) or, equivalently, by HomF[z](XA,YB).
A special case of intertwining maps is the commutant C (A) = HomF[z](XA,XA)
of a linear transformation A, namely, the set of all operators Z commuting with
A, i.e., satisfying ZA = AZ. The transformations B and A are similar if there
exists an invertible intertwining map. This indicates that one should separate the
characterization of intertwining maps from the study of their invertibility properties.
If A and B transform by similarity to A′ = PAP−1 and B′ = RBR−1, then ZA = BZ
transforms into (RZP−1)(PAP−1) = (RBR−1)(RZP−1), which leads to

Intw(PAP−1,RBR−1) = R Intw(A,B)P−1 (3.19)

or, equivalently, to

HomF[z](XA,YB) = RHomF[z](XA′ ,YB′)P
−1.

The isomorphism A � SzI−A, that is, A acting in X is isomorphic to SzI−A

acting in the polynomial model XzI−A, indicates that our study should be extended
to the more general problem of characterizing the set of F[z]-homomorphisms of
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polynomial models. This study was first carried out, and invertibility conditions
derived, in Fuhrmann (1976). These characterizations are presented in this section.

Having associated a functional model XD with every nonsingular polynomial
matrix D(z), our next step is to study the relation between different models. Of
particular interest is the question of the conditions under which the shift operators
SD1 and SD2 of two nonsingular polynomial matrices D1(z) and D2(z) are similar.
Equivalently, the question can be posed as the existence of an invertible map
Z : XD1 −→ XD2 intertwining SD1 and SD2 , i.e., satisfying the equation

ZSD1 = SD2Z. (3.20)

Now, if Z intertwines SD1 and SD2 , i.e., (3.20) is satisfied, then for each polynomial
p(z),

Zp(SD1) = p(SD2)Z,

which shows that intertwining maps are just F[z]-module homomorphisms from
XD1 into XD2 . To gain some further insight into this problem, consider briefly the
scalar case. Thus, assuming d(z) is a nontrivial polynomial, one looks for maps Z
satisfying ZSd = SdZ. Since Sd is cyclic, it follows in this case that there exists a
polynomial p(z) ∈ F[z] for which Z = p(Sd), that is,

Zf = p(Sd) f = πdpf .

This leads us to assume that a general characterization of intertwining maps will
involve polynomial algebra. This characterization connects with the well-known
fact that a map Z commutes with a cyclic map A if and only if Z = p(A) for some
polynomial p(z). This is closely related to the theory of Bezoutian matrices. Barnett
(1972) showed that a matrix intertwining a companion matrix Cd and its transpose
is given by a Bezoutian matrix B(d,n) = (bij), defined by

d(z)n(w)− n(z)d(w)
z−w

=
n

∑
i=1

n

∑
j=1

bijz
i−1wj−1. (3.21)

Later on, in Helmke and Fuhrmann (1989), as well as Fuhrmann (1981), it was
shown that the Bezoutian matrix B(d,n) = (bij), defined in (3.21), is the matrix
representation of the intertwining map n(Sd) with respect to the control and standard
bases of Xd . Now the expansion in (3.21) is only one of several others. This
indicates that one should focus on intertwining maps rather than on their matrix
representations and that, in generalizing Bezoutian matrices to the polynomial
matrix case, one should analyze intertwining maps for polynomial models. We will
return to this topic later on, in Chapter 5, when we introduce tensor products.

The following theorem gives a full characterization of intertwining maps.
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Theorem 3.20. Let D1(z) ∈ F[z]m×m and D2(z) ∈ F[z]p×p be nonsingular. Then
a map Z : XD1 −→ XD2 is an F[z]-homomorphism if and only if there exist
N1(z),N2(z) ∈ F[z]p×m such that

N2(z)D1(z) = D2(z)N1(z) (3.22)

and

Zf = πD2(N2 f ). (3.23)

Proof. By Theorem 2.54, the module homomorphisms between quotient modules
Z̄ : F[z]m/D1(z)F[z]m −→ F[z]p/D2(z)F[z]p are of the form Z̄( f ) = πD2N2 f , where
N1 and N2 are polynomial matrices satisfying N2(z)D1(z) = D2(z)N1(z). Applying
Theorem 3.5, the module homomorphisms Z : XD1 −→XD2 are seen to be of the form
Z = πD2 ◦ Z̄ ◦π−1

D1
, and therefore Z f = πD2(Z̄ f ) = πD2(πD2(N2 f )) = πD2(N2 f ). The

result follows. �
Proceeding next with the study of the invertibility properties of these homo-

morphisms, we characterize the kernel and image of the map Z defined by
equation (3.23) in terms of the polynomial data.

Theorem 3.21. Let Z : XD1 −→ XD2 be the F[z]-module homomorphism defined by
equations (3.22)–(3.23). Then:

1. KerZ = E1XF1 , where D1(z) = E1(z)F1(z) and F1(z) is a g.c.r.d. of D1(z) and
N1(z);

2. ImZ = E2XF2 , where D2(z) = E2(z)F2(z) and E2(z) is a g.c.l.d. of D2(z) and
N2(z);

3. The map Z is injective if and only if D1(z) and N1(z) are right coprime;
4. The map Z is surjective if and only if D2(z) and N2(z) are left coprime;
5. The map Z is invertible if and only if D1(z) and N1(z) are right coprime and

D2(z) and N2(z) are left coprime.

Proof. 1. KerZ is a submodule of XD1 , and hence, by Theorem 3.11, it is of the form
E1XF1 for some factorization D1(z) = E1(z)F1(z). This means that πD2N2E1g = 0
for every g(z) ∈ XF1 . On the other hand, if g(z) ∈ F1F[z]m, i.e., g(z) = F1(z)g′(z),
then, for every g′(z) ∈ F[z]m,

πD2(N2E1F1g′) = πD2(N2D1g′) = πD2(D2N1g′) = D2π−(N1g′) = 0.

From the direct sum representation F[z]m = XF1⊕F1F[z]m we conclude the iden-
tity πD2N2E1F1g = 0 for every g ∈ F[z]m. This implies that D2(z)−1N2(z)E1(z) =
N1(z)D1(z)−1E1(z) =N1(z)F1(z)−1 =P(z) is a polynomial matrix. It follows that
N1(z) = P(z)F1(z) and F1(z) is a common right divisor of D1(z) and N1(z).
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Conversely, let F ′(z) be a common right divisor of D1(z) and N1(z). So
D1(z) = E ′(z)F ′(z) and N1(z) = P′(z)F ′(z). To prove the inclusion E ′XF ′ ⊂
KerZ, one computes, for f ∈ XF ′ ,

ZE′ f = πD2N2E ′ f = D2π−D−1
2 N2E ′ f = D2π−N1D−1

1 E ′ f = D2π−N1(F
′)−1 f

= D2π−P′ f = 0.

The inclusion E ′XF ′ ⊂ E1XF1 implies F ′(z) is a right divisor of F1(z), so F1(z) is
the g.c.r.d. of D1(z),N1(z).

2. ImZ is a submodule of XD2 , so it has a representation ImZ = E2XF2 for some
factorization D2(z) = E2(z)F2(z). This implies N2XD1 ⊂ E2F[z]m. Also, the
relation (3.22) implies N2D1F[z]m ⊂ D2F[z]m ⊂ E2F[z]m. The two inclusions
imply N2F[z]m ⊂ E2F[z]m, and so N2(z) = E2(z)R(z) for some polynomial matrix
R(z). Thus E2(z) is a common left divisor of N2(z) and D2(z).

Let E ′(z) be a common left divisor of N2(z) and D2(z), i.e., N2(z) = E ′(z)R(z)
and D2(z) = E ′(z)F ′(z), and let f ∈ XD1 . Then

Zf = πD2N2 f = D2π−D−1
2 N2 f = E ′F ′π−(F ′)−1(E ′)−1E ′Rf

= E ′πF ′Rf ∈ E ′XF ′ .

But this implies that E2XF2 ⊂ E ′XF ′ or, by Theorem 3.14, that E ′(z) is a left
divisor of E2(z). Hence E2(z) is the g.c.l.d. of D2(z),N2(z).

3. The other claims follow from the first two statements.
�

The next result gives an explicit formula for the inverse of module isomorphisms
in terms of doubly coprime factorizations.

Theorem 3.22. 1. D1(z) and N1(z) are right coprime and D2(z) and N2(z) are left
coprime if and only if there exist polynomial matrices X1(z),Y1(z),X2(z),Y2(z)
that satisfy the following doubly coprime factorization:

(
Y2(z) X2(z)

−N2(z) D2(z)

)(
D1(z) −X1(z)
N1(z) Y1(z)

)
=

(
I 0
0 I

)
,

(
D1(z) −X1(z)
N1(z) Y1(z)

)(
Y2(z) X2(z)

−N2(z) D2(z)

)
=

(
I 0
0 I

)
.

(3.24)

2. In terms of the doubly coprime factorizations (3.24), the inverse Z−1 : XD2 −→
XD1 of the module isomorphism Z : XD1 −→ XD2 ,Zf = πD2(N2 f ) is given by

Z−1g = πD1(X1g), g ∈ XD2 .
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Proof. 1. The existence of polynomial matrices X1(z),Y1(z),X2(z),Y2(z) satisfy-
ing (3.24) implies the Bezout identities

Y2(z)D1(z)+X2(z)N1(z) = I and D2(z)Y1(z)+N2(z)X1(z) = I,

which in turn imply the two coprimeness conditions. Conversely, assume the
coprimeness conditions are satisfied. The coprimeness conditions imply the
existence of polynomial matrices X̂1(z),Ŷ1(z),X2(z),Y2(z) that solve the Bezout
equations

Y2(z)D1(z)+X2(z)N1(z) = I

and

D2(z)Ŷ1(z)+N2(z)X̂1(z) = I.

Letting Q(z) = X2(z)Ŷ1(z)−Y2(z)X̂1(z), and defining

(
Y1(z)
X1(z)

)
=

(
Ŷ1(z)
X̂1(z)

)
−
(

D1(z)
N1(z)

)
Q(z),

we obtain matrix relations (3.24).

2. Compute, for f (z) ∈ XD1 ,

πD1 X1πD2N2 f = πD1 X1N2 f = πD1(I−D1Y2) f = f

and, for g(z) ∈ XD2 ,

πD2N2πD1X1g = πD2 N2X1g = πD2(I−D2Y1)g = g. �

3.4 Classification of Shift Operators

Closely related to the task of classifying the associated shift operators up to
conjugacy is the question of classifying polynomial models up to module iso-
morphisms. Let D1(z) ∈ F[z]m×m and D2(z) ∈ F[z]p×p be nonsingular. One says
that the polynomial models XD1 and XD2 are isomorphic if there exists a module
isomorphism Z : XD1 −→ XD2 .

Theorem 3.23. Let D1(z) ∈ F[z]m×m and D2(z) ∈ F[z]p×p be nonsingular polyno-
mial matrices. The following statements are equivalent:
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(a) The polynomial models XD1 and XD2 are isomorphic.
(b) D1(z) and D2(z) are polynomially equivalent.
(c) D1(z) and D2(z) have the same nontrivial invariant factors.

Proof. See Definition 2.45 for the notion of polynomial equivalence and Theo-
rem 2.46 for the proof of the equivalence of (b) and (c). D1(z) and D2(z) are
polynomially equivalent if and only if there exist polynomial matrices N1(z) and
N2(z), with N2(z)D1(z) = D2(z)N1(z), such that (N1(z),D1(z)) and (N2(z),D2(z))
are right coprime and left coprime, respectively. By Theorem 3.21, this is equivalent
to the existence of a module isomorphism Z : XD1 −→ XD2 . The result follows. �

According to Theorem 3.23, the polynomial models XD1 and XD2 of two
unimodularly equivalent nonsingular polynomial matrices D1(z) and D2(z) are F[z]-
linear isomorphic. This leads to the following result in the recurring theme of
“equivalence and similarity.”

Theorem 3.24. Let A1,A2 ∈ F
n×n be two linear transformations on F

n. The
following conditions are equivalent:

(a) The matrices A1 and A2 are similar.
(b) The pencils zI−A1 and zI−A2 are unimodularly equivalent.
(c) The pencils zI−A1 and zI−A2 are polynomially equivalent.

Proof. If A1 and A2 are similar, then there exists an invertible matrix R ∈ GLn(F)
such that

RA1 = A2R.

This in turn implies

R(zI−A1) = (zI−A2)R,

and hence, by the invertibility of R, the unimodular equivalence of zI − A1 and
zI−A2. Clearly, unimodular equivalence implies polynomial equivalence. Assume
that zI − A1 and zI − A2 are polynomially equivalent. By Theorem 3.23, the
polynomial models XzI−A1 and XzI−A2 are isomorphic. This implies the similarity
of the shift operators SzI−A1 and SzI−A2 . By Proposition 3.6, A1 is similar to SzI−A1 ,
and analogously for A2. Thus, the similarity of A1 and A2 follows by transitivity. �

An important property a linear operator A acting in a vector space X may have
is cyclicity, i.e., the existence of a vector v ∈X such that the sequence of vectors

v, Av, A2 v, . . . , An v, . . .

spans X . The element v ∈X is then called a cyclic vector for A. Proceeding to
investigate the question of when a shift operator of a polynomial model XD is cyclic,
one begins with the scalar case.
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Theorem 3.25. Let d(z) =∑n
j=0 a jz j ∈F[z] be monic of degree n. The shift operator

Sd : Xd −→ Xd is cyclic. An element f (z) ∈ Xd is a cyclic vector for Sd if and only if
d(z) and f (z) are coprime.

Proof. Obviously, the elements 1,z, . . . ,zn−1 form a basis of Xd and Sd(zi) = zi+1 for
i= 0, . . . ,n−2, Sd(zn−1) =−∑n−1

j=0 a jz j . This shows that 1∈Xd is a cyclic vector for

the shift. For f (z) ∈ Xd , the span < Sd | f > of all elements Si
d( f ) = Sd(zi f (z)), i ∈

N0, is equal to

{πd(a(z) f (z)) | a(z) ∈ F[z]}.

Thus f (z) is a cyclic vector if and only if < Sd | f >=Xd , i.e., if and only if f (z)F[z]+
d(z)F[z] = Xd + d(z)F[z]. Since Xd + d(z)F[z] = F[z], this is equivalent to f (z) and
d(z) being coprime. �

Let D(z) ∈ F[z]m×m have invariant factors di(z), i = 1, . . . ,m. Then this implies
the following direct sum representation:

XD �
m⊕

i=1

Xdi . (3.25)

Continuing our discussion of cyclicity of the shift operator, we note that, by
Lemma 3.10, the shift operator SD is isomorphic to the direct sum of the cyclic shift
operators Sdi . It is easily seen that the direct sum of two cyclic, finite-dimensional
linear operators A1 and A2 is cyclic if and only if the spectra of A1 and A2 are
disjoint. This proves:

Theorem 3.26. Let D(z)∈F[z]m×m be a nonsingular polynomial matrix with monic
invariant factors dm(z)|dm−1(z)| · · · |d1(z). Then SD : XD −→ XD is cyclic if and only
if d2(z) = . . .= dm(z) = 1.

The preceding discussion also leads to a very simple approach to the derivation
of canonical forms for matrices, such as the rational canonical form and the Jordan
canonical form.

This study begins with the rational canonical form of a matrix A ∈ F
n×n. Before

stating the result, let us briefly digress on the construction of companion matrices
and the connection to shift operators. Thus, let d(z) = ∑n

j=0 a jz j ∈ F[z] be a monic
polynomial of degree n. Then the polynomial model Xd is an n-dimensionalF-vector
space with basis Bst = {1,z, . . . ,zn−1}. The shift operator Sd : Xd −→ Xd acts on this
basis via

Sd(z
i) = zi+1 i = 0, . . . ,n− 2,

Sd(z
n−1) = −

n−1

∑
j=0

a jz
j.
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Therefore, the basis representation of Sd with respect to Bst is the companion matrix

Cd =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

0 . . . −a0

1 −a1
. . .

. . .
...

. . . 0 −an−2

1 −an−1

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

. (3.26)

Since the characteristic polynomial of Cd is d(z), it follows that d(z) coincides with
the characteristic polynomial of the shift Sd . Moreover, 1 ∈ Xd is a cyclic vector
of Sd , and therefore the minimal polynomial of Sd coincides with the characteristic
polynomial d(z). In particular, d(z) divides every polynomial p(z) that annihilates
the shift Sd , i.e., for which p(Sd) = 0.

Next consider the nonsingular polynomial matrix D(z) = zI−A of a matrix A ∈
F

n×n with monic invariant factors d1(z), . . . ,dr(z) of the form

di(z) =
ni

∑
j=0

dijz
j , dini = 1.

From the direct sum decomposition (3.25) the rational canonical form is derived as
follows.

Theorem 3.27 (Rational Canonical Form). For A ∈ F
n×n, there exists an invert-

ible transformation S ∈ F
n×n such that SAS−1 has the block-diagonal structure

⎛

⎜
⎝

C1
. . .

Cr

⎞

⎟
⎠ ,

where

Ci =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

0 0 · · · −di0

1 0 −di1
...

. . .
. . .

...
...

. . . 0 −di,ni−2

0 · · · 1 −di,ni−1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

denotes the companion matrix of the invariant polynomial di(z) = ∑ni
j=0 dijz j.
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Proof. From the direct sum decomposition

XD �
r⊕

i=1

Xdi

we conclude that the shift operator SD on XD, which is equal to A, is similar to the
direct sum of shift operators Sdi , i.e.,

SD � diag(Sd1 , · · · ,Sdr).

Thus A is similar to diag(C1, · · · ,Cr), where Ci are matrix representations of the
shift operator Sdi on Xdi . If we choose the standard basis on Xdi , then Ci becomes the
companion matrix of di(z). This completes the proof. �

Turning to the Jordan canonical form, let

di(z) =
ni

∏
j=1

pij(z)
νij

be the primary decomposition of the ith invariant factor di(z) of a nonsingular
polynomial matrix D(z). The polynomials pij(z)νij are called the elementary
divisors of D(z). The diagonal polynomial matrix Δ(z) with elementary divisors
on the diagonal will be called the polynomial Jordan form. The same name will
be used even if Δ(z) has a larger size and has extra units on the diagonal. In fact,
defining πij(z) = Πk �= j pik(z)νik , and noting that

di(z) = πij(z)pij(z)
νij , (3.27)

the following direct sum decomposition into submodules is obtained:

XD =
⊕

i, j

πijXp
νij
ij
,

and the isomorphism XD �⊕
X

p
νij
ij

follows.

Proposition 3.28. Let D(z) ∈ F[z]m×m, and let Δ(z) denote the polynomial Jordan
form of D(z). Then D(z) is polynomially equivalent to Δ(z).

Proof. Note, using the factorization (3.27), that

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠di(z) =

⎛

⎜
⎝

pi1(z)
. . .

pini(z)

⎞

⎟
⎠

⎛

⎜
⎝

πi1(z)vi1

...
πini(z)

vini

⎞

⎟
⎠ .
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It is easily checked that the polynomial matrices

⎛

⎝
1
...
1

⎞

⎠ ,

⎛

⎝
pi1(z)

. . .

pini (z)

⎞

⎠ are left

coprime and di(z),

⎛

⎝
pi1(z)νi1

...
pini (z)

νini

⎞

⎠ are right coprime. This implies that di(z) and

⎛

⎝
pi1(z)

. . .

pini (z)

⎞

⎠ are polynomially equivalent. The result follows. �

By a suitable choice of basis in the polynomial models X
p
νij
ij

, one obtains the

Jordan canonical form for a matrix A ∈ F
n×n.

Theorem 3.29 (Jordan Canonical Form). Assume that F is algebraically closed.
Let

pij(z)
νij = (z− ai)

νij , i = 1, . . . ,m, j = 1, . . . ,ni,

denote the elementary divisors of zI − A, with pairwise distinct roots ai ∈ F and
∑ij νij = n. Then A is similar to the block-diagonal matrix

J = diag(J11, . . . ,J1n1 , . . . ,Jm1, . . . ,Jmnm),

where each Jordan block Jij has the form

Jij =

⎛

⎜
⎜
⎜⎜
⎝

ai

1
. . .
. . .

. . .

1 ai

⎞

⎟
⎟
⎟⎟
⎠
.

Proof. Since we assume, for simplicity, that F is algebraically closed, the irre-
ducible monic polynomials p(z) of F[z] are linear, i.e., p(z) = z− a for a ∈ F. A
basis for the polynomial model X(z−ai)

νij is {1,(z− ai),(z− ai)
2, . . . ,(z− ai)

νij−1}.
The shift operator Sij := S(z−ai)

νij on X(z−ai)
νij satisfies

Si((z− ai)
k) = (z− ai)

k+1 + ai(z− ai)
k, k = 0, . . . ,νij− 2,

Si((z− ai)
νij−1) = ai(z− ai)

νij−1.

Thus the matrix representation of the shift operator on X(z−ai)
νij with respect to this

basis has the structure of a Jordan block,
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Jij =

⎛

⎜
⎜
⎜
⎜
⎝

ai

1
. . .
. . .

. . .

1 ai

⎞

⎟
⎟
⎟
⎟
⎠
.

Since A coincides with the shift operator SzI−A on XzI−A, applying Proposition 3.28,
the shift operator on XzI−A is similar to the direct sum of shift operators S(z−ai)

νij .
Thus the Jordan canonical form of A is obtained. �

An implicit part of the preceding discussion is the spectral properties of the shift
operator. To this end, the eigenvalues and eigenvectors of the shift operator will be
determined.

Theorem 3.30. Let D(z) ∈ F[z]m×m be nonsingular, and let SD : XD −→ XD denote
the shift operator.

1. The characteristic polynomial of SD is equal to det D(z). The minimal polynomial
of SD is equal to d1(z), where dm(z)| · · · |d1(z) are the invariant factors of D(z).

2. Let p(z) ∈ F[z]. Then p(SD) is invertible if and only if p(z) and det D(z) are
coprime.

3. For a polynomial f (z) ∈ XD, let ξ f = (D−1 f )−1. This implies the following
representation:

SD f = zf −D(z)ξ f .

4. α ∈ F is an eigenvalue of SD if and only if det D(α) = 0. The eigenfunctions in
XD corresponding to α are

f (z) =
D(z)v
z−α

, v ∈ Ker D(α). (3.28)

Proof. 1. Since D(z) is unimodularly equivalent to the Smith form diag(d1, . . . ,dm),
dm| · · · |d1, the polynomial model XD is isomorphic to the direct sum Xd1⊕·· ·⊕
Xdm . Thus the shift operator SD is similar to the direct sum of shift operators
diag(Sd1 , . . . ,Sdm), and the characteristic polynomial of SD coincides with the
product of characteristic polynomials of Sdi . Since the characteristic polyno-
mial of Sdi is equal to di(z), it follows that SD has the characteristic polynomial
d1(z) · · ·dm(z) = det D(z). Similarly, let f (z) be a polynomial that annihilates SD.
Then f (Sdi) = 0 for i = 1, . . . ,m, i.e., di(z) divides f (z) for all i. Since dm| · · · |d1,
this is equivalent to the condition that d1(z) divides f (z). Therefore, d1(z) is the
minimal polynomial of SD.

2. The scalar case is considered first. If Z : Xd −→ Xd is a homomorphism, then
Zf = πd(pf ) for some polynomial p where the condition p(z)d(z) = d(z)p(z) is
trivially satisfied. Now, as Sd f = πd(zf ) for all f ∈ Xd , this implies that Zf =
πdpf = p(Sd) f . Thus p(Sd) is invertible if and only if p(z) and d(z) are coprime.
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Thus the result is shown for scalar polynomials. Using the Smith form it follows
that p(SD) is invertible if and only if p(Sdi) is invertible for i = 1, . . . ,m, i.e., if
and only if p(z) and di(z) are coprime, for i = 1, . . . ,m. This completes the proof.

3. If f ∈ XD, then D(z)−1 f (z) = ∑∞
j=1 g jz− j is strictly proper and g1 = (D−1 f )−1.

Thus π+(D(z)−1zf (z)) = g1. The computation

SD( f ) =D(z)π−(D(z)−1zf (z)) = zf (z)−D(z)π+(D(z)−1zf (z)) = zf (z)−D(z)g1

completes the proof.
4. The first claim follows trivially from the identity det (zI − SD) = det D(z).

Assume that f is an eigenvector of SD for the eigenvalue α . Then there exists
v ∈ F

m, with

SD( f ) = zf (z)−D(z)v = α f (z),

and hence D(α)v = 0. But this is equivalent to (3.28). �

3.5 Rational Models

The preceding discussion showed that every finite-dimensional linear operator can
be considered as the shift operator on a suitable polynomial model XD. Alternatively,
following an ingenious idea of G.-C. Rota, a linear operator can be considered
as the compression of the backward shift, acting on the space of strictly proper
formal power series, to a backward-shift-invariant subspace. Let A be a linear
transformation in F

n, and consider the difference equation in F
n:

xt+1 = Axt , t = 0,1,2 . . . . (3.29)

Consider the infinite product space

(Fn)N = F
n×F

n×·· · ,

which is clearly an infinite-dimensional F-vector space. The linear embedding

ΦA : Fn −→ (Fn)N

ΦA(x) = (x,Ax,A2x, . . .)

then associates to each initial state x0 ∈ F
n the entire solution trajectory

(xt)t∈N0 = (Atx0)t∈N0 of (3.29). More generally, one can embed a nonlinear
dynamical system

xt+1 = f (xt)
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on F
n into (Fn)N via the map

x �→ (x, f (x), f ( f (x)), . . .).

This idea of embedding a finite-dimensional dynamical system into an infinite-
dimensional space via the associated solution trajectories is well known from
symbolic dynamics and goes back at least to Poincaré, Birkhoff, and Smale. It also
lies at the heart of modern systems theory, in particular in the theory of behaviors as
developed by J.C. Willems.

The linear transformation ΦA has more structure in connection with the backward
shift. Let σ denote the backward shift operator on (Fn)N, defined by

σ(x0,x1,x2, . . .) �→ (x1,x2,x3, . . .).

Clearly, ΦA intertwines the linear operator A with the shift σ , i.e.,

Φ ◦A = σ ◦Φ.

In particular, the image space ImΦA is shift-invariant and consists of all trajectories
of (3.29). Thus one obtains the following commutative diagram:

FA

FA

A

F
n

F
n ImFA

ImFA

� �

�

�

σ |ImFA

which implies the isomorphism

A� σ | ImΦA.

Thus, an embedding of a linear operator into the standard backward shift operator
was constructed. This far-reaching idea was first expounded in operator theory by
Rota (1960). The subspace ImΦA, being finite-dimensional and shift invariant, is a
behavior and therefore has a kernel representation. In fact, it is easy to verify that
ImΦA = Ker(σ I−A).

It is possible to reformulate this embedding approach to linear dynamics in
a purely algebraic manner. This can be done by identifying the infinite product
space (Fn)N with the space of strictly proper formal power series z−1

F[[z−1]]n. The
embedding ΦA is then conveniently expressed as ΦA : Fn −→ z−1

F[[z−1]]n,

ΦA(ξ ) = (zIn−A)−1ξ .
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The image space of ΦA, i.e., the solution space of (3.29), is then identified with the
space of rational functions

XzI−A = {(zIn−A)−1ξ | ξ ∈ F
n}.

This leads us to rational models whose treatment can be developed in complete
duality to that of polynomial models. Recall the splitting of the formal Laurent series

F((z−1))m = F[z]m⊕ z−1
F[[z−1]]m

into polynomial and strictly proper parts. Let

π− : F((z−1))m −→ z−1
F[[z−1]]m

denote the canonical projection onto the strictly proper part. The backward shift
σ : z−1

F[[z−1]]m −→ z−1
F[[z−1]]m is the linear operator defined by

σ(h) = π−(zh(z)).

Thus σ acts on strictly proper formal power series via

σ(
∞

∑
j=1

h jz
− j) =

∞

∑
j=1

h j+1z− j,

i.e., by shifting the sequence of coefficients backward. Note that z−1
F[[z−1]]m

becomes an F[z]-module by defining, for polynomials p(z) ∈ F[z], the module
operation as

p(z) ·h := p(σ)h = π−(p(z)h(z)). (3.30)

With this module structure at hand, the backward shift σ becomes a module
homomorphism on z−1

F[[z−1]]m. More generally, for every nonsingular polynomial
matrix D(z) ∈ F[z]m×m and h(z) ∈ z−1

F[[z−1]]m, the Toeplitz operator

D(σ) : z−1
F[[z−1]]m −→ z−1

F[[z−1]]m,

D(σ)h = π−(D(z)h(z))

is a module homomorphism. In particular, the kernel Ker D(σ) and the image
Im D(σ) are σ -invariant and, therefore, are submodules of z−1

F[[z−1]]m.
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Definition 3.31. Let D(z) ∈ F[z]m×m be nonsingular. The backward-shift-invariant
subspace

XD = KerD(σ)⊂ z−1
F[[z−1]]m, (3.31)

endowed with the induced F[z]-module structure (3.30), is called a rational model.
The restricted shift is the module homomorphism SD : XD −→ XD defined by

SD = σ |XD.

In the behavioral systems theory literature, for example Polderman and Willems
(1997), rational models are also referred to as autonomous behaviors. In fact, there
is an interesting interpretation of rational models as solution spaces of higher-order
matrix difference equations. Consider a matrix difference equation on F

m

Drξt+r +Dr−1ξt+r−1 + · · ·+D0ξt = 0, t ∈ N0, (3.32)

defined by a nonsingular polynomial matrix

D(z) = D0 +D1z+ · · ·+Drz
r ∈ F[z]m×m.

By identifying the solutions (ξt)t≥0 in F
m of (3.32) with the formal power series

h(z) = ∑∞
j=0 ξ jz− j−1 we see that (3.32) is equivalent to the equation

D(σ)h = 0

in z−1
F[[z−1]]m. Therefore, the rational model XD can be identified with the solution

space of the difference equation (3.32).
Returning to the discussion of the autonomous linear system

xt+1 = Axt ,

it is perhaps useful to emphasize the connection between spectral decompositions
of matrices and and factorizations of polynomial matrices. Suppose one wants to
decompose this system into a direct sum of subsystems. If d(z)= det(zI−A) denotes
the characteristic polynomial and if d(z) = d1(z)d2(z) is a factorization into coprime
factors, then d(z) = d1(z)d2(z) induces an essentially unique factorization

zI−A = S2(z)S1(z) = S1(z)S2(z)

by nonsingular matrix polynomials Si(z),Si(z), with di(z) = detSi(z) = detSi(z).
These factorizations imply the direct sum decomposition of the rational model space

XzI−A = KerS1(σ)⊕KerS2(σ). (3.33)
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One refers to (3.33) as a spectral decomposition. Of course, this is just the
dynamical systems representation of the spectral decomposition of the state space

F
n = X1(A)⊕X2(A), (3.34)

where Xi(A)=Kerdi(A), i= 1,2. Note that because Xi(A) are A-invariant subspaces,
then with respect to the direct sum decomposition (3.34), one obtains the block-
matrix representation

A =

(
A1 0
0 A2

)
.

As a matter of fact, the direct sum representations (3.33) and (3.34) are related
via the map φ : Fn −→ Ker(σ I−A)⊂ z−1

F[[z−1]], defined by φ(x) = (zI−A)−1x.
The map φ is an isomorphism satisfying φ(Ax) = σφ(x). Therefore, it follows that
φ(Xi(A)) = KerSi(σ) for i = 1,2.

Rational models are defined in (3.31) as kernels of special Toeplitz operators.
Thus a strictly proper power series h(z) ∈ z−1

F[[z−1]]m is an element of XD if and
only if D(z)h(z) is a vector polynomial. Rational models can also be characterized as
images of certain projections. For a nonsingular polynomial matrix D(z) ∈ F[z]m×m,
we define a projection map in z−1

F[[z−1]]m by

πD : z−1
F[[z−1]]m −→ XD

πDh = π−(D−1π+Dh), h ∈ z−1
F[[z−1]]m.

(3.35)

The next theorem examines rational models induced by a nonsingular polynomial
matrix D(z) and their relation to the corresponding polynomial model.

Theorem 3.32. Let D(z) ∈ F[z]m×m be nonsingular. Then:

1. The map πD, defined in (3.35), is a projection operator in z−1
F[[z−1]]m;

2. The rational model XD has the following image representation:

XD = Im πD;

3. The map

τD : XD −→ XD, f (z) �→D(z)−1 f (z)

is an isomorphism of F[z]-modules. In particular, XD is a finite-dimensional F-
vector space of dimension

dim XD = deg det D(z).
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Proof. 1. Let h(z) be in z−1
F[[z−1]]m; then

(πD)2h = πD(πDh)

= π−D−1π+Dπ−D−1π+Dh = π−D−1π+D(1−π+)D
−1π+Dh

= π−D−1π+DD−1π+Dh−π−D−1π+Dπ+D−1π+Dh

= πDh−π−D−1Dπ+D−1π+Dh = πDh.

Here, the fact that π−π+ = 0 was used.

2. Assume h∈ XD = KerD(σ); then Dh is a polynomial, which means Dh = π+dh.
Applying the map π−D−1 to both sides of the last equality, we obtain πDh = h,
i.e., XD⊂ ImπD. Conversely, assume h(z)∈ ImπD, i.e., h= πDg for some g(z)∈
z−1

F[[z−1]]m. Since πD is a projection, it follows that πDh = (πD)2g = πDg = h.
Next, one computes

π−Dh = π−DπDh = π−Dπ−D−1π+Dh = π−DD−1π+Dh = π−π+Dh = 0.

This shows the inclusion ImπD ⊂ XD. Here, we used the fact that Kerπ− is
invariant under multiplication by D(z) and that π−π+ = 0.

3. Clearly, h∈ XD = KerD(σ) if and only if D(z)h(z) is a polynomial. Since h(z) is
assumed to be strictly proper, this shows that f ∈ XD if and only if D(z)−1 f (z) ∈
XD. Thus the linear map τ is bijective. From

τD(πD(zf (z))) = π−(zD(z)−1 f (z)) = σ(D(z)−1 f (z))

we conclude that τ is F[z]-linear and, therefore, a module isomorphism.
�

Let us note the following simple corollary of the characterization of elements of
a polynomial model that was given in Theorem 3.4.

Lemma 3.33. Let D1(z),D2(z) ∈ F[z]m×m be nonsingular polynomial matrices. If
D2(z)−1D1(z) is biproper, i.e., an invertible element of F[[z−1]]m×m, then XD1 and
XD2 are equal as sets, though they may have different module structures.

Proof. Let f (z) ∈ XD1 . Then D−1
2 f = (D−1

2 D1)D
−1
1 f is strictly proper as a product

of the biproper D2(z)−1D1(z) and the strictly proper D−1
1 f , i.e., f ∈ XD2 . The result

follows by symmetry, and we note also that D1(z)−1D2(z) is proper. �
In the same way as for polynomial models, there exists an intertwining-map

characterization of homomorphisms of rational models. Let D1(z) ∈ F[z]m×m and
D2(z) ∈ F[z]p×p be nonsingular, and let τi : XDi −→ XDi denote the module
isomorphism defined by f (z) �→ Di(z)−1 f (z). Then a map Z : XD1 −→ XD2 is an
F[z]-homomorphism if and only if the transformed map (τ2)

−1◦Z ◦τ1 : XD1 −→XD2

is a module homomorphism. Moreover, Z is injective (surjective) if and only if
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(τ2)
−1 ◦Z ◦ τ1 is injective (surjective). Therefore,

τ−1
2 ◦Z ◦ τ1( f ) = πD2(N2 f ), f ∈ XD1

for all polynomial matrices N1(z),N2(z) satisfying N2(z)D1(z) = D2(z)N1(z).
Hence, for each strictly proper h(z) = D1(z)−1 f (z) ∈ XD1 , we conclude that

Z(h) = D−1
2 πD2(N2 f ) = π−(D−1

2 N2 f ) = π−(N1h).

This proves the following result.

Theorem 3.34. Let D1(z) ∈ F[z]m×m and D2(z) ∈ F[z]p×p be nonsingular. A map
Z : XD1 −→ XD2 is an F[z]-homomorphism if and only if there exist N1(z),N2(z) ∈
F[z]p×m such that

N2(z)D1(z) = D2(z)N1(z)

and

Zh = π−(N1h) = N1(σ)h, h ∈ XD1 . (3.36)

The homomorphism (3.36) satisfies the following conditions:

1. KerZ = XF1 , where D1(z) = E1(z)F1(z) and F1(z) is a g.c.r.d. of D1(z) and N1(z);
2. ImZ = XF2 , where D2(z) = E2(z)F2(z) and E2(z) is a g.c.l.d. of D2(z) and N2(z);
3. Z is injective if and only if D1(z) and N1(z) are right coprime;
4. Z is surjective if and only if D2(z) and N2(z) are left coprime;
5. Z is invertible if and only if D1(z) and N1(z) are right coprime and D2(z) and

N2(z) are left coprime.

In contrast to the case of polynomials, the module z−1
F[[z−1]]m is not finitely

generated. This makes the analysis of submodules an interesting challenge because
such submodules can be either finitely generated or infinitely generated. The
algebraic classification of all submodules of z−1

F[[z−1]]m therefore becomes an
extremely difficult, if not impossible, task. The situation is much better if one
restricts oneself to rational models. In fact, using the module isomorphism between
rational models XD and polynomial models XD, results on submodules and homo-
morphisms of polynomial models in the context of rational model spaces can easily
be reinterpreted. The next result shows that the set of submodules of a rational
model, ordered by inclusion, forms a lattice.

Theorem 3.35. (a) Let D(z) be a nonsingular m× m polynomial matrix. The
submodules V of XD are exactly the subspaces of the form

V = XF ,

where E(z) and F(z) are nonsingular m×m polynomial matrices satisfying
D(z) = E(z)F(z).
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(b) Let XFi , i = 1, . . . ,s be submodules of XD corresponding to the factorizations

D(z) = Ei(z)Fi(z), i = 1, . . . ,s.

Then the following statements are true.

1. XF1 ⊂ XF2 if and only if there exists a nonsingular polynomial matrix L, with
F2(z) = L(z)F1(z).

2. The intersection of rational models is a rational model, i.e.,

XF1 ∩ ·· ·∩ XFs = XF∗ , (3.37)

where F∗(z) is the g.c.r.d. of the Fi(z).
3. The equality

⋂s
i=1 XFi = 0 is valid if and only if the Fi(z) are right coprime.

4. The sum of rational models is a rational model, i.e.,

XF1 + · · · +XFs = XF∗ , (3.38)

where F∗(z) is the l.c.l.m. of all the Fi(z).
5. Let D(z) have the factorizations D(z) = Ei(z)Fi(z) for i = 1, . . . ,s. Then

XD = XF1 + · · · +XFs

if and only if D(z) is the l.c.l.m. of F1(z), . . . ,Fs(z).
6. Let D(z) have the factorizations D(z) = Ei(z)Fi(z) for i = 1, . . . ,s. Then

XD = XF1⊕·· ·⊕XFs

if and only if D(z) is the l.c.l.m. of F1(z), . . . ,Fs(z) and the Fi(z) are mutually
right coprime.

Proof. Every submodule of XD is of the form EXF , where D(z) = E(z)F(z).
Therefore, the submodules of XD are D−1EXF = F−1XF = XF . This proves (a).

1. To prove the first claim in (b), note that XF1 ⊂XF2 is equivalent to E1XF1 ⊂E2XF2 .
By Theorem 3.14, this is equivalent to the existence of a nonsingular polynomial
matrix R, with E1 = E2R. But then E2RF1 = E1F1 = E2F2, which implies F2 =
RF1, as desired.

2. From equation (3.37) one obtains XF ⊂ XFi , i.e., F(z) is a common right
divisor of Fi(z), i = 1, . . . ,m. If F ′(z) is another common right divisor, then
XF ′ ⊂ ⋂s

i=1 XFi = XF . Thus F ′(z) is a right divisor of F(z) and this implies that
F(z) is the g.c.r.d. of F1(z), . . . ,Fs(z). This proves statement 2.

3. Statement 2 obviously implies statement 3.
4. Similarly, (3.38) implies XFi ⊂ XF , i.e., F(z) = Li(z)Fi(z) for all i. Thus F(z)

is a common left multiple of F1(z), . . . ,Fs(z). If F ′(z) is another common left
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multiple, then XF = XF1 + · · ·+XFs ⊂ XF ′ . But this implies that F ′(z) is a left
multiple of F(z). Therefore, F(z) is a l.c.l.m.

5. XD = XF1 + · · · +XFs is satisfied if and only if XD = XF∗ , i.e., if and only if D
is a l.c.l.m. of F1, . . . ,Fs.

6. Follows trivially from the previous claims. �
The proofs of Theorems 3.35 and 3.14 are independent of each other. In fact, the

two results are equivalent, and therefore each version can be deduced from the other.
For example, the coprimeness condition for the direct sum decomposition (6), stat-
ing that D is the l.c.l.m. of the mutually right coprime polynomials F1(z), . . . ,Fs(z),
is equivalent to left coprimeness of E1(z), . . . ,Es(z) and mutual right coprimeness
of F1(z), . . . ,Fs(z).

From these structural properties of rational model spaces one obtains an impor-
tant abstract characterization of rational models XD.

Theorem 3.36. A subset M ⊂ z−1
F[[z−1]]m is a finitely generated torsion submod-

ule if and only if there exists a nonsingular D(z)∈ F[z]m×m such that M =KerD(σ).

Proof. The property of being a finitely generated torsion module is invariant under
module isomorphisms. Since the polynomial model XD � F[z]m/D(z)F[z]m is a
finitely generated torsion module, so is XD. Conversely, assume M ⊂ z−1

F[[z−1]]m

is a finitely generated torsion submodule. Then there exists a nonzero polynomial
d(z) for which M ⊂ Kerd(σ) = XdIm . Thus M is a submodule of the rational model
XdIm . Theorem 3.35 implies M = XF for a nonsingular polynomial m×m matrix
F(z). This completes the proof. �

Since rational models XD are simply the solution spaces Ker D(σ)) of the higher-
order difference equations D(σ)h= 0, one obtains a Galois correspondence between
nonsingular polynomial matrices and solution spaces of difference equations.

Theorem 3.37. Let Di(z) ∈ F[z]m×m, i = 1, . . . ,s be nonsingular polynomial matri-
ces. Then:

1. Ker D1(σ) ⊂ Ker D2(σ) if and only if D2(z) = L(z)D1(z) for a polynomial
matrix L(z);

2. The intersection of solution spaces is

Ker D1(σ) ∩ ·· · ∩ Ker Ds(σ) = Ker D∗(σ),

where D∗(z) is the g.c.r.d. of D1(z), . . . ,Ds(z);
3. The sum of solution spaces is

Ker D1(σ) + · · · + Ker Ds(σ) = Ker D∗(σ),

where D∗(z) is the l.c.l.m. of D1(z), . . . ,Ds(z). �
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3.6 Duality

Finally, the issue of how to describe the dual vector space of polynomial and rational
model spaces will be briefly addressed. This involves polynomial model duality
theory as applied to geometric control, an interesting subject that will be treated in
Chapter 6. For further details, see Fuhrmann (1981, 2006).

A dual pairing on F((z−1))m×F((z−1))m is introduced by defining, for truncated
Laurent series f (z) = ∑∞

j=−∞ f jz j and h(z) = ∑∞
j=−∞ h jz j ∈ F((z−1))m,

[ f ,h] := ( f (z)�h(z))−1 =
∞

∑
j=−∞

f�j h− j−1. (3.39)

It is clear that [·, ·] is a well-defined bilinear form on F((z−1))m×F((z−1))m, because
in the defining sum at most a finite number of terms are nonzero. By restriction,

one obtains a bilinear dual pairing on pairs of polynomials f (z) = ∑
Nf
j=0 f jz j and

strictly proper Laurent series h(z) = ∑∞
j=1 h jz− j via

[·, ·] : F[z]m× z−1
F[[z−1]]m −→ F,

[ f ,h] =
∞

∑
j=0

f�j h j+1.

This bilinear form is nondegenerate in the sense that

(a) [ f ,h] = 0 for all h(z) ∈ z−1
F[[z−1]]m if and only if f (z) = 0;

(b) [ f ,h] = 0 for all f (z) ∈ F[z]m if and only if h(z) = 0.

For subsets M ⊂ z−1
F[[z−1]]m and Q⊂ F[z]m, one defines

M⊥ = { f ∈ F[z]m | [ f ,h] = 0 ∀h ∈M},
⊥Q = {h ∈ z−1

F[[z−1]]m | [ f ,h] = 0 ∀ f ∈M}.

A few elementary properties of these spaces are readily established. Let Q ⊂
F[z]m and M ⊂ z−1

F[[z−1]]m be submodules of F[z]m and z−1
F[[z−1]]m, respectively.

Then ⊥Q ⊂ z−1
F[[z−1]]m and M⊥ ⊂ F[z]m are submodules, too. To prove this, note

that the equality [z f ,h] = [ f ,σh] is valid for all f ∈ F[z]m and h ∈ z−1
F[[z−1]]m. Let

now f ∈Q and h ∈ ⊥Q; it follows that

0 = [zf ,h] = [ f ,σh].

This shows that if Q ⊂ F[z]m is a submodule, then ⊥Q is a submodule of
z−1

F[[z−1]]m. The other claim follows similarly.
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For F-vector spaces V , let V ∗ denote the algebraic dual space, i.e.,

V ∗ = {λ : V −→ F | λ linear}.

Note that if V is an F[z]-module, then V ∗ is also an F[z]-module, with the module
structure defined by

(p ·λ )(x) := λ (p · x), x ∈ V , p(z) ∈ F[z].

The following result is an algebraic version of the Riesz representation theorem. It
shows that there is a canonical module isomorphism between the polynomial and
rational models XD and XD� .

Theorem 3.38. 1. Let Q⊂ F[z]m be a submodule. The map

L : ⊥Q−→ (F[z]m/Q)∗ , L(h) f = [ f ,h] (3.40)

is an isomorphism of F[z]-modules. In particular, the following important duality
relation is obtained:

(F[z]m)∗ = z−1
F[[z−1]]m. (3.41)

2. For every nonsingular polynomial matrix D(z)∈F[z]m×m, the space ⊥(D(z)F[z]m)

is equal to the rational model XD� , i.e.,

⊥(D(z)F[z]m) = XD� .

3. There is a canonical module isomorphism

L : XD� −→ X∗D, L(h) f = [ f ,h]. (3.42)

4. Assuming T (z) ∈ F[z]m×m is nonsingular with T (z)−1 proper rational implies the
following direct sum decomposition of F-vector spaces:

z−1
F[[z−1]]m = XT ⊕ΠT , (3.43)

where

ΠT := {h(z) ∈ z−1
F[[z−1]]m | T (z)h(z) ∈ z−1

F[[z−1]]m}= KerπT . (3.44)

Proof. 1. For each h ∈ ⊥Q, the map (3.40) is well defined, F-linear, and injective.
Consider a linear functional λ : F[z]m −→ F that vanishes on Q. For each j ≥ 0
define vectors h j+1 ∈F

m whose ith component is λ (z jei), i= 1, . . . ,m. Let h(z) =
∑∞

j=1 h jz− j. Then, for a polynomial f (z) ∈ F[z]m, the equality [ f ,h] = λ ( f )
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follows. Thus (3.40) is surjective and, therefore, a vector space isomorphism.
Since L(σh) f = [z f (z),h], the map (3.40) is F[z]-linear. This proves the claim.

2. A strictly proper power series h ∈ z−1
F[[z−1]]m satisfies h ∈⊥ (D(z)F[z]m) if

and only if [D(z) f (z),h(z)] = 0 for all f (z) ∈ F[z]m. Since [D(z) f (z),h(z)] =

[ f (z),D(σ)h], this is equivalent to h ∈ XD� .
3. For Q = D(z)F[z]m, the map L in (3.40) yields a module isomorphism

XD� = ⊥(D(z)F[z]m)� (F[z]m/D(z)F[z]m)� X∗D.

Explicitly, the module isomorphism is given as

L : XD� −→ (XD)
∗ , L(h) f = [h, f ].

4. The inclusion ΠT ⊂ KerπT is obvious. To prove the converse inclusion, assume
h(z) ∈ KerπT ⊂ z−1

F[[z−1]]m, that is, π−(T−1π+(Th)) = 0. Applying T to both
sides, this implies πT π+Th = 0, and hence, for some h′(z) ∈ z−1

F[[z−1]]m and
g(z) ∈ F[z]m, one obtains T g = Th− h′. From this g(z) = h(z)− T (z)−1h′(z)
follows, and hence, under our assumption that T (z) is nonsingular and properly
invertible, we conclude that T (z)−1h′(z) and, therefore, g(z) are strictly proper.
Thus, g(z) = 0, h(z) = T (z)−1h′(z) ∈ ΠT , and the equality KerπT = ΠT

follows. The direct sum decomposition (3.43) results from the decomposition
z−1

F[[z−1]]m = ImπT ⊕KerπT . �
Using the module isomorphism XD −→ XD, f �→ D−1 f , it follows from Theo-

rem 3.38 that the F-linear maps

L : XD −→ F
k

are of the form

Lf = (P(z)D(z)−1 f (z))−1

for unique polynomial matrices P(z) ∈ F
k×m. This proves the following explicit

characterizations of the dual spaces XD and (XD)∗.

Theorem 3.39. 1. Every F-linear function L : XD −→ F
k can be represented as

Lf = (P(z)D(z)−1 f (z))−1

for a unique polynomial matrix P(z) ∈ F[z]k×m.
2. Every F-linear function L : XD −→ F

k can be represented as

Lh = (P(z)h(z))−1, h ∈ XD

for a unique polynomial matrix P(z) ∈ F[z]k×m. �
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There is an alternative way to treat duality, solely in the context of polynomial
models. The key to this is the canonical isomorphism between polynomial and
rational model spaces, defined as

τD : XD −→ XD, τD( f ) = D(z)−1 f (z).

Thus, instead of identifying the dual of XD with the rational model XD� , as in
Theorem 3.38, one can use XD� as the dual space. This approach will prove
particularly useful in Chapter 5 when we analyze tensor product representations of
F[z]-linear homomorphisms. Thus, a new bilinear pairing on XD×XD� is defined by

< f ,g >= [D−1 f ,g] = [ f ,D−�g] =
(

f (z)�D�(z)−1g(z)
)

−1
(3.45)

for all f ∈ XD and g ∈ XD� .

Theorem 3.40. Let D(z) ∈ F[z]m×m be nonsingular. Then the duality pairing (3.45)
on XD×XD� satisfies the following properties:

1. The dual space X∗D of XD can be identified, via (3.45), with XD� . Thus

X∗D = XD� ,

and moreover the dual S∗D of the shift SD is

S∗D = SD� ; (3.46)

2. Let M = EXF ⊂ XD be a submodule, defined by some factorization D(z) =
E(z)F(z) in nonsingular polynomial factors. Then

M⊥ := {g ∈ XD� | < f ,g >= 0 for all f ∈ XD} (3.47)

is a submodule of XD� and is equal to

(EXF)
� = F�XE� .

Proof. By combining the isomorphism XD� −→ XD� ,g �→ D−�g, with the isomor-

phism XD� −→ X∗D defined in (3.42), one concludes that φ : XD� −→ X∗D

φ(g)( f ) = [ f ,D−�g] =< f ,g >

defines a module isomorphism. Therefore, <,> is a nondegenerate pairing on XD×
XD� . Computing
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< SD f ,g >= [D−1SD f ,g] = [D−1πD(zf ),g] = [π−(zD−1 f ),g]

= [zD−1 f ,g] = [D−1 f ,zg] = [D−1 f ,πD�(zg)]

=< f ,SD�g >,

(3.46) follows.
That M⊥, defined in (3.47), is a submodule follows from (3.46). Assume now g∈

(EXF)
⊥, which implies that 0=< f ,g>= [D−1Ef 1,g] = [F−1 f1,g] = [ f1,F−�g] for

all f = Ef 1 ∈ EXF . Clearly, for all f1 = Ff ′ ∈ F(z)F[z]m one obtains [Ff ′,F−�g] =
[F−1Ff ′,g] = 0. Using the direct sum decomposition F[z]m = XF ⊕ F(z)F[z]m, it
follows that [ f ′,F−�g] = 0 for all f ′ ∈ F[z]m, i.e., g ∈ F�(z)F[z]m. In addition, g ∈
XD� implies that D−�g= D−�F�g1 = E−�g1 is strictly proper, which implies g1 ∈
XE� and g ∈ F�XE� . Thus the inclusion (EXF)

⊥ ⊂ F�XE� follows.
Conversely, if f = Ef 1 ∈ EXF and g = F�g1 ∈ F�XE� , then

< f ,g >= [D−1Ef 1,F
�g1] = [FD−1Ef 1,g1] = [ f1,g1] = 0.

This shows that F�XE� ⊂ (EXF)
⊥. This completes the proof. �

3.7 The Matrix Chinese Remainder Theorem

In Theorems 3.19 and 3.35, direct sum representations of polynomial and rational
model spaces were analyzed. Having analyzed module isomorphisms in Section 3.3,
we will now explain how a vector of polynomials or rational functions can be
decomposed with respect to such a direct sum representation. This is directly related
to a matrix version of the Chinese remainder theorem and interpolation theory. Note
that in the proof of the subsequent theorem, coprimeness is used in two distinctive
ways. One is geometrical, related to direct sum representations, the other is spectral
and relates to the inversion of polynomial model homomorphisms.

Proposition 3.41. Let E1(z), . . . ,Es(z) ∈ F[z]m×m be mutually left coprime and
nonsingular. Define

D(z) = l.c.r.m.{E j(z)}s
1

Fi(z) = l.c.r.m.{E j(z)} j �=i.
(3.48)

Then:

1. There exist right factors Fi(z) ∈ F[z]m×m of D(z) = Ei(z)Fi(z);
2. For i = 1, . . . ,s, Ei,Fi are left coprime and

D(z) = l.c.r.m.{Ei(z),Fi(z)}; (3.49)
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3. There exist right factors Ei(z) ∈ F[z]m×m of D(z) = Fi(z)Ei(z);
4. For i = 1, . . . ,s, Fi(z),Ei(z) are right coprime;
5. The polynomial model XD has the following direct sum representation:

XD = F1XE1
⊕·· ·⊕FsXEs

; (3.50)

6. Let

(
Y i(z) Xi(z)
−Fi(z) Ei(z)

)(
Ei(z) −Xi(z)
Fi(z) Yi(z)

)
=

(
I 0
0 I

)
,

(
Ei(z) −Xi(z)
Fi(z) Yi(z)

)(
Y i(z) Xi(z)
−Fi(z) Ei(z)

)
=

(
I 0
0 I

) (3.51)

be a doubly coprime embedding of the intertwining relation

Ei(z)Fi(z) = Fi(z)Ei(z), (3.52)

with Ei(z),Fi(z) left coprime and Fi(z),Ei(z) right coprime. Define a map Zi :
XEi

−→ XEi by letting, for fi ∈ XEi
, Zi fi = πEiFi fi. Then Zi is an invertible map

and its inverse is given by Z−1 : XEi −→ XEi
, defined by fi = Z−1

i gi = πEi
Xigi.

Proof. Statements 1–4 follow from the definition of D(z).
5. The assumption that the Ei(z) are mutually left coprime implies that the E�i

are mutually right coprime. By Theorem 3.35, we have the direct sum representation
XD� =

⊕s
i=1 XE�i or, equivalently, that XD� =

⊕s
i=1 F�i XE�i

. By duality considera-
tions, we obtain (3.50).

6. The existence of the unimodular embedding (3.51) follows from the coprime-
ness conditions. The invertibility of the Zi follows from Theorem 3.21. �
Theorem 3.42 (Chinese Remainder Theorem). Let E1(z), . . . ,Es(z)∈ F[z]m×m be
mutually left coprime, nonsingular polynomial matrices, and let g j(z) ∈ XE j be
polynomial vectors. Then there exists a polynomial vector f (z) for which

g j = πE j f , j = 1, . . . ,s.

The polynomial vector f (z) is unique if it is assumed that f (z) ∈ XD, where D(z) is
defined by (3.49).

Proof. For f (z) ∈ XD there is a unique representation f (z) =∑s
j=1 F j f j with respect

to the direct sum (3.50). Applying the projection πEi and noting that, for j �= i, Ei is
a left factor of F j, one obtains

gi = πEi f = πEi

s

∑
j=1

F j f j = πEiFi fi = Zi fi ∈ XEi .
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By inverting the maps Zi, as in Proposition 3.41, the existence of f (z) is proved.
To prove uniqueness, assume f (z),g(z) ∈ XD and πE j f = πE j g for

j = 1, . . . ,s. This implies

f (z)− g(z) ∈
s⋂

j=1

KerπEμ j
=

s⋂

j=1

Eμ jF[z]
m = DF[z]m.

Thus f (z)− g(z) ∈ XD∩DF[z]m = {0}, which proves uniqueness. �
As a direct consequence of Theorem 3.42, we can state a polynomial matrix

version of the Chinese remainder theorem. It should be emphasized that for s = 1
the result is a consequence of Theorem 2.31.

Theorem 3.43. 1. Let Ei(z) ∈ F[z]m×m, i = 1, . . . ,s, be nonsingular and mutually
left coprime, and let D(z) be their l.c.r.m. Then, for polynomial matrices
Ai(z) ∈ F[z]m×n, i = 1, . . . ,s, such that Ei(z)−1Ai(z) is strictly proper, there exist
polynomial matrices A(z) and Bi(z) in F[z]m×n such that

A(z) = Ai(z)+Ei(z)Bi(z) i = 1, . . . ,s.

A(z) is uniquely determined if one requires D(z)−1A(z) to be strictly proper.
2. Let Fi(z) ∈ F[z]m×m, i = 1, . . . ,s, be nonsingular and mutually right coprime,

and let D(z) be their l.c.l.m. Then, for polynomial matrices Ai(z) ∈ F[z]n×m, i =
1, . . . ,s, such that Ai(z)Fi(z)−1 is strictly proper, there exist polynomial matrices
A(z) and Bi(z) ∈ F[z]m×n such that

A(z) = Ai(z)+Bi(z)Fi(z) i = 1, . . . ,s.

A(z) is uniquely determined if it is required that A(z)D(z)−1 be strictly proper.

Proof. Clearly, it suffices to prove the first claim of the theorem in the special case
of n = 1. However, this is the content of Theorem 3.42. The second claim is proved
in the same way. �

3.8 Toeplitz Operators

We present a brief study of the class of Toeplitz operators induced by rational
symbols, a class that lends itself to an elegant algebraic treatment. It will become
apparent, at a later stage in the study of feedback control, how important this class
of operators is for the study of linear systems.
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Our point of departure is the infinite system of linear discrete convolution type
equations given by

∞

∑
j=0

Ai− jξ j = ηi i ∈N. (3.53)

We assume that the coefficients are p×m matrices with entries from a field F and
that ξ j ∈ F

m and ηi ∈ F
p. Furthermore, it is assumed that the matrices Ai are the

coefficients of an expansion of a rational function as a truncated Laurent series

A(z) =
na

∑
i=−∞

Aiz
i ∈ F((z−1))p×m.

This implies that if the sequence (ξi) has only a finite number of nonzero terms, then
the same is true of the sequence (ηi). This allows us to interpret system (3.53) in
functional terms. If the sequences (ξ j) and (η j) are identified with the polynomials
x(z) = ∑ j ξ jz j ∈ F[z]m and y(z) = ∑ j η jz j ∈ F[z]p, respectively, then one can
rewrite (3.53) as

y = TAx = π+(Ax), x ∈ F[z]m,

where

TA : F[z]m −→ F[z]p, TAx = π+(Ax) (3.54)

denotes the Toeplitz operator with symbol A(z) ∈ F((z−1))p×m. The reason for
this terminology stems from the fact that the matrix representation of (3.54) with
respect to the standard basis Bst = {zie j} of polynomials is a Toeplitz matrix. For
example, if A(z) = ∑0

j=−∞ A jz j, then the matrix representation of TA is the infinite
block upper-triangular Toeplitz matrix

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0 A−1 . . . A−N 0 . . .

0 A0 A−1 . . . A−N
. . .

...
. . .

. . .
. . .

. . .

0 . . . 0 A0 A−1 . . .
. . .

. . .
. . .

. . .

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

with constant entries along the diagonals. Alternatively, a Toeplitz operator TA on
strictly proper power series is defined by

TA : z−1
F[[z−1]]m −→ z−1

F[[z−1]]p,

TAh = π−(Ah), h(z) ∈ z−1
F[[z−1]]m.

(3.55)



130 3 Functional Models and Shift Spaces

In the sequel, we will mainly work with the Toeplitz operator TA, defined on spaces
of polynomials, rather than with the Toeplitz operator TA, which is defined on
spaces of strictly proper Laurent series.

Note that for polynomials x(z) ∈ F[z]m, the Toeplitz operator TA satisfies

TA(zx) = zTA(x)+ (Ax)−1.

Due to the presence of the residue term (Ax)−1, the Toeplitz operator is not an
F[z]-module homomorphism. Probably the main difficulty in the study of Toeplitz
maps in our context is the fact that F[z]m is not a module over the ring of (matrix)
truncated Laurent series; hence, in general, the maps TAB and TATB are different.
This means that the set of Toeplitz maps does not have a simple algebraic structure.
Still, something can be recovered owing to the fact that F[z]m is a module over the
rings F[z]m×m and z−1

F[[z−1]]p is a module over the ring z−1
F[[z−1]]p×p.

Recall that a unimodular matrix U(z) ∈ F[z]m×m defines an invertible element
in GLm(F[z]). Similarly, every biproper function Γ (z) ∈ F[[z−1]]m×m, i.e., every
proper formal power series in z−1 whose inverse is again a proper power series in
z−1, defines an invertible element in GLm(F[[z−1]]). Note that Γ (z) = ∑∞

i=0 Γiz−i is
invertible if and only if Γ0 is invertible.

Lemma 3.44. Let A(z) ∈ F((z−1))m×m, P(z) ∈ F[z]m×m, and Γ (z) ∈ F[[z−1]]m×m.
Then:

(a) The Toeplitz operator TΓ AP factors as

TΓ AP = TΓ TATP;

(b) Assume U(z) ∈ F[z]m×m is unimodular, and Γ (z) ∈ F[[z−1]]m×m is biproper.
The Toeplitz operators TU and TΓ are invertible with inverses T−1

U = TU−1 and
T−1
Γ = TΓ−1 . Therefore, TA is invertible if and only if TΓ AU is.

Proof. (a). The module F[z]m is invariant under multiplication by polynomial
matrices, whereas Kerπ+ = z−1

F[[z−1]]m is invariant under multiplication by
F[[z−1]]m×m elements. Thus for f ∈ F[z]m one obtains

TΓ TATP f = π+Γπ+Aπ+P f = π+Γπ+APf = π+Γ APf = TΓ AP f .

(b). Part (a) implies that, for unimodular matrices U(z),V (z) ∈ F[z]m×m and
biproper matrices Γ (z),Γ (z) ∈ F[[z−1]]m×m, respectively, the identities TUV =
TU TV and TΓΓ = TΓ TΓ are satisfied. Since TI = Id acts as the identity map, this
implies that TU and TΓ are invertible with inverses T−1

U = TU−1 and T−1
Γ = TΓ−1 ,

and the result follows. �
The previous simple, yet important, lemma indicates how Wiener–Hopf factor-

ization theory is related to the problem of Toeplitz operator inversion. As a starting
point, one attempts to simplify the problem of inversion through the reduction
of A(z) to some simple canonical form using the group of left multiplication
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by biproper functions and right multiplication by unimodular functions, a group
operation introduced in Subsection 2.7. Clearly, if a symbol G(z) ∈ F((z−1))m×m

is singular, then the Toeplitz operator TG has an infinite-dimensional kernel or
cokernel. Recall that the cokernel, coker f , of a linear map f : X −→Y is defined as
the quotient vector space Y/ Im f . The case of interest for us is that of a nonsingular
square rational G(z) ∈ F(z)m×m. In this case, there exists a coprime factorization
G(z) = D(z)−1E(z), with D(z) and E(z) square, nonsingular polynomial matrices.
The following result is well known.

Proposition 3.45. Let G(z) ∈ F(z)m×m be a nonsingular, rational matrix function,
and assume

G(z) = G−(z)Δ(z)G+(z)

is a left Wiener–Hopf factorization, with Δ(z) = diag(zμ1 , . . . ,zμm) and μ1 ≥ ·· · ≥
μm. Then:

1. For the Toeplitz operator TG one has the following dimension formulas:

dimKerTG =− ∑
μi<0

μi,

dimcokerTG = codimImTG = ∑
μi>0

μi;

2. The Toeplitz operator TG is invertible if and only if all left Wiener–Hopf
factorization indices, with Δ(z) = diag(zμ1 , . . . ,zμm), are zero, i.e., μ1 = · · · =
μm = 0. In this case, the factorization G(z) = G−(z)G+(z) leads to the inversion
formula

T−1
G f = G−1

+ π+(G
−1
− f ), f ∈ F[z]m.

Proof. 1. In view of Lemma 3.44, it suffices to examine the invertibility of Toeplitz
operators with the symbol Δ(z) = diag(zμ1 , . . . ,zμm). By the diagonality of Δ(z),
TΔ is the direct sum of Toeplitz operators of the form Tzκ , and it suffices to study
those. If κ ≥ 0, then f ∈ F[z] implies Tzκ = zκ f (z), and so Tzκ is injective with
a κ-dimensional complementary subspace, say, that of all polynomials of degree
< κ . Thus codimTzκ = k. If κ ≤ 0, then Tzκ is surjective, with KerTzκ = { f ∈
F[z] | deg f < κ}. So dimKerTzκ = κ , and one concludes that the invertibility of
TΔ implies that all κ j are zero. The converse is trivial.

2. If TG is invertible, then KerTG = {0} and ImTG = F[z]m, which implies that
all left Wiener–Hopf factorization indices are zero. Conversely, assume that all
left Wiener–Hopf factorization indices are zero, which implies the factorization
G(z) = G−(z)G+(z). Checking now, for f ∈ F[z]m,

G−1
+ π+G−1

− π+G−G+ f = G−1
+ π+G−1

− G−G+ f = G−1
+ π+G+ f = f ,
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and, similarly,

π+G−G+G−1
+ π+G−1

− f = π+G−π+G−1
− f = π+G−G−1

− f = f .

In both computations, the invariance of Kerπ+ under multiplication by proper
functions was used.

�
Corollary 3.46. Let G(z) be an m×m nonsingular rational matrix function. Then
the Toeplitz operator TG : F[z]m −→ F[z]m is injective if and only if the Toeplitz
operator TG−� : F[z]m −→ F[z]m is surjective.

Proof. TG is injective if and only if all left Wiener–Hopf indices μ1 ≥ . . . ≥ μm of
G(z) are nonnegative. The left Wiener–Hopf indices of G(z)−� are equal to −μm

≥ . . .≥−μ1. By Proposition 3.45, the cokernel of TG−� has dimension equal to the
sum of the positive left Wiener–Hopf indices of G(z)−�, which is zero since μi ≥ 0
for all i. This completes the proof. �

As far as subsequent applications to linear systems theory are concerned,
Toeplitz-induced operators, defined on quotient spaces of F[z]m and, consequently,
on polynomial models, play a most important role, for example, in state feedback
and observer theory. Hence, these Toeplitz operators deserve special attention. We
focus on the special situation where the symbol G(z) of the Toeplitz operator
is a nonsingular rational function, or, equivalently, G(z) is the quotient of two
nonsingular polynomial matrices.

Theorem 3.47. Let D(z),E(z) ∈ F[z]m×m be nonsingular, and let TDE−1 : F[z]m −→
F[z]m be the Toeplitz operator with symbol D(z)E(z)−1. Define a Toeplitz induced
operator by

T DE−1 : F[z]m/E(z)F[z]m −→ F[z]m/D(z)F[z]m

T DE−1 [ f ]E = [TDE−1 f ]D.
(3.56)

Then:

1. The induced operator T DE−1 is well defined;
2. T DE−1 is injective if and only if TDE−1 is;
3. T DE−1 is surjective if and only if TDE−1 is;
4. Operator (3.56) and the operator πDTDE−1 : XE −→ XD are equivalent. Using the

invertible maps πE :F[z]m/E(z)F[z]m−→XE, defined by πE [ f ]E = πE f , and πD :
F[z]m/D(z)F[z]m −→ XD, defined by πD[ f ]D = πD f , the equivalence is given by

(πDTDE−1)πE = πDT DE−1 . (3.57)
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Proof. 1. Assume [ f2]E = [ f1]E , i.e., f1(z) and f2(z) are two representatives of
the same equivalence class in F[z]m/E(z)F[z]m. This assumption implies f2(z)−
f1(z) = E(z)g(z) for some g(z) ∈ F[z]m. Computing

T DE−1([ f2]E − [ f1]E) = [π+DE−1( f2− f1)]D = [π+DE−1Eg]D = [Dg]D = 0

shows that T DE−1 is well defined.
2. Assume TDE−1 is injective. Let [ f ]E ∈ KerT DE−1 ⊂ F[z]m/EF[z]m. This means

that TDE−1 f ∈ DF[z]m, or, for some g(z) ∈ F[z]m,

TDE−1 f = Dg = DE−1Eg = π+DE−1Eg = TDE−1(Eg).

Thus TDE−1( f −Eg) = 0. Since TDE−1 is assumed to be injective, it follows that
f = Eg and, hence, [ f ]E = 0. Conversely, assume T DE−1 is injective. Let f ∈
KerTDE−1 , which implies T DE−1 [ f ]E = [TDE−1 f ]D = 0. Since T DE−1 is assumed
to be injective, it follows that f = Eg and, hence, TDE−1Eg = Dg = 0, implying
that g = 0 and, hence, that f = 0.

3. Assume TDE−1 is surjective. Let [g]D ∈ F[z]m/D(z)F[z]m. Since TDE−1 is surjec-
tive, there exists an f ∈ F[z]m such that TDE−1 f = g. This implies T DE−1 [ f ]E =
[TDE−1 f ]D = [g]D, i.e., T DE−1 is surjective. Conversely, assume T DE−1 is sur-
jective. Let g(z) ∈ F[z]m; then there exists an f ∈ F[z]m such that T DE−1 [ f ]E =
[TDE−1 f ]D = [g]D. This implies that g− π+DE−1 f = Dg′ for some g′ ∈ F[z]m.
Rewriting this as g = π+DE−1 f +Dg′ = π+DE−1 f +DE−1Eg′ = π+DE−1( f +
Eg′) shows that TDE−1 is surjective.

4. The maps πE and πD are clearly well defined and invertible. The computation

(πDTDE−1)πE [ f ]E = πDπ+DE−1πE f = πDπ+DE−1Eπ−E−1 f
= πDπ+Dπ−E−1 f = πDπ+DE−1 f = πD[π+DE−1 f ]D
= πDT DE−1 [ f ]E

proves (3.57).
�

The preceding result shows that the Toeplitz operator TDE−1 , induced by a
rational, nonsingular matrix G(z) = D(z)E(z)−1, defines the Toeplitz induced
operator on polynomial model spaces

πDTDE−1 : XE −→ XD,

πDTDE−1( f ) = Dπ−
(
D−1π+(DE−1 f )

)
= DπD(E−1 f ).

The next proposition explores the connection between Toeplitz induced operators
and projections and how these transform under duality.
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Proposition 3.48. Let D(z),E(z) ∈ F[z]m×m be nonsingular. Then:

1. Let πD : z−1
F[[z−1]]p −→ z−1

F[[z−1]]p be the rational model projection defined
by (3.35), i.e., for h ∈ z−1

F[[z−1]]p, by πDh = π−D−1π+Dh. Then the following
diagram is commutative:

XE

XE

XD

XD

πDTDE−1 |XE

πD|XE

E−1 D−1

�

�

� �

2. The dual map (πD|XE)∗ : XD� −→ XE� is (πD|XE)∗ = πE�|XD� and, similarly,

(πDTDE−1 |XE)
∗ =TE−�D�|XD� . They satisfy the dual diagram

XE�

XE�

XD�

XD�

E−�D�|XD�

πE�|XD�

E� D�

�

�

� �

Proof. 1. Note that f (z) ∈ XE implies that E−1 f ∈ XE is strictly proper. Hence, one
computes

(D−1πDTDE−1) f = D−1Dπ−D−1π+DE−1 f = (πD|XE)(E−1 f ).

2. Computing, using the duality properties of Theorem 3.38, with f (z) ∈ XE and

h(z) ∈ XD� ,

[πDπ+DE−1 f ,h] = [Dπ−D−1π+DE−1 f ,h] = [ f ,E−T D�π−D−T π+D�h]

= [ f ,π−E−T D�πD�h] = [ f ,TE−T D̃πD�h].

Similarly, for f (z) ∈ XD� and h(z) ∈ XE , one computes

[πDh, f ] = [h,πD� f ] = [h, f ] = [πEh, f ] = [h,πE� f ]. �
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In Theorem 3.47, it was shown that the invertibility properties of the Toeplitz
operator TDE−1 : F[z]m −→ F[z]m are reflected by those of the induced operator
T DE−1 : F[z]m/EF[z]m −→ F[z]m/DF[z]m. However, the invertibility properties of
TDE−1 can be inferred directly from the Wiener–Hopf factorization indices of its
symbol.

Theorem 3.49. Let D(z),E(z) ∈ F[z]m×m be nonsingular. The following statements
are equivalent.

1. All left Wiener–Hopf factorization indices of D(z)E(z)−1 are nonnegative.
2. All left Wiener–Hopf factorization indices of D(z)−�E(z)� are nonpositive.
3. The Toeplitz operator TD−�E� : F[z]m −→ F[z]m is surjective.
4. The Toeplitz operator TDE−1 : F[z]m −→ F[z]m is injective.
5. T DE−1 : F[z]m/EF[z]m −→ F[z]m/DF[z]m is injective.
6. The induced Toeplitz map πDTDE−1 : XE −→ XD is injective.
7. The reduced projection operator πD : XE −→ XD is injective.
8. The reduced projection operator πE� : XD� −→ XE� is surjective.
9. The reduced projection operator πD : XE −→ XD is injective.

10. The equality XE ∩DF[z]m = {0} is true.
11. The codimension formula

codim(XD� ∩E(z)�F[z]m) = degdetE(z) (3.58)

is satisfied.

Proof. (1)⇔(2) Note that, for an invertible G(z), the left factorization indices of
G(z) are the right factorization indices of G�(z), which in turn are the negatives of
the left factorization indices of G−T (z).

(2)⇔ (3) Follows from Proposition 3.45.
(3)⇔ (4) The equivalence follows from Corollary 3.46.
(4)⇔ (5) Follows from Theorem 3.47.2.
(5)⇔ (6) Follows from Theorem 3.47.4.
(6)⇔ (7) Follows from Proposition 3.48.
(7) ⇔ (8) Follows by duality because the dual of the projection operator πE�

reduced to XD� is the projection πD reduced to XE .
(8)⇔ (9) Follows from the fact that Ker(πD|XE) = XE ∩DF[z]m.
(9)⇔ (10) Follows from the identity Ker(πD|XE) = XE ∩DF[z]m.
(8) ⇔ (11) Clearly, Ker(πE�|XD�) = XD� ∩ E�F[z]m. The identity dimX =

dimKerA+dimImA is valid for all linear transformations A on a finite-dimensional
vector space X . Hence, it follows that

dim(XD� ∩E�F[z]m) = dimXD� − dimIm(πE�|XD�).

Thus, if πE�|XD� is surjective, then dimIm(πE�‖XD�) = degdetE�(z). Hence,
degdetE�(z) = dimXD� − dimXD� ∩E�F[z]m = codim(XD� ∩E�F[z]m), i.e., the
codimension formula (3.58) is satisfied. The argument is clearly reversible. �
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Our attention turns now to a special, albeit important, case.

Proposition 3.50. Let D(z),E(z) ∈ F[z]m×m be nonsingular, with D(z)E(z)−1

biproper. Then:

1. The polynomial models XD� and XE� contain the same elements;
2. The Toeplitz operator TED−1 : F[z]m −→ F[z]m is invertible and induces an

invertible map T ED−1 : F[z]m/DF[z]m −→ F[z]m/EF[z]m defined by T ED−1 [ f ] =
[TED−1 f ];

3. The adjoint of T DE−1 : XE −→ XD, defined in (3.56), is T
∗
DE−1 : XD� −→ XE�

given, for f (z) ∈ XD� , by

T
∗
DE−1 f = f . (3.59)

Proof. 1. Clearly, D(z)E(z)−1 is biproper if and only if E(z)−�D�(z) is. Let f (z) ∈
XD� ; then D−� f is strictly proper and, hence, also E−�D�D−� f = E−� f is,
i.e., f (z) ∈ XE� . This shows that XD� ⊂ XE� . The opposite inclusion follows by
symmetry.

2. That TDE−1 is invertible is a special case of Lemma 3.44 or, alternatively, of
Proposition 3.45.

3. For f (z) ∈ XE and g(z) ∈ XD� , one computes

< T DE−1 f ,g >= [D−1πDπ+DE−1 f ,g] = [D−1Dπ−D−1π+DE−1 f ,g]

= [π−D−1π+DE−1 f ,g] = [E−1 f ,D�π−D−�g] = [E−1 f ,πD�g]

= [E−1 f ,g] =< f ,g >,

and (3.59) follows. �

3.9 Exercises

1. Let D(z) =

(
1 z+ z3

z 1− z

)
. Characterize all elements of XD, find a basis, and

obtain a corresponding matrix representation of the shift operator SD.
2. Let F be a field of characteristic zero, and assume that d(z) ∈ F[z] is a monic

polynomial of degree n, which is irreducible. Show

(a) Xd is a field extension of F of degree n;
(b) The trace form β : Xd×Xd −→ F

β ( f ,g) = trm(fg)

is a nondegenerate bilinear form, where m(a) : Xd −→ Xd denotes the
F-linear multiplication operator m(a)b = πd(ab), a,b ∈ Xd .
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3. Show that a nonzero F[z]-homomorphism Z : Xd1 −→ Xd2 exists if and only if
the monic polynomials d1(z),d2(z) have a nontrivial common factor.

4. Show that HomF[z](Xd1 ,Xd2) is a finite-dimensional F-vector space, and com-
pute its dimension.

5. Do the same for the space of module homomorphisms HomF[z](XD1 ,XD2) for
nonsingular polynomial matrices D1(z) ∈ F[z]m×m and D2(z) ∈ F[z]p×p.
[Hint: Use the Smith form!]

6. Prove that D(z) = A0z2 +A1z+A2 ∈ F[z]m×m, with A0 invertible, is polynomi-
ally equivalent to

D(z) =

(
A2 + zA1 zA0

zA0 −A0

)
.

Construct an F[z]-module isomorphism Z : XD −→ XD. What happens if A0 is
singular?

7. Let D(z) = Adzd + · · ·+A0 ∈ F[z]m×m be a nonsingular matrix polynomial, with
Ad �= 0. Show that every vector of polynomials f (z) = col( f1(z), · · · , fm(z)) ∈
F[z]m, with D(z)−1 f (z) strictly proper, satisfies deg f j(z) < d for j = 1, . . . ,m.

8. Let Ai, i = 1,2, be cyclic matrices with cyclic vectors bi. Show that

(
A1 0
0 A2

)

is cyclic with cyclic vector

(
b1

b2

)
if and only if the characteristic polynomials

di(z) are coprime.
[Hint: Use the Chinese remainder theorem.]

9. Let N2(z) ∈ F[z]m2×m1 . Show that

N2(z)M1(z)F[z]
k1 ⊂M2(z)F[z]

k2

if and only if there exists an N1(z) ∈ F[z]k2×k1 such that

N2(z)M1(z) = M2(z)N1(z).

10. Let D(z),E(z) ∈ F[z]m×m be nonsingular. Prove:

(a) There exists an injective F[z]-homomorphism Z : XD −→ XE if and only if
the invariant factors of D(z) divide those of E(z);

(b) There exists a surjective F[z]-homomorphism Z : XD −→ XE if and only if
the invariant factors of E(z) divide those of D(z).

11. Let D(z) be an m×m nonsingular polynomial matrix. Show that the polynomial
model XD is isomorphic to the polynomial model XUDV for all m×m unimodu-
lar matrices U(z),V (z).

12. Let D1(z),D2(z) ∈ F[z]m×m be nonsingular and D(z) = D1(z)D2(z). Assume
further that D2(z)−1 is proper. Then:
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(a) D1(z)D2(z) and

D12 =

(
D1(z) 0
−I D2(z)

)

are polynomially equivalent;
(b) Define a map Z : XD1D2 −→ XD12 given by

Zf = πD12

(
I
0

)
f .

The map Z is an F[z]-isomorphism that preserves the two direct sum
decompositions XD1D2 = XD1 ⊕D1XD2 and

XD12 = X(
D1(z) 0
−I I

)⊕
(

D1(z) 0
−I I

)
X(

I 0
0 D2(z)

).

13. Let D(z) be an m×m nonsingular polynomial matrix that is row proper and has
row indices ν1, . . . ,νp. Show that

XD = { f (z) ∈ F[z]m | f (z) = ( f1(z), . . . , fm(z))
�,deg fi < νi}.

Conclude that the sum of the row indices is equal to degdetD(z).
14. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular polynomial matrices.

Define the tensored polynomial model XD1⊗D2 as the set of all matrix
polynomials F(z) ∈ F[z]p×m such that D1(z)F(z)D2(z)−1 is strictly proper.
Show that XD1⊗D2 is an F-vector space of dimension (degdetD1) · (degdetD2).

15. Prove that the adjoint T
∗
DE−1 : XD� −→ XE� of the induced Toeplitz operator

T DE−1 satisfies

T
∗
DE−1 =TE−T D�|XD� ,

where TE−T D� : z−1
F[[z−1]]m −→ z−1

F[[z−1]]m is the Toeplitz operator defined
in (3.55).

16. Prove that the Toeplitz operator TED−1 : z−1
F[[z−1]]m −→ z−1

F[[z−1]]m is injec-
tive if and only if all left Wiener–Hopf indices of D(z)E(z)−1 are nonnegative.

17. Let A : X −→X and W,Z : X −→ Y be F-linear transformations of vector
spaces X and Y . Prove that the following statements are equivalent.

(a)

AKerW ⊂ KerZ.
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(b)

KerW ⊂ KerZA.

(c) There exists a linear transformation F : Y −→ Y such that

ZA = FW.

3.10 Notes and References

Shift operators were introduced into dynamical systems starting with the classical
work by Poincaré and Birkhoff. An early origin arose in the study of dynamics
around a periodic orbit by the discrete dynamics of the Poincaré map. In his
masterful paper Smale (1967), Smale advocated the use of shift operators as a
systematic tool for dynamic systems. Subsequently all these developments led to
what is today known as symbolic dynamics. For a beautiful account of symbolic
dynamics in connection with coding theory, see Lind and Marcus (1995).

The introduction of polynomial and rational models in an algebraic framework is
due to Fuhrmann (1976). The motivation for this arose out of the successful theory
of functional models for the study of linear transformations in a Hilbert space. This
operator-theoretic work started with the pathbreaking work by Livsic (1966). The
classic papers by Beurling (1949) and Lax (1959) on the parameterization of shift-
and translation-invariant subspaces in terms of inner functions and Rota (1960)
on the universality of shift operators were very influential. Further motivation for
this line of research was provided by Masani and Wiener on stochastic processes
Helson (1964), the physics of wave scattering as in Lax and Phillips (1967), as well
as operator-theoretic contributions by Sz.-Nagy and Foias (1970) and de Branges
and Rovnyak (1986). For a comprehensive discussion of the shift operator in the
functional analytic context, see Nikolski (1986).

Paraphrasing Wigner (1960), a natural question arises regarding the unreasonable
effectiveness of polynomial models in systems theory. The principal reason for that
is its role as the lingua franca of systems theory. Before its introduction, the area of
systems and control was more or less split into several separate subareas according
to the mathematical techniques employed, with very limited communication among
the different areas. The schism between state-space and frequency-domain tech-
niques was bridged with polynomial-model-based realization theory, generalized
isomorphism theorems, and extensions of strict system equivalence. This was
followed by the establishment of a connection with geometric control as well as,
somewhat later, with behavioral theory. One factor that was useful in this unification
process was the fact that polynomial model theory occupies a middle ground; it uses
richer structures than those used by matrix manipulations, yet it is more concrete
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than abstract module theory. Because its roots lie in operator theory, the language
and results obtained by polynomial methods provide an ideal starting point for
infinite-dimensional generalizations.

Theorems 3.20 and 3.22 are essential to the usefulness of polynomial models
in algebraic systems theory, and they have numerous applications, for example,
isomorphism theorems for various system representations, inversion of finite Hankel
and Toeplitz matrices, computation of minimal open-loop controls, problems of
state reconstruction, the study of generalized Bezoutians, and (tangential) interpola-
tion, to name a few. Both theorems were proved in Fuhrmann (1976). Theorem 3.20
is the algebraic version of the celebrated commutant lifting theorem proved, in the
context of operator theory in Hilbert spaces, by Sarason (1967) in the scalar case and
by Sz.-Nagy and Foias (1968) in the general case. It should be noted that Sarason’s
work was motivated by the Nevanlinna-Pick interpolation. In turn, Theorem 3.22,
characterizing the invertibility of intertwining maps, is adapted from the papers by
Fuhrmann (1968a,b). The usefulness of doubly coprime factorizations is stressed
in Vidyasagar (1987). Duality theory for polynomial models was first developed
in Fuhrmann (1981) and has been extended to a far-reaching duality theory for
multidimensional behaviors by Oberst (1990).

The Chinese remainder theorem has a long history, with modern expositions in,
for example, Lang (1965), and Fuhrmann (1983). It bears, by its very construction, a
close connection with interpolation theory (Hermite, Lagrange, Newton) if rings of
functions are considered. This connection between the Chinese remainder theorem
and scalar polynomial interpolation was apparently first observed by M. Riesz
Schoenberg (1987). For an algebraic analysis of scalar interpolation, refer to van
der Waerden (1949) and Fuhrmann (2012). The matrix version of the Chinese
remainder theorem and the multivariable partial fraction decomposition were proved
in Fuhrmann (1983).

Note that the idea of weakening the classification of polynomial matrices up
to unimodular equivalence by enlarging the matrices via suitably sized iden-
tity matrices originates from algebraic K-theory, where it is called stabilization
(a concept that has nothing in common with the system-theoretic term of feedback
stabilization). In the systems theory context, it was first noticed by Rosenbrock
(1970) that introducing this notion of equivalence is a sensible idea.



Chapter 4
Linear Systems

This chapter introduces basic definitions and concepts from linear systems theory.
Our focus is on questions of existence, uniqueness, and minimality of state-space
realizations and the important issue of system equivalence. We discuss various
representations of linear systems, develop state-space realization theory, and provide
characterizations of reachability and observability. The approach taken is developed
from a coherent point of view that is well known from algebraic systems theory, i.e.,
the use of functional models and shift operators. This approach will also prove to be
very useful in later chapters when we examine interconnected systems.

Linear systems have several different representations. Certain problems may
have easier solutions in one representation than in one of the others. Thus, it is
best to have a good grasp of the various different representations of linear systems.
Therefore, the beginning of this chapter is devoted to several formal definitions
of various representations of linear systems. Since most of our emphasis is on
algebraic aspects of the theory, it seems best not to restrict the field, and as a
consequence we will deal mostly with discrete time systems over a field F. This
has the advantage that the achieved results are applicable to closely related research
areas such as, for example, convolutional codes and network coding. Our focus
will be restricted to finite-dimensional linear systems. From an internal point of
view, one encounters first-order state-space representations and higher-order or
generalized differential systems. On the other hand, one can take an external point
of view, where the interest lies in the interplay between inputs and outputs. This
leads to the study of input/output maps and transfer function matrices. Rational
matrix transfer functions have a variety of representations, each one carrying its
own system-theoretic interpretation. Thus, matrix fractions appear throughout the
text and occupy a central part in the analysis of linear systems. The input/output
information of the system can be encoded in a corresponding Hankel matrix, which
turns out to be particularly well adapted for certain applications. The connecting
link between the internal and external points of view is made via the magnificent
structure of realization theory. The most general approach to modeling systems
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that encompasses all previous ones is that of behavioral representations, where
no distinction is made between inputs and outputs. A comprehensive account of
the theory of behaviors is given in Polderman and Willems (1997). Although it
seems tempting to approach interconnected systems from a behavioral point of
view, it is not so obvious how to express in this framework potentially one-sided
interconnections in terms of graphs. For the purpose of this book, our preference
is to focus on input/output representations because in that case the interconnection
structures of the networks can be easily expressed in terms of weighted digraphs.
Consequently, behaviors are only occasionally mentioned in passing.

4.1 System Representations

A. Input/Output Representations. From a classical systems theory point of view,
a linear system is regarded as a linear operator that transforms input sequences into
output sequences. This point of view, in conjunction with the associated state-space
formalism, was first pronounced by R. Kalman in the 1960s and was formalized
using the language of rings and modules in the very influential textbook by Kalman
(1969). Mostly, we shall restrict ourselves to discrete-time systems.

Our discussion begins with some general comments concerning bi-infinite
sequences ξ = (ξt)t∈Z of vectors ξt in a vector space V . The past and future
of ξ are the subsequence defined by ξ+ = (ξt)t≤0 and ξ− = (ξt)t>0, respectively.
Thus t = 0 is regarded as the present. Arbitrarily, for mathematical convenience, the
present is adjoined to the past. A sequence ξ is called an admissible sequence if
there exists an integer N such that ξt = 0 for all t ≤ N. Thus, admissible sequences
are those that have only a finite past. Applying the Z-transform, one identifies an
admissible sequence ξ = (ξt)t∈Z with the Laurent series

∑(z) =
∞

∑
t=−∞

ξt z
−t .

Under this identification, the space of all admissible bi-infinite sequences in a vector
space V becomes the space of all Laurent series V ((z−1)). Similarly, the set of all
past and future sequences is identified with the space of the polynomials V [z] and
strictly proper formal power series z−1V [[z−1]], respectively. This is expressed by
the direct sum decomposition

V ((z−1)) = V [z]⊕ z−1V [[z−1]]

together with canonical linear projection maps

π+ : V ((z−1))−→ V [z], π− : V ((z−1))−→ z−1V [[z−1]]
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onto the past and future subspaces, respectively. The space V ((z−1)) comes
equipped with a natural F[z]-module structure, defined by the ordinary multipli-
cation of a Laurent series ξ (z) ∈ V ((z−1)) with a polynomial p(z) ∈ F[z]. In
particular, the past subspace V [z] is a submodule of V ((z−1)). In this framework,
the inputs and outputs of a system are defined as Laurent series u(z) ∈ F((z−1))m

and y(z) ∈ F((z−1))p, respectively.

Definition 4.1. A linear discrete-time, time-invariant, input/output system is a
map

LG : F((z−1))m −→ F((z−1))p, LG(u) = y(z) := G(z)u(z)

defined for a Laurent series G(z) ∈ F((z−1))p×m. The system is called causal if
G(z) ∈ F[[z−1]]p×m and strictly causal if G(z) ∈ z−1

F[[z−1]]p×m. The operator LG

is referred to as the Laurent operator, with the symbol G.

Note that a Laurent operator LG acts as a multiplication operator with the symbol
G and therefore satisfies LG(zh(z)) = zLG(h). In particular, a Laurent operator LG

is an F[z]-linear homomorphism (however, not every such homomorphism between
spaces of Laurent series is a Laurent operator!).

Thus, an input/output system is simply a linear convolution operator between
inputs and outputs,

yt =
∞

∑
k=−∞

Gkut−k, t ∈ Z. (4.1)

Note that the series in (4.1) is indeed a finite sum since both G(z) and u(z)
are assumed to be Laurent series. For causal systems, the representation (4.1)
simplifies to

yt =
∞

∑
k=0

Gkut−k, t ∈ Z,

which implies that the output at time t depends only on input values at times ≤ t.
In the sequel, the causality of the Laurent operator will always be assumed. In

that situation, there is a much cleaner way to describe the action of a system – by
expressing the effect of past inputs on future outputs. This leads to the definition of
Hankel operators.

Definition 4.2. Let G(z) ∈ F((z−1))p×m. Define the restricted input/output map,
or the associated Hankel operator HG, as the F[z]-module homomorphism

HG : F[z]m −→ z−1
F[[z−1]]p, HG( f ) = π−(G(z) f (z)).
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Note that the Hankel operator HG does not depend on the polynomial part of
the symbol G(z). The following result shows that a strictly causal input/output
operator is uniquely determined from the Hankel operator. In particular, the action
of a strictly causal input/output system is completely encoded in the action of the
Hankel operator on past input sequences.

Proposition 4.3. Two strictly causal transfer functions G1(z),G2(z) ∈ z−1

F[[z−1]]p×m are equal if and only if the Hankel operators HG1 ,HG2 coincide.

Proof. Assume HG1 = HG2 . This implies that π−((G1(z)−G2(z)) f (z)) = 0 for
all polynomials f (z) ∈ F[z]m. Because G1(z)−G2(z) is strictly proper, (G1(z)−
G2(z))ξ = 0 for all ξ ∈ F

m. Thus G1(z) = G2(z) follows. The converse is clear. �
B. State-Space Representations. In practice, a discrete-time linear system is

often not given by an input/output operator but rather by a system of difference equa-
tions containing input and output variables. The simplest situation is encountered
using first-order difference equations. The input and output spaces U ,Y will be
identified with F

m,Fp, respectively. Since much of our analysis will use functional
spaces, a similar identification for the state space will be avoided.

Definition 4.4. A discrete-time, linear, state-space system Σ is a quadruple of
F-linear maps (A,B,C,D), with A : X −→X , B : Fm −→X , C : X −→ F

p, and
D : Fm −→ F

p. The quadruple of maps represents the system of equations

xt+1 = Axt +But , t ∈ Z,

yt = Cxt +Dut .
(4.2)

The system dimension, dimΣ , is defined by

dimΣ = dimX .

The spaces X , U = F
m, and Y = F

p are referred to as the state space, input
space, and output space, respectively. In the sequel, we will assume X to be finite
dimensional. In that case we will refer to Σ as a finite-dimensional linear system.

An explicit representation of an input/output system in the form (4.2) is called
a state-space description. Of course, once a state-space description is given and
initial conditions specified, the choice of inputs completely determines the choice
of outputs. To describe the input/output operator associated with (4.2), it will be
found both convenient, as well as reasonable, to assume that the system was at rest
in the remote past and that at some point in time a sequence of inputs is applied,
bringing the system to, so to speak, life. Thus, one considers ut , xt , and yt to be the
input, state, and output, respectively, at time t and assumes that for some N ∈ N

the state satisfies xt = 0 for t ≤ −N. To the sequence {ut}∞
t=−N one associates the

truncated Laurent series u(z) =∑∞
t=−N utz−t . Analogously one defines x(z) and y(z).

Thus, powers of z serve as time markers. Clearly, the present corresponds to t = 0.
A state trajectory x(z) = ∑∞

t=−N xtz−t decomposes naturally according to the direct
sum
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X ((z−1)) =X [z]⊕ z−1X [[z−1]]

as

x(z) = ∑
t≥0

x−t z
t +

∞

∑
t=1

xt z
−t = (π+x)(z)+ (π−x)(z).

To get the input/output relations from the system equations (4.2), one multiplies
the equations by appropriate powers of z and sums up, using x−N = 0, to obtain

z∑∞
t=−N xtz−t = ∑∞

t=−N xt+1z−t = A∑∞
t=−N xtz−t +B∑∞

t=−N utz−t ,

∑∞
t=−N ytz−t = C∑∞

t=−N xtz−t +D∑∞
t=−N utz−t ,

i.e.,

⎧
⎨

⎩

zx(z) = Ax(z)+Bu(z),

y(z) = Cx(z)+Du(z).
(4.3)

Conversely, equation (4.3) is equivalent to (4.2), with the initial state condition
x−N = 0 enforced. Under the assumptions of zero initial states, the analysis of the
linear system of equations (4.3) on X ((z−1)) is equivalent to analyzing the state-
space system (4.2).

To obtain the input/output relations, one must solve system (4.2). This leads to

xt =
∞

∑
j=0

A jBut− j−1, t ∈ N.

Here, the summation is well defined because there is only a finite number of inputs
u j that are nonzero for negative indices, and hence only finitely many nonzero
terms occur in the summation. The input/output relations induced by the system
can therefore be written in the form of a discrete convolution product,

yt = Dut +
∞

∑
j=0

CA jBut− j−1 =
∞

∑
j=0

G jut− j,

where

G j =

{
D j = 0,

CA j−1B j > 0.
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This input/output operator is causal because the output at time t depends only on
input values u j, with j ≤ t. The input/output relation depends on the quadruple
(A,B,C,D) only through the maps D and {CA jB}∞

0 , which are called the Markov
parameters of the system.

Eliminating the state trajectory from equation (4.3) leads to the input/output
relation y(z) = G(z)u(z), where

G(z) = D+C(zI−A)−1B ∈ F[[z−1]]p×m (4.4)

is the transfer function of the system. The suggestive notation

G(z) =

[
A B
C D

]
(4.5)

will be used to denote the transfer function defined by (A,B,C,D). Clearly, the map
from input functions to output functions is multiplication by G(z), i.e., it is the
Laurent operator LG : F((z−1))m −→ F((z−1))p with the symbol G(z).

Every (A,B,C,D) satisfying (4.4) is called a state-space realization of G(z).
Note that system (4.2) determines a unique transfer function and, hence, the
input/output relations. However, the converse is not true. A transfer function G(z)
may have several different realizations. This will be elaborated on when we discuss
realization theory.

C. Polynomial Matrix Descriptions. In general, when modeling a complex
system such as a large electrical network, one first writes down all possible equa-
tions, which may be of high order, and proceeds to eliminate the redundant variables.
With this in mind, Rosenbrock initiated the polynomial matrix descriptions of
systems, or what is sometimes also referred to as generalized descriptor systems.
These representations are in the form of higher-order difference equations,

M

∑
j=0

Tjξt+ j =
N

∑
i=0

Uiut+i,

yt =
K

∑
j=0

Vjξt+ j +
L

∑
i=0

Wiut+i, t ∈ Z,

(4.6)

specified by the polynomial matrices T (z) = ∑M
j=0 Tjz j, U(z),V (z), and W (z). Here

again we assume that the system has been at rest in the past, i.e., that ξt = 0
for sufficiently negative t. In terms of the Z-transforms of the variables ξ ,u,y,
system (4.6) becomes equivalent to the equations on spaces of Laurent series as
described by

T (z)ξ (z) =U(z)u(z),

y(z) =V (z)ξ (z)+W(z)u(z);
(4.7)
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the only assumption being made is that the polynomial matrix T (z) is nonsingular.
The interpretation of (4.7) is that of a higher-order difference equation. In such a sys-
tem interpretation one may look at the variables ξ as internal, or latent variables,
which are sometimes referred to as partial states. Here, ξ (z) ∈ F((z−1))n,u(z) ∈
F((z−1))m and y(z) ∈ F((z−1))p are assumed to be Laurent series in z−1. With
a polynomial matrix description (4.7), we associate a polynomial matrix P(z)
given by

P(z) =

(
T (z) −U(z)
V (z) W (z)

)
,

which will be referred to as the polynomial system matrix of system (4.7). By
eliminating the auxiliary variable ξ from equations (4.7), the transfer function of
the system is easily computed to be

G(z) =V (z)T (z)−1U(z)+W(z).

For example, to the state-space system (4.2) corresponds the polynomial system
matrix

P(z) =

(
zI−A −B

C D

)
.

Similarly, the matrix fraction representations of a strictly proper rational function,
G(z) = Nr(z)Dr(z)−1 = D�(z)−1N�(z), yields the polynomial system matrices

(
Dr(z) −I
Nr(z) 0

)
,

(
D�(z) −N�(z)

I 0

)
,

respectively.
Of course, the system represented by (4.7) is causal if and only if its transfer

function is proper. One should note, however, that a polynomial matrix description
of a system transcends the boundaries of input/output systems. To take an extreme
case, we consider, for a nonsingular polynomial matrix T (z), the polynomial system
matrix (T (z)). This describes a nonsingular, autonomous system of higher-order
difference equations. The existence of nontrivial solutions depends on the spaces.
Considering the Laurent operator LT : F((z−1))d −→ F((z−1))d , the assumed
nonsingularity of T (z) implies KerLT = {0}. However, if the action of the Toeplitz
operator TT = T (σ) : z−1

F[[z−1]]d −→ z−1
F[[z−1]]d in z−1

F[[z−1]]d is considered,
one has KerT (σ) = XT ; hence there exists a finite-dimensional solution space.

D. Behaviors. A generalization of the preceding system concepts is the notion of
behaviors due to J.C. Willems. We refer the reader to Polderman and Willems (1997)
for an account of this theory. The behavioral approach to systems theory allows for a
very satisfactory treatment of higher-order polynomial matrix representations, even
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in the absence of inputs or outputs of the system. Thus, the behavioral approach
to systems seems particularly well suited to treating interconnected systems,
i.e., to the subject of this book. Although there are thus very clear advantage
points for discussing behaviors within the context of interconnected systems, we
do refrain in the sequel from such analysis and focus instead on the restricted
class of input/output models. The main reason for this lies both in the ubiquity
of input/output representations and in our ability to present a very satisfactory
functional model approach.

For an F-vector space W , let WN = ∏N
W denote the infinite-dimensional vector

space of all infinite sequences (wt )t∈N. The space W will be identified with the
space of strictly proper Laurent series z−1W [[z−1]] equipped with the F[z]-module
structure induced by the backward shift operator

σ : z−1W [[z−1]]−→ z−1W [[z−1]], σw = π−(zw(z)). (4.8)

A subspace B ⊂ z−1W [[z−1]] is called shift-invariant if

σB ⊂B.

For N ∈N let PN : z−1W [[z−1]]−→ z−1W [[z−1]] denote the linear projection operator
defined by

PN(
∞

∑
j=0

wj

z j+1 ) =
N

∑
j=0

wj

z j+1 .

A linear subspace B is called complete if every infinite sequence w = (wt )t∈N in
z−1W [[z−1]] satisfies

w ∈B ⇐⇒ PN(w) ∈ PN(B) ∀N ∈ N. (4.9)

The general definition of a behavior follows, adapted to the case of discrete-time
linear systems on the nonnegative time axis.

Definition 4.5. A discrete-time linear behavior with time axis N, or a linear shift
space, is a pair Σ = (W,B), where the signal space W is a finite-dimensional
F-vector space and B is a linear shift-invariant subspace of z−1W [[z−1]] that is
complete. A behavior is called autonomous whenever B is finite-dimensional, as
an F-vector space.

Thus a behavior with time axis N is simply an F[z]-submodule of z−1W [[z−1]]
that satisfies the completeness condition (4.9). The following result characterizes
autonomous behaviors as rational models of nonsingular polynomial models.

Theorem 4.6. An F-linear subspace B ⊂ z−1
F[[z−1]]m is an autonomous behavior

if and only if there exists a nonsingular polynomial matrix D(z) ∈ F[z]m×m, with

B = XD := Ker D(σ).



4.1 System Representations 149

Proof. A submodule B of z−1
F[[z−1]]m is a finite-dimensional F-vector space

if and only if B is a finitely generated torsion submodule of z−1
F[[z−1]]m. By

Theorem 3.36, this is equivalent to B having the representation B = Ker D(σ)
for a nonsingular polynomial matrix D(z) ∈ F[z]m×m. This completes the proof. �

In greater generality, the main structural result from behavior theory asserts that
each discrete-time linear behavior can be identified with the kernel of a suitable
Toeplitz operator. For a full row rank polynomial matrix V (z) ∈ F[z]m×(m+p), the
rational model is defined by

XV = Ker V (σ)⊂ z−1
F[[z−1]]m+p.

Thus XV is the submodule of z−1
F[[z−1]]m+p, defined by all strictly proper Laurent

series h(z) ∈ z−1
F[[z−1]]m+p such that V (z)h(z) ∈ F[z]m is a polynomial. Moreover,

the elements h(z) = ∑∞
j=0 wjz− j−1 of Ker V (σ) correspond exactly to the solutions

of the system of difference equations

s

∑
j=0

Vjwj+t = 0, t = 0,1,2, . . . .

It is easy to see that for a full row rank polynomial matrix V (z) ∈ F[z]m×(m+p) the
functional model

B := Ker V (σ)⊂ z−1
F[[z−1]]m+p (4.10)

defines a behavior. The description (4.10) is called an autoregressive represen-
tation or, equivalently, an AR representation of B. One can show that two full
row rank polynomial matrices of the same size V1(z),V2(z) ∈ F[z]m×(m+p) are AR
representations of the same behavior B = Ker V1(σ) = Ker V2(σ) if and only if
there exists a unimodular matrix U(z) ∈ F[z]m×m such that V2(z) =U(z)V1(z).

The following theorem is the main structural result of behavior theory, as
developed by J.C. Willems. The proof, which is a consequence of duality theory,
is omitted; see Willems (1986, 1991) and Fuhrmann (2002).

Theorem 4.7 (J.C. Willems, P.A. Fuhrmann).

1. The discrete-time linear behaviors B ⊂ z−1
F[[z−1]]m+p are exactly the submod-

ules of the form Ker V (σ), where V (z) ∈ F[z]m×(m+p) is an arbitrary polynomial
matrix of full row rank.

2. Let Vi(z) ∈ F[z]mi×(mi+pi), i = 1,2, be full row rank polynomial matrices. The
behaviors Ker Vi(σ), i = 1,2, are equivalent by a continuous F[z]-isomorphism
if and only if m1− p1 = m2− p2 and V1(z) and V2(z) have the same nontrivial
invariant factors.

This result has some nice consequences, one of which is mentioned here.
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Corollary 4.8. Let B ⊂ z−1
F[[z−1]]m+p be a discrete-time linear behavior. The fol-

lowing conditions are equivalent:

1. B is autonomous.
2. B is finitely generated.
3. B is a torsion module.

In particular, the torsion elements of a behavior B form a subbehavior Ba, called
the autonomous part of B.

Proof. If B is a behavior, then there exists a full row rank polynomial matrix
V (z)∈F[z]m×(m+p), with B=Ker V (σ). Without loss of generality, one can assume
that V (z) = (D(z),0) is in Smith normal form, with D(z) = diag(d1(z), . . . ,dm(z)).
Split the elements h(z) of z−1

F[[z−1]]m+p into components h = (h1(z),h2(z)), with
h1(z) ∈ z−1

F[[z−1]]m,h2(z) ∈ z−1
F[[z−1]]p. It follows that h ∈ B if and only if

d1(σ)h1 = 0, . . . ,dm(σ)hm = 0. Therefore, B is autonomous if and only if p = 0.
This completes the proof. �

Why is behavior theory indeed a generalization of linear systems theory? To
illustrate this point, consider linear state-space systems of the form

xt+1 = Axt +But t ≥ 0, x0 = 0. (4.11)

Let B ⊂ z−1
F[[z−1]]n+m be the set of pairs of strictly proper Laurent series

w(z) =

(
x(z)
u(z)

)
,

with u(z) = ∑∞
j=0 u jz− j−1,x(z) = ∑∞

j=0 x jz− j−1, subject to (4.11). Then B is
identical to the behavior described as

B = Ker (σ I−A,B).

More generally, consider the polynomial matrices N�(z) ∈ F[z]p×m,D�(z) ∈
F[z]p×p, with D�(z) nonsingular. The coefficients of

w(z) =

(
ξ (z)
u(z)

)
,

with u(z) =∑∞
j=0 u jz− j−1,ξ (z) = ∑∞

j=0 ξ jz− j−1, then satisfy the higher-order differ-
ence system

s

∑
j=0

D jξt+ j =
r

∑
i=0

Niut+i, t ≥ 0, (4.12)
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if and only if D�(z)ξ (z) = N�(z)u(z) is satisfied. Thus the solutions to (4.12) define
the behavior

B = Ker (D�(σ),−N�(σ)).

One can therefore identify, in a very natural way, the trajectories of a linear input-
state system with the elements of a suitably defined behavior.

4.2 Reachability and Observability

The basic notions in the theory of linear control systems are those of reachability
and observability. For linear state-space systems they were first introduced by
Kalman (1969). The definitions for linear, time-invariant, discrete-time systems
follow.

Definition 4.9. 1. A linear system (4.2) is called reachable if, for each state vector
x ∈X , there exists T ∈ N and a finite input sequence u0, . . . ,uT such that the
induced state trajectory (xt) with initial condition x0 = 0 satisfies xT = x.

2. A linear system (4.2) is called observable if, given two state trajectories (xt),(xt)
with the same input sequence (ut), the condition

Cxt +Dut =Cxt +Dut ∀t

implies (xt) = (xt).

Intuitively, the observability of a linear system refers to the property whereby the
state trajectory of a system can be reconstructed from knowledge of the input and
output sequences ut and yt , respectively. Using linearity, the observability condition
is seen as being equivalent to the condition (with ut = 0)

CAtx0 = 0 ∀t ≥ 0 =⇒ x0 = 0.

There exist simple equivalent reformulations of these notions via suitable
input/output operators. Recall that the polynomial model XzI−A of the linear operator
A : X −→ X coincides with X . Moreover, the canonical projection map is
πzI−A : F[z]m −→ XzI−A =X , with πzI−A( f ) = (zI−A)π−((zI−A)−1 f ).

Definition 4.10. Consider a discrete-time linear system (A,B,C,D) with state space
X and input and output space Fm and F

p, respectively.

(a) The reachability map of (A,B,C,D) is the F[z]-linear map

R(A,B) : F[z]m −→X , R(A,B)(u) = πzI−A(Bu(z)). (4.13)
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(b) The module of zero return is the kernel of R(A,B), i.e., the submodule

M(A,B) = {u(z) ∈ F[z]m | π−((zI−A)−1Bu(z)) = 0}.

(c) The observability map of (A,B,C,D) is the F[z]-linear map

O(C,A) : X −→ z−1
F[[z−1]]p, O(C,A)(ξ ) =C(zI−A)−1ξ . (4.14)

With this definition, we state the following useful characterizations of reachability
and observability.

Theorem 4.11. 1. The image space ImR(A,B) ⊂X of a reachability map consists
of all states in X that are reachable from the zero state. System (4.2) is reachable
if and only if the reachability map (4.13) is surjective.

2. Let N(z) ∈ F[z]n×m and D(z) ∈ F[z]m×m be right coprime, with D(z) nonsingular
and

(zI−A)N(z) = BD(z).

The submodule M(A,B) has the representation

M(A,B) = D(z)F[z]m

and therefore is a full submodule. Moreover, the map

Z : XD −→ ImR(A,B), Zf = πzI−A(Bf ) (4.15)

defines an F[z]-linear isomorphism.
3. System (4.2) is observable if and only if the observability map (4.14) is injective.
4. The Hankel operator of a proper transfer function G(z) = C(zI−A)−1B+D ∈

F[[z−1]]p×m factorizes as

HG = O(C,A) ◦R(A,B).

Proof. 1. For every polynomial u(z) = ∑s
j=0 u jz j, one has πzI−A(Bu(z)) ∈ XzI−A =

X . Moreover, πzI−A(z j f (z)) = A jπzI−A( f ) for all j ≥ 0. Therefore,

πzI−A(Bu(z)) =
s

∑
j=0

πzI−A(z
jBuj) =

s

∑
j=0

πzI−A(z
jBuj) =

s

∑
j=0

A jBuj.

For the initial condition x0 := 0 and after T ≥ 1 steps, the iteration x j+1 := Ax j +

Bv j satisfies xT = ∑T−1
j=0 A jBvT− j−1. This implies that for the polynomial u(z) =

∑T−1
j=0 vT−1− jz j one obtains xT = πzI−A(Bu(z)). Hence, the set of states x that are

reachable in finitely many steps from x0 coincides with the image space ofR(A,B).
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In conclusion, an input sequence u0, . . . ,uT−1, with associated input polynomial
u(z) = ∑T−1

j=0 u jz j, steers x0 into x if and only if the reflected polynomial

uT (z) :=
T−1

∑
j=0

uT−1− jz
j = zT−1u(

1
z
)

satisfies x = πzI−A(BuT (z)).
2. By definition, the module of zero return is

M(A,B) = {u(z) ∈ F[z]m | ∃x(z) ∈X [z] with (zI−A)x(z)+Bu(z) = 0}.

Let N(z)D(z)−1 = (zI − A)−1B be a right coprime factorization. Then u(z) ∈
M(A,B) if and only if N(z)D(z)−1u(z) is a polynomial. By Lemma 2.28, this is
equivalent to u(z) ∈ D(z)F[z]m. This shows that M(A,B) = D(z)F[z]m. Thus the
reachability map induces a module isomorphism of F[z]m/D(z)F[z]m onto the
submodule ImR(A,B) of XzI−A.

3. Observability is satisfied if and only if the infinite set of linear equations CAtx0 =
0, t ∈N, . . . , implies x0 = 0. Thus the claim follows from the identity

C(zI−A)−1ξ =
∞

∑
j=0

CA jξ
z j+1 , ξ ∈X .

4. For u(z) ∈ F[z]m one computes

OCA(RAB(u)) = C(zI−A)−1πzI−A(Bu(z)) = π−(Cπ−((zI−A)−1Bu(z)))

= π−(C(zI−A)−1Bu(z))−π−(Cπ+((zI−A)−1Bu(z)))

= HG(u).

�
As a trivial consequence, we obtain the familiar rank conditions by Kalman and

Hautus for the reachability and observability of finite-dimensional systems. Let

Rn(A,B) = (B,AB, · · · ,An−1B)

and

On(C,A) =

⎛

⎜
⎜
⎜
⎝

C
CA

...
CAn−1

⎞

⎟
⎟
⎟
⎠

be the length-n reachability and observability matrices, respectively.

Corollary 4.12. Let (A,B,C,D) be linear, with state space X = F
n.
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1. The following conditions are equivalent:

(a) The pair (A,B) is reachable.
(b) rank Rn(A,B) = n.
(c) zI−A and B are left coprime.
(d) rank [zI−A,B] = n for all z ∈ F.

2. The following conditions are equivalent:

(a) The pair (C,A) is observable.
(b) rank On(C,A) = n.
(c) C and zI−A are right coprime.
(d) For all z ∈ F,

rank

(
C

zI−A

)
= n.

Proof. We focus on reachability; the proof for observability runs in exactly the same
manner. By the Cayley–Hamilton theorem, the image space of Rn(A,B) coincides
with the span of all vectors of the form AkBu, k ∈ N,∈ F

m, i.e., with the set of all
states reachable from zero. This proves the equivalence of (a) with (b). Condition
(d) is simply the standard rank conditions for left coprimeness. Thus it remains
to show the equivalence with (c). Recall the intertwining relation BD(z) = (zI −
A)N(z), with N(z),D(z) right coprime. Thus Z : XD −→ XzI−A defined in (4.15) is a
module isomorphism if and only if (zI−A),B are left coprime. This completes the
proof. �

Condition (a) in the preceding corollary is called the Kalman rank condition,
while (c) is referred to as the Hautus criterion.

4.3 Abstract Realization Theory

Realization theory was introduced by R.E. Kalman and has become a cornerstone
of linear systems theory because it enabled, for the first time, a systematic approach
to modeling and system identification. The reader is referred to the book by Kalman
(1968) for the first comprehensive exposition on the subject. The fundamental con-
cepts in the theory are those of reachability, observability, and the shift realization
of a transfer function. Starting with an abstract approach that connects state-space
realizations with canonical factorizations of the Hankel operator, one moves on to
general shift realizations via coprime factorizations.
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In the preceding section it was shown that every state-space system (A,B,C,D)
defines a proper transfer function

G(z) = D+C(zI−A)−1B.

Realization theory is concerned with the inverse question of associating a state-
space realization (A,B,C,D) to a proper transfer function G(z). Here, our focus
is on the construction of factorizations of Hankel operators. In later subsections,
it will be shown how to construct state-space realizations from such factoriza-
tions. Our starting point is a general statement concerning Hankel operators. Let
G(z) ∈ F[[z−1]]p×m denote a proper matrix Laurent series, and let HG : F[z]m −→
z−1

F[[z−1]]p denote the associated Hankel operator

HG( f ) = π−(G(z) f (z)),

The following result characterizes kernel and image spaces of Hankel operators in
terms of the coprime factorizations of its symbol.

Theorem 4.13 (Structure Theorem on Hankel Operators). Consider a strictly
proper formal power series G(z) ∈ z−1

F[[z−1]]p×m.

1. A map H : F[z]m −→ z−1
F[[z−1]]p is an F[z]-homomorphism if and only if there

exists G(z) ∈ z−1
F[[z−1]]p×m, with H = HG.

2. The kernel Ker HG is a finitely generated submodule of F[z]m, and the image
Im HG is a finitely generated F[z]-submodule of z−1

F[[z−1]]p.
3. The following statements are equivalent:

(a) The kernel Ker HG is a full submodule of F[z]m.
(b) The Hankel operator HG has finite rank, i.e., Im HG is a finite-dimensional

subspace of z−1
F[[z−1]]p.

(c) G(z) is rational.

4. Let G(z) ∈ z−1
F[[z−1]]p×m be rational. Let Nr(z),N�(z) ∈ F[z]p×m and Dr(z) ∈

F[z]m×m,D�(z) ∈ F[z]p×p be polynomial matrices that define right and left
coprime factorizations

Nr(z)Dr(z)
−1 = G(z) = D�(z)

−1N�(z),

respectively. The kernel and image of the Hankel operator have respectively the
following representations:

Ker HG = Dr(z)F[z]
m

and

Im HG = XD� .
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Proof. 1. Every Hankel operator HG is F[z]-linear. Conversely, if H : F[z]m −→
z−1

F[[z−1]]p is an F[z]-homomorphism, then one constructs a matrix of formal
power series G(z) ∈ z−1

F[[z−1]]p×m whose ith column is equal to H(ei), i =
1, . . . ,m. Since H is a module homomorphism, H(eiz j) = π−(z jG(z)ei) for all
i and j ≥ 0. This shows that H( f ) = π−(Gf ) for all polynomials f (z) ∈ F[z]m.

2. This follows easily from the preceding statement by noting that the image of a
finitely generated module under a module homomorphism is finitely generated.

3. The Hankel operator HG induces an isomorphism HG : F[z]m/Ker HG −→ Im HG

of F[z]-modules and, hence, of vector spaces. The quotient moduleF[z]m/Ker HG

is finite-dimensional if and only if Ker HG is a full submodule. This shows the
equivalence of (a) and (b). Moreover, (b) implies that the finitely generated
F[z]-module Im HG is finite-dimensional and, therefore, a torsion submodule of
z−1

F[[z−1]]p. From Theorem 3.36 one concludes that there exists a nonsingular
p× p polynomial matrix D(z), with Im HG = XD. Thus, for each standard basis
vector ei ∈ F

m, one obtains

G(z)ei = HG(ei) ∈ XD, i = 1, . . . ,m.

Since XD consists of rational functions, this shows that G(z) is rational. Con-
versely, if G(z) is rational, then there exist left and right coprime factorizations
G(z) = N(z)D(z)−1 = D(z)−1N(z), respectively. For g ∈ F[z]m the polynomial
f =Dg satisfies HG( f ) = π−(ND−1 f ) = π−(Ng) = 0, and therefore D(z)F[z]m ⊂
Ker HG. Since D(z) is nonsingular, D(z)F[z]m is a full submodule of F[z]m, and
therefore Ker HG is full, implying that Im HG is finite-dimensional.

4. It was shown earlier that Dr(z)F[z]m ⊂ Ker HG. Thus, let f (z) ∈ Ker HG, i.e.,
π−(G(z) f (z)) = 0. Thus there exists a polynomial g(z) with Nr(z)Dr(z)−1 f (z) =
g(z). By Lemma 2.28, one concludes that f (z) ∈ Dr(z)F[z]m. This shows
the inclusion Ker HG ⊂ Dr(z)F[z]m and, therefore, the equality Ker HG =
Dr(z)F[z]m.
Similarly, using the established relations between polynomial and rational

models from Chapter 3, one obtains, for f (z) ∈ F[z]m,

HG( f ) = π−(Gf ) = π−(D−1
� N� f ) = D−1

� πD�
(N� f ) ∈ D−1

� XD�
= XD� .

This shows the inclusion Im HG ⊂ XD� . Conversely, for h ∈ XD� , f (z) = D�(z)h(z)
is a polynomial. By the left coprimeness of D� and N�, there exist polynomial matrix
solutions A(z),B(z) to the Bezout equation

D�(z)A(z)+N�(z)B(z) = Ip.

Thus h(z) = D�(z)−1 f (z) = A(z) f (z)+G(z)B(z) f (z), which implies

h(z)=π−(h(z))=π−(A(z) f (z)+G(z)B(z) f (z)) = π−(G(z)B(z) f (z)) ∈ Im HG.

This completes the proof. �
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A state-space realization of a Hankel operator HG is a triple (A,B,C) of F-linear
maps

A : X −→X , B : Fm −→X , C : X −→ F
p

such that G(z) =C(zI−A)−1B. Each such realization defines a factorization of the
Hankel operator HG

as a product of the reachability and observability operators, respectively. Notice that
A acts as the shift operator on XzI−A = X . Therefore, the system (A,B,C) can be
reconstructed from the factorization by the formulas

Ax = SzI−Ax, x ∈X ,

Bu = πzI−A(Bu) =R(A,B)(u), u ∈ F
m,

Cx = (C(zI−A)−1x)−1 = O(C,A)x, x ∈X .

Conversely, an abstract version of realizations using factorizations of Hankel
operators, that is, of F[z]-homomorphisms f : F[z]m −→ z−1

F[[z−1]]p, is introduced.

Definition 4.14. For an F[z]-module homomorphism, f :F[z]m −→ z−1
F[[z−1]]p.

1. An abstract realization of f is a factorization of the form f = h ◦ g through an
F[z]-module X , with g : F[z]m −→X and h : X −→ z−1

F[[z−1]]p both being
F[z]-homomorphisms. X is called a factor module of the realization.

2. The factorization f = h ◦ g is called minimal if for every other factorization
f = h′ ◦ g′ with state space X ′ there exists a unique F[z]-homomorphism Z :
X −→X ′, with

Z ◦ g = g′, h′ ◦Z = h. (4.16)

The factor module X of a minimal realization f = h ◦ g is called the state
module or the state space.

3. The factorization f = h ◦ g is called reachable if g is surjective and observable
if h is injective. It is called canonical if it is both reachable and observable.

4. An abstract realization is called finite-dimensional if the factor module X has
finite dimension as an F-linear space.
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There are two natural candidates for choosing a state module for a realization of
a restricted input/output map f . This is shown by the next result, which also proves
the existence of canonical factorizations.

Theorem 4.15. Let f :F[z]m−→ z−1
F[[z−1]]p be a restricted input/output map. The

following commutative diagrams yield canonical and minimal abstract realizations
of f :

1.

������� �������
F[z]m

F[z]m/Ker f

f

hg

z−1
F[[z−1]]m�

Here g is the canonical projection and h the homomorphism induced by f on
the quotient module F[z]m/Ker f endowed with the induced quotient F[z]-module
structure.

2.

������� �������
F[z]m

Im f

f

hg

z−1
F[[z−1]]m�

Here g differs from f only in the range module, and h is the canonical injection
of Im f into z−1

F[[z−1]]p. Here Im f is endowed with the F[z]-module structure
induced by the module structure on z−1

F[[z−1]]p.

Proof. Both assertions on canonical realizations are obvious. Concerning minimal-
ity, we focus on the first assertion and assume that f = h′ ◦ g′ is a realization. Then
g′ : F[z]m −→X ′ is a homomorphism with kernel Ker g′ ⊂Ker f . Thus there exists
a unique homomorphism Z : F[z]m −→ F[z]m/Ker f , with Z ◦ g = g′. This implies
h′ ◦ Z ◦ g = h′ ◦ g′ = f = h ◦ g. By the surjectivity of g, therefore, h′ ◦ Z = h. This
completes the proof. �

In the preceding definition, the notion of minimality was introduced via a univer-
sal property. It is therefore a trivial consequence that two minimal factorizations
f = h ◦ g and f = h′ ◦ g′ are related as in (4.16), namely, by a unique module
isomorphism Z : X −→X ′. That minimal factorizations coincide with canonical
ones is shown next.

Proposition 4.16. A factorization f = h◦g is minimal if and only if it is canonical.

Proof. Suppose that the factorization f = h ◦ g with state space X is minimal.
Consider the first canonical factorization f = i ◦ π from Theorem 4.15, where
π : F[z]m −→ F[z]m/Ker f is the canonical projection and i : F[z]m/Ker f −→
z−1

F[[z−1]]p the injective map induced by f . There exists a homomorphism Z :
X −→ F[z]m/Ker f , with Z ◦ g = π and i ◦ Z = h. Since π is surjective, so
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is Z. Similarly, the injectivity of i implies the injectivity of Z. Thus Z is an
isomorphism, and therefore g is surjective and h is injective. Conversely, assume
f = h◦g is canonical. By the minimality of f = i◦π , there exists a homomorphism
Z : F[z]m/Ker f −→X , with Z ◦ π = g and i ◦ Z = h. By the same reasoning as
above, it follows that Z is an isomorphism. This implies the minimality of f = h◦g.

�
This leads immediately to the following version of the state-space isomorphism

theorem. Subsequently, this issue will be discussed in greater detail.

Theorem 4.17. Let f = hi ◦ gi, i = 1,2, be two factorizations of a Hankel operator
f : F[z]m −→ z−1

F[[z−1]]p through the F[z]-factor modules X1 and X2.

1. Assume that f = h1 ◦ g1 is a canonical factorization. There exists a unique
injective F[z]-linear map Z : X1 −→X2, with g2 = Z ◦ g1 and h1 = h2 ◦Z.

2. If f = hi◦gi, i = 1,2, are both canonical factorizations, then there exists a unique
F[z]-isomorphism Z : X1 −→X2 for which g2 = Z ◦ g1 and h1 = h2 ◦Z.

Proof. The first assertion follows from the universal property of minimality and
by Proposition 4.16. Thus there exists a unique homomorphism Z : X1 −→ X2

with g2 = Z ◦ g1 and h1 = h2 ◦Z. The injectivity of h1 implies the injectivity of Z.
Similarly, the surjectivity of g2 implies that Z is surjective. The result follows. �

It is very easy to construct a state-space realization of a proper transfer function.
Let G(z) ∈ F(z)p×m be proper and having the expansion G(z) = ∑∞

i=0 Giz−i. One
associates with G(z) the maps

A : z−1
F[[z−1]]p −→ z−1

F[[z−1]]p, B : Fm −→ z−1
F[[z−1]]p,

C : z−1
F[[z−1]]p −→ F

p, D : Fm −→ F
p

by

A = σ , Bξ = π−(G(z)ξ ), C
∞

∑
i=1

hiz
−i = h1, Dξ = G0ξ .

Here σ denotes the backward shift on z−1
F[[z−1]]p. It is easy to check that

(A,B,C,D) is a realization of G(z), as is seen from the following computation, with
ξ ∈ F

m:

CA j−1Bξ = CA j−1
∞

∑
i=1

Giξ z−i =Cσ j−1
∞

∑
i=1

Giξ z−i

=C
∞

∑
i=1

G j+i−1ξ z−i = G jξ .
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This is the easiest realization to construct. The downside of this argument is the fact
that the state space of this realization, namely z−1

F[[z−1]]p, is infinite-dimensional.
In the case where G(z) is rational, it is shown next that finite-dimensional state-space
realizations exist.

The basic result connecting concrete state-space realizations (A,B,C,D) with
factorizations of the Hankel operator is the following general form of an early result
due to Kronecker .

Theorem 4.18 (Kronecker (1890)). Let f : F[z]m −→ z−1
F[[z−1]]p be an F[z]-

linear map with the symbol G(z) ∈ z−1
F[[z−1]]p×m. f has a finite-dimensional

abstract realization if and only if the state module of each minimal abstract
realization is finite-dimensional. The following statements are equivalent:

(a) G(z) is rational.
(b) f has a finite-dimensional abstract realization.
(c) f has a finite-dimensional state-space realization (A,B,C).

In any of the cases, the minimal dimensions of the respective state spaces coincide.

Proof. Let f = h′ ◦ g′ be an abstract realization with the finite-dimensional factor
module X . For a minimal realization f = h ◦ g with the state module X there
exists a unique homomorphism Z : X −→X ′, with h′ ◦Z = h and Z ◦g = g′. Since
h is injective, Z is also injective, implying that, as vector spaces, the dimension
of X is less than or equal to the dimension of X ′. This shows that X is finite-
dimensional. For the remaining parts we proceed as follows.

1. Assume f factors through a finite-dimensional F-vector space X . Clearly, this
implies that the image of the Hankel operator f = HG is finite-dimensional. Thus
Theorem 4.13 implies that G is rational. Conversely, if G is rational, then Im f
is finite-dimensional and f factors through the finitely generated torsion module
Im f . This shows the equivalence (a) ⇐⇒ (b).

2. Let (A,B,C) be a finite-dimensional realization of the transfer function G(z) =
C(zI−A)−1B. In Theorem 4.11 it was proved that the reachability and observ-
ability maps R(A,B),O(C,A), defined in (4.13) and (4.14) respectively, yield a
finite-dimensional factorization of the Hankel operator as HG = O(C,A) ◦R(A,B).
Thus (c) =⇒ (b). Conversely, assume f : F[z]m −→ z−1

F[[z−1]]p has a finite-
dimensional abstract realization. Let f = h ◦ g be a factorization through the
finitely generated F[z]-torsion module X . Define the triple of maps (A,B,C) by

Ax = z · x,
Bu = g(u), u ∈ F

m,

Cx = (h(x))−1, x ∈X .

(4.17)
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Here z · x denotes the action of the polynomial z on x ∈X , and F
m ⊂ F[z]m is

the natural inclusion. It will be shown now that (4.17) defines a realization of the
input/output map f . Since f (ξ ) ∈ z−1

F[[z−1]]p, then f (ξ ) = ∑∞
j=1( f (ξ ))− jz− j.

Now f (ξ ))− j, the coefficient of z− j in the expansion, is linear in ξ ; hence, there
exists Fi ∈ F

p×m such that f (ξ ))− j = Fjξ . Therefore, it suffices to show that
CA j−1B = Fi. This follows, for ξ ∈ F

m, from the computation

CA j−1Bξ = (hz j−1 ·g(ξ ))−1 = (z j−1 ·hg(ξ ))−1

= (hg(ξ ))− j = ( f (ξ ))− j = Fjξ . �
The previous result leaves open several important questions. One is the character-

ization of those input/output maps that lead to finite-dimensional realizations. Then
one is interested not in an abstract realization but in one given in terms of linear
maps or matrices. Thus, an algorithmic solution is needed in terms of factorizations
of the transfer function rather than the Hankel operator. Finally, one is interested in
questions of uniqueness.

4.4 Equivalence of Realizations

Any input/output map or, equivalently, transfer function may have several different
realizations. Our next aim is to examine the relation between these different
realizations. To this end, we introduce the following definition.

Definition 4.19. Let (A1,B1,C1) and (A2,B2,C2) be state-space systems defined
in the state spaces X1 and X2, respectively. A map Z : X1 −→X2 intertwines
(A1,B1,C1) and (A2,B2,C2) if the following relations are satisfied:

ZA1 = A2Z, ZB1 = B2, C1 =C2Z. (4.18)

Similarly, if only ZA1 = A2Z, we say Z intertwines A1 and A2, or Z intertwines
(A1,B1) and (A2,B2) if ZB1 = B2 and A2Z = ZA1. One says that two systems
(A1,B1,C1) and (A2,B2,C2) are isomorphic, or similar, if there exists an invertible
map Z intertwining the two systems.

Equations (4.18) are clearly equivalent to the commutativity of the following
basic diagram:
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����

����

����

����

F
m

F
p

1 2

1 2

A1

B1

C1

A2

B2

C2

Z

Z

�

�

� �

Note that system similarity is an equivalence relation.
Contrary to the trivial case of existence of maps intertwining two matrices A1 and

A2, say, by the zero map, the existence of an intertwining map for systems yields
some nontrivial information.

Lemma 4.20. Let Z intertwine (A1,B1,C1) and (A2,B2,C2). Then the two systems
have the same transfer function.

Proof. It suffices to show that C1Ai
1B1 =C2Ai

2B2 for all i≥ 0. This follows from the
following computation:

C1Ai
1B1 =C2ZAi

1B1 =C2Ai
2ZB1 =C2Ai

2B2. �
While in general two systems with the same transfer function need not be

isomorphic, this is the case if they are both canonical systems, as the following
important theorem shows.

Theorem 4.21 (State-Space Isomorphism Theorem). Two canonical systems
Σ1 = (A1,B1,C1) and Σ2 = (A2,B2,C2) are similar if and only if they have the same
transfer function. In this case the isomorphism is uniquely determined.

Proof. The if part was proved in Lemma 4.20. To prove the only if part, let
R1,R2 be the reachability maps of Σ1 and Σ2, respectively, and O1 and O2 the
respective observability maps. Clearly, for the Hankel operator HG, one has the
factorizations HG = O1R1 = O2R2. By our assumptions, R1 and R2 are surjective
F[z]-homomorphisms, while O1 and O2 are injective; hence, applying Theorem 4.17
one obtains the existence of a unique isomorphism Z : X1 −→X2 satisfying ZR1 =
R2 and O1 =O2Z. Since Z is an isomorphism, with X1 = XzI−A1 and X2 = XzI−A2

taken with the F[z]-module structures induced by A1 and A2, respectively, the
intertwining relation ZA1 = A2Z necessarily follows. Applying the equality ZR1 =
R2 to constant polynomials implies ZR1u0 = ZB1u0 = R2u0 = B2u0. Since one
can choose u0 freely, the equality ZB1 = B2 follows. From the equality O1 =O2Z it
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follows that ∑s
i=0 C1Ai

1z−i−1 =∑s
i=0 C2Ai

2Zz−i−1. In particular, equating coefficients,
one obtains C1 =C2Z. The uniqueness of Z, as already mentioned, is a consequence
of Theorem 4.17. �

Definition 4.22. The McMillan degree of a transfer function G(z), denoted by
δ (G), is defined as the dimension of a minimal state-space realization of G(z).
A state-space realization of G(z) of order equal to δ (G) is called a minimal
realization.

In view of the state-space isomorphism theorem, the McMillan degree is well
defined.

Theorem 4.23. A realization (A,B,C) of a transfer function G(z) is minimal if and
only if it is both reachable and observable, i.e., canonical. The McMillan degree
δ (G) coincides with the dimension of the state space of an arbitrary canonical
abstract realization of HG.

Proof. This is a simple consequence of Proposition 4.16 and Theorem 4.18. Each
realization (A,B,C) of a rational transfer function G(z) yields a factorization of the
Hankel operator HG = O(C,A) ◦R(A,B) with a state space X of dimension ≥ δ (G).
Let HG = h ◦ g denote a minimal, i.e., canonical, abstract realization of HG with
state space X ′. Then there exists an injection X ′ into X , and therefore dimX ′ ≤
dimX . By Theorem 4.18, there exists a realization (A′,B′,C′) of G(z) of order
equal to dim X ′. Thus dim X ′ = dim X if and only if (A,B,C) is a minimal
realization. Thus (A′,B′,C′) is minimal, too. The result follows. �

From now on, the term minimal shall be used exclusively. The next result gives
an explicit formula for the McMillan degree in terms of coprime factorizations.

Theorem 4.24. Let G(z) ∈ F[[z−1]]p×m be rational, and assume it has the coprime
factorizations

G(z) = Nr(z)Dr(z)
−1 = D�(z)

−1N�(z).

Then the McMillan degree δ (G) has the following representations:

δ (G) = codimKerHG = dim(ImHG) = rankHG,

δ (G) = degdetDr = degdetD�,

or, equivalently, by

δ (G) = rankH ,

where H denotes an infinite matrix with entries Hij = Gi+ j−1, for i, j ≥ 1.

Proof. Theorem 4.24 implies that δ (G) coincides with the dimension of the state
space of an arbitrary canonical abstract realization. Thus δ (G) = dimImHG. By
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Theorem 4.13, codimKerHG = dim(ImHG) = rankHG. Moreover, dim(ImHG) =
degdetDr and codimKerHG = degdetD�. Finally, in terms of the powers of z bases
in F[z]m and z−1

F[[z−1]]p, respectively, the Hankel operator HG has the foregoing
matrix representation. Thus dimImHG = rank(Gi+ j−1). �

4.5 The Shift Realization

Theorem 4.18 connects the rationality of a transfer function G(z) with its real-
izability in a finite-dimensional state space. Rational functions may have several
different representations: power series expansions, partial fraction representations,
and continued fraction representations, as well as various types of polynomial
matrix fraction representations, and this list is not exhaustive. Each class of
representations can be taken as the starting point of a realization procedure.

While the factorization approach to realization theory, as manifested in
Theorem 4.15, is very elegant; it lacks concreteness. What is required is a concrete
description of a system (A,B,C) that lends itself easily to computations. The key to
this, in the case of a rational transfer function G(z), is our knowledge, as summarized
in Theorem 4.18, of concrete representations of KerHG and ImHG in terms of
polynomial matrices and the related coprime factorizations of G(z). But rather than
starting from a coprime factorization, we prefer to take as our starting point a more
general representation of rational functions, introduced by Rosenbrock, and use
it directly for constructing realizations. The shift realization, as defined in what
follows, serves exactly this purpose.

Definition 4.25. Let G(z) = G0 +
∞

∑
i=1

Gi

zi be a p×m proper rational function, with

the representation

G(z) =V (z)T (z)−1U(z)+W(z), (4.19)

and let P =

(
T (z) −U(z)
V (z) W (z)

)
be the associated polynomial system matrix. Let XT

denote the polynomial model of T (z), with the shift operator ST . Then the system

A : XT −→ XT , B : Fm −→ XT , C : XT −→ F
p, D : Fm −→ F

p,

defined by

ΣVT−1U+W :=

⎧
⎪⎪⎨

⎪⎪⎩

A f = ST f , f ∈ XT ,

Bξ = πT (Uξ ), ξ ∈ F
m,

Cf = (VT−1 f )−1, f ∈ XT ,

D = G0,

(4.20)

is called the shift realization of G(z), given by (4.19).
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The fundamental properties of the shift realization are summarized in the
following theorem.

Theorem 4.26. The shift realization (A,B,C,D) has the following properties:

1. The transfer function of (A,B,C,D) is G(z).
2. The reachability and observability maps of the realization (4.20) are

Ru = πT (Uu), u ∈ F[z]m

and

O f = π−(VT−1 f ), f (z) ∈ XT .

3. The reachable subspace of realization (4.20) is T1XT2 , where T1(z) is a g.c.l.d. of
T (z) and U(z) and T (z) = T1(z)T2(z).

4. The unobservable subspace of realization (4.20) is T1XT2 , where T2(z) is a g.c.r.d.
of T (z) and V (z) and T (z) = T1(z)T2(z).

5. The realization is observable if and only if V (z) and T (z) are right coprime and
reachable if and only if T (z) and U(z) are left coprime.

6. If both coprimeness conditions are satisfied, then the McMillan degree is given by

δ (G) = degdetT (z).

Proof. 1. To show that (4.20) is a realization of G(z), one computes, with ξ ∈ F
m,

CA jBξ = (VT−1πT z jπTUξ )−1 = (VT−1πT z jUξ )−1

= (VT−1Tπ−T−1z jUξ )−1 = (Vπ−T−1Uzjξ )−1

= (VT−1Uzjξ )−1 = ((VT−1U +W )z jξ )−1 = (Gzjξ )−1

= G j+1ξ .

2. The reachability and observability maps of this realization are computed next,
beginning with the reachability map R : F[z]m −→ XT . Computing

R
n

∑
i=0

uiz
i =

n

∑
i=0

Si
T πTUui =

n

∑
i=0

πT ziπT Uui

=
n

∑
i=0

πTUziui = πTU
n

∑
i=0

ziui

shows that the reachability map R : F[z]m −→ XT is given, for u ∈ F[z]m, by

Ru = πT Uu.
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Let f (z) ∈ XT . For the observability map O one computes

O f =
∞

∑
i=1

(VT−1πT zi−1 f )−1z−i =
∞

∑
i=1

(VT−1Tπ−T−1zi−1 f )−1z−i

=
∞

∑
i=1

(VT−1zi−1 f )−1z−i = π−(VT−1 f ).

3. Since R is an F[z]-homomorphism, its image, the reachable subspace of XT , is an
F[z]-submodule, i.e., an ST -invariant subspace. By Theorem 3.11, it is given by
ImR = T1XT2 for some factorization T (z) = T1(z)T2(z) into nonsingular factors.
Assuming that T1 is a nonsingular common left factor of T (z) and U(z) implies
the factorizations T (z) = T1(z)T2(z) and U(z) = T1(z)U1(z). One computes, for
u(z) ∈ F[z]m, that

πT (Uu) = T1T2π−(T−1
2 T−1

1 T1U1u) = T1πT2(U1u) ∈ T1XT2 .

Conversely, assume that for every u(z) ∈ F[z]m one has πTUu ∈ T1XT2 , i.e.,
that T1T2π−(T−1

2 T−1
1 T1U1u) ∈ T1XT2 . This implies π−(T−1

2 T−1
1 T1U1u) ∈ XT2 ,

and therefore T−1
2 T−1

1 U1u = g + h, with g a polynomial and h ∈ XT2 . Thus
also T−1

1 U1u = T2g+ T2h is a polynomial for every u. Choosing for u the unit
vectors in F

m, it follows that U1(z) = T1(z)−1U(z) is necessarily a polynomial,
and the factorization U(z) = T1(z)U1(z) follows. Clearly, the reachable subspace
corresponds to the maximal common left factor of T (z),U(z).

4. Since O is an F[z]-homomorphism, its kernel, the unobservable subspace of Σ ,
is a submodule of XT and, hence, has a representation KerO = T1XT2 for some
factorization T (z) = T1(z)T2(z) with nonsingular factors. If T2(z) is a common
right factor of V (z) and T (z), then V (z) = V1(z)T2(z). Thus, for f = T1g and
g ∈ XT2 , one obtains

O f=π−(VT−1 f )=π−(V1T2T−1
2 T−1

1 f )=π−(V1T−1
1 T1g) = π−(V1g) = 0,

i.e., T1XT2 ⊂KerO . Conversely, if f ∈KerO = T1XT2 , then f = T1g, with g∈XT2 .
One computes

0 = O f = π−VT−1T1g = π−VT−1
2 T−1

1 T1g = π−VT−1
2 g.

Clearly, for every g ∈ T2F[z]q, the rational vector VT−1
2 g is a polynomial. Using

the direct sum F[z]q = XT2⊕T2F[z]q, it follows that for every g ∈ F[z]q, VT−1
2 g is

a polynomial vector. Choosing for g the standard basis unit vectors in F[z]q, we
conclude that V1(z) =V (z)T2(z)−1 is a polynomial, and the factorization V (z) =
V1(z)T2(z) follows. Clearly, the unobservable subspace corresponds to a greatest
common right factor of V (z),T (z).

5. Follows from the previous parts.
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6. If both coprimeness conditions are satisfied, then ΣVT−1U+W is a minimal
realization; hence, the McMillan degree is δ (G) = dimXT = degdetT . �
The importance of the shift realization cannot be overemphasized. Initially, it

provided the link between state-space theory, module theory, and the theory of
polynomial system matrices. Later, it became the bridge between input/output-
based theories of linear systems and the more recent behavioral approach. It
serves to extend the theory of strict system equivalence to that of various behavior
representations and to elucidate connections between behaviors and geometric
control. Thus, it is the ultimate tool for the unification of all existing approaches
to linear systems.

Note that, using the standard isomorphism of XT and XT , one can transform the
realization in (4.20) to a dual realization in the state space XT defined by

ΣVT−1U+W :=

⎧
⎪⎪⎨

⎪⎪⎩

Ah = ST h, h ∈ XT ,

Bξ = π−(T−1Uξ ), ξ ∈ F
m,

Ch = (Vh)−1, h ∈ XT ,

D = G0.

(4.21)

There exist obvious similar results to Theorem 4.26 for such dual realizations as
(4.21); however, the details are omitted.

There are several important special cases of Theorem 4.26. In particular,
realizations based on left and right matrix fractions are emphasized. Using the fact
that every polynomial model is isomorphic to a rational model, the results can be
stated in both settings. This is important in geometric control and in duality analysis.
The subsequent results are special cases of Theorem 4.26.

Theorem 4.27. Let

G(z) = Nr(z)Dr(z)
−1 = D�(z)

−1N�(z) (4.22)

be matrix fraction representations of a proper p×m rational function G(z).

1. In the state space XDr , the transfer function G(z) is realized by

ΣNrD−1
r

:=

⎧
⎪⎪⎨

⎪⎪⎩

A = SDr ,

Bξ = πDrξ ,
C f = (NrD−1

r f )−1,

D = G(∞).

(4.23)

Then:

(a) The unobservable subspace of realization (4.23) is D1XD2 , where D2(z) is a
g.c.r.d. of Dr(z) and Nr(z) and Dr(z) = D1(z)D2(z);

(b) This realization is reachable, and it is observable if and only if N(z) and
D(z) are right coprime.
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2. In the state space XD�
, the transfer function G(z) is realized by

ΣD−1
� N�

:=

⎧
⎪⎪⎨

⎪⎪⎩

A = SD�
,

Bξ = πD�
(N�ξ ),

Cf = (D−1
� f )−1,

D = G(∞).

(4.24)

Then:

(a) The reachable subspace of realization (4.24) is D1XD2
, where D1(z) is a

g.c.l.d. of D�(z) and N�(z) and D�(z) = D1(z)D2(z);
(b) This realization is observable, and it is reachable if and only if N�(z) and

D�(z) are left coprime.

The dual formulation of the preceding theorem is as follows.

Theorem 4.28. Let

G(z) = Nr(z)Dr(z)
−1 = D�(z)

−1N�(z)

be matrix fraction representations of a proper, p×m rational function G(z).

1. In the state space XD, the transfer function G(z) is realized by

ΣD−1
� N� :=

⎧
⎪⎪⎨

⎪⎪⎩

A = SD� ,

Bξ = π−(D−1
� N�ξ ),

Ch = (h)−1,

D = G(∞).

(4.25)

Then:

(a) The reachable subspace of realization (4.25) is XD2 , where D1(z) is the
g.c.l.d. of D�(z) and N�(z) and D�(z) = D1(z)D2(z);

(b) This realization is observable, and it is reachable if and only if N�(z) and
D�(z) are left coprime.

2. In the state space XDr , the transfer function G(z) is realized by

ΣNrD−1
r :=

⎧
⎪⎪⎨

⎪⎪⎩

A = SDr ,

Bξ = π−(D−1
r ξ ),

Ch = (Nrh)−1,

D = G(∞).

(4.26)

Then:

(a) The unobservable subspace of realization (4.26) is XD2 , where D2(z) is the
g.c.r.d. of Dr(z) and Nr(z) and Dr(z) = D1(z)D2(z);
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(b) This realization is reachable, and it is observable if and only if Nr(z) and
Dr(z) are right coprime.

The various realizations (4.23), (4.24), (4.25), and (4.26) will be referred to as
the shift realizations associated with the corresponding matrix fractions (4.22). The
uniqueness properties of such shift realizations are summarized as follows.

Theorem 4.29. Assuming that Nr(z) and Dr(z) are right coprime and N�(z) and
D�(z) are left coprime, the realizations ΣNrD−1

r
and ΣD−1

� N�
, given in (4.23) and

(4.24) respectively, are isomorphic. The isomorphism is given by the map Z :
XDr −→ XD�

defined by

Z f = πD�
N� f .

The isomorphism is equivalent to the commutativity of the following diagram:

���

���
���

���

F
m

F
p

XDr XD�

XDr XD�

SDr

πDr(·)

(NrD−1
r ·)−1

SD�

πD�
N�(·)

(D�·)−1

�

�

� �

Similarly, under the same coprimeness assumptions, the realizations (4.25) and
(4.26) are isomorphic. The isomorphism Z : XDr −→ XD� is given by

Zh = π−Nrh = Nr(σ)h. (4.27)

Proof. Note that the intertwining equality Nr(z)Dr(z)−1 =D�(z)−1N�(z) implies the
equality N�(z)Dr(z) = D�(z)Nr(z), which is the connecting link to the results about
module homomorphisms. Theorems 3.20 and 3.21 are applied to verify that Z is
indeed a module isomorphism. Thus ZSDr = SD�

Z. To complete the proof, one must
show the commutativity of the triangular parts of the diagram. Indeed,

ZπDrξ = πD�
N�πDrξ = πD�

N�ξ .

Similarly,

(D−1
� Zf )−1 = (D−1

� πD�
N� f )−1 = (D−1

� D�π−1
D�

N� f )−1

= (π−1
D�

N� f )−1 = (D−1
� N� f )−1 = (NrD−1

r f )−1.
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To prove (4.27), the isomorphisms XDr � XDr and XD�
� XD� will be used. For

h ∈ XDr , one computes

Zh=D−1
� Z(D−1

r h)=D−1
� πD�

(N�Drh)=π−(D−1
� N�Drh) = π−(Nrh) = Nr(σ)h.

�
If one considers the nonsingular polynomial matrix T (z) to be the left denomi-

nator in a left matrix fraction T (z)−1V (z), then ΣT−1• := (CT ,AT ) will denote the
observable pair defined by

ΣT−1• :=

{
AT f = ST f ,
CT f = (T−1 f )−1, f ∈ XT .

Similarly, for a right denominator D(z), one defines the reachable pair Σ•D−1 :=
(AD,BD) by

Σ•D−1 :=

{
AD f = SD f , f ∈ XD,

BDξ = πDξ , ξ ∈ F
m.

(4.28)

Using the isomorphism of XD and XD, the pair (AD,BD) is similar to the pair
(AD,BD) given by

Σ•D
−1

:=

{
ADh = SDh, h ∈ XD,

BDξ = π−D−1ξ , ξ ∈ F
m.

4.6 Strict System Equivalence

Having proven the state-space isomorphism theorem, our attention turns to the
isomorphism of systems that are described by higher-order equations, or polynomial
matrix descriptions of the form (4.7). Recall that associated with such a system, or
with its polynomial system matrix, is the shift realization (4.20). This allows us to
produce the following definition.

Definition 4.30. Two polynomial system matrices

P1 =

(
T1(z) −U1(z)
V1(z) W1(z)

)
, P1 =

(
T2(z) −U2(z)
V2(z) W2(z)

)

are called Fuhrmann system equivalent (FSE) if the shift realizations ΣViT
−1

i Ui+Wi

are isomorphic.

Proposition 4.31. Fuhrmann system equivalence is an equivalence relation.
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Proof. Follows from the fact that system similarity is an equivalence relation. �
The next theorem directly characterizes Fuhrmann system equivalence.

Theorem 4.32. Two polynomial system matrices Pi =

(
Ti(z) −Ui(z)
Vi(z) Wi(z)

)
, i =

1,2, are FSE if and only if there exist appropriately sized polynomial matrices
M(z),N(z),X(z),Y (z), with M(z) and T2(z) left coprime and T1(z) and N(z) right
coprime, satisfying

(
M(z) 0
−X(z) I

)(
T1(z) −U1(z)
V1(z) W1(z)

)
=

(
T2(z) −U2(z)
V2(z) W2(z)

)(
N(z) Y (z)

0 I

)
. (4.29)

Proof. Assume P1 and P2 are FSE, i.e., that the shift realizations ΣViT
−1

i Ui+Wi
are

isomorphic. This means that there exists an invertible map Z : XT1 −→XT2 that makes
the following diagram commutative:

���

���
���

���

F
m

F
p

XT1 XT2

XT1 XT2

Z

Z

ST1

πT1U1(·)

(V1T−1
1 ·)−1

ST2

πT2U2(·)

(V2T−1
2 ·)−1

�

�

� �

The commutativity of the central part of the diagram means that Z : XT1 −→ XT2

is a module homomorphism, and for these, a complete characterization has been
established. Indeed, by Theorem 3.20, there exist polynomial matrices M(z) and
N(z) satisfying

M(z)T1(z) = T2(z)N(z), (4.30)

with M(z) and T2(z) left coprime and T1(z) and N(z) right coprime. In these terms,
Z is given by

Zf = πT2 Mf , f ∈ XT1 . (4.31)

Since Z intertwines the two systems, it follows that, for all j ≥ 0, ZA j
1B1 = A j

2B2.
Equivalently, for each ξ ∈ F

m,

πT2MπT1 z jπT1U1ξ = πT2 z jπT2U2ξ .
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The kernels of πT1 and πT2 are submodules; therefore, πT2(U2−MU1)z jξ = 0,
and thus πT2(U2−MU1) f = 0 for all f ∈ F[z]m. Equivalently, π−T2

−1(U2−MU1) =
0, which means that there exists a polynomial matrix Y for which T−1

2 (U2−MU1) =
Y or

U2(z) = M(z)U1(z)+T2(z)Y (z). (4.32)

Next, the relation C1A j
1 =C2A j

2Z is used to conclude that, for all f ∈ XT1 ,

0 = (V2T−1
2 πT2 z jπT2 M f −V1T−1

1 πT1 z j f )−1 = (V2T−1
2 πT2 Mz j f −V1T−1

1 πT1 z j f )−1

= (V2T−1
2 T2π−T−1

2 Mz j f −V1T−1
1 Tπ−T1

−1z j f )−1 = ((V2T−1
2 M−V1T−1

1 )z j f )−1

= ((V2NT−1
1 −V1T−1

1 )z j f )−1 = ((V2N−V1)T
−1
1 z j f )−1.

Now clearly, for every f ∈ T1F[z]s, f = T1g and

((V2N−V1)T
−1

1 f )−1 = ((V1N−V)T−1
1 T1g)−1 = 0,

so, using the direct sum F[z]s = XT1 ⊕ T1F[z]s, this is satisfied for every f ∈ F[z]s.
Hence, π−(V2M2−V1)T

−1
1 = 0, or there exists a polynomial matrix X(z) such that

(V1(z)−V2(z)M2(z))T1(z)−1 = X(z), or

V1(z) =V2(z)N(z)+X(z)T1(z). (4.33)

Finally, we compute

X(z)U1(z)+W1(z) = (V1(z)−V2(z)M2(z))T1(z)−1U1(z)+W1(z)

= V1(z)T1(z)−1U1(z)−V2(z)NT1(z)−1U1(z)+W1(z)

= V1(z)T1(z)−1U1(z)+W1(z)−V2(z)T2(z)−1MU(z)1(z)

= V1(z)T1(z)−1U1(z)+W1(z)−V2(z)T2(z)−1M(z)U1(z)

= V2(z)T2(z)−1U2(z)+W2(z)−V2(z)T2(z)−1(U2(z)−T2(z)Y (z))

= V2(z)Y(z)+W2(z)

or

X(z)U1(z)+W1(z) =V2(z)Y (z)+W2(z). (4.34)

The four preceding relations, (4.30), (4.32), (4.33), and (4.34), can be written
compactly as the one polynomial relation (4.29). Thus P1 and P2 are FSE if (4.29)
is satisfied, with M(z) and T2(z) left coprime and N(z) and T1(z) right coprime.

Conversely, assume (4.29) is satisfied, with M(z) and T2(z) left coprime and
N(z) and T1(z) right coprime. Define the map Z : XT1 −→ XT2 as in (4.31).
The coprimeness conditions guarantee that Z is an isomorphism. Using the same
formulas, it follows that Z intertwines the two realizations; hence, the polynomial
system matrices Pi are FSE. �
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Note that no assumptions were made in Theorem 4.32 concerning the
reachability or observability of the state-space realizations.

It is emphasized that the preceding characterization of strict system equivalence
is also equivalent to the characterization proposed initially by Rosenbrock. The
proof of the next proposition is left as an exercise to the reader.

Proposition 4.33. Two polynomial system matrices P1 and P2 of sizes (p+ ri)×
(m + ri), i = 1,2, are FSE if and only if for q ≥ max(r1,r2) there exist q× q
unimodular matrices M(z) and N(z) and polynomial matrices X(z) and Y (z) such
that

(
M(z) 0
−X(z) I

)
⎛

⎝
Iq−r1 0 0

0 T1(z) −U1(z)
0 V1(z) W1(z)

⎞

⎠=

⎛

⎝
Iq−r2 0 0

0 T2(z) −U2(z)
0 V2(z) W2(z)

⎞

⎠
(

N(z) Y (z)
0 I

)
.

Fuhrmann system equivalence has important implications for the understanding
of zeros of multivariable systems, as is further explained in Section 4.7. In this
regard, the following theorem is of interest.

Theorem 4.34. Let G(z) be a p×m proper rational transfer function, with the
coprime representations

G(z) = Nr(z)Dr(z)
−1 = D�(z)

−1N�(z) =V (z)T (z)−1U(z)+W(z). (4.35)

Then the polynomial matrices Nr(z), N�(z), and

(
T (z) −U(z)
V (z) W (z)

)
have the same

nontrivial invariant factors.

Proof. To representations (4.35) are associated the polynomial system matrices

(
D�(z) −N�(z)

I 0

)
,

(
Dr(z) −I
Nr(z) 0

)
,

(
T (z) −U(z)
V (z) W (z)

)
,

respectively. By Proposition 4.33, and for some nonnegative integers a,b,c, the
polynomial matrices

⎛

⎝
Ia 0 0
0 D�(z) −N�(z)
0 I 0

⎞

⎠ ,

⎛

⎝
Ib 0 0
0 Dr(z) −I
0 Nr(z) 0

⎞

⎠ ,

⎛

⎝
Ic 0 0
0 T (z) −U(z)
0 V (z) W (z)

⎞

⎠

are unimodularly equivalent. Clearly, the nontrivial invariant factors of

⎛

⎝
Ia 0 0
0 D�(z) −N�(z)
0 I 0

⎞

⎠
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and N�(z) coincide. Similarly, the nontrivial invariant factors of

⎛

⎝
Ib 0 0
0 Dr(z) −I
0 Nr(z) 0

⎞

⎠

coincide with those of Nr(z), which proves the theorem. �
This result indicates, as was realized by Rosenbrock, the importance of polyno-

mial system matrices in the study of zeros of multivariable systems. If we remove the
coprimeness constraints, the theorem as stated is no longer true. This is related to a
more elaborate study of input decoupling and output decoupling zeros Rosenbrock
(1970). The study of zeros is also closely connected to geometric control theory,
which will be briefly discussed in Chapter 6.

Using these characterizations of strict system equivalence, we proceed to deduce
some important invariance properties of that notion.

Theorem 4.35. 1. If two polynomial system matrices Pi =

(
Ti(z) −Ui(z)
Vi(z) Wi(z)

)
, i =

1,2, are FSE, then they have the same transfer function, that is,

V1(z)T1(z)
−1U1(z)+W1(z) =V2(z)T2(z)

−1U2(z)+W2(z).

Moreover, there exists a nonzero constant c ∈ F, with

det T2(z) = cdet T1(z). (4.36)

2. Conversely, if

V1(z)T1(z)
−1U1(z)+W1(z) = G(z) =V2(z)T2(z)

−1U2(z)+W2(z)

are two right and left coprime factorizations of a proper rational transfer
function G(z), then the associated polynomial system matrices P1 and P2

are FSE.

Proof. The first part follows from Lemma 4.20 and the similarity of the two shift
realizations ΣV1T−1

1 U1+W1
and ΣV2T−1

2 U2+W2
. Alternatively, it follows by a simple

computation from equations (4.30), (4.32), (4.33), and (4.34). By Proposition 4.33,
there exist unimodular matrices M(z) and N(z) with

M(z)

(
Iq−r1 0

0 T1(z)

)
=

(
Iq−r2 0

0 T2(z)

)
N(z).

This implies det M(z)det T1(z) = det T2(z)det N(z) and, therefore, (4.36).
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Let (Ai,Bi,Ci,Di) denote the shift realization associated with the strictly proper
transfer function G(z) = Vi(z)Ti(z)−1Ui(z), i = 1,2. By Theorem 4.26, the real-
izations (Ai,Bi,Ci,Di) of G(z) are reachable and observable. By applying the
state-space isomorphism theorem, (A1,B1,C1,D1) is similar to (A2,B2,C2,D2). This
completes the proof of the second part. �

Fuhrmann system equivalence is now applied to the problem of finding a
polynomial characterization of input/state and state/output systems. This leads to
an explicit construction of a basis matrix for the polynomial model associated with
a minimal realization.

Proposition 4.36. 1. Let G(z) = T (z)−1U(z) be a strictly proper, left coprime
matrix fraction. The following statements are equivalent:

(a) There exists an observable pair (C,A) for which

C(zI−A)−1 = T (z)−1U(z). (4.37)

(b) The polynomial matrix U(z) is a basis matrix for the polynomial model XT ,
i.e., the columns of U(z) form a basis.

2. Let (C,A) be an observable pair, and let T (z) and U(z) be left coprime matrix
polynomials that satisfy (4.37). Then U(z) is a basis matrix for the polynomial
model XT and

XT = {C(zI−A)−1ξ | ξ ∈ F
n}.

Moreover, if C has full row rank, then U(z) is left prime.
3. Let G(z) = V (z)T (z)−1 be a strictly proper matrix fraction. Then the following

statements are equivalent:

(a) There exists a reachable pair (A,B) for which

(zI−A)−1B =V (z)T (z)−1. (4.38)

(b) The polynomial matrix V (z) is a dual basis matrix for the polynomial model
XT , i.e., the columns of V (z)� form a basis for XT� .

4. Let (A,B) be a reachable pair and V (z),T (z) right coprime matrix polynomials
that satisfy (4.38). Then V (z) is a dual basis matrix for the polynomial model XT

and

{ξ�(zI−A)−1B | ξ ∈ F
n}= { f (z)� | f ∈ XT�}.

Moreover, if B is full column rank, then V (z) is right prime.

Proof. 2. The observability of the pair (C,A) is equivalent to the right coprimeness
of C,zI−A. Condition (4.37) is equivalent to the identity



176 4 Linear Systems

(
U(z) 0

0 I

)(
zI−A −I

C 0

)
=

(
T (z) −U(z)

I 0

)(
C 0
0 I

)
.

Using the left coprimeness of T (z) and U(z), this implies

(
zI−A −I

C 0

)
�FSE

(
T (z) −U(z)

I 0

)
.

Applying Theorem 4.32, it follows that (A, I,C) is similar to the shift realization
(As,Bs,Cs) associated with the matrix fraction T (z)−1U(z). In particular, this
implies the invertibility of Bs. Since Bsξ = πTUξ = Uξ , the injectivity of Bs

implies the linear independence of the columns of U(z), whereas the surjectivity
of Bs implies that the columns of U(z) span XT . Taken together, this shows that
U(z) is a basis matrix for XT . Moreover, if C is full row rank and v satisfies
v�U(z) = 0, then, using (4.37), v�T (z)C = 0 follows. Since C is full row rank,
this implies v�T (z) = 0. Since T (z) is nonsingular, this implies v = 0. This
completes the proof of 2.

1. Let U(z) denote a basis matrix of XT . Associate with the matrix fraction
T (z)−1U(z) the shift realization (As,Bs,Cs), defined by (4.20). Since U(z) is a
basis matrix, Bs is invertible and

T (z)−1U(z) =Cs(zI−As)
−1Bs =CsBs(zI−B−1

s AsBs)
−1.

Thus, (CsBs,B−1
s AsBs) is an observable pair satisfying (4.37). Conversely, if

(C,A) is observable with (4.37), then, by 2, U(z) is a basis matrix.
3, 4. Follows from the first two parts by duality considerations. The details are

omitted. �
As a consequence, the class of all realizations of strictly proper transfer functions

N(z)D(z)−1 with varying numerator polynomial N(z) can be described.

Theorem 4.37. Let G(z) be strictly proper with minimal realization (A,B,C).

1. If G(z) = N(z)D(z)−1 is a right coprime factorization and M(z)D(z)−1 is strictly
proper, then there exist C0 such that

M(z)D(z)−1 =C0(zI−A)−1B.

2. If G(z) = T (z)−1U(z) is a left coprime factorization and T (z)−1L(z) is strictly
proper, then there exist B0 such that

T (z)−1L(z) =C(zI−A)−1B0.

Proof. Only the first claim will be proved; the second follows mutatis mutandis.
Without loss of generality, it can be assumed that (A,B,C) is the shift realization
of G(z). Thus, A = SD, B = πD, and Cf = (N(z)D(z)−1 f (z))−1. Similarly, the shift



4.6 Strict System Equivalence 177

realization of M(z)D(z)−1 is A = SD, B = πD, and C0 = (M(z)D(z)−1 f (z))−1. This
completes the proof. �
Connecting continuous- and discrete-time systems.
The next proposition describes the relation between a class of continuous-time
behaviors and related discrete-time systems. Since the analysis of continuous-time
systems is not the main focus of this book, more general results will not be sought.

For an analytic function f (z) of exponential growth, the Taylor expansion f (t) =

∑∞
i=0

f (i)(0)
i! ti and the Laplace transform are related as

F(s) =L ( f ) =
∞

∑
i=0

f (i)(0)
si+1 .

Proposition 4.38. Let D(z) ∈ C[z]p×p be nonsingular. Let KerD( d
dt ) = { f |D( d

dt )
f = 0}, and let XD be the rational model associated with D. Then the following
assertions are true:

1. The Laplace transform is a C[z]-homomorphism.
2. L , the restriction of the Laplace transform to KerD( d

dt ), is a bijective map of
KerD( d

dt ) onto XD.
3. Let (CD,AD) be defined by (4.28). Define the pair (ĈD, ÂD) by

ÂDφ =
dφ
dt

, φ ∈KerD(
d
dt
),

ĈDφ = φ(0), φ ∈KerD(
d
dt
).

Then the following diagram is commutative:

XD

KerD( d
dt )

XD

KerD( d
dt )

ÂD

AD

ĈD

CD

R
p

�

�

� �

������

������

Proof. 1. Follows from

L (
d
dt

f ) =L ( f ′) = sL ( f )− f (0) = π−sF(s) = σL ( f ). (4.39)



178 4 Linear Systems

2. From (4.39), by induction, one obtains

L (φ ( j)) = s jL (φ)−s j−1φ(0)−·· ·−φ ( j−1)(0) = s jL (φ)−
j−1

∑
ν=0

s j−ν−1φ (ν)(0).

Assuming that D(z) = ∑r
j=0 D jz j and φ ∈ KerD( d

dt ), or equivalently that

D( d
dt )φ = 0, implies

L
r

∑
j=0

D jφ ( j) = 0 =
r

∑
j=0

D j[s
jL (φ)−

j−1

∑
ν=0

s j−ν−1φ (ν)(0)].

Changing the order of summation, one gets

D(s)L (φ) = ∑r
j=0 ∑ j−1

ν=0 D js j−ν−1φ (ν)(0)

= ∑r−1
j=0 ∑r

ν= j+1 D js j−ν−1φ (ν)(0).

From this it follows that L maps KerD( d
dt ) into XD. It is easy to check, see

Hinrichsen and Prätzel-Wolters (1980), that the restricted mapL : KerD( d
dt )−→

XD is actually a bijection.
3. This is a simple verification. �

4.7 Poles and Zeros

For scalar rational transfer functions g(z) ∈ F(z), the notions of poles and zeros are

very easy to define. In fact, for a coprime factorization g(z) = p(z)
q(z) by polynomials

p(z),q(z) ∈ F[z], the poles are the roots of the denominator polynomial q(z),
while the zeros are the roots of p(z). Correspondingly, one defines poles for a
multivariable, proper rational transfer function G(z) ∈ F(z)p×m via a representation

G(z) =V (z)T−1(z)U(z)+W (z) (4.40)

by left coprime and right coprime polynomial matrices V (z),T (z) and T (z),U(z),
respectively.

Definition 4.39. Let G(z) ∈ F(z)p×m be a strictly proper rational transfer function
with the representation (4.40) and satisfying the previously given coprimeness
conditions. The poles of G(z) are defined as the roots of the scalar polynomial
equation

det T (z) = 0.

Equivalently, they are the eigenvalues of the shift operator ST on XT .
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By Corollary 4.35, any two representations (4.40) of G(z) that satisfy the
coprimeness conditions are Fuhrmann strict system equivalent and thus define the
same poles. This shows that poles are well defined and independent of the choice of
coprime factors. In particular, for reachable and observable linear systems

xt+1 = Axt +But

yt = Cxt +Dut ,

with transfer function G(z) =C(zI−A)−1B+D, the poles of G(z) are identical to
the zeros of the characteristic polynomial det (zI −A), i.e., they are equal to the
eigenvalues of system matrix A.

So far, poles of transfer functions have been introduced and their relation to the
eigenvalues of a minimal first-order realization observed. In contrast, the analysis
of zeros of multivariable systems becomes more complicated. Heuristically, zeros
correspond to input frequencies that annihilate the output of a system. The scalar
case is easy. In fact, if (A,b,c) is a minimal state-space SISO representation of a
scalar, strictly proper transfer function,

g(z) =
p(z)
q(z)

= c(zI−A)−1b,

then q(z) = det (zI−A) and

p(z) = det

(
zI−A −b

c 0

)
.

This shows that zeros of SISO systems correspond to those values z of the algebraic
closure F with

rank

(
zI−A −b

c 0

)
< n+ 1.

This is equivalent to the classical definition of zeros given in, for example, Kailath
(1980) for SISO state-space systems.

Our next aim is to extend the classical definition of zeros from SISO first-order
representation systems to higher-order systems of the form

T (σ)ξ =U(σ)ξ ,

y =V (σ)ξ +W (σ)u.

Here V (z) ∈ F[z]p×r,T (z)∈ F[z]r×r,U(z)∈ F[z]r×m,W (z)∈ F[z]p×m are polynomial
matrices, with T (z) nonsingular and the transfer function G(z) =V (z)T (z)−1U(z)+
W (z) assumed to be proper. Note that the normal rank grk G(z) of a rational matrix
function G(z) ∈ F(z)p×m is defined as the classical rank of G(z) when viewed as a
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p×m matrix over the rational function field F(z). For an algebraically closed field
F, this coincides with the generic rank

grk G(z) = max{rk G(z) | z ∈ F not a pole}.

Definition 4.40. Let U(z),V (z),T (z),W (z) be polynomial matrices, with T (z) ∈
F[z]r×r nonsingular, such that the p×m rational function V (z)T (z)−1U(z)+W (z)
is proper. A finite zero of a polynomial system matrix

P(z) =

(
T (z) −U(z)
V (z) W (z)

)

is a complex number z0 ∈ F such that

rk P(z0)< grk P(z).

P(z) is said to have a zero at infinity if

rk π+(V (z)T (z)−1U(z)+W(z)) < grk (V (z)T (z)−1U(z)+W(z)).

Note that, by assuming the properness of W (z)+V (z)T (z)−1U(z), the polyno-
mial part π+(V (z)T (z)−1U(z)+W (z)) is a constant matrix. Definition 4.40 applies,
in particular, to first-order state-space representations (A,B,C,D):

xt+1 = Axt +But ,

yt = Cxt +Dut ,
(4.41)

with the associated polynomial system matrix

Σ(z) =
(

zI−A −B
C D

)
.

We conclude that system (4.41) has a zero at infinity if and only if

rk D < grk
(
D+C(zI−A)−1B

)
.

One complication with the notion of zeros for multivariable systems is that there
may be a common pole and zero occurring in a coprime factorization of a transfer
function. For example,

G(z) =

(
z

(z+1)2 0

0 z+1
z2

)
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has both poles and zeros at z = 0 and z = −1 and a zero at infinity. Moreover, a
p×m proper rational transfer function with p ≥ m may not have finite or infinite
zeros, as the example

G(z) =

(
z

z+1 0
0 z+1

z

)

shows.
A very useful result, relating the computation of zeros of first-order representa-

tions (4.41) to higher-order representations, is proved next.

Theorem 4.41. Let (A,B,C,D) be reachable and observable with the transfer
function

G(z) = D+C(zI−A)−1B.

1. For a factorization

G(z) =V (z)T (z)−1

with right coprime polynomial matrices V (z) and T (z), an element z0 ∈ F is a
finite zero of (A,B,C,D) if and only if

rank V (z0)< grk V (z).

2. For a factorization

G(z) = T (z)−1U(z)

with left coprime polynomial matrices T (z) and U(z), an element z0 ∈ F is a
finite zero of (A,B,C,D) if and only if

rank U(z0)< grk U(z).

3. (A,B,C,D) has a zero at infinity if and only if

rank D < grk U(z) or rank D < grk V (z).

Proof. Since (A,B,C,D) is reachable and observable, and using the right coprime-
ness of V (z) and T (z), one obtains the following equivalence:

Σ(z) =
(

zI−A −B
C D

)
�FSE

(
T (z) −Im

V (z) 0

)
=P(z).
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Applying a suitable unimodular transformation on the right of P(z), one sees that
P(z) and

(
Im 0
0 V (z)

)

have the same Smith form. By Theorem 4.35, this implies that Σ(z) and V (z)
have the same nontrivial invariant factors and, thus, the same zeros. This proves
assertion 1. The proof is similar for the other assertions. �

There is a straightforward relation of the preceding definition of zeros to the
Smith–McMillan form of a rational function.

Proposition 4.42. Let G(z) = V (z)T (z)−1U(z) +W (z) ∈ F(z)p×m be a proper
rational function with Smith–McMillan form

diag(
ε1(z)
ψ1(z)

, · · · , εr(z)
ψr(z)

,0, · · · ,0).

If V (z) and T (z) are right coprime and T (z) and U(z) are left coprime, then the zeros
of the polynomials ε1(z), . . . ,εr(z) coincide with the finite zeros of the polynomial
system matrix

P(z) =

(
T (z) −U(z)
V (z) W (z)

)
.

In particular, the numerator polynomials V (z) in a right coprime factorization
V (z)T (z)−1 = G(z) all have the same Smith form, and similarly for right numer-
ators.

Proof. Let L(z),R(z) be unimodular matrices such that L(z)G(z)R(z) is in Smith–
McMillan form. Consider the p×m and m×m polynomial matrices

N(z) = diag(ε1(z), · · · ,εr(z),0), D(z) = diag(ψ1(z), · · · ,ψr(z), Im−r).

Then P(z) := L(z)−1N(z) and Q(z) = Z(z)D(z) are polynomial matrices, and

G(z) = P(z)Q(z)−1

is a right coprime factorization. Therefore, the polynomial matrices P(z) and

M(z) =

(
Q(z) −I
P(z) 0

)



4.7 Poles and Zeros 183

are Fuhrmann strict system equivalent, and therefore P(z) has the same nontrivial
invariant factors as P(z) or, equivalently, N(z), i.e., as ε1(z), . . . ,εr(z). This com-
pletes the proof. �

In view of Proposition 4.42, it is tempting to define the finite zeros of a
linear system, with the proper, rational transfer function G(z), as the zeros of

the polynomial system matrix

(
T (z) −U(z)
V (z) W (z)

)
. However, this is a representation-

dependent definition. To circumvent this difficulty, Wyman and Sain (1981) initiated
a module-theoretic approach to zeros.

Definition 4.43. Let G(z) ∈ F(z)p×m be rational, with

G(z)−1
F[z]p := { f (z) ∈ F(z)m | G(z) f (z) ∈ F[z]p},

KerG(z) := { f (z) ∈ F(z)m | G(z) f (z) = 0}.

The pole module of G(z) is defined as the F[z]-module

X(G) =
F[z]m

G(z)−1F[z]p ∩ F[z]m
. (4.42)

The zero module of G(z) is defined as the F[z]-module

Z(G) =
G(z)−1

F[z]p +F[z]m

KerG(z) + F[z]m
. (4.43)

The meaning of the preceding definition becomes clearer if one assumes that
G(z) is given in terms of a coprime factorization. It is worth mentioning, without
giving a complete proof, one characterization due to Wyman and Sain (1981). The
first part shows that the pole module is simply the state space of the system, viewed
as a polynomial model.

Theorem 4.44. 1. Let G(z) = Nr(z)Dr(z)−1 be a right coprime factorization of
the proper transfer function G(z). Then the pole module X(G) is F[z]-linearly
isomorphic to the polynomial model XDr . In particular, one has the dimension
formula

dimX(G) = degdetDr.

2. Let G(z) = D�(z)−1N�(z) be a left coprime factorization of the proper transfer
function G(z). Then the zero module Z(G) is F[z]-linearly isomorphic to the
torsion submodule of

F[z]p/N�(z)F[z]
m.
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In particular, one has the dimension formula

dimZ(G) =∑
i

degdetεi,

where the εi are the nontrivial invariant factors of N�(z).

Proof. 1. Note that g(z) ∈ G(z)−1(F[z]p)∩F[z]m if and only if NrD−1
r g ∈ F[z]p. By

the right coprimeness of Nr(z),Dr(z), there exist polynomial matrices X�(z),Y�(z)
for which X�(z)Nr(z)+Y�(z)Dr(z) = I. This implies

Dr(z)
−1g(z) = X�(z)Nr(z)Dr(z)

−1g(z)+Y�(z)g(z) ∈ F[z]p,

i.e., g(z) ∈ DrF[z]m, and so G(z)−1(F[z]p) ∩ F[z]m = DrF[z]m. From this we
conclude that

X(G) =
F[z]m

G(z)−1F[z]p ∩ F[z]m
=

F[z]m

DrF[z]m
� XDr ,

which completes the proof of the first assertion.
2. Note that f (z) ∈ F(z)m satisfies G(z) f (z) ∈ F[z]p if and only if N�(z) f (z) =

D�(z)a(z) is satisfied for a polynomial a(z)∈F[z]p. Thus, N� f is a polynomial for
all f (z) ∈ G(z)−1

F[z]p. Let π : F[z]p −→ F[z]p/N�(z)F[z]m denote the canonical
quotient map. It is verified next that the F[z]-linear map

τ : G(z)−1
F[z]p +F[z]m −→ F[z]p/N�(z)F[z]

m, f (z) �→ π(N� f )

has kernel Ker τ = KerG(z) + F[z]m and, therefore, induces a module iso-
morphism of Z(G) onto a submodule of F[z]p/N�(z)F[z]m. In fact, for f ∈
G(z)−1

F[z]p +F[z]m one has π(N� f ) = 0 if and only if N�(z) f (z) = N�(z)a(z)
for a polynomial a(z) ∈ F[z]m. This is equivalent to G(z)( f (z)− a(z)) = 0, i.e.,
to f ∈ Ker G + F[z]m. Thus Ker τ = Ker G + F[z]m. For the proof that the
image of τ coincides with the torsion submodule, see Wyman and Sain (1981).

�
Instead of a matrix fraction representation, one can consider a generalized

polynomial matrix description of the form

G(z) =V (z)T (z)−1U(z)+W(z), (4.44)

with V (z),T (z),U(z), and W (z) polynomial matrices and T (z) nonsingular. Assum-
ing the left coprimeness of T (z) and U(z) and the right coprimeness of T (z) and
V (z), the pole information is completely determined by T (z). A natural question
that arises is the representation of the zero module in terms of the polynomial data
that are represented by the polynomial matrices V (z),T (z),U(z), and W (z). As in
(4.1), the polynomial system matrix associated with the representation (4.44) is
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P(z) :=

(
T (z) −U(z)
V (z) W (z)

)
. (4.45)

We already had, in Proposition 4.33, some indications that the polynomial system
matrix (4.45) of a transfer function G(z) behaves like the numerator in a matrix frac-
tion description. Therefore, the following theorem, proved in Hautus and Fuhrmann
(1980), is not totally unexpected. However, before stating it, the following notation
is introduced. Considering F(z)s+p as the direct sum F(z)s⊕F(z)p, we define the
projections pr1 : F(z)s+p −→ F(z)s and pr2 : F(z)s+p −→ F(z)p by

pr1

(
f1

f2

)
= f1, pr2

(
f1

f2

)
= f2.

Theorem 4.45. Let G(z) ∈ F(z)p×m be proper, having the representation (4.44),
and let P(z) be the associated (s+ p)× (s+m) polynomial system matrix. Then:

1. If T (z) and U(z) are left coprime, then

Z(G) =
pr2(P

−1(F[z]s+p)+F[z]m

pr2(KerP)+F[z]m
;

2. If in addition V (z) and T (z) are right coprime, then Z(P) � Z(G), the isomor-
phism being the one induced by pr2.

Proof. 1. We note first that if

(
u
v

)
∈ F(z)s+m, then

(
u
v

)
∈ KerP if and only if

v ∈KerG and u = T−1Uv. So KerG = pr2KerP, and hence

KerG+F[z]m = pr2(KerP)+F[z]m.

Next, we show the inclusion

G−1(F[z]p)⊂ pr2(P
−1(F[z]s+p). (4.46)

Indeed, if h2 ∈ G−1(F[z]p), then Gh2 = p2 ∈ F[z]p. Defining h1 := −T−1Uh2,

then P

(
h1

h2

)
=

(
0
p2

)
∈ F[z]s+p, which proves (4.46). In particular, we obtain

the inclusion

G−1(F[z]p)+F[z]m ⊂ pr2P−1(F[z]s+p)+F[z]m. (4.47)

Using the left coprimeness of T (z) and U(z), we next show that

pr2P−1(F[z]s+p)⊂ G−1(F[z]p)+F[z]m. (4.48)
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By the left coprimeness of T (z) and U(z), we have

TF[z]s +UF[z]m = F[z]s. (4.49)

If h2 ∈ pr2P−1(F[z]s+p), then there exists h1 such that

P

(
h1

h2

)
=

(
y1

y2

)
∈ F[z]s+p.

By (4.49), there exist polynomial vectors p1 and p2 for which Tp1−Up2 = y1.
We obtain the equations

Th1−Uh2 = Tp1−Up2

and

Vh1 +Wh2 = y2.

Since h1 = p1 + T−1U(h2 − p2), we obtain, by substitution, that h2 − p2 ∈
G−1(F[z]p) or h2 ∈ G−1(F[z]p)+F[z]m. This proves (4.48), and hence

pr2(P
−1(F[z]s+p)+F[z]m ⊂ G−1(F[z]p)+F[z]m.

By (4.47), the equality pr2(P
−1(F[z]s+p)+F[z]m = G−1(F[z]p)+F[z]m follows.

This proves 1.
2. If h2 ∈ pr2(KerP) + F[z]m, then there exist a k ∈ F((z−1))s and a polynomial

vector g such that

P

(
k

h2 + g

)
=

(
0
0

)

or

(
k
h2

)
∈KerP+F[z]s+m,

which implies that h2 ∈ pr2(KerP+F[z]s+m).
Conversely, if h2 ∈ pr2(KerP+F[z]s+m), then there exist h1 and polynomials

g1 and g2 such that

P

(
h1 + g1

h2 + g2

)
=

(
0
0

)
,
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or h2− g2 ∈ pr2KerP, that is, h2 ∈ pr2(KerP)+F[z]m, and so we have

pr2(KerP)+F[z]m = pr2(KerP+F[z]s+m). (4.50)

In an analogous way we prove

pr2(P
−1(F[z]s+p)+F[z]m = pr2(P

−1(F[z]s+p)+F[z]s+m). (4.51)

Equalities (4.50) and (4.51) and Part 1 imply the surjectivity of the induced map
pr2 : Z(P)−→ Z(G).
As a final step, we show that if V and T are right coprime, then the map pr2 is
also injective and, hence, is an isomorphism. To this end, assume that

(
h1

h2

)
∈ P−1(F[z]s+p)+F[z]s+m

and

pr2

(
h1

h2

)
∈ pr2(KerP)+F[z]m.

We will show that

(
h1

h2

)
∈ KerP + F[z]s+m. Our assumption implies that

P

(
h1

h2

)
∈ F[z]s+p. Also, there exist k and a polynomial g ∈ F[z]m such that

P

(
k

h2 + g

)
=

(
0
0

)
, and so, as noted earlier, G(h2 + g) = 0. We choose g2 =

g and will show that g1 = h1 + T−1U(h2 + g) is a polynomial. Using right
coprimeness, there exist polynomial matrices S and R such that ST −RV = I,
from which the equality

T−1U = SU−RVT−1U = SU+RW−RG

follows. Since P

(
h1

h2

)
∈ F[z]s+p, it follows that

(
S R

)
P

(
h1

h2

)
= h1 +(SU+RW)h2

is a polynomial. Furthermore,

g1 = h1 +T−1U(h2 + g)
= h1 +(SU+RW−RG)(h2 + g)
= h1 +(SU+RW)h2 +(SU+RW)g
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is a polynomial. Here, we use the fact that h2 + g ∈KerG. This implies

(
h1 + g1

h2 + g2

)
∈KerP,

which proves Part 2.
�

It is worth pointing out that there is an alternative approach to the study of zeros
of linear systems that is based on geometric control. We will return briefly to this
circle of ideas in Chapter 6.

4.8 Open-Loop Control

In the preceding sections of this chapter, following the path-breaking work of
Kalman, the basic concepts of reachability and observability were introduced. The
underlying question concerning reachability was: Can every state be reached from
the zero state by a suitable control sequence? The reachability of a pair (A,B) was
characterized by the Kalman reachability matrix (B,AB, . . . ,An−1B), which is of full
rank. Equivalently, reachability is characterized in terms of the Hautus condition by
the left coprimeness of zI−A,B. When dealing with linear systems described by
higher-order equations, as in (4.7), there is no a priori given state, and therefore
reachability and observability are defined in terms of the associated shift realization
(4.20). Whatever the representation of the system, the interesting question remains:
For a desired state, how does one compute the control sequence (or sequences)
that steers (steer) the system from the resting state to that desired state? There are
several variants to this problem, some of which will be discussed in this chapter.
These include the problem of controlling to zero, controlling in a quotient space, and
reconstructing states from observations. Another important direction is toward the
construction of steering controls for systems described by higher-order difference
or differential equations.

Because a reachability map maps input functions to states, the natural thing
to do is to invert it. However, if one assumes the reachability of a system, that
reachability map will be surjective but not necessarily injective, so it is not properly
invertible. To obtain a right inverse, one needs to factor out its kernel and restrict the
reachability map to the associated quotient space. Moreover, the reachability map is
a homomorphism over the ring of polynomials F[z]. Thus the reduced reachability
map has a representation of the form studied in Theorem 3.20, and its inversion is
achieved by embedding an intertwining relation in a doubly coprime factorization.
Because such an embedding is not unique, one can parameterize all controllers that
steer to a given state. This opens up the possibility of studying various optimal
control problems and leads, as will be shown, to explicit constructions of the inputs
that steer the zero state to a desired state vector and will present our main approach
to open-loop control.
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1. Open-Loop Control for State Systems

An approach to the terminal-state problem from the point of view of inverting the
reachability map is now presented. Consider a linear system given in state-space
form as

xt+1 = Axt +But , t ∈ Z,

or, equivalently, via the polynomial vector equation

(zI−A)x(z) = Bu(z). (4.52)

In principle, there are two different ways to formalize the problem of steering from
a zero initial state to a terminal state ξ in finite time τ , depending on whether the
desired state is to be realized at time t = 0 or in the future. The first is the classical
approach and assumes that (A,B) ∈ F

n×n×F
n×m is a reachable pair and that the

system has been at rest till time t = −τ < 0. For state vectors ξ ∈ F
n, our aim is to

compute control sequences that steer the system from the origin to state ξ at time
t = 0. The simplest approach to the solution is to expand the time trajectories given
by the polynomial vectors

x(z) =
τ−1

∑
i=0

x−iz
i, u(z) =

τ

∑
i=0

u−iz
i

and equate the coefficients in (4.52). This leads to the equation ξ = ∑τ
i=0 AiBu−i or,

in matrix form,

ξ = x0 =
(

B AB . . . AτB
)
⎛

⎜
⎝

u0
...

u−τ

⎞

⎟
⎠ . (4.53)

By our assumption on the reachability of the pair (A,B), this equation is solvable for
all τ ≥ n− 1. The condition τ ≥ n− 1 is not necessary, and there may exist shorter
control sequences that steer the system from the resting state to state ξ . As will be
seen later, the exact minimal-length input sequence depends on the minimal indices
of an associated polynomial matrix D(z). In Chapter 6, it will be explained how the
minimal indices are related to the fine structure of the pair (A,B) as manifested in
its reachability indices. The down side of using (4.56) as a basis for the computation
of the set of steering controllers is the lack of a convenient parameterization.

This short heuristic analysis indicates some of the shortcomings of the state-
space approach and suggests turning to a functional, or module-theoretic, approach.
To this end, Fn, endowed with the F[z]-module structure induced by A, is identified
with the polynomial model XzI−A. Moreover, to stay in line with standard traditions,
the coefficients of the input polynomial are labelled by nonnegative integers, i.e.,
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as u(z) = ∑s
j=0 u jz j . This convention implies that the input sequence applied to the

system corresponds to the coefficients of u(z), listed in reverse order. Next, the
definition of the reachability map R(A,B) : F[z]m −→ XzI−A is recalled, namely,

R(A,B) :F[z]m −→ XzI−A = F
n,

R(A,B)u = πzI−ABu, u(z) ∈ F[z]m,

or, equivalently, by

R(A,B)

s

∑
i=0

uiz
i =

s

∑
i=0

AiBui,
s

∑
i=0

uiz
i ∈ F[z]m. (4.54)

Thus, the states at time 0 that can be reached from the zero state in the remote
past are exactly the points contained in the image of R(A,B). The reachability map
is an F[z]-module homomorphism. Its image, ImR(A,B), is the reachable subspace
of the pair (A,B). Thus, to compute controls that steer to a state ξ , one needs to
invert the reachability map R(A,B) [and by reversing the order of the coefficients in
the computed polynomial u(z)]. Note that R(A,B) has a large kernel that is a full
submodule of F[z]m and, hence, is representable as DF[z]m for a nonsingular D(z) ∈
F[z]m×m. To obtain an invertible map, the kernel must be factored out. Denote by R
the reduced reachability map, namely, the map induced by R(A,B) on the quotient
space F[z]m/DF[z]m, which is identified with the polynomial model XD. Thus the
reduced reachability map is equal to

R : XD −→ XzI−A, Ru = πzI−ABu. (4.55)

By the assumption of reachability, R is surjective, whereas by construction it is
injective; hence, R is an isomorphism.

Definition 4.46. Assume that

N(z)D(z)−1 = (zI−A)−1B

is a right coprime factorization. An input sequence u0, . . . ,uT ∈ F
m with associated

input polynomial u(z) = ∑T
i=0 uizi is called minimal for ξ ∈ F

n, provided that

R(A,B)u = ξ

and

D(z)−1u(z)

is strictly proper. Equivalently, u(z) =R−1ξ .
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Thus it turns out that computing the minimal control sequence is achieved by
inverting the mapR. Applying our results on inverting polynomial model homomor-
phisms, this is best achieved by embedding intertwining maps in doubly coprime
factorizations. The following diagram will help to better understand the various
maps:

����

����

F
m

XD XzI−A

XD XzI−A

SD

πD

A

B

�

�

� �

Theorem 4.47. Let (A,B) ∈ F
n×n×F

n×m be a reachable pair, and let

(zI−A)−1B = N(z)D(z)−1 (4.56)

be coprime factorizations, with D(z) ∈ F[z]m×m,N(z) ∈ F[z]n×m.

1. The intertwining relation

BD(z) = (zI−A)N(z) (4.57)

can be embedded in the following doubly coprime factorization:

(
Y (z) X(z)
−B zI−A

)(
D(z) −X(z)
N(z) Y (z)

)
=

(
I 0
0 I

)
. (4.58)

2. There exists a unique embedding (4.58) for which X is constant. In that case, the
pair (X ,A) is an observable pair, D(z)−1X(z) is strictly proper, and the columns
of X(z) form a basis for the polynomial model XD.

3. The reachability map R(A,B) is an F[z]-homomorphism, and its kernel is a
submodule of F[z]m with the representation

KerR(A,B) = DF[z]m. (4.59)

4. For each state ξ ∈ F
n, there exists a unique minimal control sequence umin(z)

that steers the system from the zero state to ξ at time t = 0, and it is given by
the coefficients of umin(z) =R−1ξ . Specifically, in terms of the doubly coprime
factorization (4.58), the minimal input polynomial is

umin(z) =R−1ξ = Xξ . (4.60)
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5. Every solution u∗(z) to the steering problem is of the form

u∗(z) = umin(z)+D(z)g(z),

with g(z) ∈ F[z]m.

Proof. 1. Follows from Theorem 3.21.
2. Follows from Theorem 2.33, but the following direct argument may be useful,

too. Let (4.58) be a doubly coprime embedding of the intertwining relation
(4.57); then for every polynomial matrix E(z),

(
Y (z)−E(z)B X(z)+E(z)(zI−A)

−B zI−A

)(
D(z) −X(z)−D(z)E(z)

N(z) Y (z)−N(z)E(z)

)

=

(
I 0
0 I

)

.

Choosing E = π+X(zI − A)−1 = −π+D−1X gives such an embedding, which
proves existence. Assume now that there are two such embeddings, with X1 and
X2 constant matrices, which implies the two Bezout equations YiD−XiN = I,

i = 1,2. Subtracting, one gets
(
(Y2−Y1), −(X2−X1)

)
(

D
N

)
= 0, which implies

that there exists a polynomial matrix F(z) for which
(
(Y2−Y1), −(X2−X1)

)
=

F
(−B, zI−A

)
. This implies that F(z) = (X2−X1)(zI−A)−1 is both polynomial

as well as strictly proper and, hence, necessarily zero. This proves uniqueness.
The observability of the pair (X ,A) is a consequence of the right coprimeness of
X and zI−A. That the columns of X form a basis for the polynomial model XD

is a consequence of the equality X(zI−A)−1 = D−1X and Proposition 4.36.
3. Follows from the coprimeness of the factorizations (4.56).
4. The doubly coprime factorization (4.58) implies the intertwining relation

D(z)X = X(z)(zI−A) (4.61)

as well as the necessary coprimeness conditions for applying Theorem 3.21, thus
(4.60) follows. Incidentally, the doubly coprime factorization (4.58) shows that
the columns of X(z) form a basis B for XD. In fact, there exists a unique basis B
in XD that is the inverse image of the standard basis in F

n. This allows us to view
the map R as a change of basis transformationRu(z) = [u]B. By transposing the
doubly coprime factorization (4.58), one infers that the columns of N(z)� are the
elements of the basis B∗ of XD� , which is dual to the basis B of XD.

5. Follows from (4.59). �
An interesting question that is not answered by the preceding theorem is how to

estimate the minimal degree of an input polynomial that steers 0 to ξ . Of course, the
length of the control sequence u0, . . . ,uT required to steer to the state ξ is equal
to degu(z)− 1 of the polynomial u(z) = ∑T

i=0 uizi, and it depends on the state.
One might guess that the degree of minimal controllers umin(z) coincides with the
minimal length Topt of an input sequence that steers to ξ . In fact, in the single-input
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case m = 1, this is certainly true. Moreover, if D(z) ∈ F[z]m×m is diagonal with
column (or row) degrees κ1, . . . ,κm, it is easily seen that for polynomials u(z) ∈ XD

and f (z) = col( f1(z), . . . , fm(z)) ∈ F[z]m the identity

deg(u+D f ) = max

(
degu, max

1≤i≤m
(κi + deg fi)

)

is valid. However, the general multivariable case m > 1 is not so easy to handle.
In particular, it remains an open problem to decide under which conditions
degumin(z) ≤ degu∗(z) is satisfied for all open-loop controllers u∗(z). Some of the
difficulties that arise are illustrated by the following example.

Example 4.48. Let

D(z) =

(
z5 0
0 z2

)
,

and assume that umin =

(
2z4 + 3
3z− 1

)
∈ XD is a “minimal” open-loop controller for a

suitable terminal state. Then

u∗(z) =
(

2z4 + 3
3z− 1

)
+

(
z5 0
0 z2

)(
0

z+ 6

)
=

(
2z4 + 3

z3 + 6z2 + 3z− 1

)

is also an open-loop controller having the same degree. Note that

deg

(
z5 0
0 z2

)(
0

z+ 6

)
= 3 < degu∗(z) = 4.

In particular, minimal-degree open-loop controllers need not be unique.

Our solution to the problem of computing open-loop controls used polynomial
model theory. Because of the isomorphism between polynomial models on the one
hand and rational models on the other, one could just as well use the later. From a
system-theoretic point of view, this requires that the problem formulation be set in
the future. So, for a state ξ ∈ F

n, one looks for a controller that steers the system
from the zero state to the terminal state ξ at time τ . For the time trajectories, we
write x(z) = ∑∞

i=0 xiz−i−1 and similarly for other trajectories.

2. Open-Loop Control for Higher-Order Systems

In many situations, the system under consideration is represented not in state-space
terms, but rather by equations of higher order. Assuming ξ (z),u(z) to be truncated
Laurent series, then, over the full time axis Z, the system is given by an equation of
the form

T (z)ξ (z) =U(z)u(z), (4.62)
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with T (z)∈F[z]r×r nonsingular and U(z)∈F[z]r×m. In cases with a continuous-time
system, the action of z is interpreted as differentiation. Further, it will be assumed
that T (z)−1U(z) is strictly proper, i.e., that (4.62) represents a strictly causal system.
With the system equation (4.62) one can associate a natural input/state pair (A,B)
by defining the polynomial model space XT as in (3.2) and using the shift realization
(4.20). By Theorem 4.26, the pair (A,B) so defined is reachable if and only if
T (z) and U(z) are left coprime. Our principal goal is to extend Theorem 4.47 to
the present situation, i.e., to compute controls that steer the system from the zero
state to a state f (z) in the state space XT . Of course, one can apply realization
theory to represent our system by first-order equations and solve the problem as
before. However, our preference is to avoid matrix realization procedures and solve
the problem in the context in which it is given, namely, in terms of higher-order
equations. The following theorem, the counterpart of Theorem 4.47, summarizes
the main results.

Proposition 4.49. Let (T (z),U(z)) ∈ F[z]r×r×F[z]r×m be left coprime polynomial
matrices with T (z)−1U(z) strictly proper. Then:

1. There exist right coprime polynomial matrices T (z) ∈ F[z]m×m,U(z) ∈ F[z]r×m

with

T (z)−1U(z) =U(z)T (z)−1 (4.63)

or, equivalently, that satisfy the intertwining relation

T (z)U(z) =U(z)T (z). (4.64)

Moreover, there exists a right coprime factorization U(z)T (z)−1 of T (z)−1U(z)
for which the polynomial matrix T (z) =

(
T 1(z) . . . T m(z)

)
is column proper

with column degrees κ1 ≥ ·· · ≥ κm ≥ 0.
2. The intertwining relation (4.64) can be embedded in the following doubly

coprime factorization:

(
Y (z) X(z)
−U(z) T (z)

)(
T (z) −X(z)
U(z) Y (z)

)
=

(
I 0
0 I

)
. (4.65)

3. There exists a unique embedding (4.65) for which X(z)T (z)−1 and T (z)−1X(z)
are strictly proper. In that case, the pair (X(z),T (z)) induces, by way of the shift
realization, an observable pair in the state space XT .

Proof. 1. By using the shift realization (4.20), the corresponding reachability map
R(T,U) : F[z]m −→ XT is given by

R(T,U)u = πT (Uu), u(z) ∈ F[z]m.
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Clearly, R(T,U) is an F[z]-homomorphism that is surjective if and only if T (z)
and U(z) are left coprime, which is equivalent to reachability. Assuming that, one
notes that KerR(T,U) ⊂ F[z]m is a submodule and, hence, has a representation

KerR(T,U) = TF[z]m. (4.66)

Computing, for g(z) ∈ F[z]m, πTUTg = Tπ−T−1UTg = 0 implies that U(z) =
T (z)−1U(z)T (z) is a polynomial matrix. This proves equations (4.63) and (4.64).
Equation (4.66) implies the right coprimeness of T (z) and U(z). Equivalently
stated, U(z)T (z)−1 is a right coprime factorization of T (z)−1U(z).

2. Taking note of the intertwining relation (4.64) and the coprimeness assumptions,
the statement follows by an application of Theorem 2.33.

3. The existence of such an embedding follows from Theorem 2.33, whereas the
observability of the constructed pair follows from Theorem 4.26. �
The solution to the minimum-time, open-loop control problem is stated next.

Theorem 4.50. 1. For each state f (z) ∈ XT , there exists a unique minimal control
sequence that steers system (4.62) from the zero state to f (z), and it is given by
the (reversed) coefficients of umin(z) =R−1 f . Specifically, in terms of the doubly
coprime factorization (4.65), one has

umin(z) =R−1 f = πT X f .

2. A control u∗(z) steers the system from the zero state to f (z) at time t = 0 if and
only if there exists a g(z) ∈ F[z]m for which

u∗(z) = umin(z)+T (z)g(z).

3. Assume that in a right coprime factorization U(z)T (z)−1 the polynomial matrix
T (z) =

(
T 1(z) . . . T m(z)

)
is column proper, with column degrees κ1 ≥ ·· · ≥

κm ≥ 0. Let τ > κ1. Then a controller u∗(z) steers system (4.62) from the zero
state at time t = −τ to a prescribed state f (z) ∈ XT at time t = 0 if and
only if u∗(z) = umin(z) + T (z)g(z), with g(z) = col(g1(z), . . . ,gm(z)) satisfying
maxi=1,...,m(degT i + deggi) = τ− 1.

Proof. 1. Since the polynomial matrices T (z) and U(z) are determined only up
to a common right unimodular factor, we can use this freedom to reduce T (z)
to a column proper form, with column degrees κ1 ≥ ·· · ≥ κm ≥ 0. Applying
Theorem 3.20, this implies the existence of an isomorphism Z : XT −→ XT ,

Zf = πT Uf , f (z) ∈ XT .

The pair (T (z), I) induces, by way of the shift realization, a reachable pair (A,B)
in the state space XT . Noting the isomorphism XT � F[z]m/TF[z]m, we identify
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the two spaces and define the reduced reachability map, R : XT −→ XT by
Ru = πT Uu. This is summed up by the following diagram:

����

����

F
m

XT XT

XT XT

ST

πT

ST

πTU(·)

�

�

� �

2. In view of the coprimeness assumptions, the intertwining relation (4.64) can be
embedded in a doubly coprime factorization (4.65).

3. Assume that u∗(z) steers to f ∈ XT and is of degree τ − 1 ≥ κ1. Then u∗(z) =
umin(z) + T (z)g(z). Since umin ∈ XT , the inequality degumin < κ1 follows and
therefore deg(T g) = max1≤i≤m(degT i + deggi) = degu∗ = τ− 1.
For the converse direction assume that u∗(z) = umin(z) + T (z)g(z) is true for
g(z) = col(g1(z), . . . ,gm(z)) satisfying maxi=1,...,m(degT i+deggi) = τ−1≥ κ1.
Then u∗ steers to f . Since each component of umin has degree < κ1 ≤ τ − 1, we
see that degu∗ = τ− 1. This completes the proof. �
Observe that in the proof of Theorem 4.50, a unimodular embedding of the

polynomial matrix
(

T (z) −U(z)
)

was introduced for the sole purpose of inverting
the reduced reachability map R. However, once a unimodular embedding is
available, it becomes natural to consider the system described by the equations

T (z)ξ = U(z)u,
y = V (z)ξ +W (z)u.

Thus, a flat output is added to system (4.62). This suggests strongly that it may
be of interest to conduct a deeper study of the use of flat outputs in problems of
computing terminally constrained steering controllers. In fact, they are a strong tool
in the solution of problems other than that of steering to a prescribed state. Typical
examples include steering to constrained partial state trajectories.

3. Reachability in a Quotient Space

There are situations when a subspace of the state space is given, and one need not
control the system to a specific state in that subspace. In that case, the aim should be
to reach all states of a quotient space, and this is the next subject of discussion. To
this end, let (A,B) be a reachable pair and N(z)D(z)−1 a right coprime factorization
of (zI−A)−1B. Assume that the intertwining relation

BD(z) = (zI−A)N(z) (4.67)
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is embedded in the doubly coprime factorization (4.58). Let V ⊂ XzI−A be an
m-dimensional invariant subspace. Choosing an appropriate basis in XzI−A, we
obtain the following representations:

A =

(
A1 0
A3 A2

)
, B =

(
B1

B2

)
, N =

(
N1

N2

)
, V = {

(
0
x

)
| x ∈ F

m}, (4.68)

and we define

E(z) =

(
zI−A1 0
−A3 zI−A2

)

, E1(z) =

(
zI−A1 0
−A3 I

)

, E2(z) =

(
I 0
0 zI−A2

)

.

Theorem 4.51. Let R : XD −→ XzI−A be the reduced reachability map defined by
(4.55).

1. The invariant subspace V , defined in (4.68), has the representation

V = X(
I 0
0 zI−A2

) =

(
0

XzI−A2

)

which corresponds to the factorization E(z)) = E1(z)E2(z), or, explicitly, to

(
zI−A1 0
−A3 zI−A2

)
=

(
zI−A1 0
−A3 I

)(
I 0
0 zI−A2

)
.

2. Using the isomorphism XE1 � XE1E2/E1XE2 , we compose R with the projection
πE1 to get a surjective map R : XD −→ XE1 given, for f (z) ∈ XD, by

R f = πE1Bf . (4.69)

3. There exists a factorization D(z) = D1(z)D2(z), with D2 = g.c.r.d.(D,E2N), for
which KerR = D1XD2 .

4. There exists a factorization

E2(z)N(z) = H(z)D2(z), (4.70)

with a suitable polynomial factor H(z) and D1(z),H(z) right coprime. The
intertwining relation

BD1(z) = E1(z)H(z) (4.71)
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can be embedded in the doubly coprime factorization

(
Θ1(z) Ξ1(z)
−B E1(z)

)(
D1(z) −Ξ 1(z)
H(z) Θ1(z)

)
=

(
I 0
0 I

)
. (4.72)

5. The inverse of the map R, defined in (4.69), is given by

R−1ξ = πE1Ξ 1ξ .

Proof. 1. Follows by computing

V =

(
zI−A1 0
−A3 I

)
X(

I 0
0 zI−A2

) =

(
0

XzI−A2

)
.

2. This follows by computing, for f (z) ∈ XD,

R f = πE1πEBf = E1π−E−1
1 E1E2π−E−1

2 E−1
1 Bf = E1π−E2π−E−1

2 E−1
1 Bf

= E1π−E2E−1
2 E−1

1 Bf = E1π−E−1
1 Bf = πE1Bf .

3. Clearly, R is surjective. However, it has a kernel that is necessarily a sub-
module of XD; hence, it has a representation D1XD2 for a factorization D(z) =
D1(z)D2(z).

4. Applying Theorem 3.21 yields D2(z) = g.c.r.d.(D(z),E2(z)N(z)). This implies
the existence of the factorization (4.70). The intertwining relation (4.67), i.e.,
B(D1(z)D2(z)) = E1(z)(E2(z)N(z)) = E1(z)(H(z)D2(z)), implies in turn the
intertwining relation

BD1(z) = E1(z)H(z) (4.73)

as well as the isomorphism XD1 � XE1 . Because of the coprimeness conditions,
the intertwining relation (4.70) can be embedded in the doubly coprime factor-
ization (4.71). Rather than compute this embedding ab initio, it is related to the
doubly coprime factorization (4.58). For this, some preliminary computations
are needed. First, note that the intertwining relations (4.67) and (4.71) are
compatible. Indeed, if the second relation is multiplied on the right by D2(z)
and (4.73) is used, then

BD(z) = BD1(z)D2(z) = E1(z)H(z)D2(z) = E1(z)E2(z)N(z) = E(z)N(z).

Next, the Bezout equations −BΞ(z) + E1(z)E2(z)Θ (z) = I and −BΞ1(z) +
E1(z)Θ 1(z) = I are compared, which suggests the choice

Ξ 1(z) = Ξ(z)
Θ 1(z) = E2(z)Θ (z).
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By considering the intertwining relations Ξ(z)E(z)=D(z)Ξ(z) and Ξ 1(z)E1(z)=
D1(z)Ξ1(z), one computes

Ξ(z)E(z) = Ξ(z)E1(z)E2(z) = D1(z)Ξ1(z)E2(z) = D1(z)D2(z)Ξ(z),

which implies Ξ1(z)E2(z) = D2(z)Ξ(z) or Ξ1(z) = D2(z)Ξ(z)E2(z)−1. Com-
paring the Bezout equations Θ1(z)D1(z) − Ξ1(z)N(z) = I and Θ(z)D(z) −
Ξ(z)N(z) = I leads to

I=Θ(z)D1(z)D2(z)−Ξ(z)N(z)=Θ(z)D1(z)D2(z)−D2(z)
−1Ξ1(z)E2(z)N(z).

In turn, this implies D2(z)Θ(z)D1(z)−Ξ1(z)E2(z)N(z)D2(z)−1 = (D2(z)Θ(z))
D1(z)−Ξ1(z)N(z) = I. Consequently, Θ1(z) = D2(z)Θ(z) follows.

5. Follows from Theorem 4.47 and the doubly coprime factorization (4.72). �
4. Observability and State Reconstruction

We confine ourselves to a very brief exposition of the problem dual to that of
computing open-loop controls that steer a system from zero to a desired state. Thus,
the problem of interest is the reconstruction of a state from output observations.
Assume the (not necessarily observable) pair (C,A) ∈ F

p×n×F
n×n represents the

autonomous system

xt+1 = Axt , x0 = ξ ,

yt = Cxt .

The observability map

O(C,A) : XzI−A −→ z−1
F[[z−1]]p

is defined by O(C,A)ξ :=C(zI−A)−1ξ . The kernel of the observability map, namely,
O∗ :=KerO(C,A), is called the unobservable subspace of the pair (C,A) and is equal
to KerO(C,A) =

⋂∞
j=0 KerCA j.

Assume now that the pair (C,A) is observable, an assumption equivalent to the
right coprimeness of C and zI−A. Let D�(z)−1N�(z) be a left coprime factorization
of C(zI−A)−1, which leads to the intertwining relation

N�(z)(zI−A) = D�(z)C. (4.74)

By observability, the observability map O(C,A) is injective but certainly not
surjective. The left coprimeness of D�(z),N�(z) implies

ImO(C,A) = XD� . (4.75)
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Therefore, it is natural to consider the reduced observability map O : XzI−A −→
XD� . Taking the shift realization (4.20) associated with the left coprime factorization
D�(z)−1N�(z) leads to the following commutative diagram:

����

����
F
p

XD�XzI−A

XD�XzI−A

SD�

(·)−1C

A

�

�

� �

The coprimeness conditions allow us to embed the intertwining relation (4.74) in
the following doubly coprime factorization:

(
Y (z) X(z)
−N�(z) D�(z)

)(
zI−A −X(z)

C Y (z)

)
=

(
I 0
0 I

)
. (4.76)

The embedding is unique if we require X to be constant or, equivalently, that
X(z)D�(z)−1 be strictly proper.

Theorem 4.52. Let (C,A) ∈ F
p×n× F

n×n be observable, and let C(zI − A)−1 =
D�(z)−1N�(z) be coprime factorizations, with D�(z) ∈ F[z]p×p,N�(z) ∈ F[z]p×n.
Then:

1. The intertwining relation (4.74) can be embedded in the doubly coprime
factorization (4.76);

2. The observability map O(C,A) is an injective F[z]-homomorphism onto the torsion
submodule of z−1

F[[z−1]]p, with representation ImO(C,A) = XD�;
3. The reduced observability map O = O(C,A) : XzI−A −→ XD� , with

Oξ = D�(z)
−1N�(z)ξ ,

is an isomorphism. For every observation sequence y∈ XD there is a unique state
reconstructed from y, and it is given by ξ = O−1y. Specifically, in terms of the
doubly coprime factorization (4.76),

ξ = O−1y = πzI−AXDy. (4.77)

Proof. 1. Follows trivially from Theorem 2.33.
2. Follows from Theorem 4.13.
3. The isomorphism property of O : XzI−A −→ XD� was shown in the preceding

claim. The rest is clear. �
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4.9 Exercises

1. Consider the higher-order system

ẍ1 + x1 + x2 = u̇2 + u1,

ẋ1 + ẋ2 + 2x2 = u̇2,

y1 = x1,

y2 = x2.

(a) Show that the polynomial system matrix is

P(z) =

(
T (z) −U(z)
V (z) W (z)

)
=

⎛

⎜
⎜
⎝

z2 + 1 1 −1 −z
z z+ 2 0 −z
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ ,

with transfer function

G(z) =
1

z3 + 2z2 + 2

(
z+ 2 z(z+ 1)
−z z(z2− z+ 1)

)
.

(b) Are T (z) and U(z) left coprime and V (z) and T (z) right coprime?
(c) Show that

A =

⎛

⎝
0 0 −1
1 0 0
0 2 −2

⎞

⎠ , B =

⎛

⎝
1 −1
0 1
0 −2

⎞

⎠ , C =

(
0 1 0
0 −1 1

)
, D =

(
0 0
0 1

)

is a realization of G(z). Is (A,B,C) reachable or observable?

2. Let

P(z) =

⎛

⎝
1 0 0
0 (z+ 1)2 z3

0 −1 2− z

⎞

⎠

be a polynomial system matrix.

(a) Show that the transfer function is G(z) = 3z+2
(z+1)2 .
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(b) Show that

A =

(
0 1
1 −2

)
, B =

(
2
3

)
, C =

(
0 1

)

is a matrix representation of the shift realization.

3. Consider the continuous-time system

ẋ1 + ẍ2 + x1 = 0,

ẋ2 + x2 = u,

y = x1,

with zero initial conditions.

(a) Prove that the associated polynomial system matrix is

P(z) =

(
T (z) −U(z)
V (z) 0

)
=

⎛

⎝
z+ 1 z2 0

0 z+ 1 −1
1 0 0

⎞

⎠ .

(b) Prove that the transfer function is G(z) =−1+ 2z+1
(z+1)2 .

(c) Show that {
(

1
0

)
,

(
z
1

)
} is a basis for the polynomial model XT .

(d) Show that

A =

(−1 −1
0 −1

)
, B =

(
1
1

)
, C =

(
1 1

)

is a matrix representation of the shift realization. Show that (A,B,C) is
reachable and observable.

4. Let (A,B,C,D) denote a continuous-time linear system defined over the field
of real numbers R, v ∈ R

m a fixed vector, and λ a real number that is not an
eigenvalue of A. Let G(s) = D+C(sI − A)−1B denote the transfer function.
Then the response of

ẋ = Ax+Bu,

y = Cx+Du

to the input function u(t) = veλ t is

y(t) = CetA (x0− (λ I−A)−1Bv
)
+G(λ )veλ t .
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5. Let A ∈ F
n×n and b ∈ F

n, q(z) = det(zI − A) and p1(z), . . . , pn(z) ∈ F[z] be
unique polynomials with

(zI−A)−1b =
1

q(z)

⎛

⎜
⎝

p1(z)
...

pn(z)

⎞

⎟
⎠ .

Show that (A,b) is reachable if and only if p1(z), . . . , pn(z) are F-linearly
independent.

6. Let (A,b) ∈ F
n×n×F

n, with coprime factorization (zI−A)−1b = P(z)
q(z) , and let

MP =

⎛

⎜
⎝

p1,0 . . . p1,n−1
...

. . .
...

pn,0 . . . pn,n−1

⎞

⎟
⎠ ∈ F

n×n

denote the coefficient matrix of P(z). That is, pi(z) = ∑n−1
j=0 pi, jz j for

i = 1, . . . ,n.

a. Prove that the reachability of (A,b) implies that MP is invertible.
b. Let T ≥ n, (A,b) be reachable and xT ∈ F

n a terminal state vector. Let y =
(yT , . . . ,yT+n−1)

� ∈ F
n be the unique solution of

MPy = xT . (4.78)

Show that the set of all input sequences u=(u0, . . . ,uT−1)
� that steer x0 = 0

in time T to xT is the set of all vectors

u =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

qn
...

. . .

q0 . . . qn
. . .

. . .

q0 . . . qn

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

⎛

⎜
⎝

yn
...

yT+n−1

⎞

⎟
⎠ .

Here, the T − n variables yn, . . . ,yT−1 can be arbitrarily chosen, while
yT , . . . ,
yT+n−1 are uniquely determined by (4.78).

7. Let N(z),M(z),D(z) be polynomial matrices, with D(z) nonsingular, such
that M(z)D(z)−1 and N(z)D(z)−1 are strictly proper. Show that there exists
(A,B,C1,C2) with

G(z) =C1(zI−A)−1B, M(z)D(z)−1 =C2(zI−A)−1B.
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8. Let G(z) = N(z)D(z)−1 ∈ F(z)p×m be a right coprime factorization. Assume
that the strictly proper function G(z) has a minimal realization (A,B,C). Let
M(z) be a polynomial matrix such that M(z)D(z)−1 is strictly proper. Show that
M(z)D(z)−1 has a realization of the form (A,B,C0) for some C0.

9. Prove that the two polynomial system matrices P1 and P2 of sizes (p+ ri)×
(m+ ri), i = 1,2, are FSE if and only if for every q ≥ max(r1,r2) there exist
q×q-unimodular matrices M and N and polynomial matrices X and Y such that

(
M(z) 0
−X(z) I

)
⎛

⎝
Iq−r1 0 0

0 T1(z) −U1(z)
0 V1(z) W1(z)

⎞

⎠=

⎛

⎝
Iq−r2 0 0

0 T2(z) −U2(z)
0 V2(z) W2(z)

⎞

⎠
(

N(z) Y (z)
0 I

)
.

10. Let P(z) ∈ F[z]p×m be a full column rank polynomial matrix. Show that P(z)
has no finite zeros if and only if P(z) is right prime.

11. A linear parameter-dependent state-space system

x(t + 1) = A(θ )x(t)

y(t) =C(θ )x(t)

is called globally identifiable, provided that knowledge of the output trajectory
(y(t))t≥0 implies knowledge of both the parameter θ ∈ P and the initial state x0.
Consider a family of left coprime factorizations

Dθ (z)
−1Nθ (z) =C(θ )(zI−A(θ ))−1, θ ∈ P,

with polynomial matrices Dθ (z) ∈ F[z]p×p, Nθ (z) ∈ F[z]p×n. Prove that the
system is globally identifiable if and only if the following conditions are true:

(a) (C(θ ),A(θ )) is observable for all θ ∈ P;
(b) For all θ �= θ ′ the polynomial matrices Dθ (z) and Dθ ′(z) are right coprime.

4.10 Notes and References

The idea that the behavior of dynamical systems can be modeled by differential
or difference equations can be traced back to Newton. The notion of state arose
in the analysis of uniqueness results in the theory of differential equations. In the
engineering context of systems theory, it made its first appearance in automata
theory via the notion of Nerode equivalence. This in turn influenced Kalman’s
abstract module-theoretic approach to linear systems realization theory Kalman,
Falb and Arbib (1969). The notions of reachability and observability also originate
from there owing to their fundamental role in establishing and characterizing
realizations of input/output data with minimal state dimension.
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The use of infinite Hankel matrices for the characterization of rationality is due to
Kronecker (1890). Kalman’s approach to realization theory was initially developed
in terms of restricted input/output maps, but concrete algorithms were also available
such as the Kalman–Ho algorithm Kalman, Falb and Arbib (1969). In Chapter 10 of
the same book, the fundamental insight of Kalman was explained thoroughly to treat
finite-dimensional, linear, time-invariant systems as finitely generated F[z]-torsion
modules.

The tests for reachability appeared quite early as a technical condition, for exam-
ple, Gantmacher (1959). However, the concepts of reachability and observability,
as well as the realization that a linear system could be treated as a module over the
ring of polynomials, are part of Kalman’s great contributions to the algebraic theory
of linear systems; see Kalman (1968), which contains some interesting historical
comments. The Hautus test for reachability is from Hautus (1969) and appears also
in the work by Popov (1973). The early work by Gilbert (1963) presents reachability
conditions for parallel connected systems that are equivalent to the Hautus–Popov
condition in special cases.

Polynomial matrix descriptions of linear systems were introduced by Rosenbrock
(1970). It was an extremely influential contribution to the linear system theoretic
literature. It prevented the total domination of state-space methods and helped
to preserve the diversity of approaches to the study of linear systems. Rosen-
brock’s proof of the generalized pole placement theorem reinforced the strength
of frequency-domain, functional methods.

The idea of using shift operators for the realization of system transfer functions
originated in the mid-1970s in papers of Dewilde, Fuhrmann, and Helton, following
the functional model results of Sz.-Nagy and Foias. The shift realization, given in
Theorem 4.26, was motivated by Rosenbrock’s work and introduces a canonical
realization associated with every polynomial fraction decomposition of a transfer
function. This first appeared in Fuhrmann (1976, 1977) and provides the link
that connects the module-theoretic framework of Kalman and the more concrete
polynomial matrix description methods of Rosenbrock. The concept of FSE is due
to Fuhrmann (1977) and presents a relaxed version of Rosenbrock’s strict system
equivalence; in this context, see also Kailath (1980) and Özgüler (1994). The
equivalence between Rosenbrock’s notion and that of Fuhrmann has been shown
by Smith (1981).

Polynomial system matrices have their own interpretation as representing the
zero structure; see Hautus and Fuhrmann (1980) for details. Thus the study of
rectangular polynomial matrices is intimately related to zeros of matrix rational
functions. This is in turn the focal point of geometric control, and characterizations
of zeros in terms of controlled and conditioned invariant subspaces are well known.
An abstract, module-theoretic approach to zeros has been developed in a series
of publications; see, for example, Wyman and Sain (1981); Wyman, Sain, Conte
and Perdon (1989). Zeros also relate in a natural way to left and right inverses
of linear systems and, thus, to factorization theory. Since in a left matrix fraction
the numerator polynomial, which relates to zeros, is a rectangular polynomial
matrix, one would expect to find strong links between the module-theoretic study
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of zeros and behavior theory. However, this research direction seems to have been
overlooked. To give proper credit to all these developments on zeros of systems
by explaining the mutual relations among geometric control, polynomial system
matrices, module-theoretic methods, and state-space approaches would require
another book.

The problem of open-loop control via inversion of the reachability map leads
directly to the problem of unimodular embedding and, hence, indirectly, to the study
of flat outputs; see Levine and Nguyen (2003) and Trentelmann (2004) for further
information on constructing flat outputs. In fact, the functional model approach
can be viewed as a constructive alternative to flat outputs (a concept that was first
introduced by Fliess et. al. (1995) in connection with state feedback linearizations)
as a tool for the control of higher-order nonlinear systems. Though it might be
tempting to elaborate further on the connection to polynomial models and flatness,
this has not been done here because the constructive methods we achieved are fully
sufficient for our purposes. Theorems 4.50 and 4.52 seem to be new.

Since polynomial models were introduced as an algebraic counterpart to coin-
variant, that is backward-shift-invariant, subspaces of vectorial Hardy spaces H2,
it should come as no surprise that results obtained in the algebraic context can be
lifted to the analytic context. This concerns in particular the open-loop control of
finite-dimensional, continuous-time, antistable systems. In this case, we take the
input function space to be L2(0,∞). The Fourier–Plancherel transform then allows
one to pass from L2 spaces to the (more structured) Hardy spaces H2± of the open
left and right half-planes. As it turns out, the operator-theoretic results by Fuhrmann
(1994b); Fuhrmann and Ober (1993) can be applied to obtain a new approach to
optimal, minimum norm control, thereby generalizing Theorem 4.47 in a Hardy
space context. This seems to be a promising direction for future research.
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Chapter 5
Tensor Products, Bezoutians, and Stability

Mathematical structures often start from simple ones and are extended by various
constructions to structures of increasing complexity. This process is to be controlled,
and the guiding lines should include, among other things, applicability to problems
of interest. The present chapter is devoted to a circle of ideas from abstract linear
algebra that covers several topics of interest to us because of their applicability to
the study of linear systems. These topics include bilinear forms defined on vector
spaces, module homomorphisms over various rings, and the analysis of classes of
special structured matrices such as Bezoutian, Hankel, and Toeplitz matrices. The
connections to algebraic methods for analyzing 2D systems, i.e., modules over the
ring F[z,w] of polynomials in two variables, are also explored. The unifying tools
are tensor products defined for modules and vector spaces. The interaction between
the diverse areas of structured matrix analysis, polynomial modules, and quadratic
form theory becomes particularly evident within this context.

Tensor products provide a link between multilinear algebra and classical linear
algebra by enabling one to represent multilinear maps as linear functions on a
tensor product space. This technique applies both to vector spaces over a field and
modules over a ring. The scenario becomes interesting and rich in the context of
polynomial and rational models, which are modules over the ring F[z] and, at the
same time, finite-dimensional vector spaces over the field F. In this situation, the
result of forming the tensor product depends critically on the algebraic context
within which the tensor product is formed, i.e., whether one considers the tensor
product over the field F or over the ring F[z]. Taking the tensor product of two
polynomial models X ⊗F Y over the field F yields a space of polynomials in
two variables. In contrast, the tensor product X ⊗F[z] Y over the ring F[z] is a
module of polynomials in one variable. In this chapter these constructions will be
explained and their algebraic properties worked out in detail. As a useful byproduct,
explicit characterizations of intertwining maps and homomorphisms of polynomial
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models using tensor products will be derived. Following classical duality theory of
polynomial models, the mutual relationships between tensor products of polynomial
models and spaces of homomorphisms are expressed via the following commutative
diagram:

� �

�

�

( ⊗ ∗)∗

( ⊗ [z]
∗)∗

Hom ( , )

Hom [z]( , )

∗ i

F

i

f

The horizontal maps denote natural isomorphisms and the vertical maps canonical
injections. Although these maps are canonically defined, they crucially involve the
construction of dual spaces. Therefore, to obtain a more concrete version of this
diagram, a suitable duality theory for power series in two variables is first developed.
This will enable us to find explicit descriptions for tensor products and duals of
polynomial models and lead us, finally, to the concrete form of the preceding
commutative diagram as

�

�

�XD2⊗I XI⊗D�
1

Hom (XD1 ,XD2)

Hom [z](XD1 ,XD2)

Y

y

�

XD2(z)⊗D�
1 (w)

b i

The construction of this commutative diagram is a central purpose of this chapter.
It leads to a deeper understanding of the characterization of homomorphisms
given in Chapter 3, provides us with a coordinate-free construction of Bezoutian
matrices, and yields elegant matrix rank characterizations of coprimeness for matrix
polynomials. Historically, the Euclidean algorithm applied to scalar polynomials
suggested finding matrix criteria for the coprimeness of two polynomials. This led
to the introduction, by Sylvester, of the Bezoutian and resultant matrices. Quadratic
(and Hermitian) forms over the field of complex numbers were used efficiently
by Hermite (1856) in his work on the root location of polynomials. Generalized
Bezoutians, generated by a quadruple of polynomial matrices, originated in the
work of Anderson and Jury (1976) in the analysis of coprimeness of polynomial
matrices and the solvability of Sylvester-type equations. An interesting advance
was the characterization of the Bezoutian matrix as a matrix representation of an
intertwining map. Intertwining maps between polynomial models were character-
ized in Theorem 3.20, providing a powerful tool for the study of multivariable
linear systems. Using tensor product representations of module homomorphisms,
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another proof of this important result will be given. On the way, polynomial versions
of classical matrix equations are derived, of which the Sylvester and Lyapunov
equations are important special cases. These polynomial Sylvester equations will
also prove useful in deriving stability tests for nonsingular matrix polynomials.

5.1 Tensor Products of Modules

Tensor products of modules are at center stage of this chapter, so it is only
appropriate to give a working definition. In algebra, the tensor product of two
modules is defined abstractly via a universal property as follows.

Definition 5.1. Let R be a commutative ring with identity, and let M,N,L be R-
modules. An R-module M⊗R N is called a tensor product of M and N if there
exists an R-bilinear map φ : M×N −→M⊗R N such that for every R-bilinear map
γ : M×N −→ L there exists a unique R-homomorphism γ∗ : M⊗R N −→ L that
makes the following diagram commutative:

�

���������

�M×N M⊗RN

L

g

f

g∗

Although the notation M⊗R N for the tensor product of two modules seems to
suggest this, one should beware of assuming that the elements of M⊗R N can be
represented as single tensor products m⊗R n of the elements m ∈M,n ∈ N. In fact,
the elements of the tensor product are finite sums ∑k

i=1 mi⊗R ni and may not simplify
to a decomposable representation of the form m⊗R n. Note further that, according
to Definition 5.1, there may be several, necessarily isomorphic, tensor products.

One can give an abstract construction of a tensor product that is briefly sketched
as follows; see, for example, Hungerford (1974). Let < M×N > denote the free R-
module of all finite formal linear combinations ∑k

i=1 ri(mi,ni), where ri ∈ R, mi ∈M,
and ni ∈ N. Let IR denote the R-submodule of < M×N > that is generated by
elements of the form

1. r(m,n)− (rm,n), r(m,n)− (m,rn);
2. (m1 +m2,n)− (m1,n)− (m2,n);
3. (m,n1 + n2)− (m,n1)− (m,n2).

Then the quotient R-module

M⊗R N :=< M×N > /IR, (5.1)



212 5 Tensor Products, Bezoutians, and Stability

together with the map φ : M×N−→M⊗R N, (m,n) �→m⊗n :=(m,n)+ IR, satisfies
the universal properties of a tensor product and thus serves as a model for the
tensor product, unique up to isomorphisms. However, because most of the spaces
we use have functional representations, one looks for concrete representations of
the various tensor products encountered. As it is, such representations turn out to be
amenable to explicit computations.

Listed below are a few basic properties of tensor products. Relative to direct
sums, tensor products have the following distributivity and associativity properties:

(⊕k
i=1Mi)⊗R N � ⊕k

i=1(Mi⊗R N),

M⊗R (⊕l
j=1Nj) � ⊕l

j=1(M⊗R Nj),

M⊗R (N⊗R P) � (M⊗R N)⊗R P.

(5.2)

Another useful isomorphism is

M⊗R N � N⊗R M,

via the map that sends m⊗ n to n⊗m.
Concerning ring extensions, the following lemma is useful.

Lemma 5.2. Let S be a subring of R, and let M and N be R-modules and L an
S-module. Then:

1. The unique S-linear map M⊗S N −→M⊗R N, which maps each element m⊗S n
to m⊗R n, is surjective.

2. Suppose that b : M×N −→ L is an S-bilinear map that satisfies

b(rm,n) = b(m,rn)

for r ∈ R, m ∈M, and n ∈ N. Then there exists a unique S-linear map

B : M⊗R N −→ L,

with B(m⊗ n) = b(m,n).

Proof. Here it pays off to work with the abstract definition of a tensor product.
The map M×N −→M⊗R N,(m,n) �→ m⊗R n is S-bilinear and therefore induces a
unique S-linear map M⊗S N −→M⊗R N that maps each m⊗S n to m⊗R n. In fact, by
inspection of (5.1), one sees that IS⊂ IR is valid and therefore induces a well-defined
surjective map < M×N > /IS −→< M×N > /IR, with (m,n)+ IS �→ (m,n)+ IR.
This completes the proof of the first part.

Since each element of M ⊗R N is of the form t = m1 ⊗ n1 + · · ·+ mr ⊗ nr,
the additivity of B implies B(t) = b(m1,n1) + · · ·+ b(mr,nr). This implies the
uniqueness of B. To prove the existence of B, define B(r(m,n)) := b(rm,n) for all
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r ∈ R,m ∈ M,n ∈ N. This extends to a well-defined map B on < M×N >. The
bilinearity of b implies that B is additive. Since b(rm,n) = b(m,rn), it follows that B
vanishes on IR and therefore induces a unique S-linear map B : M⊗R N −→ L, with
B(m⊗ n) = b(m,n). This completes the proof. �

The tensor product of linear maps is defined as follows. Let f : M1 −→ N1 and
g : M2 −→N2 be R-linear maps between R-modules M1,N1 and M2,N2, respectively.
Then f × g : M1×M2 −→ N1⊗R N2,(m1,m2) �→ f (m1)⊗ f (m2) is R-bilinear and
therefore extends in a natural way to an R-linear map,

f ⊗ g : M1⊗R M2 −→ N1⊗R N2,

that maps each element m1 ⊗ m2 to f (m1)⊗ f (m2). We refer to f ⊗ g as the
tensor product of f with g. It is clear that the tensor product of two module
isomorphisms is a module isomorphism. If concrete matrix representations of f
and g are given, the matrix representation of the tensor product f ⊗ g is equivalent
to the so-called Kronecker product of matrices; we will return to this in Section 5.2
when we examine tensor products of polynomial models. Since polynomial models
are concrete representations of polynomial quotient modules, it is only natural to
expect that the analysis of tensor products of polynomial quotient modules, and of
associated module homomorphisms, should prove useful for linear systems theory,
and therefore particular attention will be paid to this topic.

The following result provides a very useful identification of tensor products of
quotient modules. Let M1 and M2 be R-modules, with R a commutative ring. Let
Ni ⊂Mi be submodules. The quotient spaces Mi/Ni then have a natural R-module
structure.

Proposition 5.3. Let N be the submodule of M1⊗R M2 defined as

N := N1⊗R M2 +M1⊗R N2.

The R-linear map

f : M1⊗R M2 −→M1/N1⊗R M2/N2, m1⊗m2 �→ (m1 +N1)⊗ (m2 +N2)

defines the following isomorphism of R-modules:

M1/N1⊗R M2/N2 � (M1⊗R M2)/N.

Proof. By the construction of f , the kernel of f is contained in N. Moreover, f
is surjective. Thus f induces a surjective homomorphism f : (M1⊗R M2)/N −→
M1/N1⊗R M2/N2. The map

g : M1/N1⊗R M2/N2 −→ (M1⊗R M2)/N, (m1 +N1)⊗ (m2 +N2) �→ m1⊗m2 +N

is well defined and is a left inverse to f . Thus f is an isomorphism. �
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The next result is useful in establishing isomorphisms between tensor product
spaces.

Proposition 5.4. Let S be a subring of R and k ≥ 3. Let M1, . . . ,Mk be R-modules
and N an S-module. Suppose that f : M1 × ·· · ×Mk −→ N is an S-multilinear
function that satisfies

f (m1, . . . ,mk−2,rmk−1,mk) = f (m1, . . . ,mk−2,mk−1,rmk)

for all r ∈ R and mi ∈Mi. Then there exists a unique S-multilinear function

F : M1×·· ·×Mk−2× (Mk−1⊗R Mk)−→ N,

with

F(m1, . . . ,mk−2,mk−1⊗mk) = f (m1, . . . ,mk). (5.3)

Proof. Since the elements of M⊗R N are finite sums of elementary tensors a⊗ b,
the uniqueness of F follows from (5.3) and the additivity of F in the last argument.
To construct F , we fix m1, . . . ,mk−2. By Lemma 5.2, there exists a unique S-linear
map Fm1···mk−2 : M⊗R N −→ L, with

Fm1...mk−2(mk−1⊗mk) = f (m1, . . . ,mk−2,mk−1,mk).

By the S-multilinearity of f , this yields the desired S-linear map F : M1 × ·· · ×
Mk−2× (Mk−1⊗R Mk)−→ N, satisfying

F(m1, . . . ,mk−2,mk−1⊗mk) = Fm1...mk−2(mk−1⊗mk).

�
Consider a commutative ring R, and let S ⊂ R be a subring. Let M and N be

R-modules, and let L be an S-module. Note that the space HomS(N,L) of S-linear
maps becomes an R-module by defining

(r · f )(n) = f (rn)

for all r ∈ R,n ∈ N and f ∈ HomS(N,L). For greater generality, one denotes by
BilS,R(M,N;L) the set of all S-bilinear maps f : M×N −→ L that satisfy

f (rm,n) = f (m,rn) (5.4)

for all (m,n) ∈ M×N and r ∈ R. In the special case where S = R, one uses the
simplified notation BilR(M,N;L). It is easily seen that BilS,R(M,N;L) is, in a natural
way, an R-module with respect to the R-scalar product

(r · f )(m,n) = f (rm,n), r ∈ R.
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Proposition 5.5. Let R be a commutative ring, let S ⊂ R be a subring and let
M and N be R-modules and L an S-module. Then the following are R-module
isomorphisms:

HomS(M⊗R N,L) � BilS,R(M,N;L) � HomR(M,HomS(N,L)).

Proof. Let f ∈ BilS,R(M,N;L), and let m∈M. Defining, for n∈N, fm(n) = f (m,n),
it follows that fm : M −→ HomS(N,L) is S-linear for all m ∈ M. Since f satisfies
(5.4), then (r · fm)(n) = f (m,rn) = f (rm,n) = frm(n) for all r ∈ R. Thus frm =
r · fm, i.e., the map fm belongs to HomR(M,HomS(N,L)). On the other hand, given
g ∈HomR(M,HomS(N,L)), a map f : M×N −→ L is defined by f (x,y) = g(x)(y),
which is necessarily S-bilinear and satisfies (5.4) for each r ∈ R. This proves the
isomorphism BilS,R(M,N;L) � HomR(M,HomS(N,L)). To prove the existence of
an R-linear isomorphism

HomS(M⊗R N,L)� HomR(M,HomS(N,L)),

consider the map Θ : HomS(M⊗R N,L)−→HomR(M,HomS(N,L)),Θ f = g, where

Θ( f )(m)(n) := f (m⊗R n), f ∈ HomS(M⊗R N,L).

Clearly, Θ is R-linear. Similarly, the map

Ψ : HomR(M,HomS(N,L)) −→ HomS(M⊗R N,L),

which is defined by

Ψg(m⊗R n) := g(m)(n),

is R-linear and Ψ ◦Θ and Θ ◦Ψ are identity maps. The result follows. �
The duality properties of tensor products are of interest to us. Recall that the

algebraic dual module M′ of an R-module M is defined by

M′ = HomR(M,R), (5.5)

i.e., by the space of all R-linear functionals on M or, equivalently, by the space of all
R-homomorphisms of M into R. For the special case L = R, Proposition 5.5 implies
the module isomorphisms

(M⊗R N)′ = HomR(M⊗R N,R)� HomR(M,N′). (5.6)

Clearly, if M is an R-torsion module and the ring R has no zero divisors, then
M′ = 0. Unfortunately, the definition of the algebraic dual in the context of modules,
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namely, by (5.5), is of little use for the applications we have in mind. Of course,
given a subring S ⊂ R, one can replace the algebraic dual M′ with the S-dual

M∗ := HomS(M,S).

This is still an R-module that has in general better duality properties than M′. The
best choice here would be to take S as a subfield of R, and this is what will be done
in the sequel. The objects of interest to us are polynomial and rational models. Both
have two structures: they are vector spaces over the field F and modules over the
polynomial ring F[z]. As F[z]-modules, they are finitely generated torsion modules,
and hence their algebraic dual, defined by (5.5), is the zero module. In much the
same way, all objects defined in the subsequent isomorphism (5.6) are trivial. To
overcome this problem, two module structures, over F and F[z] respectively, will be
used and the algebraic dual replaced by the vector space dual.

1. Tensor products of vector spaces
Tensor products of vector spaces over a field F are studied next in somewhat
more detail. This is of course a much simpler situation in which most of the
pathologies encountered in studying tensor products over a ring disappear. As
indicated previously, one needs to introduce vector space duality. For a finite-
dimensional F-vector space X , the vector space dual is defined by

X ∗ = HomF(X ,F).

The annihilator of a subspace V ⊂X is defined as the linear subspace

V ⊥ := {λ ∈X ∗ | λ |V = 0}.

If X is finite-dimensional, then so is V ⊥ and

dimV ⊥ = dimX − dimV .

Finite-dimensional vector spaces are reflexive, i.e., the isomorphism X ∗∗ �X is
satisfied. In fact, these two spaces can be identified by letting each vector x ∈X act
on an element x∗ ∈X ∗ by x(x∗) = x∗(x). We now take a closer look at the case of
tensor products of two finite-dimensionalF-linear spaces X ,Y . Let BX = { fi}n

i=1,
BY = {gi}m

i=1 be bases of X and Y , respectively. Let B∗
X = {φi}n

i=1 be the basis
of X ∗, which is dual to BX , i.e., it satisfies φi( f j) = δij. For a linear transformation
T ∈ HomF(X ,Y ), let tij ∈ F be defined by

Tf j =
m

∑
i=1

tijgi, j = 1, . . . ,n. (5.7)

Thus [T ]BY
BX

= (tij) is the matrix representation with respect to this pair of bases. On
the other hand, we consider the tensor product Y ⊗X ∗, which is generated by the
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basis elements gi⊗φk. Associate with gi⊗φk the linear map from X to Y , defined
for x ∈X by

(gi⊗φk)x = φk(x)gi.

We claim that {gi⊗ φk|i = 1, . . . ,m,k = 1, . . . ,n} is a basis for L(X ,Y ). Indeed,
T = ∑m

i=1 ∑n
k=1 cikgi⊗φk implies

Tf j =
m

∑
i=1

n

∑
k=1

cik(gi⊗φk) f j =
m

∑
i=1

n

∑
k=1

cikφk( f j)gi

=
m

∑
i=1

n

∑
k=1

cikδkjgi =
m

∑
i=1

cijgi.

Comparing this with (5.7), it follows that cij = tij. Hence,

T =
m

∑
i=1

n

∑
j=1

tijgi⊗φ j, (5.8)

i.e., {gi⊗φ j} is a basis for Y ⊗FX
∗. This leads us back to the isomorphism

HomF(X ,Y )� Y ⊗FX
∗ (5.9)

given by (5.8). The representation (5.8) of T ∈ HomF(X ,Y ) can be simplified. If
rankT = k, then there exists a minimal-length representation

T =
k

∑
i=1

ψi⊗φi,

where {φi}k
i=1 is a basis of (KerT )⊥ ⊂X ∗ and {ψi}k

i=1 is a basis of ImT ⊂ Y .
For a linear transformation T ∈ HomF(X ,Y ), the adjoint transformation T ∗ ∈
HomF(Y

∗,X ∗) is defined by

(T ∗y∗)x = y∗(Tx).

The map T �→ T ∗ yields the isomorphism

HomF(X ,Y )� HomF(Y
∗,X ∗).

Clearly, (5.9) is a special case of (5.6). Another consequence of (5.9) is the
following dimension formula:

dim(X ⊗FY ) = dimX ·dimY . (5.10)
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Note that in view of the isomorphism (5.9), for T ∈ HomF(X ,Y ) there are two
possible matrix representations that turn out to be equal, namely,

[T ]BY
BX

= [T ]BY⊗B∗
X .

Here BY ⊗B∗
X is the tensor product of the basis BY of Y and the basis B∗

X of X∗,
which is dual to the basis BX of X .

2. Tensor products of F[z]-modules
Next, the situation of principal interest to us, namely, the case where the vector
spaces X and Y are actually F[z]-modules, is addressed. The module structure on
X defines a canonical F[z]-module structure on the dual vector space X ∗ via

(z ·λ )(x) = λ (z · x)

for x∈X and λ ∈X ∗. As a consequence of the reflexivity property, there exists an
isomorphism X �X ∗∗ as F[z]-modules. Of particular interest is the establishment
of a relation between the operations of forming the tensor product X ⊗Y and the
space of homomorphisms Hom(X ,Y ). The dimension formula (5.10) implies that
there is a well-defined F-linear isomorphism

Y ⊗FX
∗ −→HomF(X ,Y ), (y,λ ) �→ (x �→ λ (x)y) (5.11)

as long as X and Y are finite-dimensional F-vector spaces. It is desirable to estab-
lish a similar F[z]-linear isomorphism of modules Y ⊗F[z]X

∗ −→HomF[z](X ,Y ).
For a ring R and R-modules M and N, it is well known, see Hilton and Wu (1974),
that if M is finitely generated and projective, then the canonical map

φ : N⊗R M′ −→ HomR(M,N), (n,λ ) �→ (m �→ λ (m)n) (5.12)

is a module isomorphism. Since every free module is projective, this covers the
vector space case. Thus, it seems to be the appropriate generalization of (5.11) to
F[z]-modules. Unfortunately, the isomorphism (5.12) excludes the case of M being
a torsion module, which is the case of main interest for us. This shows that the
isomorphism (5.12) with the algebraic dual M′ instead of the vector space dual M∗
is of no further use for us.

Let D(z) ∈ F[z]m×m be a nonsingular polynomial matrix, and let XD denote the
associated polynomial model. Standard duality theory for polynomial models, as
summarized in Theorem 3.38, shows that there exists an isomorphism of F[z]-
modules

XD � X∗D� � XD� .

In fact, the isomorphism XD � XD� follows from the fact that both polynomial
matrices D(z) and D�(z) have the same invariant factors. The isomorphism
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XD � X∗
D� follows from Theorem 3.38. The next result explores in more detail the

various isomorphisms between spaces of homomorphisms and tensor products.

Proposition 5.6. Let F be a field and X and Y be F[z]-modules that are finite-
dimensional as vector spaces over F. The following assertions are true:

1. There is a natural F[z]-module isomorphism

X �X ∗∗.

2. There is a natural F[z]-module isomorphism

BilF,F[z](X ,Y ;F)� (X ⊗F[z]Y
∗)∗ � HomF[z](X ,Y ). (5.13)

3. There are natural F-vector space isomorphisms

X ∗ ⊗FY � BilF(X ,Y ;F)� (X ⊗FY
∗)∗ � HomF(X ,Y ). (5.14)

Proof. 1. For x ∈ X let εx : X −→ F denote the linear functional defined as
εx(λ ) = λ (x). By the finite dimensionality of X , the natural map ε : X −→
X ∗∗,x �→ εx is an F-linear isomorphism. The F[z]-module structure on X ∗∗ is
defined as (z·εx)(λ ) := εx(zλ̇ )= λ (zx) for x∈X ,λ ∈X ∗. Therefore, z·εx = εzx

for all x ∈X , which proves that ε is F[z]-linear. The result follows.
2. The isomorphism (X ⊗F[z]Y

∗)∗ �HomF[z](X ,Y ) follows by applying Propo-
sition 5.5 to the case of S = F, R = F[z], M =X , and N = Y ∗, noting that the
F[z]-modules X ∗∗ and X are isomorphic.

3. The last two natural isomorphisms in (5.14) follow from Proposition 5.5 by tak-
ing R = S = F. The natural isomorphism between X ∗ ⊗FY and HomF(X ,Y )
can be constructed explicitly by mapping the generating elements x∗ ⊗F y of the
tensor product X ∗ ⊗FY onto the linear transformation from X to Y , defined
by (x∗ ⊗F y)(x) = (x∗(x))y. �

Proposition 5.6 implies the following commutative diagram of linear maps:

� �

�

�

( ⊗ ∗)∗

( ⊗ [z]
∗)∗

Hom ( , )

Hom [z]( , )

∗ i

Y

y

i

Here ι∗ denotes the adjoint transformation of the canonical surjective F-linear map
ι : X ⊗F Y

∗ −→ X ⊗F[z] Y
∗ and therefore is injective. Map i is the canonical

inclusion map and ψ and Ψ are the canonical F[z]-linear and F-linear isomorphisms
defined by (5.13) and (5.14), respectively. The preceding diagram has the advantage
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of involving only canonical constructions of polynomial models. Its disadvantage
lies in the usage of duality, which makes it hard to write down the maps in concrete
form. Therefore, in the sequel, we will aim at a more concrete representation
of the spaces appearing in this diagram that does not involve dual spaces. This
new diagram will be derived in the following sections and will require concrete
representations for tensor product spaces. It will also play an important role in our
analysis of Bezoutians.

Next, one extends the duality theory from vector spaces to F[z]-modules.

Definition 5.7. Let M be a module over the ring of polynomials F[z]. The vector
space annihilator of an F[z]-submodule N ⊂M is the submodule of M∗ defined as

N⊥ = {φ ∈M∗ | φ |N = 0}.

Using this notation, the dual of a quotient module over F[z] has a nice represen-
tation. In fact, one has the F[z]-linear isomorphism

(M/N)∗ � N⊥.

The isomorphism (5.6) is extended to the tensor product of two quotient modules.

Proposition 5.8. Let Ni ⊂ Mi, i = 1,2, be F[z]-modules. There is an F[z]-linear
isomorphism

(M1/N1⊗F[z] M2/N2)
∗ � (M1⊗F[z] N2 +N1⊗F[z] M2)

⊥

= (N1⊗F[z] M2)
⊥ ∩ (M1⊗F[z] N2)

⊥.

Proof. Let N denote the submodule in M1⊗F[z] M2 that is generated by the spaces
N1⊗F[z] M2 and M1⊗F[z] N2. Clearly, the equality of annihilators N⊥ = (N1⊗F[z]

M2 +M1⊗F[z] N2)
⊥ is true. Thus Proposition 5.3 implies the module isomorphism

(M1/N1⊗F[z] M2/N2)
∗ � (M1⊗F[z] M2)/N � N⊥ = (N1⊗F[z] M2 +M1⊗F[z] N2)

⊥

= (N1⊗F[z] M2)
⊥ ∩ (M1⊗F[z] N2)

⊥. �

3. Tensor product spaces of Laurent series
The ambient space for the algebraic analysis of discrete-time linear systems is
F((z−1))m. Thus as a first step one considers the tensor product of such spaces,
both taken over the field F as well as over the ring of polynomials F[z]. Clearly, the
polynomial ring F[z] is a rank one module over itself but an infinite-dimensional
vector space over F.
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Proposition 5.9. The following F-linear and F[z]-linear isomorphisms are valid:

F[z]p⊗F F[z]m � F[z,w]p×m, f ⊗F g �→ f (z)g(w)�,

F[z]p⊗F[z]F[z]
m � F[z]p×m, f ⊗F[z] g �→ f (z)g(z)�.

(5.15)

Proof. To prove (5.15), one notes that the map γ : F[z]p× F[z]m −→ F[z,w]p×m

that maps a pair of polynomials ( f ,g) to the polynomial matrix in two variables
f (z)g(w)� is F-linear and therefore determines a unique F-linear map γ∗ : F[z]p⊗F

F[z]m −→ F[z,w]p×m for which γ = γ∗φ . γ∗ is surjective because every element
Q(z,w)∈F[z,w]p×m is a finite sum Q(z,w) =∑q

i=1 fi(z)gi(w)�= γ∗∑q
i=1 fi⊗Fgi. To

prove the injectivity of γ∗, we note that F[z]m has a basis {zie j|i∈ Z+, j = 1, . . . ,m}.
Therefore, each element of F[z]p⊗F F[z]m in the kernel of γ∗ has the form ξ =

∑(i, j)∈I fijzie j, with γ∗(ξ ) = ∑(i, j)∈I fij(z)wi(e j)
� = 0. Hence, ∑(i, j)∈I fij(z)wi = 0

for all j, implying that fij(z) = 0 for all i, j. Thus ξ = 0. Mutatis mutandis, using the
F[z]-bilinear map γ : F[z]p⊗F F[z]m −→ F[z]p×m that maps a pair of polynomials
( f ,g) to the polynomial matrix f (z)g(z)� ∈ F[z]p×m exhibits an induced F[z]-
isomorphism F[z]p×F[z]m −→ F[z]p×m, which proves the second isomorphism in
(5.15). �

The surjectivity of (5.15) can be reformulated as follows.

Proposition 5.10. Every Q(z,w) ∈ F[z,w]p×m has a representation of the form

Q(z,w) =
k

∑
i=1

Ri(z)P
�
i (w),

with Ri(z) ∈ F[z]p and Pi(w) ∈ F[w]m. This implies a factorization

Q(z,w) = R(z)P�(w),

with R(z) ∈ F[z]p×k and P(w) ∈ F[w]m×k.

To extend the previous results to Laurent series, several more spaces will be
needed. Because the field F((z−1)) of truncated Laurent series has two module
structures of interest, namely, with respect to the fields F and F((z−1)), there are
two different tensor products, given by

F((z−1))p⊗F F((z
−1))m � Fsep((z

−1,w−1))p×m (5.16)

and

F((z−1))p⊗
F((z−1))F((z

−1))m � F((z−1))p×m. (5.17)

These are the analogs of equation (5.15).
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Here, Fsep((z−1,w−1)) denotes the ring of separable truncated Laurent series
in the variables z and w, which are of the form F(z,w) = ∑N

i=1 fi(z)gi(w) for
finitely many f1, . . . , fN ∈ F((z−1)), g1, . . . ,gN ∈ F((w−1)). Thus Fsep((z−1,w−1))
is a proper subset of F((z−1,w−1)), the field of truncated Laurent series. By
Fsep((z−1,w−1))p×m we denote the module of all p×m matrices with entries in
Fsep((z−1,w−1)). Rational elements H(z,w) ∈ Fsep((z−1,w−1))p×m have represen-
tations of the form H(z,w) = ∑k

i=1 fi(z)gi(w)�, with both fi(z) and gi(z) rational.
This implies a representation of the form

H(z,w) = d(z)−1Q(z,w)e(w)−1,

with Q(z,w) ∈ F[z,w]p×m and e(w),d(z) nonzero, scalar polynomials.
The isomorphism F((z−1,w−1))p×m � F

p×m((z−1,w−1)) will be routinely used,
and we will actually identify the two spaces. The identification F

p×m[z,w] =
F[z,w]p×m is a special case. By F[z,w] we denote the ring of polynomials in the
variables z and w and by F[[z−1,w−1]] the ring of formal power series in z−1

and w−1. Denote by F[z,w]p×m the space of p× m polynomial matrices. The
elements of z−1

F[[z−1,w−1]]p×mw−1 are called strongly strictly proper. It should
be emphasized that not every strictly proper rational function in two variables
belongs to z−1

F[[z−1,w−1]]w−1. For example, 1
z−w /∈ z−1

F[[z−1,w−1]]w−1. It will
be convenient to use F[[z−1,w]p×m to denote the subspace of F((z−1,w−1))p×m

of matrices whose entries are formal power series in z−1 and polynomial in w.
Thus the elements of F[[z−1,w]p×m are of the form F(z,w) = ∑N

i=0 Fi(z)wi for
suitable Fi(z)∈F((z−1))p×m. Thus F[[z−1,w]p×m⊂ Fsep((z−1,w−1))p×m. The space
F[z,w−1]]p×m is similarly defined. In the same vein, Fsep[[z−1,w−1]]p×m denotes the
space of p×m matrix functions of separable formal power series ∑N

i=1 fi(z)gi(w)�,
with fi(z) ∈ F[[z−1]]p, gi(z) ∈ F[[w−1]]m.

The definition of Fsep((z−1,w−1))p×m implies the isomorphism

Fsep((z
−1,w−1))p×m � F((z−1))p⊗F F((z

−1))m.

Taking into account the direct sum representations (3.1) as well as (5.2), one
computes

Fsep((z
−1,w−1))p×m � (F[z]p⊕ z−1

F[[z−1]]p)⊗F (F[z]
m⊕ z−1

F[[z−1]]m)

� (F[z]p⊗FF[z]
m)⊕ (F[z]p⊗F z−1

F[[z−1]]m)

⊕ (z−1
F[[z−1]]p⊗F F[z]

m)⊕ (z−1
F[[z−1]]p⊗F z−1

F[[z−1]]m)

� F[z,w]p×m⊕F[z,w−1]]p×mw−1⊕ z−1
F[[z−1,w]p×m⊕ z−1

Fsep[[z
−1,w−1]]p×mw−1.

To these direct sum representations correspond, respectively, the following projec-
tion identities:
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I = π z
+⊗ I+π z

−⊗ I = I⊗πw
++ I⊗πw

−
= π z

+⊗πw
++π z

−⊗πw
++π z

+⊗πw
−+π z

−⊗πw
−.

Our next target is the extension of duality theory to the context of polynomial
spaces in two variables. To this end, the space of matrix truncated Laurent series in
two variables, i.e.,

F((z−1,w−1))p×m = {G(z,w) =
n1

∑
i=−∞

n2

∑
j=−∞

Gijz
iw j},

is introduced. For G(z,w) ∈ F((z−1,w−1))p×m, its residue is defined as the coef-
ficient of z−1w−1, i.e., G−1,−1. In analogy with (3.41), for G(z,w),H(z,w) ∈
F((z−1,w−1))p×m, we define a bilinear form on F((z−1,w−1))p×m by

= Trace(H�G)−1,−1 = Trace
∞

∑
i=−∞

∞

∑
j=−∞

H�
−i−1,− j−1Gij

=
∞

∑
i=−∞

∞

∑
j=−∞

TraceH�
−i−1,− j−1Gij.

(5.18)

Note that the sum defining [G,H] contains only a finite number of nonzero terms.
Clearly, the form defined in (5.18) is nondegenerate. If G(z,w) ∈ F((z−1,w−1))q×m,
A(z,w) ∈ F((z−1,w−1))p×q, and H(z,w)∈ F((z−1,w−1))p×m, then A(z,w)G(z,w) ∈
F((z−1,w−1))p×m and

[AG,H] = [G,A�H].

It is easy to see that, with respect to the bilinear form (5.18), one has

(F[z,w]p×m)⊥ = F[z,w−1]]p×m +F[[z−1,w]p×m. (5.19)

The next result gives a concrete representation of the dual space of F[z,w]p×m that
is an extension of Theorem 3.38.

Proposition 5.11. The vector space dual of F[z,w]p×m is F-linear isomorphic to
the space (z−1

F[[z−1,w−1]]w−1)p×m, i.e.,

(F[z,w]p×m)∗ � (z−1
F[[z−1,w−1]]w−1)p×m.

Proof. Clearly, for H(z,w) ∈ (z−1
F[[z−1,w−1]]w−1)p×m and Q(z,w) ∈ F[z,w]p×m,

the map Φ : F[z,w]p×m −→ F, defined by Φ(Q) = [Q,H], is a linear functional
on F[z,w]p×m. Conversely, suppose Φ is a linear functional on F[z,w]p×m. For all



224 5 Tensor Products, Bezoutians, and Stability

i, j ≥ 0, Φ induces linear functionals Φij on F
p×m by defining Φij(A) = Φ(ziAw j).

Every functional Φij on Fp×m has a representation of the form Φij(A)=Trace(H�
ij A)

for a unique Hij ∈ F
p×m. Defining

H(z,w) =
∞

∑
i=0

∞

∑
j=0

Hijz
−i−1w− j−1 ∈ z−1

F[[z−1,w−1]]p×mw−1,

it follows that Φ(Q) = [Q,H]. �

5.2 Tensored Polynomial and Rational Models

Turning now to a detailed study of tensor products of polynomial and rational
models, taken together with duality theory, will enable us to construct, in concrete
terms, an isomorphism

X ∗ ⊗F[z]Y −→ HomF[z](X ,Y )

and, in the process, develop a coordinate-free approach to Bezoutians.
Spaces like F[z]m or, more importantly for our purposes, quotient spaces like

F[z]m/D(z)F[z]m have module structures with respect to both the field F, i.e.,
vector space structures, and the ring of polynomials F[z]. With respect to the
characterization of tensor products, the underlying ring is of utmost importance
because the tensor product depends very much on the ring used. These two
constructs do not exhaust the possibilities, especially where polynomial models are
concerned, and we will also study polynomial models defined by the Kronecker
product of polynomial matrices. In analyzing the tensor products of two polynomial
models, our first objective will be to find concrete representations of the various
tensor products. Furthermore, it will be shown that the class of polynomial models
is closed under tensor product operations. The inherent noncommutative situation in
the case of nonsingular polynomial matrices makes things more difficult, especially
if concrete isomorphisms are to be constructed. Of particular difficulty is the lack
of a concrete representation of XD1 ⊗F[z] XD2 . This is the result of the absence of
a nice representation of a two-sided greatest common divisor. The tensor products
of function spaces given by (5.15), (5.16), and (5.17) just set the stage. In studying
tensor products of polynomial or rational models, there are essentially four ways
to proceed. For nonsingular polynomial matrices D1(z) ∈ F[z]p×p and D2(z) ∈
F[z]m×m, one can study the F – and F[z] – tensor products, i.e., XD1 ⊗F XD2 and
XD1⊗F[z]XD2 , respectively. Additionally, one can study the polynomial, and rational,
models defined by the Kronecker products D1(z)⊗ D�2 (w) and D1(z)⊗D�2 (z),
respectively. Later on, it will be shown that the F-tensor product XD1⊗F XD2 and the
polynomial model XD1(z)⊗D�2 (w) are isomorphic, which will reduce the complexity
to the study of three distinct spaces.
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Before starting the analysis of the four different tensor product representations,
some useful notation and terminology must be established. For rectangular matrices
A ∈ F

m×n,B ∈ F
k×�, and in this chapter only, the Kronecker product is defined as

the mk× n� matrix

A⊗B =

⎛

⎜
⎝

b11A . . . b1�A
...

. . .
...

bk1A . . . bk�A

⎞

⎟
⎠ .

Note that this definition is in harmony with the definition of the tensor product f ⊗g
of two linear maps f : Fn −→ F

m and g : F� −→ F
k. In fact, if A and B denote the

matrices of f and g with respect to the standard basis, then A⊗ B is the matrix
representation of f ⊗ g with respect to the standard basis. Nevertheless, we warn
the reader that this definition of the Kronecker product is slightly different from that
used by many other authors, in the sense that what we denote as A⊗B is usually
denoted as B⊗A. We will use the preceding definition of the Kronecker product only
in this chapter, in order to simplify some of the expressions. Later on, in Part III of
this book, we will return to the standard definition of the Kronecker product.

By the definition of the Kronecker product, the Kronecker product of an upper
triangular matrix A with an rectangular matrix B is block-upper triangular. In
particular, the Kronecker product B⊗ IN is of the form

IN⊗B =

⎛

⎜
⎝

b11IN . . . b1�IN
...

. . .
...

bk1IN . . . bk�IN

⎞

⎟
⎠ ,

while

A⊗ IN = diag(A, . . . ,A) =

⎛

⎜
⎝

A . . . 0
...

. . .
...

0 . . . A

⎞

⎟
⎠ .

For invertible, n× n and m×m, respectively, matrices A and B, the Kronecker
product A⊗B is invertible, and

(A⊗B)−1 = A−1⊗B−1.

The following rules for the Kronecker product are easily verified:

(A⊗B)⊗C = A⊗ (B⊗C),

(A⊗B)(C⊗D) = AC⊗BD,

(A⊗B)� = A�⊗B�.
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Let vec(A) ∈ F
mn denote the column vector that is obtained by stacking the second

column of A under the first, then the third under the second, and so on. The identity

vec(ABC) = (A⊗C�)vec(B)

is very useful in replacing linear matrix equations in vectorized form. Moreover,
there exist permutation matrices P and Q such that

P(A⊗B)Q = B⊗A

is true of all matrices A,B. The eigenvalues of A⊗B are the products λi(A)λ j(B) of
the eigenvalues λi(A) and λ j(B) of A and B, respectively. Therefore, the trace and
determinant of A⊗B of matrices A and B are tr(A⊗B) = tr(A)tr(B) and det(A⊗
B) = det(A)m det(B)n. Similarly, the eigenvalues of A⊗ Im + In⊗ B are the sums
λi(A)+λ j(B).

1. Kronecker Product Polynomial Models
Our aim is to obtain concrete representations of the tensor products XD1⊗F XD�2

and
XD1⊗F[z] XD�2

. To this end, the theory of polynomial and rational models is extended
to the case of models induced by Kronecker products of polynomial matrices in one
or two variables. Polynomial models based on Kronecker product representations
were first studied by Helmke and Fuhrmann (1998) in order to obtain explicit
descriptions for tangent spaces for manifolds of rational transfer functions.

Recalling the identification (5.17) and the fact that F((z−1))p is a vector space
over the field F((z−1)) allows us to introduce a module structure on the space of
truncated matrix Laurent series in two variables, z and w, i.e., on F((z−1,w−1))p×m,
as follows.

Definition 5.12. For Laurent series A1(z)∈F((z−1))p×p and A2(w)∈F((w−1))m×m,
define their F-Kronecker product A1(z)⊗A�2 (w) as the map

(A1(z)⊗A�2 (w)) : F((z−1,w−1))p×m −→ F((z−1,w−1))p×m

(A1(z)⊗A�2 (w))F(z,w) = A1(z)F(z,w)A2(w).

Clearly, A1(z)⊗A�2 (w) is an F((z−1,w−1))-linear map and, hence, also an F-linear
map. Similarly, one defines the F[z]-Kronecker product A1(z)⊗A�2 (z) as the map

(A1(z)⊗A�2 (z)) : F((z−1))p×m −→ F((z−1))p×m

(A1(z)⊗A�2 (z))F(z) = A1(z)F(z)A2(z).

There are many derivatives of this definition. In particular, we will look at the
restriction to polynomial spaces F[z]p×m and F[z,w]p×m, i.e., to spaces of polyno-
mial matrices in one or two variables. Thus, we define the two projection maps
πD1(z)⊗D�2 (w) : F[z,w]p×m −→ F[z,w]p×m and πD1(z)⊗D�2 (z) : F[z]p×m −→ F[z]p×m by
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πD1(z)⊗D�2 (w)F(z,w) = (D1(z)⊗D�2 (w))(π
z
−⊗πw

−)(D1(z)⊗D�2 (w))
−1F(z,w)

= (πD1(z)⊗F πD�2 (w))F(z,w) (5.20)

and

πD1(z)⊗D�2 (z)F(z) = (D1(z)⊗D�2 (z))π−(D1(z)⊗D�2 (z))
−1F(z)

= D1(z)[π−(D1(z)
−1F(z)D2(z)

−1)]D2(z)

= (πD1(z)⊗F[z] πD�2 (z))F(z),

(5.21)

respectively. Clearly, π z
− ⊗ πw− is a projection map in F((z−1,w−1))p×m and

π− a projection map in F((z−1))p×m. Hence, πD1(z)⊗D�2 (w) is a projection map

in F[z,w]p×m and πD1(z)⊗D�2 (z) a projection map in F[z]p×m. There are two important
special cases of these maps, namely,

πD1(z)⊗FIQ(z,w) = πD1(z)Q(z,w),

πI⊗FD�2 (w)Q(z,w) = Q(z,w)πD�2 (w).

To formulate the basic properties of the projection operators, we first prove an
elementary result about projections.

Lemma 5.13. Let X be a linear space and P1 and P2 two commuting linear
projections acting in X , i.e., P1P2 = P2P1. Then:

KerP1P2 = KerP1 +KerP2,

ImP1P2 = ImP1∩ ImP2.
(5.22)

Proof. Since KerP1,KerP2 ⊂ KerP1P2 = KerP2P1, also KerP1 +KerP2 ⊂ KerP1P2.
Conversely, assume x ∈KerP1P2. This implies P2x ∈KerP1. The representation x =
(x−P2x) +P2x, with (x− P2x) ∈ KerP2 and P2x ∈ KerP1, shows that KerP1P2 ⊂
KerP1 +KerP2, and (5.22) follows. By the commutativity assumption, ImP1P2 ⊂
ImP1∩ ImP2. Conversely, assuming x ∈ ImP1∩ ImP2, there exist vectors z,w ∈X
for which x = P1z = P2w. Since P2

2 = P2, this implies x = P2w = P2P1z ∈ ImP1P2,
i.e., ImP1∩ ImP2 ⊂ ImP1P2. The two inclusions imply the equality. �
Proposition 5.14. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular
polynomial matrices. Then:

1. The maps πD1(z)⊗I , πI⊗D�2 (w), and πD1(z) ⊗F πD�2 (w) are all projections in

F[z,w]p×m;
2. The projections πD1(z)⊗I and πI⊗D�2 (w) commute, and

πD1(z)⊗IπI⊗D�2 (w) = πI⊗D�2 (w)πD1(z)⊗I = πD1(z)⊗D�2 (w) = πD1(z)⊗F πD�2 (w);

(5.23)
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3. The following characterizations are valid:

KerπD1(z)⊗I = D1(z)F[z,w]p×m,

KerπI⊗D�2 (w) = F[z,w]p×mD2(w),

KerπD1(z)⊗D�2 (w) = D1(z)F[z,w]p×m +F[z,w]p×mD2(w).

(5.24)

Proof. 1. Follows from the fact that πD1 is a projection in F[z]p and πD2 a projection
in F[z]m.

2. From the isomorphism (5.15) it follows that elements of the form f (z)⊗F g(w) =
f (z)g�(w) span F[z,w]p×m. On elements of this form

πD1(z)⊗IπI⊗D�2 (w) f ⊗F g = πD1(z)⊗I( f ⊗F πD�2 (w)g)

= (πD1(z) f ⊗F πD2(w)g) = πI⊗D�2 (w)(πD1(z) f ⊗F g)

= πI⊗D�2 (w)πD1(z)⊗I( f ⊗F g),

from which (5.23) follows.
3. Clearly, Q(z,w) ∈ KerπD1(z)⊗I if and only if π z

−D1(z)−1Q(z,w) = 0, i.e.,
D1(z)−1Q(z,w) = P(z,w) for some polynomial matrix P(z,w). This is equivalent
to Q(z,w) = D1(z)P(z,w) ∈ D1(z)F[z,w]p×m. The second equality is proved
analogously. The third equality follows from Lemma 5.13 and the commutativity
of the projections πD1(z)⊗I and πI⊗D�2 (w). �

Definition 5.15. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular poly-
nomial matrices.

1. The two-variable Kronecker product polynomial model is defined by

XD1(z)⊗D�2 (w) = ImπD1(z)⊗D�2 (w) ⊂ F[z,w]p×m, (5.25)

where the projection πD1(z)⊗D�2 (w) is defined by (5.20).
2. The Kronecker product polynomial model is defined by

XD1(z)⊗D�2 (z) = ImπD1(z)⊗D�2 (z) ⊂ F[z]p×m, (5.26)

where the projection πD1(z)⊗D�2 (z) is defined by (5.21).

Note that in either of these cases, the spaces XD1(z)⊗D�2 (w) and XD1(z)⊗D�2 (z) can be

identified with polynomial models for the Kronecker products D1(z)⊗D�2 (w) and
D1(z)⊗D�2 (z), respectively.
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Theorem 5.16. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular polyno-
mial matrices. Then:

1. Q(z,w) ∈ F[z,w]p×m satisfies Q(z,w) ∈ XD1(z)⊗D�2 (w) if and only if the rational
matrix function

D1(z)
−1Q(z,w)D2(w)

−1 ∈ z−1
F[z−1,w−1]p×mw−1

is strictly proper in both variables;
2. The set J = D1(z)F[z,w]p×m + F[z,w]p×mD2(w) is an F[z,w]-submodule of

F[z,w]p×m. The following isomorphism of F[z,w]-torsion modules is valid:

XD1(z)⊗D�2 (w) � F[z,w]p×m/(D1(z)F[z,w]
p×m +F[z,w]p×mD2(w))

= XD1(z)⊗I ∩XI⊗D�2 (w)

� XD1⊗F XD�2
;

(5.27)

3. The following dimension formula is valid:

dimXD1(z)⊗D�2 (w) = deg(detD1) ·deg(detD2);

4. A polynomial matrix satisfies Q(z) ∈ XD1(z)⊗D�2 (z) if and only if D1(z)−1Q(z)

D2(z)−1 is strictly proper;
5. One has

KerπD1(z)⊗D�2 (z) = D1(z)F[z]
p×mD2(z), (5.28)

and D1(z)F[z]p×mD2(z) is a full submodule of F[z]p×m. Hence, there is an
isomorphism

XD1(z)⊗D�2 (z) � F[z]p×m/(D1(z)F[z]
p×mD2(z)),

with both sides being F[z]-torsion modules;
6. The following dimension formula is valid:

dimXD1(z)⊗D�2 (z) = deg(detD1) ·deg(detD2).

Proof. 1. A p×m polynomial matrix Q(z,w) is in XD1(z)⊗D�2 (w) if and only if

Q(z,w) = πD1(z)⊗D�2 (w)Q(z,w). In view of (5.20), this is equivalent to

(D1(z)⊗D�2 (w))
−1Q(z,w) = (π z

−⊗F πw
−)(D1(z)⊗D�2 (w))

−1Q(z,w),

i.e., to D1(z)−1Q(z,w)D2(w)−1 ∈ z−1
F[[z−1,w−1]]p×mw−1.



230 5 Tensor Products, Bezoutians, and Stability

2. By Proposition 5.14, the map

πD1(z)⊗F πD�2 (w) = πD1(z)⊗D�2 (w) : F[z,w]p×m −→ XD1(z)⊗D�2 (w)

is surjective and F[z,w]-linear, with KerπD1(z)⊗D�2 (w) = J. Thus, the first isomor-
phism in (5.27) holds. The second equality follows from Lemma 5.13, while the
third isomorphism follows directly from Proposition 5.8.

Clearly, J is an F[z,w]-submodule of F[z,w]p×m. Using, with d(z) = detD(z),
the identity d(z)I = D(z)adjD(z), we get the inclusion d1(z)F[z,w]p×md2(w) ⊂
D1(z)F[z,w]p×m +F[z,w]p×mD2(w). In turn, this implies that

πD1(z)⊗D�2 (w)(d1(z)d2(w)Q(z,w)) = 0

for all Q(z,w)∈XD1(z)⊗D�2 (w), i.e., the quotient moduleF[z,w]p×m/J is an F[z,w]-
torsion module.

3. Follows from (5.27), using the fact that the dimension of the F-tensor product of
two F-vector spaces is the product of their dimensions.

4. Follows trivially from (5.21).
5. Clearly, D1(z)F[z]p×mD2(z) ⊂ KerπD1(z)⊗D�2 (z). Conversely, assume that Q(z) ∈

KerπD1(z)⊗D�2 (z). By the invertibility of the multiplication operator D1(z) ⊗
D�2 (z), this means π−D1(z)−1Q(z)D2(z)−1 = 0. Thus there exists a P(z) ∈
F[z]p×m such that D1(z)−1Q(z)D2(z)−1 = P(z) or Q(z) =D1(z)P(z)D2(z), which
implies the inclusion KerπD1⊗F[z]D

�
2
⊂ D1(z)F[z]p×mD2(z), and hence (5.28)

follows.
6. Without loss of generality, we can assume that D1(z) and D2(z) are in Smith

canonical form with invariant factors d(1)
1 (z), . . . ,d(1)

p (z) and d(2)
1 (z), . . . ,d(2)

m (z),
respectively. Thus, the quotient module F[z]p×m/(D1(z)F[z]p×mD2(z)) is a finite-
dimensional F-vector space of dimension

p

∑
i=1

m

∑
j=1

degd(1)
i degd(2)

j = degdetD1(z)degdetD2(z).

This completes the proof. �
2. Tensored Rational Models
In analogy with the introduction of tensored polynomial models, we introduce the
tensored rational models. Let D1(z)∈F[z]p×p and D2(w)∈F[w]m×m be nonsingular.

Define a projection map

πD1(z)⊗D�2 (w) : z−1
F[[z−1,w−1]]p×mw−1 −→ z−1

F[[z−1,w−1]]p×mw−1
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by

πD1(z)⊗D�2 (w)H(z,w)
= (π z

−⊗F πw−)(D1(z)⊗D�2 (w))
−1(π z

+⊗F πw
+)(D1(z)⊗D�2 (w))H(z,w).

The two-variable Kronecker product rational model and the Kronecker product
rational model are defined as

XD1(z)⊗D�2 (w) : = ImπD1(z)⊗D�2 (w) ⊂ z−1
F[z−1,w−1]p×mw−1,

XD1(z)⊗D�2 (z) : = ImπD1(z)⊗D�2 (z) ⊂ z−1
F[z−1]p×m,

(5.29)

respectively.
Equation (5.29) provides an image representation of the rational model
XD1(z)⊗D�2 (w). To derive a kernel representation of rational models, we introduce
two-variable Toeplitz operators on z−1

F[[z−1,w−1]]p×mw−1. For P1(z) ∈ F[z]p×p

and P2(w) ∈ F[w]m×m, we define the Toeplitz operator P1(σ)⊗F P�2 (τ), acting on
a truncated Laurent series in two variables H(z,w) ∈ z−1

F[[z−1,w−1]]p×mw−1, by

(P1(σ)⊗F P�2 (τ))H(z,w) = (π z
−⊗F πw

−)(P1(z)H(z,w)P2(w)).

Special cases are the backward shifts σ and τ in the variables z and w, respectively.

Lemma 5.17. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular polyno-
mial matrices. Let H(z,w) ∈ z−1

F[[z−1,w−1]]p×mw−1. A necessary and sufficient

condition for H(z,w)∈XD1(z)⊗D�2 (w) to be valid is D1(z)H(z,w)D2(w)∈F[z,w]p×m.
This is equivalent to the kernel representation

XD1(z)⊗D�2 (w) = Ker(D1(σ)⊗F D�2 (τ)). (5.30)

Proof. Clearly, H(z,w)∈XD1(z)⊗D�2 (w) if and only if H(z,w)= πD1(z)⊗D�2 (w)H(z,w).

Assume H(z,w) ∈ XD1(z)⊗D�2 (w). Computing

(π z
−⊗F πw

−)(D1(z)⊗D�2 (w))H(z,w)

= (π z
−⊗F πw

−)(D1(z)⊗D�2 (w))π
D1(z)⊗D2(w)H(z,w)

= (π z
−⊗F πw

−)(π
z
+⊗F πw

+)(D1(z)⊗D�2 (w))H(z,w) = 0

implies XD1(z)⊗D�2 (w) ⊂ Ker(D1(σ)⊗F D�2 (τ)).
Conversely, assuming H(z,w) ∈ Ker(D1(σ)⊗F D�2 (τ)) implies D1(z)H(z,w)

D2(w) ∈ F[z,w]p×m. This implies
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(π z
−⊗F πw

−)(D1(z)⊗D�2 (w))
−1(π z

+⊗F πw
+)(D1(z)⊗D�2 (w))H(z,w)

= (π z
−⊗F πw

−)(D1(z)⊗D�2 (w))
−1(D1(z)⊗D�2 (w))H(z,w) = H(z,w),

i.e., Ker(D1(σ)⊗F D�2 (τ))⊂ XD1(z)⊗D�2 (w). The two inclusions imply (5.30). �

The elements of XD1(z)⊗D�2 (w) are rational functions of a special type. They are
characterized next.

Proposition 5.18. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular

polynomial matrices. Every element H(z,w) ∈ XD1(z)⊗D�2 (w) is a rational, strictly
proper function in two variables that has a representation of the form

H(z,w) =
P(z,w)

d1(z)d2(w)
, (5.31)

with di(z) = detDi(z) ∈ F[z] nonzero polynomials and P(z,w) ∈ F[z,w]p×m.

Proof. From Lemma 5.17 it follows that H(z,w) ∈ XD1(z)⊗D�2 (w) if and only if
Q(z,w) = D1(z)H(z,w)D2(w) ∈ F[z,w]p×m. Letting d1(z) = detD1(z) and d2(w) =
detD1(w), we compute

H(z,w) = D1(z)
−1Q(z,w)D2(w)

−1 =
adjD1(z)Q(z,w)adjD2(w)

d1(z)d2(w)
=

P(z,w)
d1(z)d2(w)

. �

Rational functions of the form (5.31) are called separable and have the property
that the set of poles is a direct product A×B of two finite subsets of the algebraic
closure F. We refer to Fliess (1970) for a characterization of rational elements of
F[[z−1,w−1]] in terms of a finite rank condition of an appropriate Hankel matrix.

The study of duality for the tensor product of models is our next topic.

Theorem 5.19. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular. Then

(XD1(z)⊗D�2 (z))
∗ � (F[z]p×m/D1(z)F[z]

p×mD2(z))
∗ � XD�1 (z)⊗D2(z)

and

(XD1(z)⊗D�2 (w))
∗ � XD�1 (z)⊗D2(w) � XD�1 (z)⊗D2(w)

are F[z]- and F[z,w]-linear isomorphisms, respectively.

Proof. Proposition 5.16 implies the following isomorphism of F[z]-modules:

(XD1(z)⊗D�2 (z))
∗ � (F[z]p×m/D1(z)F[z]

p×mD2(z))
∗.

Using the vec-operator, we can identify the matrix space F[z]p×m with the space of
vector polynomials F[z]pm. Moreover, the identity

(D1(z)⊗D�2 (z))
� = D�1 (z)⊗D2(z)
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is satisfied. For vectors of polynomials F(z) and strictly proper functions H(z)
let [F,H] = (F�(z)H(z))−1, denote the residue term of F(z)�H(z). Using Theo-
rem 3.38, the map

XD�1 (z)⊗F[z]D2(z) −→ (XD1(z)⊗D�2 (z))
∗

H(z) �→
(

F(z) �→ Trace(F(z)�H(z))−1

)

yields the module isomorphism

(XD1(z)⊗D�2 (z))
∗ � XD�1 (z)⊗F[z]D2(z).

This completes the proof for the first isomorphisms.
By Proposition 5.16, the elements of the rational model XD�1 (z)⊗D2(w) are of the

form H(z,w) = D1(z)−�Q(z,w)D2(w)−�. Consider the map

L : XD�1 (z)⊗D2(w) −→ (XD1(z)⊗D�2 (w))
∗ (5.32)

defined by

L(H)F := [F(z,w),H(z,w)] = Trace(F(z,w)�H(z,w))−1,−1.

Here, [·, ·] denotes the dual pairing on functions of two variables, defined by (5.18).
To prove that this pairing is nondegenerate, assume that a polynomial F(z,w) ∈
XD1(z)⊗D�2 (w) satisfies [F,H] = 0 for all H ∈ XD�1 (z)⊗D2(w). Equivalently,

[D1(z)
−1F(z,w)D2(w)

−1,Q(z,w)] = 0

for all polynomial matrices Q of the appropriate size. By (5.19), this is equivalent to

D1(z)
−1F(z,w)D2(w)

−1 ∈ z−1
F[[z−1,w−1]]w−1∩ (F[z,w−1]]p×m +F[[z−1,w]p×m)

= {0}.

Thus, F(z,w) = 0. Similarly, [F,H] = 0 for all F ∈ XD1(z)⊗D�2 (w) implies H = 0.

Thus the bilinear form [·, ·] on XD1(z)⊗D�2 (w)× XD�1 (z)⊗D2(w) is nondegenerate and

therefore induces a vector space isomorphism (5.32). Moreover, the natural F[z,w]-

module action on, respectively, XD1(z)⊗D�2 (w) and XD�1 (z)⊗D2(w)) implies

[p(z,w) ·F,H] = [p(z,w)F,H] = [F, p(z,w)H] = [F, p(z,w) ·H].
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Therefore, (5.32) defines an F[z,w]-linear isomorphism. The equality

XD�1 (z)⊗D2(w) = D1(z)
−�⊗D2(w)

−1XD�1 (z)⊗D2(w)

implies the F[z,w]-linear isomorphism

XD�1 (z)⊗D2(w) � XD�1 (z)⊗D2(w)
.

This completes the proof. �
4. F-Tensored Polynomial Models
Our attention turns to the study of F-tensor products of vectorial polynomial models.
Proposition 5.16 implies that a Kronecker tensored polynomial model, in the sense
of (5.25), is isomorphic to the tensor product of polynomial models taken over the
field F. This is no longer true if tensored polynomial models in the sense of (5.26)
are used, and indeed, the models XD1(z)⊗D�2 (z) and XD1(z)⊗F XD2(z) are generally not
isomorphic. The next proposition gives a concrete, functional representation of the
F-tensor product of two polynomial models.

Proposition 5.20. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular poly-
nomial matrices. Let φ : XD1×XD�2

−→ XD1⊗F XD�2
be the canonical isomorphism,

and let γ : XD1 ×XD�2
−→ XD1(z)⊗D�2 (w) be F-bilinear.

1. The map γ∗ : XD1 ⊗F XD�2
−→ XD1(z)⊗D�2 (w) defined by

γ∗( f1⊗F f2) = f1(z) f�2 (w)

is an F[z,w]-linear isomorphism implying

XD1 ⊗F XD�2
� XD1(z)⊗D�2 (w). (5.33)

In particular, this gives a concrete representation of the tensor product.
2. The following dimension formula is valid:

dim(XD1(z)⊗F XD�2 (w)) = deg(detD1) ·deg(detD2).

Proof. 1. Noting the isomorphism (5.27), we compute

XD1(z)⊗D�2 (w) � F[z,w]p×m/(D1(z)F[z,w]p×m +F[z,w]p×mD2(w))

� (F[z]p/D1(z)F[z]p)⊗F (F[z]m/D�2 (z)F[z]
m)

� XD1(z)⊗F XD�2 (z).
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2. Using the dimension formula dimXD = deg(detD) and the isomorphism (5.33),
we obtain for the F-tensor product of two polynomial models the dimension
formula

dim
(
F[z]p/D1(z)F[z]⊗F F[w]

m/D�2 (w)F[w]
m
)
= deg(detD1) ·deg(detD2). �

Note that the polynomial models XD1 and XD2 not only have a vector space
structure but are actually F[z]-modules. This implies that XD1(z)⊗D�2 (w) and, hence,

using the isomorphism (5.33), XD1 ⊗F XD�2
have natural F[z,w]-module structures.

This is defined by

p(z,w) ·Q(z,w) = πD1(z)⊗D�2 (w)p(z,w)Q(z,w), Q(z,w) ∈ XD1(z)⊗D�2 (w),

(5.34)

where p(z,w) ∈ F[z,w].
Similarly, we define an F[z,w]-module structure on the tensored rational model

XD1(z)⊗D�2 (w) by letting,

p(z,w) ·H(z,w) = πD1(z)⊗D�2 (w)[∑k
i=1 ∑l

j=1 pijzi−1H(z,w)wj−1] (5.35)

for p(z,w) = ∑k
i=1 ∑l

j=1 pijzi−1wj−1 ∈ F[z,w] and H(z,w) ∈ XD1(z)⊗D�2 (w).

Proposition 5.21. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular

polynomial matrices and H(z,w) ∈ XD1(z)⊗D�2 (w).

1. The F[z,w]-module structure on XD1(z)⊗D�2 (w) defined by (5.35) can be
rewritten as

p(z,w) ·H(z,w) = (π z
−⊗πw

−)
k

∑
i=1

l

∑
j=1

pijz
i−1H(z,w)wj−1. (5.36)

2. With the F[z,w]-module structure on XD1(z)⊗D�2 (w) and XD1(z)⊗D�2 (w), given by
(5.36) and (5.35) respectively, the multiplication map

D1(z)⊗D�2 (w) : XD1(z)⊗D�2 (w) −→ XD1(z)⊗FD�2 (w)

is an F[z,w]-module isomorphism, giving

XD1(z)⊗D�2 (w) � XD1(z)⊗D�2 (w).

Proof. 1. Follows from (5.35).
2. Follows, using Lemma 5.17, from the fact that H(z,w)∈XD1(z)⊗D�2 (w) if and only

if H(z,w) = πD1(z)⊗D�2 (w)H(z,w).
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Equivalently, if and only if πD1(z)⊗D�2 (w)D1(z)H(z,w)D2(w) = D1(z)H(z,w)

D2(w), i.e., D1(z)H(z,w)D2(w) ∈ XD1(z)⊗D�2 (w). �

Special cases of interest are the single-variable shift operators

Sz,Sw : XD1(z)⊗D�2 (w) −→ XD1(z)⊗D�2 (w),

defined by

SzQ(z,w) = πD1(z)⊗D�2 (w)zQ(z,w) = πD1(z)zQ(z,w),

SwQ(z,w) = πD1(z)⊗D�2 (w)Q(z,w)w = πI⊗FD�2 (w)Q(z,w)w.

A concrete representation of the dual space to a tensored polynomial model
is given next. For subspaces U and V of a linear space X , we shall use the
isomorphism (X /V )∗ � V ⊥, as well as the identity (U +V )⊥ =U ⊥ ∩V ⊥.

Theorem 5.22. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular polyno-
mial matrices. Then the following is an F[z,w]-linear isomorphism:

(XD1 ⊗F XD�2
)∗ � XD1(z)⊗FI ∩XI⊗FD�2 (w) � XD�1 (z)⊗D2(w).

Proof. By Proposition 5.16 and Theorem 5.19, the following are F[z,w]-linear
isomorphisms:

XD1 ⊗F XD�2
� XD1(z)⊗D�2 (w),

(XD1 ⊗F XD�2
)∗ � XD�1 (z)⊗D2(w).

This implies the F[z,w]-linear isomorphisms

(XD1 ⊗F XD�2
)∗ � (F[z,w]m×p/(D1(z)F[z,w]p×m +F[z,w]p×mD2(w)))

∗

� (D1(z)F[z,w]p×m +F[z,w]p×mD2(w))
⊥

= (D1(z)F[z,w]p×m)
⊥∩ (F[z,w]p×mD2(w))

⊥

= XD1(z)⊗FI ∩XI⊗FD�2 (w).
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Here, the identities

(
D�1 (z)F[z,w]

p×m
)⊥

= XD1(z)⊗FI ,

(
F[z,w]p×mD�2 (w)

)⊥
= XI⊗FD�2 (w)

were used. They follow from the duality relation based on the bilinear form (5.18).
Indeed, H(z,w) ∈ (D1(z)F[z,w]p×m)

⊥ if and only if, for every Q(z,w) ∈ F[z,w]p×m,

0 = [D1(z)Q(z,w),H(z,w)] = [Q(z,w),D1(z)H(z,w)],

i.e., if and only if D1(z)H(z,w) ∈ F[z,w]p×m, which implies H(z,w) ∈ XD1(z)⊗I . The
other formula is proved similarly. �
3. F[z]-tensored polynomial models
In the preceding parts, tensor product representations of polynomial models over a
field were studied. Things change dramatically when tensor products of polynomial
models are taken over the polynomial ring F[z]. This leads directly to the study of
intertwining maps, the Sylvester equation, and, in a very natural way, to the study
of generalized Bezoutians.

Definition 5.23. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular polyno-
mial matrices. The greatest common left Kronecker divisor of D1(z) and D2(z) is
defined as the greatest common left divisor D1(z)∧D2(z) of the polynomial matrices
D1(z)⊗ Im and Ip⊗D2(z)�.

Of course, by construction, the greatest common left Kronecker divisor D1(z)∧
D2(z) ∈ F[z]pm×pm is a nonsingular polynomial matrix. Further elementary prop-
erties of D1(z)∧D2(z) are listed subsequently in Corollary 5.25. The F[z]-tensor
product of the polynomial models XD1 and XD2 is characterized by the following
theorem. It shows in particular that the F[z]-tensor product of two polynomial
models is isomorphic to a polynomial model, defined by the greatest common left
Kronecker divisor.

Theorem 5.24. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular polyno-
mial matrices. Let J be the submodule of F[z]p×m defined by

J = D1(z)F[z]
p×m +F[z]p×mD2(z).

1. The F[z]-tensor product can be identified by the following isomorphism:

XD1 ⊗F[z] XD�2
� F[z]p×m/(D1(z)F[z]

p×m +F[z]p×mD2(z)).
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The isomorphism is given by the canonical map γ : XD1 ×XD2 −→ XD1 ⊗F[z] XD2

defined by

γ( f1, f2) = [ f1 f�2 ]J,

where [F ]J denotes the equivalence class of F ∈ F[z]p×m with respect to
submodule J.

2. Let D1 ∧D2 ∈ F[z]pm×pm denote the greatest common left divisor of D1(z)⊗ Im

and Ip⊗D�2 (z). Then XD1⊗F[z] XD�2
is F[z]-linearly isomorphic to the polynomial

model

XD1∧D2 .

Proof. The first claim follows trivially from Proposition 5.3.
By identifying F[z]p×m with F[z]pm we obtain the module isomorphism

XD1 ⊗F[z] XD�2
� F[z]pm/D(z)F[z]2pm,

where D(z) := (D1(z)⊗ Im, Ip⊗D�2 (z)) ∈ F[z]pm×2pm. Thus

D(z) = (D1(z)∧D2(z))A(z),

where A(z) ∈ F[z]pm×2pm is left prime. Thus A(z)F[z]2pm = F[z]pm, and therefore

D(z)F[z]2pm = D1(z)∧D2(z)F[z]
pm.

This implies XD1⊗F[z]XD�2
� F[z]pm/D1(z)∧D2(z)F[z]pm � XD1∧D2 . This completes

the proof of the second part. �
Corollary 5.25. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular poly-

nomial matrices with invariant factors d(1)
1 (z), . . . ,d(1)

p (z) and d(2)
1 (z), . . . ,d(2)

m (z),

respectively. Let d(1)
i ∧ d(2)

j denote the greatest common divisor of the polynomials

d(1)
i (z) and d(2)

j (z).

1. The tensor product XD1⊗F[z] XD2 is isomorphic to the polynomial model XD1∧D2 .
2. For scalar polynomials d1(z),d2(z) there is an isomorphism of F[z]-modules

Xd1⊗F[z] Xd2 � Xd1∧d2 .

3. XD1 ⊗F[z] XD2 is F[z]-linearly isomorphic to the direct sum

p⊕

i=1

m⊕

j=1

X
d
(1)
i ∧d

(2)
j
.
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In particular, the following dimension formula is valid:

dimXD1⊗F[z] XD2 =
p

∑
i=1

m

∑
j=1

deg(d(1)
i ∧d(2)

j ).

4. The invariant factors of D1(z)∧D2(z) are d(1)
i (z)∧d(2)

j (z). In particular,

detD1(z)∧D2(z) = detD1(z)
m detD2(z)

p.

Proof. Assertions 1 and 2 follow at once from part 2 of Theorem 5.24.

3. Let Δ1 = diag(d(1)
1 , . . . ,d(1)

p ) and Δ2 = diag(d(2)
1 , . . . ,d(2)

m ) be the respective
Smith forms of D1(z) and D2(z), and let Ui(z) and Vi(z) be unimodular
polynomial matrices satisfying Ui(z)Di(z) = Δi(z)Vi(z). This implies the F[z]-
linear isomorphism

XΔ1 �
p⊕

i=1

X
d(1)i

, XΔ2 �
m⊕

j=1

X
d(2)j

.

Using 2, the isomorphisms

XD1 ⊗F[z] XD2 � XΔ1⊗F[z] XΔ2 �
(

p⊕

i=1

X
d
(1)
i

)

⊗F[z]

(
m⊕

i=1

X
d
(2)
j

)

�
⊕

i, j

X
d
(1)
i
⊗F[z] Xd

(2)
j
�

p⊕

i=1

m⊕

j=1

X
d
(1)
i ∧d

(2)
j

follow. This completes the proof of 3.
4. Consider the unimodular polynomial matrices Ui(z) and Vi(z) such that

D1(z) =U1(z)Δ1(z)V1(z), D2(z)
� =U2(z)Δ2(z)

�V2(z)

are in Smith form. Since D1 ∧D2 is the greatest common left factor of D1⊗ Im

and Ip⊗D�2 there exist polynomial matrices M(z) and N(z) such that

(D1∧D2)M = D1⊗ Im = (U1⊗U2)(Δ1⊗ I)(V1⊗U−1
2 ),

(D1∧D2)N = (U1⊗U2)(Ip⊗Δ�2 )(U−1
1 ⊗V2).

Thus there exist unimodular matrices P(z) = (U1⊗U2)
−1, R(z) = (V−1

1 ⊗U2),
and S(z) = (U1⊗V−1

2 ) such that

P(D1∧D2)MR = Δ1⊗ I, P(D1∧D2)NS = Ip⊗Δ�2 .
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This implies that P(z)(D1 ∧D2) is a greatest common left divisor of Δ1⊗ I and
Ip⊗Δ�2 and therefore, up to an irrelevant unimodular factor, coincides with Δ1∧
Δ2. Thus D1 ∧D2 and Δ1 ∧Δ2 have the same invariant factors. It is easy to see

that Δ1∧Δ2 can be chosen as a diagonal matrix with diagonal entries d(1)
i ∧d(2)

j .
This completes the proof. �

Corollary 5.26. Consider nonsingular polynomial matrices D(z) ∈ F[z]p×p and
D(z)∈F[z]m×m with the same nontrivial invariant factors di, ordered so that di|di−1.
Then the following assertions hold:

1.

dimHomF[z](SD,SD) =∑
i
(2i− 1)degdi.

2. Let A ∈ F
n×n have invariant factors d1, . . . ,dn ordered such that di|di−1. Let

C (A) = {X ∈ F
n×n | AX = XA} denote the centralizer of A. Then:

dimC (A) =
n

∑
i=1

(2i− 1)degdi; (5.37)

3. For A ∈ F
n×n with invariant factors d1, . . . ,dn, dimC (A) = n2 if and only if there

exists an α ∈ F such that, for all i = 1, . . . ,n, di(z) = z−α . Equivalently, A = αI,
i.e., A is a scalar transformation.

The relation of the F[z]-tensor product XD1 ⊗F[z] XD�2
to the tensored Kronecker

model XD1(z)⊗D�2 (z) is examined next.

Proposition 5.27. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular. The
following is an F[z]-linear isomorphism:

XD1 ⊗F[z] XD�2
� XD1(z)⊗D�2 (z)/(D1XI⊗D�2

+XD1⊗ID2). (5.38)

Proof. With i the canonical injections, the following diagram is commutative. Here
πD1⊗D�2

|J denotes the restriction of πD1⊗D�2
to the subspace J = D1(z)F[z]p×m +

F[z]p×mD2(z):

D1(z)F[z]p×m+F[z]p×mD2(z) F[z]p×m

XD1⊗D�
2

D1XI⊗D�
2
+XD1⊗ID2

πD1⊗D�
2
|J πD1⊗D�

2

i

i

�

�
��
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Moreover, π−1
D1⊗D�2

(D1XI⊗D�2
+XD1⊗ID2)=D1(z)F[z]p×m+F[z]p×mD2(z). Using the

surjectivity of πD1⊗D�2
: F[z]p×m −→ XD1⊗D�2

and applying a standard argument, the
isomorphism (5.38) follows. �

The next theorem yields an explicit description of the module (XD1 ⊗F[z] X
∗
D2
)∗.

Theorem 5.28. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[z]m×m be nonsingular. The
following are F[z]-linear isomorphisms:

XD1 ⊗F[z] XD�2
� (XD1 ⊗F[z] X

∗
D2
)∗ � (XD1 ⊗F[z] XD�2

)∗ � XD1⊗I ∩XI⊗D�2 .

Proof. For each submodule M ⊂ F[z]p×m, one can identify the annihilator
with M⊥ = {H ∈ z−1

F[[z−1]]p×m | Trace[F,H] = 0 ∀F ∈ M}. Here [F,H] =
(F(z)�H(z))−1 denotes the residue. Computing

(XD1 ⊗F[z] XD�2
)∗ �

(
F[z]p×m/(D1(z)F[z]

p×m +F[z]p×mD�2 (z))
)∗

= (D1(z)F[z]
p×m +F[z]p×mD�2 (z))

⊥

= (D1(z)F[z]
p×m)⊥ ∩ (F[z]p×mD�2 (z))

⊥

= XD1⊗I ∩ XI⊗D�2

proves one isomorphism.
To prove the other isomorphisms, one uses the Smith form. Thus, for each

nonsingular polynomial matrix Q(z), the invariant factors of Q(z) and Q�(z) are
equal, implying the F[z]-linear isomorphism

XQ � XQ� .

Moreover, Theorem 3.38 implies the isomorphism XQ � X∗Q. By Theorem 5.24, the
tensor product XD1 ⊗F[z] XD�2

is F[z]-linearly isomorphic to the polynomial model

XD1∧D�2
and hence also to X∗

D1∧D�2
� (XD1 ⊗F[z] XD�2

)∗. This completes the proof.

�

5.3 Polynomial Sylvester Equation

Proceeding now to a more detailed study of the Sylvester equation in the tensored
polynomial model framework, definition (5.34) is specialized to the polynomial
p(z,w) = z−w. One obtains, for all Q(z,w) ∈ XD1(z)⊗FD�2 (w), that

S Q(z,w) = (z−w) ·Q(z,w) = πD1(z)⊗D�2 (w)(zQ(z,w)−Q(z,w)w). (5.39)
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The map S is referred to as the polynomial Sylvester operator . In fact,
with constant matrices A1 ∈ F

p×p and A2 ∈ F
m×m, and defining D1(z) = zI −A1

and D2(w) = wI − A2, we obtain XD1(z)⊗FD�2 (w) = F
p×m. Therefore, Q(z,w) ∈

XD1(z)⊗D�2 (w) if and only if Q(z,w) ∈ F
p×m, i.e., X = Q(z,w) is a constant matrix.

This implies

(z−w) ·X = π(zI−A1)⊗(wI−A�2 )(z−w)X = A1X−XA2

for all X ∈F
p×m, i.e., we recover the standard Sylvester operator. This computation

shows that the classical Sylvester equation

A1X−XA2 =C

corresponds to the equation

S X =C,

with X ,C ∈ X(zI−A1)⊗F(wI−A�2 ) necessarily constant matrices.

Note that every polynomial matrix T (z,w) ∈ XD1(z)⊗D�2 (w) has a factorization of
the form

T (z,w) = R1(z)R
�
2 (w),

with R1(z) ∈ XD1⊗Ik ⊂ F[z]p×k and R2(w)� ∈ XIk⊗D�2 (w) ⊂ F[w]k×m, and both

polynomial matrices R1(z) and R2(w) have linearly independent columns. The
following theorem reduces the analysis of the general Sylvester equation to a
polynomial equation of the Bezout type. This extends the method, introduced in
Willems and Fuhrmann (1992), for the analysis of the Lyapunov equation. Of
course, a special case is the homogeneous Sylvester equation, which has a direct
connection to the theory of Bezoutians.

Theorem 5.29. Let D1(z) ∈ F[z]p×p and D2(w) ∈ F[w]m×m be nonsingular, let the
Sylvester operator S : XD1(z)⊗D�2 (w) −→ XD1(z)⊗D�2 (w) be defined by (5.39) and let

R1(z) ∈ XD1(z)⊗FI , R�2 (w) ∈ XI⊗FD�2 (w). Then:

1. The Sylvester equation

SD1Q−QSD2
= T (z,w) = R1(z)R

�
2 (w), (5.40)

or equivalently

S Q(z,w) = πD1(z)⊗D�2 (w)(z−w)Q(z,w) = R1(z)R
�
2 (w),
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is solvable if and only if there exists polynomial matrices N1(z) ∈ XD1(z)⊗I and
N2(z) ∈ XI⊗D�2 (z) for which

D1(z)N2(z)−N1(z)D2(z)+R1(z)R
�
2 (z) = 0. (5.41)

Equation (5.40) will be referred to as the polynomial Sylvester equation, or
PSE for short, and its solutions are given by

Q(z,w) =
D1(z)N2(w)−N1(z)D2(w)+R1(z)R�2 (w)

z−w
; (5.42)

2. Q(z,w) ∈ XD1(z)⊗D�2 (w) solves the homogeneous polynomial Sylvester equa-

tion, or HPSE for short, if and only if there exist polynomial matrices N1(z) ∈
XD1⊗I and N2(z) ∈ XI⊗D�2

that satisfy

D1(z)N2(z)−N1(z)D2(z) = 0, (5.43)

in terms of which

Q(z,w) =
D1(z)N2(w)−N1(z)D2(w)

z−w
.

Proof. 1. Assume there exist the polynomial matrices N1(z) ∈ XD1⊗I and N2(z) ∈
XI⊗D�2

, solving equation (5.41), and for which Q(z,w) is defined by (5.42). Note

first that, under our assumptions on R1(z) and R2(w),

D1(z)
−1Q(z,w)D2(w)

−1

=
N2(w)D2(w)−1−D1(z)−1N1(z)+D1(z)−1R1(z)R�2 (w)D2(w)−1

z−w

is strictly proper in both variables, i.e., Q(z,w) is in XD1(z)⊗D�2 (w). Computing

S Q(z,w) = πD1(z)⊗D�2 (w)(z−w)Q(z,w)

= πD1(z)⊗D�2 (w)(D1(z)N2(w)−N1(z)D2(w)+R1(z)R2(w))

= R1(z)R2(w)
�,

it follows that Q(z,w) is indeed a solution.
To prove the converse, note that, given a nonsingular polynomial matrix

D1(z) ∈ F[z]p×p, then, for f (z) ∈ XD2 , (SD2 f )(z) = zf (z) − D2(z)ξ f , where
ξ f = (D−1

2 f )−1. This implies that, for Q(z,w) ∈ XD1(z)⊗D�2 (w),
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Sz⊗1Q(z,w) = zQ(z,w)−D1(z)N2(w), S1⊗wQ(z,w) = Q(z,w)w−N1(z)D2(w),

with both N2D−1
2 and D−1

1 N1 strictly proper. Assuming Q(z,w) is a solution of
the PSE, we compute

Sz−wQ(z,w) = [zQ(z,w)−D1(z)N2(w)]− [Q(z,w)w−N1(z)D2(w)]

= R1(z)R2(w)
�,

implying

Q(z,w) =
D1(z)N2(w)−N1(z)D2(w)+R1(z)R2(w)�

z−w
.

However, because Q(z,w) ∈ XD1(z)⊗D�2 (w) is a polynomial matrix, (5.41) neces-
sarily holds.

2. Follows from the previous part. �
This leads us to introduce the following object.

Definition 5.30. A polynomial matrix Q(z,w) ∈ XD1(z)⊗D�2 (w) is called a general-
ized Bezoutian if it has a representation of the form

Q(z,w) =
D1(z)N2(w)−N1(z)D2(w)

z−w
, (5.44)

with D−1
1 N1 and N2D−1

2 strictly proper and such that the identity

D1(z)N2(z) = N1(z)D2(z) (5.45)

is satisfied.

Corollary 5.31. Q(z,w) ∈ XD1(z)⊗D�2 (w) is a solution of the HPSE (5.43) if and only

if Q(z,w) is a generalized Bezoutian.

Proof. Follows from Theorem 5.29.2. �

5.4 Generalized Bezoutians and Intertwining Maps

Proposition 5.6 shows that there is a close connection between tensor products of
vector spaces and spaces of F-linear maps between vector spaces. For functional
models one can be more specific about the form of such connections, leading to a
new interpretation of Bezoutian operators in terms of intertwining maps and module
homomorphisms of polynomial models. Denote by HomF(XD1 ,XD2) the space of
all F-linear maps from XD1 to XD2 and by HomF[z](XD1 ,XD2) the space of all F[z]-
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linear maps from XD1 to XD2 , i.e., the space of all F-linear maps Z from XD1 to
XD2 that satisfy ZSD1 = SD2Z. The essential information that encodes the mutual
interrelations between these spaces is given by the following commutative diagram:

� �

�

�

XD2 ⊗ XD�
1

XD2 ⊗ [z]XD�
1

Hom (XD1 ,XD2)

Hom [z](XD1 ,XD2)

i

Y

y

b

Here i is the natural inclusion of HomF[z](XD1 ,XD2) in HomF(XD1 ,XD2). The map
β will be constructed via Bezoutians, and we will establish the F- and F[z]-linear
isomorphismsΨ and ψ , respectively. As is easily seen, this diagram is an equivalent
reformulation of the first diagram, mentioned at the beginning of this chapter,
insofar as the dual spaces X∗D1

and (XD2 ⊗X∗D1
)∗ are replaced by their isomorphic

counterparts XD�1
and XD2 ⊗XD�1

, respectively. For the relevant isomorphisms that
underpin such reformulations, we refer to Theorem 5.28. It may come as somewhat
of a surprise that the study of F[z]-homomorphisms of polynomial models can be
based on the study of tensored models. This (see Theorem 5.34) leads to a further
clarification of the connection between intertwining maps and Bezoutians.

To achieve an even more concrete form of the previous diagram, we next prove
a proposition that establishes a concrete connection between the space of maps Z
intertwining the shifts SD2 and SD1 and the F[z]-tensor product of the polynomial
models XD�2

and XD1 .

Proposition 5.32. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[w]m×m be nonsingular.

1. Every Q(z,w) ∈ XD2(z)⊗D�1 (w) has a representation of the form

Q(z,w) = R2(z)R
�
1 (w), (5.46)

with R2(z) ∈ XD2(z)⊗FI and R1(w)� ∈ XI⊗FD1(w)� , i.e., both D2(z)−1R2(z) and

D1(w)−�R1(w) are strictly proper. Without loss of generality, assume that the
columns of R1(z) and R2(z) are linearly independent.

2. Define a map Ψ : XD2(z)⊗FD�1 (w) −→ HomF(XD1 ,XD2), for f (z) ∈ XD1 and

Q(z,w) ∈ XD2(z)⊗D�1 (w) having the representation (5.46), by

Ψ (Q) f = ZQ f =< f ,Q(z, .)� >= [D−1
1 f ,Q(z, .)�] = (Q(z, ·)D−1

1 f )−1.
(5.47)
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Then Ψ induces the isomorphism

XD2(z)⊗FD�1 (w) � HomF(XD1 ,XD2).

The polynomial Q(z,w) will be called the representing kernel of the mapΨ(Q),
and (5.47) will be referred to as its kernel representation.

Proof. 1. Let {u1(z), . . . ,un1(z)} be a basis for XD2 and {v1(z), . . . ,vn2(z)} be a
basis for XD1 . Assume Q(z,w) ∈ XD2(z)⊗D�1 (w). Since D2(z)−1Q(z,w) is strictly

proper in z, there exist polynomials gi(w) such that Q(z,w) = ∑n2
i=0 ui(z)gi(w).

Since Q(z,w)D1(w)−1 is strictly proper in the variable w,

n2

∑
i=0

ui(z)π+(gi(w)D1(w)
−1) = 0.

In turn, this implies g�i (w) ∈ XD�1
and, hence, the existence of αij ∈ F for which

gi(w) = ∑n1
j=0 αijv j(w)�. Thus

Q(z,w) =
n2

∑
i=0

n1

∑
j=0

αijui(z)v j(w)
� = R(2)(z)AR(1)(w)�.

Here R(2) = (u1(z), . . . ,un1(z)), R(1) = (v1(z), . . . ,vn2(z)) and A = (αij). Next,
let r = rankA, which implies the existence of a factorization A = A2A�1 , with
Ai ∈ F

ni×r of full column rank. Redefining the R(i)(z), the statement follows.
2. As elements of the form ui(z)(v j(w))� generate XD2(z)⊗FD�1 (w), we compute for

such an element Ψ(ui(z)(v j(w))�) = ui(z)< f ,v j >. This allows us to compute,
for Q(z,w) = ∑k

i=1 ui(z)vi(w)� = R2(z)R�1 (w),

Ψ(
k

∑
i=1

ui(z)vi(w)
�) f =

k

∑
i=1

ui(z)< f ,vi >

= (
k

∑
i=1

ui(z)vi(w)
�D1(w)

−1 f (w))−1 = (
k

∑
i=1

ui(z)vi(w)
�D1(w)

−1 f (w))−1

=< f ,
k

∑
i=1

vi(w)ui(z)
� >=< f ,Q(z, ·)� > .

Clearly, Ψ defined by (5.47) is F-linear. To show the injectivity of Ψ , assume
without loss of generality that the columns of R1(z) are linearly independent and
that Ψ(Q) = 0, i.e., that for all g(z) ∈ XD1 ,

0 =< g,Q(z, .)� >= R2(z)(R
�
1 (w)D1(w)

−1g(w))−1.
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This implies (R�1 (w)D1(w)−1g(w))−1 = 0 for all g(z) ∈ XD1 . Since the columns
of R1(z) are in XD�1

, Theorem 3.38 implies that R1 = 0 and, hence, Q(z,w) = 0.
That Ψ is an isomorphism follows from the equality of dimension. Indeed,

dimXD2(z)⊗FD�1 (w) = dimXD2 ⊗F XD�1

= dimXD2 ·dimXD�1
= degdetD1 ·degdetD2

= dimHomF(XD1 ,XD2).

�
The following lemma will be needed in the sequel.

Lemma 5.33. Let H(z) ∈ F((z−1))p×m. Then:

(
H(w)
w− z

)

−1
= π+H(z).

Proof. Let H(w) = ∑nH
k=−∞ H−kwk. One computes

(
H(w)
w− z

)

−1
=

(
nH

∑
k=−∞

H−k
wk

w− z

)

−1

= ∑nH
k=−∞ H−k

(
wk

w− z

)

−1

= ∑nH
k=−∞ H−k ∑∞

j=0

(
wk z j

wj+1

)

−1
= ∑nH

k=0 H−kzk

= π+H(z).

Here we used

(
wk z j

wj+1

)

−1
=

{
0 j �= k

zk j = k.
�

In Theorem 3.20, a characterization of maps intertwining two polynomial models
was derived. In fact, already in equation (3.22) there is a clue to the beautiful
link between intertwining maps and the theory of generalized Bezoutians. This
connection is now formalized in the following theorem, which plays a central role
in our analysis. It allows for a second, independent approach to the characterization
of homomorphisms between polynomial models and the commutant lifting theorem
(Chapter 3).

Theorem 5.34. Let D1(z) ∈ F[z]p×p and D2(z) ∈ F[w]m×m be nonsingular. Let
R1(z) ∈ F[z]p×k and R2(z) ∈ F[z]m×k. Assume that D1(z)−�R1(z) and D2(z)−1R2(z)
are strictly proper. Then the following statements are equivalent.
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1. Q(z,w) = R2(z)R�1 (w) is a solution of the HPSE (5.43).
2. Q(z,w) = R2(z)R�1 (w) is a Bezoutian, i.e., it has a representation of the form

(5.44) and satisfies (5.45).
3. The map Z : XD1 −→ XD2 defined by

Zg = R2(z) < g,R�1 >=< g,Q(z, .)� >

= [D−1
1 g,(R2(z)R

�
1 (w))

�] = (R2(z)R
�
1 (w)D1(w)

−1g(w))−1

(5.48)

satisfies

SD2Z = ZSD1 , (5.49)

i.e., it is an intertwining map or, equivalently, an F[z]-homomorphism.
4. The map Z : XD1 −→ XD2 has the representation

Zg = πD2N2g, g ∈ XD1 , (5.50)

with D1(z),D2(z) satisfying the intertwining relation

N2(z)D1(z) = D2(z)N1(z) (5.51)

for some N1(z),N2(z) ∈ F[z]p×m.

Proof. (1)⇔ (2)
Follows from Theorem 5.29 and Definition 5.30.
(2)⇒ (3)
Assume Q(z,w) = R2(z)R1(w)� is a Bezoutian, i.e., it has a representation of the

form (5.44). We compute, for g(z) ∈ XD1 ,

(SD2Z−ZSD1)g

= SD2(R2(z)R1(w)
�D1(w)

−1g(w))−1−R2(z)(R1(w)
�D1(w)

−1SD1g(w))−1

= πD2(zR2(z)R
�
1 (w)D1(w)

−1g(w))−1−R2(z)(R1(w)
�D1(w)

−1πD1wg(w))−1

= πD2(zR2(z)R
�
1 (w)D1(w)

−1g(w))−1−R2(z)(R1(w)
�π−D−1

1 wg(w))−1

= πD2(zR2(z)R
�
1 (w)D1(w)

−1g(w))−1−R2(z)(R1(w)
�D1(w)

−1wg(w))−1

= πD2((D2(z)N1(w)−N2(z)D1(w))D1(w)
−1g(w))−1

=−πD2(N2(z))(D2(w)D2(w)
−1g(w))−1)

=−N2(z)(g(w))−1 = 0,

using the fact that g(w) is a polynomial. This implies (5.49).
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(2)⇒ (4)
Assume first that Q(z,w) is a Bezoutian, i.e., has a representation of the form

(5.44). We prove now that Z has the alternative representation (5.50). To this end,
using Lemma 5.33, one computes

Zg =< g,Q(z, ·)� >

= [D−1
1 g,Q(z, ·)�] = (

Q(z,w)D1(w)
−1g(w)

)
−1

=

(
D2(z)N1(w)−N2(z)D1(w)

z−w
D1(w)

−1g(w)

)

−1

=

(
D2(z)

N1(w)D1(w)−1g(w)
z−w

−N2(z)
g(w)
z−w

)

−1

=−D2(z)π+N1D−1
1 g+N2(z)g(z) = N2(z)g(z)−D2π+D−1

2 N2g

= D2π−D−1
2 N2g = πD2N2g.

(3)⇒ (2)
Assume that Z : XD1 −→ XD2 , defined by (5.48), is intertwining. For g(z) ∈ XD1 ,

one computes, using Lemma 5.33, the fact that πD2R2 = R2, and that a contribution
of a polynomial term to the residue ()−1 is zero,

0 = (SD2Z−ZSD1)g = SD2 < g,Q(z, .)� >−< SD1g,Q(z, .)� >

= SD2

(
R2(z)R1(w)

�D1(w)
−1g(w)

)

−1
−
(

R2(z)R1(w)
�D1(w)

−1SD1g(w)
)

−1

= πD2

(
zR2(z)R1(w)

�D1(w)
−1g(w)

)

−1
−
(

R2(z)R1(w)
�D1(w)

−1(πD1 wg(w))
)

−1

= πD2

(
zR2(z)R1(w)

�D1(w)
−1g(w)

)

−1
−
(

R2(z)R1(w)
�D1(w)

−1wg(w)
)

−1

= πD2

(
R2(z)(z−w)R1(w)

�D1(w)
−1g(w)

)

−1
.

Since this is true for all g(z) ∈ XD1 , and as it trivially holds for g(z) ∈ D1F[z]m,
it is satisfied for all g(z) ∈ F[z]m. Hence, πD2

(
R2(z)(z−w)R1(w)�D1(w)−1

)
is a

polynomial in both variables. It follows that (πD2⊗πD1)
(
R2(z)(z−w)R1(w)�

)
= 0,

i.e., R2(z)R1(w)� is a solution of the HPSE. Applying Theorem 5.29, it follows that
R2(z)R1(w)� is a Bezoutian.

(4)⇒ (3)
From representation (5.50) it easily follows that Z is intertwining. Indeed, noting
that equality (5.51) implies N2KerπD2 ⊂ KerπD1 , we compute

SD1Zg−ZSD2 g = πD1zπD1N2g−πD1N2πD2zg = πD1zN2g−πD1N2zg = 0.

�
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Proposition 5.35. Let D1(z) ∈ F[z]m×m and D2(z) ∈ F[z]p×p be nonsingular.

1. Every H ∈ XD2⊗I ∩XI⊗D�1 has unique representations

H(z) = D2(z)
−1N2(z) = N1(z)D1(z)

−1, (5.52)

with N1(z) ∈ XI⊗D�1 and N2(z) ∈ XD2⊗I .

2. The map ψ : XD2⊗I ∩XI⊗D�1 −→ HomF[z](XD1 ,XD2) defined by

ψ(H)g = πD2 N2g, g(z) ∈ XD1 (5.53)

induces the isomorphism

XD2⊗I ∩XI⊗D�1 � HomF[z](XD1 ,XD2). (5.54)

Proof. 1. That H(z) ∈ XD2⊗I ∩ XI⊗D�1 has the unique representations (5.52) is
obvious from the definitions.

2. Clearly, by Theorem 5.34, ψ(H) ∈ HomF[z](XD1 ,XD2), i.e., it is an intertwining
map. To show the injectivity of the map ψ , assume ψ(H) = 0. With the
representation (5.52), this implies πD2N2g = 0 for all g ∈ XD1 . This means that
D2(z) is a left factor of N2(z). But as N2(z) ∈ XD2⊗I , necessarily N2(z) = 0. That
ψ is surjective follows from Theorem 5.34. �

The Bezout Map.
We are now in a position to explain the beautiful connection between tensor
products, intertwining maps, and Bezoutians in a very concrete way. Our starting
point is the commutative diagram of canonical homomorphisms established in the
following diagram:

� �

�

�

(XD2 XD�
1
)∗

(XD2 [z]XD�
1
)∗

Hom (XD1 ,XD2)

Hom [z](XD1 ,XD2)

F

f

∗ ii

In Proposition (5.6), it was shown that (XD2 ⊗F XD�1
)∗ is naturally isomorphic

to XD2 ⊗F XD�1
, which in turn is isomorphic to the Kronecker product space

XD2(z)⊗D�1 (w) of polynomials in two variables z,w. Similarly, using duality theory

and Theorem 5.28, the module (XD2⊗F[z]XD�1
)∗ can be identified with XD2⊗F[z]XD�1

,

but now at the expense of a less clear interpretation of the maps ι∗ and φ .
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Matters simplify considerably if, instead of using a polynomial model representation
XD2 ⊗F[z] XD�1

, we pass to a rational model XD2⊗I ∩ XI⊗D�1 via the isomorphism
(5.54). This leads to a new commutative diagram of concrete maps that is described
now in more detail.

Noting that every H(z) ∈ XD2⊗I ∩XI⊗D�1 has a unique representation of the form

H(z) = D2(z)
−1N2(z) = N1(z)D1(z)

−1,

one defines the Bezout map

β : XD2⊗I ∩XI⊗D�1 −→ XD2(z)⊗D�1 (w)

by associating with the rational function (z) the two-variable polynomial

β (H) = Q(z,w) =
D2(z)N1(w)−N2(z)D1(w)

z−w
. (5.55)

Note that β is F-linear and injective and the image space consists of all Bezoutian
forms. That Q(z,w) ∈ XD2(z)⊗D�1 (w) follows from the calculation

D2(z)
−1Q(z,w)D1(w)

−1 = D2(z)
−1 D2(z)N1(w)−N2(z)D1(w)

z−w
D1(w)

−1

=
H(w)−H(z)

z−w
=

∞

∑
k=1

Hk
w−k− z−k

z−w
=− 1

zw

∞

∑
k=1

Hk
w−k− z−k

w−1− z−1

=− 1
zw

∞

∑
k=1

Hk

(
w1−k +w2−kz−1 + · · ·+ z1−k

)
,

which shows that it is indeed strictly proper.
With these definitions, the principal result can be stated.

Theorem 5.36. Let D2(z) ∈ F[z]p×p and D1(z) ∈ F[w]m×m be nonsingular. Let the
maps

Ψ : XD2(z)⊗D�1 (w) −→ HomF(XD1 ,XD2)

and

ψ : XD2⊗I ∩XI⊗D�1 −→HomF[z](XD1 ,XD2)

be defined by (5.47) and (5.53), respectively. Let

i : HomF[z](XD1 ,XD2)−→HomF(XD1 ,XD2)
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be the canonical embedding, and let

β : XD2⊗I ∩XI⊗D�1 −→ XD2(z)⊗D�1 (w)

be the injective Bezout map given in (5.55). Then the following diagram commutes:

� �

�

�

XD2(z)⊗D�
1 (w)

XD2⊗I XI⊗D�
1

Hom (XD1 ,XD2)

Hom [z](XD1 ,XD2)

Y

y

ib

Proof. Note that, by Proposition 5.35, every element H ∈ XD2⊗I ∩ XI⊗D�1 has a
unique representation of the form (5.52). With the Bezout map defined by (5.55),
all that remains is to prove the identity

Ψ ◦β = i◦ψ . (5.56)

To this end, with H(z) ∈ XD2⊗I ∩XI⊗D�1 , g ∈ XD1 , and using equation (5.50) and
Lemma 5.4, we compute

(Ψ ◦β )(H)g =Ψ (β (H))g =Ψ(Q)g

=< g,Q(z, ·)� >=

(
D2(z)N1(w)−N2(z)D1(w)

z−w
D1(w)

−1g(w)

)

−1

= D2(z)

(
D2(w)−1N2(w)g(w)

z−w

)

−1
−N2(z)

(
g(w)
z−w

)

−1

=−D2(z)π+(D2(z)
−1N2(z)g(z))+N2(z)π+(g(z))

= D2(z)π−(D2(z)
−1N2(z)g(z))−N2(z)g(z)+N2(z)π+(g(z))

= πD2 N2g = ψ(H)g = (i◦ψ)(H)g,

i.e., (5.56) is proved. �
Theorem 5.36 shows that the F-linear maps XD1 −→ XD2

Zf =
(
Q(z,w)D1(w)

−1 f (w)
)
−1 ,

whose representing kernel Q(z,w) is a Bezoutian form, correspond exactly to
the F[z]-linear homomorphisms XD1 −→ XD2 . Thus the theory of Bezoutians is
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intimately connected to the structure of module homomorphisms of polynomial
models. This is a two-way street because it shows the existence of concrete
representations of module homomorphisms by Bezoutian forms. Conversely, the
linear maps defined by Bezoutians are seen to be module homomorphisms whose
structure is clarified by the commutant lifting theorem, Theorem 2.54.

Generalized Bezoutian Matrices.
Generalized Bezoutian matrices B(N1,D1,N2,D2), induced by a quadruple of poly-
nomial matrices satisfying an intertwining relation, were introduced in Anderson
and Jury (1976) and studied in further detail in Lerer and Tismenetsky (1982).
In the sequel we will find it convenient to distinguish between the Bezoutian
form as a matrix polynomial in two variables, which is an element of a tensored
model, the corresponding intertwining map, and the Bezoutian matrix, which is a
specific matrix representation. This is analogous to the distinction between a linear
transformation and its matrix representation. There are many choices of bases in
polynomial models, and some lead to interesting matrix representations; see, for
example, Fuhrmann and Datta (1989) or Mani and Hartwig (1997).

Definition 5.37. Assume that the polynomial matrices N1(z) and N2(z) are such
that H(z) = N1(z)D1(z)−1 = D2(z)−1N2(z) ∈ F(z)p×m are strictly proper. Let the
polynomial matrix Q(z,w) be given as

Q(z,w) =
D2(z)N1(w)−N2(z)D1(w)

z−w
=

k

∑
i, j=1

Qijz
i−1wj−1.

Then the matrix

B(N1,D1,N2,D2) = (Qij) ∈ F
kp×km

is called the generalized Bezoutian matrix. The linear operator

B : XD1 −→ XD2 , B f =
(
Q(z,w)D1(w)

−1 f (w)
)
−1

is called the Bezout operator of H(z) = N1(z)D1(z)−1 = D2(z)−1N2(z).

In Chapter 3, coprimeness conditions for the injectivity, surjectivity, and bijec-
tivity of homomorphisms between polynomial models were obtained. Using Theo-
rem 5.36, this result can now be applied to characterize full rank properties of the
Bezout operator.

Theorem 5.38. The Bezout operator B of H(z) = N1(z)D1(z)−1 = D2(z)−1N2(z) is

1. Full column rank if and only if D1(z) and N1(z) are right coprime,
2. Full row rank if and only if D2(z) and N2(z) are left coprime,
3. Invertible if and only if D1(z) and N1(z) are right coprime and D2(z) and N2(z)

are left coprime.
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Proof. By Theorem 5.36, the Bezout operator B coincides with the homomorphism
Z : XD1 −→ XD2 defined by Zf = πD2(N2 f ). The result follows by applying
Theorem 3.21. �

The Bezout operator has the advantage of providing a simple rank test for
coprimeness of pairs of polynomial matrices. However, to compute a matrix
representation, basis vectors in the polynomial model spaces must be chosen. In
contrast, the generalized Bezoutian matrix by Anderson and Jury (1976) is directly
defined as the matrix (Qk�) of coefficients of the Bezoutian polynomial

Q(z,w) =∑
k,�

Qk�z
k−1w�−1.

This matrix is certainly easier to compute than a matrix representation of the Bezout
operator, but it is more difficult to explore the structural properties of this matrix.
For instance, using Theorem 5.36, the greatest common left and right divisors of
polynomial matrices can be characterized in terms of the kernel of the Bezout
operator. For the generalized Bezoutian matrix (Qk�) of Anderson and Jury (1976),
this is much harder to achieve. Thus our preference is to work with the foregoing
definition.

The strength of the preceding approach is illustrated by briefly discussing the
case of classical Bezoutians. Thus, let

q(z) = zn + qn−1zn−1 + · · ·+ q0 ∈ F[z]

be a scalar monic polynomial, and let

p(z) = pn−1zn−1 + pn−2zn−2 + · · ·+ p0 ∈ F[z].

The Bezoutian form then has the expansion

q(z)p(w)− p(z)q(w)
z−w

=
n

∑
i, j=1

bijz
i−1wj−1,

with unique coefficients bij ∈ F. The Bezoutian matrix, then, is the n× n matrix

B(p,q) = (bij) ∈ F
n×n.

The following basic representation theorem for Bezoutian matrices is discussed
next. Let Bst = {1,z, . . . ,zn−1} denote the standard basis of Xq, and let Bco =
{e1(z), . . . ,en(z)}, with

ei(z) = zn−i + qn−1zn−i−1 + · · ·+ qi = π+(z
−iq(z)),
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denote the control basis of Xq. One checks that Bco is the dual basis to Bst by
computing

(
zk−1e�(z)

q(z)

)

−1
=

(
zk−1π+(z−�q(z))

q(z)

)

−1

=

(
zk−1(z−�q(z))

q(z)

)

−1
=
(

zk−�−1
)

−1
= δk�.

Theorem 5.39. 1. The Bezoutian matrix B(p,q) = [B]st
co is the matrix representa-

tion of the Bezout operator B with respect to the control basis and standard basis
on Xq.

2. The Bezoutian can be expressed, using the shift operator Sq : Xq −→ Xq, as

B(p,q) = [p(Sq)]
st
co.

Proof. Computing

Be j =

(
q(z)p(w)− p(z)q(w)

z−w
q(w)−1e j(w)

)

−1

=
n

∑
r,s=1

brszr−1
(

ws−1q(w)−1π+(w− jq(w))
)

−1
=

n

∑
r,s=1

brszr−1
(

ws−1q(w)−1(w− jq(w))
)

−1

=
n

∑
r,s=1

brszr−1
(

ws− j−1
)

−1
=

n

∑
r=1

brjz
r−1

shows that the Bezout matrix B(p,q) = [B]st
co is simply a matrix representation of

the Bezout operator B : Xq −→ Xq. This proves the first claim.
Theorem 5.36 implies that, for j = 1, . . . ,n, Be j = πq(p(z)e j(z)) = p(Sq)e j,

which completes the proof. �
Recall from (3.26) that the matrix representation of the shift operator Sq with

respect to the standard basis on Xq is the companion matrix

[Sq]
st
st =Cq :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · −q0

1 0 −q1
. . .

. . .
...

1 0 −qn−2

1 −qn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.

Moreover, the basis change matrix [I]st
co coincides with the Bezoutian B(1,q).

Thus the explicit description of the Bezoutian matrix as B(p,q) = p(Cq)B(1,q) is
deduced. This expression is often referred to as Barnett’s formula.
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As a further simple consequence, one obtains a classical coprimeness test for
scalar polynomials.

Theorem 5.40. The polynomials p(z) and q(z) are coprime if and only if the
Bezoutian matrix B(p,q) is invertible.

Proof. We know already that the Bezout operator B : Xq −→ Xq defined by h(z) =
p(z)q(z)−1 = q(z)−1 p(z) is invertible if and only if p and q are coprime. In the
preceding theorem it was shown that B(p,q) is a matrix representation of B. Thus,
the result follows. �

5.5 Stability Characterizations

Characterization of the stability of linear systems is central to systems theory.
A discrete-time linear dynamic system

xt+1 = Axt

on F
n is called asymptotically stable if the sequences xt = Atx0 converge to zero

for all initial conditions x0 ∈ F
n. Likewise, a continuous-time linear system

ẋ(t) = Ax(t)

is called asymptotically stable whenever

lim
t→∞

etAx0 = 0

is true for all x0 ∈ F
n. Of course, in order for such a notion to make sense, a topology

on the field F must be specified. Throughout this section, we will restrict our
discussion to the standard situation where F denotes either the field of real numbers
R or the field of complex numbers C, both being endowed with their standard
Euclidean topology. To streamline the presentation of the subsequent results, we will
mainly restrict ourselves to continuous-time systems and mention corresponding
results for discrete-time systems only occasionally.

It is easily seen (see Proposition 5.41 below) that a continuous-time system
ẋ(t) = Ax(t) is asymptotically stable if and only if all eigenvalues of A have a
negative real part. Similarly, a discrete-time system is asymptotically stable if and
only if all eigenvalues of A are in the open unit disc. Since the eigenvalues of A are
the roots of the characteristic polynomial, determination of the stability of finite-
dimensional linear systems reduces to the problem of characterizing the location of
zeros of real and complex polynomials. This problem has a long history, and there
are two basic approaches to it – via the use of quadratic forms on the one hand or
the use of special Sylvester equations on the other. The problem of root location
was already solved by Hermite (1856) and Hurwitz (1895) using quadratic form
approaches. In this connection one should also refer to the work of Routh (1877)
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because of the efficiency of the computational algorithm proposed by the researcher.
In a major contribution to the subject, Lyapunov (1893) offered a completely
different approach based on energy considerations. In the linear case, the Lyapunov
theory reduces the study of the stability of a system of first-order homogeneous
constant coefficient differential equations to the positive definiteness of the solution
of the celebrated Lyapunov equation.

In this section, we will first characterize the asymptotic stability of first-order
systems using Lyapunov’s method and then discuss the generalization to higher-
order systems of differential equations. Because it is trivial to reduce a scalar nth-
order homogeneous equation

dny
dtn + an−1

dn−1y

dtn−1 + · · ·+ a0y = 0

to a first-order system ẋ = Ax, it became possible to derive the classical stability
criteria for scalar higher-order systems from Lyapunov theory. This was done
surprisingly late, and the paper by Parks (1962) is usually considered the first of
such derivations. The various reductions seemed to work also for the case of a
higher-order system of matrix differential equations of the form

y(n) +Pn−1y(n−1) + · · ·+P0y = 0,

i.e., for which the matrix polynomial P(z) = Imzn +Pn−1zn−1 + · · ·+P0 is monic.
Strangely, a gap remained in the theory related to finding an algebraic test for the
asymptotic stability of solutions of a system of the form

Pny(n) +Pn−1y(n−1) + · · ·+P0y = 0,

where P(z) = Pnzn + Pn−1zn−1 + · · ·+ P0 ∈ C
m×m[z] is a nonsingular polynomial

matrix. It is our aim in this chapter not only to close this gap but to apply the theory
of quadratic forms and tensor products of polynomial and rational models to the
derivation of stability criteria for higher-order multivariable systems. This leads to
the study of two-variable polynomial matrices. It is worth mentioning that Kalman
(1969, 1970) utilized a similar idea of switching from a polynomial equation in one
variable to a polynomial in two variables and its associated quadratic form. Both
these papers deal solely with the scalar case.

1. Lyapunov Stability
A brief summary of the basic facts from linear algebra on complex Hermitian
matrices and adjoint operators is presented. In particular, bilinear forms are replaced
by sesquilinear forms, i.e., forms < x,y > that are antilinear in x and linear in y.
Let X be a finite-dimensional complex vector space, and let X ∗ denote its dual
space of complex linear functionals on X . In this context there are two different
ways of defining duality. The first is the one already employed in Chapter 3, using
the canonical dual pairing X ∗ ×X −→ C defined by (λ ,x) �→ λ (x). The other
definition – and this is the one adopted in this section – is given by the Hermitian
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dual pairing < ·, ·>: X ∗ ×X −→C defined as

< λ ,x >C= λ (x̄).

Note that <λ ,x> is antilinear in λ and linear in x and therefore defines a sequilinear
form. Since finite-dimensional vector spaces are reflexive, we can identifyX ∗∗ with
X . Thus

< x,λ >C=< λ ,x >C.

Consider now a linear map T : X −→ Y , where X and Y are complex
vector spaces with duals Y ∗ and X ∗, respectively. The Hermitian adjoint map
T ∗ : Y ∗ −→X ∗ is determined through the equality

< T x,y∗ >C=< x,T ∗y∗ >C .

The notion of self-adjointness is now extended to this setting. A map Z : X −→
X ∗ will be called self-adjoint or Hermitian if and only if Z∗ = Z, i.e., if, for all
f ,g ∈X ,

< Zf ,g >C=< f ,Zg >C .

If B is a basis in X and B∗ is its dual basis, then the bilinear form < Zf ,g > can
be evaluated as ([Z]B

∗
B [ f ]B, [g]B). Here [Z]B

∗
B is the representing matrix of Z and

(ξ ,η) = ξ ∗η := ξ
�
η

denotes the standard Hermitian inner product in C
n. One denotes by A∗ = A

�

the Hermitian adjoint of a complex matrix A ∈ C
n×n. A∗ is a unique matrix such

that (Aξ ,η) = (ξ ,A∗η) for all ξ ,η ∈ C
n. A matrix A is Hermitian if and only if

A∗ = A. Thus the matrix representing the Hermitian adjoint Z∗ is the Hermitian
adjoint A∗ of A = [Z]B

∗
B ∈ C

n×n. Thus Z is Hermitian if and only if its matrix
representation A is Hermitian. The map Z is called positive definite, denoted by
Z � 0, if < Zf , f >C> 0 for all nonzero f in X . Similarly, we write Z  0 whenever
Z is positive semidefinite. It is easily seen that a Hermitian map Z is positive if and
only if A = [Z]B

∗
B is a positive definite Hermitian matrix.

Our starting point for the stability analysis of linear systems, induced by a
complex n×n matrix A, is to derive a characterization linking the stability question
with an associated eigenvalue problem.

Proposition 5.41. 1. The continuous-time system ẋ = Ax is asymptotically stable
if and only if all eigenvalues of A are in the open left half-plane C− = {z ∈
C | Rez < 0}.

2. The discrete-time system xt+1 = Axt is asymptotically stable if and only if all
eigenvalues of A are in the open unit disc D= {z ∈ C | |z|< 1}.
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Proof. 1. Assume that ẋ = Ax is asymptotically stable, i.e., limt→∞ etAx0 = 0 is
satisfied for all x0 ∈ C

n. Let λ ∈ C be an eigenvalue of A with associated
eigenvector v ∈ C

n. Then etAv = etλ v is true for all t. Thus

lim
t→∞

etAv = lim
t→∞

etλ v = 0,

and therefore limt→∞ et Reλ = limt→∞ |etλ | = 0. Thus λ < 0, and therefore the
condition is necessary.

Conversely, assume that all eigenvalues of A have negative real part. Let
λ1, . . . ,λr denote the distinct eigenvalues of A with algebraic multiplicities
n1, . . . ,nr, respectively. Using the Jordan canonical form for A, one obtains the
representation

etA =
r

∑
j=1

etλ j Pj(t), (5.57)

where Pj(t) ∈ C
n×n are suitable matrix polynomials in t whose entries have

degrees ≤ n j. Thus, each entry of etλ j Pj(t) is of the form etλ j π(t) for a certain
polynomial π(t). But

lim
t→∞

|etλ j π(t)|= lim
t→∞

et Reλ j |π(t)|= 0

since Reλ j < 0 and the exponential function grows faster than polynomials. This
implies limt→∞ etA = 0, i.e., the asymptotic stability of ẋ = Ax.

2. The proof of the discrete-time case runs completely similar to the preceding case
and is therefore omitted. �
Because of the preceding characterization, we call C− and D the stability

domain of ẋ = Ax and xt+1 = Axt , respectively.

Definition 5.42. A scalar complex polynomial p(z) = ∑n
i=0 aizi ∈ C[z] is called a

Hurwitz polynomial (or Schur polynomial) if p(z) has roots only in C− (or only
in D).

Of course, it is by no means obvious how one can recognize whether a particular
polynomial p(z) is Hurwitz or Schur. For real polynomials of degree 2 it is an easy
exercise to see that z2 + az+ b is a Hurwitz polynomial if and only if a > 0 and
b > 0. The characterization of degree 3 real Hurwitz polynomials is due to Maxwell
(1868), who showed that z3 + az2 + bz+ c is Hurwitz if and only if

a > 0, c > 0, ab > c.

For complex polynomials, these expressions are more complicated. A full charac-
terization of Hurwitz polynomials, expressed in terms of the positivity of a certain
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quadratic form whose coefficients are quadratic polynomials in the coefficients of
p(z), will be given later on.

Next, the classic characterization by Lyapunov (1893) of asymptotic stability in
terms of linear matrix inequalities is presented.

Theorem 5.43 (Lyapunov). Let X be a complex n-dimensional vector space and
A : X −→X a linear operator. The following statements are equivalent:

1. The system ẋ = Ax on X is asymptotically stable.
2. There exists a positive definite Hermitian linear operator Q : X −→X ∗ that

satisfies the Lyapunov inequality

A∗Q+QA≺ 0.

Proof. Without loss of generality, one can assume that X = C
n and A ∈ C

n×n.
Consequently, 0≺ Q = Q∗ ∈ C

n×n. Suppose that Q is a positive definite solution of
the Lyapunov inequality. Let λ be an eigenvalue of A with associated eigenvector
v ∈ C

n. Then Av = λv and v∗A∗ = λv∗. Thus

0 > v∗A∗Qv+ v∗QA∗v = (λ +λ )v∗Qv.

By the positive definiteness of Q, we obtain v∗Qv > 0, which implies 2Reλ = λ +
λ < 0. Thus A is asymptotically stable.

For the converse assume that ẋ = Ax is asymptotically stable, i.e., A has only
eigenvalues with negative real part. From the decomposition (5.57), it can be seen
that each entry of etA is in L2([0,∞),C), with limt→∞ etA = 0, and, in particular, the
integral

Q :=
∫ ∞

0
etA∗etAdt

exists. Obviously, Q = Q∗ is Hermitian and satisfies

v∗Qv =
∫ ∞

0
‖etAv‖2dt ≥ 0

for all v ∈ C
n. Thus v∗Qv = 0 if and only if etAv = 0 for all t ≥ 0, i.e., if and only if

v = 0. This shows that Q is positive definite. Moreover,

A∗Q+QA =

∫ ∞

0

d
dt
(etA∗etA)dt =−In ≺ 0.

This completes the proof. �
A useful strengthening of the preceding theorem of Lyapunov is due to Snyders

and M. Zakai (1970) and Wimmer (1974a).
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Theorem 5.44. Let X and Y be two complex, finite-dimensional vector spaces.
Let A : X −→ X be a linear transformation. The following assertions are
equivalent:

1. The system ẋ = Ax on X is asymptotically stable.
2. For a linear transformation C : X −→Y , with (C,A) observable, the Lyapunov

equation

A∗Q+QA =−C∗C (5.58)

has a unique positive definite Hermitian solution Q : X −→X ∗.
3. There exists a linear transformation C : X −→ Y , with (C,A) observable, such

that the Lyapunov equation (5.58) has a positive definite Hermitian solution Q :
X −→X ∗.

Proof. Again, and without loss of generality, assume X = C
n, Y = C

p, A ∈
C

n×n,Q = Q∗ � 0. Obviously, 2 implies 3.
Assume that 3 is satisfied. Let λ be an eigenvalue of A with associated

eigenvector v ∈C
n. From the Lyapunov equation we get

2Reλv∗Qv = v∗A∗Qv+ v∗QA∗v =−‖Cv‖2 ≤ 0.

Since v∗Qv > 0, Reλ ≤ 0. Suppose Reλ = 0. Then Cv = 0, i.e., v is an eigenvector
of A that is contained in the kernel of C. But, by the Hautus criterion, this contradicts
observability. Therefore, each eigenvalue of A has negative real part and assertion 1
is proved.

To prove that 1 implies 2, we proceed similarly to the proof of the Lyapunov
theorem. Thus, assume that A has only eigenvalues with negative real part. For C ∈
C

p×n, the integral

Q :=
∫ ∞

0
etA∗C∗CetAdt

exists and defines a Hermitian matrix. For each complex vector v this implies

v∗Qv =
∫ ∞

0
‖CetAv‖2dt ≥ 0,

and therefore v∗Qv = 0 if and only if CetAv = 0 for all t ≥ 0. Equivalently, CAkv = 0
for all k ∈ N0. By the observability of (C,A), v = 0. This shows that Q is positive
definite. Moreover,

A∗Q+QA =

∫ ∞

0

d
dt

etA∗C∗CetAdt =−C∗C.

This completes the proof. �
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The preceding results by Lyapunov, Snyders-Zakai, and Wimmer have been
generalized by Ostrowski and Schneider (1962) into an inertia theorem that relates
the number of stable and unstable eigenvalues with the signature of Q. Their
result will be proved in a slightly more general form. For a matrix A ∈ C

n×n,
let n0(A) denote the number of eigenvalues (counting multiplicities) of A with
real part zero. Similarly, let n±(A) denote the number of eigenvalues (counting
multiplicities) of A with positive and negative real parts, respectively. The triple
ind(A) = (n0(A),n+(A),n−(A)) is called the inertia index of A.

Theorem 5.45 (Inertia Theorem). Let A : X −→X and C : X −→Y be linear
transformations between finite-dimensional complex vector spaces. Assume that
(C,A) is an observable pair. Then every Hermitian solution Q : X −→X ∗ of the
Lyapunov inequality

A∗Q+QA+C∗C " 0

satisfies

n0(Q) = n0(A) = 0, n+(Q) = n−(A), n−(Q) = n+(A). (5.59)

Proof. First, one proves n0(A) = n0(Q) = 0. As before, one assumes, without loss
of generality, that X =C

n, and so forth. Suppose that λ = iω is a purely imaginary
eigenvalue of A with eigenvector v ∈ C

n. Multiplying v∗ and v on both sides of the
Lyapunov inequality, we obtain

0≥ v∗(A∗Q+QA+C∗C)v = ‖Cv‖2,

which implies Cv = 0. By the observability of (C,A), v = 0. Thus n0(A) = 0. Next,
consider v∈C

n, with Qv = 0. Then, by the same reasoning, we obtain Cv = 0. After
applying a suitable unitary state-space similarity transformation, one can assume
that

A∗Q+QA+C∗C =−diag(Ir,0).

Partition v accordingly as v = col(x,y), with x ∈C
r. Thus

−‖x‖2 = v∗(A∗Q+QA+C∗C)v = 0,

and therefore x = 0. Moreover, QAv = (A∗Q+QA+C∗C)v =−diag(Ir,0)v = 0 for
v= col(0,y). This implies A(KerQ)⊂KerQ. Since KerQ⊂KerC, the observability
of (C,A) implies KerQ = {0}. Thus n0(Q) = 0.

For the proof of the remaining equalities (5.59), we proceed by a simple
continuity argument. Consider the convex cone of Hermitian n× n matrices

C = {Q = Q∗ | A∗Q+QA+C∗C " 0}.
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Using the observability of the pair (C,A), it was just shown that each element of C
is invertible. Thus C ⊂GLn(C) is a convex and hence connected subset of GLn(C).
Since the inertia index, ind(P), depends continuously on P ∈ GLn(C), it suffices to
establish the inertia equalities (5.59) for a single element Q0 ∈ C . Since A has no
purely imaginary eigenvalues, we can assume without loss of generality that (C,A)
are partitioned as

A =

(
A+ 0
0 A−

)
, C =

(
C+ C−

)
.

Here the eigenvalues of A+ are assumed to have positive real part, while the
eigenvalues of A− have negative real part. Using the Hautus criterion one sees
that the observability of (C,A) is equivalent to the observability of (C+,A+) and
(C−,A−). Define for real numbers r > 0

Q− = r
∫ ∞

0
etA∗−etA−dt,

Q+ = r
∫ ∞

0
e−tA∗+e−tA+dt.

Then Q± = Q∗± � 0 are positive definite and Hermitian and the Hermitian matrix

Q := diag(−Q+,Q−)

satisfies

A∗Q+QA+C∗C =C∗C− rI.

Moreover, n+(Q) = n−(A) and n−(Q) = n+(A). Choose r > 0 such that rI  C∗C.
Then Q satisfies the Lyapunov inequality. �

As an example, we examine the stability of second-order systems of the form

ẍ(t)+ (M+Δ)ẋ(t)+Nx(t) = 0 (5.60)

for x ∈ R
n. The following assumptions will be made:

M = M�  0, N = N� � 0,

Δ� =−Δ .

Consider the matrices

A =

(
0 In

−N −M−Δ

)
, C =

(
0 M

1
2

)
.
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Using the skew symmetry of Δ , one verifies that the positive definite symmetric
matrix

Q =
1
2

(
N 0
0 I

)

satisfies the Lyapunov equation

A�Q+QA =−C�C.

Moreover, the pair (C,A) is easily seen to be observable. Now Theorem 5.44 implies
the asymptotic stability of (5.60).

2. Complex Polynomials and Hermitian Operators.
Sesquilinear forms and adjoint operators are then extended to the context of

polynomial and rational models. We will discuss briefly two-variable polynomial
matrices and examine naturally induced linear maps and Hermitian forms in
complex polynomial models. In the preceding parts of this chapter, the connection
between tensor products, linear transformations, and bilinear forms was established.
When the field is taken to be the field C of complex numbers, this must be slightly
modified in order for it to be applicable to stability questions. Using sesquilinear
forms, the duality theory of polynomial models developed in Chapter 3 can be
extended in a rather straightforward way.

Our analysis starts with functions in one variable. Define, for A(z) =

∑nA
j=−∞ A jz j ∈ C((z−1))p×m, the conjugate power series A∗ ∈ C((z−1))p×m by

A∗(z) = A(z)
�
=

nA

∑
j=−∞

A∗j z
j ∈ C((z−1))m×p.

In C((z−1))m×C((z−1))m, a sesquilinear form [g, f ]C is defined by

[g, f ]C =
∞

∑
j=−∞

g∗− j−1 fi = (g∗(z) f (z))−1, (5.61)

where f (z) = ∑∞
j=−∞ f jz j, g(z) = ∑∞

j=−∞ g jz j , and g∗(z) = ∑∞
j=−∞ g∗j z j. Thus

[g, f ]
C
= [ f ,g]C. It is clear that, because both f (z) and g(z) are truncated Laurent

series, the sum in (5.61) is well defined, containing only a finite number of nonzero
terms. Let A(z) ∈ C((z−1))m×m. Then [g,Af ]C = [A∗g, f ]C for all f (z),g(z) ∈
C((z−1))m. This global form is used to obtain a concrete representation of X∗D, the
dual space of the polynomial model XD.

Proposition 5.46. Let D(z) ∈ C[z]m×m be nonsingular. Then D∗(z) := D(z)
� ∈

C
m×m[z] is nonsingular, and the following assertions are in force.
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1. The dual space X∗D of XD can be identified with XD∗ under the nondegenerate
pairing

< g, f >C= [g,D−1 f ]C = (g∗(z)D(z)−1 f (z))−1,

for f (z) ∈ XD and g(z) ∈ XD∗ .
2. The form < g, f >C is sesquilinear, i.e.,

< g, f >C=< f ,g >C.

3. The module structures of XD and XD∗ are related through

S∗D = SD∗ .

Proof. The nondegeneracy of < ·, ·>C follows from Theorem 3.38. Computing

< f ,g >C = ( f ∗(z)D∗(z)−1g(z))−1 = (g∗(z)D(z)−1 f (z))−1

proves the second assertion. The last assertion is proved by a trivial calculation,
which is omitted. �

Let C[z,w]n1×n2 denote the n1×n2 complex polynomial matrices in the complex
variables z and w. For M(z,w) ∈C[z,w]n1×n2 , one defines the conjugate polynomial
M∗(z,w) ∈ C[z,w]n2×n1 by

M∗(z,w) := M(w,z)
�
.

A polynomial matrix M(z,w) ∈ C[z,w]n×n, with

M(z,w) =
d

∑
i, j=1

Mijz
i−1wj−1,

will be called Hermitian if

M∗(z,w) = M(z,w).

It is easy to see that this is equivalent to the condition Mij = M∗
ji . A Hermitian

polynomial matrix M(z,w) ∈ C[z,w]n×n is called nonnegative, and denoted by
M ≥ 0, if and only if ∑i, j ξ ∗i Mijξ j ≥ 0 for all ξi ∈ C

n. This is equivalent to the
matrix (Mij) ∈ C

dn×dn being Hermitian and positive semidefinite. Thus there exists
a full column rank matrix C ∈C

dn×k with (Mij) = CC∗. This implies that the matrix
polynomial M is nonnegative if and only if there exists some C(z) ∈ C[z]n×k such
that
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M(z,w) =C(z)C∗(w).

In fact, the relation between C and C(z) is simply C(z) = (In, . . . ,zd−1In)C.
Next, the corresponding objects in the context of polynomial models are intro-

duced. Let D1(z) ∈ C[z]m×m and D2(z) ∈ C[z]p×p be two nonsingular polynomial
matrices, and let XD1 and XD2 be the associated polynomial models. The Kronecker
product model XD2(z)⊗D�1 (w) is defined as the set of all complex p×m polynomial

matrices M(z,w) for which D2(z)−1M(z,w)D1(w)−1 is strictly proper in both
variables. The isomorphism XD2(z)⊗D�1 (w) � XD2(z) ⊗C XD�1 (w) implies that every

M(z,w) ∈ XD2(z)⊗CD�1 (w) has a representation, in terms of generating elements, of
the form

M(z,w) =C2(z)C
∗
1(w),

with each column of D2(z)−1C2(z) and D∗1(w)
−1C1(w) strictly proper. Note that

M∗(z,w) =C1(z)C
∗
2(w).

For polynomials M(z,w) ∈ XD2(z)⊗D�1 (w), we define a map M : XD1 −→XD2 , induced

by M(z,w), by

M f (z) := (M(z,w)D−1
1 (w) f (w))−1 =< M∗(·,z), f >C, f (z) ∈ XD1 . (5.62)

Note that this construction parallels that in Theorem 5.34. Clearly, M is a linear
operator that maps XD1 to XD2 .

Definition 5.47. A Hermitian polynomial M(z,w) ∈ XD(z)⊗D(w) is D-positive,
denoted by M >D 0, if the induced Hermitian map M : XD∗ −→ XD is positive,
that is, if the quadratic form < M f , f > is positive definite, i.e., < M f , f > > 0
for all nonzero f (z) ∈ XD∗ .

Theorem 5.48. Let M(z,w) ∈ XD2(z)⊗D�1 (w). Let the map M : XD1 −→ XD2 be
defined by (5.62). Then:

1. The Hermitian adjoint map M∗ : XD∗2 −→ XD∗1 is given, for g(z) ∈ XD∗2 , by

(M∗g)(w) =< M∗(w, ·),g >C; (5.63)

2. M(z,w) ∈ XD(z)⊗D(w) is Hermitian if and only if M(z,w) has a representation of
the form

M(z,w) =
k

∑
i=1

λigi(z)g
∗
i (w), (5.64)
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with gi(z) ∈ XD and λi ∈ R. M(z,w) is Hermitian if and only if the induced map
M : XD∗ −→ XD is Hermitian;

3. Let D(z) ∈ C[z]m×m be nonsingular, and let M(z,w) ∈ XD(z)⊗D(w) be Hermitian.
The following conditions are equivalent:

a. M(z,w) is D-positive.
b. There exists a basis {gi(z)} in XD for which

M(z,w) =
n

∑
i=1

gi(z)g
∗
i (w).

Proof. From the identity M(z,w) =C2(z)C∗1(w) one obtains

M f (z) = (C2(z)C
∗
1(w)D1(w)

−1 f (w))−1,

and thus, for all f ∈ XD1 ,g ∈ XD∗2 ,

< g,M f >C =
(
g∗(z)D2(z)

−1(C2(z)C
∗
1(w)D1(w)

−1 f (w))−1
)
−1

=
(
(g∗(z)D2(z)

−1C2(z))−1C∗1(w)D1(w)
−1 f (w)

)
−1

=< M∗g, f >C

=
(
(M∗g)∗(w)D1(w)

−1 f (w)
)
−1 .

Thus

M∗g(w) =C1(w)(g∗(z)D2(z)−1C2(z))−1

=
(
C1(w)C

∗
2(z)D

∗
2(z)

−1g(z)
)
−1

=
(
M∗(w,z)D∗2(z)

−1g(z)
)
−1

=< M∗(w, ·),g >C .

This proves (5.63).
A complex matrix Q is Hermitian if and only if Q =CΛC∗ is satisfied for a real

diagonal matrix Λ and a complex matrix C. This shows that a complex polynomial
M(z,w) ∈ C[z,w]m×m is Hermitian if and only if it is of the form

M(z,w) =C(z)ΛC∗(w) =
k

∑
i=1

λigi(z)g
∗
i (w)

for suitable real numbers λ1, . . . ,λk and complex polynomial vectors gi(z) ∈ C[z]m.
Here gi(z) denotes the ith column of C(z). Also, M(z,w) ∈ XD(z)⊗D(w) if and only if
gi ∈ XD for all i. This proves (5.64). For f ∈ XD∗ , one has
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M f =
(
M(z,w)D∗(w)−1 f (w)

)
−1

M∗ f =
(
M∗(w,z)D∗(z)−1 f (z)

)
−1 .

Thus M = M∗ if and only if M∗(z,w) = M(z,w). This completes the proof of the
second assertion.

To prove the last assertion, one computes the inner product < M f , f >C for
each f ∈ XD∗ . Since M(z,w) is Hermitian, it has the representation M(z,w) =
C(z)ΛC∗(w) for a real diagonal matrix Λ = diag(λ1, · · · ,λn) and D(z)−1C(z) strictly
proper. Without loss of generality, one can assume that the columns c1(z), . . . ,cn(z)
of C(z) form a basis of XD. Thus the quadratic form

< M f , f >C =
(

f ∗(z)D(z)−1(C(z)ΛC∗(w)D∗(w)−1 f (w))−1
)
−1

=
(

f ∗(z)D(z)−1C(z)
)
−1 Λ

(
C∗(w)D∗(w)−1 f (w)

)
−1

=
n

∑
i=1

λi|< f ,ci >C |2

is positive definite on XD∗ if and only if λ1 > 0, . . . ,λn > 0. Thus the elements gi(z) =√
λici(z), i = 1, . . . ,n, define a basis of XD, with

M(z,w) =
n

∑
i=1

gi(z)g
∗
i (w)

and

< M f , f >C=
n

∑
i=1

|< f ,gi >C |2. �

In Theorem 5.48, the map induced by a two-variable polynomial matrix
M(z,w) ∈ XD2(z)⊗D�1 (w) was examined. This restriction is unnecessary because

one can use the projection πD2(z)⊗D�1 (w) in C[z,w]p×m, as defined in (5.20). Thus,

assume that M(z,w) ∈C[z,w]p×m. Let D1(z) ∈C[z]m×m and D2(z) ∈C[z]p×p be two
nonsingular polynomial matrices, and let XD1 and XD2 be the associated polynomial
models. Since ImπD2(z)⊗D�1 (w) = XD2(z)⊗CD�1 (w), one can define the induced map
M : XD1 −→ XD2 by

(M f )(z) =
(
πD2(z)⊗D�1 (w)M(z,w)D1(w)

−1 f (w)
)

−1
. (5.65)

In view of (5.24), the induced map satisfies M = 0 if and only if there exist
polynomial matrices Mi(z,w) such that M(z,w) = D2(z)M1(z,w)+M2(z,w)D1(w).
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3. Stability of Higher-Order Equations
We proceed now to establish stability criteria for complex polynomial matrices.
This is done by reduction to the Lyapunov theorem. For simplicity we focus on
continuous-time systems; discrete-time systems can be handled similarly. Recall
that a complex matrix A is called stable if all its eigenvalues lie in the open left half-
plane. Equivalently, a matrix A is stable if and only if its characteristic polynomial
is stable. One extends this definition to nonsingular polynomial matrices by saying
that λ is an eigenvalue of a nonsingular polynomial matrix D(z) if there exists a
nonzero vector ξ in KerD(λ ). In view of Theorem 3.30, λ is an eigenvalue of D(z)
if and only if it is an eigenvalue of SD. A nonsingular polynomial matrix D(z) is a
stable polynomial matrix if all its eigenvalues lie in the open left half-plane. Note
that a matrix A is stable if and only if the polynomial matrix zI−A is stable. With
the analysis of stability our present goal, it is important to introduce symmetry with
respect to the imaginary axis. For a polynomial matrix P(z) ∈ C[z]m×m, one defines
its parahermitian adjoint P∗(z) by

P∗(z) := P(−z)
�
= P∗(−z).

One says that P(z) is parahermitian if P∗(z) = P(z). Clearly, P(z) is stable if and
only if P∗(z) is antistable, i.e., it has all its eigenvalues in the open right half-plane.

Our principal theorem is stated next.

Theorem 5.49. Let P(z)∈C[z]m×m be a nonsingular polynomial matrix. Then P(z)
is stable if and only if, for polynomial matrices R(z) with P(z) and R(z) right
coprime and R(z)P(z)−1 proper, there exists a solution Q(z) of the polynomial
Sylvester equation

P∗(z)Q(z)+Q∗(z)P(z) = R∗(z)R(z) (5.66)

such that the quadratic form, induced in XP by

V (z,w) =
P∗(z)Q(w)+Q∗(z)P(w)−R∗(z)R(w)

z+w
, (5.67)

is positive definite.

Proof. Assume P(z) is stable and R(z) is right coprime with P(z). The coprimeness
condition implies (Theorem 4.28) that the pair (C,A) defined, in the state space XP,
by the shift realization (4.23) is observable. Explicitly, the shift realization of the
proper transfer function R(z)P(z)−1, with R(z)P(z)−1−D being strictly proper, is
given as A : XP −→ XP, C : XP −→C

p,

A = SP,

Cf =
(
R(z)P(z)−1 f (z)

)
−1 , f ∈ XP.

(5.68)
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Note that Cf =
(
(R(z)P(z)−1−D) f (z)

)
−1, which implies that C does not depend

on the constant term D. A straightforward computation shows that the Hermitian
adjoint of C is the linear operator C∗ : Cp −→ XP∗ , defined as C∗v = R∗(z)−
P∗(z)D∗v for v ∈ C

p. In fact, for all v ∈ C
p, f ∈ XP,

<C∗v, f >C =
(
(C∗v)∗(z)P(z)−1 f (z)

)
−1 =< v,Cf >C

= v∗
(
(R(z)−DP(z))P(z)−1 f (z)

)
−1 ,

which is equivalent to C∗ = R∗(z)−P∗(z)D∗.

The stability of P(z) implies that there exists a solution to equation (5.66). This is
shown next. Because P(z) is stable, so is p(z) = detP(z), and the scalar polynomials
p(z) and p∗(z) := p(−z) are coprime. Therefore, the polynomial Sylvester equation

K(z)p(z)+ p∗(z)L(z) = R∗(−z)R(z)

is solvable. Moreover, the solution is unique if one assumes L(z) is reduced modulo
p(z) and K(z) modulo p∗(z). By a symmetry argument, K(z) = L∗(z), and hence

L∗(z)p(z)+ p∗(z)L(z) = R∗(z)R(z).

Using Cramer’s rule, i.e., p(z)I = adjP(z)P(z), and defining Q(z) := adjP∗(z)L(z),
with Q∗(z) = L∗(z)adjP(z), the equality Q∗(z)P(z) + P∗(z)Q(z) = R∗(z)R(z)
follows.

Thus Q(z) solves the polynomial Sylvester equation (5.66). As a consequence of
(5.66), V (z,w) defined by (5.67) is a polynomial matrix in two variables. Let

M(z,w) = (z+w)V (z,w) = P∗(z)Q(w)+Q∗(z)P(w)−R∗(z)R(w).

Clearly, both V (z,w) and M(z,w) are Hermitian. Moreover,

πP∗(z)⊗P�(w)M(z,w) =−(R∗(z)−P∗(z)D∗)R(w).

The polynomial matrix M(z,w) induces a Hermitian linear operator

M : XP −→ XP∗ , M f =
(
πP∗(z)⊗P�(w)M(z,w)P(w)−1 f (w)

)

−1

by equation (5.65). Using (5.68) we obtain

M f =−(R∗(z)−P∗(z)D∗)
(
R(w)P(w)−1 f (w)

)
−1 =−(R∗(z)−P∗(z)D∗)Cf =−C∗Cf .
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Thus

M =−C∗C. (5.69)

Similarly, using Proposition 5.32, the polynomial V (z,w) induces a Hermitian
linear operator V : XP −→ XP∗ defined by

V f =
(
πP∗(z)⊗P�(w)V (z,w)P(w)−1 f (w)

)

−1
.

Since the adjoint S∗P coincides with the shift SP∗ on XP∗ , one obtains, for all
f ∈ XP,

(SP∗V+VSP) f =
(
πP∗(z)⊗P�(w)(zV (z,w)+V (z,w)w)P(w)−1 f (w)

)

−1

=
(
πP∗(z)⊗P�(w)M(z,w)P(w)−1 f (w)

)

−1
= M f .

This proves that

SP∗V+VSP = M.

Since A= SP, and using (5.69), one concludes that V satisfies the Lyapunov equation

A∗V+VA =−C∗C.

Since P is stable, the shift operator A = SP has all its eigenvalues in the open left
half-plane. By Theorem 5.44, the quadratic form < V f , f > is positive definite, or,
equivalently, V >P 0.

Conversely, assume Q(z) is a solution of the polynomial Sylvester equa-
tion (5.66) and the quadratic form < V f , f > induced in XP by V (z,w), as defined
in (5.67), is positive definite. Since SP∗ = S∗P, as before, the following Lyapunov
equation is satisfied:

S∗PV+VSP =−C∗C.

Applying Theorem 5.44, one concludes that SP is stable and, hence, by Theo-
rem 3.30, that P(z) is, too. �

Using the same technique, one can derive a higher-order analog of the Ostrowski
and Schneider (1962) inertia theorem.

Theorem 5.50 (Polynomial Inertia Theorem). Let G(z) = R(z)P(z)−1 be a
proper complex rational matrix function that is right coprime. Suppose that the
polynomial matrix P(z) has n0 eigenvalues with real part zero, n+ eigenvalues with
positive real part, and n− eigenvalues with negative real part, all counted with
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multiplicities. Let Q(z) be a solution of the polynomial Sylvester equation

P∗(z)Q(z)+Q∗(z) = R∗(z)R(z),

and let

V (z,w) =
P∗(z)Q(w)+Q∗(z)P(w)−R∗(z)R(w)

z+w

denote the associated Hermitian polynomial. Then the Hermitian operator V in XP

is invertible with exactly n+ negative and n− positive eigenvalues. Moreover, n0 = 0.

Proof. Following the notation in the proof of Theorem 5.49, one obtains

A∗V+VA =−C∗C

for the shift realization (A,C) of R(z)P(z)−1. By the right coprimeness of P(z),R(z),
the pair (C,A) is observable. Thus the result follows from the inertia theorem 5.45.

�
4. Classical Stability Criteria
The results of the previous section can be used for an easy derivation of some of the
classical stability criteria for real and complex scalar polynomials. To do this, it will
be useful to compute the matrix representation of the Hermitian operator V induced
by a scalar two-variable polynomial V (z,w). Our derivation of the classical stability
criteria is nonstandard insofar as they are deduced from the Lyapunov stability
criteria rather than from using winding number arguments and the Cauchy index.

Let

V (z,w) =
n

∑
i, j=1

aijz
i−1wj−1

denote a Hermitian scalar polynomial, and let p(z) = ∑n
j=0 p jz j, pn = 1, denote a

monic complex polynomial. Note that

Xp(z)⊗p(w) = {
n

∑
i, j=1

aijz
i−1wj−1 | aij ∈ C}

and therefore each polynomial in z,w of degree < n is contained in Xp(z)⊗p(w). In
particular, V (z,w) ∈ Xp(z)⊗p(w). Recall next the construction of the standard basis
and control basis on scalar polynomial models. Thus, let

Bst = {1,z, . . . ,zn−1}
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denote the standard basis of Xp and

Bco = {e1(z), . . . ,en(z)}

with

ei(z) = zn−i + pn−1zn−i−1 + · · ·+ pi = π+(z
−i p(z))

denote the control basis of Xp. The computation

(
zk−1e�(z)

p(z)

)

−1
=

(
zk−1π+(z−�p(z))

p(z)

)

−1

=

(
zk−1(z−�p(z))

p(z)

)

−1
=
(

zk−�−1
)

−1
= δk�

shows that Bco is the dual basis to Bst = {1,z, . . . ,zn−1}.
To obtain a matrix representation of the operator V : Xp−→Xp with respect to the

control basis and standard basis on Xp and Xp∗ , respectively, one computes, using
the fact that the product of two strictly proper functions has zero residue,

(
V (z,w)p(w)−1e j(w)

)
−1 =

n

∑
r,s=1

arsz
r−1 (ws−1 p(w)−1π+(w

− j p(w))
)
−1

=
n

∑
r,s=1

arsz
r−1 (ws−1 p(w)−1(w− j p(w))

)
−1

=
n

∑
r,s=1

arsz
r−1 (ws− j−1)

−1

=
n

∑
r=1

arjz
r−1.

Thus the matrix representation of V is given by the coefficients of V (z,w), that is,
[V]st

co = (ars).

Definition 5.51. Let p(z) = zn + pn−1zn−1 + · · ·+ p0 ∈ C[z] be a complex polyno-
mial with Hermitian adjoint p(z) = zn + pn−1zn−1 + · · ·+ p0 ∈ C[z]. The Hermite–
Fujiwara form is defined as a Hermitian form with generating function

p(z)p(w)− p(−z)p(−w)
z+w

=
n

∑
i, j=1

hijz
i−1wj−1,
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and the Hermite–Fujiwara matrix is the Hermitian matrix

Hn(p) = (hij) ∈C
n×n.

As an example, the Hermite–Fujiwara matrix for a complex polynomial z2 +
p1z+ p0 of degree two is computed. Thus

H2(p) = 2

(
Re(p0 p1) −iIm p0

iIm p0 Re p1

)
,

which is positive definite if and only if

Re(p1)> 0, Re(p1)Re(p0 p1)− Im2(p0)> 0.

From the polynomial inertia theorem the following root location result can be
deduced.

Theorem 5.52 (Hermite). Let p(z) ∈ C[z] be a monic complex polynomial of
degree n that is coprime with p(−z). Let n+ and n− denote the number of roots
of p(z) that are located in the open right half-plane and open left half-plane,
respectively. Let Hn(p) denote the Hermite–Fujiwara matrix of p(z). Then Hn(p) is
invertible with exactly n− positive eigenvalues and n+ negative eigenvalues.

Proof. Defining r(z) = p(−z) and q(z) = 1
2 p(z), the polynomials r(z) and p(z) are

coprime, and q(z) solves the polynomial Sylvester equation

p(z)q∗(z)+ q(z)p∗(z) = r∗(z)r(z).

Thus

V (z,w) :=
p∗(z)q(w)+ q∗(z)p(w)− r∗(z)r(w)

z+w
=

p(z)p(w)− p(−z)p(−w)
z+w

coincides with the Hermite–Fujiwara form. Since {1,z, . . . ,zn−1} is a basis of the
polynomial model Xp, the matrix representation of V on Xp is given by Hn(p). The
result follows from Theorem 5.50. �

Theorem 5.52 can be generalized by omitting the coprimeness assumption of
p(z) and p(−z). The result is strong enough for the characterization of asymptotic
stability.

Theorem 5.53. A necessary and sufficient condition for a complex polynomial p(z)
to be a Hurwitz polynomial is that the Hermite–Fujiwara form

p(z)p(w)− p(−z)p(−w)
z+w
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must be positive definite on Xp or, equivalently, that the Hermite–Fujiwara matrix
Hn(p) must be positive definite.

Proof. Assuming that p(z) is a Hurwitz polynomial implies that p(z) and p(−z) do
not have common roots and, hence, are coprime. By Theorem 5.52, the Hermite–
Fujiwara matrix Hn(p) is positive definite. Conversely, assume that Hn(p) is
positive definite or, equivalently, that the Hermite–Fujiwara form

p(z)p(w)− p(−z)p(−w)
z+w

(5.70)

is positive definite on Xp. The change of variable w =−ζ transforms (5.70) into the
Bezoutian form

p(z)p(−ζ )− p(−z)p(ζ )
z− ζ

of p(z) and p∗(z) = p(−z). This shows that the Bezoutian matrix B(p, p∗) of p and
p∗ is equal to the product

B(p, p∗) = Hn(p)S

of the Hermite–Fujiwara matrix with the invertible matrix

S = diag(1,−1, · · · ,(−1)n−1).

Thus B(p, p∗) is invertible and Theorem 5.40 implies that p and p∗ are coprime.
Equivalently, p and p∗ are coprime. Theorem 5.52 is now applied to infer the
stability of p(z). �

In the case of real polynomials, the Hermite–Fujiwara form admits a further
reduction. To this end, the even and odd parts p+(z) and p−(z) of a real polynomial
p(z) = ∑ j≥0 p jz j are introduced. These are defined as the polynomials

p+(z) = ∑
j≥0

p2 jz
j, p−(z) = ∑

j≥0

p2 j+1z j.

Thus

p(z) = p+(z
2)+ zp−(z

2), p∗(z) = p+(z
2)− zp−(z

2). (5.71)

In the next proposition, it will be shown that both the Bezoutian B(p, p∗) and
the Hermite–Fujiwara forms have direct sum decompositions that are useful for
reducing the computational complexity of stability analysis.
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Proposition 5.54. Let p(z) be a real polynomial.

1. The following isomorphisms of quadratic forms are valid: For the Hermite–
Fujiwara form H(p) one has

H(p)� 2B(zp−, p+)⊕ 2B(p+, p−),

whereas for the Bezoutian B(p, p∗),

B(p, p∗)� 2B(zp−, p+)⊕ 2B(p−, p+).

2. The Hermite–Fujiwara form is positive definite if and only if the two Bezoutians
B(q+,q−) and B(zq−,q+) are positive definite.

Proof. 1. The polynomial p(z) being real implies p(z) = p(z). From (5.71) it
follows that p(−z) = p+(z2)− zp−(z2). We compute

p(z)p(w)− p(−z)p(−w)
(z+w)

= 2
zp−(z2)p+(w2)+ p+(z2)wp−(w2)

z+w

= 2
z2 p−(z2)p+(w2)− p+(z2)w2 p−(w2)

z2−w2 −2zw
p−(z2)p+(w2)− p+(z2)p−(w2)

z2−w2 .

The first summand contains only even terms, while the second contains only
odd ones. This proves the first statement. By a change of variable w = −ζ ,
the Hermite–Fujiwara form transforms into the Bezoutian of p(z) and p(−z).
However, this change of variable affects only the terms in

2zw
p−(z2)p+(w2)− p+(z2)p−(w2)

z2−w2 ,

and this by a change of sign.
2. Follows from the direct sum representation of the Hermite–Fujiwara form.

�
The following classical result is obtained as a direct corollary of this.

Theorem 5.55. Let p(z) be a monic real polynomial of degree n. The following
statements are equivalent:

(i) p(z) is a Hurwitz polynomial.
(ii) The Hermite–Fujiwara matrix Hn(p) is positive definite.

(iii) The two Bezoutian matrices B(p+, p−) and B(zp−, p+) are positive definite.

5.6 Exercises

1. Compute the tensor product Z2⊗Z Z3. For which pairs of integers m,n ∈ N is
Zm⊗ZZn = {0}? What is Z⊗ZQ?

2. Prove that m⊗ n = 0 is valid in the tensor product M⊗R N if and only if every
bilinear map B : M×N −→ P vanishes at (m,n).
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3. For ideals I and J in a commutative ring R there exists a unique R-linear map

R/I⊗R R/J � R/(I+ J)

satisfying (x+ I)⊗ (y+ J) �→ xy+(I+ J).
4. Let M = Rn be a free module with n ≥ 2 and {e1, . . . ,en} the standard basis.

Check that e1⊗ e1 + e2⊗ e2 is not an elementary tensor in M⊗R M, i.e., that
there exists no v ∈M with e1⊗ e1 + e2⊗ e2 = v⊗ v.

5. Prove that the tensor product M ⊗R N of torsion modules M and N over a
commutative ring is a torsion module. Prove that the algebraic dual M′ = {0}
for all torsion modules M. What happens if R has zero divisors?

6. Prove the R-module isomorphism M⊗R N � N⊗R M.
7. Prove that the tensor product f ⊗g of two surjective R-module homomorphisms

f : M1 −→ N1 and g : M2 −→ N2 is surjective. Is this also true if surjectivity is
replaced by injectivity?

8. Explain why the submodule {
(

a b
b c

)
|a,b,c ∈ F[z]} ⊂ F[z]2×2 does not have a

representation of the form D1(z)F[z]2×2 +F[z]2×2D2(z).
9. Let D1(z) ∈ F[z]m×m and D2(z) ∈ F[z]p×p be nonsingular polynomial matrices

with invariant factors d1, . . . ,dm and e1, . . . ,ep, respectively. Let di ∧ e j denote
the greatest common divisor of the polynomials di(z) and e j(z). Prove the
dimension formula

dimF HomF[z](XD1 ,XD2) =∑
i, j

deg(di∧ e j).

Deduce

dimF HomF[z](XD1 ,XD1) =
m

∑
i=1

(2i− 1)degdi.

10. Let D1(z) ∈ F[z]m×m and D2(z) ∈ F[z]p×p be nonsingular. Show that
HomF[z](XD1 ,XD2) = {0} if and only if detD1(z) and detD2(z) are coprime.

11. Let D1(z) ∈ F[z]m×m and D2(z) ∈ F[z]m×m be nonsingular polynomial matrices
with determinants di(z) = detDi(z). Show that

XD1(z)⊗D2(z) = (D1(z)⊗ I)XI⊗D2(z)⊕XD1(z)⊗I(I⊗D2(z))

is true if and only if d1(z) and d2(z) are coprime.
12. Let A be a linear transformation in F

n with invariant factors d1, . . . ,dn. Let C (A)
denote the centralizer of A, i.e., the set of all Z ∈ F

n×n, with ZA = AZ. Prove the
following:

a. Show dimFC (A) = n if and only if A is cyclic.
b. Show dimFC (A) = n2 if and only if A is scalar, i.e., A = αI for some α ∈ F.
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c. Let A and B be linear transformations. Show that there exist no nontrivial
maps intertwining them if and only if the minimal polynomials or, equiva-
lently, the characteristic polynomials of A and B are coprime.

13. Show that the discrete-time system xt+1 = Axt on C
n is asymptotically stable

if and only if for each positive definite Hermitian matrix Q = Q∗ there exists a
unique positive definite Hermitian solution P = P∗ of the Stein equation

A∗PA−P =−Q.

14. Prove that a real monic polynomial p(z) of degree n is a Schur polynomial if
and only if

(z− 1)n p(
z+ 1
z− 1

)

is a Hurwitz polynomial.
15. Prove that every real Hurwitz polynomial p(z) = zn + pn−1zn−1 + · · · + p0

satisfies p0 > 0, p1 > 0, . . . , pn−1 > 0.
16. Prove that ẋ = Ax is asymptotically stable for the tridiagonal matrix

A =

⎛

⎜
⎜
⎜
⎜
⎝

− 1
2 a2

1 −a2 . . . 0

a2 0
. . .

...
...

. . .
. . . −an

0 . . . an 0

⎞

⎟
⎟
⎟
⎟
⎠

if ai �= 0 for i = 1, . . . ,n.
17. Assume that M and N are real symmetric n×n matrices that are positive definite.

Prove that the second-order system

ẍ(t)+Mẋ(t)+Nx(t) = 0

is asymptotically stable, i.e., limt→∞ x(t) = 0 and limt→∞ ẋ(t) = 0 are true for all
solutions.

5.7 Notes and References

Our exposition of the basic theory of tensor products of modules and quotient
modules follows Lang (1965) and Hungerford (1974). In the paper by Helmke
and Fuhrmann (1998), tensored polynomial and rational models were introduced
to describe tangent spaces of manifolds of rational functions. The systematic study
of tensor products of functional models is due to Fuhrmann and Helmke (2010)
and is continued in Fuhrmann (2010a). The tensor products of polynomial models
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lead to a polynomial approach to the Sylvester and Stein equations and clarifies the
role of Bezoutians in representing solutions. The polynomial approach to Lyapunov
equations is due to Willems and Fuhrmann (1992). For matrix versions of these
equations see also de Souza and Bhattacharyya (1981) and Heinig and Rost (1984).
The study of Bezoutians is old and dates back to the nineteenth century, with
important contributions by Cayley, Jacobi, and Sylvester.

The problem of the stability of a linear (control) system was one of the first
problems of the area of control theory. The interest in stability analysis is usually
traced to J.C. Maxwell’s theory of governors Maxwell (1868). However, the problem
of root location of polynomials has a longer history. Since, with the work of Galois
and Abel, exact determination of zeros of polynomials was proved to be impossible,
interest shifted to the problem of localizing the zeros in some region of the complex
plane. The unit disc and the major half-planes were the regions of greatest interest.
The problem of root location was already solved by Hermite (1856). But in this
connection the work of Routh (1877) turned out to be important because of the
efficiency of the computational algorithm. In the same way, the work of Hurwitz
(1895) was significant for its connection to topological problems. For a derivation
of algebraic stability criteria that is close to the spirit of the chapter we refer the
reader to Fuhrmann (1982).

In a major contribution to the subject, Lyapunov (1893) offered a completely
different approach based on energy considerations. In the linear case, the Lyapunov
theory reduces the study of the stability of a system of first-order homogeneous
constant coefficient differential equations to the positive definiteness of the solution
of the celebrated Lyapunov equation. This reduction is generally attributed to
Gantmacher (1959). Our approach to the stability problem of higher-order systems
of differential equations is based on a strengthened form of the Lyapunov equation,
given in Theorem 5.44, replacing positive definiteness by a reachability, or observ-
ability, assumption. Considering Lyapunov equations in this form is due to Snyders
and M. Zakai (1970) and Wimmer (1974a). Our approach to this reduction is
achieved via the use of polynomial model theory and tensor algebra. The polynomial
matrix analog of the Lyapunov equation is identified, and, with a solution to this
equation, a two-variable polynomial matrix is constructed. In turn, this polynomial
matrix induces an operator between two polynomial models. In the special case of
symmetry, this map induces a quadratic form on a polynomial model, which leads
to the required reduction.

The classic paper by Krein and Naimark (1936), is an excellent source for much
of the older work on root location; however, strangely, no mention of Bezoutians
is made there. The study of scalar Bezoutians goes back to Cayley. Multivariable
Bezoutians were introduced by Anderson and Jury (1976) and used to derive rank
formulas for the McMillan degree and stability test for multivariable linear systems.
Their connection to tensor products and homomorphisms of polynomial models is
central to our approach. Theorem 5.49 and its application to the stability analysis
of higher-order equations are due to Willems and Fuhrmann (1992). The dimension
formula (5.37) appears in Gantmacher (1959) and is attributed to Shoda (1929).



Chapter 6
State Feedback and Output Injection

Our attention turns now to the study of the fundamental question: How does one
use input variables in the actual control of a system? Naturally, the use of control
functions depends on the desired objectives of performance. Moreover, there are
various ways in which the control can be applied. One way is to determine, a priori,
a control sequence in the discrete-time case, or a control function in the continuous-
time case, and apply it. Thus the control is applied without regard to its lasting
effects or to the actual system performance, except insofar as the design goals have
been taken into account. This is referred to as open-loop control. Obviously, this
kind of control is often far from being satisfactory. The reasons for this may be
manifold, in that there is no exact modeling of systems or that there are no errorless
determinations of state vectors or precisely known control mechanisms. Thus open-
loop control does not take into account noise in the system or random variations
occurring from external influences. However, one advantage of open-loop control
lies in the computational ease of determining such controls, for instance using
optimization techniques. This aspect becomes particularly important when dealing
with the control of large networks of systems.

An alternative to open-loop control is feedback control. Our standing assump-
tion is that some knowledge of the state is available to the control mechanism, or
to the controller, and the control device takes this information into account. There
is a wide range of possibilities in designing feedback laws. If at each moment
the controller has access to the full state of the system, then one refers to it as
state feedback. If only a function, linear in the case of interest to us, of the state
variables is available, then this will be referred to as output feedback. A controller
can be memoryless, that is, the control is determined only by the currently available
information. In this case, it is called constant gain feedback. Alternatively, the
controller itself may be a dynamic system, in which case one speaks of dynamic
feedback control. Whatever the specific control strategy may be, feedback control
has the well-known advantage of ensuring robustness, while its disadvantages lie
in the computational burden that comes with either computing the feedback gains

© Springer International Publishing Switzerland 2015
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or estimating the full or partial state variables of the system. Thus feedback control
can become an increasingly complex task for large-scale networks. The tasks of
controlling large-scale interconnected systems, such as swarms or ensembles of
systems, therefore rather ask for a hybrid approach where both open-loop and
closed-loop control strategies are employed.

Schematically one considers the following feedback configuration:

G

K

��
�yw u
x
�

�

Here G is the plant, or the original system, and K denotes the control device.
Thus, in the linear, discrete-time case, the equations of the plant are

xt+1 = Axt +But ,

yt = Cxt +Dut ,

and if the controller is memoryless, we consider static output feedback as

ut =−Kyt +wt .

State feedback is a special case of this, and we set p = n and C = In. A dynamic
situation occurs when K is itself a linear system and hence is given internally by

zt+1 = Fzt +Gyt ,

vt = Hzt + Jyt ,

while the coupling equation, which allows for another control apart from the
feedback already incorporated, is

ut = wt + vt .

In this chapter we focus on analyzing the effects of state feedback control, while the
design of open-loop controls was addressed already in Chapter 4.

For a deeper analysis of state feedback and output injection problems for linear
systems (A,B,C), it turns out to be useful to study special classes of linear subspaces
in the state space that capture the dynamics of the subsystems of (A,B,C). Such
subspaces are the controlled and conditioned invariant subspaces and were first
introduced and extensively studied in the early 1970s by Basile and Marro, as well
as Wonham and Morse in the context of geometric control theory. The textbooks
by Wonham (1979) and Basile and Marro (1992) give comprehensive accounts
of the geometric theory. This chapter will be confined to the derivation of basic
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characterizations of controlled and conditioned invariant subspaces, both in the
state space and using functional model representations. In the subsequent Chapter 7,
characterizations of functional observers will be given using conditioned invariant
subspaces.

6.1 State Feedback Equivalence

This section is devoted to the study of the effects of state feedback transformations
that act on a fixed input-to-state pair (A,B). Let U and X be finite-dimensional
vector spaces over the field F, and let (A,B) be a reachable pair with A : X −→X
and B : U −→X linear transformations. Our assumption will be that dimU = m
and dimX = n. Through a choice of bases one can identify U and X with F

m and
F

n, respectively. In that case, A and B are represented by n× n and n×m matrices,
respectively. The pair (A,B) stands for the linear system

xt+1 = Axt +But . (6.1)

If the system is augmented by the identity readout map

yt = xt ,

then the transfer function of the combined system is

G(z) = (zI−A)−1B.

A state feedback law is given by

ut =−Kxt +wt , (6.2)

where wt denotes the external input applied at time t. Substituting (6.2) back
into (6.1) amounts to transforming the pair (A,B) into the pair (A−BK,B). In this
case, one says that (A−BK,B) has been obtained from (A,B) by state feedback.
Clearly, the applications of state feedback transformations form a commutative
group. If the group is enlarged to the one generated by invertible transformations in
the input space U , state-space similarity transformations in X , and state feedback
transformations, then the full state feedback group F is obtained. Thus an element
of F is a triple of linear maps (S,K,R), with S : X −→X and R : U −→ U
nonsingular and K : X −→ U . The feedback group acts on a pair (A,B) by the
following rule:

(A,B)
(S,K,R)�→ (

S(A−BR−1K)S−1,SBR−1) .
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This implies the group composition law

(S,K,R)◦ (S1,K1,R1) = (SS1,RK1 +KS1,RR1).

This composition law is clearly associative since it can be expressed in terms of
matrix multiplication as follows:

(
S 0
K R

)(
S1 0
K1 R1

)
=

(
SS1 0

KS1 +RK1 RR1

)
∈ GLn+m(F).

The state feedback action can be identified with

(A,B) �→ S (A,B)

(
S 0
K R

)−1

=
(
S(A−BR−1K)S−1,SBR−1) .

This clearly shows that

(S,K,R)−1 = (S−1,−R−1KS−1,R−1)

and, hence, that F is a bona fide group. It is clear from the matrix representation
of the feedback group that every element of F is the product of three elementary
types:

1. Similarity or change of basis in the state space, i.e., elements of the form (S,0, I),
with S invertible;

2. Similarity or change of basis in the input space, i.e., elements of the form (I,0,R),
with R invertible;

3. Pure feedbacks, i.e., elements of the form (I,K, I).

Indeed, one has the composition law

(S,K,R) = (S,0, I)(I,K, I)(I,0,R).

The feedback group F induces a natural equivalence relation in the set of
reachable pairs (A,B) with state space X and input space U . Let (Ai,Bi), i = 1,2,
be input pairs with state spaces Xi and input spaces Ui, respectively. The pair
(A2,B2) is said to be state feedback equivalent to (A1,B1) if there exist invertible
maps Z : X1 −→X2 and R : U1 −→U2 and a map K : X1 −→U2 that satisfy

ZA1−A2Z = B2K,

ZB1 = B2R.

It is trivial to check that this is indeed an equivalence relation. The equivalence
classes are called the orbits of the feedback group, and one would like to obtain the
orbit invariants as well as to isolate a single element in each orbit, a canonical form,
that exhibits these invariants.
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The dual concept the state feedback transformations is that of output injection.
Here it is formulated for matrix representations of the system maps A : X −→
X , B : U −→ X , and C : X −→ Y , although a coordinate-free description is
of course also possible. Thus two output pairs (Ci,Ai) ∈ F

p×n×F
n×n, i = 1,2, are

called output injection equivalent if there exist invertible matrices R∈GLn(F) and
S ∈ GLp(F) and a matrix L ∈ F

n×p such that

(
A2

C2

)
=

(
R L
0 S

)(
A1

C1

)
R−1 =

(
(RA1−LC1)R−1

SC1R−1

)
. (6.3)

The relation of output injection equivalence defines a bona fide equivalence
relation on the matrix space F

p×n× F
n×n. The equivalence classes are given by

the orbits

{
(RCS−1,S(A−LC)S−1) | S ∈ GLn(F),R ∈ GLp(F),L ∈ F

n×p}

of the output injection group G , where

G =

{(
R L
0 S

) ∣
∣∣ R ∈ GLn(F),S ∈ GLp(F),L ∈ F

n×p
}
⊂ GLn+p(F). (6.4)

Conceptually, output injection seems much harder to grasp than state feedback.
A clarification of its importance comes from a deeper study of observer theory, and
this will be taken up in Chapter 7. There is therefore a measure of poetic justice
in the fact that the analysis of the output injection case is, from a technical point
of view, often significantly easier than that of the feedback case. The notion of
output injection bears a natural duality with state feedback. In fact, a pair (C1,A1)
is output injection equivalent to a pair (C2,A2) if and only if the dual pair (A�1 ,C

�
1 )

is state feedback equivalent to (A�2 ,C
�
2 ). This simple fact allows us to translate

results for state feedback into corresponding results for output injection, and vice
versa. However, while a natural approach is to dualize the feedback result, one can
often develop an independent analysis of the output injection case, with the option
of deriving results on the feedback group by duality considerations. Sometimes
the proofs obtained along such lines become easier than those derived from state
feedback analysis using duality arguments.

6.2 Polynomial Characterizations

The feedback group is introduced through a state-space formalism. However, as
is seen in several instances, various aspects of linear systems theory are easier
to handle if one operates with polynomial data, and this approach is our choice.
Henceforth, by a choice of bases, X will be identified with F

n and U with F
m.
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Thus, for a reachable pair (A,B), the polynomial matrices zI − A and B are left
coprime. Since each factorization of a rational matrix function is associated with a
right coprime factorization, one can write

(zI−A)−1B = N(z)D(z)−1, (6.5)

with N(z) and D(z) right coprime. Furthermore, N(z) and D(z) are uniquely
determined up to a common right unimodular factor. Thus, each reachable pair
(A,B) is associated with the unique shift realization, defined in (4.23) as

SD : XD −→ XD, πD : Fm −→ XD.

By Theorem 4.21, the pairs (A,B) and (SD,πD) are similar. Moreover, (6.5) defines
a bijective correspondence between the similarity equivalence classes

{(SAS−1,SB) | S ∈ GLn(F)}

of reachable pairs and the equivalence classes

{(D(z)U(z)) |U(z) ∈ GLn(F[z])},

with respect to right multiplication by unimodular polynomial matrices, of nonsin-
gular polynomial matrices D(z). The next theorem characterizes feedback equiva-
lence in terms of the factorizations (6.5).

Theorem 6.1. Let (A,B) be a reachable pair, with A ∈ F
n×n and B ∈ F

n×m. Let
N(z)D(z)−1 be a right coprime factorization of (zI − A)−1B. Then a necessary
and sufficient condition for a reachable pair (A,B) to be feedback equivalent to
(A,B) is the existence of R ∈ GLm(F), S ∈ GLn(F), and Q(z) ∈ F[z]m×m, for which
Q(z)D(z)−1 is strictly proper, such that

(zI−A)−1B = SN(z)(D(z)+Q(z))−1R−1. (6.6)

Proof. Assume G(z) = (zI−A)−1B = N(z)D(z)−1 are coprime factorizations, and
let (A,B) be feedback equivalent to (A,B). Thus, there exist invertible maps S and R
such that A = S(A−BK)S−1 and B = SBR−1. Hence,

(zI−A)−1B = (S(zI−A+BK)−1S−1)−1SBR = S(zI−A+BK)−1BR−1 .

Now, computing

(zI−A+BK)−1B = [(zI−A)(I+(zI−A)−1BK)]−1B

= (I+(zI−A)−1BK)−1(zI−A)−1B

= (I+G(z)K)−1G(z),
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and using the equality G(z)(I + KG(z)) = (I + G(z)K)G(z), it follows that
(I+G(z)K)−1G(z) = G(z)(I +KG(z))−1. Consequently,

G f (z) := (zI−A)−1B = SG(z)(I +KG(z))−1R−1

= SN(z)D(z)−1(I+KN(z)D(z)−1)−1R−1

= SN(z)(D(z)+KN(z))−1R−1.

If one defines Q(z) = KN(z), then clearly G f (z) = SN(z)(D(z)+Q(z))−1R−1, and
Q(z)D(z)−1 = KN(z)D(z)−1 is strictly proper. This proves the necessity part of the
theorem.

Conversely, assume that (6.6) is satisfied. Without loss of generality, it suffices
to show that if, with D(z) = D(z) +Q(z) and Q(z)D(z)−1 being strictly proper,
the equality N(z)D(z)−1 = (zI − A)−1B is satisfied for a reachable pair (A,B),
then (A,B) is feedback equivalent to (A,B). Thus it suffices to show that the pairs
(SD,πD) and (SD,πD) are feedback equivalent. Alternatively, it must be shown that,
for some invertible F-linear map Y : XD −→ XD and a linear map K : XD −→ F

n, the
equality SD−YSDY−1 = BK is valid, where B : Fn −→ XD is defined by Bu = πDu

for u ∈ F
n. Clearly, the previous equation is equivalent to SDY−YSD = BKY = BK1.

Hence, it suffices to show that

Im(SDY −YSD)⊂ ImπD,

and this we proceed to do. We define the Toeplitz induced map Y : XD −→ XD by

Y f = πDπ+DD
−1

f , f ∈ XD.

Showing that Y is an invertible map follows, using Theorem 3.49, from the fact that
D(z)D(z)−1 is biproper. For f ∈ XD one computes

(YSD− SDY) f = πDπ+DD
−1πDzf −πDzπDπ+DD

−1
f

= πDπ+DD
−1

Dπ−D
−1

zf −πDzπ+DD
−1

f

= πDπ+Dπ−D
−1

zf −πDzπ+DD
−1

f

= πDπ+DD
−1

zf −πDzπ+DD
−1

f

= πD(DD
−1

f )−1 ∈ ImπD.

This completes the proof. �
The following theorem allows us to characterize state feedback equivalence in

purely module-theoretic terms.
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Theorem 6.2. Let D(z),D(z) ∈ F[z]m×m be nonsingular. Then the reachable pairs
(SD,πD) and (SD,πD) obtained by the shift realizations Σ•D−1 and Σ•D−1 , respec-
tively, are state feedback equivalent if and only if there exist a unimodular matrix
U(z) ∈ GLm(F[z]) and a biproper rational matrix Γ (z) ∈ F[[z−1]]m×m, with

D(z) = Γ (z)D(z)U(z).

Equivalently, this is satisfied if and only if the left Wiener–Hopf indices of D(z) and
D(z) are equal.

Proof. To prove the sufficiency direction, assume that D(z) is of the form D(z) =
Γ (z)D(z)U(z) for a unimodular matrix U(z) and Γ (z) is biproper. Since the shift
realizations of D(z) and D(z)U(z) are similar, we can assume without loss of
generality that U(z) = Im. Then the assumption is equivalent to D(z)D(z)−1 being
biproper, i.e., the left Wiener–Hopf indices of D(z)D(z)−1 being zero. Then, by
Theorem 3.47, the Toeplitz operator T

DD−1 : F[z]m −→ F[z]m being invertible, and
so is the induced Toeplitz operator πDT

DD−1 : XD −→ XD. Computing now

(πDT
DD−1SD− SDπDT

DD−1) f = πDπ+DD
−1πDzf −πDzπDπ+DD

−1
f

= πDπ+DD
−1

Dπ−D
−1

zf −πDzπ+DD
−1

f

= πDπ+Dπ−D
−1

zf −πDzπ+DD
−1

f

= πDπ+DD
−1

zf −πDzπ+DD
−1

f

= πD(DD
−1

f )−1 ∈ ImπD

proves the state feedback equivalence of Σ•D−1 and Σ•D−1 .
Conversely, assume that the pairs (SD,πD) and (SD,πD) are state feedback

equivalent. Choose basis matrices N(z),N(z) for XD and XD, and let (A,B) and (A,B)
be the uniquely determined reachable pairs satisfying (zI−A)−1B = N(z)D(z)−1,
(zI −A)−1B = N(z)D(z)−1. By the transitivity of state feedback equivalence, the
pairs (A,B) and (A,B) are state feedback equivalent. By Theorem 6.1, we obtain

N(z)D(z)−1 = (zI−A)−1B = SN(z)(D(z)+Q(z))−1R−1,

with Q(z)D(z)−1 strictly proper and Q(z) = KN(z). Since N(z) and D(z)
are assumed to be right coprime, SN(z),D(z) + KN(z) are right coprime, too.
Therefore, both pairs (N(z),D(z)) and SN(z),D(z) + KN(z)) are right coprime.
Thus, there exists a unimodular polynomial matrix U(z) with D(z) = R(D(z) +
Q(z))U(z). Since QD−1 is strictly proper, the matrix

Γ (z) = D(z)(D(z)+Q(z))−1R−1 =
(
Im +Q(z)D(z)−1)−1

R−1
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is biproper, and hence

Γ (z)D(z) = D(z)U(z).

This completes the proof. �
The next theorem summarizes the preceding results.

Theorem 6.3. For i= 1,2, let (Ai,Bi)∈F
(n×(n+m), rankBi =m, be reachable pairs,

with input-to-state transfer functions Gi(z), having the coprime factorizations

Gi(z) = (zI−Ai)
−1Bi = Ni(z)Di(z)

−1.

The following assertions are equivalent:

(a) (A2,B2) is state feedback equivalent to (A1,B1).
(b) There exist state feedback transformation matrices L ∈ GLm(F),K ∈ F

m×n,
S ∈GLn(F) with

G2(z) = SG1(z)(I +KG1(z))
−1L−1.

(c) D1(z) and D2(z) have the same left Wiener–Hopf indices.
(d) G1(z) and G2(z) have the same left Wiener–Hopf indices.

Proof. The equivalence (a) ⇐⇒ (b) ⇐⇒ (c) was shown already in Theorem 6.2.
The implication (b) =⇒ (d) is trivial. We prove (d) =⇒ (c). Thus, there exist a
biproper rational function Γ (z) ∈ F[[z−1]]m×m and a unimodular polynomial matrix
U(z) ∈ GLn(F[z]) such that

N2(z)D2(z)
−1 =U(z)N1(z)D1(z)

−1Γ (z). (6.7)

By the reachability of (A1,B1), the matrix N1(z) is right prime, and therefore
U(z)N1(z) is right prime, too. Thus there exists a polynomial matrix M(z) that
satisfies M(z)U(z)N1(z) = I. Multiplying the identity (6.7) by M(z) on both sides,
it follows that

M(z)N2(z) = D1(z)
−1Γ (z)D2(z).

Taking determinants, one obtains

det(M(z)N2(z)) =
detD2(z)
detD1(z)

detΓ (z).

Since Γ (z) is biproper, the determinant detΓ (z) is biproper, too. Moreover, both
detD1(z) = det(zI−A1) and detD2(z) = det(zI−A2) have degree n. Thus

detD2(z)
detD1(z)

detΓ (z)
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is biproper. Hence, the polynomial det(M(z)N2(z)) is also biproper, which implies
that M(z)N2(z) is unimodular. Thus

Γ (z)−1D1(z)M(z)N2(z) = D2(z)

implies that D1(z) and D2(z) have the same left Wiener–Hopf indices. This shows
(d) =⇒ (c), and the proof is complete. �

The importance of the preceding result lies in showing that the classification of
reachable pairs (A,B) ∈ F

n×(n+m), up to state feedback equivalence, is equivalent
to the classification of nonsingular m×m polynomial matrices D(z) with identical
left Wiener–Hopf indices. The bijective correspondence between orbits of the state
feedback group and polynomial matrices with fixed Wiener–Hopf indices will be
taken up in the next section.

Duality is used to derive the following two counterparts to Theorems 6.1 and 6.2.

Theorem 6.4. Let D(z),D(z) ∈ F[z]p×p be nonsingular. Then the observable pairs
((D·)−1,SD) and ((D·)−1,SD), obtained by the shift realization in the state spaces
XD,XD, are output injection equivalent if and only if there exist a unimodular matrix
U(z) ∈ GLp(F[z]) and a biproper rational matrix Γ (z) ∈ F[[z−1]]p×p with

D(z) =U(z)D(z)Γ (z).

Equivalently, this is true if and only if the right Wiener–Hopf indices of D(z) and
D(z) are equal.

Proof. Using Proposition 3.48, this follows from Theorem 6.2 by duality
considerations. �
Theorem 6.5. Let (C1,A1),(C2,A2)∈ F

(p+n)×n, rkCi = p, be observable pairs with
state-to-output transfer functions

G1(z) =C1(zI−A1)
−1 = D�,1(z)

−1N�,1(z),

G2(z) =C2(zI−A2)
−1 = D�,2(z)

−1N�,2(z)

and left coprime factorizations D�,1(z),N�,1(z) and D�,2(z),N�,2(z), respectively. The
following statements are equivalent:

(a) (C1,A1) is output injection equivalent to (C2,A2).
(b) There exists an output injection transformation matrix P ∈ GLp(F),

L ∈ F
n×p,S ∈ GLn(F) with

G2(z) = P(Ip +G1(z)L)
−1G1(z)S

−1.

(c) D�,1(z) and D�,2(z) have the same right Wiener–Hopf indices.
(d) G1(z) and G2(z) have the same right Wiener–Hopf indices.
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Proof. A change of basis in the output space changes the transfer function by a
left nonsingular factor. Similarly, a similarity transformation in the state space can
be easily coped with. Thus, without loss of generality, one can assume that A2 =
A1− LC1 and C2 = C1. Rewriting the coprime factorization as N�,1(z)(zI −A1) =
D�,1(z)C1 and adding N�,1(z)LC1 to both sides, one obtains the intertwining relation
N�,1(z)(zI−A1 +LC1) = (D�,1(z)+N�,1(z)L)C1, which can be written as

C1(zI−A1 +LC1)
−1 = (D�,1(z)+N�,1(z)L)

−1N�,1(z) = D�,2(z)
−1N�,2(z).

It is easily checked that the factorization G2(z) = (D�,1(z)+N�,1(z)L)−1N�,1(z) is
left coprime. Thus, there exists a unimodular polynomial matrix M(z) such that
D�,2(z) = M(z)(D�,1(z)+N�,1(z)L) and N�,2(z) = M(z)N�,1(z) are fulfilled, thereby
obtaining the right Wiener–Hopf factorization

D�,2(z) = M(z)D�,1(z)Γ (z),

with Γ (z) = D�,1(z)−1(D�,1(z) + N�,1(z)L) = Ip + G1(z)L biproper. In particular,
D�,1(z) and D�,2(z) have the same right Wiener–Hopf indices. This shows the
implications (a) =⇒ (b) =⇒ (c). The reverse directions follow as for the proofs
of Theorems 6.1 and 6.2. The implication (b) =⇒ (d) is trivial. The proof that
(d) =⇒ (c) runs parallel to the proof in Theorem 6.3 and is thus omitted. �

6.3 Reachability Indices and the Brunovsky Form

For discrete-time systems

xt+1 = Axt +But

yt = Cxt ,

with state space X , input space U , and output space Y , there exists a fine structure
in the state space according to how fast the various states are reached. Dually, one
can ask how fast one can observe the state from the output. It turns out that this
structure, manifested through the so-called reachability and observability indices, is
all important for the study of the fundamental problems of systems theory, namely,
a description of the inherent limitations of controllers to change the dynamics of the
system and for state estimation purposes.

Consider the sequence of subspaces Vi(A,B)⊂X , defined by

Vi(A,B) =B+AB+ · · ·+AiB, (6.8)

where B = ImB. Thus, in discrete time, the linear subspace Vi consists of all states
that can be reached from zero in at most i+1 steps. Obviously, Vi ⊂ Vi+1. Applying
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the Cayley–Hamilton theorem and the assumption of reachability, Vn−1+ j = R is
also valid for j ≥ 0, where R denotes the reachable space of (A,B). Define a
sequence of indices by

νi(A,B) =

{
dimB i = 0,
dimVi− dimVi−1 i≥ 1.

(6.9)

Thus

m≥ ν0(A,B)≥ ν1(A,B)≥ . . .≥ νn(A,B) = 0.

Define the dual set of indices by

κi(A,B) = #{ν j(A,B) | ν j(A,B)≥ i}. (6.10)

Thus κ1 ≥ ·· · ≥ κm and ∑m
i=1 κi = ∑n

j=0 ν j. Thus κ = (κ1, . . . ,κm) and ν =
(ν0, . . . ,νn) form dual partitions of r = dimVn(A,B). The indices κ1 ≥ ·· · ≥ κm

are usually called the controllability indices of the pair (A,B). In the discrete-time
case, it is more appropriate to call them, as we shall, the reachability indices. If the
pair (A,B) is fixed, then one writes κi for κi(A,B), and so forth. It follows trivially
from (6.9) that κ1 + · · ·+κm = ν0 + · · ·+ νn = dimR. Therefore, the reachability
indices of a reachable pair on an n-dimensional state space form a partition of n,
that is, a representation κ1 + · · ·+ κm = n. It is easily seen, by examples, that in
fact all partitions of n into at most m parts arise as reachability indices of a suitable
reachable pair (A,B).

Similarly, the observability indices of a pair (C,A) ∈ F
p×n × F

n×n will be
introduced. To this end, define, for each i = 1, . . . ,n, the ranks of the ith partial
observability matrix as

ri(C,A) = rank

⎛

⎜
⎝

C
...

CAi−1

⎞

⎟
⎠ .

Thus the differences (s0 := 0)

si = ri− ri−1, i = 1, . . . ,n

measure the increase in the ranks of the partial observability matrices.

Definition 6.6. The observability indices of (C,A) ∈ F
p×n×F

n×n are the nonneg-
ative integers λ1(C,A)≥ . . .≥ λp(C,A) defined by

λi(C,A) = #{s j(C,A) | s j(C,A)≥ i}.
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In complete analogy with the reachability indices, the equality

λ1 + · · ·+λp = n

is true if and only if (C,A) is observable. The following lemma will be needed.

Lemma 6.7. The reachability indices are state feedback invariants, i.e.,

κi(S(A+BK)S−1,SBR−1) = κi(A,B), i = 1, . . . ,m,

is true for all matrices R ∈ GLm(F),S ∈ GLn(F),K ∈ F
m×n. Similarly, the observ-

ability indices are output injection invariants, i.e., for all i = 1, . . . , p and for all
matrices R ∈GLp(F),S ∈ GLn(F),L ∈ F

n×p, the equality

λi(RCS−1,S(A+LC)S−1) = λi(C,A)

is valid.

Proof. It is obvious, with S,R invertible maps in the state space and input space,
respectively, that

Vi(S(A+BK)S−1,SBR−1) = SVi(A,B)

for all i ≥ 0. While the spaces Vi defined in (6.8) change under the action of an
element of the feedback group, their dimensions do not, i.e., they are invariant. This
shows that the νi(A,B) are state feedback invariant, as are, thus, the reachability
indices κi(A,B). The proof is similar for the observability indices. �

The preceding definition of reachability indices was introduced in state-space
terms. We now show the connection to invariants defined in terms of coprime
factorizations of (zI−A)−1B.

Theorem 6.8. Let (A,B) ∈ F
n×n×F

n×m be a reachable pair, with rankB = m. Let
N(z)D(z)−1 be a right coprime factorization of (zI−A)−1B, and let κ1≥ ·· · ≥ κm >
0 be the reachability indices of the pair (A,B) as defined in (6.10). Then:

1. The reachability indices of the pair (A,B) are equal to the minimal column
indices of the submodule D(z)F[z]m ⊂ F[z]m;

2. The reachability indices of the pair (A,B) are equal to the left Wiener–Hopf
factorization indices of D(z);

3. The reachability indices of the pair (A,B) are equal to the minimal column
indices of the submodule Ker (zI−A,−B) ⊂ F[z]n+m, defined by the linear
multiplication operator

(zI−A,−B) : F[z]n+m −→ F[z]n.
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Proof. Assume η1 ≥ ·· · ≥ ηm are the minimal column indices of D(z). Let Δ(z) =
diag(zη1 , . . . ,zηm). Then there exist a unimodular polynomial matrix U(z) and a
biproper matrix Γ (z) such that

D(z)U(z) = Γ (z)Δ(z).

By Theorem 6.2, the pairs (SD,πD) and (SΔ ,πΔ ) are feedback equivalent and,
hence, have the same reachability indices. Thus, it suffices to prove the theorem
for A = SΔ ,B = πΔ . The reachability indices of (SΔ ,πΔ ) are easily computed
as follows. With e1, . . . ,em the standard basis elements of F

m, clearly, by our
assumption that B has full column rank, we get ImπΔ = span{e1, . . . ,em}. On
the other hand, the equality between the coprime factorizations (zI − A)−1B =
N(z)D(z)−1 implies, using the shift realization, that (A,B) is similar to (SD,πD),
so it is feedback equivalent to (SΔ ,πΔ ). Consider now the subspaces Vi, defined
in (6.8), that correspond to the pair (SΔ ,πΔ ). Clearly, dimV1 = #{ηi > 0} = m
and dimVk = dimVk−1 +#{ηi ≥ k}. So νk = dimVk−dimVk−1 = #{ηi ≥ k}. Thus
η1 ≥ ·· · ≥ ηm are the dual indices to the νi, but so are the reachability indices
κ1, . . . ,κm. Hence, necessarily, ηi = κi.

By part 1, the column indices of D(z) are equal to the reachability indices of
(SD,πD), i.e., to κ1, . . . ,κm. Therefore, there exists a unimodular polynomial matrix
V (z) for which D(z)V (z) is column proper with column indices κ1, . . . ,κm. Writing
D(z)V (z) =Γ (z)Δ(z), where Δ(z) = diag(zκ1 , . . . ,zκm), Γ (z) is necessarily biproper
because the leading term of Γ (z) is [DV]hc, which is nonsingular. This implies that,
with U(z) =V (z)−1, the left Wiener–Hopf factorization D(z) = Γ (z)Δ(z)U(z).

The equality (zI−A)N(z) = BD(z) can be rewritten as

(zI−A,−B)

(
N(z)
D(z)

)
= 0.

Using the coprimeness assumption (Theorem 2.27), it follows that

Ker (zI−A,−B) =

(
N(z)
D(z)

)
F[z]m.

Now N(z)D(z)−1 is strictly proper, and thus the minimal column indices of

(
N(z)
D(z)

)

are equal to those of D(z). By part 2, they coincide with the reachability indices of
(A,B). �

The next result, which is a straightforward consequence of Theorem 6.8,
characterizes the reachability and observability indices of an observable pair in
terms of Wiener–Hopf factorization indices.
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Corollary 6.9. 1. Let (A,B) be a reachable pair, and let N(z)D(z)−1 =(zI−A)−1B
be a right coprime factorization. Then the reachability indices of (A,B) are equal
to the left Wiener–Hopf indices of D(z).

2. Let (C,A) be an observable pair, and let D�(z)−1N�(z) = C(zI−A)−1 be a left
coprime factorization. Then the observability indices of (C,A) are equal to the
right Wiener–Hopf indices of D�(z).

If G(z) is a proper, rational transfer function, then its Wiener–Hopf factorization
indices must have a system-theoretic interpretation. This is indeed the case, and a
system-theoretic interpretation of the factorization indices of the denominators in
coprime matrix fraction representations of G(z) can be derived.

Theorem 6.10. Let G(z) ∈ F[z]p×m be a proper rational function admitting the
coprime matrix fraction representations

G(z) = Nr(z)Dr(z)
−1 = D�(z)

−1N�(z), (6.11)

and let (A,B,C,D) be a reachable and observable realization of G(z). Then the
reachability indices of the realization are equal to the left Wiener–Hopf indices
of Dr(z) and the observability indices are equal to the right Wiener–Hopf indices
of D�(z).

Proof. By the state-space isomorphism theorem, the pair (A,B) is isomorphic to the
pair (SDr ,πDr). By Proposition 2.19, there exists a unimodular matrix U(z) such that
Dr(z)U(z) is column proper with column indices κ1 ≥ κ2 ≥ ·· · ≥ κm. Clearly,

Dr(z)U(z) = Γ (z)Δ(z), (6.12)

with Δ(z) = diag(zκ1 , . . . ,zκm) and Γ biproper. By Theorem 6.2, this implies that
(SDr ,πDr) and (SΔ ,πΔ ) are feedback equivalent pairs. However, the reachability
indices of (SΔ ,πΔ ) are easily seen to be equal to κ1, . . . ,κm (see the proof of the
subsequently stated Theorem 6.14). Finally, (6.12) can be rewritten as

Dr(z) = G−(z)Δ(z)G+(z),

with G−(z) = Γ (z) and G+(z) = U(z)−1. This is a left Wiener–Hopf factorization
of Dr(z). The statement concerning observability indices follows by duality. �

In Corollary 6.9 and Theorem 6.10, it was shown that the reachability indices
of a pair (A,B) coincide with the left Wiener–Hopf indices of the nonsingular
polynomial matrix D(z) appearing in a coprime factorization

(zI−A)−1B = N(z)D(z)−1.

One attempts to extend this analysis to Wiener–Hopf factorizations of strictly proper
transfer functions G(z) =C(zI−A)−1B. For simplicity, our focus will be on strictly
proper transfer functions, although an extension to proper transfer functions is
possible.
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Definition 6.11. A reachable and observable system (A,B,C) is called state feed-
back irreducible if and only if (S(A + BK)S−1,SBR−1,CS−1) is reachable and
observable for all state feedback matrices (S,K,R) ∈Fn,m.

Of course, while the reachability of a system is always preserved by state feedback,
this is no longer true of observability. It is a simple observation that transfer
functions of the form

(zI−A)−1B or C(zI−A)−1,

with (A, B) reachable or (C, A) observable, are feedback irreducible. Thus feedback
irreducibility is an extension of the situation discussed previously.

To begin with the analysis of feedback irreducibility, one considers the single-
input single-output case. Let

g(z) =
p(z)
q(z)

∈ F[z]

denote a scalar strictly proper transfer function of degree n, given by a coprime
factorization, with q(z) monic and deg p(z) < degq(z) = n. Let (A,b,c) denote a
minimal realization of g(z). Without loss of generality, one can assume that (A,b)
is in Brunovsky canonical form, i.e.,

⎛

⎜
⎜
⎜
⎝

0 1
. . .

. . .

0 1
0 . . . . . . 0

⎞

⎟
⎟
⎟
⎠
, b =

⎛

⎜
⎜
⎜
⎝

0
...
0
1

⎞

⎟
⎟
⎟
⎠
, c =

(
c0 c1 · · · cn−1

)
,

with transfer function

g(z) =
p(z)
q(z)

=
c0 + . . .+ cn−1zn−1

zn .

Thus the system (A,b,c) is feedback irreducible if and only if the pair

A+ bk =

⎛

⎜
⎜
⎜
⎝

0 1
. . .

. . .

0 1
k0− q0 . . . . . . kn−1− qn−1

⎞

⎟
⎟
⎟
⎠
, c =

(
c0 c1 · · · cn−1

)

is observable for all state feedback matrices k = (k0, . . . ,kn−1). This in turn is
equivalent to p(z) = ∑n−1

j=0 c jz j being coprime to all monic polynomials of the

form qk(z) = zn + kn−1zn−1 + · · · + k0, i.e., that p(z) = c0 �= 0 is a nonzero
constant polynomial. Thus a scalar strictly proper transfer function g(z) is feedback
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irreducible if and only if it has no finite zeros, i.e., if and only if the relative degree
degq−deg p of g(z) is equal to n. This analysis is now extended to the matrix case,
beginning with the following lemma.

Lemma 6.12. Let G(z) ∈ F(z)m×m be proper with the right Wiener–Hopf factoriza-
tion G(z) =U(z)Δ(z)Γ (z), with U(z) ∈ F[z]p×p unimodular, and Γ (z) biproper. Let
N(z) ∈ F[z]p×m be a right prime polynomial matrix, with p≥ m. Then

N(z)G(z) =U1(z)

(
Δ(z)

0

)
Γ (z).

In particular, G(z) and N(z)G(z) have the same right factorization indices.

Proof. Since N(z) is right prime, there exist unimodular matrices V (z),W (z), with

N(z) =V (z)

(
Im

0

)
W (z).

Thus,

N(z)G(z) =V (z)

(
Im

0

)
W (z)U(z)Δ(z)Γ (z) =U1(z)

(
Δ(z)

0

)
Γ (z),

where U1(z) =V (z)diag(W (z)U(z), I). �
Theorem 6.13. Let (A,B,C) be a reachable and observable realization of a strictly
proper transfer function G(z) with right coprime factorization G(z) = N(z)D(z)−1.
Assume that G(z) has full column rank. Then:

1. (A,B,C) is feedback irreducible if and only if N(z) is right prime (i.e., left
invertible);

2. Assume that (A,B,C) is feedback irreducible. Then the negatives of the reach-
ability indices of (A,B) coincide with the right Wiener–Hopf indices and the
negatives of the observability indices of (C,A)) coincide with the left Wiener–
Hopf indices of the transfer function G(z) =C(zI−A)−1B.

Proof. Recall that every state feedback transformation (A,B,C) �→ (A+BK,B,C)
acts on transfer functions by right multiplication with a biproper rational function,
that is,

C(zI−A+BK)−1B =C(zI−A)−1B(Im +K(zI−A)−1B)−1.

Moreover, each right coprime factorization of (zI−A)−1B = H(z)D(z)−1 implies
the intertwining relation BD(z) = (zI−A)H(z). This induces the factorization

G(z) =C(zI−A)−1B = N(z)D(z)−1,
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with N(z) = CH(z). This is summarized in the system equivalence relation

(
B 0
0 I

)(
D(z) −I
N(z) 0

)
=

(
zI−A −B

C 0

)(
H(z) 0

0 I

)
,

with B,zI − A left coprime and D(z),H(z) right coprime, which implies the
following equivalence:

(
D(z) −I
N(z) 0

)
�FSE

(
zI−A −B

C 0

)
.

Using the Shift Realization Theorem 4.26, it follows that the minimality of (A,B,C)
implies the right coprimeness of N(z),D(z). Similarly, from the factorization
(zI−A−BK)−1B = H(z)(D(z)−KH(z))−1 follows the intertwining relation

(
B 0
0 I

)(
D(z)+KH(z) −I

N(z) 0

)
=

(
zI−A+BK −B

C 0

)(
H(z) 0

0 I

)
.

Here B,zI − A+ BK and D(z) +KH(z),H(z) are left coprime and right coprime,
respectively. In particular,

(
D(z)+KH(z) −I

N(z) 0

)
�FSE

(
zI−A+BK −B

C 0

)

for each K. This shows that (A,B,C) is feedback irreducible if and only if the
polynomial matrices N(z) and D(z)+KH(z) are right coprime for each K.

Next, it will be shown that this condition is equivalent to the right primeness
of N(z). Clearly, the right primeness of N(z) implies for each state feedback matrix
K the right coprimeness of N(z) and D(z)−KH(z). Thus N(z) right prime implies
feedback irreducibility. To prove the converse implication, let us assume that N(z) is
not right prime, i.e., there exists a polynomial factorization N(z) = N′(z)F(z) with
N′(z) right prime and F(z) ∈ F[z]m×m nonsingular and nonunimodular. Applying
Lemma 6.12, it follows that G(z) = N(z)D(z)−1 and F(z)D(z)−1 have the same
right Wiener–Hopf indices. Let

F(z)D(z)−1 =U(z)Δ(z)−1Γ (z)

be the right Wiener–Hopf factorization, with Δ(z) = diag(zκ1 , · · · ,zκm). Then
E(z) := Δ(z)U(z)−1 is a nonsingular polynomial matrix and

D1(z) := E(z)F(z) = Γ (z)D(z)
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is a nonsingular polynomial matrix with degdetD1(z) = degdetD(z). Computing

G(z)Γ (z)−1 = N(z)D(z)−1Γ (z)−1 = N(z)D1(z)
−1

= N′(z)E(z)−1

yields a nontrivial factorization. Thus, the McMillan degrees of G(z)Γ (z)−1 and
G(z) are related as

δ (GΓ−1)≤ degdetE(z)< degdetD1(z) = degdetD(z) = δ (G).

This shows that G(z) is feedback reducible and completes the proof of the first claim
of the theorem.

By the first part, a full column rank coprime factorization G(z) = N(z)D(z)−1

is feedback irreducible if and only if N(z) is right prime. But then Lemma 6.12
implies that G(z) and D(z)−1 have the same right Wiener–Hopf indices. Thus the
right Wiener–Hopf indices of G(z) are equal to the negative of the left Wiener–Hopf
indices of D(z), which by Theorem 6.10 coincide with the reachability indices of
(A,B). This completes the proof of the second claim 2. �

Our attention turns now to the question of constructing a canonical form for
reachable pairs under the action of the state feedback group.

Theorem 6.14. 1. Let (A,B) ∈ F
n×n×F

n×m be a reachable pair with reachability
indices κ1 ≥ . . . ≥ κm. Then (A,B) is feedback equivalent to the block matrix
representation

⎛

⎜
⎝

⎛

⎜
⎝

A1
. . .

Am

⎞

⎟
⎠ ,

⎛

⎜
⎝

B1
. . .

Bm

⎞

⎟
⎠

⎞

⎟
⎠ , (6.13)

with the matrices A j ∈ F
κ j×κ j and B j ∈ F

κ j×1 defined by

A j =

⎛

⎜
⎜
⎜
⎜
⎝

0

1
. . .
. . .

. . .

1 0

⎞

⎟
⎟
⎟
⎟
⎠
, B j =

⎛

⎜
⎜
⎜
⎝

1
0
...
0

⎞

⎟
⎟
⎟
⎠
. (6.14)

We will refer to D(z) = diag(zκ1 , . . . ,zκm) as the polynomial Brunovsky form
and to (6.13) and (6.14) as the Brunovsky canonical form.

2. Two reachable pairs (A,B),(A,B) ∈ F
n×(n+m) are state feedback equivalent if

and only if they have the same reachability indices

κ1(A,B) = κ1(A,B), . . . , κm(A,B) = κm(A,B).
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Proof. The direct sum XΔ = Xzκ1 ⊕ ·· · ⊕ Xzκm is a consequence of Δ(z) being
diagonal. Let {e1, . . . ,em} be the standard basis in F

m; then the vectors

{zie j | 1≤ j ≤ m,0≤ i < κ j− 1}

form a basis for XΔ . Relative to these bases in F
m and XΔ , the pair (SΔ ,πΔ ) has the

matrix representation (6.13)–(6.14).
It is a trivial consequence of the Brunovsky canonical form that the reachability

indices define a complete set of invariants for state feedback of reachable pairs. �
For a reachable pair (A,B), the group

Stab(A,B) =

{(
S 0
K R

)
| (S(A+BK)S−1,SBR−1) = (A,B)

}
⊂ GLn+m(F)

of all elements of the feedback group that leave (A,B) invariant is called the state
feedback stabilizer group of (A,B). Clearly, the stabilizers of feedback equivalent
pairs are isomorphic. As a consequence, it suffices to study the stabilizer group for
systems in Brunovsky canonical form. It follows that the structure of the stabilizer
depends only on the reachability indices of the reachable pair (A,B). The relation
between the state feedback stabilizer subgroup and the left factorization group
introduced in Theorem 2.37 can be stated as follows.

Theorem 6.15. Let (A,B) be a reachable pair, and let N(z)D(z)−1 be a right
coprime factorization of (zI −A)−1B. Then the state feedback stabilizer group of
(A,B) is isomorphic to the left factorization group of D(z).

Proof. The pair (A,B) is isomorphic to (SD,πD) and, in turn, state feedback equiv-
alent to the polynomial Brunovsky form (SΔ ,πΔ ), with Δ(z) = diag(zκ1 , . . . ,zκm).
It suffices, therefore, to study the state feedback stabilizer at (SΔ ,πΔ ). However, by
Theorem 6.2, this is equivalent to finding all solutions of the equation

Γ (z)Δ(z) = Δ(z)U(z), (6.15)

with U(z) ∈ F[z]m×m unimodular and Γ (z) ∈ F[[z−1]]m×m biproper. Equation (6.15)
is equivalent to γijzκ j = zκi uij, which in turn implies

deguij =

{
0 κi > κ j

≤ κ j−κi κ j ≥ κi .
(6.16)

Conversely, if U(z) is unimodular and satisfies (6.16), then it is easily seen that
equation (6.15) is solvable with a biproper Γ (z). Thus the unimodular matrices
U(z) of (6.15) have a block triangular structure. By Theorem 2.37, the set of such
unimodular matrices U(z) coincides with the left factorization group of Δ(z). This
structure is reflected in Γ (z), which is uniquely determined by U(z) and Δ(z).
This completes the proof. �
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From the preceding discussion it is clear that the existence of a Wiener–Hopf
factorization of a nonsingular polynomial matrix is equivalent to the existence of
Brunovsky’s canonical form for a reachable pair. Next, in a purely state-space-
oriented manner, a refinement of the Brunovsky canonical form is derived. Recall
that the Kronecker indices of a state space pair (A,B = (b1, . . . ,bm)) are defined
by the following deletion process on the columns of the reachability matrix. Let ≤
denote the lexicographical ordering on {0, . . . ,n− 1}×{1, . . .,m} defined as

(i, j) ≤ (k, �) ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

i < k

or

i = k, j ≤ �.

While going from left to right in the list

(
b1, . . . ,bm,Ab1, . . . ,Abm, . . . ,A

n−1b1, . . . ,A
n−1bm

)

of mn vectors in F
n, delete all vectors Akb� that are linearly dependent on the set

of preceding vectors {Aib j|(i, j) ≤ (k, �)}.
It is easily seen that the remaining vectors constitute a list of the form

(b1,Ab1, . . . ,A
k1−1b1, . . . ,bm, . . . ,A

km−1bm), (6.17)

for unique nonnegative integers k1, . . . ,km, called the Kronecker indices. Note that
the Kronecker indices define an m-tuple of integers and not a set of numbers. By
construction, the vectors in (6.17) form a basis of the reachable set R of (A,B). Thus
(A,B) is reachable if and only if the Kronecker indices satisfy k1 + · · ·+ km = n.
An important difference that distinguishes the Kronecker indices k = (k1, . . . ,km)
from the reachability indices κ = (κ1, . . . ,κm) is that the Kronecker indices are not
ordered by magnitude. Thus (2,0,3) and (3,2,0) are Kronecker indices of different
systems (A,B). It is easily seen that k = (k1, . . . ,km) are Kronecker indices of a
system (A,B), with ki ≥ 1 for all i; then the reachability indices of (A,B) arise by
reordering the Kronecker indices in decreasing form. However, this is not true if one
of the Kronecker indices is zero.

Let Um denote the subgroup of GLm(F) consisting of all m×m upper triangular
matrices U with identical entries u11 = · · · = umm = 1 on the diagonal. The
restricted state feedback group is then defined by all state feedback trans-
formations

(
S 0
K U

)
,

with S ∈ GLn(F), K ∈ F
m×n, and U ∈ Um. Two linear systems (A,B),(A,B) are

called restricted state feedback equivalent if (A,B) = (S(A−BK)S−1,SBU−1) is
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satisfied for a restricted state feedback transformation (S,K,U). We proceed to show
that the Kronecker indices are feedback invariants.

Lemma 6.16. Let (A,B) ∈ F
n×(n+m) be reachable with Kronecker indices k =

(k1, . . . ,km). For each S ∈ GLn(F), U ∈ Um, and K ∈ F
m×n, the pairs (A,B) and

(A,B) = (S(A−BK)S−1,SBU−1) have the same Kronecker indices k = (k1, . . . ,km).

Proof. It is easily seen that the reachability matrix

R(A,B) = (B, . . . ,An−1B)

satisfies

R(A,B) = SR(A−BK,BU) = SR(A,B)V

for a suitable invertible upper triangular matrix V ∈ GLnm(F) with diagonal blocks
V11 = · · · = Vnn = Im. This implies that the Kronecker indices of (A,B) and (A,B)
coincide. This completes the proof. �

The following result will be needed.

Lemma 6.17. Let (A,B) ∈ F
n×(n+m) be reachable with Kronecker indices

k = (k1, . . . ,km). Then there exists a unipotent matrix U ∈ Um such that B =
(b1, . . . ,bm) = BU satisfies for each j = 1, . . . ,m

Akj b j ∈ ImB+ · · ·+Akj−1ImB,

Akj b j �∈ ImB+ · · ·+Akj−2ImB.

Proof. By construction of the Kronecker indices there exist cij ∈ F, i < j, and z j ∈
ImB+ · · ·+Akj−1ImB such that

Akj b j = z j +
j−1

∑
i=1

cijA
kj bi,

Akj−1b j �∈ ImB+ · · ·+Akj−2ImB+Akj−1 span{b1, . . . ,b j−1}
(6.18)

holds. Define b j = b j−∑ j−1
i=1 cijbi and

U =

⎛

⎜⎜
⎜
⎜
⎝

1 −c12 · · · −c1m
. . .

. . .
...

. . . −cm−1,m

1

⎞

⎟⎟
⎟
⎟
⎠

∈Um.
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Then Akj b j = z j ∈ ImB+ · · ·+Akj−1ImB. Suppose

Akj−1bj ∈ ImB+ · · ·+Akj−2ImB.

Then Akj−1b j = Akj−1bj +∑ j−1
i=1 cijAkj−1bi, in contradiction to (6.18). This com-

pletes the proof. �
Using the preceding lemmas, it will be shown next that the Kronecker indices

define a complete set of invariants for the restricted state feedback equivalence of
reachable pairs.

Theorem 6.18. 1. Let (A,B) ∈ F
n×(n+m) be a reachable pair with Kronecker

indices k = (k1, . . . ,km). Then (A,B) is restricted state feedback equivalent to
the block matrix

⎛

⎜
⎝

⎛

⎜
⎝

A1
. . .

Am

⎞

⎟
⎠ ,

⎛

⎜
⎝

B1
. . .

Bm

⎞

⎟
⎠

⎞

⎟
⎠ (6.19)

A j =

⎛

⎜
⎜
⎜⎜
⎝

0

1
. . .
. . .

. . .

1 0

⎞

⎟
⎟
⎟⎟
⎠
, B j =

⎛

⎜
⎜
⎜
⎝

1
0
...
0

⎞

⎟
⎟
⎟
⎠

(6.20)

if k j ≥ 1. If k j = 0, then the block A j is absent and B j = 0.
2. Two reachable pairs (A,B),(A,B) ∈ F

n×(n+m) are restricted state feedback
equivalent if and only if their Kronecker indices coincide.

Proof. Choose U as in Lemma 6.17. Then there exist elements β1, j, . . . ,βk j , j ∈ ImB
such that

Akj b j−Akj−1β1, j−·· ·−βk j , j = 0. (6.21)

For j = 1, . . . ,m define the state vectors

x1, j=bj, x2, j=Abj−β1, j, . . . , xkj , j = Akj−1b j−Akj−2β1 j−·· ·−βk j−1, j.

Let X ⊂ F
n denote the span of the vectors {xi, j | 1≤ i≤ k j, j = 1, . . . ,m}. Clearly,

ImB ⊂X . Using (6.21), it follows that Axkj , j = βk j , j ∈ ImB⊂X . Thus X is A-
invariant. Thus the reachability of (A,B) implies that {xi, j | 1≤ i≤ k j, j = 1, . . . ,m}
defines a basis of Fn. Choose ui, j ∈ F

m with Bui, j = βi, j, i = 1, . . . ,k j, j = 1, . . . ,m.
Then the feedback transformation K : Fn −→ F

m defined by

Kxi, j =−ui, j, i = 1, . . . ,k j, j = 1, . . . ,m,
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satisfies, for each j = 1, . . . ,m,

(A−BK)xi, j = Axi, j−βi, j = xi+1, j, 1≤ i≤ k j− 1,

(A−BK)xKj , j = AxKj , j−βk j , j = 0.

By choosing S=(x1,1, . . . ,xk1,1, . . . ,x1,m, . . . ,xkm,m), K, and U as above, one sees that
S is invertible and (S(A−BK)S−1,SBU) has the form (6.19), (6.20). This completes
the proof of the first part. The second follows easily from the first part, together with
Lemma 6.16. �

6.4 Pole Assignment

The study of the effects of state feedback on closed-loop dynamics begins with
an analysis of the simple case of a single-input reachable system. It will be
shown how, by the use of state feedback, the dynamics of the system, determined
by its characteristic polynomial, can be arbitrarily assigned. This indicates the
tremendous importance of feedback. In fact, as long as reachability is fulfilled, the
original system can be flexibly modified by the use of feedback. In particular, every
reachable system can be stabilized through feedback. The subsequent results are
presented in an unashamedly matrix-oriented manner, beginning with the single-
input case, where the analysis becomes particularly simple.

Theorem 6.19. Let (A,b)∈F
n×n×F

n be a reachable system with the n-dimensional
state space Fn. Let f (z) = f0 + · · ·+ fn−1zn−1 + zn be a monic polynomial of degree
n. Then there exists a unique feedback transformation K ∈ F

1×n such that A− bK
has f (z) as its characteristic polynomial.

Proof. Let q(z) = q0+ · · ·+qn−1zn−1+zn denote the characteristic polynomial of A.
Since (A,b) is reachable, the pair (A,b) is state space equivalent to the reachable
shift realization (Sq,πq) on Xq. Thus, without loss of generality, one can identify
(A,b) with the pair (Sq,πq) and, by the choice of basis in Xq, one can assume that
the pair (A,b) has the control canonical form

A =

⎛

⎜
⎜
⎜
⎝

0 1
. . .

. . .

0 1
−q0 −q1 . . . −qn−1

⎞

⎟
⎟
⎟
⎠
, b =

⎛

⎜
⎜
⎜
⎝

0
...
0
1

⎞

⎟
⎟
⎟
⎠
. (6.22)

This can be done by taking a right coprime factorization N(z)q(z)−1 of (zI−A)−1b,
with q(z) the characteristic polynomial of A, and choosing in Xq the control basis
Bco := {γ1(z), . . . ,γn(z)}, where, for i = 0, . . . ,n,

γi(z) = zn−i + qn−1zn−i−1 + · · ·+ qi.
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A straightforward computation shows that the shift operator Sq acts on these basis
vectors via

Sq(γi) = γi−1(z)− qi−1.

Therefore, (A,b) in (6.22) is just the basis representation of (Sq,πq) with respect to
the control basis. Let K = (k0, . . . ,kn−1) be the feedback map, i.e.,

Kx = k0x1 + · · ·+ kn−1xn;

then

A− bK =

⎛

⎜
⎜
⎜
⎝

0 1
. . .

. . .

0 1
−k0− q0 . . . . . . −kn−1− qn−1

⎞

⎟
⎟
⎟
⎠
.

The unique choice ki =−qi + fi then yields det(zI−A+ bK) = f (z). �
The following two results present explicit formulas for the feedback gain K.

Theorem 6.20 (Ackermann Formula). Let (A,b) ∈ F
n×n×F

n be reachable, and
let f (z) = ∑n

j=0 f jz j, fn = 1, be a monic polynomial of degree n. Let R(A,b) =
(b, . . . ,An−1b) ∈ GLn(F) denote the reachability matrix. Then

K = (0, . . . ,0,1)R(A,b)−1 f (A)

is the unique element K ∈ F
1×n, with det(zI−A+ bK) = f (z).

Proof. By Theorem 6.19, there exists a unique K ∈ F
1×n that satisfies det(zI−A+

bK) = f (z). Applying the Cayley–Hamilton theorem, one obtains

n

∑
j=0

f j(A− bK) j = f (A− bK) = 0,

and therefore

f (A) =−
n

∑
j=0

f j
(
(A− bK) j−A j) .

There exist row vectors k j,� ∈ F
1×n, k j, j−1 =−K, with

(A− bK) j−A j =
j−1

∑
�=0

A�bk j,�.
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Thus

f (A) =−
n

∑
j=0

j−1

∑
�=0

A�bf jk j,� =−
n−1

∑
i=0

Aibξi,

with ξi = ∑ j>i f jk j,i and ξn−1 = fnkn,n−1 =−K. Defining the matrix

ξ =

⎛

⎜
⎝

ξ0
...

ξn−1

⎞

⎟
⎠ ∈ F

n×n

we obtain

f (A) =−R(A,b)ξ ,

and hence K =−e�n ξ = e�n R(A,b)−1 f (A). �
We now turn to the analysis of state feedback in the general case m≥ 1.

Lemma 6.21. Assume (A,B) is reachable and b = Bv �= 0. Then there exist u0 =
v,u1, . . . ,un−1 ∈ F

m such that (x1, . . . ,xn), recursively defined as

x1 = b, xk = Axk−1 +Buk, k = 2, . . . ,n,

is a basis of Fn.

Proof. One constructs the input vectors uk recursively, starting from u0 = v. Suppose
that u1, . . . ,uk−1 are such that x1, . . . ,xk are linearly independent, satisfying (x0 := 0)
x j = Ax j−1 +Buj−1 for j = 1, . . . ,k and k < n. Let L⊂ F

n denote the k-dimensional
linear subspace spanned by x1, . . . ,xk. Then one chooses uk ∈ F

m such that xk+1 :=
Axk +Buk /∈ L. Such a vector uk always exists, thereby proving the induction step
that {x1, . . . ,xk+1} is linearly independent. In fact, otherwise

Axk +Bu ∈ L

is true for all u ∈ F
m. This implies Axk ∈ L, and therefore also ImB ⊂ L, and, in

turn, Ax j = x j+1−Buj ∈ L for j = 1, . . . ,k− 1. This shows that L is an A-invariant
linear subspace that contains ImB. The reachability of (A,B) thus implies L = F

n,
in contradiction to dimL = k < n. �

The preceding result has an interesting consequence for state feedback control.

Lemma 6.22 (Heymann). Let (A,B) ∈ F
n×n×F

n×m and b = Bv �= 0. Then there
exists K ∈ F

m×n such that (A+BK,b) is reachable. In particular, for each reachable
pair (A,B) there exists a feedback gain K ∈ F

m×n such that A+BK is cyclic.
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Proof. Choose u0, . . . ,un−1 ∈ F
m and basis vectors x1, . . . ,xn of F

n, as in
Lemma 6.21. For each element un ∈ F

m there exists a unique K ∈ F
m×n, with

Kx j = u j, j = 1, . . . ,n.

This shows that

(A+BK)x j = Ax j +Buj = x j+1

for j = 1, . . . ,n− 1. Since b = x1, we obtain

(A+BK)jb = x j+1

for j = 1, . . . ,n − 1. Thus (b,(A + BK)b, . . . ,(A + BK)n−1b) is a basis of F
n,

completing the proof. �
It is easy to see that, for nonzero b ∈ ImB, the set of all such feedback gains K

forms a Zariski-open subset of Fm×n. The celebrated pole-shifting theorem of M.
Wonham is proved next. The reason for the name is due to the fact that poles of the
rational function (zI−A+BK)−1B correspond to the eigenvalues of A−BK.

Theorem 6.23 (Pole-Shifting Theorem). A linear system (A,B) ∈ F
n×n×F

n×m is
reachable if and only if for every monic polynomial f (z) ∈ F[z] of degree n there
exists K ∈ F

m×n, with

det(zI−A+BK) = f (z). (6.23)

Proof. Suppose (A,B) is reachable. Choose a nonzero vector b = Bv in the image
space of B. By Heymann’s Lemma 6.22, there exists F ∈ F

m×n such that (A+BF,b)
is reachable. Thus, using Theorem 6.19, there exists a row vector L ∈ F

1×n such that

det(zI−A−BF+ bL) = f (z).

This proves (6.23) for K =−F + vL.
To prove the converse, the Kalman decomposition is used. Thus, assume that

(A,B) is a system with k-dimensional reachable subspace

R = ImB+AImB+ · · ·+An−1ImB.

Choose the basis vectors v1, . . . ,vk of R and extend them to a basis v1, . . . ,vn of
the state space F

n. Then the matrix S = (v1, . . . ,vn) ∈ F
n×n is invertible. Since R

is an A-invariant linear subspace, this implies that the state-space equivalent system
(S−1AS,S−1B) has the structure

(
A1 A2

0 A3

)
,

(
B1

0

)
, (6.24)
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which is referred to as the Kalman decomposition; it exists for every (A,B) ∈
F

n×(n+m). Note that (A1,B1) is uniquely determined up to a similarity transformation
and is reachable. Moreover, the eigenvalues of A3 are uniquely determined by the
similarity orbit of (A,B). Thus, for the converse, one can assume, without loss of
generality, that (A,B) is given by (6.24), with k< n. Hence, for each feedback matrix
K = (K1,K2),

A−BK =

(
A1−B1K1 A2−B1K2

0 A3

)
,

with the characteristic polynomial det(zI − A + BK) = det(zI − A1 + B1K1)
det(zI−A3). This implies that the characteristic polynomials det(zI − A + BK)
of nonreachable pairs (A,B) all contain the same factor det(zI−A3) and thus cannot
be arbitrarily assigned. This completes the proof. �

There is a simple, inductive proof of Wonham’s theorem that works over an
algebraically closed field F = F. We learned the following argument from Carsten
Scherer. Without loss of generality, assume that rkB = m and (A,B) is of the form

A =

(
A11 A12

A21 A22

)
, B =

(
Im

0

)
.

Then, using the Hautus test, one sees that the reachability of (A,B) implies that
of (A22,A21). Consider a monic polynomial f (z) = f1(z) f2(z), with monic factors
f1(z), f2(z) of degrees m,n−m, respectively. Applying the induction hypothesis,
there exists K2 ∈ F

m×(n−m) such that

det(zIn−m−A22 +A21K2) = f2(z).

Let C be a matrix with the characteristic polynomial f1(z). With

S =

(
I K2

0 I

)

and a suitable matrix X , one obtains

SAS−1 =

(
A11 +K2A21 X

A21 A22−A21K2

)
, SB = B =

(
I
0

)
.

Therefore, it follows that, with F = (C−A11−K2A21,−X), one obtains

SAS−1 + SBF =

(
C 0

A21 A22−A21K2

)
,

which has the characteristic polynomial f1(z) f2(z). This completes the proof.
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6.5 Rosenbrock’s Theorem

We turn now to the question of finding the extent to which the dynamics of a system
can be modified by state feedback. Of course, as far as eigenvalue assignment
of A− BK is concerned, it would suffice to know whether the eigenvalues of
A−BK could be freely assigned. A deeper question concerns the ability to alter
the entire eigenstructure of A− BK, i.e., the Jordan canonical form. Rosenbrock
showed, in a subtle analysis, that the invariant factors of A− BK can be freely
assigned subject only to a finite set of constraints arising from the reachability
indices. Our aim in this section is to prove this fundamental result. In view of
Theorem 6.14, the only invariants of a reachable pair (A,B) under the action of
a feedback group are the reachability indices. On the other hand, the invariant
factors of a nonsingular polynomial matrix D(z) are invariant under left and right
multiplication by unimodular polynomial matrices. Now if N(z)D(z)−1 is a right
coprime factorization of the input to state transfer function (zI −A)−1B, then the
column indices of D(z), which are the minimal indices of the submodule M =
D(z)F[z]m, are equal to the reachability indices of the pair (A,B). Thus it suffices to
see how, starting with a polynomial matrix diag(ψ1, . . . ,ψm), where the ψi satisfy
ψi|ψi−1 for i = 2, . . . ,m, that the minimal indices of M can be changed by left and
right multiplication by unimodular matrices. Our starting point is the following.

Lemma 6.24. Let D(z) = (d1(z), . . . ,dm(z)) ∈ F[z]m×m be a nonsingular, column
proper polynomial matrix with its columns d1(z), . . . ,dm(z) of degrees λ1 ≥ ·· · ≥
λm. Assume, without loss of generality, that the highest column coefficient matrix is
[D]hc = Im. If 1≤ j,k≤m, with degd j < degdk, then there exist elementary row and
column operations transforming D(z) into D′(z) = (d′1(z), . . . ,d

′
m(z)), with

degd′i =

⎧
⎨

⎩

degdi i �= j,k,
degd j + 1 i = j,
degdk− 1 i = k,

and [D′]hc = Im.

Proof. Adding the jth row, multiplied by z, to the kth row of D(z), one gets a matrix

D(1)(z) with columns d(1)
i (z), with

degd(1)
i

⎧
⎨

⎩

= degdi, i �= j,k,
= degd j + 1, i = j,
≤ degdk, i = k.
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Next, add a suitable multiple of the jth column to the kth column to obtain a D(2)(z),
with

degd(2)
i

⎧
⎨

⎩

= degdi, i �= j,k,
= degd j + 1, i = j,
≤ degdk, i = k.

Since detD(2)(z) = detD(z), one necessarily has degd(2)
k = degdk − 1, and the

highest column coefficient matrix satisfies det[D(2)]hc �= 0. Thus the matrix D′(z) =
[D(2)]−1

hc D(2)(z) has the required properties. �
As an example of the process, taken from Rosenbrock (1970), consider the

nonsingular, column proper polynomial matrix

D(z) =

⎛

⎝
z2 + 2 z3 z5 + z+ 1
2z+ 1 z4 + 3z+ 1 2z2

z+ 2 2z2 + 1 z6− 2z4

⎞

⎠ .

The column indices are 2,4,6, and we will reduce the degree of the last column and
increase the degree of the first. The successive stages are

D(1)(z) =

⎛

⎝
z2 + 2 z3 z5 + z+ 1
2z+ 1 z4 + 3z+ 1 2z2

z3 + 3z+ 2 z4 + 2z2 + 1 2z6− 2z4 + z2 + z

⎞

⎠ ,

D(2)(z) =

⎛

⎝
z2 + 2 z3 −z5− 4z3 + z+ 1
2z+ 1 z4 + 3z+ 1 −4z4− 2z3 + 2z2

z3 + 3z+ 2 z4 + 2z2 + 1 −8z4− 4z3 + z2 + z

⎞

⎠ ,

[D(2)]hc =

⎛

⎝
0 0 −1
0 1 0
1 1 0

⎞

⎠ , [D(2)]−1
hc =

⎛

⎝
0 −1 1
0 1 0
−1 0 0

⎞

⎠ ,

and, finally,

D′(z) =

⎛

⎝
z3 + z+ 1 2z2− 3z −4z4− 2z3− z2 + z

2z+ 1 z4 + 3z+ 1 −4z4− 2z3 + 2z2

−z2− 2 −z3 z5 + 4z3− z− 1

⎞

⎠ .

Proposition 6.25. Let M ⊂ F[z]m be a full submodule with minimal indices
λ1 ≥ ·· · ≥ λm, and let κ1 ≥ ·· · ≥ κm be a sequence of nonnegative integers.
If the conditions

∑ j
i=1 λi ≥ ∑ j

i=1 κi, j = 1, . . . ,m− 1,
∑m

i=1 λi = ∑m
i=1 κi,
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are satisfied, then there exists a submodule N ⊂ F[z]m, unimodularly equivalent to
M, with minimal indices κ1 ≥ ·· · ≥ κm.

Proof. The proof is by a purely combinatorial argument on partitions, applying
Lemma 6.24. Recall that a partition of n is a decreasing sequence of integers
κ1 ≤ ·· · ≤ κm, with κ1 + · · · + κm = n. Define a partial order, the so-called
dominance order, on partitions κ = (κ1, . . . ,κm) and λ = (λ1, . . . ,λm) of ∑m

i=1 κi =
n = ∑m

i=1 λi as

κ " λ ⇐⇒
j

∑
i=1

κi ≤
j

∑
i=1

λi, j = 1, . . . ,m− 1.

A partition λ �= κ is called a cover of κ whenever λ is the smallest element in
the dominance order that satisfies κ " λ . The covers for the dominance order are
characterized as follows. There exists j < k, with

λi =

⎧
⎨

⎩

κi i, �= j,k,
κ j + 1, i = j,
κk− 1, i = k.

It is a simple and well-known combinatorial exercise to verify that two arbitrary
partitions κ " λ are connected through a chain of covers, i.e.,

κ = λ (1) " ·· · " λ (k) = λ ,

where λ (i) is a cover of λ (i−1), i = 2, . . . ,k. From this and Lemma 6.24 the result
follows, as every product of elementary row and column operations is achieved by
multiplying with appropriate unimodular matrices. �

To prove Rosenbrock’s theorem, one can start from the coprime factorization

(zI−A)−1B = N(z)D(z)−1

and try to modify the invariant factors of D(z), keeping the reachability indices
invariant. This is a difficult process, though conceptually more natural. Much easier,
at the cost of being somewhat indirect, is to start from a polynomial matrix with the
required invariant factors and modify the reachability indices, without changing the
invariant factors.

Theorem 6.26 (Rosenbrock). Let (A,B) ∈ F
n×n×F

n×m be a reachable pair with
reachability indices κ1 ≥ ·· · ≥ κm. Let ψi ∈ F[z] be such that ψi+1 | ψi for i =
1, . . . ,m−1. Then a necessary and sufficient condition for the existence of a matrix K
such that the invariant factors of A−BK are ψ1, . . . ,ψm is that
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∑d
i=1 degψi ≥ ∑d

i=1 κi, d = 1, . . . ,m− 1,

∑m
i=1 degψi = ∑m

i=1 κi.

(6.25)

Proof. Let (zI − A)−1B = N(z)D(z)−1 be a right coprime factorization such that
D(z) is column proper. Then D(z) is a minimal-basis matrix for the full sub-
module D(z)F[z]m ⊂ F[z]m with minimal indices κ1 ≥ ·· · ≥ κm and Smith form
diag(ψ1, . . . ,ψm). Let gk denote the degree of the g.c.d. δk(D) of all k× k minors
of D(z). Since D(z) is a minimal basis, a k× k principal minor of D(z) has degree
κm+ · · ·+κm−k+1, and therefore gk ≤ κm+ · · ·+κm−k+1 for k = 1, . . . ,m. Similarly,
since δk(D) = ψm · · ·ψm−k+1, we obtain

gk =
m

∑
i=m−k+1

degψi ≤
m

∑
i=m−k+1

κi,

m

∑
i=1

degψi =
m

∑
i=1

κi,

which is equivalent to (6.25). This shows necessity.
Conversely, assume that conditions (6.25) are in force. By Proposition 6.25, the

submodule M with the minimal-basis matrix Dψ := diag(ψ1, . . . ,ψm) is unimod-
ularly equivalent to a full submodule D(z)Fm[z] with indices κ1 ≥ ·· · ≥ κm. Thus
there exist unimodular polynomial matrices U(z),V (z) with D(z) = U(z)DψV (z),
and D(z) has invariant factors ψ1, . . . ,ψm and minimal indices κ1 ≥ ·· · ≥ κm.
Consider the shift realization (SD,πD). By Theorem 6.8, the reachability indices
of (SD,πD) are κ1 ≥ ·· · ≥ κm, and the invariant factors of SD are equal to the
Smith invariants of D(z), i.e., they are ψ1, . . . ,ψm. Now consider reachable pairs
(A,B) with reachability indices κ1 ≥ ·· · ≥ κm. By Theorem 6.1, the pair (A,B) is
feedback equivalent to the pair (SD,πD), where SD has invariant factors ψ1, . . . ,ψm.
This completes the proof. �

6.6 Stabilizability

Recall that a discrete-time linear dynamical system

xt+1 = Axt (6.26)

on F
n is called stable whenever the sequence xt = Atx0 converges to zero for all

initial conditions x0 ∈ F
n. Similarly, a linear control system

xt+1 = Axt +But (6.27)
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in the state space F
n is called open-loop stabilizable if, for all initial conditions

x0 ∈ F
n, there exists an input sequence ut ∈ F

m, with

lim
t→∞

xt = 0.

Of course, these notions require specifying a topology on F
n, and there are

various ways to do that. This issue came up already in Chapter 5 in the discussion of
the stability of linear systems. As in Chapter 5, we consider only two possibilities,
depending on whether or not F is a subfield of the complex number field C:

1. The Euclidean distance topology on subfields F⊂ C;
2. The discrete topology on any other field F.

Recall that the discrete topology is a unique topology on F whose open (and
closed) subsets are subsets of F. Thus every finite field is compact with respect
to this topology. Moreover, if F is endowed with the discrete topology, then the
stability of (6.26) means that the trajectories of (6.26) eventually become constant,
i.e., xt+T = xT , t ≥ 0, for a sufficiently large T ∈ N. Equivalently, A is nilpotent.
In contrast, if F ⊂ C is endowed with the Euclidean topology, then the asymptotic
stability of (6.26) is satisfied if and only if all eigenvalues λ of A have absolute
value |λ |< 1. In this case, one says that A is Schur stable. The stability properties
of linear systems (6.26) are thus summarized as follows.

Proposition 6.27. Let F denote a field. A discrete-time dynamical system (6.26) is
asymptotically stable if and only if

1. A is Schur stable whenever F⊂ C;
2. A is nilpotent for the discrete topology on F.

For the remaining parts of this section, let us assume that F ⊂ C is satisfied,
so that one is dealing with the standard notion of stability. The standard stability
domain for the discrete-time system (6.26) is the open unit disc in the complex
plane

D := {z | |z|< 1}.

In contrast, for continuous-time systems ẋ = Ax it will be the open left half-plane
C− = {z | Re(z) < 0}. In more generality, one may consider a subset Λ of the
complex field C and refer to it as a region of stability.

Definition 6.28. Let F⊂ C be a subfield.

1. A nonsingular polynomial matrix T (z) ∈ F[z]r×r will be called Λ -stable, with
respect to a region of stability Λ , if detT (z) has all its zeros in Λ . If Λ =D, then
the polynomial matrix T (z) is called stable.

2. The pair (A,B) ∈ F
n×n×F

n×m is called Λ -feedback stabilizable if there exists
a state feedback gain K ∈ F

m×n such that A− BK has all eigenvalues in Λ .
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For discrete-time systems (6.27) and Λ = D, one refers simply to feedback
stabilizable rather than to D-feedback stabilizable.

Next, it is shown that the notions of feedback stabilizability and open-loop
stabilizability are equivalent.

Proposition 6.29. Let F⊂C be a subfield.

1. A linear system (6.27) is open-loop stabilizable if and only if it is feedback
stabilizable.

2. Let F = C. A linear system (6.27) is reachable if and only if it is Λ -feedback
stabilizable for all nonempty subsets Λ ⊂ C.

Proof. Clearly, feedback stabilizability implies stabilizability. Suppose (A,B) is
stabilizable. As a result of the pole-shifting theorem, it follows that the reachability
of (A,B) is sufficient for feedback stabilizability. If (A,B) is not reachable, then,
after applying a suitable similarity transformation (A,B) �→ (SAS−1,SB) by an
invertible matrix S ∈ GLn(F), one can assume without loss of generality that (A,B)
is in the Kalman decomposition form

A =

(
A11 A12

0 A22

)
, B =

(
B1

0

)
,

where (A11,B1) is reachable. By the pole-shifting theorem, there exists a feedback
matrix K = (K1,K2) ∈ F

m×n such that A11 − B1K1 is stable. Since (A,B) is
stabilizable, the matrix A22 must be stable. This implies that A−BK is stable, i.e.,
(A,B) is feedback stabilizable.

Again, using the pole-shifting theorem, the eigenvalues of A−BK for reachable
pairs (A,B) can be placed arbitrarily in the complex plane. If (A,B) is not
reachable, then the unreachable modes, i.e., the eigenvalues of A22 in the Kalman
decomposition, are in the spectrum of A−BK for every feedback matrix K. This
proves the converse. �

The same argument as in the preceding proof shows that systems (6.27) over the
field of real numbers R are reachable if and only if they are Λ -feedback stabilizable
for all nonempty self-conjugate subsets Λ ⊂ C. However, for other subfields of C
such as, for example, the algebraic number fields, such simple characterizations
cannot be expected.

A polynomial characterization of stabilizability is our next objective.

Theorem 6.30. Let F⊂ C be a subfield, and let Λ ⊂ C be a nonempty subset. Let
G(z) = V (z)T (z)−1U(z)+W (z) ∈ F(z)p×m be proper rational, and let (A,B,C,D)
be the associated shift realization (4.20) defined over F. Then the following
conditions are equivalent:

1. The shift realization is Λ -feedback stabilizable.
2. The g.c.l.d. E(z) of T (z) and U(z) is stable.
3.

(
T (z) U(z)

)
has full row rank for every z �∈Λ .

4.
(

zI−A B
)

has full row rank for every z �∈Λ .
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Proof. By Theorem 4.26, the reachability subspace of the shift realization is R =
EXT ′ . Let F be a complementary subspace to EXT ′ in XT , i.e., XT = EXT ′+F and
F ∩EXT ′ = {0}. Then F � XT/EXT ′ , and this in turn is isomorphic to XE . To see
this, consider the projection map πE : XT −→ XE . From the intertwining relation
T (z) = E(z)T ′(z) it follows, using Theorem 3.21, that this map is surjective and its
kernel is EXT ′ . Thus the isomorphism is proved. In terms of this direct sum, the pair
(A,B) has the Kalman decomposition

(
A11 A12

0 A22

)
,

(
B1

0

)
,

with (A11,B1) reachable and A22 � SE . Thus the pair (A,B) is feedback stabilizable
if and only if A22 is stable or, equivalently, if and only if E(z) is a stable polynomial
matrix. This proves the equivalence of the first two conditions. The last two
conditions are equivalent to the assertion that the g.c.l.d. E(z) is invertible for
all z �∈ Λ , i.e., to detE(z) being Λ -stable. In turn, this is equivalent to the matrix
(zI−A,B) being full row rank for all z �∈Λ . This completes the proof. �

A different way of stating this for the field F= C is as follows. For Λ ⊂ C and
A ∈ C

n×n we let

XΛ (A) =
⊕

λ∈Λ
Ker(λ I−A)n

denote the direct sum of the generalized eigenspaces of A with respect to the
eigenvalues λ ∈ Λ . If Λ− is a stability region and Λ+ is its complement in C, then
every polynomial p(z) has a factorization p(z) = p+(z)p−(z), with p−(z) stable and
p+(z) antistable. Clearly,

XΛ+(A) = Kerd+(A).

For each stability region Λ− and its complement Λ+ we will also write

X± = XΛ±(A).

The preceding result can also be stated in a state-space representation.

Theorem 6.31. A pair (A,B) ∈ C
n×n×C

n×m is Λ−-stabilizable if and only if one
of the following equivalent conditions is satisfied:

1. X+(A) is contained in the reachable set of (A,B).
2. rk(zI−A, B) = n is valid for all z ∈Λ+.

Proof. The first condition is often expressed by saying that the unstable modes are
reachable. The equivalence of stabilizability with the first condition thus follows
from the Kalman decomposition of (A,B). The equivalence of stabilizability with
the second condition follows at once from Theorem 6.30. �
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This construction can be extended to a field F as follows. Let F−[z]⊂ F[z] denote
a multiplicatively closed subset of nonzero polynomials such that, with an element
f (z) ∈ F−[z], all its prime factors are also contained in F−[z], and further assume
that 1 ∈ F−[z]. Such subsets are called saturated. Denote by F+[z] the set of all
polynomials that are coprime with all elements of F−[z]. Elements of F−[z] will
be called stable polynomials and those of F+[z] antistable. It is a consequence of
the primary decomposition theorem that every polynomial p(z) has a factorization
p(z)= p−(z)p+(z), with p−(z) stable and p+(z)∈F+[z]. As an example, take F=R

and R−[z] the set of all monic Schur polynomials of arbitrary degree (including 1).
Alternatively, one considers the set of all monic real Hurwitz polynomials, including
1. As another example, one may consider F−[z] := {zn | n ∈ N0}.

Let A : Fn −→ F
n be a linear transformation and d(z) = det(zI−A) its charac-

teristic polynomial, and let d(z) = d−(z)d+(z) be its factorization into stable and
antistable factors. In Chapter 3, it was shown that such a factorization induces
essentially unique factorizations

zI−A = S+(z)S−(z) = S−(z)S+(z),

with S−(z),S−(z) stable and S+(z),S+(z) antistable. This leads to the spectral
decomposition

F
n = XzI−A = S+(z)XS− ⊕ S−(z)XS+ = X−(A)⊕X+(A),

where the subspaces X−(A),X+(A) are the generalized eigenspaces associated with
the sets of stable and antistable eigenvalues, respectively. With these constructions
in our hands, Theorem 6.31 generalizes as follows; the proof is by a straightforward
modification of the arguments for Theorem 6.31 and is omitted.

Theorem 6.32. Let F−[z] be a saturated subset of nonzero polynomials. For
(A,B) ∈ F

n×n×F
n×m, the following conditions are equivalent:

1. There exists K ∈ F
m×n with det(zI−A+BK) ∈ F−[z].

2. X+(A) is contained in the reachable set (A,B).
3. rank(zI−A B) = n is satisfied for all roots z ∈ F of all irreducible polynomials

in F+[z].

The dual notion to open-loop stabilizability is that of detectability. While we will
introduce this concept in Chapter 7 in a larger context, here we confine ourselves to
a more specialized situation.

Definition 6.33. The system

xt+1 = Axt +But

yt = Cxt

(6.28)
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is called detectable, provided all pairs of trajectories (xt),(x̄t ) with the same input
sequence (ut) and identical output sequences (Cxt) = (Cx̄t) satisfy

lim
t→∞

(xt − x̄t) = 0.

Using linearity, it is easily seen that the detectability of (6.28) is satisfied if and only
if all state trajectories (xt) of the input-free or, equivalently, autonomous system

xt+1 = Axt ,

yt = Cxt ,
(6.29)

with Cxt = 0 for t ≥ 0, satisfy

lim
t→∞

xt = 0.

Thus (6.28) is detectable if and only if (6.29) is detectable. The system-theoretic
interpretation of detectability is clarified by the following result.

Proposition 6.34. Let F⊂C. The following conditions are equivalent:

1. System (6.28) is detectable.
2. The unobservable states

O∗ =
n−1⋂

i=0

KerCAi−1

satisfy

O∗ ⊂ {x0 ∈ F
n | lim

t→∞
xt = 0}.

3. The unobservable modes λ ∈ C of (C,A) are all stable, i.e., satisfy |λ |< 1.
4. The dual system (A�,C�) is stabilizable.
5. There exists an output injection transformation L ∈ F

n×p such that A− LC is
Schur stable.

Proof. The equivalence of statements (1) and (2) follows directly from the defini-
tion. Equivalently, the dual Kalman decomposition of (C,A) is of the form

SAS−1 =

(
A11 0
A21 A22

)
, CS−1 =

(
C1 0

)
,

with (C1,A11) observable and A22 stable. Equivalently, the Kalman decomposition
of (A�,C�) is

(
A�11 A�21
0 A�22

)
,

(
C�1
0

)
,
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with (A�11,C
�
1 ) reachable and A�22 stable. Thus statement (2) is both equivalent

to statement (3) and to (A�,C�) being stabilizable. By Proposition 6.29, this is
equivalent to the existence of K ∈ F

n×p such that A�+C�K is stable. With L = K�
this shows the equivalence of statements (4) and (5). �

Using this simple proposition, all mentioned results on state feedback stabiliz-
ability dualize to corresponding results on detectability. For a subset Λ ⊂ C, a
realization (A,B,C,D) defined over a subfield F ⊂ C is called Λ -output injection
stabilizable, if there exists L ∈ F

n×p such that det(zI−A+LC) has all its roots in
Λ . With this notation, the dual result to Theorem 6.30 is stated as follows.

Theorem 6.35. Let F ⊂ C be a subfield, and let Λ ⊂ C be a nonempty subset.
Let G(z) = V (z)T (z)−1U(z) +W (z) ∈ F(z)p×m be a proper rational matrix, and
let (A,B,C,D) be the associated shift realization (4.20), defined over F. Then the
following conditions are equivalent:

1. The shift realization is Λ -output injection stabilizable.
2. The g.c.l.d. E(z) of T (z) and V (z) is stable.

3.

(
V (z)
T (z)

)
has full column rank for every z �∈Λ .

4.

(
C

zI−A

)
has full column rank for every z �∈Λ .

Proof. By transposing the transfer function G(z), one obtains the factor-
ization G(z)� = U(z)�T (z)−�V (z)� + W (z)�, having the shift realization
(A�,C�,B�,D�). Moreover, (C,A) is Λ -output injection stabilizable if and
only if (A�,C�) is Λ -feedback stabilizable. Thus the result follows by applying
Theorem 6.30 to G(z)�. �

The next result is valid over an arbitrary field. It is obtained by dualizing
Theorem 6.32; the straightforward arguments are omitted.

Theorem 6.36. Let F−[z] be a saturated subset of nonzero polynomials, and let
(A,B) ∈ F

n×n×F
n×m; then the following conditions are equivalent:

1. There exists L ∈ F
n×p with det(zI−A+LC) ∈ F−[z].

2. The unobservable states O∗ of (C,A) satisfy

O∗ ⊂ X−(A).

3. The full rank condition

rk

(
C

zI−A

)
= n

is fulfilled for all roots z ∈ F of all irreducible polynomials in F+[z].
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6.7 Dynamic Output Feedback Stabilization

Next, let us consider the task of characterizing the notions of internal stability
and stabilizability for the standard output feedback connection of a system with
transfer function G(z) and a controller with transfer function K(z). This is a
generalization of the situation discussed so far, insofar as it refers to dynamic
output feedback rather than to static state feedback or output injection. For
simplicity, we will focus on continuous-time systems described over the field of
real numbers; the discrete-time case runs similarly. Schematically, the following
diagram describes the feedback connection:

G

K

�

y2 e2

y1e1 � �

�

�

��� �

�

Our assumption is that both transfer functions G(z) ∈R(z)p×m and K(z) ∈R(z)m×p

are proper rational. The full system equations are then given by

G(e1 + y2) = y1,

K(e2 + y1) = y2.
(6.30)

Equivalently, the closed-loop feedback interconnection Σcl is described using state-
space realizations

ẋ = Ax+Bu1,

y1 = Cx+Du1,
(6.31)

ξ̇ = Acξ +Bcu2,

y2 = Ccξ +Dcu2,
(6.32)

for G(z) and K(z), respectively, together with the coupling equations

u1 = e1 + y2, u2 = e2 + y1.

The feedback interconnection Σcl is called well-posed, provided I−DDc is invert-
ible or, equivalently, if the transfer function I−G(z)K(z) is properly invertible. This
condition is easily seen to be equivalent to the (m+ p)× (m+ p)-matrix

F =

(
Im −Dc

−D Ip

)
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being invertible. Thus the feedback interconnection of a strictly proper transfer
function G(z) with a proper controller K(z) is well posed. The assumption of well-
posedness allows one to eliminate the internal input variables u1,u2 via

F

(
u1

u2

)
=

(
0 Cc

C 0

)(
x
ξ

)
+

(
e1

e2

)

from the state equations (6.31) and (6.32). The closed-loop state space representa-
tion Σcl of a well-posed feedback interconnection then takes the form

ẋcl = Aclxcl +Bcl

(
e1

e2

)
,

(
y1

y2

)
= Cclxcl +Dcl

(
e1

e2

)
,

(6.33)

with system matrices

Acl =

(
A 0
0 Ac

)
+

(
B 0
0 Bc

)
F−1

(
0 Cc

C 0

)
, Bcl =

(
B 0
0 Bc

)
F−1

Ccl =

(
0 I
I 0

)
F−1

(
0 Cc

C 0

)
, Dcl =

(
D 0
0 Dc

)
F−1 .

(6.34)

Thus (Acl,Bcl,Ccl) is static output feedback equivalent to the direct sum system

((
A 0
0 Ac

)
,

(
B 0
0 Bc

)
,

(
C 0
0 Cc

))
,

which shows that (6.34) is reachable and observable if and only if both (A,B,C,D)
and (Ac,Bc,Cc,Dc) are reachable and observable. Thus the minimality of the
realizations (A,B,C,D), (Ac,Bc,Cc,Dc) of G(z) and K(z) implies the minimality
of the closed-loop system (Acl,Bcl,Ccl,Dcl).

Definition 6.37. The feedback interconnection Σcl is internally stable if and only
if Σcl is well posed and the system matrix Acl is stable, i.e., all eigenvalues of Acl

have negative real part.

Note that

Φ(z) = Dcl +Ccl(zI−Acl)
−1Bcl (6.35)

is the transfer function of the feedback interconnection (6.34).
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Proposition 6.38. Φ(z), the closed-loop transfer function in (6.35) from

(
e1

e2

)
to

(
y1

y2

)
, is given by

Φ =

(
I −G
−K I

)−1(
G 0
0 K

)
=

(
G 0
0 K

)(
I −K
−G I

)−1

. (6.36)

In particular, the closed-loop transfer function Gf from e1 to y1 is given by

G f (z) =
(

I 0
)
Φ(z)

(
I
0

)

= (I−G(z)K(z))−1G(z) = G(z)(I−K(z)G(z))−1.

(6.37)

Proof. The system equations (6.30) can be written in matrix form as

(
I −G
−K I

)(
y1

y2

)
=

(
G 0
0 K

)(
e1

e2

)
.

It is easily calculated that

(
I −G
−K I

)−1

=

(
(I−GK)−1 G(I−KG)−1

(I−KG)−1K (I−KG)−1

)
,

and hence

(
y1

y2

)
=

(
(I−GK)−1G G(I−KG)−1K
(I−KG)−1KG (I−KG)−1K

)(
e1

e2

)
. (6.38)

The expression for the transfer function Gf (z) from e1 to y1 follows easily
from (6.38). �

The definition of internal stability is stated solely in state-space terms. If the
realizations (A,B,C,D) and (Ac,Bc,Cc,Dc) of the plant G(z) and the controller K(z)
are stabilizable and detectable, then we can reformulate this condition in terms of
the two transfer functions.

Proposition 6.39. Assume that (A,B,C,D) and (Ac,Bc,Cc,Dc) are stabilizable and
detectable. Then the feedback interconnection Σcl is internally stable if and only if
I−G(z)K(z) is properly invertible and the transfer function Φ(z) of Σcl is stable.

Proof. By assumption, the realization (Acl,Bcl,Ccl,Dcl) is stabilizable and
detectable. Thus the transfer function Φ(z) is stable if and only if Acl is stable.
Moreover, I−G(∞)K(∞) = I−DDc. This completes the proof. �
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To characterize internally stabilizing controllers K(z) for a transfer function
G(z), it is convenient to replace the ring of polynomials by the ring of stable
proper rational functions. We proceed to formulate the relevant results on coprime
factorizations in this context.
1. Coprime Factorizations over RH∞.
Let RH∞ denote the set of all proper rational transfer functions g(z) ∈ R(z) with
poles only in the left half-plane C−. It is easily seen that RH∞ is a ring and, indeed,
a principal ideal domain; see Chapter 2 for details. Since any real rational function
in R(z) can be expressed as the quotient of two elements from RH∞, we conclude
that R(z) is the field of fractions of RH∞. Many important properties of rational
matrix functions remain valid over RH∞. One says that a rational matrix valued
function G(z) ∈ R(z)p×m is in RH p×m

∞ if and only if G(z) is proper and stable. Two
results for rational matrix functions – of importance for us, namely the existence of
coprime and doubly coprime factorizations over the ring RH∞ – are stated next. The
proofs of these theorems run verbatim with those of Theorem 2.29, Theorem 2.33,
and Corollary 2.34 in Chapter 2; they are therefore omitted.

Theorem 6.40. For G(z) ∈ F(z)p×m the following assertions are valid:

1. There exist right coprime matrices P(z)∈ RHp×m
∞ ,Q(z) ∈ RHm×m

∞ with det Q �= 0
such that

G(z) = P(z)Q(z)−1. (6.39)

If P1(z) ∈ RHp×m
∞ ,Q1(z) ∈ RHm×m

∞ are right coprime with det Q1 �= 0 and

P1(z)Q1(z)
−1 = P(z)Q(z)−1 = G(z),

then there exists a unique unimodular matrix U ∈GLm(RH∞) with (P1(z),Q1(z))
= (P(z)U(z),Q(z)U(z)).

2. There exist left coprime matrices P�(z)∈ RH p×m
∞ ,Q�(z)∈ RHp×p

∞ with det Q� �= 0
such that

G(z) = Q�(z)
−1P�(z). (6.40)

If P�,1(z) ∈ RHp×m
∞ ,Q�,1(z) ∈ RH p×p

∞ are left coprime with det Q�,1 �= 0 and

Q�,1(z)
−1P�,1(z) = Q�,2(z)

−1P�,2(z) = G(z),

then (P�,1(z),Q�,1(z)) = (U(z)P�,2(z),U(z)Q�,2(z)) for a uniquely determined
unimodular matrix U ∈ GLm(RH∞).

Factorizations as in (6.39) and (6.40) are called right and left coprime factoriza-
tions of G over RH∞.



6.7 Dynamic Output Feedback Stabilization 323

We now relate the coprimeness of factorizations over RH∞ to the solvability of
Bezout equations, i.e., to unimodular embeddings. Let

G(z) = Q�(z)
−1P�(z) = Pr(z)Qr(z)

−1

be right and left coprime factorizations of G(z) ∈ F(z)p×m over the ring RH∞,
respectively, which implies the intertwining relation

P�(z)Qr(z) = Q�(z)Pr(z).

Theorem 6.41 (Doubly Coprime Factorization). Let P�(z)∈RHp×m
∞ and Q�(z)∈

RHp×p
∞ be right coprime and Pr(z) ∈ RHp×m

∞ and Qr(z) ∈ RHm×m
∞ be left coprime,

with

Q�(z)Pr(z) = P�(z)Qr(z).

Then there exist stable proper rational matrices X(z) ∈ RHm×p
∞ ,X(z) ∈

RHm×p
∞ ,Y (z) ∈ RHm×m

∞ ,Y (z) ∈ RH p×p
∞ , with

(
Y (z) X(z)

−P�(z) Q�(z)

)(
Qr(z) −X(z)
Pr(z) Y (z)

)
=

(
Im 0
0 Ip

)
.

In particular, every right coprime factorization G(z) = P(z)Q(z)−1 of a proper
rational function G(z) ∈ R(z)p×m admits an extension to a unimodular matrix

(
Q(z) −X(z)
P(z) Y (z)

)
∈ GLm+p(RH∞).

2. Characterization of stabilizing controllers.
The characterization of controllers that internally stabilize a transfer function G(z)
is our next task. For this, the following abstract extension of Lemma 2.28 is needed.

Lemma 6.42. Let R denote a principal ideal domain, and let A ∈ Rr×r,B ∈
Rr×m,C ∈ Rp×r be such that det A �= 0, A and B are left coprime and C and A
are right coprime. Then CA−1B ∈ Rp×m if and only if A ∈ GLr(R) is unimodular.

Proof. The condition is obviously sufficient. For the necessity part consider a
solution X ∈ Rr×r,Y ∈ Rr×p of the Bezout equation

XA+YC = Ir.

The solution exists since A and C are right coprime. Thus A−1B = XB+YCA−1B ∈
Rr×m. Using the dual Bezout equation

AX̃ +BỸ = I

we conclude that A−1 = X̃ +A−1BỸ ∈ Rr×r. Thus A is unimodular, i.e., A∈GLr(R).
�
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Theorem 6.43. Assume that G(z) ∈ F(z)p×m is proper and that K(z) ∈ F(z)m×p is
a proper controller, with the assumption that I−G(∞)K(∞) is invertible. Assume
that G(z) and K(z) have the following coprime factorizations over RH∞:

G(z) = Q�(z)−1P�(z) = Pr(z)Qr(z)−1,

K(z) = S�(z)−1R�(z) = Rr(z)Sr(z)−1.

(6.41)

Then:

1. The transfer function Φ(z) of Σcl has the following coprime factorizations:

Φ(z) =

(
Q� −P�
−R� S�

)−1(
P� 0
0 R�

)
=

(
Pr 0
0 Rr

)(
Qr −Rr

−Pr Sr

)−1

. (6.42)

2. For suitable units u1,u2,u3 in RH∞, the following equations are fulfilled:

det

(
Q� −P�
−R� S�

)
= u1 det(Q�Sr−P�Rr) = u2 det(S�Qr−R�Pr)

= u3 det

(
Qr −Rr

−Pr Sr

)
.

3. Φ(z) is proper and stable if and only if

S�Qr−R�Pr ∈ GLm(RH∞) or Q�Sr−P�Rr ∈ GLp(RH∞).

4. The closed-loop transfer function Gf from e1 to y1 has the following equivalent
representations:

G f (z) = Sr(z)(Q�(z)Sr(z)−P�(z)Rr(z))
−1P�(z)

= Pr(z)(S�(z)Qr(z)−R�(z)Pr(z))
−1S�(z)

=
(

Pr 0
)
(

Qr −Rr

−Pr Sr

)−1(
I
0

)

=
(

I 0
)( Q� −P�
−R� S�

)−1(
P�
0

)
.

(6.43)

More generally, the closed-loop transfer function is

Φ(z) =

(
0 0
−I 0

)
+

(
Pr

Qr

)
(S�Qr−R�Pr)

−1 ( S� R�

)

=

(
0 −I
0 0

)
+

(
Sr

Rr

)
(Q�Sr−P�Rr)

−1 (P� Q�

)
.
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Proof. The representations (6.42) follow by substituting the coprime factoriza-
tions (6.41) into equation (6.36). The right coprimeness of the factorization

(
Pr 0
0 Rr

)(
Qr −Rr

−Pr Sr

)−1

is equivalent to the right primeness of the matrix

⎛

⎜⎜
⎝

Pr 0
0 Rr

Qr −Rr

−Pr Sr

⎞

⎟⎟
⎠ ,

i.e., after suitable elementary row operations, to the right primeness of

⎛

⎜⎜
⎝

Pr 0
Qr 0
0 Rr

0 Sr

⎞

⎟⎟
⎠ .

In turn, this is equivalent to our assumption that Pr,Qr and Rr,Sr are right coprime,
respectively. A similar argument shows left coprimeness.
2. First, note that from the coprime factorizations (6.45) it follows that detQ� =
cdetQr and detS� = d detSr for suitable units c,d ∈ RH∞. Next, computing

(
I 0

R�Q
−1
� I

)(
Q� −P�
−R� S�

)
=

(
Q� −P�
0 S�−R�Q

−1
� P�

)
=

(
Q� −P�
0 (S�Qr−R�Pr)Q−1

r

)
,

and applying the multiplication rule of determinants, it follows that

det

(
Q� −P�
−R� S�

)
= detQ� ·det(S�Qr−R�Pr) ·detQ−1

r

= c ·det(S�Qr−R�Pr).

The other equalities are derived analogously.
4. Substituting representations (6.41) into (6.37), the closed-loop transfer function
G f (z) has the following representations:

G f (z) = Sr(z)(Q�(z)Sr(z)−P�(z)Rr(z))
−1P�(z)

= Pr(z)(S�(z)Qr(z)−R�(z)Pr(z))
−1S�(z).

To obtain the third representation in (6.43), the coprime factorizations (6.42) are
used to compute
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G f (z) =
(

I 0
)
(

Pr 0
0 Rr

)(
Qr −Rr

−Pr Sr

)−1(
I
0

)

=
(

Pr 0
)
(

Qr −Rr

−Pr Sr

)−1(
I
0

)
.

The last representation in (6.43) is similarly derived. The formulas for the closed-
loop transfer function Φ(z) are similarly derived using formula (6.38). �

The preceding result leads to the first main characterization of all stabilizing
controllers.

Theorem 6.44. The following assertions are equivalent for proper transfer func-
tions G(z) ∈ R(z)p×m and K(z) ∈ R(z)m×p that define a well-posed feedback
interconnection:

1. K internally stabilizes G.
2. The matrix

(
Q� −P�
−R� S�

)
∈ RH(p+m)×(p+m)

∞

is invertible over RH∞.
3. The matrix

(
Qr −Pr

−Rr Sr

)
∈ RH(p+m)×(p+m)

∞

is invertible over RH∞.
4. det (Q�Sr−P�Rr) is a biproper stable rational function with stable inverse.
5. det (S�Qr−R�Pr) is a biproper stable rational function with stable inverse.

Proof. By Proposition 6.39, the controller K internally stabilizes K if and only if

the transfer function Φ ∈ RH(p+m)×(p+m)
∞ . By Lemma 6.42 this is true if and only if

(
Q� −P�
−R� S�

)−1

∈ RH(p+m)×(p+m)
∞ .

This in turn is equivalent to

(
Qr −Pr

−Rr Sr

)−1

∈ RH(p+m)×(p+m)
∞ .

By Theorem 6.43, this is true if and only if det (Q�Sr−P�Rr) [or det (S�Qr −
R�Pr)] is a biproper stable rational function with stable inverse. This proves the
equivalence of parts (1)–(5). �
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3. The Youla–Kucera Parameterization.
The characterization of stabilizing controllers via unimodular embeddings is precise
but has the disadvantage of not leading to an easily manageable parameterization
of all such controllers. The Youla–Kucera parameterization resolves this issue by
giving a complete parameterization of all stabilizing controllers via linear fractional
transformations.

Theorem 6.45 (Youla-Kucera). Let

G(z) = Q�(z)
−1P�(z) = Pr(z)Qr(z)

−1 ∈ R(z)p×m

be a proper rational, stable, and coprime factorization over RH∞. Let

(
Y (z) X(z)
P�(z) Q�(z)

)(
Qr(z) −X(z)
−Pr(z) Y (z)

)
=

(
Im 0
0 Ip

)
(6.44)

be a unimodular embedding for this doubly coprime factorization over RH∞. Then
all proper rational and internally stabilizing controllers for G(z) are parameter-
ized by

K = (X −QrΓ )(Y −PrΓ )−1 = (Y −ΓP�)
−1(X−Γ Q�). (6.45)

Here Γ denotes an arbitrary element of (RH∞)
m×p such that the matrices

Y (∞)−Pr(∞)Γ (∞) and Y (∞)−Γ (∞)P�(∞)

are invertible.

Proof. By Theorem 6.44, all internally stabilizing controllers K = RrS−1
r are such

that the matrix

(
Qr(z) −Rr(z)
−Pr(z) Sr(z)

)

is unimodular over RH∞. Thus there exists a unimodular matrix

U =

(
U11 U12

U21 U22

)
∈ GLm+p(RH∞),

with

(
Qr(z) −Rr(z)
−Pr(z) Sr(z)

)
=

(
Qr(z) −X(z)
−Pr(z) Y (z)

)(
U11 U12

U21 U22

)
∈ GLm+p(RH∞).

This implies U11 = I, U21 = 0, and U22 is unimodular over RH∞. Thus Γ :=U12U−1
22

exists in RH∞ and
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(−Rr(z)
Sr(z)

)
=

(
Qr(z) −X(z)
−Pr(z) Y (z)

)(
ΓU22

U22

)

follows, implying

K = RrS
−1
r = (X−QrΓ )(Y −PrΓ )−1.

By the unimodular embedding (6.44), we see that

(
Y−Γ P� X−Γ Q�

P� Q�

)(
Qr −Rr

−Pr Sr

)
=

(
I −Γ
0 I

)(
Y X
P� Q�

)(
Qr −X
−Pr Y

)(
I Γ
0 I

)

=

(
I 0
0 I

)
.

Defining R� = X −Γ Q�,S� := Y −Γ P�, one obtains S�Rr = R�Sr, and therefore
S−1
� R� = RrS−1

r , which completes the proof. �
As a consequence of the Youla–Kucera parameterization, it is now shown that

the closed-loop transfer function depends affinely on the stabilizing parameter Γ .
This fact is very important in robust controller design and opens the way to applying
convex optimization techniques to robust controller design.

Theorem 6.46. Let

G(z) = Q�(z)
−1P�(z) = Pr(z)Qr(z)

−1 ∈ R(z)p×m

be a proper rational, stable, and coprime factorization over RH∞. Let

K0(z) = Y (z)−1X(z) = X(z)Y (z)−1 ∈ R(z)m×p

denote a proper rational, stable, and coprime factorization over RH∞ of a stabilizing
controller K0(z) of G(z). Then the closed-loop transfer function ΦK(z) =

(
Pr(z) 0

0 X(z)

)(
Qr(z) −X(z)
−Pr(z) Y (z)

)−1

−
(

Pr(z)
Qr(z)

)
(

0 Γ (z)
)
(

Qr(z) −X(z)
−Pr(z) Y (z)

)−1

of all proper stabilizing controllers K(z) of G(z) depends affinely on the stabilizing
parameter Γ , where Γ (z) ∈ RH∞ is such that the matrices

Y (∞)−Pr(∞)Γ (∞) and Y (∞)−Γ (∞)P�(∞)

are invertible. In particular, the closed-loop transfer function from e1 to y1 has the
affine parametric form
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G f (z) = (I−P�ΓY
−1
)G(I−K0G)−1 .

Proof. By Theorem 6.43, the transfer function for the feedback interconnection of
G with K = ML

−1
is

G f (z) =
(

Pr 0
)
(

Qr −M
−Pr L

)−1(
I
0

)
.

From the Youla–Kucera parameterization it follows that

(
Qr −M
−Pr L

)
=

(
Qr −X
−Pr Y

)(
I Γ
0 I

)
.

Moreover,

(
Qr −X
−Pr Y

)
=

(
I −K0

−G I

)(
Qr 0
0 Y

)
.

Using (6.38), we compute

G f (z) =
(

Pr 0
)
(

I −Γ
0 I

)(
Qr −X
−Pr Y

)−1(
I
0

)

=
(

Pr −PrΓ
)
(

Q−1
r 0

0 Y
−1

)(
I −K0

−G I

)−1(
I
0

)

= G(I−K0G)−1−PrΓY
−1

G(I−K0G)−1,

which completes the proof. �
To present a state-space representation of the Youla–Kucera parameterization, state-
space formulas for the involved transfer functions are derived. Let (A,B,C,D) and
(Ac,Bc,Cc,Dc) be realizations of the transfer functions G(z) and K(z), respectively.
Choosing a state feedback F such that A+BF is stable, the transfer functions

Qr(z) =

[
A+BF B

F I

]
, Pr(z) =

[
A+BF B
C+DF D

]
(6.46)

are in RH∞ and define a right coprime factorization of G(z) = Pr(z)Qr(z)−1.
Similarly, for J such that A− JC is stable, the transfer functions

Q�(z) =

[
A− JC J
−C I

]
, P�(z) =

[
A− JC B− JD

C D

]
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are in RH∞ and define a left coprime factorization of

G(z) = Q�(z)
−1P�(z).

A solution of the unimodular embedding (6.44) is constructed as follows. Define

Y (z) =

[
A+BF J
C+DF I

]
, X(z) =

[
A+BF J

F 0

]
.

Similarly,

Y (z) =

[
A− JC B− JD
−F I

]
, X(z) =

[
A− JC J

F 0

]
. (6.47)

The state-space representation of the stabilizing controller then has the form

ξ̇ = Aξ +Bu+ J(y−Cξ −Du)

u = Fξ −Γ (
d
dt
)(y−Cξ −Du),

(6.48)

where Γ (z) denotes a proper rational and stable matrix function such that the
feedback system is well posed. One observes that the transfer function of (6.48) from
y to u is exactly the controller transfer function K(z) in Youla–Kucera form (6.45).
By choosing a state-space realization of Γ (z) as

Γ (z) = Dc +Cc(zI−Ac)Bc,

we obtain the (implicit) first-order representation of the stabilizing controller as

ξ̇ = Aξ +Bu+ J(y−Cξ−Du)

ξ̇c = Acξc +Bc(y−Cξ −Du)

u = Fξ −Ccξc−Dc(y−Cξ −Du).

For D = 0, this leads to the input/output representation of all stabilizing controllers:

ξ̇ = (A+BF− (J−Dc)C)ξ −BcCcξc + Jy

ξ̇c =−BcCξ +Acξc +Bcy

u = (F +DcC)ξ −Ccξc−Dcy.
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6.8 Controlled Invariant Subspaces

The next two sections are devoted to a presentation of basic concepts of geometric
control, i.e., the notions of controlled and conditioned invariant subspaces. Geomet-
ric control was developed in the early 1970s, by Francis, Wonham, and Morse on
the one hand and by Basile and Marro on the other, as a tool for better understanding
the structure of linear control systems within the context of state-space theory.
Controlled and conditioned invariant subspaces generalize the class of invariant
subspaces of a linear operator into a system-theoretic context; we refer the reader
to Basile and Marro (1992) and Wonham (1979) for comprehensive accounts of the
theory. The emphasis of geometric control is on clear, conceptual statements rather
than a reliance on complex matrix manipulations. The term geometry refers to the
basis-free study of classes of subspaces of the state space of a system realization.
This development led to (sometimes iterative) design procedures based on elegant
vector space geometric considerations.

However, it turned out that even the most fundamental problem of linear control –
characterizing the limitations of pole placement by state feedback – was first solved
by Rosenbrock using polynomial algebra. This brought about the need to find a
bridge between the elegance of state-space problem formulations on the one hand
and the computational effectiveness of polynomial algebra on the other.

The availability of the shift realizations allows us, given a system in a polynomial
matrix description, to interpret the relation between the elements of the associated
polynomial system matrix in state-space terms. Conversely, constructs coming from
geometric control theory can, in the case of the shift realization, be completely
characterized in polynomial terms. This leads to the most direct connection between
abstract module theory, polynomial matrix descriptions, and state-space theory. In
particular, the most basic objects of geometric control theory, namely, controlled
and conditioned invariant subspaces, have very nice characterizations in terms of the
zero structure of linear systems. Space limitations prevent us from delving deeper
into the subject.

For a linear transformation A in X and an A-invariant subspace V , denote by
A|V the restriction of A to V . By a slight abuse of notation, an induced map,
i.e., a map induced by A in the quotient space X /V , will be denoted by A|X /V .
Controlled invariant subspaces are introduced in state-space terms, and functional
characterizations are derived.

Definition 6.47. 1. For an input pair (A,B), a subspace V ⊂ X is called a
controlled invariant subspace, or an (A,B)-invariant subspace, if

AV ⊂ V + ImB. (6.49)

2. Let V be a controlled invariant subspace for the pair (A,B). A feedback map
K : X −→ U that satisfies (A− BK)V ⊂ V is called a friend of V . For a
controlled invariant subspace V , denote by F (V ) the set of all friends of V .
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3. One says that a family {Vα} of controlled invariant subspaces is compatible if⋂
α F (Vα) �= /0, i.e., if there exists a single feedback map K such that

(A−BK)Vα ⊂ Vα

if fulfilled for all α .
4. A controlled invariant subspace V is called a reachability subspace if for each

monic polynomial q(z) of degree equal to dimV there exists a friend K ∈F (V )
such that q(z) is the characteristic polynomial of (A−BK)|V .

If V ⊂X is a controlled invariant subspace for the pair (A,B), and if K ∈F (V ),
the notation (A−BK)|V and (A−BK)|X /V will be used for restricted and induced
maps, respectively. The next proposition is basic to all subsequent characterizations
of controlled invariant subspaces.

Proposition 6.48. For an input pair (A,B), the following statements are
equivalent:

1. V is a controlled invariant subspace.
2. There exists a state feedback map K : X −→ U such that the subspace V is

(A−BK)-invariant.
3. For each x0 ∈ V , there exists an infinite sequence of inputs (ut) such that the

state trajectory (xt) stays in V .

Proof. Assume V is controlled invariant. We choose a basis {v1, . . . ,vm} for V . By
our assumption, Avi = wi +Bui, with wi ∈ V and ui ∈U . Define a linear map K on
V by Kvi = ui, and arbitrarily extend it to all of X . Thus there exists a linear map
K : X −→U such that (A−BK)vi = wi, i.e., (A−BK)V ⊂ V , and (1) implies (2).

Let x0 ∈ V . It suffices to show that there exists a control u such that x1 =
Ax0 +Bu ∈ V . Since (A−BK)x0 = x1 ∈ V , we simply choose u = −Kx0, and (2)
implies (3). To show that (3) implies (1), consider x0 ∈X . It suffices to show that
there exists a u such that Ax0 = x1−Bu. By our assumption, there exists a u ∈U
such that x1 = Ax0 +Bu ∈ V . �

The following are simple, yet very useful, characterizations.

Proposition 6.49. Let (A,B) be an input pair in the state space X . Then:

1. A q-dimensional subspace V ⊂X is controlled invariant if and only if there
exists a linear map F : V0 −→ V0 on a q-dimensional subspace V0 and an
injective map Z : V0 −→X , with ImZ = V , so that for some K

ZF = (A−BK)Z. (6.50)

2. A q-dimensional subspace R ⊂X is a reachability subspace if and only if there
exists a reachable pair (F,G) in a q-dimensional state space V0 and an injective
map Z : V0 −→X , with ImZ =R, so that for some K,L
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ZF = (A−BK)Z,
ZG = BL.

(6.51)

Proof. If V ⊂X is controlled invariant, choose V0 =V , F = (A−BK)|V , and Z to
be the embedding map of V into X . Conversely, if F and Z exist and satisfy (6.50),
then clearly V = ImZ satisfies (A+BK)V ⊂ V , i.e., V is controlled invariant.

To prove the second claim, observe that BL⊂ ImZ implies the existence of G. If
R is a reachability subspace, it is in particular controlled invariant. So, with F and Z
defined as previously, the first equation of (6.51) was derived. By the injectivity of Z,
G is uniquely determined. Thus, the second equation in (6.51) follows. Conversely,
if (6.51) holds, then, as previously, R = ImZ is controlled invariant. Now, with
k = dimX0 and using the reachability of (F,G), we compute

k−1

∑
i=0

(A−BK)i ImBL = Z
k−1

∑
i=0

Fi ImG = ZX0 =R,

which shows that R is a reachability subspace. �
Stated next are some elementary properties of controlled invariant subspaces.

Proposition 6.50. Let (A,B) be an input pair in the state space X . Then:

1. The set of controlled invariant subspaces is closed under sums;
2. For each subspace K ⊂X there exists a maximal controlled invariant subspace

contained in K that is denoted by V ∗(K ).

Proof. The first claim follows directly from (6.49). For the second claim note that
the set of all controlled invariant subspaces contained in K is closed under sums
and is nonempty because the zero subspace is included. V ∗(K ) is the sum of all
these subspaces. �

There exists a simple subspace algorithm to compute V ∗; see Wonham (1979).

Theorem 6.51 (V ∗-Algorithm). Let (A,B) ∈ F
n×n×F

n×m and a linear subspace
W ⊂ F

n. Define a sequence of linear subspaces Vi, recursively constructed as
follows:

V0 =W

Vi+1 =W ∩A−1(Vi + ImB).

Then V0 ⊃V1 ⊃V2 ⊃ ·· · and, for a suitable k≤ dimW, the equality Vk = V ∗(W ) is
valid. In particular,

V ∗(W ) =W ∩A−1(W )∩·· ·∩A−k+1(W )∩A−k(W + ImB).
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Proof. The construction of Vi implies Vi ⊂W for all i. Suppose that Vi ⊂ Vi−1 is
satisfied for some i. Then

Vi+1 =W ∩A−1(Vi + ImB)⊂W ∩A−1(Vi−1 + ImB) =Vi.

Thus Vj ⊂Vj−1 is satisfied for all j≥ 1. Moreover, by the same argument, Vi =Vi−1

implies Vr = Vi−1 for all r ≥ i. Thus there exists k ≤ dimW with Vk = Vk+r for
all r ≥ 1. Since Vk+1 =W ∩A−1(Vk + ImB) =Vk, the inclusions Vk ⊂W and AVk ⊂
Vk+ImB follow. Thus Vk is a controlled invariant subspace contained in W . If V ⊂W
is a controlled invariant subspace, then V ⊂ V0. Let r be the largest nonnegative
number with V ⊂ Vr. Then V being controlled invariant implies the inclusion V ⊂
A−1(V + ImB), and therefore Vr+1 =W ∩A−1(Vr + ImB)⊃W ∩A−1(V + ImB)⊃
V . This proves that V ⊂ Vi for all i, and therefore V ⊂ Vk. Thus Vk is the largest
controlled invariant subspace contained in W . �

In applications, for example, to disturbance decoupling, it is often useful to
extend the notion of controlled invariant subspaces by taking the output of the
system under consideration. To this end, new geometric objects are introduced.

Definition 6.52. Let (A,B,C,D) be a state-space system in the state space X .

1. A subspace V ⊂X is called output nulling if there exists a state feedback map
K that satisfies

(A−BK)V ⊂ V ⊂ Ker(C−DK). (6.52)

2. Let V be a controlled invariant subspace for the pair (A,B). A feedback map K
that satisfies (6.52) is called an output nulling friend of V . Denote by FON(V )
the set of all output nulling friends of V .

3. A subspace R of the state space is called an output nulling reachability
subspace if for each monic polynomial q(z) of degree equal to dimR there
exists a friend K ∈ FON(V ) such that q(z) is the characteristic polynomial of
(A−BK)|V .

Thus a subspace is output nulling if and only if, for each initial state in V , one can
find a state feedback controller that keeps the state in V while keeping the output
zero. Usually, for an output nulling space V , there exist also some external inputs
that may be output nulled. Thus there exists a linear map L for which

(A−BK)V ⊂ V ⊂ Ker(C−DK)

ImBL⊂ V

DL = 0.

This is equivalent to nulling the output using a feedback law of the form

u = Kx+Lv.
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Such an L, in fact a maximal one, can be constructed by considering the subspace

L = {ξ | Bξ ∈ V , Dξ = 0},
and choosing L to be a basis matrix for this subspace.

In addition to the preceding basic definitions, a number of further useful classes
of controlled invariant subspaces are linked with certain stability properties of
the restriction and induced operators. Refer to Section 6.6 for the class of stable
polynomials defined by a multiplicatively closed subset F−[z]⊂ F[z].

Definition 6.53. Let (A,B,C,D) be a state-space system acting in the state
space X . A controlled invariant subspace V for the pair (A,B) is called stabilizable,
or inner stabilizable, if there exists a friend K ∈F (V ) such that (A−BK)|V is
F−[z]-stable.

Analogously, a controlled invariant subspace V is called outer stabilizable if
there exists a friend K ∈F (V ) such that (A−BK)|X /V

is F−[z]-stable. One defines
inner antistabilizable subspaces similarly.

If V is controlled invariant with respect to the reachable pair (A,B) and K ∈
F (V ), then the pair induced by (A−BK,B) in X /V is also reachable; hence, V
is both outer stabilizable and antistabilizable. From this point of view, it is more
interesting to study inner stabilizability and antistabilizability.

1. Polynomial Characterization of Controlled Invariant Subspaces
By Theorem 3.14, the study of invariant subspaces, in the polynomial model context,
is directly related to factorization theory. So it is natural to try and extend this
correspondence to the study of controlled and conditioned invariant subspaces as
well as other classes of subspaces.

A consequence of the shift realization procedure is the compression of informa-
tion. All information, up to state-space isomorphism, of a reachable pair (A,B) is
encoded in one, nonsingular, polynomial matrix. To see this, recall that reachability
is equivalent to the left coprimeness of zI−A,B. Taking coprime factorizations

(zI−A)−1B = N(z)D(z)−1, (6.53)

the isomorphism of the input pairs (A,B) and (SD,πD) follows and is described by
the following diagram:

���
���

F
m

XD XzI−A

XD XzI−A

SD

πD(·)

A

B

πzI−A(B·)

πzI−A(B·)

�

�

� �
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Let (Ai,Bi), i = 1,2, be state feedback equivalent pairs and Di(z) the respective
denominators in the coprime factorizations (6.53). Then, by Theorem 6.2, the feed-
back equivalence is expressed by the fact that D2(z)D1(z)−1 is biproper. Since a
controlled invariant subspace is an invariant subspace for a feedback equivalent pair,
we obtain the following theorem.

Theorem 6.54. Let D(z) ∈ F[z]m×m be nonsingular. Then a subspace V ⊂ XD is
a controlled invariant subspace, i.e., an (SD,πD)-invariant subspace, if and only
if there exist necessarily nonsingular, polynomial matrices E1(z), F1(z) ∈ F[z]m×m

such that

1. D(z)D1(z)−1 is biproper for

D1(z) := E1(z)F1(z). (6.54)

2. The subspace V has the representation

V = πDTDD−1
1
(E1XF1). (6.55)

Proof. Assume there exist D1(z),E1(z) and F1(z) ∈ F[z]m×m such that (1) and (2)
are satisfied. Then (6.54) implies that E1XF1 is an SD1 -invariant subspace of XD1 .
From (1) it follows that the pairs (SD,πD) and (SD1 ,πD1) are feedback equivalent
pairs, with the Toeplitz induced map πDTDD−1

1
: XD1 −→ XD satisfying

SDπDTDD−1
1
−πDTDD−1

1
SD1 = πDK (6.56)

for some K : XD1 −→ F
m. This implies that V is a controlled invariant subspace.

Conversely, assume that V ⊂ XD is a controlled invariant subspace of XD. By the
definition of controlled invariant subspaces,V is an invariant subspace of a feedback
equivalent pair. This pair can be taken, without loss of generality, to be (SD1 ,πD1).
This implies that D(z)D1(z)−1 is biproper. The map from XD1 to XD that exhibits
the feedback, i.e., that satisfies (6.56), is simply an induced Toeplitz map. Since
SD1 -invariant subspaces of XD1 are of the form E1XF1 for some factorization (6.54),
it follows that V has the required representation (6.55). �

We next aim at a characterization of controlled invariant subspaces of XD in terms
of rational models.

Theorem 6.55. Let D(z) be an m×m nonsingular polynomial matrix. Let the pair
(A,B) be defined by the shift realization in the state space XD. Then a subspace
V ⊂ XD is controlled invariant if and only if

V = πDπ+DXF1

for some nonsingular polynomial matrix F1(z) for which all left Wiener–Hopf
factorization indices of D(z)F1(z)−1 are nonnegative.
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Proof. Assume such an F1(z) exists. This implies the existence of a nonsingular
polynomial matrix E1 for which DF−1

1 E−1
1 is biproper. We define

D1(z) = E1(z)F1(z). (6.57)

By Proposition 3.50, the map Y : XD1 −→ XD, defined, for f (z) ∈ XD1 , by Yf =
πDTDD−1

1
f , is invertible. Now, the factorization (6.57) implies that E1XF1 is an SD1 -

invariant subspace, so its image under Y is a controlled invariant subspace of XD.
Computing

V = Y (E1XF1) = πDTDD−1
1

E1XF1 = Dπ−D−1π+DF−1
1 E−1

1 E1XF1

= Dπ−D−1π+DXF1 = πDπ+DXF1 = DπDXF1 ,

it is a consequence of Theorem 3.49 that the map Z : XF −→ XD, defined, for h(z) ∈
XF , by

Zh = πDπ+Dh,

is injective. This shows that ImZ = πDπ+DXF is indeed controlled invariant for the
pair (A,B) defined by the shift realization.

Conversely, assume that V ⊂ XD is a controlled invariant subspace. Every pair
that is feedback equivalent to the pair (SD,πD(·)) can be assumed, up to similarity,
to be of the form (SD1 ,πD1(·)), with D(z)D1(z)−1 biproper. An invariant subspace
of XD1 is of the form V1 = E1XF1 for a factorization D1(z) = E1(z)F1(z) into
nonsingular factors. The biproperness assumption on D(z)D1(z)−1 implies that all
left Wiener–Hopf factorization indices of D(z)F1(z)−1 are nonnegative. The Toeplitz
induced map T DD−1

1
: XD1 −→XD, defined for f ∈XD1 by T DD−1

1
f = πDπ+DD−1

1 f , is

therefore, by Theorem 3.49, invertible, and hence its restriction to E1XF1 is injective.
Moreover, it satisfies SDT DD−1

1
− T DD−1

1
SD1 = πDK for some feedback map K :

XD1 −→ F
m. Indeed, for f ∈ XD1 , setting g+ = π+DD−1

1 f and g+ = π+DD−1
1 f ,

we compute

(SDT DD−1
1
−T DD−1

1
SD1) f = πDzπDπ+DD−1

1 f −πDπ+DD−1
1 πD1zf

= πDzπ+DD−1
1 f −πDπ+DD−1

1 D1π−D−1
1 zf

= πD
{

zπ+DD−1
1 f −π+Dπ−D−1

1 zf
}

= πD
{

zπ+DD−1
1 f −π+D(I−π+)D

−1
1 zf

}

= πD
{

zπ+DD−1
1 f −π+zDD−1

1 f
}

= πD {zg+−π+z(g++ g−)}=−πDπ+zg− =−πDξ ,
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with ξ = π+zg− ∈ F
m. Thus

V = TV1 = πDπ+DD−1
1 (E1XF1) = πDπ+DF−1

1 E−1
1 (E1XF1) = πDπ+DXF1 .

�
Using Theorem 3.32, i.e., the isomorphism between polynomial and rational

models, one can restate Theorem 6.54 in terms of the rational functional model.
The trivial proof of the next result is omitted.

Theorem 6.56. Let D(z) be a nonsingular polynomial matrix. With the (A,B)
defined by the shift realization (4.26), a subspace V ⊂ XD is a controlled invariant
subspace if and only if there exist nonsingular polynomial matrices E1(z), F1(z) ∈
F[z]m×m such that

1. D(z)D1(z)−1 is biproper for D1(z) = E1(z)F1(z);
2. V = πDXF1 .

Proposition 6.57. Let D(z) ∈ F[z]m×m be nonsingular. Then a subspace V ⊂ XD is
controlled invariant with respect to the shift realization Σ•D−1

if and only if it has a
(not necessarily unique) representation of the form

V = πDXF

for some nonsingular polynomial matrix F(z) ∈ F[z]m×m.

Proof. Using the isomorphism of the shift realizations Σ•D−1 and Σ•D−1
, it follows

from Theorem 6.54 that the controlled invariant subspace V has the representation

V = D−1πDπ+DXF = D−1Dπ−D−1π+DXF

= π−D−1π+DXF = πDXF .

Conversely, assume V = πD�XF for some nonsingular F(z) ∈ F[z]m×m. To prove
that V is controlled invariant, one must show that for each h∈ V there exist h′ ∈ XF

and ξ ∈ F
m such that SDπDh = πDh′+π−D−1ξ . This is done by choosing h′ = S−h

and ξ = (Dh)−1. To this end, one computes

SDπDh−πDS−h = π−zπ−D−1π+Dh−π−D−1π+Dπ−zh

= π−zD−1π+Dh−π−D−1π+Dπ−zh

= π−D−1{zπ+Dh−π+zDh}= π−D−1ξ .

�
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Theorem 6.54 can be strengthened to yield a particularly clean representation
of controlled invariant subspaces, a representation that has no direct reference to
specific factorizations or to particular representations of submodules.

Theorem 6.58. Let D(z) ∈ F[z]m×m be nonsingular. With respect to the realiza-
tion (4.26) in the state space XD, a subspace V ⊂ XD is controlled invariant if
and only if

V = πDL (6.58)

for some submodule L ⊂ z−1
F[[z−1]]m.

Proof. In view of Theorem 6.54, all that needs to be proven is that the image under
the projection πD of a submodule of L ⊂ z−1

F[[z−1]]m is a controlled invariant
subspace of XD. Equivalently, one must show that if h∈L , then there exist h1 ∈L
and ξ ∈ F

m such that

SDπDh = πDh1 +π−D−1ξ . (6.59)

We will prove (6.59), with h1 = S−h and ξ = (Dh)−1. In this case,

SDπDh−πDS−h = π−zπ−D−1π+Dh−π−D−1π+Dπ−zh

= π−zD−1π+Dzh−π−D−1π+Dzh

= π−D−1zπ+Dh−π+zDh = π−D−1ξ .
�

For the rational model characterization of controlled invariant subspaces as
in Theorem 6.58, the shift realization Σ•D−1

was used, with D(z) as a right
denominator. However, when analyzing output nulling subspaces, it turns out to be
more convenient to work with the polynomial model shift realization ΣT−1V . To state
the relevant characterization, one first extends the definition of a polynomial model
from square nonsingular polynomial matrices to rectangular polynomial matrices
U(z) ∈ F[z]p×m as

XU :=U(z)(z−1
F[[z−1]]m)∩F[z]p. (6.60)

We refer to this space as the rectangular polynomial model. It is emphasized that
XU is certainly an F-vector space of polynomials; however, unless U is nonsingular
square, it is not a module over F[z].

Proposition 6.59. Let G(z) be a p×m proper rational matrix function with matrix
fraction representation G(z) = T (z)−1U(z).

1. Assume U(z) = E1(z)U1(z), with E1(z) ∈ F[z]p×p a nonsingular polynomial
matrix. Then
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V = E1XU1

is an output nulling subspace of the shift realization ΣT−1U in the state space XT ,
and the following inclusions are valid:

E1XU1 ⊂ XU ⊂ XT .

2. A subspace V ⊂ XT is output nulling if and only if V = E1XU1 , with U(z) =
E1(z)U1(z) and E1(z) ∈ F[z]p×p nonsingular.

Proof. Let f ∈ E1XU1 , that is, f = E1g, with g = U1h ∈ F[z]p for a strictly proper
power series h. Since T−1U is proper and h is strictly proper, it follows that T−1 f =
(T−1U)h is strictly proper. Thus f ∈ XT , which shows E1XU1 ⊂ XT . Next we show
that if h is strictly proper with g=U1h∈ F[z]p, then also U1(S−h)∈ F[z]p. Denoting
by η = h−1 ∈ F

m the residue term of h, the equality zh(z) = η + S−h follows. This
implies

U1(S−h) =U1(zh)−U1η = z(U1h)−U1η = zg−U1η ∈ F[z]p.

To show that V = E1XU1 is controlled invariant, let (A,B,C,D) denote the shift
realization ΣT−1U . For f ∈ E1XU1 , i.e., f = E1g and g =U1h, one computes

STf = πT (zf ) = πT (zE1U1h) = πT (E1U1zh) = πT (E1U1(η + S−h))
= πT (Uη)+πT (E1U1S−h) = πT (Uη)+E1U1S−h.

Since we assume T−1U to be proper, there exists a representation U(z) = T (z)
D+V(z), with T−1V strictly proper. Hence,

πT (Uη) = πT (TD+V)η =Vη ,

and therefore

Af = STf = E1U1(S−h)+Vη .

As E1U1S−h ∈ E1XU1 and Vη ∈ ImB, this proves that V is controlled invariant.
Next, compute

Cf = (T−1 f )−1 = (T−1Uh)−1 = (T−1(TD+V)h)−1

= (Dh)−1 = Dh−1 = Dη .

Since η depends linearly on f , there exists a linear transformation K such that η =
Kf . Thus (A−BK) f ∈ V and (C−DK) f = 0. This completes the proof of (1). The
proof of the second claim is omitted. �
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The preceding result leads us to prove the following polynomial characterization
of the maximal output nulling subspace.

Theorem 6.60. With respect to the shift realization ΣT−1U in the state space XT ,
the maximal output nulling subspace is given as

V ∗ = XU .

Proof. By Proposition 6.59 (1), it follows that XU is output nulling. Moreover, by
part (2) of the same proposition, each output nulling subspace V of XT is of the
form V = E1XU1 , with U = E1U1 and E1 nonsingular. Using Proposition 6.59 (1)
once more, we obtain V ⊂ XU , which implies that XU is the maximal output nulling
subspace. �

A purely module-theoretic characterization of R∗ is presented without proof.

Theorem 6.61. Let G(z) be a p×m proper rational matrix function with the left
coprime matrix fraction representation G(z) = T (z)−1U(z). Then, with respect to
the shift realization on XT , the maximal output nulling reachability subspace is given
by

R∗ = XU ∩UF[z]m.

6.9 Conditioned Invariant Subspaces

We begin by introducing basic concepts from geometric control theory that are rele-
vant to observer design, i.e., conditioned invariant subspaces and related subspaces.
The theory of such subspaces is dual to that of controlled invariant subspaces and
thus can be developed in parallel.

Definition 6.62. 1. For an output pair (C,A), a subspace V ⊂ X is called
conditioned invariant if

A(V ∩KerC)⊂ V .

2. For a conditioned invariant subspace V of the pair (C,A), an output injection
map J for which (A− JC)V ⊂ V is called a friend of V . Denote by G (V ) the
set of all friends of V .

3. For a pair (C,A), a conditioned invariant subspace V ⊂X is called tight if it
satisfies

V +KerC =X .

4. A set of conditioned invariant subspaces Vα is compatible if
⋂

α F (Vα ) �= /0.
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5. A conditioned invariant subspace V will be called an observability subspace if,
for each monic polynomial q(z) of degree equal to codimV , there exists a friend
J ∈ G (V ) such that q(z) is the characteristic polynomial of (A− JC)|X /V , the
map induced on the quotient space X /V by A− JC.

Some elementary properties of conditioned invariant subspaces are stated next.

Proposition 6.63. Let (C,A) be an output pair acting in the state space X .
Then:

1. The set of conditioned invariant subspaces is closed under intersections;
2. For every subspace L ⊂ X , there exists a minimal conditioned invariant

subspace containing L ; this subspace is denoted by V∗(L );
3. V is a conditioned invariant subspace if and only if there exists an output

injection map J : Fp −→X such that V is (A− JC)− invariant.

Proof. The set of all conditioned invariant subspaces containing L is closed
under intersections and is nonempty because X is included. V∗(L ) is the
intersection of all these subspaces. The proof of the last claim runs parallel to that
of Proposition 6.48. Explicitly, choose a basis {v1, . . . ,vr} of V ∩KerC, and extend
it to a basis {v1, . . . ,vq} of V . Then Cvr+1, . . . ,Cvq ⊂ F

p are linearly independent,
with q− r ≤ p. Thus there exists a linear transformation J : Fp −→X that maps
Cvr+1, . . . ,Cvq to Avr+1, . . . ,Avq ∈ V . Thus (A− JC)vi = Avi for 1 ≤ i ≤ r and
(A− JC)vi = 0 for r+ 1 ≤ i ≤ q. Thus (A− JC)V ⊂ V . The converse is obvious.

�
It may be instructive to see how the last claim can also be deduced from

Proposition 6.48 by reasons of duality. In fact, assume for simplicity that X = F
n

and, thus, A ∈ F
n×n,B ∈ F

n×m and C ∈ F
p×n. Consider a linear subspace V ⊂ F

n.
Let V ⊥ ⊂ F

n denote the orthogonal complement with respect to the standard
nondegenerate bilinear form < x,y >= x�y on F

n. Then

AV ⊂ V + ImB

is satisfied if and only if

V ⊥∩KerB� = V ⊥∩ (ImB)⊥ = (V + ImB)⊥ ⊂ (AV )⊥ = (A�)−1(V ⊥),

i.e., if and only if

A�(V ⊥∩KerB�)⊂ V ⊥.

Thus V is (A,B)-invariant if and only if V ⊥ is (B�,A�)-invariant. In this way,
most results on controlled invariant subspaces for a linear system (A,B,C) can be
equivalently reformulated as results on conditioned invariant subspaces for the dual
system (A�,C�,B�).
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The dual notions to inner and outer stabilizable controlled invariant subspaces
are introduced next.

Definition 6.64. Let (A,B,C,D) be a state-space system acting in the state
space X . A subspace V ⊂X is called inner detectable if there exists a friend
J ∈ G (V ) such that (A−JC)|V is stable. A subspace V is outer detectable if there
exists a J ∈ G (V ) such that (A− JC)|X /V is stable. Again, the concepts of inner
and outer antidetectability are naturally defined.

Let V be a conditioned invariant subspace for the observable pair (C,A), and let
J ∈ G (V ); then (C,A− JC) has a restriction to V , which is observable. Thus, if
V is conditioned invariant, then it is both inner detectable and antidetectable. By
standard duality considerations, one expects the notions of inner stabilizability to be
related to outer detectability, and this indeed is the case.

1. Polynomial Characterizations of Conditioned Invariant Subspaces
We next derive polynomial characterizations of conditioned invariant subspaces.

Theorem 6.65. Let T (z) ∈ F[z]p×p be nonsingular, and let (C,A) be the associated
observable pair obtained via the shift realization ΣT−1•. Then a subspace V ⊂ XT is
a conditioned invariant subspace, i.e., a ((T ·)−1,ST )-invariant subspace, if and only
if there exist nonsingular polynomial matrices E1(z), F1(z) ∈ F[z]p×p such that:

1. T1(z)−1T (z) is normalized biproper for

T1(z) = E1(z)F1(z); (6.61)

2. In terms of the factorization (6.61), the representation

V = E1XF1

is obtained.

Proof. Two proofs of this theorem are given.

Proof I:
V is a conditioned invariant subspace if and only if it is invariant for A1 = A− JC.
By Theorem 6.5, if the pair (C,A) is associated with the matrix fraction T (z)−1U(z),
then the pair (C,A1) is associated with the matrix fraction T1(z)−1U(z), where
T1(z)−1T (z) is biproper. Since XT and XT1 are equal as sets, V is an ST1 -invariant
subspace of XT1 . These subspaces are, by Theorem 3.11, of the form V = E1XF1

with T1(z) = E1(z)F1(z).

Proof II:
In this proof, duality and the characterization of controlled invariant subspaces given
in Theorem 6.54 will be used. The subspace V ⊂ XT is conditioned invariant if and
only if V ⊥ ⊂ XT� is controlled invariant, i.e., an (ST� ,πT�)-invariant subspace.
By Theorem 6.54, there exists a polynomial matrix T1(z) ∈ F[z]p×p such that
T�(z)T�1 (z)−1 is biproper and



344 6 State Feedback and Output Injection

V ⊥ = πT�TT�T−�1
(F�1 XE�1

),

where T1(z) = E1(z)F1(z), and hence also T�1 (z) = F�1 (z)E�1 (z). By the elementary
properties of dual maps, (πT�TT�T−�1

)∗V = V1 ⊂ XT1 and V ⊥
1 = F�1 XE�1

. Applying

Theorem 3.11, one obtains V1 = E1XF1 , and since (πT�TT�T−�1
)∗ : XT −→ XT1 acts

as the identity map, it follows that V = E1XF1 . �
In view of Theorems 6.56 and 6.65, it is of considerable interest to characterize

the factorizations appearing in these theorems. The key to this are Wiener–Hopf
factorizations at infinity.

Proposition 6.66. 1. Let D(z),F1(z) ∈ F[z]m×m be nonsingular. Then there exist
E1(z) ∈ F[z]m×m, and D1(z) := E1(z)F1(z) such that D(z)D1(z)−1 is biproper
if and only if all the left Wiener–Hopf factorization indices at infinity of
D(z)F1(z)−1 are nonnegative.

2. Let T (z),E1(z) ∈ F [z]p×p be nonsingular. Then there exist polynomial matrices
F1(z)∈ F[z]p×p, and T1(z) := E1(z)F1(z) such that T1(z)−1T (z) is biproper if and
only if the right Wiener–Hopf factorization indices at infinity of E1(z)−1T (z) are
nonnegative.

Proof. Define D1(z) = E1(z)F1(z). If Γ (z) = D(z)D1(z)−1 is biproper, then
D(z)F1(z)−1 = Γ (z)E1(z). Now let E1(z) = Ω(z)Δ(z)U(z) be a left Wiener–
Hopf factorization of E1(z). Then necessarily the factorization indices of E1(z) are
nonnegative, being the reachability indices of the input pair (SE1 ,πE1). It follows
that

D(z)F1(z)
−1 = (Γ (z)Ω(z))Δ(z)U(z), (6.62)

i.e., D(z)F1(z)−1 has nonnegative left factorization indices. Conversely, if (6.62)
holds with Δ(z) = diag(zκ1 , . . . ,zκm), and κ1 ≥ ·· · ≥ κm ≥ 0, then, defining E1(z) =
Δ(z)U(z), it follows that D(z) = Ω(z)D1(z), with D1(z) = E1(z)F1(z) and Ω(z)
biproper.

The proof of the second claim follows the lines of the proof of part 1 or can be
derived from that theorem by duality. �

The characterizations appearing in Theorems 6.54 and 6.65 are factorization-
dependent. The following proposition makes this unnecessary.

Proposition 6.67. Let D�(z) ∈ F[z]p×p be nonsingular. A subspace V ⊂ XD�
is

conditioned invariant with respect to the shift realization ΣD−1
� • if and only if it

has a (not necessarily unique) representation of the form

V = KerπT |XD�
= XD�

∩T (z)F[z]p,

where T (z) ∈ F[z]p×p is a nonsingular polynomial matrix.
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Proof. By Theorem 6.65, there exists a representation V = E1XF1 , with D−1
� E1F1

biproper. Assume f ∈ V = E1XF1 ; then f ∈ XD�
and f = E1g, so V ⊂ XD�

∩E1F[z]p.
Conversely, if f ∈ XD�

∩E1F[z]p, then f = XD�
and f = E1g. Let T1 := E1F1; then

T−1
1 D� is biproper. Applying these facts, it follows that D−1

� f is strictly proper, and
the biproperness of T−1

1 D� implies that also T−1
1 f = T−1

1 E1g=F−1
1 E−1

1 E1g=F−1
1 g

is strictly proper. But this shows that g ∈ XF1 , and the inclusion XD�
∩E1F[z]p ⊂ V

is proved. �
Theorems 6.54 and 6.65 can be strengthened to yield a particularly clean represen-
tation of controlled and conditioned invariant subspaces that has no direct reference
to specific factorizations or to particular representations of submodules.

Theorem 6.68. Let D�(z) ∈ F[z]p×p be nonsingular. With respect to the realiza-
tion (4.24) in the state space XD�

, a subspace V ⊂ XD�
is conditioned invariant if

and only if

V = XD�
∩M (6.63)

for some submodule M ⊂ F[z]p.

Proof. The only if part was proved in Theorem 6.65. To prove the if part,
assume V = XD�

∩M , where M is a submodule of F[z]p. If f ∈ V ∩KerC,
then (D−1

� f )−1 = 0, which implies that SD�
f = πD�

zf = zf . But SD�
f ∈ XD�

and
SD�

f = zf ∈M . Therefore, SD�
f ∈ XD�

∩M follows, which shows that V is a
conditioned invariant subspace, thus proving the theorem. �

The availability of the representation (6.63) of conditioned invariant subspaces
allows us to give different proofs of the closure of the sets of controlled/conditioned
invariant subspaces under sums/intersections, respectively.

Proposition 6.69. 1. Let D(z) ∈ F[z]m×m be nonsingular. Let Vi be controlled

invariant subspaces of XD, with respect to the shift realization Σ•D−1
, and

having the representations Vi = πDLi for submodules Li ⊂ z−1
F[[z−1]]m. Then

V = ∑iVi is controlled invariant with the representation V = πD ∑iLi.
2. Let D�(z) ∈ F[z]p×p be nonsingular. Let Vi be conditioned invariant subspaces

of XD�
, with respect to the shift realization ΣD−1

� •, and having the representations

Vi = XD�
∩Mi for submodules Mi ⊂ F[z]p. Then V = ∩iVi is conditioned

invariant and has the representation V = XD�
∩ (∩iMi).

Proof. The proof is obvious. �
The representation formula (6.63) is at the heart of the analysis of conditioned

invariant subspaces and opens up several interesting questions, some of which will
be described later. Note first that, for unimodular polynomial matrices U(z), one has
TF[z]p = TUF[z]p and XUT = XT . Thus it is not important to distinguish between
representing polynomial matrices up to an appropriate, one-sided unimodular factor.
The representations of controlled and conditioned invariant subspaces that appear
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in Theorem 6.65 have the advantage of using nonsingular polynomial matrices
in the representations. The disadvantage is the nonuniqueness of the representing
polynomial matrices. However, uniqueness modulo unimodular factors can be
recovered by switching to the use of rectangular polynomial matrices. This is done
next.

As noted already, the submoduleM in a representation of the formV =XD�
∩M

is, in general, not unique. To get a unique representation, one needs to associate
with a conditioned invariant subspace of XD�

a unique submodule, and none is more
natural than the submodule of F[z]p generated by V .

Proposition 6.70. Let D�(z) ∈ F[z]p×p be nonsingular, and let V ⊂ XD�
be a

conditioned invariant subspace. Let < V > be the submodule of F[z]p generated
by V , which is the smallest submodule of F[z]p that contains V . Then

V = XD�
∩ < V > .

Proof. Assume V = XD�
∩M for some submodule of F[z]p. Clearly, V ⊂M , and

hence < V >⊂M , and so V ⊂< V >⊂M , which in turn implies

V ⊂ XD�
∩ < V > ⊂ XD�

∩ M = V .
�

Corollary 6.71. For each subset E ⊂ XD�
, the intersection XD�

∩ < E > is the
smallest conditioned invariant subspace of XD�

that contains E.

Proof. XD�
∩ < E > is a conditioned invariant subspace and contains E . Let W be

another conditioned invariant subspace containing E . Then < E >⊂ < W >, and
hence

XD�
∩ < E > ⊂ XD�

∩ <W >=W .
�

Finally, we arrive at a very useful characterization of conditioned invariant
subspaces.

Theorem 6.72. A subspace V ⊂ XD�
is a conditioned invariant subspace if and

only if it has a representation of the form

V = XD�
∩ H(z)F[z]k,

where H(z) is a full column rank p× k polynomial matrix whose columns are in V .
H(z) is uniquely determined up to a right k× k unimodular factor.

Proof. Follows from Theorem 6.68 and the basis representation of submodules of
F[z]p by full column rank polynomial matrices. �
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6.10 Zeros and Geometric Control

In this section we clarify the connection between the analysis of zeros based on mod-
ule theory and that based on geometric control concepts. Recalling the definition of
the zero module given in (4.43), we proceed with the following computational result.
For any rectangular polynomial matrices we define the rectangular polynomial
model XU as

XU :=U(z)(z−1
F[[z−1]]m)∩F[z]m (6.64)

and the rectangular rational model XU as

XU := {h ∈ z−1
F[[z−1]]m | π−(Uh) = 0}. (6.65)

In particular, both identities XU = KerU(σ) and UXU = XU are satisfied.

Proposition 6.73. Let G(z) be a strictly proper, p×m transfer function, with the
left coprime factorization

G(z) = T (z)−1U(z). (6.66)

Then:

1. Viewed as linear multiplication maps from F(z)m to F(z)p,

KerG = KerU ;

2.

π−G−1(F[z]p) = XU = KerU(σ) (6.67)

and

Uπ−G−1(F[z]p) = XU , (6.68)

where XU and XU are defined by (6.64) and (6.65), respectively;
3.

Uπ−KerG = XU ∩UF[z]m. (6.69)

Proof. 1. Obvious.
2. Assume h ∈ G−1(F[z]p), i.e., g = T−1Uh ∈ F[z]p. Defining h± = π±h, this

implies Tg = Uh = Uh− + Uh+, or Uh− = Tg−Uh+ ∈ F[z]p and, in turn,
h− ∈ KerU(σ) = XU .
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Conversely, if h− ∈ KerU(σ), then Uh− ∈ F[z]p. By the left coprimeness of
T (z),U(z), there exist polynomial vectors g(z),h+(z) for which Uh− = Tg−
Uh+. Therefore, with h = h−+ h+ we have g = T−1Uh, i.e., h ∈ G−1(F[z]p).
From the equality Uh− = Tg−Uh+ it follows that π−Uh− = 0, i.e., (6.67) is
proven.

3. Clearly, G−1({0}) = KerG = KerU . For h = h−+ h+ ∈ KerU , we have Uh− =
−Uh+, which implies U(σ)h−= π−Uh− = 0, that is, h− ∈ XU as well as Uh− =
−Uh+ ∈UF[z]m, and the inclusion Uπ−KerG⊂ XU ∩UF[z]m follows.

Conversely, if Uh ∈ XU ∩UF[z]m, then there exist h+ ∈ F[z]m and h− ∈
z−1

F[[z−1]]m for which Uh = Uh− = −Uh+. From this it follows that π−(h−+
h+) = h− and U(h−+h+) = 0, or (h−+h+) ∈KerG. This implies the inclusion
XU ∩UF[z]m ⊂Uπ−KerG. The two inclusions imply (6.69).

�
Following Wyman, Sain, Conte and Perdon (1989), we define

ZΓ (G) =
G(z)−1(F[z]p)

G(z)−1(F[z]p) ∩ F[z]m
, (6.70)

Z0(G) =
KerG

KerG ∩ F[z]m
, (6.71)

and recall the definition of the zero module, given in (4.43), namely,

Z(G) =
G(z)−1

F[z]p +F[z]m

KerG(z) + F[z]m
.

Theorem 6.74. Let G(z) be a (strictly) proper, p×m transfer function, with the left
coprime factorization (6.66). Then:

ZΓ (G)� π−G−1(F[z]p) = XU , (6.72)

Z0(G)� π−KerG. (6.73)

For the zero module, defined by (4.43), the following isomorphism is true:

Z(G)� XU

XU ∩UF[z]m
=

V ∗

R∗ . (6.74)

Here V ∗ and R∗ are defined by Theorems 6.60 and 6.61, respectively.

Proof. For the proof we will use the following standard module isomorphisms Lang
(1965). Assuming M,N,Mi are submodules of a module X over a commutative
ring R,
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M+N
N

� M
M∩N

and, assuming additionally the inclusions M0 ⊂M1 ⊂M2,

M2

M1
� M2

M0
/

M2

M1
.

Using these, we have the isomorphisms

ZΓ (G) =
G(z)−1(F[z]p

G(z)−1(F[z]p) ∩ F[z]m
� G(z)−1(F[z]p)+F[z]m

F[z]m

and

Z0(G) =
KerG

KerG ∩ F[z]m
� KerG+F[z]m

F[z]m
.

Clearly, the inclusion KerG⊂G(z)−1(F[z]p) implies the inclusions F[z]m ⊂KerG+
F[z]m ⊂ G(z)−1(F[z]p)+F[z]m. Again, we obtain the isomorphism

Z(G) =
G(z)−1(F[z]p)+F[z]m

KerG(z) + F[z]m
� G(z)−1(F[z]p)+F[z]m

F[z]m
/

KerG+F[z]m

F[z]m
.

(6.75)

Note that (6.68) implies Uπ−(G(z)−1(F[z]p)+F[z]m) = XU , and, similarly, (6.69)
implies Uπ−(KerG+F[z]m) = XU ∩UF[z]m. Furthermore,

KerUπ−|(G(z)−1(F[z]p)+F[z]m) = KerG+F[z]m,

and hence the isomorphism (6.74) follows. �
The isomorphism (6.74) shows that the zero module is directly related to

the transmission zeros Morse (1973). The modules ZΓ (G) and Z0(G) also have
system-theoretic interpretations, but this is beyond the scope of the present
monograph.

6.11 Exercises

1. Let R(A,B) = (B,AB, . . . ,An−1B) denote the reachability matrix of (A,B) ∈
F

n×(n+m). Prove that for a feedback K ∈ F
m×n there exists an upper triangular

block matrix U ∈ F
nm×nm with diagonal blocks U11 = · · ·=Unn = Im and

R(A+BK,B) = R(A,B)U.
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2. Prove that the reachability indices of a pair (A,B) coincide with the Kronecker
indices, arranged in decreasing order.

3. Assume that the reachable pair (A,b) ∈ F
n×n×F

n is in Jordan canonical form,

A =

⎛

⎜
⎝

λ1 · · · 0
...

. . .
...

0 · · · λn

⎞

⎟
⎠ , A =

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠ ,

with eigenvalues λ1, . . . ,λn ∈ F. Let μ1, . . . ,μn ∈ F. Prove the formula by Mayne-
Murdoch, i.e., that the feedback gain K = (k1, . . . ,kn) ∈ F

1×n,

ki =
∏ j(λi− μ j)

∏ j(λi−λ j)
, i = 1, . . . ,n,

satisfies

det(zI−A+ bK) =
n

∏
j=1

(z− μ j).

4. (a) Let the pair (A,B) ∈ F
n×(n+m) be reachable. For a monic polynomial f (z) ∈

F[z] of degree m+n, show the existence of matrices X ∈ F
m×n and Y ∈ F

m×n

such that f (z) is the characteristic polynomial of

M =

(
A B
X Y

)
.

(b) Let

A =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0

⎞

⎟
⎟
⎠ , B =

⎛

⎜
⎜
⎝

1 0
1 0
0 1
0 0

⎞

⎟
⎟
⎠ .

Determine the matrices X and Y such that the matrix M is nilpotent.
5. Let κ = (κ1, . . . ,κm) denote a partition of n. Prove that the set of pairs (A,B) ∈

F
n×n × F

n×m whose reachability indices λ = (λ1, . . . ,λm) satisfy ∑r
j=1 κ j ≤

∑r
j=1 λ j, r = 1, . . . ,m, forms a Zariski-closed subset of F

n×n× F
n×m. Let n =

km+ � with 0 ≤ � < m. Deduce that the set of pairs (A,B) ∈ F
n×n×F

n×m with
reachability indices κ = (k + 1, . . . ,k + 1,k, . . . ,k) is a nonempty Zariski-open
subset in F

n×n×F
n×m.
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6. Prove that a linear subspace V ⊂ F
n is simultaneously (A,B)- and (C,A)-

invariant if and only if there exists an output feedback gain K ∈F
m×p that satisfies

(A+BKC)V ⊂ V .
7. Let (A,B,C) be reachable and observable. Then the following conditions are

equivalent:

(a) (A,B,C) is state feedback irreducible.
(b) (A+BK,B,C) is observable for all K.
(c) V ∗(KerC) = {0}.

8. Consider the scalar real rational transfer function G(s) = 1
(s−1)(s−2) of a

continuous-time linear system.

(a) Show that G(s) = P(s)Q(s)−1, with P(s) = 1
(s+1)2 and Q(s) = (s−1)(s−2)

(s+1)2 , is
a coprime factorization over RH∞.

(b) Determine all stabilizing controllers of G(s).

9. Let G(s) ∈ RH∞ be a p×m proper rational stable transfer function. Show that all
stabilizing controllers of G are of the form

K(s) = Γ (s)(I−G(s)Γ (s))−1,

with Γ ∈ RH∞ and (I−G(s)Γ (s))−1 proper. Is K always in RH∞?

6.12 Notes and References

A module-theoretic approach to the study of state feedback was initiated by
Hautus and Heymann (1978); see also Fuhrmann (1979). The characterization
in Theorem 6.13 of reachability indices via Wiener–Hopf indices for feedback
irreducible systems can be extended to transfer functions that are not full column
rank; see Fuhrmann and Willems (1979). A closely related characterization of
feedback irreducibility is due to Heymann (1975).

The Brunovsky canonical form is due to Brunovsky (1970). The Kronecker
indices appear first in the work by Popov (1972) and Wang and Davison (1976)
on state-space canonical forms. Their characterization in Theorem 6.18 as complete
invariants for restricted state feedback equivalence was shown by Helmke (1985).
The dimension of the state feedback orbit of a reachable pair was expressed by
Brockett (1977) via the reachability indices κ1 ≥ . . .≥ κm as

n2 + nm+m2−
m

∑
i, j=1

max(κi−κ j + 1,0).
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This formula is a straightforward consequence of Theorem 6.15. For a study of the
feedback group, see also Tannenbaum (1981). For an analysis of the topological
closure of each state feedback orbit in terms of the dominance order on partitions,
see Hazewinkel and Martin (1983) and Helmke (1985).

The connection between reachability indices of a reachable pair and the Wiener–
Hopf factorization indices is due to Gohberg, Lerer and Rodman (1978); see also
Fuhrmann and Willems (1979). Rosenbrock’s theorem is one important instance
where polynomial arguments become much simpler than a pure state-space proof.
The polynomial proof of Rosenbrock’s theorem by Münzner and Prätzel-Wolters
(1979) shows the elegancy of polynomial algebra arguments.

The Youla–Kucera parameterization of stabilizing controllers, together with
a general theory of coprime factorizations, is nicely revealed in the book by
Vidyasagar (1987). The state-space formulas (6.46)–(6.47) and (6.48) for the Youla–
Kucera parameterization are taken from Kucera (2011). A more difficult problem is
that of strong stabilizability that deals with the issue of finding a stable controller
that stabilizes a plant. In Chapter 5.3 of Vidyasagar (1987), strong stabilizability is
characterized in terms of parity interlacing conditions on the poles of plants with
respect to unstable blocking zeros. A natural generalization of strong stabilizability
is the simultaneous stabilization problem of N plants by a single controller, which
has been studied by many researchers, including, for example, Blondel (1994);
Ghosh and Byrnes (1983); Vidyasagar (1987).

For an early connection between state feedback pole placement and matrix
extension problems, see Wimmer (1974b). The problem of pole placement and
stabilization by static output feedback is considerably more difficult than that of
state feedback control. Pole placement by constant output feedback is equivalent to
an intersection problem in a Grassmann manifold, first solved, over the complex
numbers, by Schubert in 1886. The connection to intersection theory in the
Grassmann manifold was first revealed in the paper by Brockett and Byrnes (1981);
see also Byrnes (1989). A striking result that generalized all of the preceding ones
is due to Wang (1992), who showed that the pole-placement problem is generically
solvable over the reals if mp > n. An interesting extension of the pole-placement
problem to finite fields F is due to Gorla and Rosenthal (2010).

Geometric control was initiated by Francis and Wonham (1976) and Basile and
Marro (1992); see also Wonham (1979). The mutual relations between the various
subspaces are summarized by the so-called Morse relations and the Morse diamond;
see Morse (1973). Readers who want to delve somewhat deeper into geometric
control theory must master these important contributions. For a nice exposition and
further results, we refer the reader to Aling and Schumacher (1984). Geometric
control concepts can be applied, for example, to disturbance decoupling with
measurement feedback Willems and Commault (1981) and to noninteracting control
Falb and Wolovich (1967); Morse and Wonham (1971). A very important problem,
which can be successfully dealt with in the framework of geometric control, is the
so-called servomechanism or output regulation problem; see Francis (1977).
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The polynomial model approach to the characterization of controlled and
conditioned invariant subspaces yields clean module-theoretic representations. In
particular, (6.58) is due to Fuhrmann and Willems (1980), whereas (6.63) was
proved in Fuhrmann (1981). Closely related, and more general, characterizations
of controlled and conditioned invariant subspaces in terms of transfer function
representations are due to Hautus (1980) and Özgüler (1994). For the case of
strictly proper rational transfer functions, the polynomial characterization of V ∗
in Theorem 6.60 is due to Emre and Hautus (1980) and Fuhrmann and Willems
(1980). The characterization of the maximal output nulling reachability subspace
R∗ in Theorem 6.61 is due to Fuhrmann (1981) and Khargonekar and Emre (1982).



Chapter 7
Observer Theory

Observer theory is one of the most basic, and important, aspects of linear systems
theory. The problem addressed in this chapter is that of indirect observation, or
partial state estimation. It arises from the fact that in a control system Σsys, the
observed variables are not necessarily the variables one needs to estimate for
control, or other, purposes. A standard situation often encountered is that of partial
state estimation, where a few, or all, state variables are to be estimated from the
output variables. Of course, if one can estimate the state, then one automatically
has the ability to estimate a function of the state. However, especially in a large
and complex system, estimating the full state may be a daunting task and more
than what is needed. The task of state estimation is also instrumental for practical
implementations of state feedback control using estimates of the unknown state
functions. More generally, our aim is to find a mechanism, called an observer, that
allows us to use information on observed variables y and the inputs u in order to
estimate linear functions z of the state variables. Loosely speaking, an observer for
the system is itself a linear system Σest, which is driven by the variables u and y and
whose output is the desired estimate ζ of z, with the estimation error being e= z−ζ .
The following diagram describes the observation process:

� �

�

�

�

�

�Σsys

Σest

e= z−ζ
u

y

z

ζ

�

The error trajectory depends on the system transfer function, the observer transfer
function, and on the initial conditions of both Σsys and Σest. There is great freedom
in the choice of the observer, the only constraint being the compatibility with
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356 7 Observer Theory

the signals u,y,z. Of course, if the observer is not chosen appropriately, the error
trajectory may be large, which makes the estimate useless. Our aim is to characterize
the properties of the observer in terms of these transfer functions. Even of greater
importance is, whenever possible, the construction of observers having desired
properties.

The issues of observation and estimation play a crucial role in analyzing
observation processes for networks and are therefore of paramount importance for
all questions concerning fault detection, monitoring, and measurement processes.
Observer theory has a long history laden with vagueness, imprecision, and incom-
plete or even false proofs; see Trumpf (2013) for a short list of these. The principal
reason for the difficulty in clarifying the structure theory of observers, functional
observers in particular, seems to be that a full understanding of the problems requires
the ability to integrate many topics and viewpoints that cover most of algebraic
systems theory. These include state-space theory (including the dual Brunovsky
form, realizations and partial realizations, Sylvester equations, and some old results
of Roth and Halmos), polynomial and rational model theory, geometric control
(conditioned invariant subspaces, as well as detectability and outer observability
subspaces), and Hankel matrices. Another interesting point of view on observers
is the behavioral approach, as developed and presented in the papers by Valcher
and Willems (1999) and Fuhrmann (2008). However, to keep the exposition within
reasonable limits, this direction will not be pursued. We will draw heavily on
Fuhrmann and Helmke (2001a) and Trumpf (2002, 2013). Of course, the theory
of observers depends strongly on the interpretation of what a linear system is and
how it is represented. The state-space representation of a finite-dimensional, time-
invariant linear system is chosen as our starting point. In addition, we focus on
discrete-time systems because this simplifies matters when comparing trajectory-
based formulations with statements for rational functions. Moreover, this enables us
to state several results for systems over fields more general than the field R of real
numbers. Because most of the statements remain true for continuous-time systems
(and the field of real numbers), this restriction to discrete-time systems presents no
real loss of generality.

7.1 Classical State Observers

In the preceding chapter, we discussed how to design state feedback control laws
ut =−Kxt + vt for linear discrete-time systems of the form

xt+1 = Axt +But ,

yt = Cxt ,
(7.1)

where A ∈ F
n×n,B ∈ F

n×m,C ∈ F
p×n, and F is a field. Obviously, to implement

control laws such as ut = −Kxt + vt , one needs to know the state xt , or at least
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an approximation to the state. State observers are designed precisely to fulfill such
a purpose and are thus indispensable for practical applications of state feedback
control. In this section, the classical construction of a full state observer, due to
Luenberger (1964), is described; see also Luenberger (1971). To investigate standard
stability properties of observers, it will be assumed that F is a subfield of the field C

of complex numbers.
A state observer for system (7.1) is an n-dimensional linear control system

zt+1 = Fzt +Gyt +Hut , (7.2)

with matrices F ∈ F
n×n,G ∈ F

n×p,H ∈ F
n×m, such that, for each initial condition

x0,z0 ∈ F
n and every input sequence u = (ut), limt→∞(xt − zt) = 0. A state observer

is therefore a dynamical system that is driven by the input and output of (7.1) and
whose state vectors zt will asymptotically converge to the state vectors of (7.1).

How can one construct such an observer? Luenberger’s ingenious idea was to
consider systems with F = A−LC, G = L, H = B, i.e.,

zt+1 = Azt +But +L(yt − ŷt),

ŷt = Czt ,
(7.3)

with an observer gain matrix L ∈ F
n×p. Thus (7.3) consists of an identical copy of

a system that is driven by the innovations yt − ŷt . System (7.3) is often called the
Luenberger observer. It has only one free design parameter, i.e., the observer gain
matrix. To see how to choose the observer gain in order to achieve a state observer,
one must consider the evolution of the estimation error

et = xt − zt , t ∈ N.

The dynamics of the estimation error is

et+1 = (A−LC)et .

Thus the estimation error converges to zero if and only if L is chosen such that
A− LC has all its eigenvalues in the open unit disc. This leads to the following
classical result on state observers.

Theorem 7.1. The Luenberger observer (7.3) is a state observer for system (7.1) if
and only if the observer gain L ∈ F

n×p is such that A−LC is asymptotically stable.
Such an observer gain exists if and only if (C,A) is detectable.

Proof. The observer condition for (7.3) is equivalent to limt→∞ et = 0 for all initial
conditions e0 ∈ F

n. Thus (7.3) defines a state observer if and only if A− LC is
asymptotically stable, i.e., has all eigenvalues in the open unit disc. There exists
such a stabilizing observer gain L if and only if (C,A) is detectable. �
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Having a state observer at hand, how can one use it for the purpose of state
feedback control? Here we consider the closed-loop control system of the form

xt+1 = (A−BF )xt +But ,

yt = Cxt ,
(7.4)

where F ∈ F
m×n is a desired state feedback gain. For example, F may be chosen

such that the closed-loop characteristic polynomial det(zI−A+BF ) is a prescribed
monic polynomial of degree n. How must one choose the observer gain L? A
beautiful simple result, the separation principle, provides a solution. It states that
the designs of the state feedback and observer gain matrices can be done separately.
But even then there is a problem because implementing (7.4) requires knowledge of
the feedback term−Fxt . This can be resolved by replacing−Fxt with the observer
estimate −F zt . This then leads to the composed controller/observer dynamics with
joint state variables ξ = col(x̂,z):

x̂t+1 = Ax̂t −BF zt +But ,

zt+1 = Azt −BF zt +But +L(Cx̂t −Czt),

yt =Cx̂t .

(7.5)

Written in matrix form we obtain

ξt+1 =Acξt +Bcut ,

with

Ac =

(
A −BF

LC A−LC−BF

)
, Bc =

(
B
B

)
. (7.6)

The fundamental result for a combined controller and observer design is stated next.

Theorem 7.2 (Separation Principle). Let Ac be defined by (7.6).

1. The identity

det(zI−Ac) = det(zI−A+BF )det(zI−A+LC)

is true. In particular, for each state feedback gain F and every output injection
gain L ∈ F

n×p such that A− LC is asymptotically stable, the composed con-
troller/observer dynamics (7.5) satisfies

lim
t→∞

(zt − x̂t) = 0

for arbitrary initial states x̂0,z0 and input sequences (ut).
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2. The transfer function from u to y of (7.5) is

G(z) =C(zI−A+BF )−1B.

More generally, the Z-transforms of (ut) and (yt) are related as

y(z) =C(zI−A+BF )−1Bu(z)

+C(zI−A+BF )−1x̂0 +C(zI−A+BF )−1BF (zI−A+LC)−1(z0− x̂0).

3. Assuming that A−BF is stable, the system

xt+1 = (A−BF )xt +But ,

yt = Cxt

satisfies

lim
t→∞

(xt − x̂t) = 0

for all initial states x̂0,z0 and input sequences (ut).

Proof. For the invertible matrix

S =

(
I 0
−I I

)

we compute

SAcS−1 =

(
A−BF −BF

0 A−LC

)
, SBc =

(
B
0

)
,

(
C 0

)
S−1 =

(
C 0

)
.

The transfer function of (7.5) is thus equal to C(zI−A+BF )−1B. For the remaining
parts, we proceed to consider the dynamics of the error term εt := zt − x̂t , which is
given as

εt+1 = (A−LC)εt .

Our assumption on L implies limt→∞(zt − x̂t) = 0. For the last claim, consider the
error sequence et := xt − x̂t with associated error dynamics. It satisfies

et+1 = (A−BF )et +BF (zt − x̂t).

Since A−BF is stable and limt→∞(zt − x̂t) = 0, we conclude that limt→∞(xt − x̂t)
= 0. This completes the proof. �
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Of course, the preceding results on full state observers are only the starting point
for a deeper theory of observers that enables one to estimate a finite number of linear
state functionals. This more general observer theory is developed in subsequent
sections.

7.2 Observation Properties

One of Kalman’s major achievements has been the introduction of the concepts of
reachability and observability, as distinct from compensator or observer design. This
separation is reflected in Valcher and Willems (1999), where the observability or
detectability of one set of system variables from another is studied before observer
design is attempted. Such an approach is adopted in this section. Clearly, observers
depend on the observability properties of a system, and a few gradations of observ-
ability will be introduced. Naturally, one expects that the stronger the observation
properties of a system are, the better behaved should be the corresponding observers.
How the observation properties of the system are reflected in the corresponding
observers will be examined in Subsection 7.3.

To state the subsequent definitions and results over a field F, the meaning of
convergence in a finite-dimensional vector space F

n must be clarified. Here we
proceed as in Chapter 6 with respect to the dual situation, i.e., that of state feedback
stabilization. A general field F is endowed with the discrete topology, i.e., the unique
topology on F whose open (and closed) subsets are defined by subsets of F. In
contrast, for a subfield F ⊂ C we introduce the Euclidean topology on F, which
is defined by the standard Euclidean distance |x− y| of complex numbers x,y ∈ C.
In either case, a discrete-time dynamical system xt+1 = Axt on F

n is called stable
whenever the sequence xt = Atx0 converges to zero for all initial conditions x0 ∈ F

n.
Thus a discrete-time dynamical system xt+1 = Axt is asymptotically stable if and
only if either A is Schur stable, for the Euclidean topology on F ⊂ C, or if A is
nilpotent, for the discrete topology on F. Let (et) denote a sequence of points in F

m

that defines a proper rational function

e(z) =
∞

∑
t=0

et z
−t ∈ z−1

F[[z−1]]m,

and let (A,B,C,D) ∈ F
n×n×F

n×1×F
m×n×F

m denote a minimal realization of

e(z) = D+C(zI−A)−1B.

Thus e0 = D, et = CAt−1B, t ≥ 1, is the sequence of Markov parameters of e(z).

Proposition 7.3. Let e(z) ∈ F(z)m be proper rational. The sequence of Markov
parameters (et) satisfies limt→∞ et = 0 if and only if:
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1. All poles of e(z) have absolute value < 1 or, equivalently, A is Schur stable. This
assumes that F⊂ C carries the Euclidean topology;

2. All poles of e(z) are in z = 0 or, equivalently, A is nilpotent. This assumes that F
carries the discrete topology.

Proof. Since et = CAt−1B for t ≥ 1, and, by the minimality of (A,B,C), the
observability and reachability matrices

⎛

⎜
⎝

C
...

CAn−1

⎞

⎟
⎠ ,

(
B · · · An−1B

)

have full column rank and full row rank, respectively. Thus the sequence of Hankel
matrices

⎛

⎜
⎝

ent+1 · · · en(t+1)
...

...
en(t+1) · · · en(t+2)−1

⎞

⎟
⎠=

⎛

⎜
⎝

C
...

CAn−1

⎞

⎟
⎠Atn (B · · · An−1B

)
, t ∈N,

converges to zero if and only if limt→∞ Atn = 0. If the field F carries the discrete
topology, this is equivalent to A being nilpotent, while for the Euclidean topology
on F ⊂ C this is equivalent to the eigenvalues of A being in the open complex unit
disc. �

The next characterization will be useful later on.

Proposition 7.4. Let Q(z) ∈ F[z]m×m be nonsingular, and let XQ denote the
associated rational model.

1. Let F⊂C be endowed with the Euclidean topology. The following statements are
equivalent:

(a) All elements h(z) ∈ XQ are stable, i.e., the coefficients ht of h(z) satisfy
limt→∞ ht = 0.

(b) detQ(z) is a Schur polynomial, i.e., all its roots are in the open unit disc.

2. Let F be endowed with the discrete topology. The following statements are
equivalent:

(a) All elements h(z)∈XQ are stable, i.e., the coefficients ht of h(z) satisfy ht = 0
for t sufficiently large.

(b) detQ(z) is a monomial, i.e., all its roots are equal to 0.

Proof. Choosing a polynomial basis matrix P(z) ∈ F[z]m×n for the finite-
dimensional polynomial model XQ implies Q(z)−1P(z) is a basis matrix for
the rational model XQ, and therefore the elements of XQ are of the form
h(z) = Q(z)−1P(z)ξ for unique vectors ξ ∈ F

n. By Proposition 4.36, there exists an
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observable pair (C,A) ∈ F
m×n×F

n×n, with

C(zI−A)−1 = Q(z)−1P(z).

Thus the coefficients of Q(z)−1P(z)ξ converge to zero for all choices of ξ if
and only if limt→∞ CAt = 0. This is equivalent to (C,A) being detectable. By
Proposition 6.34, and applying the observability of (C,A), this is equivalent to
det(zI−A) being a Schur polynomial, i.e., to all eigenvalues of A being in the open
unit disc. Part (1) follows by observing the identity detQ(z) = det(zI−A). Part (2)
is proven similarly.

Next, some of the important observation properties of a system are introduced,
e.g., the extent to which the observed variables y determine the relevant, or to-be-
estimated, variables z.

Definition 7.5. Let Σsys be a linear system with the state-space representation

Σsys :=

⎧
⎨

⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt ,

(7.7)

with xt ,yt ,ut ,zt taking values in F
n,Fp,Fm,Fk, respectively.

1. The variable z is T -trackable from (y,u) if there exists a nonnegative integer T
such that for every two solutions (x,y,u,z),(x,y,u,z) of (7.7) the condition zt = zt

for 0≤ t ≤ T implies z = z. The smallest such T is called the tracking index and
is denoted by τ .

2. The variable z is detectable from (y,u) if each pair of solutions (x,y,u,z) and
(x,y,u,z) of (7.7) satisfies limt→∞(zt − zt) = 0.

3. The variable z is reconstructible from (y,u) if for each pair of solutions (x,y,u,z)
and (x,y,u,z) of (7.7) there exists a nonnegative integer T such that zt − zt = 0
for t > T . The smallest such T is called the reconstructibility index.

4. The variable z is observable from (y,u) if each pair of solutions (x,y,u,z) and
(x,y,u,z) of (7.7) satisfies z = z.

One says that a system Σsys, given by (7.7), is T -trackable if z is T -trackable
from y. We similarly define detectability, reconstructibility, and observability.

In view of the Cayley–Hamilton theorem, it is obvious that every linear state
function z = Kx is T -trackable from the output y with u = 0 of an n-dimensional
linear system

xt+1 = Axt

yt = Cxt ,

provided T ≥ n. Thus a finite-dimensional linear system is always trackable,
unless one requires an a priori bound on the tracking index. Therefore, defining
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trackability without imposing a constraint on the tracking index is meaningless. For
reconstructibility, the situation becomes slightly different because not every linear
system is reconstructible. Of course, the definition of detectability strongly depends
on the topology of the field F. If the field F is finite, or more generally if F carries
the discrete topology, detectability is equivalent to reconstructibility. However, for a
subfield F⊂ C with the standard Euclidean topology, this is no longer true. In fact,
for the standard Euclidean topology on a subfield F⊂C, the detectability of z from
y is equivalent to the condition that for an unobservable state x0 the rational function
K(zI−A)−1x0 has only poles in the open unit disc. Intuitively, it is clear that, since
perfect knowledge of the system is assumed, the effect of the input variable on the
estimate can be removed without affecting the observation properties. The following
simple proposition is stated, with its trivial proof omitted.

Proposition 7.6. Let Σ be a linear system with the state-space representation (7.7),
together with the associated system Σ ′ given by

(Σ ′)

⎧
⎨

⎩

xt+1 = Axt ,

yt = Cxt ,

zt = Kxt .

(7.8)

Then:

1. The following conditions are equivalent:

(a) z is T -trackable from (y,u) with respect to Σ ,
(b) z is T -trackable from y with respect to Σ ′,
(c) For all initial conditions x0 such that yt = 0 and ut = 0 are satisfied for all t,

the condition z0 = · · ·= zT = 0 implies zt = 0 for all t;

2. The following conditions are equivalent:

(a) z is detectable from (y,u) with respect to Σ ,
(b) z is detectable from y with respect to Σ ′,
(c) For all initial conditions x0 such that yt = 0 and ut = 0 are satisfied for all t,

limt→∞ zt = 0;

3. The following conditions are equivalent:

(a) z is reconstructible from (y,u) with respect to Σ ,
(b) z is reconstructible from y with respect to Σ ′,
(c) For all initial conditions x0 that satisfy yt = 0 and ut = 0 for all t, then zt = 0

for all t > T ;

4. The following conditions are equivalent:

(a) z is observable from (y,u) with respect to Σ ,
(b) z is observable from y with respect to Σ ′,
(c) For all initial conditions x0 such that yt = 0 and ut = 0 are satisfied for all t,

zt = 0 for all t.
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Next, the invariance of the preceding notions with respect to output injection
equivalence is explored.

Proposition 7.7. Let S ∈ GLn(F),L ∈ F
n×p,R ∈ GLp(F),U ∈ GLm(F) be output

injection transformations. A system (A,B,C,K) is T -trackable, reconstructible,
detectable, or observable, respectively, if and only if the output injection equivalent
system (S(A+LC)S−1,SBU−1,RCS−1,KS−1) is.

Proof. It is obvious that state-space similarity transformations and invertible coor-
dinate changes in the input and output spaces, respectively, do not change the
aforementioned properties. Thus it suffices to prove the result for output injec-
tion transformations. But the invariance of the notions under output injection
(A,B,C,K) �→ (A+LC,B,C,K) is obvious from Proposition 7.6. �

It is convenient, for our further analysis, to first transform the system into a
simple normal form by state-space similarity. This is done next and depends on

an observability condition for the pair
((

C

K

)
,A
)

. A priori, there is no reason to

assume that the pair
((

C

K

)
,A
)

is observable, but the following proposition shows

that this entails no great loss of generality.

Proposition 7.8. 1. Every linear system (7.8) can be reduced to the case that the

pair

((
C
K

)
, A

)
is observable.

2. If (
(

C

K

)
, A) is observable but (C,A) is not, then the system Σ ′ has a state-space

equivalent representation of the form

A =

(
A11 0
A21 A22

)
,

C =
(
C1 0

)
,

K =
(
K1 K2

)
,

(7.9)

with both pairs (C1, A11) and (K2, A22) observable.

Proof. 1. If the pair
((

C

K

)
,A
)

is not observable, the system can be reduced to an

observable one. Letting V =
⋂

j≥0 Ker
(

C

K

)
A j be the unobservable subspace for

the pair (
(

C

K

)
, A) and W be a complementary subspace leads to the direct sum

decomposition of the state space into X = W ⊕V . Writing x =

(
x1

x2

)
, with

x1 ∈W and x2 ∈ V , implies the following block matrix representations:

A =

(
A11 0
A21 A22

)
,

(
C
K

)
=

(
C1 0
K1 0

)
, B =

(
B1

B2

)
.
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Necessarily, (
(

C1
K1

)
,A11) is an observable pair and (7.7) can be replaced by

xt+1 = A11xt +B1ut ,

yt =C1xt ,

zt = K1xt ,

since C2 and K2 are both zero, and hence x2 plays no role.
2. If (C,A) is not an observable pair, then let O∗ = O∗(C,A) =

⋂
j≥0 KerCA j ⊂ F

n

be the unobservable subspace of (C,A). Let W be a complementary subspace to
O∗. With respect to the direct sum decomposition

F
n =W ⊕O∗, (7.10)

we obtain the block matrix representation (7.9). By construction, the pair
(C1,A11) is observable. Also, A22 is similar to A|O∗. Our assumption that the

pair
((

C

K

)
,A
)

is observable implies that the pair (K2,A22) is also observable.

�
Coprime factorizations are the most effective tool in bridging the gap between

frequency-domain and state-space methods. This is done using the shift realization.
The following results, split into two separate theorems, examine the corresponding
functional characterizations. Consider a state-space system

Σsys :=

⎧
⎨

⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt ,

with A ∈ F
n×n,B ∈ F

n×m,C ∈ F
p×n,K ∈ F

k×n.

Theorem 7.9. Assume that

((
C
K

)
, A

)
is observable and has the representa-

tion (7.9).

1. There exists a left coprime factorization of the state-to-output transfer function
of Σsys of the form

(
C1 0
K1 K2

)(
zI−A11 0
−A21 zI−A22

)−1

=

(
D11(z) 0
D21(z) D22(z)

)−1(Θ11(z) 0
Θ21(z) Θ22(z)

)
,

(7.11)

with D11(z)∈F[z]p×p and D22(z)∈F[z]k×k nonsingular, D21(z)∈F[z]k×p,Θ11(z)
∈ F[z]p×(n−r),Θ21(z) ∈ F[z]k×(n−r),Θ22(z) ∈ F[z]k×r, for which:
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(a) D11(z)−1Θ11(z) and D22(z)−1Θ22(z) are left coprime factorizations of the
transfer functions C1(zI −A11)

−1 and K2(zI−A22)
−1, respectively. D21(z)

and Θ21(z) satisfy the polynomial equation

D22(z)K1 +Θ22(z)A21 =−D21(z)C1 +Θ21(z)(zI−A11); (7.12)

(b) D11(z) and D22(z) are row proper;
(c) D21(z)D11(z)−1 and D22(z)−1D21(z)D11(z)−1 are strictly proper.

One refers to the coprime factorization (7.11), satisfying parts (a)–(c), as an
adapted coprime factorization.

2. Assume that (7.11) is an adapted coprime factorization. The following properties
are in force:

(a) n = degdet(zI−A) = degdetD11(z)+ degdetD22(z).
(b) D22(z) is a nonsingular polynomial matrix.
(c) The linear map

ψ : O∗(C,A)−→ XD22 , ψ(x) =Θ22x,

is bijective, satisfying

ψA22 = SD22ψ . (7.13)

This implies the isomorphism

SD22 � A22 = A|O∗(C,A). (7.14)

Proof. The first claim of statement 1 is proved first. Applying Proposition 7.8, with
respect to the direct sum decomposition (7.10), yields the block matrix representa-
tion (7.9), with the pairs (C1,A11) and (K2,A22) observable. Let D11(z)−1Θ11(z) and
D22(z)−1Θ22(z) be left coprime factorizations of C1(zI−A11)

−1 and K2(zI−A22)
−1,

respectively. Since a left coprime factorization is unique only up to a common
left unimodular factor, we will assume, without loss of generality, that D11(z) and
D22(z) are both row proper. So (b) holds by construction. Thus the (11)- and (22)-
terms on both sides of (7.11) are equal. Comparing the (21)-terms of both sides
of equation (7.11), multiplying by D22(z) on the left and by (zI − A11) on the
right, we obtain (7.12). Thus D21(z),Θ21(z) fulfill (7.11) if and only if (7.12) is
satisfied. By the observability of the pair (C1,A11), the existence of a polynomial
solution X(z),Y (z) of the Bezout equation X(z)C1 +Y (z)(zI − A11) = I follows.
Consequently, taking into consideration the general, polynomial, solution of the
homogeneous equation, we obtain the parameterization

D21(z) = −(D22(z)K1 +Θ22(z)A21)X(z)−Q(z)D11(z),
Θ21(z) = (D22(z)K1 +Θ22(z)A21)Y (z)+Q(z)Θ11(z),
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where Q(z) ∈ F[z]k×p. Choosing Q(z) =−π+

(
(D22K1 +Θ22A21)XD−1

11

)
guarantees

that D21(z)D11(z)−1 is strictly proper. This does not change the row properness of
D11(z) and D22(z). That D22(z)−1D21(z)D11(z)−1 is strictly proper follows from the
strict properness of D21(z)D11(z)−1 and the fact that the nonsingular, row proper
polynomial matrix D22(z) has a proper inverse.

Proof of 2. From the observability assumption on the pair
((

C

K

)
,A
)

and the left

coprime factorization (7.11), we conclude that

n = degdet(zI−A) = degdet

(
D11(z) 0
D21(z) D22(z)

)

= degdetD11(z)+ degdetD22(z),

which proves the first claim. The nonsingularity of D22(z) follows from the

nonsingularity of

(
D11(z) 0
D21(z) D22(z)

)
.

To prove the last claim, note that the coprime factorization

D22(z)
−1Θ22(z) = K2(zI−A22)

−1 (7.15)

is equivalent to the intertwining relation

Θ22(z)(zI−A22) = D22(z)K2.

Applying Theorems 3.20 and 3.21 proves the intertwining relation (7.13) as well as
the invertibility of the map ψ defined by (7.23). The isomorphism (7.14) follows
from (7.13) and the invertibility of ψ . �
Theorem 7.10. Assume that (7.11) is an adapted coprime factorization.

1. Define strictly proper rational matrices ZK(z),ZC(z) by

ZC(z) = C(zI−A)−1,

ZK(z) = K(zI−A)−1.
(7.16)

The general rational solutions of the equation

ZK(z) = Z1(z)ZC(z)+Z2(z) (7.17)

are

Z1(z) = −D22(z)−1D21(z)+W(z)D11(z),
Z2(z) =

(
D22(z)−1Θ21(z)−W (z)Θ11(z), D22(z)−1Θ22(z)

)
,

(7.18)
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where W (z) ∈ F(z)k×p is a rational function. Let Z1(z) be proper rational. Using
an adapted left coprime factorization (7.11), there exists a proper rational W (z)
such that Z1(z) is given by (7.18) and Z2(z) is strictly proper.

2. (a) D22(z) is a stable matrix if and only if the pair (C,A) is detectable.
(b) D22(z) is a unimodular matrix if and only if the pair (C,A) is observable.

In this case, that is, where O∗(C,A) = {0}, the coprime factorization (7.11)
reduces to

(
C
K

)
(zI−A)−1 =

(
D11(z) 0
D21(z) I

)−1(
Θ11(z)
Θ21(z)

)
, (7.19)

with D−1
11 Θ11 a left coprime factorization of C(zI−A)−1 and D21(z),Θ21(z)

determined from the equation

K =−D21(z)C+Θ21(z)(zI−A). (7.20)

In this case, the general solution of equation (7.17) is given by

Z1(z) = −D21(z)+W (z)D11(z),
Z2(z) = Θ21(z)−W(z)Θ11(z).

(7.21)

3. (a) Let φ : Fn −→ XzI−A be defined by φ(x) = (zI−A)−1x. Then φ is injective,
with

φ(O∗) = {0}⊕XzI−A22 , (7.22)

and thus induces an isomorphism φ : O∗ −→ XzI−A22 .
(b) The map ψ : O∗ −→ XD22 , defined by

ψ(x) =Θ22(z)x, (7.23)

is an isomorphism satisfying ψ(Ax) = SD22ψ(x).
(c) The map Ψ : O∗ −→ XD22 defined by x �→ D22(z)−1Θ22(z)x is an isomor-

phism satisfying Ψ (Ax) = SD22Ψ(x), i.e., A|O∗ � SD22 .

Proof. Proof of 1. Using (7.11) and computing
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ZK(z) =
(
K1 K2

)
(

(zI−A11)
−1 0

(zI−A22)
−1A21(zI−A11)

−1 (zI−A22)
−1

)

=
(
K1(zI−A11)

−1 +K2(zI−A22)
−1A21(zI−A11)

−1, K2(zI−A22)
−1
)

=
(−D22(z)−1D21(z)D11(z)−1Θ11(z)+D22(z)−1Θ21(z), D22(z)−1Θ22(z)

)

= Z1(z)ZC(z)+Z2(z)
(7.24)

leads to a particular solution of (7.17), i.e.,

Z1(z) =−D22(z)
−1D21(z),

Z2(z) =
(
D22(z)−1Θ21(z), D22(z)−1Θ22(z)

)
.

To obtain the general rational solution, one needs to add to (Z1,Z2) the general ratio-
nal solution (Y1,Y2) of the homogeneous equation Y1(z)ZC(z)+Y2(z) = 0 or, equiv-
alently, Y1(z)C +Y2(z)(zI −A) = 0. Noting that ZC(z) =

(
D11(z)−1Θ11(z) 0

)
and

writing Y2(z) =
(

Y ′2(z), Y ′′2 (z)
)

implies Y1(z) =W (z)D11(z), Y ′2(z)=−W(z)Θ11(z)),
and Y ′′2 (z) = 0, with W (z) a free, rational parameter. This proves (7.18).

For the second claim, choose

W (z) = (Z1(z)+D22(z)−1D21(z))D11(z)−1

= Z1(z)D11(z)−1 +D22(z)−1D21(z)D11(z)−1,

and note that the properness of W (z) follows from the assumed properness of Z1(z)
and the assumption that (7.11) is an adapted coprime factorization.

Proof of 2. The pair (C,A) is detectable if and only if A22 � A|⋂∞
i=0 KerCAi

is stable. By the isomorphism (7.14), this is equivalent to the stability of D22(z),
which proves the first claim. The pair (C,A) is observable if and only if the equality
of degrees n = degdet(zI − A) = degdetD11(z) is satisfied. This is equivalent to
degdetD22(z) = 0, i.e., to D22(z) being unimodular. Equation (7.20) is a special
case of (7.12). Similarly, the parameterization (7.21) is a special case of (7.18).

Proof of 3. Since (C,A) is assumed to be in Kalman decomposition form, x ∈O∗
if and only if x = col(0,x2). Thus φ(O∗) = {(zI−A)−1x|x ∈ O∗}= {0}×XzI−A22 ,
which proves (7.22). The coprime factorizations D22(z)−1Θ22(z) = K2(zI−A22)

−1

yields the intertwining relation

Θ22(z)(zI−A22) = D22(z)K2.

Thus the map ψ : XzI−A22 −→ XD22 defined by ψ(x) = πD22Θ22x = Θ22x is an
isomorphism. Note that {0}×XzI−A22 = O∗.



370 7 Observer Theory

Since autonomous behaviors are equal to rational models (Theorem 3.36), we
conclude that XD22 = KerD22(σ) is true for the backward shift operator σ . Now
the multiplication map D−1

22 : XD22 −→ XD22 is an F[z]-module isomorphism, and
therefore the composed map Ψ = D−1

22 ψ is also an F[z]-module isomorphism from
O∗ onto XD22 . This proves the last claim. �

For unobservable states x ∈ O∗, using (7.15), one computes

K2φ(x) = K2(zI−A22)
−1x = D22(z)

−1Θ22(z)x =Ψx = D22(z)
−1ψ(x),

which implies that the following diagram is a commutative diagram of F-vector
space isomorphisms:

XzI−A22

∗

XD22

XD22

y

K2

D−1
22f | ∗ Y

�

�

� �

�
�

�
�

�
�

�
�

�

It is of principal interest to find characterizations of the observation properties
introduced in Definition 7.5. This depends very much on the functional relation
between the observed variables y and the to-be-estimated variables z. Of course, in
the state-space representation (7.8) of the system Σ ′, this relation is indirect. To get
a direct relation, one needs to eliminate the state variable x from (7.8). This is best
done in a behavioral setting but is avoided here.

Thus, avoiding the explicit use of behaviors, we proceed by characterizing the
tracking index of linear systems. First let us note, as an immediate consequence
of the definition, that the trackability of (7.7) with tracking index τ is satisfied if
and only if τ is the smallest number such that, for every initial state x0 ∈ F

n with
C(zI−A)−1x0 = 0, the implication

Kx0 = · · ·= Kxτ = 0 =⇒ Kxt = 0, ∀t ≥ 0,

follows. Note that if (C,A) is observable, then the tracking index of an output
functional z = Kx is τ = 0.

Proposition 7.11. A linear system (7.7) with (
(

C

K

)
,A) observable and having the

representation (7.9), has a tracking index τ if and only if the largest observability
index of (K2,A22) is equal to τ . In particular, T -trackability is fulfilled for every T
that is greater than or equal to the degree of the minimal polynomial of A.
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Proof. Using the representation of states with respect to the direct sum (7.10),

let an initial state have the representation x0 =

(
u
v

)
. The initial condition x0 is

unobservable, that is, C(zI−A)−1x0 = 0 if and only if u = 0. For each such x0 one
has KAix0 = K2Ai

22v for all i ≥ 0, implying the system is T -trackable if and only if
the implication K2Ai

22v = 0, i = 0, . . . ,T =⇒ K2Ai
22v = 0 ∀i ≥ 0 is valid for

all vectors v ∈ F
n2 . Equivalently, this says that

Ker

⎛

⎜
⎝

K2
...

K2AT
22

⎞

⎟
⎠⊂ Ker

⎛

⎜
⎝

K2
...

K2An−1
22

⎞

⎟
⎠ .

In turn, this is equivalent to saying that all observability indices of (K2,A22) are less
than or equal to T , which implies the result. �

The following lemma will be needed.

Lemma 7.12. Let Q(z) ∈ F[z]r×r be nonsingular with degree �, i.e., Q(z) = Q0 +

Q1z + · · ·+ Q�z�. Assuming h(z) =
∞

∑
j=1

h j

z j ∈ XQ and h1 = · · · = h� = 0 implies

h(z) = 0.

Proof. Since XQ = ImπQ, it follows that h ∈ XQ if and only if h = πQh. However,
under our assumptions, πQh = π−Q−1π+(Qh) = π−Q−1π+(Qz−�z�h). Clearly,
Q(z)z−� is proper, whereas z�h is strictly proper, so the product is strictly proper
with π+(Qh) = 0. This implies h(z) = 0. �

Lemma 7.12 leads us to a simple polynomial characterization of the tracking
index.

Proposition 7.13. Assume that (7.7) has the representation (7.9) such that the

pair (

(
C
K

)
,A) is observable. Letting K2(zI − A22)

−1 = D22(z)−1Θ22(z) be a

left coprime factorization, with D22(z) row proper, implies the degree of D22(z)
coincides with the tracking index τ of (7.7). If D22(z) is not row proper, the degree
of D22(z) provides an upper bound for the tracking index.

Proof. By Proposition 7.11, the minimal tracking index is equal to the maximal
observability index of (K2,A22). In view of Corollary 6.9, the observability indices
of (K2,A22) coincide with the right Wiener–Hopf indices of D22(z). Since D22(z) is
assumed to be in row proper form, the row indices of D22(z) coincide with the right
Wiener–Hopf indices. In particular, the degree of D22(z) is the largest right Wiener–
Hopf index, i.e., it is equal to the largest observability index of (K2,A22). If D22(z)
is not row proper, Lemma 7.12 can be applied to see that the degree of D22(z) gives
an upper bound for the tracking index. �
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The preceding analysis leads to the following explicit characterizations of the
different observation properties.

Theorem 7.14. Assume that (7.7) has the representation (7.9) such that (

(
C
K

)
,A)

is observable. Let

K2(zI−A22)
−1 = D22(z)

−1Θ22(z),

with D22(z),Θ22(z) left coprime.

1. Suppose D22(z) is row proper. The following conditions are equivalent:

(a) (7.7) has tracking index τ .
(b) The largest observability index of (K2,A22) is equal to τ .
(c) The degree of D22(z) is equal to τ .

2. The following conditions are equivalent:

(a) z is detectable from (y,u) in (7.7).
(b) A22 is stable.
(c) detD22(z) is a Schur polynomial.
(d) All elements of XD22 have their poles in the open unit disc.

3. The following conditions are equivalent:

(a) z is reconstructible from (y,u) in (7.7).
(b) A22 is nilpotent.
(c) D22(z) is a monomic polynomial matrix.
(d) All elements of XD22 have their poles in zero.

4. The following conditions are equivalent:

(a) z is observable from (y,u) in (7.7).
(b) D22(z) is unimodular.
(c) (C,A) is observable.

Proof. Part 1 has already been shown.
Part 2. By Proposition 7.6, detectability is satisfied if and only if limt→∞ zt = 0,

whenever (yt) = 0 and (ut) = 0. The Z-transform of (zt) is equal to K(zI−A)−1x0,
where x0 is in the unobservable subspace O∗. By Theorem 7.10,

{K(zI−A)−1x0 | x0 ∈O∗}= K2XzI−A22 = XD22

is an autonomous behavior. Applying Proposition 7.4, we conclude that detectability
is satisfied if and only if detD22(z) is a Schur polynomial. Since detD22(z) is equal
to det(zI−A22), this is equivalent to A22 being stable.

For part 3 one can argue similarly. In fact, reconstructibility is equivalent to all
elements of XD22 being stable for the discrete topology of F, which just says that
all elements of XD22 are of the form z−N p(z) for polynomials of degree < N or,
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equivalently, that D22(z) is monomic. Applying Proposition 7.4, one sees that this
in turn is equivalent to detD22(z) = czn2 being a monomial or, equivalently, that all
roots of detD22(z) = 0 are equal to zero, or that A22 is nilpotent.

Finally, the observability of z from (y,u) is fulfilled if and only if (yt) = 0 and
(ut) = 0 implies (zt) = 0. This is equivalent to

{K(zI−A)−1x0 | x0 ∈ O∗}= K2XzI−A22 = {0}.

By the observability of (K2,A22), this is possible only if (C,A) is observable. This
completes the proof. �

It may be surprising to note that the characterizations of detectability, recon-
structibility, and observability for a linear functional K in Theorem 7.14 are identical
with the corresponding ones for K = In. This is stated as a corollary.

Corollary 7.15. The same assumptions are used as in Theorem 7.14. For a linear
system (7.7), the output z = Kx is detectable, reconstructible, or observable from y if
and only if the pair (C,A) is detectable, reconstructible, or observable, respectively.

7.3 Functional State Observers

When dealing with complex systems, one may want to track only a sample of
the state variables. However, these variables of interest may be impossible to
observe directly, so one must have recourse to estimation procedures that utilize
only the available observations. In certain cases this can be achieved even if the
system is not completely observable. As indicated in the introduction to this chapter
and emphasized by the observer diagram appearing there, an observer is itself a
dynamical system driven by inputs and observations and whose output is an estimate
ζ of the relevant variable z. This leads us to the following definition of functional
state observers, which broadly extends the class of full state Luenberger observers.
In the sequel, the principal results will be stated and proved only for discrete-time
systems; these results hold, mutatis mutandis, also in the continuous-time case.

Let

Σsys :=

⎧
⎨

⎩

xt+1 = Axt +But

yt = Cxt

zt = Kxt

(7.25)

be a linear system, with A,B,C,K in F
n×n,Fn×m,Fp×n,Fk×n, respectively. Let

another system,

Σest :=

{
ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt ,
(7.26)
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be given with system matrices F,G,H,J,E in F
q×q,Fq×p,Fq×m,Fk×q,Fk×p respec-

tively, and driven by the input u and output y of (7.25). It will always be assumed
that J is of full row rank, which presents no restriction of generality, as well as that

both C and K have full row rank and that the pair (

(
C
K

)
,A) is observable.

Define the estimation error or error trajectory e by

et = zt − ζt = Kxt − Jξt −Eyt = Kxt −
(

J E
)
(

xt

yt

)
.

The error trajectory defines the strictly proper power series

e = e(z) =
∞

∑
t=0

et z
−t−1. (7.27)

As usual, the error trajectory will often be identified with the equivalent formal
power series expansion (7.27) that it defines. We will refer to (7.26) as a functional
observer because it is designed to estimate a function of the state rather than the
state itself.

Definition 7.16. Consider the linear system (7.25). The system Σest defined
by (7.26) will be called

1. a finitely determined observer for K if there exists a T ∈N such that et = 0 for
t < T implies e = 0;

2. a tracking observer for K if for every x0 ∈ F
n there exists a ξ0 ∈ F

q such that,
for all input functions u, the solutions xt and ξt of (7.25) and (7.26), respectively,
satisfy et = zt − ζt = 0 for all t ≥ 0;

3. a strongly tracking observer for K if e0 = z0− ζ0 = 0 implies et = 0 for all
input functions u and t ≥ 0;

4. an asymptotic observer for K if, for all initial conditions of the states x and
ξ and all inputs u, limt→∞ et = limt→∞(zt − ζt) = 0; an observer is called an
asymptotic tracking observer for K if it is both a tracking observer and an
asymptotic observer;

5. spectrally assignable if, given a polynomial p(z) of degree q, there exists an
observer in the family for which the characteristic polynomial of F is p(z).

In all cases, q will be called the order of the observer.

Naturally, there are two fundamental problems that present themselves, namely,
given system (7.25), how does one obtain a characterization of observers and how
does one show the existence of observers of the various types, together with a
computational procedure for observer construction? Note further that, in general,
the initial value of the state of a system is not known, which is at the core of the
estimation/observation problem. Even if a tracking observer exists, there will be a
nonzero tracking error whenever the initialization of the observer is incorrect. This
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points out the importance of asymptotic observers as well as, even more, spectrally
assignable observers where one also controls the rate of convergence to zero of the
error. Several further remarks are in order.

1. Incorporating a feedthrough term in the observer, as in (7.26), improves our
ability to construct reduced-order functional observers. An example of this is the
case of observing Kx, where KerC ⊂ KerK. This implies the existence of a map
E for which K = EC, which leads to a zero-order, i.e., nondynamic, observer
given by ζt = Eyt . Note that incorporating a feedthrough term in the observer
is not new; it already appeared in Luenberger (1971) in the construction of an
observer for a single functional of the state.

2. The definition of a tracking observer clearly implies that the set of the trajectories
to be estimated is included in the set of outputs of the tracking observer.

3. A strongly tracking observer is at the same time a tracking observer. This follows
from our assumption that J has full row rank. Thus e0 = Kx0− Jξ0 can always
be made zero by an appropriate choice of ξ0. Note also that a strongly tracking
observer is finitely determined, with T = 1.

It was already observed that the trackability of an output of a finite-dimensional
linear system is always satisfied. In the same vein, it is always possible to construct
tracking observers by inspection. For instance, taking the copy of a system as

ξt+1 = Aξt +But ,

ζt = Kξt

obviously leads to a tracking observer of system (7.25). Note that this observer has
the same dimension n as (7.25). More generally, for a matrix L ∈ F

n×p, the system

ξt+1 = (A−LC)ξt +LCxt +But ,

ζt = Kξt

is a tracking observer for (7.25). Therefore, the main issue is not the existence of
tracking observers (they always exist), but whether or not tracking observers with
prescribed dimension q≤ n exist or, even better, whether a minimal-order observer
can be constructed. This problem will be addressed in Theorem 7.27, but first, a
characterization of functional observers is derived.

Our starting point is the derivation of a state-space characterization, in terms
of matrix Sylvester equations, for the classes of observers introduced in Defini-
tion 7.16. Thus we consider a linear system Σsys:

Σsys :=

⎧
⎨

⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt ,

(7.28)
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with state space F
n and the estimator system

Σest :=

{
ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt ,
(7.29)

in the state space F
q.

Theorem 7.17. Assume that both (

(
C
K

)
,A) and (J,F) are observable.

1. System (7.29) is a tracking observer for K if and only if there exists a solution
Z ∈ F

q×n of the observer Sylvester equations

ZA =
(

F G
)
(

Z
C

)
,

H = ZB,

K =
(

J E
)
(

Z
C

)
.

(7.30)

The solution Z of (7.30) is uniquely determined.
2. Let Z be the unique solution to the observer Sylvester equations (7.30). Defining

ZK(z) = K(zI−A)−1 and ZC(z) =C(zI−A)−1, the equation

ZK(z) = Z1(z)ZC(z)+Z2(z) (7.31)

is solvable with

Z1(z) = E + J(zI−F)−1G, Z2(z) = J(zI−F)−1Z. (7.32)

3. Defining an auxiliary variable ε by

ε = Zx− ξ , (7.33)

the observer error dynamics with the initial condition ε0 = Zx0− ξ0 are

εt+1 = Fεt ,

et = Jεt ,
(7.34)

i.e., the error trajectory is the output of an autonomous linear system. The set
Berr of all error trajectories is an autonomous behavior of the form

Berr = XQ, (7.35)
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where

Q(z)−1P(z) = J(zI−F)−1 (7.36)

are coprime factorizations.
4. The following conditions are equivalent:

(a) System (7.29) is an asymptotic tracking observer for K.
(b) There exists a linear transformations Z, with F stable, such that (7.30) holds.

5. The following conditions are equivalent:

(a) System (7.29) represents a family of spectrally assignable tracking observers
for K.

(b) With the characteristic polynomial of F preassigned, there exists a linear
transformation Z that satisfies the observer Sylvester equations (7.30).

Proof. 1.
For initial conditions x0 for Σsys and ξ0 for Σest, the Z-transforms of the solutions

to equations (7.28), (7.29), and (7.34) are given by

x = (zI−A)−1x0 +(zI−A)−1Bu,

y =C(zI−A)−1x0 +C(zI−A)−1Bu,

z = K(zI−A)−1x0 +K(zI−A)−1Bu,

ξ = (zI−F)−1ξ0+(zI−F)−1GC(zI−A)−1x0+(zI−F)−1(H+GC(zI−A)−1B)u,

ζ = J(zI−F)−1ξ0 + J(zI−F)−1GC(zI−A)−1x0 +EC(zI−A)−1x0

+ J(zI−F)−1(H +GC(zI−A)−1B)u+EC(zI−A)−1x0 +EC(zI−A)−1Bu,

e = z− ζ =
[
K− J(zI−F)−1GC−EC

]
(zI−A)−1x0− J(zI−F)−1ξ0,

+
[
(K−EC)(zI−A)−1B− J(zI−F)−1(H +GC(zI−A)−1B)

]
u.

(7.37)

To begin, one takes u = 0. The trackability assumption translates into the following
statement. For each vector x0 ∈ F

n, there exists a vector ξ0 ∈ F
q such that

J(zI−F)−1ξ0+J(zI−F)−1GC(zI−A)−1x0+EC(zI−A)−1x0−K(zI−A)−1x0 = 0.

This implies that ξ0 is a linear function of x0. Because x0 is unrestricted, this means
that there exists a Z ∈ F

q×n for which ξ0 = Zx0. This leads to the identity

J(zI−F)−1Z + J(zI−F)−1GC(zI−A)−1 +EC(zI−A)−1−K(zI−A)−1 = 0.
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Equating residues, one obtains

K = JZ +EC =
(

J E
)
(

Z
C

)
. (7.38)

Using this identity one computes

0 = J(zI−F)−1Z + J(zI−F)−1GC(zI−A)−1 +EC(zI−A)−1−K(zI−A)−1

= J(zI−F)−1Z + J(zI−F)−1GC(zI−A)−1 +(K− JZ)(zI−A)−1−K(zI−A)−1

= J(zI−F)−1[Z(zI−A)+GC− (zI−F)Z](zI−A)−1

= J(zI−F)−1[−ZA+GC+FZ](zI−A)−1.

The nonsingularity of (zI − A) and the observability of the pair (J,F) imply the
identity

ZA−FZ = GC, (7.39)

which can be rewritten as

ZA =
(

F G
)
(

Z
C

)
.

By inserting identities (7.38) and (7.39), together with ξ0 = Zx0, back into the
representation of e in (7.37), one gets

0 = J
[
Z− (zI−F)−1GC

]
(zI−A)−1Bu− J(zI−F)−1Hu

= J(zI−F)−1 [(zI−F)Z−GC] (zI−A)−1Bu− J(zI−F)−1Hu

= J(zI−F)−1 [Z(zI−A)](zI−A)−1Bu− J(zI−F)−1Hu

= J(zI−F)−1(ZB−H)u.

Choosing constant inputs and using the observability of (J,F), this implies H = ZB.
Thus the observer Sylvester equations (7.30) hold.

To show the uniqueness of the solution to the observer Sylvester equations (7.30),
assume there exist two maps Z′,Z′′ satisfying them. Setting Z = Z′′ −Z′ yields ZA =
FZ and JZ = 0. The intertwining relation implies that ZAk = FkZ, for all k ≥ 0, and
hence JFkZ = JZAk = 0, i.e., ImZ ⊂ ⋂

k≥0 KerJFk. The observability of the pair
(J,F) implies now Z = 0, i.e., Z′′ = Z′.

Conversely, assume the observer Sylvester equations (7.30) are satisfied. For a
control u and an initial condition x0 for Σ ′, we choose ξ0 = Zx0. By (7.37), using
the Sylvester equations, the error trajectory is given by
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e =
[
K− J(zI−F)−1GC

]
(zI−A)−1x0− J(zI−F)−1Zx0

+
[
JZ(zI−A)−1B− J(zI−F)−1(H +GC(zI−A)−1B)

]
u

= J(zI−F)−1 [(zI−F)Z−Z(zI−A)−GC] (zI−A)−1x0

+ J(zI−F)−1 [(zI−F)Z−Z(zI−A)−GC] (zI−A)−1Bu(z) = 0.

This shows that Σest is a tracking observer for Σsys.

2. From equation (7.39) it follows that

Z(zI−A)− (zI−F)Z =−GC,

and hence

(zI−F)−1Z−Z(zI−A)−1 =−(zI−F)−1GC(zI−A)−1.

Using (7.38), this leads to

J(zI−F)−1Z+ J(zI−F)−1GC(zI−A)−1 = JZ(zI−A)−1 = (K−EC)(zI−A)−1,

which proves the statement.

3. To determine the error dynamics, one computes, using the observer Sylvester
equations (7.30),

εt+1 = Zxt+1− ξt+1

= ZAxt +ZBut −Fξt −GCxt −Hut

= ZAxt +ZBut − [F(Zxt − εt)+GCxt −ZBut ]

= Fεt ,

et = Kxt − Jξt = Jεt .

This proves (7.34). The error behavior, i.e., the space of error trajectories, is given
by Berr = {J(zI − F)−1ξ |ξ ∈ F

q}. Applying Proposition 4.36 to the coprime
factorizations (7.36) leads to the representation {J(zI−F)−1ξ |ξ ∈ F

q}= XQ.

4. (a)⇔ (b).

Assume that (7.29) is an asymptotic tracking observer for (7.28). By part 1,
there exists a uniquely determined linear transformation Z that satisfy the Sylvester
equations (7.30). Since the error dynamics is given by (7.34), and (J,F) is an
observable pair by assumption, the convergence et → 0 always implies εt → 0. Thus
the error dynamics (7.34) are stable, which shows that F is stable.
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Conversely, the existence of a map Z solving the Sylvester equations (7.30)
implies Σest is a tracking observer. The assumed stability of F implies, using the
error dynamics (7.34), that Σest is actually an asymptotic tracking observer.

5. (a)⇔ (b).
Follows directly from the definition of a spectrally assignable family of tracking
observers, together with part 1.

�
It is of interest to relate the error trajectories to the proper, rational solutions

Z1(z),Z2(z) of the equation ZK(z) = Z1(z)ZC(z)+Z2(z). Here ZK(z) and ZC(z) are
defined by (7.16) and Z1(z) and Z2(z) by (7.32). Note that Z1(z) is the transfer
function of the observer from y to ζ , while Z2(z) is related to the error estimate.
Choosing the initial condition of the observer as ξ0 = Zx0 would make the error
trajectory zero. However, the initial state x0 is unknown to the observer and, in the
absence of that initial state information, the challenge is to obtain an error estimate.
This is provided by the following proposition.

Proposition 7.18. Let the initial conditions for system (7.25) and the observable
tracking observer (7.26) be x0 and ξ0, respectively. The error trajectory is given by

e = J(zI−F)−1(Zx0− ξ0) = Z2(z)x0− J(zI−F)−1ξ0. (7.40)

In particular, e does not depend on the input u.

Proof. Computing, using equation (7.37), together with the observer Sylvester
equations (7.30) and (7.32),

e =
[
K− J(zI−F)−1GC−EC

]
(zI−A)−1x0− J(zI−F)−1ξ0

+
[
(K−EC)(zI−A)−1B− J(zI−F)−1(H +GC(zI−A)−1B)

]
u

= [ZK(z)−Z1(z)ZC(z)]x0− J(zI−F)−1ξ0

+[ZK−Z1(z)ZC(z)−Z2(z)]Bu

= Z2(z)x0− J(zI−F)−1ξ0

completes the proof. �
How the existence of tracking observers is preserved under the action of the

output injection group G is shown in the next proposition. This is done by showing
how the observer Sylvester equations (7.30) transform under the same group action.

Proposition 7.19. Let the linear system

Σsys :=

⎧
⎨

⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt

(7.41)
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act in the state space F
n. It is assumed that C and K have full row rank and that

(
(

C

K

)
,A) is observable. Assume that

Σest :=

{
ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt

is an observable tracking observer with state space F
q that satisfies the observer

Sylvester equations

ZA =
(

F G
)
(

Z
C

)
,

H = ZB,

K =
(

J E
)
(

Z
C

)
.

(7.42)

Equations (6.3) are extended to the action of the output injection group G on
quadruples A,B,C,K by

⎛

⎝
A B
C 0
K 0

⎞

⎠=

⎛

⎝
R L 0
0 S 0
0 0 I

⎞

⎠

⎛

⎝
A B
C 0
K 0

⎞

⎠
(

R 0
0 I

)−1

.

Under this action, the observer Sylvester equations transform as follows:

ZA =
(

F G
)
(

Z
C

)
,

H = ZB,

K =
(

J E
)
(

Z
C

)
,

(7.43)

where

A = (RA−LC)R−1, B = RB, C = SCR−1, K = KR−1,

Z = ZR−1, L = LS−1,

F = F, G = G−ZL, H = H, J = J, E = ES−1.

Proof. Equation (7.43) can be rewritten as

(ZR−1)(R(A−LS−1C)R−1) =
(

F (G−ZLS−1)
)
(

ZR−1

CR−1

)
,

H = (ZR−1)(RB),

KR−1 =
(

J E
)
(

ZR−1

CR−1

)
.
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This in turn is equivalent to the Sylvester equations (7.30).

Corollary 7.20. Consider system (7.28). The observer (7.29) is finitely determined
if and only if it is tracking.

Proof. Follows from the error dynamics given by (7.35) and Lemma 7.12. �
The matrix Z that solves the observer Sylvester equations is not necessarily of

full rank. Next, it is shown how the maps F,G,H,J,E can always be modified in
such a way that a full rank solution Z to the Sylvester equations of the modified
observer exists.

Proposition 7.21. Suppose there exists a q-dimensional observable tracking
observer for K. Then there exists a tracking observer F ,G,H,J,E of dimension
q≤ q together with a full row rank solution Z to the observer Sylvester equations

ZA−FZ = GC,
H = ZB,
K = JZ +EC.

(7.44)

Furthermore, the pair (J,F) can be chosen to be observable.

Proof. Let F,G,H,J,E denote an observable tracking observer for system (7.25),
with Z the solution to the observer Sylvester equation (7.30). If Z is not surjective,

this implies that, in an appropriate basis, one has Z =

(
Z
0

)
, with Z surjective, i.e.,

of full row rank. The corresponding representations are as follows:

F =

(
F11 F12

F21 F22

)
, G =

(
G1

G2

)
, H =

(
H1

H2

)
, J =

(
J1 J2

)
.

Equations (7.44) can now be rewritten as

(
Z
0

)
A =

(
F11 F12

F21 F22

)(
Z
0

)
+

(
G1

G2

)
C,

(
H1

H2

)
=

(
Z
0

)
B,

K =
(
J1 J2

)(Z
0

)
+EC.

This in turn implies

ZA−F11Z = G1C,

H1 = ZB,

K = J1Z +EC.
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The observability of the pair (J,F) implies the observability of the pair (J1,F11).
Therefore,

ξt+1 = F11ξt +G1yt +H1ut ,

ζt = J1ξt +EC

is a tracking observer for (7.28). �
Before proceeding to establish the basic connections between observation prop-

erties and observer constructions, the following simple lemma is stated.

Lemma 7.22. Let (F,G,H,J,E) be a tracking observer for (A,B,C,K).

1. If Z is a solution to the observer Sylvester equations, then, for each output
injection map L, (F,G−ZL,H,J,E) is a tracking observer for (A−LC,B,C,K).

2. If Z is a solution to the observer Sylvester equations and P is nonsingular,
then PZ solves the Sylvester equations for the tracking observer defined by
(PFP−1,PG,PH,JP−1,E).

Proof. 1. Theorem 7.17 is applied to conclude that there exists a solution Z to the
Sylvester equations (7.30). The first equation, ZA = FZ +GC, implies Z(A−
LC) = FZ +(G−ZL)C, while the other two equations remain untouched. This
implies that the observer defined by (F,G−ZL,H,J,E) is a tracking observer for
the system defined by (A−LC,B,H,C,K).

2. Using the observer Sylvester equations (7.30), one computes

(PZ)A = (PFP−1)(PZ)+ (PG)C,
K = (JP−1)(PZ)+EC.

The identity of transfer functions

[
PFP−1 PG PZ
JP−1 E 0

]
=

[
F G Z
J E 0

]

is easily checked.
�

An interesting question is to analyze the extent of our control over the error
dynamics. In particular, one might want to clarify the following question: under
what conditions can we preassign the error dynamics? In one direction, this is easily
resolved using observability subspaces. This is studied in Fuhrmann and Trumpf
(2006). For further studies, one would first have to extend Definition 7.16 to the
notion of spectral assignability and derive results characterizing the existence of
such observers.
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7.4 Existence of Observers

Having studied the observation properties of linear systems in Section 7.2 and
introduced several classes of observers in Section 7.3, it will come as no great
surprise that there is a natural correspondence between observation properties and
observers of linear systems. This correspondence is addressed next.

Theorem 7.23. Let the linear system

Σsys :=

⎧
⎨

⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt

(7.45)

act in the state space F
n. It is assumed that (

(
C
K

)
,A) is observable and is of the

form (7.9).

1. Let Σsys be trackable with minimal tracking index τ . Then the maximal observ-
ability index of every tracking observer for K is greater than or equal to τ .

2. The following conditions are equivalent:

(a) There exists an asymptotic tracking observer for K.
(b) The pair (C,A) is detectable.

3. The following conditions are equivalent:

(a) There exists a spectrally assignable family of tracking observers for K.
(b) The pair (C,A) is observable.

Proof. Part 1.
Let Σest be a tracking observer (7.26) with maximal observability index equal to

τ∗. Choose an initial condition x0 ∈ F
n with CAtx0 = 0 for all t. Assume Kx0 = · · ·=

Kxτ∗ = 0. Since (7.26) is a tracking observer, there exists ξ0 such that Kxt = Jξt is
true for all t. Since yt = CAtx0 = 0 for all t, one concludes Jξt = JFtξ0 for all t. In
particular, Jξ0 = · · ·= JFτ∗−1ξ0 = 0. By the observability of J and F , we have that
ξ0 = 0, and thus Kxt = 0 for all t. This implies the bound τ ≤ τ∗ for the minimal
tracking index.

Part 2. (a)⇔ (b)

Assume that an asymptotic tracking observer

ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt

(7.46)

for z exists; then F is necessarily stable. One must show that all unobservable
modes of (C,A) are stable. Choose u = 0, and pick an unobservable initial state
x0 ∈ O∗. Then ζt = JFtξ0 is true for all t and all ξ0. The stability of F implies
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limt→∞ JFtξ0 = 0. Since (7.46) is a tracking observer, there exists ξ0 such that ζt = zt

for all t ≥ 0. Thus limt→∞ KAtx0 = limt→∞ zt = 0 for all x0 ∈ O∗. This is equivalent
to limt→∞ K2At

22 = 0 and, therefore, by the observability of (K2,A22), to the stability
of A22. Thus (C,A) is detectable.

Conversely, assume (C,A) is detectable. By Theorem 7.14, the unobservable
modes of A are stable and there exists an output injection matrix L such that A−LC
is stable. Therefore, the full state Luenberger observer

ξt+1 = (A−LC)ξt +Lyt +But ,

ζt = Kξt

(7.47)

is an asymptotic tracking observer for K.

Part 3. (a)⇔ (b)

If (C,A) is observable, then one can find L such that A−LC has a preassigned
characteristic polynomial. Thus the Luenberger observer (7.47) yields a spectrally
assignable tracking observer for K. This shows that (b)⇒ (a). For the converse,
assume (7.46) is a spectrally assignable tracking observer. Thus F can be chosen
with a preassigned characteristic polynomial. To show that (C,A) is observable,
suppose, to obtain a contradiction, that there exists a nonzero unobservable state
x0 ∈ O∗. Choose u = 0 and ξ0 such that zt = ζt for all t. Then, for each v, there
exists ξ0 with zt = K2At

22v = JFtξ0, or, equivalently, there exists a matrix Z that
satisfies

K2At
22 = JFtZ

for all t ≥ 0. Equivalently,

K2(zI−A22)
−1 = J(zI−F)−1Z. (7.48)

Since (7.46) is spectrally assignable, one can choose F so that the minimal
polynomial b(z) of F is coprime to the minimal polynomial a(z) of A22. Then the
poles of the rational functions on both sides of (7.48) are disjoint. Therefore, both
sides must be zero, i.e.,

K2(zI−A22)
−1 = 0 = J(zI−F)−1Z,

in contradiction to the observability of (K2,A22). This completes the proof. �
Our next objective is the characterization of several classes of observers

Σest =

{
ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt ,
(7.49)
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defined in the state space F
q. This includes the characterization of minimal-

order observers as a special case, relating, for example, minimal-order q tracking
observers (7.49) with maximal conditioned invariant subspaces of codimension q.
It is tacitly assumed throughout the subsequent arguments that (7.49) is observable.
Our analysis is done in essentially two ways, geometrically and functionally. For the
case of detectability, it will always be assumed that the underlying field is a subfield
of C. Our results remain in force for all fields F endowed with the discrete topology.
In that case, detectability is equivalent to reconstructibility.

Theorem 7.24. Let the linear system

Σsys :=

⎧
⎨

⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt

(7.50)

act in the state space Fn. It is assumed that the pair (

(
C
K

)
,A) is observable and C

and K are both of full row rank. Let ZC(z),ZK(z) be defined by (7.16).

1. The following conditions are equivalent:

(a) There exists a tracking observer for K of order q.
(b) There exists a conditioned invariant subspace V ⊂ F

n, of codimension q,
satisfying

V ∩KerC ⊂ KerK. (7.51)

(c) There exist proper rational functions Z1(z),Z2(z), with McMillan degree of(
Z1(z) Z2(z)

)
less than or equal to q, that solve

(
Z1(z) Z2(z)

)
(

C
zI−A

)
= K (7.52)

or the equivalent equation

ZK(z) = Z1(z)ZC(z)+Z2(z). (7.53)

2. The following statements are equivalent:

(a) There exists an order q asymptotic tracking observer for K.
(b) There exists an outer detectable subspace, with codimD = q, satisfying

D ∩KerC ⊂ KerK. (7.54)

(c) There exist strictly proper, stable rational functions Z1(z),Z2(z), with
McMillan degree of

(
Z1(z) Z2(z)

)
equal to q, that solve (7.53).
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3. The following conditions are equivalent:

(a) There exists an order-q, spectrally assignable family of tracking observers
for K.

(b) There exists an outer observability subspace O of codimension q satisfying

O ∩KerC ⊂ KerK. (7.55)

(c) There exist polynomial matrices P1(z) and P2(z) that solve (7.53).

Proof. Part 1. (a)⇔ (b).
Assume that a q-dimensional tracking observer exists and is given by (7.49). By

Theorem 7.17, there exists a solution to the observer Sylvester equations (7.30).
By Proposition 7.21, it can be assumed without loss of generality that Z is of full
row rank. For minimal tracking observers this is automatically satisfied. Otherwise,
the observer order could be further reduced, contradicting the assumption that the
observer has minimal order. Define now V = KerZ. The equation

ZA =
(

F G
)
(

Z
C

)

implies

AKer

(
Z
C

)
⊂ KerZ

or, equivalently,

A(V ∩KerC)⊂ V ,

which shows that V is a conditioned invariant subspace. By Theorem 7.17, there
exist F and Z that satisfy the Sylvester equations (7.30). In particular, ZA=FZ+GC
shows that V =KerZ is conditioned invariant. Moreover, the equation K = JZ+EC
implies the inclusion

V ∩KerC = Ker

(
Z
C

)
⊂ KerK.

Z having row rank implies rankZ = q. The equality dimKerZ = n− rankZ implies
codimV = q.

To prove the converse, assume there exists a conditioned invariant subspace V
of codimension q satisfying the inclusion (7.51). Let Z ∈ F

q×n be of full row rank q
such that KerZ = V . The inclusion (7.51) implies the factorization
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K =
(

J E
)
(

Z
C

)
.

Since V is a conditioned invariant subspace, there exists an output injection L
such that (A− LC)KerZ ⊂ KerZ. This inclusion implies the existence of F ∈
F

q×q for which Z(A− LC) = FZ. Defining G = ZL and H = ZB, the Sylvester
equations (7.30) and an order q observer are obtained.

(a)⇔ (c).
Assume that Σest, given by (7.49), is an order-q tracking observer. Define the

transfer function

(
Z1(z) Z2(z)

)
=

[
F G Z
J E 0

]
, (7.56)

that is,

Z1(z) = J(zI−F)−1G+E,
Z2(z) = J(zI−F)−1Z.

Using the Sylvester equations (7.30), we compute Z1(z)ZC(z)+Z2(z) =

= (J(zI−F)−1G+E)C(zI−A)−1 + J(zI−F)−1Z

= J(zI−F)−1GC(zI−A)−1 +(K− JZ)(zI−A)−1 + J(zI−F)−1Z

= K(zI−A)−1 + J(zI−F)−1[GC− (zI−F)Z +Z(zI−A)](zI−A)−1

= K(zI−A)−1 + J(zI−F)−1[GC+FZ−ZA](zI−A)−1

= K(zI−A)−1 = ZK(z),

i.e., we obtain a proper solution of (7.53), of McMillan degree q. Note that the
equivalence of the solvability of equations (7.52) and (7.53) is trivial.

Conversely, assume that, with ZC(z),ZK(z) defined in (7.16), Z1(z),Z2(z) is a
proper solution of equation (7.53), of McMillan degree q. Note that, since ZK(z)
and Z1(z)ZC(z) are both strictly proper, necessarily Z2(z) is strictly proper, too.

Therefore, a minimal realization of
(

Z1(z) Z2(z)
)

has the form

(
F G Z
J E 0

)
, which

has dimension q. Then

0 = K(zI−A)−1− (J(zI−F)−1G+E)C(zI−A)−1− J(zI−F)−1Z.

By inspection of the residue term, this implies K = JZ +EC. Substituting this back
into the previous equation, we compute
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0 = (JZ +EC)(zI−A)−1− (J(zI−F)−1G+E)C(zI−A)−1− J(zI−F)−1Z

= JZ(zI−A)−1− J(zI−F)−1GC(zI−A)−1− J(zI−F)−1Z

= J(zI−F)−1[(zI−F)Z−GC−Z(zI−A)](zI−A)−1

= J(zI−F)−1[−FZ−GC+ZA](zI−A)−1.

By the nonsingularity of zI−A and the observability of the pair (J,F), we conclude
that ZA−FZ−GC = 0. Defining H = ZB, it follows that (7.29) is a tracking observer
of dimension at most q.

Proof of the equivalence (a)⇔ (b) in part 4.
Assuming there exists an outer detectable subspace D that satisfies (7.54), there

exists an output injection map L for which (A− LC)D ⊂ D and the induced map
(A−LC)|X /D is stable. As in part 1, we set D = KerZ for some surjective linear
transformation Z; then, by Lemma 3.8, there exists a map F that satisfies Z(A−
LC) =FZ, i.e., ZA−FZ =GC with G = ZL, as well as maps J and E , with K = JZ+
EC. The stability of the induced map (A−LC)|X /D and the isomorphism F � (A−
LC)|X /D imply the stability of F . Finally, we define H = ZB. Thus, equations (7.30)
have been derived.

Conversely, assume Σest is an asymptotic tracking observer for Σsys. By Propo-
sition 7.21, there exists a reduced-order observer for which the Sylvester equations
(7.30) are satisfied, with Z of full row rank q ≤ q. By the surjectivity of Z, there
exists an L for which G = ZL, and hence Z(A−LC) = FZ holds. Moreover, since
K = JZ+EC, D = KerZ is a conditioned invariant subspace of codimension q≤ q
that satisfies (7.54). By the surjectivity of Z, the map (A−LC)|Fn/D is isomorphic
to F . Since F is stable, D is an outer detectability subspace of codimension q≤ q.

(a)⇔ (c)
Assume the Sylvester equations (7.30) hold, with F stable. Then Z1(z) and

Z2(z), as defined in (7.56), are necessarily proper and stable. Conversely, assume
equation (7.52) is solvable with strictly proper and stable Z1(z) and Z2(z). Choose a
minimal realization

(
F G Z
J E 0

)

of
(

Z1(z) Z2(z)
)
. Necessarily, F is stable. By part 1, equations (7.30) are satisfied

with F stable.
Proof of the equivalence (a)⇔ (b) in part 5.
Assume there exists a spectrally assignable family of observers (7.29). The

subspace O = KerZ is a conditioned invariant subspace such that, for each
polynomial f (z) of degree equal to codimO , there exists a friend L of O for which
the characteristic polynomial of F is f (z). Necessarily, O is an outer observability
subspace.
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Conversely, assume that O is an observability subspace of codimension q that
satisfies (7.55). Let O have the kernel representation O = KerZ, with Z surjective.
By the definition of observability subspaces, for each polynomial f (z) of degree
q there exists a friend L of O for which Z(A− LC) = FZ and F has f (z) as
its characteristic polynomial. From the inclusion (7.55) it follows that there exist
unique J and E for which K = JZ +EC. Finally, by defining G = ZL, the required
family of observers is obtained.

(c)⇔ (b)
Let O∗ denote the unobservability subspace, i.e., the smallest outer observability

subspace of (C,A). Assume that there exists an outer observability subspace O
that is contained in the kernel of K. Thus O∗ ⊂ KerK, i.e., with respect to the
representation (7.9), one has K2 = 0. Since (C1,A11) is observable, there exist
polynomial matrices P1(z) and P2(z), with P1(z)C1 +P2(z)(zI−A11) = K1. Thus

(
P1(z) P2(z) 0

)
⎛

⎝
C1 0

zI−A11 0
−A21 zI−A22

⎞

⎠=
(
K1 0

)
,

and a polynomial solution of (7.53) was constructed.
Conversely, let P1(z),P2(z) denote a polynomial solution to (7.53). Then

P1C(zI−A)−1 +P2(z) = K(zI−A)−1.

Choose an unobservable state x ∈O∗. Thus C(zI−A)−1x = 0, and therefore

P2(z)x = K(zI−A)−1x.

Since the left-hand side is polynomial and the right-hand side is strictly proper, we
conclude K(zI − A)−1x = 0 and P2(z)x = 0 for all x ∈ O∗. This implies Kx = 0,
i.e., O∗ ⊂ KerK. This proves the converse. Moreover, x = col(u,v), with u = 0 and
K2(zI −A22)

−1v = K(zI −A)−1x = 0. Thus the observability of (K2,A22) implies
O∗ = {0}. This shows the observability of (C,A). �
Remarks: 1. It has already been noted that trackability is a weak concept. There-

fore, one expects that a tracking observer for Σsys, given by (7.45), should always
exist. This is indeed the case. One can define the observer as

ξt+1 = Aξt +But ,

ζt = Kξt ,
(7.57)

and check that it is a tracking observer. Also, note that one strictly proper solution
of (7.52) is given by

(
Z1(z) Z2(z)

)
=
(

0 K(zI−A)−1
)
. This also leads to the

observer (7.57). Finally, the zero subspace is a conditioned invariant subspace for
(C,A) and is contained in KerK. This allows us to take Z = I and, hence, from
the Sylvester equations, show that F = A and J = K. So, once again, we are back
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to the observer (7.57). Such an observer is of course totally useless because it
disregards all the observed data y.

2. Note that the existence of fixed-order tracking observers with preassignable
spectra does not necessarily imply the existence of a suitable observability
subspace, not even in the minimal-order case.

3. Clearly, the existence of a spectrally assignable family of observers implies the
existence of an asymptotic observer. In particular, part 3 (c) of Theorem 7.24
should imply part 2 (c), and in the same way, part 3 (d) should imply part 2 (d).
This can be verified directly using partial realization theory, a topic that will not
be discussed in this book.

It may be of interest to understand the conditions under which the observer
equations (7.49) can be simplified to the form ζt+1 =Fζt +Gyt +Hut . The following
proposition addresses this question and gives a geometric characterization for the
existence of strongly tracking observers.

Proposition 7.25. Consider the system

Σsys :=

⎧
⎨

⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt .

It is assumed that both C and K have full row rank and that (

(
C
K

)
,A) is

observable.

1. A tracking observer

Σest :=

{
ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt ,
(7.58)

with (J,F) observable, is a strongly tracking observer if and only if J is
nonsingular. In that case, we may assume without loss of generality that the
observer is given by

ζt+1 = Fζt +Gyt +Hut . (7.59)

2. A strongly tracking observer of the form (7.59) exists if and only if KerK is a
conditioned invariant subspace. In this case, the error dynamics are given by

et+1 = Fet . (7.60)

Proof. 1. Assume J in (7.58) is nonsingular. The error dynamics are given
by (7.34), and hence

et+1 = Jεt+1 = JFεt = JFJ−1Jεt = JFJ−1et .
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This shows that et = (JFJ−1)t−1e0, and hence e0 = 0 implies et = 0, i.e., Σest is
a strongly tracking observer.

Conversely, assume that Σest is a strongly tracking observer. The error
dynamics are given by (7.34), and hence et = JFt−1ε0. By the property of
strong tracking, e0 = 0 implies et = 0 for all t ≥ 0, i.e., ε0 ∈ ⋂

KerJFt−1. By
the observability of the pair (J,F), we conclude that e0 = 0 implies ε0 = 0. This
shows that J is injective and, hence, since it was assumed that J has full row
rank, actually invertible. Substituting ξ = J−1ζ into the observer equation and
multiplying from the left by J, ζt+1 = (JFJ−1)ζt + (JG)yt + (JH)ut follows.
Modifying appropriately the definitions of F,G,H, equation (7.59) is proved.

2. Assume (7.59) is a strongly tracking observer. By Theorem 7.17, there exists a
map Z satisfying the following Sylvester equations:

ZA = FZ+GC,
H = ZB,
K = Z.

Letting x ∈ KerK ∩KerC implies K(Ax) = 0, i.e., Ax ∈ KerK, so KerK is a
conditioned invariant subspace.

Conversely, assume KerK is a conditioned invariant subspace. Letting Z = K,
there exists a map L such that (A− LC)KerK ⊂ KerK, and using, once again
Lemma 3.8, we infer that K(A− LC) = FK for some L. Thus KA−FK = GC,
with G = KL. Setting J = I and defining H = KB, we are done. That the error
dynamics are given by (7.60) follows from (7.34) and the fact that J = I.

�
This section ends with some ideas on state-space constructions of functional

observers. Theorem 7.24 contains equivalent characterizations for minimal-order
observers but does not give the minimal order of a tracking observer or a way
of computing such an observer. From a practical point of view, it is important to
have a systematic way of constructing observers, and, for computational efficiency,
it is important to have the order of the observer minimal. These questions are
addressed next. To this end, assume Σest, defined by (7.49), is a minimal-order
tracking observer for system (7.50). By Theorem 7.17, there exists a solution Z of
the observer Sylvester equations (7.30), and, by Proposition 7.21, it may be assumed
without loss of generality that Z has full row rank. Define now V = KerZ. The
first equation in (7.30) means that A(V ∩KerC) ⊂ V , i.e., that V is a conditioned
invariant subspace, whereas the last equation in (7.30) means that V ∩KerC ⊂
KerK. In view of the geometric characterizations given in Theorem 7.24, to find
minimal-order observers for system (7.28), one must find all maximal dimensional
conditioned invariant subspaces V that satisfy V ∩KerC ⊂ KerK. Since the set
of all conditioned invariant subspaces is closed under intersections but not under
sums, one must approach the minimality question differently. In spirit, we follow
Michelangelo’s dictum: “Carving is easy, you just go down to the skin and stop.”
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Therefore, to get a minimal-order tracking observer, one must choose a minimal

rank extension
(

Z

C

)
for which V = KerZ is conditioned invariant and

V ∩KerC = Ker

(
Z
C

)
⊂ KerK. (7.61)

By the minimality of such an extension, Z necessarily has full row rank. It is easy
to fulfill the second requirement, simply by choosing Z = K, which implies

Ker

(
Z
C

)
= Ker

(
K
C

)
⊂ KerK.

There are two problems with this choice, of which the first one is minor. Since, in
the case where KerK and KerC have a nontrivial intersection, K can be reduced
modulo C to get a lower rank extension K′. The second problem is due to the fact
that, in general, there is no reason why V = KerK should be conditioned invariant.
(But, as we shall see in Example 7.32, it may.) One way to overcome this is to add,
if necessary, additional terms to Z. An easy way to do this is to set

Z =

⎛

⎜⎜
⎜
⎝

KAn−1

...
KA
K

⎞

⎟⎟
⎟
⎠
.

Clearly, KerZ is not only a conditioned invariant subspace but actually an invariant
one. However, in general, the constructed Z does not have full row rank and thus
would lead to a nonminimal observer. The remedy to these two problems is to
maintain a fine balance between increasing the rank of Z sufficiently so that KerZ
is conditioned invariant and (7.61) being satisfied, but small enough to preserve
the maximality of the dimension of KerZ and, hence, leading to a minimal-order
functional observer. This will be treated in Theorem 7.27.

To formalize the reduction process, the following proposition, which is of interest
on its own, is stated and proved.

Proposition 7.26. 1. Let S∈ F
n×q and T ∈ F

n×p be of full column rank. Then there
exists S′ ∈ F

n×r, of full column rank, such that

ImS′ ⊂ ImS,

ImS′+ ImT = ImS+ ImT,

ImS′ ∩ ImT = {0},

implying the direct sum representation ImS+ ImT = ImS′ ⊕ ImT .
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2. Let K ∈ F
q×n and C ∈ F

p×n be of full row rank. Then there exists K′ ∈ F
r×n, of

full row rank, such that

KerK′ ⊃ KerK,

KerK′ ∩KerC = KerK∩KerC,

KerK′+KerC = F
n,

i.e., KerK ∩KerC is the transversal intersection of KerK′ and KerC, which
implies the direct sum representation

F
n/(KerK′ ∩KerC) = KerK′/(KerK′ ∩KerC)⊕KerC/(KerK′ ∩KerC).

Moreover,

r = rankK′ = codimKerK′.

Proof. 1. Noting that S is assumed to be of full column rank, it follows that,
with Si being the columns of S, the set B = {S1, . . . ,Sq} is a basis for ImS.
Let {R1, . . . ,Rr} be a basis for ImS ∩ ImT . By the basis exchange theorem,
there exist r elements of B, which without loss of generality one can take to
be the first r, for which {R1, . . . ,Rr,Sr+1, . . . ,Sq} is a basis for ImS. Defining
S′ =

(
Sr+1 . . . Sq

)
, we are done.

2. The first assertion follows from the first part by duality considerations, while the
second one follows from the identity dimKerK′+ dimImK′ = n.

�
Let

Σsys :=

⎧
⎨

⎩

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt

be a linear system acting in the state space Fn. Assume that (

(
C
K

)
,A) is observable

and that both C and K are of full row rank. Define the ith partial observability
matrix Oi(K,A) by

Oi(K,A) :=

⎛

⎜⎜
⎜
⎝

KAi−1

...
KA
K

⎞

⎟⎟
⎟
⎠
.
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Define, inductively, a sequence of full row rank matrices {Zi} as follows:
Set Z0 = 0, and proceed inductively. Assume Z0, . . . ,Zi are constructed. If KerZi ∩
KerC is conditioned invariant, then one sets Z = Zi and stops. Otherwise, Proposi-
tion 7.26 is applied to construct Zi+1, which satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

KerZi+1 ⊃ KerOi+1(K,A),

Ker

(
Zi+1

C

)
= Ker

⎛

⎝
KAi

Zi

C

⎞

⎠= Ker

(
Oi+1(K,A),

C

)

KerZi+1 +KerC = F
n.

(7.62)

Theorem 7.27. Let Zi be constructed as above. The following assertions are
true:

1. For all i, Ker

(
Zi+1

C

)
⊂ Ker

(
Zi

C

)
.

2. Let ν be the smallest index with

Ker

(
Zi+1

C

)
= Ker

(
Zi

C

)
. (7.63)

Setting Z = Zν , the subspace V = KerZ is a maximal conditioned invariant
subspace that satisfies (7.61).

3. There exist matrices F ∈ F
q×q, G ∈ F

q×p, J ∈ F
k×q, and E ∈ F

k×p for which the
following Sylvester equations are satisfied:

ZA = FZ+GC,

K = JZ +EC.

Then the system

Σest :=

{
ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt

is an order-q tracking observer for K, where

q = rankZ = codimKerZ. (7.64)

Proof. 1. Follows from the equality Ker

(
Zi+1

C

)
= Ker

⎛

⎝
KAi

Zi

C

⎞

⎠.

2. The equalities (7.62) and (7.63) imply the equality
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Ker

(
Oi(K,A)

C

)
= Ker

(
Oi+1(K,A)

C

)
,

which in turn implies the inclusion

AKer

(
Oi(K,A)

C

)
⊂ Ker

(
Oi+1(K,A)

C

)
.

Using this, one computes

A(V ∩KerC) = AKer

(
Zν
C

)
= AKer

(
Oν(K,A)

C

)
⊂ Ker

(
Oν+1(K,A)

C

)

= Ker

(
Zν+1

C

)
= Ker

(
Zν
C

)
= V ,

showing that V is conditioned invariant. Since, for i≥ 1, one has KerOi(K,A)⊂
KerK, it follows that

V ∩KerC = Ker

(
Zν
C

)
= Ker

(
Oν(K,A)

C

)
⊂ KerK,

i.e., (7.61) holds.
3. Follows from Theorem 7.24.

�
The decision whether or not q, defined in (7.64), is the minimal order of tracking

observers is left as an open problem. Next, we consider a few special cases of
Theorem 7.27.
Case I: KerC⊂KerK. This means that unobserved states are not to be estimated, or,
equivalently stated, states to be estimated are directly observed. From the inclusion
KerC ⊂ KerK one deduces that there exists an E for which K = EC. This implies
Z = 0, F = 0, G = 0, and J = 0. Thus, as intuitively expected, the existence of a
zero-order or, equivalently, a nondynamic, observer for K is obtained.
Case II: K = I, i.e., tracking the state. To this end, one needs a map Z for which

Ker

(
Z
C

)
⊂ KerK = {0}. The easiest choice, though not necessarily the minimal

one, is to take Z = I and E = 0 and G = 0. This implies J = I and F = A. Thus, a
tracking observer is given by

Σest :=

{
σξ = Aξ ,

ζ = ξ ,

and the Luenberger state observer has been rederived. To obtain a reduced-order

state observer, Z is chosen so that
(

Z

C

)
is nonsingular.
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Case III: C = 0, i.e., no observations are available. By our assumption of the

observability of the pair (
(

C

K

)
,A), (K,A) is necessarily an observable pair. Let

K1, . . . ,Kq be the rows of K. Since K is assumed to be of full row rank, the rows
are linearly independent. The dual Kronecker indices are defined by the following
deletion process:

Starting from the top of the observability matrix

col(K1, . . . ,Kq,K1A, . . . ,KqA, . . . ,K1An−1, . . . ,KqAn−1),

delete all row vectors that are linearly dependent on the set of preceding ones. In
this way one obtains, up to a permutation of the rows, a matrix of the form

Z = col(K1,K1A, . . . ,K1Aν1−1, . . . ,Kq, . . . ,KqAνq−1).

The observability of (K,A) implies ∑q
i=1 νi = n and, hence, the invertibility of Z.

Defining F = ZAZ−1, J = KZ−1, then

Σest :=

{
σξ = Fξ ,

ζ = Jξ

is a tracking observer. For tracking, given an initial condition x0 of the state system,
one chooses ξ0 = Zx0.

Example 7.28. This example is taken from Fernando, Trinh, Hieu and Jennings
(2010). One takes A,C,K as follows:

A =

⎛

⎝
−1 0 0
0 −1 0
0 0 2

⎞

⎠ , C =
(

1 1 0
)
, K =

(
1 2 0

)
.

Note that the rows of C and K are linearly independent, so Z1 = K. Computing
KA =

(−1 −2 0
)
, which is linearly dependent on K, we conclude that Z = Z1 = K.

Since KerZ+KerC = F
3, V = KerZ is a tight conditioned invariant subspace. It is

easily checked that the observer Sylvester equations have a unique solution given
by F =−1,G = 0,J = 1,E = 0, which gives an asymptotic observer.

Example 7.29. Let A,C,K be as follows:

A =

⎛

⎜
⎜⎜
⎜
⎜
⎝

−1 0 0 0 0
1 −1 0 0 0
0 1 −1 0 0
0 0 0 1 0
0 0 0 1 1

⎞

⎟
⎟⎟
⎟
⎟
⎠
, C =

(
0 0 1 0 0

)
, K =

(
0 1 0 0 1

)
.
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In this example, the pair (C,A) is not observable, but

((
C
K

)
,A

)
is. Since C and K

are linearly independent, one gets Z1 = K. Computing

O5(K,A) =

⎛

⎜⎜
⎜
⎜
⎜
⎝

KA4

KA3

KA2

KA
K

⎞

⎟⎟
⎟
⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎜
⎜
⎝

−4 1 0 4 1
3 −1 0 3 1
−2 1 0 2 1
1 −1 0 1 1
0 1 0 0 1

⎞

⎟⎟
⎟
⎟
⎟
⎠
,

it is seen that the bottom four rows are linearly independent, but the top row depends
linearly on them. Therefore, Z = O4(K,A) and KerZ = {col(0,0,γ,0,0)|γ ∈ R}.
Since

A

⎛

⎜
⎜
⎜
⎜⎜
⎝

0
0
1
0
0

⎞

⎟
⎟
⎟
⎟⎟
⎠

=

⎛

⎜
⎜
⎜
⎜⎜
⎝

0
0
−1
0
0

⎞

⎟
⎟
⎟
⎟⎟
⎠
,

KerZ is actually an A-invariant subspace. It is easily checked that KerZ +KerC =
R

5, hence V = KerZ is a tight conditioned invariant subspace, which means that
the corresponding tracking observer is uniquely determined up to similarity. Using
the observer Sylvester equations, one obtains

F =

⎛

⎜
⎜
⎝

0 2 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎠ , G =

⎛

⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎠ , J =

(
0 0 0 1

)
, E =

(
0
)
.

7.5 Construction of Functional Observers

In Theorem 7.24, characterizations of various classes of observers in terms of
conditioned invariant, outer detectability, and outer observability subspaces appear.
Recalling that these subspaces have nice functional representations, given in
Proposition 6.67 and Theorem 6.72, it is only natural to attempt observer con-
struction using these representations. Key ingredients in the analysis are the
coprime factorization (7.19), the parameterizations (7.18) and (7.21), and the shift
realization (4.20).
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Consider the system

xt+1 = Axt +But ,

yt = Cxt ,

zt = Kxt ,

(7.65)

with A ∈ F
n×n,B ∈ F

n×m,C ∈ F
p×n,K ∈ F

k×n, assuming that

((
C
K

)
, A

)
is

observable. Let C,K,A have the representation (7.9), with respect to the direct sum
representation (7.10), and let

(
C1 0
K1 K2

)(
zI−A11 0
−A21 zI−A22

)−1

=

(
D11(z) 0
D21(z) D22(z)

)−1(
Θ11(z) 0
Θ21(z) Θ22(z)

)

be an adapted coprime factorization, i.e., satisfying conditions (1a)–(1c) of Theo-
rem 7.9. Under these assumptions the following assertions are true.

Theorem 7.30. 1. The map

Θ : X(
zI−A11 0
−A21 zI−A22

) −→ X(
D11(z) 0
D21(z) D22(z)

)

(
f1

f2

)
=Θ

(
ξ1

ξ2

)
=

(
Θ11(z) 0
Θ21(z) Θ22(z)

)(
ξ1

ξ2

) (7.66)

is an F[z]-isomorphism. Defining, via the shift realization,

A := S(
D11 0
D21 D22

), C

(
f1

f2

)
:=

(
(
D−1

11 0
)
(

f1

f2

))

−1

= (D−1
11 f1)−1,

K

(
f1

f2

)
:=

(
(−D−1

22 D21D−1
11 D−1

22

)
(

f1

f2

))

−1

=
(−D−1

22 D21D−1
11 f1 +D−1

22 f2
)
−1 ,

(7.67)

the intertwining relations

ΘA = AΘ , C =CΘ , K = KΘ (7.68)

are satisfied.
2. For the parameterization (7.18) of the set of rational solutions of (7.17), we can

choose a proper rational matrix W (z), with left coprime factorization

W (z) = T (z)−1L(z), (7.69)
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such that Z1(z) is proper. Let Q(z) be the l.c.l.m.(T (z),D22(z)), and let RD(z)
and RL(z) be left coprime polynomial matrices with

Q(z) = RD(z)D22(z) = RT (z)T (z). (7.70)

Then the parameterization (7.18) can be rewritten as

Z1(z) = Q(z)−1(−RD(z)D21(z)+RT (z)L(z)D11(z)),

Z2(z) = Q(z)−1 (−RT (z)L(z)Θ11(z)+RD(z)Θ21(z) RD(z)Θ22(z).
) (7.71)

3. Define maps

Z : X(
D11 0
D21 D22

) −→ XQ, F : XQ −→ XQ, G : Fp −→ XQ,

H : Fm −→ XQ, J : XQ −→ F
k, E : Fp −→ F

k

by

Z = πQ
(−RT L RD,

) |X(
D11 0
D21 D22

)

F = SQ,

G = −πQ

(
(−RT L RD,

)
(

D11

D21

)
(·)
)

H = ZB,
J =

(
Q−1(·))−1 ,

E = π+Q−1 (−RDD21 +RT LD11) .

(7.72)

Then the system

Σest =

{
ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt ,
(7.73)

defined in the state space XQ by these maps, is an observable tracking observer
for K with transfer functions

Z1(z) =

[
F G
J E

]
, Z2(z) =

[
F Z
J 0

]

of (F,G,J,E) and (F,Z,J,0), respectively. The realization (F,G,J,E) of Z1(z) is
always observable. It is reachable if and only if the polynomial matrices Q(z)
and −RT (z)L(z)D11(z)+RD(z)D21(z) are left coprime.
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Proof. The adapted coprime factorization leads to the intertwining relation

(
Θ11(z) 0
Θ21(z) Θ22(z)

)(
zI−A11 0
−A21 zI−A22

)
=

(
D11(z) 0
D21(z) D22(z)

)(
C1 0
K1 K2

)
.

Applying Theorem 3.21 shows that the map Θ , defined by (7.68), is an F[z]-module
isomorphism. The intertwining relations (7.66) are easily verified. This proves
part 1.

Part 2 follows from a straightforward substitution of (7.69) in the param-
eterization (7.18), using the identities D22(z)−1 = Q(z)−1RD(z) and T (z)−1 =
Q(z)−1RT (z).
Proof of part 3. Recall from Theorem 3.30 that

S(D11 0
D21 D22

)
(

f1

f2

)
= z

(
f1

f2

)
−
(

D11 0
D21 D22

)(
ξ1

ξ2

)
,

where

(
ξ1

ξ2

)
=

((
D11 0
D21 D22

)−1(
f1

f2

))

−1

. For f =

(
f1

f2

)
∈ X(

D11 0
D21 D22

),

using (7.67), one computes (ZA−FZ) f =

= πQ
(−RT L RD

)
S(

D11 0
D21 D22

)
(

f1

f2

)
− SQπQ

(−RT L RD
)
(

f1

f2

)

= πQ
(−RT L RD

)
(z

(
f1

f2

)
−
(

D11 0
D21 D22

)(
ξ1

ξ2

)
)−πQ

(−RT L RD
)

z

(
f1

f2

)

=−πQ
(−RT L RD

)
(

D11 0
D21 D22

)(
ξ1

ξ2

)
=−πQ

(−RT L RD
)
(

D11

D21

)
ξ1.

It was shown that, with C,A defined by (7.67) and Z,F,G by (7.72), the observer
Sylvester equation ZA = FZ +GC is satisfied. The equation K = JZ +EC can be
verified similarly. This completes the proof. �

A few remarks are in order.

1. The construction of the tracking observer (7.73) works for every left coprime
pair of polynomials T (z),L(z), with T (z) nonsingular. In particular, one does not
need to impose a properness assumption on

Z1 =−(TD22)
−1(TD21−LD11).
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However, if one wants to obtain the observer from a shift realization of Z1(z),
then W (z) = T (z)−1L(z) must be chosen such that Z1 is proper.

2. The unobservable subspace O∗(C,A) of system (7.65) has the representation

O∗(C,A) =
(

zI−A11 0
−A21 I

)
X(

I 0
0 zI−A22

)

and dimension degdet(zI−A22). Its image under Θ is given by

(
D11(z) 0
D21(z) I

)
X(

I 0
0 D22(z)

),

which has dimension degdetD22 = degdet(zI−A22).

3. The constructed tracking observer

Z1(z) =

[
F G
J E

]

can be written as in (7.71), with the shift realization defined in the state space
XTD22 . Clearly, dimXTD22 = degdet(T )+degdet(D22), and the term degdet(D22)
is the price of tracking the unobservable subspace O∗(C,A).

4. The choice of the rational matrix W (z) in Theorem 7.30 is closely related to
partial realizations; however, we will not follow this path in this book and instead
refer the reader to Fuhrmann (2008) for some of the details.

From Theorem 7.30 we deduce several special cases as corollaries.

Corollary 7.31. Consider system (7.65), with

((
C
K

)
,A

)
observable.

1. Assume that (C,A) is observable.

(a) The coprime factorization (7.5) reduces to

(
C
K

)
(zI−A)−1 =

(
D11(z) 0
D21(z) I

)−1(
Θ11(z)
Θ21(z)

)
.

(b) Choose a proper rational matrix W (z) with left coprime factorization W (z)=
T (z)−1L(z) so that Z1(z) in (7.18) is proper. Define maps

Z : XD11 −→ XT , F : XT −→ XT , G : Fp −→ XT ,

H : Fm −→ XT , J : XT −→ F
k, E : Fp −→ F

k
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by

Z = −πT L|XD11 ,

F = ST ,

G = −πT LD11(·),
H = ZB,
J = (T−1(·))−1,

E = π+(−D21 +T−1LD11).

(7.74)

Then system (7.73), defined by F,G,H,J,E, is a tracking observer for K.

2. Assume C = 0, i.e., there are no observations at all.

(a) The pair (K,A) is observable, and the coprime factorization (7.5) reduces to

K(zI−A)−1 = D22(z)
−1Θ22(z).

(b) The map Z : XzI−A −→ XD22 , defined as Zξ =Θ22(z)ξ , is an isomorphism,
and the Sylvester equation (7.42) reduces to ZA = FZ, with Z invertible and
K = JZ.

(c) The pair (J,F), defined in the state space XD22 by

F = SD22 ,

Jg = (D−1
22 g)−1,

is a tracking observer.

3. Assume the pair (C,A) is detectable.

(a) In the coprime factorization (7.5), the polynomial matrix D22(z) is stable.
(b) In the parameterization (7.18) of the set of rational solutions of (7.17), we

can choose the rational matrix W (z) with coprime factorization W (z) =
T (z)−1L(z) so that Z1(z) is proper and stable.

(c) System (7.73), defined by the F,G,H,J,E in (7.72), is an asymptotic tracking
observer for K.

Proof. Basically, this follows from Theorem 7.30. However, we add a few remarks.
A simple computation yields

X⎛

⎝D11 0
D21 I

⎞

⎠
=

{(
f (z)
0

)
| f (z) ∈ XD11

}
.

Note that the intertwining relation
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(
I 0

)
(

D11(z) 0
D21(z) I

)
= D11(z)

(
I 0

)
,

taken together with the trivial associated coprimeness relations, implies that the map

Φ : X(
D11 0
D21 I

)−→XD11 , defined by

(
f (z)
0

)
�→ f (z), is an F[z]-isomorphism. Using

this, the maps in (7.72) have the simplified form (7.74). �
It should be pointed out that, to compensate for the total absence of observations,

i.e., for the case C = 0, the order of a minimal tracking observer is necessarily equal
to the dimension of the state space of the system.

To clarify the issues of observer characterization and construction, we present
an example from two points of view: the state-space formulation on the one hand
and the functional model formulation on the other. Each formulation has its own
advantages and insights.

Example 7.32. Let A,C,K be as follows:

A =

⎛

⎝
0 0 0
1 0 0
0 1 0

⎞

⎠ , C =
(

0 1 0
)
, K =

(
0 0 1

)
.

Computing Z1 = K =
(

0 0 1
)
, KA =

(
0 1 0

)
, clearly,

Ker

(
K
C

)
= Ker

(
0 0 1
0 1 0

)
⊂ Ker

(
0 1 0

)
= KerKA,

which shows that V = KerK is a conditioned invariant subspace satisfying V ∩
KerC ⊂ KerK. Obviously, it is a maximal such subspace. The Sylvester equations
lead to an observer defined by

F = (0), G = (1)
J = (1), E = (0).

Since the matrix

(
K
C

)
has full row rank, this representation is uniquely determined.

Computing further KA2 =
(

1 0 0
)
, and setting Z =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠, one has ZA =

⎛

⎝
0 0 0
1 0 0
0 1 0

⎞

⎠, and the equation ZA = FZ+GC implies
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F =

⎛

⎝
0 0 −t0
1 0 −t1
0 1 −t2

⎞

⎠ ,G =

⎛

⎝
t0
t1
t2

⎞

⎠ . (7.75)

The nonuniqueness of the constructed minimal-order observer is a consequence of
the inequality dim(KerZ +KerC) = 2 < 3 = dimF

3.
From a polynomial point of view, one has X = Xz3 and A = [Sz3 ]. Since KerK =

{ξ0 + ξ1z}, the maximal conditioned invariant subspace V contained in KerK is
the zero subspace; hence, V = Xz3 ∩ t(z)F[z], with t(z) a polynomial of degree
greater than or equal to 3. To obtain minimal-order observers, we take degt(z) = 3.
Setting t(z) = t0 + t1z+ t2z2 + z3, we compute F = [πt |Xz3 ] and G =−[πt z3]. Simple
computations lead to (7.75).

7.6 Exercises

1. Consider the undamped harmonic oscillator

ẋ1(t) = x2(t),

ẋ2(t) =−ω2x1(t)+ u(t),

y(t) = x2(t).

(a) Determine an observer

ż(t) = (A−LC)z(t)+Ly(t)+Bu(t),

u(t) = Fz(t)+ v(t),

y(t) = x2(t),

such that the eigenvalues of the closed-loop system

(
A BF

LC A−LC+BF

)

are −ω±√−1ω , −ω ,−ω .
(b) Determine a one-dimensional reduced observer.

2. Consider the third-order system ẋ = Ax+ bu,y = cx, with α < 0,β �= 0,k �= 0,
and
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A =

⎛

⎝
0 1 0
0 −β 1
0 0 α

⎞

⎠ , b =

⎛

⎝
0
k
0

⎞

⎠ , c =
(

1 0 0
)
.

(a) Prove that the system is stabilizable and observable.
(b) Find an observer of order 3 such that the eigenvalues of the closed-loop

system are −1,−2,−3,−4,−5,α .

3. Let (A,B) ∈ R
n×n×R

n×m. Assume that the unreachable modes λ ∈ C of

xt+1 = Axt +But

are unstable, i.e., satisfy |λ | ≥ 1. Then, for every C ∈ R
p×n with C �= 0, there

exists an initial state x0 and an input sequence (ut) such that Cxt �→ 0 for t → ∞.
4. Assume that G(z) = D+C(zI−A)−1B is a p×m proper rational function such

that G(z)u(z) is stable for all proper rational functions u(z) ∈ F(z)m. Show that
D = 0 and C(zI−A)−1B = 0.

5. Assume that the output sequence {yt} of the linear system

xt+1 = Axt +But ,

yt = Cxt +Dut

satisfies limt→∞ yt = 0 for all initial conditions x0 ∈ F
n and all input sequences

u = (ut). Assume further that all unreachable modes of A are unstable. Show that
C = 0 and D = 0.

6. Let (J,F) be an observable pair, and let (A,B) be reachable. Prove the following
result from Fuhrmann and Helmke (2001a): for matrices M and N one has

J(zI−F)−1(zM +N)(zI−A)−1B = 0

if and only if there exist constant matrices X and Y with JY = 0 and XB = 0
satisfying

zM+N = X(zI−A)− (zI−F)Y.

7.7 Notes and References

Probably the first application of modern control theory was that of system stabiliza-
tion (Chapter 6), and this was done by state feedback. Since the state of a system is
hardly ever available, the immediate question arises of how to estimate the state from
measurements. This question immediately leads to the fields of optimal filtering
and observer theory. Although attempts at state estimation were made earlier, it is



7.7 Notes and References 407

generally accepted that the origin of observer theory can be traced to Luenberger
(1964). What is surprising is that, over the years, the analysis and synthesis of
functional observers, i.e., observer theory, did not attract the appropriate attention
from the control community that it so rightly deserves. Moreover, in the system
literature, there are several gaps, faulty proofs, and lack of insights that only now
are beginning to be filled in. Refer to Trumpf (2013) for details on these gaps in the
development of observer theory. In this connection we mention also, for example,
Fuhrmann and Helmke (2001) for a fairly complete account of asymptotic observers
and to the Ph.D. thesis by Trumpf (2002), which focuses on certain geometric
properties that relate to observer theory.

In recent years, the behavioral approach, an approach that avoids the input/output
point of view, has been initiated and developed by Willems (1986, 1991) and
coworkers. For a study of observers in the behavioral context we refer to the work by
Valcher and Willems (1999) and Trumpf, Trentelmann and Willems (2014); see also
Fuhrmann (2008), who pointed out how conventional state observer theory fits into
the behavioral framework. A full study of the connections between conventional and
behavioral observer theories has not yet been undertaken.

The concept of reconstructibility is important for cases dealing with dead-beat
observers, a case that will not be addressed in this book. For a treatment of dead-
beat obsevers, see Bisiacco, Valcher and Willems (2006) and Fuhrmann and Trumpf
(2006). The parameterization results, given by (7.18) when the pair (C,A) is not
observable and by (7.21) when it is, relate to partial realizations; they are also
reminiscent of the Youla–Kucera parameterization as outlined in Chapter 6. In fact,
from the first equation of (7.21) it follows that W = −D21D−1

11 − Z1D−1
11 , which

shows that W (z) is a solution to a nice partial realization problem induced by
−D21D−1

11 . Minimal McMillan degree solutions to (7.17) can be obtained from
minimal McMillan degree solutions of the partial realization problem. We refer the
reader to Fuhrmann (2008) for a full analysis of the observable case.

The linear equation ZK(z) = Z1(z)ZC(z) + Z2(z) in proper rational functions
Z1(z),Z2(z) plays a central role in our approach to functional observers. Since the
space of proper rational functions is a valuation ring, and hence a local ring, this
task amounts to studying linear matrix equations over a local ring. This fact may be
useful in developing solution algorithms for ZK(z) = Z1(z)ZC(z)+Z2(z).

In Definition 7.16, we made a distinction between asymptotic observers and
asymptotic tracking observers. Theorem 7.17 left open the question of how to
characterize asymptotic observers. A natural question arises as to how to specify
extra conditions such that an asymptotic observer is also tracking. This issue has
been addressed by Trumpf (2013) for continuous-time systems. Some preparatory
results from Trumpf (2013) appear as Exercises 4–6. In the absence of a full proof,
this is stated as a conjecture.

Conjecture 7.33. Let the linear system (7.28) act in the state space R
n. Assuming

that all unreachable modes of the system are unstable, the system, defined in the
state space Rq by
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ξt+1 = Fξt +Gyt +Hut ,

ζt = Jξt +Eyt ,

is an observable, asymptotic observer for K if and only if F has all its eigenvalues
in the open unit disc, (J,F) is observable, and there exists a matrix Z ∈ R

q×n such
that

ZA−FZ = GC, H = ZB, K = JZ +EC.

In particular, under such an assumption, asymptotic observers are automatically
asymptotic tracking observers.

Under the assumption that the pair (A,B) is reachable, this was proved in Fuhrmann
and Helmke (2001a). See also Fernando, Jennings and Trinh (2011) for a claim
toward Conjecture 7.33. For a characterization of asymptotic observers in the
behavioral framework, see Trumpf, Trentelmann and Willems (2014).



Part III
Networks of Linear Systems



Chapter 8
Nonnegative Matrices and Graph Theory

The interconnections and coupling patterns of dynamical systems are best described
in terms of graph theory. This chapter serves the purpose of summarizing the main
results and tools from matrix analysis and graph theory that will be important for
the analysis of interconnected systems in subsequent chapters. This includes a proof
of the Perron–Frobenius theorem for irreducible nonnegative matrices using a con-
traction mapping principle on convex cones due to Birkhoff (1957). We introduce
adjacency matrices and Laplacians associated to a weighted directed graph and
study their spectral properties. The analysis of eigenvalues and eigenvectors for
graph adjacency matrices and Laplacians is the subject of spectral graph theory,
which is briefly summarized in this chapter; see the book by Godsil and Royle
(2001) for a comprehensive presentation. Explicit formulas for the eigenvalues and
eigenvectors of Laplacians are derived for special types of graphs such as cycles
and paths. These formulas will be used later on, in Chapter 9, in an examination of
homogeneous networks. The technique of graph compression is briefly discussed
owing to its relevance for the model reduction of networks. Properties of graphs
are increasingly important for applications to, for example, formation control and
molecular geometry. Therefore, a brief section is included on graph rigidity and the
characterization of Euclidean distance matrices.

We begin by establishing some notation to be used subsequently and presenting
some basic facts on Kronecker products of matrices over a field F. For rectangular
matrices A ∈ F

m×n,B ∈ F
k×l , the Kronecker product is defined as the mk× nl

matrix

A⊗B =

⎛

⎜
⎝

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

⎞

⎟
⎠ .

By this definition, the Kronecker product of an upper triangular matrix A with a
rectangular matrix B is block-upper triangular. In particular, the Kronecker product

© Springer International Publishing Switzerland 2015
P.A. Fuhrmann, U. Helmke, The Mathematics of Networks
of Linear Systems, Universitext, DOI 10.1007/978-3-319-16646-9_8
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B⊗ IN is of the form

B⊗ IN =

⎛

⎜
⎝

b11IN . . . b1lIN
...

. . .
...

bk1IN . . . bklIN

⎞

⎟
⎠ ,

while

IN⊗A = diag (A, . . . ,A) =

⎛

⎜
⎝

A . . . 0
...

. . .
...

0 . . . A

⎞

⎟
⎠ .

If A and B are invertible n×n and m×m matrices, respectively, then the Kronecker
product A⊗B is invertible and

(A⊗B)−1 = A−1⊗B−1.

The eigenvalues of A⊗B are the products λi(A)λ j(B) of the eigenvalues λi(A) and
λ j(B) of A and B, respectively. Therefore, the trace and determinant of A⊗B of
matrices A and B are tr (A⊗ B) = tr (A)tr (B) and det(A⊗ B) = det(A)m det(B)n.
Similarly, the eigenvalues of A⊗ Im + In ⊗ B are the sums λi(A) + λ j(B). The
following rules for the Kronecker product are easily verified:

(A⊗B)(C⊗D) = AC⊗BD,

(A⊗B)� = A�⊗B�.

Let vec(A) ∈ F
mn denote a column vector obtained by stacking the second column

of A under the first, then the third under the second, and so on. This leads to the
following important identity:

vec(ABC) =
(
C�⊗A

)
vec(B).

8.1 Nonnegative Matrices and Contractions

Let R+ denote the subset of all nonnegative real numbers. A matrix A ∈ R
n×n is

called nonnegative (positive) if all entries aij of A are nonnegative (positive) real
numbers. The notation for nonnegative and positive matrices

A≥ 0 ⇐⇒ aij ≥ 0, i, j = 1, . . . ,n,

A > 0 ⇐⇒ aij > 0, i, j = 1, . . . ,n
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should not be confused with the notion of positive definiteness for symmetric
matrices. To distinguish these notions from each other, the positive (semi-) defi-
niteness of real symmetric matrices A = A� ∈R

n×n is denoted by

A 0 ⇐⇒ x�Ax≥ 0 for all x ∈ R
n,

A� 0 ⇐⇒ x�Ax > 0 for all x ∈ R
n \ {0}.

The sum and product of finitely many nonnegative matrices is nonnegative.
Moreover, the scalar product λA of a nonnegative matrix A with a nonnegative real
number λ is a nonnegative matrix. Thus the set of nonnegative matrices forms a
closed convex cone Rn×n

+ in the matrix space Rn×n, which is multiplicatively closed.
The set of nonnegative matrices forms the largest class of matrices that leave

the cone Rn
+ invariant. The Hilbert metric allows for a natural generalization of this

situation. We refer to the papers by Birkhoff (1957), Bushell (1986), and Kohlberg
and Pratt (1982) for additional background. Let C⊂R

n denote a closed convex cone
that is pointed, i.e., C has nonempty interior and satisfies C∩ (−C) = {0}. We use
the notation x ≥ 0 whenever x ∈ C and x > 0 whenever x is an interior point of C.
Recall that the dual cone of C is defined as

C∗ = {λ ∈ R
1×n | λ (x)≥ 0}.

Clearly, the dual cone (Rn
+)
∗ of Rn

+ is equal to R
1×n
+ . We mention, without proof,

the well-known fact that for pointed closed convex sets the interior of the dual cone
C∗ is nonempty. Note further that for C a closed pointed convex cone, every linear
functional λ in the interior of C∗ satisfies λ (x) > 0 for all nonzero x ∈ C. This
implies the following lemma.

Lemma 8.1. Let C be a closed convex and pointed cone in R
n. Then the subset

C1 = {x ∈C | λ (x) = 1} is compact for all interior points λ of the dual cone C∗.

Proof. Clearly, C1 R
n. Suppose C1 is unbounded. Then there exists a sequence xk ∈

C1, with ‖xk‖ → ∞ and λ (xk) = 1 for all k. Thus λ ( xk
‖xk‖ ) converges to 0. By the

compactness of the unit sphere in R
n, there exists an infinite subsequence ym,m ∈N

of xk
‖xk‖ that converges to a unit vector y ∈C. Thus λ (y) = limm→∞ λ (ym) = 0. But λ

is in the interior of C∗, and therefore λ (x)> 0 for all x ∈C\{0}. Thus y = 0, which
is a contradiction. �

A projective metric on C is a map d : C×C −→ R∪ {∞} such that for all
x,y,z ∈C (and r ≤ ∞, r+∞ = ∞ = ∞+∞ for all real r):

1. d(x,y) = d(y,x);
2. d(x,y)≥ 0, d(x,y) = 0 if and only if x = λy for some real λ > 0;
3. d(x,z) ≤ d(x,y)+ d(y,z).

Conditions 1–3 imply the identity

4. d(λx,μy) = d(x,y) for all λ > 0,μ > 0.
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Let

M(x,y) = inf{λ ≥ 0 | x≤ λy},

m(x,y) = sup{λ ≥ 0 | x≥ λy}= 1
M(y,x)

.

The following properties are easily seen:

0≤ m(x,y)≤M(x,y) ≤ ∞,

m(x,y)y≤ x≤M(x,y)y.

Definition 8.2. The Hilbert metric on C is a projective metric defined by

d(x,y) = log
M(x,y)
m(x,y)

= logM(x,y)+ logM(y,x).

Here, d(0,0) = 0; d(x,0) = d(0,y) = ∞ for x,y ∈C.

The preceding definitions are illustrated by the following examples.

Example 8.3. (a) Let C = R
n
+. Then for all x > 0,y > 0

m(x,y) = min
i=1,...,n

xi

yi
, M(x,y) = max

i=1,...,n

xi

yi
.

Thus the Hilbert metric on R
n
+ is

d(x,y) = max
1≤i, j≤n

log
xiy j

x jyi
, for x > 0,y > 0.

(b) Let C = {X ∈ R
n×n | X = X�  0} denote the closed convex cone of positive

semidefinite real symmetric matrices. Let λmin(X) and λmax(X) denote the
smallest and largest eigenvalues of a symmetric matrix X , respectively. For
positive definite matrices X � 0,Y � 0 then

m(X ,Y ) = λmin(XY−1), M(X ,Y ) = λmax(XY−1).

Thus the Hilbert metric of two positive definite matrices X � 0,Y � 0 is

d(X ,Y ) = log
λmax(XY−1)

λmin(XY−1)
.

For the proof of the following result see Kohlberg and Pratt (1982).

Theorem 8.4. Let C be a closed convex cone in R
n that is pointed. Let λ ∈C∗ be

an interior point of C∗. Then the following properties are satisfied:
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1. The Hilbert metric is a projective metric on C. The distance satisfies d(x,y)< ∞
if and only if x and y are interior points of L(x,y)∩C. In particular, d(x,y) < ∞
for all interior points x,y of C.

2. Let C1 := {x ∈C | λ (x) = 1}. Then (C1,d) is a compact metric space, and there
exists a constant γ > 0 with

‖x− y‖ ≤ γd(x,y) ∀x,y ∈C1.

3. Let x,y ∈C be such that d(x,y)< ∞. Then there exist a,b ∈C such that

d(x,y) = log
‖a− y‖‖x− b‖
‖a− x‖‖y− b‖.

A linear map A : Rn −→ R
n is called C-monotonic whenever AC ⊂ C. Let d

denote the Hilbert metric on C. Then

k(A) = inf{k≥ 0 | d(Ax,Ay)≤ kd(x,y) ∀x,y ∈C}

denotes the contraction constant of A. The operator A is called a contraction if
k(A)< 1. There is a beautiful formula for the contraction constant of a C-monotonic
linear map A.

Theorem 8.5 (Birkhoff (1957)). A linear C-monotonic map A : Rn −→ R
n is a

contraction if and only if

δ = sup{d(Ax,Ay) | x,y ∈C}< ∞.

Whenever this is satisfied, the contraction constant is equal to

k(A) =
eδ/2− 1

eδ/2 + 1
.

For a linear contraction on a closed convex and pointed cone C the Banach fixed-
point theorem applies. The following result extends the classical Perron–Frobenius
theorem to monotonic maps on a closed convex pointed cone.

Theorem 8.6 (Contraction Mapping Theorem). Let C ⊂ R
n denote a closed

convex and pointed cone, λ ∈ C∗ an interior point of the dual cone C∗, and
C1 := {x ∈C | λ (x) = 1}. Let μ ≥ 0 be a nonnegative real number. Let N ∈ N and
A : Rn−→R

n be a linear map such that (μI+A)N maps C1 into the interior of C.

1. Then (μI +A)N is a contraction on C and A has a unique eigenvector x∗ ∈ C1.
The vector x∗ is contained in the interior of C1 with a positive eigenvalue r∗ > 0.

2. The discrete dynamical system
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xt+1 =
(μI+A)Nx

t

λ ((μI+A)Nx
t )

, xt ∈C1 (8.1)

converges to x∗ from each initial condition x0 ∈C1.

Proof. Let B = (μI +A)N . By Lemma 8.1, C1 is compact, and therefore the image
K := B(C1) is a compact subset of the interior of C. Thus

sup{d(Bx,By) | x,y ∈C}= sup{d(Bx,By) | x,y ∈C1}
≤ δ (K)< ∞,

where δ (K) denotes the diameter of the compact set K. The Birkhoff Theorem 8.5
therefore implies that B is a contraction on the complete metric space C1. Consider
the discrete-dynamical system xt+1 = f (xt ) on C1, defined by iterating the map

f : C1 −→C1, f (x) =
Bx

λ (Bx)
.

By our assumption on A, the map f is well defined and satisfies d( f (x), f (y)) =
d(Bx,By). Since B is a contraction on C1, so is f . Thus there exists 0 ≤ k < 1 with
d( f (x), f (y))≤ kd(x,y) for all x,y ∈C1. Therefore, one can apply the Banach fixed-
point theorem to f and conclude that there exists a unique fixed point x∗ ∈ C1 of
f . Moreover, the dynamical system (8.1) converges to x∗ from every initial point
x0 ∈ C1. This shows that x∗ ∈ C1 is an eigenvector of B, with Bx∗ = σx∗. Since
B maps C1 into the interior of C, σx∗ = Bx∗ must be an interior point of C. But
this implies that σ > 0 as well as that x∗ is an interior point of C1. By projective
invariance of the Hilbert metric,

d(Ax∗,x∗) = d(A(Bx∗),Bx∗)

= d(B(Ax∗),Bx∗)≤ kd(Ax∗,x∗),

and therefore d(Ax∗,x∗) = 0. But this implies Ax∗ = r∗x∗ for some r > 0. The result
follows. �

One can give a steepest-descent interpretation of the preceding arguments
that will be useful for the proof of the Perron–Frobenius theorem. Consider the
continuous function

RA : K −→ R+, RA(x) = m(Ax,x). (8.2)

It is instructive to compute this function in the special case C =R
n
+, where for x > 0

one has

RA(x) = min
1≤i≤n

(Ax)i

xi
.

This form is reminiscent of the Rayleigh quotient function.
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Proposition 8.7 (Generalized Rayleigh Quotient). The same notation is used
here as in Theorem 8.6. The function (8.2) has x∗ as its unique maximum with
RA(x∗) = r∗. Moreover, RA(xt), t ≥ 0, is monotonically increasing in t and converges
to RA(x∗) = r∗ for each sequence of points (xt)t≥0 that are generated by the power
iterations (8.1).

Proof. We use the notation from the proof of Theorem 8.6. Note that RA is well
defined and continuous, because K = B(C1) is a compact subset of the interior of C.
Since m(cx,cy) = m(x,y) for c > 0, one obtains for all x ∈ K

RA( f (x)) = m(ABx,Bx) = sup{λ | ABx≥ λBx}
= sup{λ | B(Ax−λx)≥ 0}
≥ sup{λ | Ax−λx≥ 0}= RA(x).

Since Bv > 0 for all nonzero vectors v ∈ C, this shows B(Ax−λx) > 0 for all x ∈
K that are not eigenvectors of A. This implies that sup{λ | B(Ax− λx) ≥ 0} >
sup{λ | Ax− λx ≥ 0} is a strict inequality, unless x ∈ K is an eigenvector of A.
Thus RA(xt+1) = RA( f (xt )) < RA(xt), unless xt = f (xt ) is a fixed point of f . By
Theorem 8.6, the eigenvector x∗ is the only fixed point of f and satisfies RA(x∗) =
m(Ax∗,x∗) = m(r∗x∗,x∗) = r∗. This completes the proof. �

The next result yields an explicit form for the contraction constant for positive
matrices A ∈ R

n×n, A > 0. Here C = R
n
+.

Corollary 8.8. Every positive matrix A ∈ R
n×n is a contraction with respect to the

Hilbert metric on R
n
+. The contraction constant is

k(A) =
√γ− 1√γ + 1

,

where

γ = max
i, j,k,l

akialj

akjali
.

8.2 Perron–Frobenius Theorem

The Perron–Frobenius theorem establishes a surprising and deep connection
between the spectral properties of nonnegative matrices and the properties of
the associated graph. Let us begin by deriving the theorem using the contraction
mapping theorem on closed convex cones. For other approaches and further details
see, for example, the beautiful books by Fiedler (2008) and Sternberg (2010).
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The notion of the irreducibility of nonnegative matrices plays a central role in the
subsequent analysis. In Section 8.6, a simple graph-theoretic characterization of
irreducibility is derived.

Definition 8.9. A matrix A ∈ R
n×n is called reducible if either (n = 1,A = 0) or

n≥ 2 and there exists a permutation matrix P∈R
n×n, 1≤ r≤ n−1, and the matrices

B ∈ R
r×r,C ∈ R

r×(n−r),D ∈ R
(n−r)×(n−r), with

P�AP =

(
B C
0 D

)
.

Otherwise, A is called irreducible.

Irreducible nonnegative matrices have useful properties.

Lemma 8.10. Let A ∈ R
n×n be a nonnegative irreducible matrix and x ∈ R

n a
vector with nonnegative components. Then Ax = 0 implies x = 0.

Proof. After a suitable permutation of the entries of x (and an induced similarity
transformation on A), one may assume that x = (ξ�,0)�, with ξ = (x1, . . . ,xr)

�
and x1 > 0, . . . ,xr > 0. Suppose r ≥ 1. Partition the matrix A accordingly as

A =

(
A11 A12

A21 A22

)
, (8.3)

with A11 ∈ R
r×r, and so forth. Thus Ax = 0 is equivalent to A11ξ = 0,A12ξ = 0,

which implies A11 = 0,A21 = 0. This is a contradiction to A being irreducible.
Therefore, Ax = 0 implies x = 0. �

Using this lemma, we next prove a basic existence and uniqueness result for
positive eigenvectors of nonnegative irreducible matrices. Let

ρ(A) = max{|λ | | det(λ I−A) = 0} (8.4)

denote the spectral radius of matrix A. Suppose that A has exactly h eigenvalues
with absolute value ρ(A). Then h is called the index of A.

Theorem 8.11. Let A ∈ R
n×n be a nonnegative irreducible matrix. Let

e = (1, . . . ,1)� ∈R
n, C1 = {x ∈ R

n
+ | e�x = 1}.

1. Then A has a unique nonnegative eigenvector x∗ ∈R
n
+, with e�x∗ = 1, called the

Perron vector. Both the Perron vector and the associated eigenvalue are positive.
2. If A is positive, then the sequence of power iterates

xt+1 =
Axt

e�Axt
, xt ∈C1 (8.5)

converges to x∗ from each initial condition x0 ∈C1,x0 > 0.
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Proof. C1 is a compact convex subset of the closed convex and pointed cone C =
R

n
+. By Lemma 8.10, matrix A maps C \ {0} into itself. Moreover, e�Ax > 0 for

all x ∈ C \ {0}. Since A is irreducible, the matrix (I +A)n−1 is positive (see the
subsequent Theorem 8.26) and therefore maps C1 into the interior of C. Thus one
can apply Theorem 8.6, with N = n− 1 and μ = 1, to conclude that A possesses
a unique eigenvector x∗ in C1. Moreover, x∗ is contained in the interior of C1 with
positive eigenvalue r > 0. In particular, x∗ > 0. The second part follows again from
Theorem 8.6. �

After this first step we can state and prove the Perron–Frobenius theorem.

Theorem 8.12 (Perron–Frobenius). Let A ∈ R
n×n denote an irreducible nonneg-

ative matrix. Then the spectral radius ρ(A) is a simple positive eigenvalue of A and
there exists a positive eigenvector x > 0 for ρ(A). No eigenvector corresponding to
other eigenvalues of A is positive.

Proof. Suppose, x ∈ R
n
+ is a nonnegative eigenvector of A. By Theorem 8.11, then

x = x∗, where x∗ > 0 denotes the unique Perron vector of A; thus Ax∗ = r∗x∗ and
r∗ > 0. Since Rx∗ is the only eigenspace that intersects R

n
+, the eigenvalue r∗ has

an algebraic multiplicity of one. It suffices, therefore, to show that ρ(A) coincides
with the eigenvalue r∗ for x∗. In fact, let λ ∈ C be an eigenvalue of A so that Az =
λ z for some complex vector z = (z1, . . . ,zn)

�. Let |z| = (|z1|, . . . , |zn|) ∈ R
n
+ be the

associated nonnegative vector of absolute values. From the triangle inequality one
obtains |λ ||z| ≤ A|z|. Let

m(x,y) = sup{λ ≥ 0 | x≥ λy}

be the order function for Rn
+. Applying Proposition 8.7, then

|λ |= m(λ |z|, |z|) ≤ m(A|z|, |z|)≤ r∗.

Thus r∗ is an eigenvalue with eigenvector x∗ and is equal to the spectral radius. This
completes the proof. �

The following perturbation result is of independent interest.

Proposition 8.13 (Wielandt). Let A ∈ R
n×n be an irreducible nonnegative matrix.

Let B ∈ C
n×n be a complex matrix with

|bij| ≤ aij for all i, j = 1, . . .n.

Then ρ(B)≤ ρ(A). If ρ(B) = ρ(A) and ρ(B)eφ
√−1 is an eigenvalue of B, then there

exists a diagonal matrix D = diag(z1, . . . ,zn) ∈C
n×n with |z1|= . . .= |zn|= 1 such

that

B = eφ
√−1DAD−1.

In particular, |bij|= aij for all i, j = 1, . . .n.
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Proof. In the preceding proof of the Perron–Frobenius theorem it was shown that
the maximum r∗ = RA(x∗) of the function RA : Rn

+ −→ R∪{∞},RA(x) = m(Ax,x)
exists and r∗ = ρ(A). Let z ∈ C

n,z �= 0, and λ ∈ C, with Bz = λ z. Then, using the
triangle inequality, one obtains |λ ||z|= |Bz| ≤ A|z|, and therefore

|λ |= m(|Bz|, |z|)≤ m(A|z|, |z|)≤ r∗ = ρ(A). (8.6)

This shows that ρ(B)≤ ρ(A). Assume that ρ(B)= ρ(A) = r∗ and λ is an eigenvalue
of B, with |λ | = r∗. Then (8.6) implies that r∗ = |λ | = m(A|z|, |z|). The Perron–
Frobenius theorem therefore implies A|z| = r∗|z| and |z| > 0. Similarly, for |B| =
(|bij|) one obtains

r∗|z|= |λ z|= |Bz| ≤ |B| · |z| ≤ A|z|= r∗|z|,

and therefore |B| · |z|= A · |z|. Since A−|B| is a nonnegative matrix and |z|> 0, this
implies A = |B|.

Define

D = diag

(
z1

|z1| , . . . ,
zn

|zn|
)
.

Then D|z|= z and BD|z|=Bz= λD|z|. Thus C := eφ
√−1D−1AD satisfies C|z|= A|z|

and |C| = |B| = A. Split the complex matrix C = ReC +
√−1ImC into real and

imaginary parts ReC and ImC, respectively. Since A is real, C|z| = A|z| implies
ReC|z| = A|z|. From ReC ≤ |C| = A it follows that A−ReC is nonnegative, with
(A−ReC)|z| = 0. Since |z| > 0, this implies |C| = A = ReC, and therefore C = A.
This completes the proof. �

Let A ∈ R
n×n be nonnegative and irreducible. For i = 1, . . . ,n, the period p(i)

is defined as the greatest common divisor of all m ∈ N satisfying (Am)ii > 0.
By a theorem of Romanovsky, p(1) = · · · = p(n) for all irreducible nonnegative
matrices A. The common value p(A) := p(1) = · · · = p(n) is called the period
of A. A nonnegative matrix A of period 1 is called aperiodic. We now state,
without providing full proof details, a full characterization of the structure of
irreducible nonnegative matrices. A stronger form of the subsequent result and its
proof appeared as Theorem 4.3.1 in the book by Fiedler (2008).

Theorem 8.14. Let A ∈R
n×n be irreducible and nonnegative, and let λ0, . . . , λk−1

denote the eigenvalues of A with absolute value equal to the spectral radius ρ(A).
The following statements are true:

1. λ0, . . . ,λk−1 are simple eigenvalues of A and satisfy

λ j = e
2π
√−1 j
k ρ(A), j = 0, . . . ,k− 1.

2. The spectrum of A is invariant under rotations with angle 2π
k .
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3. If k > 1, then there exists a permutation matrix P such that

PAP� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 B12 0 . . . 0

0 0 B23
...

...
. . .

. . . 0
0 0 Bk−1,k

Bk1 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with block matrices Bij of suitable sizes.
4. The index k of A in (1) coincides with the period of A.
5. A is primitive if and only if the spectral radius ρ(A) is the only eigenvalue λ of

A with |λ |= ρ(A).

Proof. Only the first two statements are shown; we refer the reader to Fiedler
(2008) for a proof of the remaining claims. Let λ j = ρe2πφ j

√−1,φ0 = 0, denote
the eigenvalues of absolute value ρ = ρ(A). Applying Proposition 8.13 with B = A
one obtains

A = e2πφ j
√−1D jAD−1

j , j = 0, · · · ,k− 1

for suitable unitary diagonal matrices D0, . . . ,Dk−1. Thus the spectrum of A is
invariant under multiplications by e2πφ j

√−1, j = 0, · · · ,k− 1. Since the spectral
radius λ0 = ρ is a simple eigenvalue of A, λ0, . . . ,λk−1 are simple eigenvalues of
e2πφ j

√−1D jAD−1
j = A. For all 0≤ r,s≤ k− 1 and Drs = DrDs,

A = e2πφr
√−1DrAD−1

r = e2πφr
√−1e2πφs

√−1DrDsAD−1
r D−1

s

= e2π(φr+φs)
√−1DrsAD−1

rs .

Thus e2π(φr+φs)
√−1ρ are eigenvalues of A for all 0 ≤ r,s ≤ k− 1. This implies that

{1,e2πφ1
√−1, . . . ,e2πφk−1

√−1} is a multiplicative subgroup of S1 = {z ∈ C | |z|= 1}
of order k. Thus

λ j = e
2π j

√−1
k , j = 0, . . . ,k− 1.

In particular, the spectrum of A is invariant under rotations by 2π
k . This completes

the proof for the first two items. �
The preceding result allows for an interesting dynamical interpretation of

irreducible nonnegative matrices A in terms of discrete-time periodic linear systems.
In fact, if A is not primitive, then the dynamical system xt+1 = Axt is permutation
equivalent to a periodic time-varying system xt+1 = A[t]xt , with local states xt ∈R

nt

and a periodic sequence of matrices A[0] = B12,A[1] = B23, . . . ,A[k−1] = Bk1,A[k] =
A[0], and so forth.
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8.3 Stochastic Matrices and Markov Chains

We present a simple version of the ergodic theorem in the context of finite-
dimensional matrix algebras. Recall that a norm ‖ · ‖ on the matrix space C

n×n

is called submultiplicative if ‖AB‖ ≤ ‖A‖‖B‖ for all matrices A,B ∈ C
n×n. Stan-

dard examples of submultiplicative matrix norms include the 1-norm ‖A‖1 =

∑n
i, j=1 |aij|, the Frobenius norm ‖A‖F =

√
∑n

i, j=1 |aij|2, and the operator norm ‖A‖=
sup‖x‖=1 ‖Ax‖. Let ρ(A) denote the spectral radius of A.

Proposition 8.15. Let ρ(A) denote the spectral radius of a matrix A ∈ C
n×n. Then

the following assertions are true:

1. If ρ(A)< 1, then

lim
k→∞

Ak = lim
k→∞

1
k

k−1

∑
i=0

Ai = 0.

2. If ρ(A)> 1, then both sequences (Ak) and 1
k ∑k−1

i=0 Ai diverge.
3. Let ρ(A) = 1. The limit limk→∞ Ak exists if and only if 1 is the only eigenvalue of

A with absolute value 1 and all Jordan blocks for 1 are 1× 1.
4. Let ρ(A) = 1. The limit limk→∞

1
k ∑k−1

i=0 Ai exists if and only if all eigenvalues λ
of A with absolute value |λ |= 1 have a geometric multiplicity of one.

Proof. The simple proofs of assertions 1–3 are omitted. To prove assertion 4,
assume that the limit limk→∞

1
k ∑k−1

i=0 Ai exists. From assertion it follows that each
eigenvalue λ of A must satisfy |λ | ≤ 1. Suppose |λ |= 1. Without loss of generality,
one can assume that A = λ I+N is a Jordan block. Then

1
k

k−1

∑
i=0

Ai =
1
k

k−1

∑
i=0

λ iI+
1
k

k−1

∑
i=0

iλ i−1N + . . .+
1
k

k−1

∑
i=0

Ni

diverges whenever

1
k

k−1

∑
i=0

iλ i−1 =

⎧
⎨

⎩

kλ k−1(λ−1)−(λ k−1)
k(λ−1)2 if λ �= 1

k−1
2 if λ = 1

diverges. This completes the proof. �
Theorem 8.16 (Ergodic Theorem). Let ‖ · ‖ be a submultiplicative matrix norm
on C

n×n and A ∈ C
n×n with ‖A‖ ≤ 1. Then:

1. The limit

P = lim
k→∞

1
k

k−1

∑
i=0

Ai

exists and satisfies P2 = P = PA = AP. Moreover,
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Im P = Ker (A− I)

Ker P =
⊕

λ �=1

Ker (A−λ I)n;

2. If 1 is the only eigenvalue of A with an absolute value of one, then

P = lim
k→∞

Ak

exists.

Proof. Assume that the limit

P = lim
k→∞

1
k

k−1

∑
i=0

Ai (8.7)

exists. Proposition 8.15 then implies ρ(A) ≤ 1. For complex numbers λ with
|λ | ≤ 1,

lim
k→∞

1
k

k−1

∑
i=0

λ i = lim
k→∞

1
k

λ k− 1
λ − 1

=

{
0 if λ �= 1,

1 if λ = 1.

Thus, by decomposing the Jordan canonical form J = diag(J1,J2) of A, where J1 and
J2 have eigenvalues λ = 1 and |λ |< 1, respectively, one obtains limk→∞

1
k ∑k−1

i=0 Ji
1 =

I and limk→∞
1
k ∑k−1

i=0 Ji
1 = 0. Thus P = limk→∞

1
k ∑k−1

i=0 Ai is a projection operator that
commutes with A. Therefore, P2 = P = AP = PA. The preceding argument also
implies the formulas for the image space Im P and kernel of P. The second claim
follows from Proposition 8.15. Thus it remains to show that the limit (8.7) exists.

For all complex matrices and submultiplicative norms the inequality ρ(A)≤ ‖A‖
is valid. By Proposition 8.15, it is enough to show that the Jordan blocks for
the eigenvalues λ with |λ | = 1 are 1× 1. Assume that A = SJS−1, where J =
diag(J1, . . . ,Jr) are in Jordan canonical form. Let J1, . . . ,Jν be the Jordan blocks
for the eigenvalues λ with an absolute value of one. For all m ∈ N, therefore,
‖Jm‖ ≤ ‖S‖‖S−1‖‖Am‖ ≤ ‖S‖‖S−1‖. Since all norms on C

n×n are equivalent, one
obtains, for i = 1, . . . ,ν ,

‖Jm
i ‖1 ≤ ‖Jm‖1 ≤ γ‖Jm‖ ≤ γ‖S‖‖S−1‖.

For every Jordan block Ji = λ I +N, i = 1, . . . ,ν, of size s and m ≥ 1, one has the
estimate

‖Jm
i ‖1 = ‖(λ I+N)m‖1 ≥

{
1 s = 1,

m+ 1 s > 1
.
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Thus the sequence (‖Jm‖1)m grows unbounded if there exists an eigenvalue λ of
geometric multiplicity greater than one and |λ |= 1. This completes the proof. �
We establish a concrete form of the ergodic theorem for doubly stochastic matrices.

Definition 8.17. A nonnegative matrix A ∈ R
n×n is called stochastic if

n

∑
j=1

aij = 1, i = 1, . . . ,n.

A is called doubly stochastic if it is nonnegative and satisfies

n

∑
j=1

aij = 1,
n

∑
l=1

alj = 1, i, l = 1, . . . ,n. (8.8)

Let

en =

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠

denote a vector in R
n with all components equal to one. Then a nonnegative matrix

A is stochastic (or doubly stochastic) if and only if Aen = en (or Aen = en,e�n A= e�n ).

Theorem 8.18. Let A ∈ R
n×n be a stochastic matrix. Then

1. 1 is an eigenvalue of A and A has a spectral radius equal to 1;
2. The limit

P = lim
k→∞

1
k

k−1

∑
i=0

Ai

exists and is a stochastic matrix that satisfies P2 = P = PA = AP;
3. If 1 is the only eigenvalue of A with an absolute value of one, then

P = lim
k→∞

Ak

exists. In particular, this is case if A is primitive;
4. If A is irreducible, then

lim
k→∞

1
k

k−1

∑
i=0

Ai = eny�.

Here y is a uniquely determined positive vector with

y�A = y�, y1 + · · ·+ yn = 1.
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Proof. The matrix norm ‖A‖ = max1≤i≤n ∑n
j=1 |aij| is submultiplicative, and every

stochastic matrix A satisfies ‖A‖ = 1. The vector en is an eigenvector of A with
eigenvalue 1. Therefore, the spectral radius satisfies 1≤ ρ(A)≤ ‖A‖= 1, i.e.,

ρ(A) = ‖A‖= 1.

This proves claim 1. Moreover, claim 2 follows from the Ergodic Theorem 8.16,
together with the observation that A being stochastic implies that for each k the
matrix 1

k ∑k−1
i=0 Ai is nonnegative, with 1

k ∑k−1
i=0 Aien =

1
k ∑k−1

i=0 en = en. The first claim
in statement 3 follows from Theorem 8.16, while the second claim follows from
the Perron–Frobenius theorem. To prove the last claim, one applies the Perron–
Frobenius theorem to the irreducible matrix A�. Thus, there exists a unique vector
y ∈ R

n,y > 0, with y�A = y� and e�y = 1. Moreover, 1 is a simple eigenvalue of
A. Thus Theorem 8.16 implies that rkP = dimKer(A− I) = 1, and therefore P is of
the form P = bc� for unique nonzero vectors b,c∈R

n, with c�1 = 1. Since Pe = e,
b = e. Moreover, y�A = y� implies y�P = y�, and therefore y� = y�P = y�ec� =
c�, since y�e = 1. This completes the proof. �
Corollary 8.19. For every irreducible, doubly stochastic matrix A ∈ R

n×n,

lim
k→∞

1
k

k−1

∑
i=0

Ai =
1
n

ee�.

It is straightforward to apply the preceding results to Markov chains. Consider
random variables with values in the finite alphabet {1, . . . ,n} and associated
probabilities πi = P(X = i), i = 1, . . . ,n. Thus π = (π(1), . . . ,π(n))� ∈ R

n satisfies
π ≥ 0 and π(1)+ · · ·+π(n) = 1. One can easily generalize this simple static model
to a dynamic one by considering a stochastic process (Xt) defined by a sequence
of random variables Xt , t ∈ N0, with values in {1, . . . ,n}. Let (πt) ∈ R

n denote the
associated vector of probabilities. Markov chains are special stochastic processes
where for each time t the vector of probabilities πt depends only on πt−1. More
precisely, it is assumed that for each i, j ∈ {1, . . . ,n} the conditioned probabilities

pij := P(Xt+1 = j|Xt = i), t ∈ N0,

are independent of time t. Therefore, one can describe the transition probabilities
between states i and j by a matrix

A = (pij) ∈R
n×n

of real numbers pij ≥ 0, with ∑n
j=1 pij = 1 for i = 1, . . . ,n. Thus A ∈ R

n×n is a
stochastic matrix of transition probabilities, with Ae = e.

Definition 8.20. A Markov chain on the finite state space {1, . . . ,n} is a discrete
dynamical system
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π�t+1 = π�t A, π0 = π , t ∈ N0 (8.9)

defined by a stochastic matrix A. Here the initial probability distribution π is allowed
to be an arbitrary vector of nonnegative numbers p1, . . . , pn, p1 + · · ·+ pn = 1.

The preceding results on stochastic matrices can be reformulated as follows.

Theorem 8.21. Let (A,π) be a Markov chain on {1, . . . ,n} with initial probability
distribution π . Let π�t = (πt(1), . . . ,πt(n)) denote the probability distributions that
evolve according to the Markov chain (8.9).

1. If A is irreducible, then there exists a unique stationary probability distribution
π�∞ = (π∞(1), . . . ,π∞(n)) ∈ R

1×n satisfying

π∞ > 0, π�∞ A = π�∞ , e�π∞ = 1.

Moreover,

lim
k→∞

1
k

k−1

∑
i=0

Ai = eπ�∞ ,

which implies that

lim
k→∞

1
k

k−1

∑
t=0

π�t = π�∞ .

2. Assume A is primitive, i.e., Am > 0 for some m ∈ N. Then the following limits
exist:

lim
k→∞

Ak = eπ�∞ ,

lim
t→∞

E(Xt) =
n

∑
i=1

iπ∞(i).

Here the expectation value of Xt is defined as E(Xt) := ∑n
i=1 iπt(i).

Example 8.22. We discuss the Ehrenfest diffusion model from statistical mechan-
ics. Assume a domain Ω is partitioned into two regions, Ω1 and Ω2. Assume further
that Ω contains exactly n particles that may move around in Ω , passing from
one region to the other. Let Xt ∈ {0, . . . ,n} denote the number of particles that are
in region Ω1 at time t. Assume that the probability for a change of a particle from
region Ω1 to region Ω2, or vice versa, is exactly 1

n . The transition probability matrix,
then, is the (n+ 1)× (n+ 1) tridiagonal matrix
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A =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · · · · 0

1
n 0 n−1

n

...

0 2
n 0 n−2

n

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

n
0 · · · · · · 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

.

Note that A is an irreducible stochastic matrix. Therefore, a unique stationary prob-
ability distribution π∞ of Xt exists and satisfies π�∞ A = π�∞ . Define y = (y0, . . . ,yn)

�,
with y j = 2− j

(n
j

)
. A straightforward computation shows that y�A = y�,y�e = 1.

Therefore, the stationary probabilities are

π∞( j) =
1
2 j

(
n
j

)
, j = 0, . . . ,n.

In particular, the expectation value of the number of particles in region Ω1 is equal to

E(Xt) =
n

∑
j=0

jπ∞( j) =
n

∑
j=0

j
1
2 j

(
n
j

)
=

n
2
,

as expected. One can show that the eigenvalues of A are the real numbers 1− 2k
n ,

k = 0, . . . ,n. The convergence rate of the Markov chain is dependent on the
second largest eigenvalue of A, i.e., it is equal to 1− 2

n . Thus, for large numbers
n of particles, the Markov chain will converge quite slowly to the equilibrium
distribution.

8.4 Graphs and Matrices

We now introduce some of the basic notions from graph theory and relate the graph
concepts to the structure of nonnegative matrices. A directed graph (digraph) Γ =
(V,E) consists of a finite set V = {v1, . . . ,vN} of vertices, together with a finite
subset E ⊂ V ×V of pairs of vertices called edges. Thus each edge of a graph is a
pair (v,w) of vertices v and w, which are called the initial and terminal vertices of e,
respectively. This leads to well-defined maps ι,τ : E −→V that assign to each edge
the initial vertex ι(v,w) = v and terminal vertex τ(v,w) = w, respectively. We refer
to the pair ι,τ as the canonical orientation on a digraph (Figures 8.1 and 8.2).

Each vertex element v in a digraph has two kinds of neighborhoods, the
in-neighborhood,

N i(v) = {u ∈V | (u,v) ∈ E},
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Fig. 8.1 Directed graph 1

2

3

4

Fig. 8.2 Spanning tree 1

2

3

4

and the out-neighborhood,

N o(v) = {w ∈V | (v,w) ∈ E}.

The cardinalities di(v) = |N i(v)| and do(v) = |N o(v)| are called the in-degree
and out-degree of v, respectively. A subgraph of a digraph Γ = (V,E) is a digraph
Γ ′ = (V ′,E ′), with V ′ ⊂V and E ′ ⊂ E . It is called a spanning subgraph if V ′ =V
and E ′ ⊂ E . An induced subgraph of Γ = (V,E) is a subgraph Γ ′ = (V ′,E ′) that
contains all edges in E between pairs of vertices in V ′. A walk in a directed graph
Γ of length r− 1 is a finite sequence of vertices (v1, . . . ,vr) such that (vi,vi+1) are
edges for i = 1, . . . ,r− 1. A walk is cyclic if v1 = vr. A path is a walk where all
vertices v1, . . . ,vr are distinct. Thus a path cannot be cyclic. A directed graph is
called acyclic if it does not contain a cycle.

An important topological concept in graph theory is that of connectivity.
A digraph Γ is called strongly connected if there exists a directed path between all
pairs (u,v) ∈ V ×V of distinct vertices. Γ is called connected if, for each (u,v) ∈
V ×V , there exists a directed path from u to v or from v to u. A strong component
of a digraph is a maximal, strongly connected induced subgraph (Figure 8.3).

For a proof of the following characterization of strong components we refer the
reader to Fiedler (2008).
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Fig. 8.3 Strongly connected
graph
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Fig. 8.4 Undirected graph 1

2

3

4

Proposition 8.23. Let Γ = (V,E) be a digraph.

1. Every vertex v is contained in a unique strong component.
2. Two distinct strong components have disjoint sets of vertices.
3. Two distinct vertices u,v ∈V belong to the same strong component if and only if

there are directed paths from u to v and from v to u.

An undirected graph Γ =(V,E), often simply called a graph, consists of a finite
set V = {v1, . . . ,vN} of vertices, together with a finite set E = {{vi,v j} | (i, j)∈ I} of
edges. Here I denotes a finite subset of {1, . . . ,N}×{1, . . . ,N}. Thus the edges of an
undirected graph are unordered pairs of vertices. Frequently, self-loops are excluded
from the definition. A graph Γ is oriented if there exist maps ι,τ : E −→ V such
that for each edge, e = {ι(e),τ(e)}. Thus, Γ̂ = (V,E) is a directed graph with a set
of edges E = {(ι(e),τ(e)) | e ∈ E}. In many situations concerning graphs one often
assumes that an underlying orientation of the graph is specified. A directed graph
Γ = (V,E) carries a natural orientation by defining ι(v,w) = v,τ(v,w) = w for all
vertices (Figures 8.4 and 8.5).

We briefly mention a number of elementary operations one can perform with
graphs. Let Γ =(V,E) and Γ ′=(V ′,E ′) denote graphs with a disjoint set of vertices,
i.e., V ∩V ′ = /0. Then the following operations yield new graphs:

1. Union: Γ ∪Γ ′ := (V ∪V ′,E ∪E ′).
2. Join: Γ +Γ ′ := (V ∪V ′,< E ∪E ′ >), where

< E ∪E ′ >:= E ∪E ′ ∪ {{v,v′} | v ∈V, v′ ∈V ′}.
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Fig. 8.5 Orientation of a
graph
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3. Product: Γ ×Γ ′ := (V ×V ′, Ê), where the set of edges Ê is defined as

{(v,v′),(w,w′)} ∈ Ê ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

{v,w} ∈ E and v′ = w′

or

{v′,w′} ∈ E ′ and v = w.

4. Insertion of a vertex into an edge: Geometrically this means one places a new
vertex w in the middle of an edge uv and replaces the old edge uv with the two
new ones uw,wv. This operation does not change the topology of the graph. Thus,
for every edge {u,v} ∈ E , a new graph Γ ′ = (V ′,E ′) is defined as

V ′ =V ∪{{u,v}}
E ′ = E \ {{u,v}}∪{{u,w},{w,v}} .

5. Contraction of an edge: Here one replaces an edge {u,v} with a new vertex w
and adds new edges to all neighboring vertices of u,v.

The preceding definitions and constructions for digraphs carry over to undirected
graphs in an obvious way. For a vertex v ∈V , let

N(v) = {w ∈V | {v,w} ∈ E}

denote the neighborhood of v in the graph. The degree of v is the number of all
neighboring vertices, i.e., it is equal to |N(v)|. A graph is called k-regular if all
vertices have the same degree k. A subgraph of Γ is defined by a pair Γ ′ = (V ′,E ′)
such that V ′ ⊂V and E ′ ⊂E . A spanning subgraph of Γ is a subgraph Γ ′=(V ′,E ′)
with the same set of vertices V ′ =V . A path in Γ of length r−1 is a finite sequence
of vertices (v0, . . . ,vr) such that ei = {vi−1,vi} are edges of Γ for i = 1, . . . ,r.
One says that the path connects the vertices v0 and vr. If vr = v0, then the path
is called closed or a cycle. A graph is called connected if two distinct vertices
v �= w are always connected through a suitable path in Γ . A maximal, connected,
induced subgraph of a graph is called a connected component. The counterpart
to Proposition 8.23 is true, too, i.e., each vertex is contained in a unique connected
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component, and the connected components of a graph form a disjoint decomposition
of the set of vertices. A tree is a connected graph Γ without cycles. This is
easily seen to be equivalent to |V | = |E|+ 1. A forest is a graph whose connected
components are trees. A spanning tree in a graph Γ =(V,E) is a spanning subgraph
Γ ′ = (V ′,E ′), which is a tree. The number of spanning trees in a graph can be
counted by the so-called Matrix-Tree Theorem 8.43.

Weighted Digraphs and Matrices. Nonnegative matrices are associated with
digraphs in various ways. A digraph Γ = (V,E) is called weighted if for each
edge (vi,v j) ∈ E one specifies a nonzero real number aij ∈ R. For (vi,v j) /∈ E set
aij = 0. Thus, using a labeling {1, . . . ,N} −→ V , one associates with the graph
a real N × N matrix A(Γ ) = (aij) ∈ R

N×N . We refer to A(Γ ) as the weighted
adjacency matrix. The labelings of the set of vertices differ from each other by
a permutation π on {1, . . .N}. Thus the associated adjacency matrix changes by a
similarity transformation πA(Γ )π−1. Conversely, if A denotes a real N×N matrix,
then let ΓA = (VA,EA) denote the associated finite directed graph with vertex set
VA = {1, . . . ,N}. A pair (i, j) ∈VA×VA is an edge of ΓA if and only if aij �= 0. Then
A is the weighted adjacency matrix of ΓA. Similarly, weighted undirected graphs
are defined by specifying for each edge {vi,v j} a real number aij and aij = 0 for
{vi,v j} /∈ E . Thus the weight matrix A = (aij) of an undirected graph is always a
real symmetric matrix and therefore has only real eigenvalues.

Every digraph can be considered in a canonical way as a weighted digraph by
defining the weight matrix with 0,1 entries as

A= (aij) ∈ {0,1}N×N, with aij =

{
1 (vi,v j) ∈ E,

0 otherwise.

We refer to the digraph ΓA as a canonically weighted digraph.

Example 8.24. A simple example of digraphs with nonnegative weights arises
in Euclidean distance geometry and shape analysis. Thus, consider an arbitrary
directed graph Γ = (V,E) with vertex set V = {v1, . . . ,vN} ⊂ R

m. Using the
Euclidean distance ‖v− w‖ between two vertices, define the weights as aij =
‖vi − v j‖ if and only if (vi,v j) ∈ E , and aij = 0 otherwise. Then the weighted
adjacency matrix contains all the mutual distances between ordered pairs of points
(vi,v j) that are specified by the edges of the graph. Thus this matrix contains very
interesting information on the geometric configuration of the vertex points.

One can express the classical adjacency matrices of a graph in terms of basic
graph operations. Let Γ and Γ ′ be graphs on m and n vertices, respectively. The
classical adjacency matrices for unions, sums, and products are

AΓ∪Γ ′ = diag(AΓ ,AΓ ′), AΓ×Γ ′ = AΓ ⊗ In + Im⊗AΓ ′ ,

AΓ+Γ ′ =

(
AΓ J
J� AΓ ′

)
.

Here J denotes the m× n matrix with all entries equal to 1.
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The analysis of the structural properties of matrices is closely related to graph
theory. The basic connectivity properties of digraphs are reflected in the associated
properties of the weighted adjacency matrix. There is a simple graph-theoretic
characterization of irreducible matrices.

Proposition 8.25. The following conditions are equivalent for a matrix A ∈
R

N×N:

1. A is irreducible.
2. The digraph ΓA is strongly connected.

Proof. Assume that ΓA is not strongly connected. Then there exist vertices w �= j ∈
VA such that there exists no directed path from w to j. Let V ′ ⊂VA denote the set of
vertices v such that there exists a directed path from v to j. Define V1 =V ′ ∪{ j} and
V2 =VA \V1. By construction of these sets, there does not exist a path from a vertex
w in V2 to some vertex v in V1; otherwise, one could concatenate the path from w to
v with the path from v to j to obtain a path from w to j. This is a contradiction,
since V2 ∩V1 = /0. By assumption on w, j, one has j ∈ V1 �= /0,w ∈ V2. After a
suitable renumbering of vertices one can assume, without loss of generality, that
V1 = {1, . . . ,r},V2 = {r+1, . . . ,N}, 1≤ r ≤ N−1. Thus there exists a permutation
matrix P such that

P�AP =

(
B C
0 D

)
.

Therefore, A is reducible. Conversely, if A is reducible, then there exists no path
from the set V2 = {r+ 1, . . . ,N} to V1 = {1, . . . ,r}. Thus the graph is not strongly
connected. This completes the proof. �

For nonnegative matrices a stronger form of Proposition 8.25 is valid.

Theorem 8.26. The following conditions are equivalent for a nonnegative A ∈
R

N×N.

1. A is irreducible.
2. For every pair of indices i, j ∈ {1, . . . ,N} there exists m ∈ N, with (Am)ij �= 0.
3. (IN +A)N−1 > 0.
4. The digraph ΓA is strongly connected.

Proof. The equivalence of conditions 1 and 4 has already been shown. For m ∈ N,
the sum

(Am)ij = ∑
k1,...,km−1

aik1ak1k2 . . .akm−1 j = 0

is zero if and only if each summand is zero. But this is equivalent to the property
that there exists no walk from i to j of length m. Thus condition 2 is equivalent to
condition 4.
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Fig. 8.6 Cyclic graph 1

2

Assume condition 3. Since A is nonnegative, the entries of the matrix

(I+A)N−1 =
N−1

∑
j=0

(
N− 1

j

)
A j

are all positive. Thus, for each i, j, the ij entry of Am is positive, for m = 1, . . . ,N−1.
Thus condition 2 is satisfied and condition 3 implies condition 2 and, therefore,
condition 4. Conversely, assume that ΓA is strongly connected. Between every two
distinct vertices there exists, then, a path of length ≤ N − 1 that connects them.
Thus the off-diagonal entries of (I +A)N−1 are positive. Since the diagonal entries
of (I+A)N−1 are positive, too, this implies condition 3. This completes the proof.

�
The adjacency matrix of the cyclic graph in Figure 8.6 is

A =

(
0 1
1 0

)

and satisfies, for each m,

A2m+1 =

(
0 1
1 0

)
, A2m =

(
1 0
0 1

)
.

Thus A is an example of a nonnegative matrix that satisfies assertion 2 in Theorem
8.26 but does not satisfy Am > 0 for some m. Such phenomena are explained by the
Perron–Frobenius theorem.

Definition 8.27. A nonnegative matrix A ∈R
N×N is called primitive if Am > 0 for

some m ∈ N. The smallest such integer m is called the primitivity index γ(A).

Thus a primitive nonnegative matrix A is irreducible, but the converse does not
hold. In general, the primitivity index does not satisfy γ(A)≤ N. One can show that
the primitivity index always satisfies the sharp bound

γ(A)≤ N2− 2N+ 2.
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8.5 Graph Rigidity and Euclidean Distance Matrices

Graph rigidity is an important notion from Euclidean distance geometry that
plays a central role in diverse areas such as civil engineering Henneberg (1911),
the characterization of tensegrity structures, molecular geometry and 2D-NMR
spectroscopy Havel and Wüthrich (1985), and formation shape control of multiagent
systems Anderson et. al. (2007). Formations of specified shape are useful in
control for sensing and localizing objects, and formations of fixed shape can be
contemplated for moving massive objects placed upon them. To steer formations of
points from one location to another, steepest-descent methods are used to optimize
a suitable cost function. Typically, the smooth cost function

V (X) =
1
4 ∑

ij∈E

(‖xi− x j‖2− d2
ij)

2

on the space of all formations X = (x1, . . . ,xN) of N points xi in R
m is used. The

gradient flow of V is

ẋi = ∑
j: ij∈E

(‖xi− x j‖2− d2
ij)(xi− x j), i = 1, . . . ,N,

and can be shown to converge from every initial condition pointwise to a single
equilibrium point. It thus provides a simple computational approach to find a
formation that realizes a specified set of distances dij > 0, ij ∈ E , indexed by
the edges of a graph. The characterization of such critical formations and the
analysis of their local stability properties in terms of the properties of the graph
are among the open research problems in this field. Such research depends crucially
on a deeper understanding of Euclidean distance geometry and associated graph-
theoretic concepts, such as rigidity. We next turn to a brief description of such
methods.

In Euclidean distance geometry one considers a finite tuple of points x1, . . . ,xN

in Euclidean space R
m, called a formation, together with an undirected, connected

graph Γ = (V,E) on the set of vertices V = {1, . . . ,N}, with prescribed distances
dij = ‖xi− x j‖ for each edge ij ∈ E of Γ . Conversely, by assigning positive real
numbers d∗ij to the edges ij of a graph Γ , one is asked to find a formation x1, . . . ,xN ∈
R

m that realizes the d∗ij as distances ‖xi− x j‖. In heuristic terms (see below for a
more formal definition), a formation (x1, . . . ,xN) is then called rigid whenever there
does not exist a nontrivial perturbed formation (x′1, . . . ,x

′
N) near (x1, . . . ,xN) that

realizes the same prescribed distances.
Let us associate with a vertex element i ∈ V a point xi in Euclidean space R

m.
The m×N matrix X = (x1, . . . ,xN) then describes a formation X of N points labeled
by the set of vertices of Γ . With this notation at hand, consider the smooth distance
map

D : Rm×N −→ R
M, D(X) = (‖xi− x j‖2)(i, j)∈E .
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The image set

CMm(Γ ) = {D(X) | X ∈ R
m×N}

is called the Cayley–Menger variety. Being the image of a real polynomial map,
the Cayley–Menger variety defines a semialgebraic subset of R

M , which is in
fact closed. It is a fundamental geometric object that is attached to the set of all
realizations of a graph in R

m. For simplicity, let us focus on the complete graph KN

with a set of vertices V = {1, . . . ,N} and a set of edges E =V×V . Then the elements
of the Cayley–Menger variety Cm(KN) are in bijective correspondence with the set
of N×N Euclidean distance matrices

D(x1, . . . ,xN) =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0 ‖x1− x2‖2 . . . ‖x1− xN‖2

‖x1− x2‖2 0 . . . ‖x2− xN‖2

...
. . .

. . .
...

‖x1− xN−1‖2 0 ‖xN−1− xN‖2

‖x1− xN‖2 . . . ‖xN−1− xN‖2 0

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

defined by x1 . . . ,xN ∈R
m. Thus,

D(x1, . . . ,xN) =−2X�X + xe�+ ex�.

Here x = col(‖x1‖2, . . . ,‖xN‖2) ∈ R
N and X�X = (x�i x j) ∈ R

N×N denote the
Gramian matrix associated with x1, . . . ,xN . In particular, D(x1, . . . ,xN) is a rank two
perturbation of the rank ≤ m Gramian matrix X�X . This observation implies that
Euclidean distance matrices of N points in R

m have rank≤m+2, while for generic
choices of x1, . . . ,xN the rank is equal to m+2. To characterize the set of Euclidean
distance matrices, one needs a simple lemma from linear algebra.

Lemma 8.28. Let A = A� ∈ R
n×n, and assume that B ∈ R

r×n has full row rank r.
Let QA denote the quadratic form x�Ax defined on the kernel KerB of B. Then the
symmetric matrix

C =

(
0 B�

B A

)

satisfies the equations for rank and signature

rk C = rk QA + 2r,

sign C = sign QA.

Proof. Let R and L be invertible r × r and n× n matrices, with LBR = (0, Ir),
respectively. Then
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(
R� 0
0 L

)(
0 B�

B A

)(
R 0
0 L�

)
=

(
0 (LBR)�

LBR LAL�

)
,

and after such a suitable transformation one can assume without loss of generality
that B = (Ir,0). Partition the matrix A

A =

(
A11 A12

A�12 A22

)
,

where A11, A12, and A22 have sizes r× r, r× (n− r), and (n− r)× (n− r). Applying
elementary row and column operations we obtain

C =

⎛

⎝
0 Ir 0
Ir A11 A12

0 A�12 A22

⎞

⎠=

⎛

⎝
I 0 0

1
2 A11 I 0
A�12 0 I

⎞

⎠

⎛

⎝
0 Ir 0
Ir 0 0
0 0 A22

⎞

⎠

⎛

⎝
I 1

2 A11 A12

0 I 0
0 0 I

⎞

⎠ .

Thus the inertia theorem of Sylvester implies that

rk C = rk A22 + 2r = rk QA + 2r,

sign C = sign A11 = sign QA.

�
A classical result by Menger (1928), see also Blumenthal (1953), asserts that

the Euclidean distance matrices D(x1 . . . ,xN) of N points in R
m have nonpositive

Cayley–Menger determinants

det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 . . . 1
1 0 − 1

2‖x1− x2‖2 . . . − 1
2‖x1− xk‖2

1 − 1
2‖x1− x2‖2 0 . . . − 1

2‖x2− xk‖2

...
...

...
. . .

...
1 − 1

2‖x1− xk‖2 − 1
2‖x2− xk‖2 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
≤ 0 (8.10)

for each k ≤ N (and are equal to zero for k > m+ 1). One can easily deduce this
condition from the following more general characterization of Euclidean distance
matrices.

Theorem 8.29. Let A = (aij) ∈ R
N×N
+ be a nonnegative symmetric matrix, with

a11 = · · ·= aNN = 0. The following assertions are equivalent:

(a) A is a Euclidean distance matrix of N points in R
m.

(b) There exists a nonnegative vector a ∈ R
N
+ that satisfies the linear matrix

inequality with rank constraint
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−A+ ae�+ ea�  0, rk(−A+ ae�+ ea�)≤ m.

(c) There exists a positive semidefinite matrix S of rank ≤ m, with

− 1
2

A = S− 1
2

(
diag(S)ee�+ ee�diag(S)

)
. (8.11)

(d) The matrix

SA :=−1
2

(
IN− 1

N
ee�

)
A

(
IN− 1

N
ee�

)

is positive semidefinite of rank≤ m.
(e) The restriction of the quadratic form x�Ax on (Re)⊥ is negative semidefinite

and has rank ≤ m.
(f) The Cayley–Menger matrix

CM(A) :=

⎛

⎜⎜
⎜
⎜
⎜
⎝

0 1 1 . . . 1
1 0 − 1

2 a12 . . . − 1
2 a1N

1 − 1
2 a12 0 . . . − 1

2 a2N
...

...
...

. . .
...

1 − 1
2 a1N − 1

2 a2N . . . 0

⎞

⎟⎟
⎟
⎟
⎟
⎠

has exactly one negative eigenvalue and at most m+ 1 positive eigenvalues.

Proof. Using the identity ‖xi − x j‖2 = ‖xi‖2 + ‖x j‖2 − 2x�i x j, we see that A =
D(x1, . . . ,xN) for some points x1, . . . ,xN ∈R

m if and only if

− 1
2

A = X�X − 1
2

ae�− 1
2

ea�, (8.12)

where a = col(‖x1‖2, . . . ,‖xN‖2). Equivalently, A is a Euclidean distance matrix in
R

m if and only if there exists a positive semidefinite matrix S of rank ≤ m with

−1
2

A = S− 1
2

(
diag(S)ee�+ ee�diag(S)

)
.

Here diagS is a diagonal matrix with the same diagonal entries as S. This completes
the proof of the equivalence of the first three conditions. It is easily seen that

S :=−1
2

(
IN− 1

N
ee�

)
A

(
IN− 1

N
ee�

)

satisfies (8.11). Thus (d) implies (c) and hence also (a). Conversely, (a) implies
(8.12), and therefore
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SA =−1
2

(
IN− 1

N
ee�

)
X�X

(
IN− 1

N
ee�

)

is positive semidefinite of rank≤ m. This shows the equivalence of (a) and (d). The
equivalence of (a) with (e) and (f) follows from Lemma 8.28 by noting that SA in
(d) satisfies x�SAx =− 1

2 x�Ax for all x ∈ (Re)⊥. This completes the proof. �
There are two simple facts about Cayley–Menger determinants that are worth

mentioning. First, for N = 3 points in R
2, one has the expression for the determinant

of the distance matrix (with aij := ‖xi− x j‖)

detD(x1,x2,x3)

=−1
4
(a12 + a13+ a23)(a12 + a13− a23)(a12− a13 + a23)(−a12 + a13+ a23).

This relates to the familiar triangle inequalities that characterize a triple of nonneg-
ative real numbers d1,d2,d3 as the side lengths of a triangle. Second, a well-known
formula for the volume Vol (Σ) of the simplex Σ defined by N + 1 points x0, . . . ,xN

in R
N asserts that

Vol (Σ) =
1

N!
|det (x1− x0, . . . ,xN − x0)|.

From the translational invariance of the norm, the distance matrix A :=
D(x0, . . . ,xN) = D(0, p1, . . . , pN), with pi := xi − x0 for i = 1, . . . ,N. Applying
(8.12) to d := col(0,‖p1‖2, . . . ,‖pN‖2), P := (p1, . . . , pN) ∈R

d×N , we obtain

Vol2(Σ) =
(

1
N!

)2

|detP|2 = det

(
I2 0
0 P�P

)

=−det

⎛

⎜⎜
⎜
⎜
⎜
⎝

0 1 1 · · · 1
1 0 0 · · · 0
1 0 p�1 p1 · · · p�1 pN
...

...
...

. . .
...

1 0 p�N p1 · · · p�N pN

⎞

⎟⎟
⎟
⎟
⎟
⎠

=−det

(
0 e�

e − 1
2 D

)
.

Thus we obtain the formula for the squared volume of the simplex in terms of
the mutual distances as

Vol2(Σ) =−
(

1
N!

)2

detCM,
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where CM is the Cayley–Menger matrix of the distance matrix D(x0, . . . ,xN).
Returning to the situation of formations defined over a graph, the rigidity matrix

of a formation is defined as the M×mN Jacobi matrix R(X) = JacD (X) whose ijth
row (ij ∈ E) is

R(X)ij = (ei− e j)
�⊗ (xi− x j)

�.

A formation X is called regular whenever

rkR(X) = max
Z∈Rm×N

rkR(Z).

The regular formations form an open and dense subset in the space of all formations.
The geometry of formations is closely connected with the standard action of the
Euclidean group on R

m. Let O(m) denote the compact matrix Lie group of all
real orthogonal m×m matrices. The Euclidean group E(m) then parameterizes
all Euclidean group transformations of the form p �→ gp+ v, where g ∈ O(m) and

v ∈R
m denotes a translation vector. Thus E(m) is a Lie group of dimension m(m+1)

2 ,
which is in fact a semidirect product of O(m) and R

m. Since D is invariant under
orthogonal rotations, i.e., D(SX) =D(X) for S ∈ O(m), the tangent space to such a
group orbit is contained in the kernel of the rigidity matrix R(X).

Lemma 8.30. The kernel of the rigidity map R(X) contains the tangent space
TX(O(m) ·X). Suppose the linear span of the columns x1, . . . ,xN of X has dimen-
sion r. Then the kernel of R(X) has at least dimension 1

2 r(2m− r− 1).

Proof. The first statement is a simple consequence of the invariance of D under
the group of orthogonal transformations X �→ SX. Note that the stabilizer group
O(m)X of X coincides with the subgroup of O(m) that leaves the elements of the
linear span < x1, . . . ,xN > pointwise invariant. Thus a straightforward computation
reveals that the dimension of O(m)X is equal to 1

2 (m− r)(m− r−1). Therefore, the
dimension of the group orbit O(m) ·X is equal to 1

2 m(m−1)− 1
2 (m−r)(m−r−1)=

1
2 r(2m− r− 1). This completes the proof. �

A formation is called infinitesimally rigid if the kernel of the rigidity matrix
coincides with the tangent space TX (O(m) ·X). Equivalently, infinitesimal rigidity
holds if and only if the following rank condition is satisfied:

rkR(X) = m(N− 1)− 1
2

rkX(2m− rkX− 1).

Note that from the structure of R(X) one can easily check that rkR(X)≤ N− 1 for
r = 1. Likewise one can check that rkR(X)≤ 2N− 3 for r = 2 and all d with M ≥
2N− 3. With the aid of these bounds, one can then verify using the rank condition
that a formation of N points in the plane R

2 is infinitesimally rigid if and only if
r = 2 and the rank of R(X) is equal to 2N − 3. Similarly, a formation of N ≥ 4
points in R

3 is infinitesimally rigid if and only if r = 3 and the rank of R(X) is equal
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Fig. 8.7 Complete graphs
are rigid
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Fig. 8.8 Nonrigid graph 1
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Fig. 8.9 Minimally rigid
graph
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to 3N− 6. A formation X is called rigid whenever the orbit SO(m) ·X is isolated in
the fiber D−1(D(X). Every infinitesimally rigid formation is rigid, but the converse
does not hold. In fact, regular formations are infinitesimally rigid if and only if they
are rigid (Figures 8.7 and 8.8).

A rigid graph in R
m is one for which almost every X ∈ R

m is infinitesimally
rigid. Thus Γ is rigid in R

m if and only if the rigidity matrix R(X) has generic rank

equal to mN − m(m+1)
2 . A rigid graph is called minimally rigid if it has exactly

mN− m(m+1)
2 edges (Figure 8.9). An example of a rigid graph is the complete graph

KN that has an edge between each pair of the N vertices. KN is minimally rigid if and
only if N = 2,3, but not if N ≥ 4. In contrast, a graph with 4 vertices and 5 edges
realized in R

2 is minimally rigid.
Rigid graphs in R

2 are characterized in a combinatorial manner by the so-called
Laman condition stated in the next theorem.
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Theorem 8.31 (Laman (1970)). A graph Γ with M edges and N vertices is
minimally rigid in R

2 if and only if the following two conditions are satisfied:

(a) M = 2N− 3.
(b) Every subgraph Γ ′ of Γ with N′ vertices and M′ edges satisfies M′ ≤ 2N′ − 3.

An explicit combinatorial characterization of rigid graphs in R
3 is unknown.

8.6 Spectral Graph Theory

Definition 8.32. The spectrum of a weighted graph is defined as the set of
eigenvalues of the adjacency matrix A(Γ ), counted with their multiplicities. The
characteristic polynomial of Γ is defined as the characteristic polynomial

det(zI−A(Γ )) = zN + c1zN−1 + · · ·+ cN .

The field of spectral graph theory is concerned with attempting to characterize
the properties of graphs using information on the spectrum. Typically, the graphs are
not weighted, and thus the adjacency matrix considered is the classical adjacency
matrix of a graph. The first three coefficients of the characteristic polynomial of an
unweighted graph (without self-loops) are easily characterized as follows:

1. c1 = 0,
2. c2 =−|E|,
3. c3 =−2δ , where δ denotes the number of triangles in Γ .

We refer the reader to Cvetkovic, Rowlinson and Simic (2010) for a detailed study
of graph spectra.

Laplacian matrices are constructed from the adjacency matrix of a weighted
graph through the notion of oriented incidence matrices. Their spectral properties
dominate the present theory of consensus and synchronization, as will be further
explained in Chapter 11. Let Γ = (V,E) be an oriented (directed or undirected)
weighted graph with associated maps ι : E −→ V and τ : E −→ V on the initial
and terminal points, respectively. Here and in the sequel we will always use the
canonical orientation on a digraph. Assume that Γ has n vertices {v1, . . . ,vN} and
M edges {e1, . . . ,eM}. Thus, for an edge e ∈ E with initial and terminal points
vi = ι(e),v j = τ(e), respectively, there are associated weights ae = aij ≥ 0. Let
A ∈ R

N×N
+ denote the weight adjacency matrix of Γ = (V,E). Equivalently, one

can present the weights as the diagonal matrix

W = diag(ae)e∈E ∈R
M×M.

The oriented incidence matrix is defined as
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Fig. 8.10 Orientation
labeling of a graph

1
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B = (bij) ∈ R
N×M, bij =

⎧
⎪⎪⎨

⎪⎪⎩

1 if vi = τ(e j) �= ι(e j),

−1 if vi = ι(e j) �= τ(e j),

0 otherwise.

(8.13)

Thus every incidence matrix has in each of its columns a single entry 1 and
a single entry −1. All other entries in the column are zero. If B,B′ are incidence
matrices of two identical graphs but with different orientations, then B′ = BS for
a unique diagonal matrix S = diag(s1, . . . ,sM) and si = ±1. Thus the product
B′W (B′)� = BWB� is independent of the orientation. If the graph Γ is strongly
connected, then the incidence matrix B is known to have full row rank N− 1; see,
for example, Fiedler (2008). This shows that B has full row rank N−1 and the kernel
of B has dimension M−N + 1. Each vector in Ker B describes a cycle in the graph
Γ . Thus there are exactly M−N + 1 linearly independent cycles for a (directed or
undirected) graph defined by a basis of the kernel of B with integer coefficients
(Figure 8.10).

Let
←−
Γ = (V,

←−
E ) denote the so-called reverse graph, i.e., Γ and

←−
Γ have the same

set V of vertices and for each pair of vertices u,v:

(u,v) ∈ E ⇐⇒ (v,u) ∈←−E .

Then the adjacency matrix of
←−
Γ is the transpose of that of Γ , i.e.,

A(
←−
Γ ) = A(Γ )�.

Definition 8.33 (Laplacian). Let Γ =(V,E) be a weighted (directed or undirected)
graph with nonnegative weight matrix A(Γ ) ∈ R

N×N
+ . Let DΓ = diag(d1, . . . ,dN)

denote the real diagonal matrix with entries di := ∑N
j=1 aij. The Laplacian of the

weighted digraph is defined as

L(Γ ) = D(Γ )−A(Γ ) ∈ R
N×N .
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The canonical Laplacian L (Γ ) ∈ Z
N×N of a (directed or undirected) graph is

defined as a Laplacian with the canonical 0,1 adjacency weight matrix A(Γ ).

Proposition 8.34. Let Γ = (V,E) be an oriented directed graph with nonnegative
weight matrix AΓ . Then

BWB� = L(Γ )+L(
←−
Γ ).

If Γ is undirected, then

BWB� = L(Γ ).

Proof. Let e1, . . . ,eM denote the edges of Γ . The ij entry of BWB� is equal to
∑M

k=1 aek bikbjk. Note that bikbjk = 0 if and only if either i or j is not a vertex of
the edge ek. This shows that

(BWB�)ij =

{
−(aij + aji) for i �= j

∑N
r=1(air + ari) for i = j .

This shows the formula for directed graphs. For undirected graphs, the edges ij and
ji appear only once. This accounts for the factor of 1

2 . This completes the proof. �
The Laplacian of an undirected, weighted graph is always a real symmetric

matrix and therefore has only real eigenvalues. Of course, for a directed graph this
does not need to be true. However, there are important constraints on the spectrum
of a Laplacian that are specified by the next theorem.

For ξ = col(ξ1, . . . ,ξN) ∈ R
N , introduce the diagonal matrix diag(ξi −

ξ j)(i, j)∈E ∈R
M×M. The oriented incidence matrix then satisfies the useful identity

B�ξ = diag(ξi− ξ j)e.

The preceding lemma then implies the explicit representation of the associated
quadratic form as

QΓ (ξ ) = ξ�(L(Γ )+L(
←−
Γ ))ξ = ξ�BWB�ξ

=
n

∑
i, j=1

aij(ξi− ξ j)
2.

(8.14)

Most spectral properties of Laplacian matrices can be derived via the canonical
quadratic form QΓ : RN×N −→ R associated with the graph.

Lemma 8.35. The quadratic form QΓ vanishes on Re. It is exactly zero on Re if
the graph Γ is strongly connected.
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Proof. The first claim is obvious. By (8.14), it follows that QΓ (ξ ) = 0 if and only
if aij(ξi− ξ j)

2 = 0 for all i, j. This implies ξi = ξ j for all edges (i, j) ∈ E . Thus, if
Γ is strongly connected, this implies ξ1 = · · ·= ξn. �
Theorem 8.36. Let L(Γ ) denote the Laplacian of a weighted graph Γ on N vertices

with nonnegative weights. Let e = (1, . . . ,1)� ∈ R
N. Then L(Γ )e = L(

←−
Γ )e = 0.

Moreover:

1. The eigenvalues of L(Γ ) have nonnegative real part;
2. If Γ is strongly connected, then L(Γ ) has rank N− 1, i.e.,

KerL(Γ ) = Re.

Thus, 0 is a simple eigenvalue of L(Γ ), and all other eigenvalues of LΓ have
positive real part.

3. The quadratic form QΓ is positive semidefinite if and only if e�L(Γ ) = 0.

Proof. The claim L(Γ )e = L(
←−
Γ )e = 0 is obvious from the definition of Laplacians.

Note that e�L(Γ ) = 0 if and only if ∑N
j=1 aij = ∑N

j=1 aji for all i = 1, . . . ,N. This in

turn is equivalent to L(
←−
Γ ) = L(Γ )�. For simplicity, we only prove claims 1 and

2 for symmetric weights, i.e., for L(
←−
Γ ) = L(Γ )�. See Bullo, Cortés and Martínez

(2009), Theorem 1.32, for the proof in the general case.
Claims 1 and 2. Assume Lx = λx for a nonzero complex vector x and λ ∈ C. By

Proposition 8.34, then L+L� = BWB�, and therefore, using x∗ = x�,

2Reλ‖x‖2 = x∗Lx+ x∗L�x = x∗BWB�x≥ 0.

Thus Reλ ≥ 0. Now suppose that Γ is strongly connected. By Lemma 8.35, the
symmetric matrix L(Γ ) + L(Γ )� is positive semidefinite and degenerates exactly
on Re. This proves the claim.

Claim 3. If e�L(Γ ) = 0, then L(Γ )+L(Γ )� = L(Γ )+L(
←−
Γ ) = BWB� is positive

semidefinite. Conversely, assume that L(Γ )+L(Γ )� is positive semidefinite. Then

0 = e�(L(Γ )+L(Γ )�)e.

By the positive semidefiniteness of L(Γ ) + L(Γ )�, thus (L(Γ )�e = L(Γ ) +
L(Γ )�)e = 0. This proves (3). �

A classical result on the eigenvalues of Hermitian matrices is the Courant–
Fischer minimax principle, which characterizes the eigenvalues of Hermitian
matrices.

Theorem 8.37 (Courant–Fischer). Let A = A∗ ∈ C
n×n be Hermitian with eigen-

values λ1 ≥ ·· · ≥ λn. Let Ei denote the direct sum of the eigenspaces corresponding
to the eigenvalues λ1, . . . ,λi. Then
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λi = min
dimS=n−i+1

max
0 �=x∈S

x∗Ax
x∗x

= min
0 �=x∈Ei

x∗Ax
x∗x

.

The minimax principle can be extended to establish bounds for the eigenvalues
of sums of Hermitian matrices, such as the Weyl inequalities. The Weyl inequality
asserts that the eigenvalues of the sum A+B of Hermitian matrices A,B ∈ C

n×n,
ordered decreasingly, satisfy, for 1≤ i+ j− 1≤ n, the inequality

λi+ j−1(A+B)≤ λi(A)+λ j(B).

More refined eigenvalue estimates are obtained from generalizations of the Weyl
inequalities such as the Freede–Thompson inequality. We next state a straightfor-
ward consequence of the minimax principle to Laplacian matrices.

Corollary 8.38. Let L(Γ ) denote the Laplacian of a weighted, directed graph on N
vertices with nonnegative weights. Assume that Γ is strongly connected and satisfies
e�L = 0. Then the eigenvalue λN−1 of L(Γ ) with smallest positive real part satisfies

Re(λN−1)≥ min
0 �=x∈(Re)⊥

x∗Lx
x∗x

> 0. (8.15)

Moreover, if L(Γ ) is symmetric, then λN−1 is real, and equality in (8.15) holds.

Proof. By Theorem 8.36 the quadratic form QΓ (x) = 2x∗Lx = x∗(L+L∗)x is posi-
tive semidefinite and degenerates exactly on Re. Moreover, all nonzero eigenvalues
σ of L have positive real part. Thus the eigenvectors v of L with Lv = σv satisfy
v∗e = 0 and v∗(L+L∗)v = 2Re(σ)‖v‖2. Thus the result follows from the minimax
principle applied to A := L+L∗. �

Let us briefly mention a coordinate-free approach to Laplacian matrices. Let
S(N) denote the vector space of real symmetric N ×N matrices. For an N ×N
matrix S, let δ (S) = (s11,s22, . . . ,sNN)

� denote the column vector defined by the
diagonal entries of S. Moreover, let diag(S) denote the diagonal matrix obtained
from S by setting all off-diagonal entries equal to zero. Define a linear map
D : S(N)−→ S(N) as

D(S) = S− 1
2
(δ (S)e�+ eδ (S)�),

where e = (1, . . . ,1)� ∈R
N .

Lemma 8.39.

KerD = {ae�+ ea�}.

Proof. The inclusion ⊂ follows from the definition of D(S) with a = 1
2δ (S). For

the other direction let S = ae�+ ea�. Then δ (S) = 2a, and thus D(S) = 0. �
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It is easily seen that the adjoint operator of D with respect to the Frobenius inner
product < S1,S2 >:= tr(S1S2) is D∗ : S(N)−→ S(N), with

D∗(S) = S− 1
2

diag(δ (S)ee�+ ee�δ (S)�).

The Laplacian operator is the linear map L = D∗ ◦D . Obviously, a symmetric
matrix S satisfies

tr(L(S)S) = tr(D(S)D(S)) = ‖D(S)‖2 ≥ 0,

and therefore tr(L(S)S) = 0 if and only if D(S) = 0. Note further that D ◦D∗ =D∗
and the operators D and D∗ commute on the space of symmetric matrices with zero
diagonal entries. A brute force calculation shows

L(S) = S− 1
2
(δ (S)e�+ eδ (S)�)− 1

2
diag(See�+ ee�S)+

N
2

diag(S)+
1
2

tr(S)IN .

Using the preceding formula for the Laplacian operator one concludes for each
symmetric matrix S that

Lij(S) =

{
sij− sii+sjj

2 if i �= j

−∑N
j=1(sik− sii+skk

2 ) if i = j.

In particular, L(S)e = 0 for all S. This explicit formula implies the following
corollary.

Corollary 8.40. For (x1, . . . ,xN) ∈ R
m×N, define the distance matrix D(x1, . . . ,xN)

= (‖xi− x j‖2). Then the Laplacian of S = X�X is

L(X�X) =−1
2
(D(x1, . . . ,xN)− diag(D(x1, . . . ,xN)e).

In particular, if the matrix D(x1, . . . ,xN) is irreducible, then

KerL(X�X) = Re.

Laplacian operators share an important monotonicity property.

Proposition 8.41. L is a monotonic operator, i.e., if S1−S2 is positive semidefinite,
then so is L(S1)−L(S2). The kernel of L is equal to the kernel of D .

Proof. The second claim is obvious from the definition of L =D∗ ◦D . For the first
claim it suffices to show that L maps positive semidefinite matrices into positive
semidefinite matrices. If S is positive semidefinite, then there exists a full column
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row matrix X = (x1, . . . ,xN), with S = X�X . Therefore, Lij(X�X) =−‖xi−x j‖2 for
i �= j and Lii(X�X) = ∑N

j=1‖xi− x j‖2. Thus, for a vector ξ ,

ξ�L(X�X)ξ =
1
2 ∑

i< j

‖xi− x j‖2(ξi− ξ j)
2 ≥ 0.

This completes the proof. �
A different version of the Laplacian matrix of a graph that is frequently of interest

in applications is the normalized Laplacian, or the flocking matrix

L = D−1A.

Here A denotes the weighted adjacency matrix and D = diag(Ae). We list a few
spectral properties of the normalized Laplacian for undirected graphs.

Theorem 8.42. The normalized Laplacian L of an undirected, weighted, con-
nected graph Γ has the following properties:

1. L is a stochastic matrix with only real eigenvalues−1≤ λ ≤ 1;
2. 1 is a simple eigenvalue of L with eigenspace Re. Moreover, −1 is not an

eigenvalue of Γ if and only if Γ is not bipartite;
3. If A has at least one positive entry on the diagonal, then−1 is not an eigenvalue

of L .

Proof. L is similar to the real symmetric matrix

D
1
2 LD−

1
2 = D−

1
2 AD−

1
2 = I−D−

1
2 LD−

1
2

and therefore has only real eigenvalues. Moreover, D−1Ax = x if and only if
Lx = (D−A)x = 0. Theorem 8.36 implies that 1 is a simple eigenvalue of L with
eigenspace equal to the kernel of L, i.e., it coincides with Re. L is nonnegative, with
L e = e, and therefore a stochastic matrix. Thus Theorem 8.18 implies that L has
spectral radius 1. Moreover, the irreducibility of the adjacency matrix A implies that
L is irreducible. Suppose that −1 is an eigenvalue of L . Applying Theorem 8.23
we conclude that L and, hence, A are permutation equivalent to a matrix of the
form

(
0 B1

B�1 0

)
. (8.16)

But this is equivalent to the graph being bipartite. Conversely, assume that A is the
adjacency matrix of a bipartite graph. Then L is permutation equivalent to (8.16).
Thus the characteristic polynomial of L is even, and therefore−1 is an eigenvalue.
This proves the first two claims. Now suppose that A and, hence, L have at least one
positive diagonal entry. Then L cannot be permutation equivalent to a matrix of the



448 8 Nonnegative Matrices and Graph Theory

form (8.16) because diagonal entries remain on the diagonal under permutations.
Thus Theorem 8.23 implies that −1 cannot be an eigenvalue of L . This completes
the proof. �

Finally, we prove the classical matrix-tree theorem for weighted graphs, which
plays an important role in algebraic combinatorics. We use the following notation.
For each edge e ∈ E let ae > 0 denote the associated weight. For a subset E ′ ⊂ E
define

aE ′ = ∏
e∈E ′

ae.

Note that the classical adjoint of a matrix A is the transposed matrix adj (A of
cofactors, i.e., adj Aij = (−1)i+ j detAji.

Theorem 8.43 (Matrix-Tree Theorem). Let Γ be an undirected weighted graph
and L(Γ ) the associated Laplacian with real eigenvalues 0 = λ1 ≤ λ2 ≤ ·· · ≤ λN.
Then:

1. The (N− 1)× (N− 1) leading principal minor of L(Γ ) is equal to

κ(Γ ) = ∑
|E ′|=N−1

aE ′ , (8.17)

where the sum is over all spanning subtrees (V,E ′) of Γ ;
2. The adjoint matrix of L(Γ ) is

adj L(Γ ) = κ(Γ )ee�; (8.18)

3.

κ(Γ ) =
λ2 · · ·λN

N
. (8.19)

Proof. By Lemma 8.34, the 11-minor of the Laplacian is equal to det(B1WB�1 ),
where B1 ∈ R

(N−1)×M denotes the (N−1)×M submatrix of the oriented incidence
matrix B formed by the first N− 1 rows. By the Cauchy–Binet formula,

det(B1WB�1 ) = ∑
|E ′|=N−1

det2(BE ′)detWE ′ , (8.20)

where the summation is over all subsets of edges E ′ ⊂ E ∩ ({1, . . . ,N − 1} ×
{1, . . . ,N − 1}) of cardinality N − 1. One can always assume without loss of
generality that the subgraphs ({1, . . . ,N− 1},E ′) are connected, because otherwise
BE ′ would contain a zero row (or zero column), and thus det2(BE ′) = 0. Assume
that ({1, . . . ,N− 1},E ′) contains a cycle of length r ≤ N− 1. Then, after a suitable
permutation of rows and columns, BE ′ would be of the form
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(
B11 B12

0 B22

)
,

with

B11 =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 −1
−1 1 0 0

0
. . .

. . .
. . .

...
... −1 1 0
0 · · · 0 −1 1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

a circulant matrix whose last column is the negative of the sum of the previous ones.
Thus detB11 = 0, and therefore the corresponding summand in (8.20) vanishes. Thus
only the cycle-free subgraphsΓ ′=({1, . . . ,N−1},E ′) contribute. These are exactly
the spanning subtrees of ({1, . . . ,N− 1},E ′) with determinant detBE ′ = ±1. This
proves (8.20).

For the second claim note that Γ is connected if and only if the rank of the
Laplacian is n− 1. Thus, if Γ is not connected, then both sides of (8.19) are zero.
Hence, one can assume that Γ is connected. From L(Γ )adj L(Γ ) = det L(Γ )I = 0
we conclude that every column of adj L(Γ ) is in the kernel of L(Γ ), i.e., is a scalar
multiple of e. Since L(Γ ) is symmetric, so is adj L(Γ ). Thus adj L(Γ ) is a multiple
of ee�.

The last claim follows by taking traces in (8.19). Thus Nκ(Γ ) = tr adj L(Γ )
coincides with the sum of eigenvalues of adj L(Γ ). If λ1, . . . ,λN denote the
eigenvalues of a matrix M, then the eigenvalues of the adjoint adj M are ∏ j �=i λ j,
j = 1, . . . ,N. Thus we obtain tr adj L(Γ ) = λ2 · · ·λN . This completes the proof. �

As a consequence of the matrix-tree theorem one can derive an explicit formula
for the number of spanning trees in a graph.

Corollary 8.44 (Temperley (1964)). Let L := L(Γ ) be the Laplacian of an undi-
rected weighted graph on N vertices and J = ee�. Then

κ(Γ ) =
det (J +L)

N2 .

Proof. The identities NJ = J2,JL = 0 imply (NI − J)(J + L) = NL. By taking
adjoints, therefore, adj (J +L)adj (NI− J) = adj (NL) = NN−1adj L. Thus, using
adj (NI− J) = NN−2J, the matrix-tree theorem implies

NN−1κ(Γ )J = NN−1adj L = NN−2adj (J +L)J.

Thus Nκ(Γ )J = adj (J+L)J, and therefore
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det (J +L)J = (J+L)adj (J+L)J = adj (J +L)(J+L)J = Nadj (J +L)J

= N2κ(Γ ).

�
For the complete graph KN on N vertices, the classical graph Laplacian is L =

NI− J. This implies the well-known formula

κ(KN) =
det (J+L )

N2 =
NN

N2 = NN−2

for the number of spanning trees in KN .

8.7 Laplacians of Simple Graphs

We determine spectral information for important classes of classical Laplacians and
adjacency matrices for directed and undirected graphs Γ . For simplicity we focus
on unweighted graphs, i.e., on classical Laplacians and adjacency matrices. Note
that both Laplacians and adjacency matrices of undirected, weighted graphs satisfy
the following properties.

L(Γ ∪Γ ′)) = diag (L(Γ ),L(Γ ′)),

L(Γ ×Γ ′) = L(Γ )⊗ In+ Im⊗L(Γ ′) .

In particular, the eigenvalues of the Laplacian of the direct product graph Γ ×Γ ′
are the sums λi + μ j of the eigenvalues λi and μ j of Γ and Γ ′, respectively.

1. Simple Path Graph. Our first example is the simple directed path graph Γn

on the vertex set V = {1, . . . ,N} and edges E = {(1,2),(2,3), . . . ,(N − 1,N)}
(Figure 8.11).

The adjacency matrix and Laplacian of ΓN are respectively

A=

⎛

⎜⎜
⎜
⎜
⎝

0 · · · · · · 0

1
. . .

...
...

. . .
. . .

...
0 · · · 1 0

⎞

⎟⎟
⎟
⎟
⎠
, L =

⎛

⎜⎜
⎜
⎜
⎝

0 · · · · · · 0

−1 1
...

...
. . .

. . .
...

0 · · · −1 1

⎞

⎟⎟
⎟
⎟
⎠
.

1 2 3 4 5

Fig. 8.11 Directed simple path
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1 2 3 4 5

Fig. 8.12 Undirected simple path

Thus A is the standard cyclic nilpotent matrix, while L has 0 as a simple
eigenvalue and the eigenvalue 1 has a geometric multiplicity of one (and an algebraic
multiplicity of N− 1) (Figure 8.12).

More interesting is the associated undirected graph with a set of edges
E = {{1,2},{2,3}, . . .,{N− 1,N}} and graph adjacency and Laplacian matrices,
respectively,

AN =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

0 1
1 0 1

1
. . .

. . .
. . .

. . . 1
1 0

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

, LN =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

.

We begin with a spectral analysis ofAN . This is a classical exercise from analysis.

Theorem 8.45. 1. The eigenvalues of AN are the distinct real numbers λk(AN) =
2cos kπ

N+1 , k = 1, . . . ,N.

2. The unique eigenvector x(k) = (ξ (k)
0 , . . . ,ξ (k)

N−1)
�, normalized as ξ (k)

0 := 1, for the
eigenvalue 2cos kπ

N+1 is

ξ (k)
ν =

sink( ν+1
N+1 )π

sin( kπ
N+1 )

, ν = 0, . . . ,N− 1.

In particular, the coordinates of the eigenvector x(k) are reflection symmetric,

that is, they satisfy ξ (k)
ν = ξ (k)

n−1−ν .

Proof. Let

eN(z) = det(zI−AN)

be the characteristic polynomial of AN . Expanding by the first row leads to the
three-term recursion

eN(z) = zeN−1(z)− eN−2(z). (8.21)

For the 1-norm ‖A‖ ≤ 2, and hence it follows that the eigenvalues satisfy |λ | ≤ 2
and, as eigenvalues of a real symmetric matrix, they are all real. So one can set
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λ = 2cosx. From (8.21) it follows that λ is an eigenvalue if and only if eN(λ ) = 0.
The difference equation (8.21) can be written now as

eN(2cosx) = 2cosx · eN−1(2cosx)− eN−2(2cosx). (8.22)

We try an exponential solution to this difference equation, i.e., we put eN =
AζN

1 + BζN
2 , where ζ1 and ζ2 are the two roots of the characteristic polynomial

ζ 2 − 2ζ cosx + 1 = 0. This leads to ζ = e±
√−1x. The initial conditions for the

difference equation (8.21) are e0(z) = 1 and e1(z) = z. Setting eN(2cosx) =

Ae
√−1Nx +Be−

√−1Nx leads to the pair of equations

A+B = 1, Ae
√−1x +Be−

√−1x = 2cosx.

Solving and substituting back in (8.22) one obtains

eN(2cosx) =
sin(N + 1)x

sinx
.

The right-hand side vanishes for x= kπ
N+1 , k= 1, . . . ,N, and therefore the eigenvalues

of AN are 2cos kπ
N+1 .

We proceed now to the computation of the eigenvectors of AN . Let x(k) =

(ξ (k)
0 , . . . ,ξ (k)

N−1) be the eigenvector corresponding to the eigenvalue λk =

2cos( kπ
N+1 ). The characteristic equation Tx(k) = λkx(k) is equivalent to the system

ξ (k)
1 = λkξ

(k)
0

ξ (k)
0 + ξ (k)

2 = λkξ
(k)
1

...

ξ (k)
N−3 + ξ (k)

N−1 = λkξ
(k)
N−2

ξ (k)
N−2 = λkξ

(k)
N−1 .

(8.23)

The coordinates of the eigenvector x(k) satisfy the recursion

ξ (k)
ν = 2cos(

kπ
N + 1

)ξ (k)
ν−1− ξ (k)

ν−2.

Normalize the eigenvector by requiring ξ (k)
0 = 1. The second coordinate is deter-

mined by the first equation in (8.23) and ξ (k)
1 = 2cos( kπ

N+1 ). As is the case with
eigenvalues, one solves the difference equation using a linear combination of two
exponential solutions. Thus
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ξ (k)
ν = Ae

√−1νπ
N+1 +Be

−√−1νπ
N+1 .

The initial conditions determine the ξν , and we obtain the explicit formula

ξ (k)
ν =

sink( ν+1
N+1 )π

sin( kπ
N+1 )

.

�
For later use we formulate a similar result for the matrices

MN =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 2

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

LN =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

.

Expanding the characteristic polynomial of MN

gN(z) = det(zI−MN)

by the last row one obtains the recursion

gN(z) = (z− 2)gN−1(z)− gN−2(z),

with initial conditions g0(z) = 1,g1(z) := z−1,g2(z) = (z−1)(z−2)−1. Note that
γN(z) = eN(z− 2) satisfies the same recursion, but with different initial conditions.
For a proof of the next result we refer to Yueh (2005); see Willms (2008) for further
eigenvalue formulas for tridiagonal matrices.

Theorem 8.46. 1. The eigenvalues of MN are distinct and are

λk(MN) = 2− 2cos
(2k− 1)π

2N + 1
, k = 1, . . . ,N.

An eigenvector x(k) = (ξ (k)
0 , . . . ,ξ (k)

N−1)
� for the eigenvalue λk(MN) is

ξ (k)
ν = sin

( (2k− 1)(ν+N + 1)π
2N + 1

)
, ν = 0, . . . ,N− 1.

2. The eigenvalues of LN are distinct

λk(LN) = 2− 2cos
(k− 1)π

N
, k = 1, . . . ,N.
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Fig. 8.13 Directed cycle
graph

1

2

3

4

5

The unique eigenvector x(k) = (ξ (k)
0 , . . . ,ξ (k)

N−1)
�, normalized as ξ (1)

ν := 1, for the
eigenvalue λk(LN) is

ξ (k)
ν = cos

((k− 1)(2ν + 1)π
2N

)
, ν = 0, . . . ,N− 1.

2. Simple Cycle Graph. In this case the set of edges of the digraph is E =
{(1,2), . . . ,(N− 1,N),(N,1)} and in the undirected case

E = {{1,2}, . . . ,{N− 1,N},{1,N}}.

Consider first the directed graph case (Figure 8.13). Then the adjacency matrix
is the circulant matrix

CN =

⎛

⎜
⎜
⎜
⎜
⎝

0 1

1
. . .
. . .

. . .

1 0

⎞

⎟
⎟
⎟
⎟
⎠

. (8.24)

Being a circulant matrix, C is diagonalized by the Fourier matrix. Explicitly, let

Φ =
1√
N

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

1 1 1 . . . 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2N−2

...
...

1 ωN−1 ω2N−2 · · · ω(N−1)2

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

(8.25)

denote the Fourier matrix, where ω = e2π
√−1/N denotes a primitive Nth root of

unity. Notice that Φ is both a unitary and a symmetric matrix:

CN = Φdiag(1,ω , . . . ,ωN−1)Φ∗ .
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Fig. 8.14 Undirected cycle
graph

1

2

3

4

5

This proves the following theorem.

Theorem 8.47. The eigenvalues of CN are distinct and are the Nth roots of unity:

λk(CN) = ωk = e
2k
√−1π

N , k = 1, . . . ,N.

An eigenvector x(k) = (ξ (k)
0 , . . . ,ξ (k)

N−1)
� for the eigenvalue λk(CN) is

x(k) = Φek =
N−1

∑
j=0

ω(k−1) je j+1, k = 1, . . . ,N.

The associated Laplacian matrix is equal to LN = IN−CN . Thus the eigenvalues and
eigenvector are trivially related to those of CN (Figure 8.14).

The undirected case is more interesting. The adjacency matrix and Laplacian
matrices are

AN =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

0 1 1
1 0 1

1
. . .

. . .
. . .

. . . 1
1 1 0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

, LN = 2IN−AN =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

2 1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 −1 2

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

. (8.26)

Theorem 8.48. 1. The eigenvalues of AN and LN defined in (8.26) are

λk(AN) = 2cos(
2kπ
N

), k = 1, . . . ,N,

λk(LN) = 2− 2cos(
2kπ
N

), k = 1, . . . ,N.

In either case, λk = λl for 1 ≤ k, l ≤ N if and only if l = N − k. For N = 2m
even, λm and λN are simple and λk has a multiplicity of two for all other k.
For N = 2m+ 1 odd, λN is simple and all other eigenvalues have a multiplicity
of two.
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2. An orthonormal basis for the eigenspaces of AN and LN for the eigenvalue
λk(AN) and λk(LN), respectively, is as follows:

(a) A single generator

1√
N

⎛

⎜
⎜
⎜
⎜⎜
⎝

1
1
1
...
1

⎞

⎟
⎟
⎟
⎟⎟
⎠
,

1√
N

⎛

⎜
⎜
⎜
⎜⎜
⎝

1
−1
1
...
1

⎞

⎟
⎟
⎟
⎟⎟
⎠

for k = N or k = m,N = 2m, respectively.
(b) Otherwise, a basis of two orthonormal vectors

x(k) =
1√
N

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

1
cos( 2kπ

N )

cos( 4kπ
N )

...

cos( 2(N−1)kπ
N )

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

, y(k) =
1√
N

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

1
sin( 2kπ

N )

sin( 4kπ
N )

...

sin( 2(N−1)kπ
N )

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

.

Proof. Since

AN =CN +C�N = Φdiag(1,ω , . . . ,ωN−1)Φ∗+Φdiag(1,ω, . . . ,ωN−1)Φ∗,

the eigenvalues of C +C� are equal to Re(ωk +ωk) = 2cos( 2kπ
N ). Moreover, the

complex eigenvectors of AN are simply the columns

φk =
1√
N

⎛

⎜⎜
⎜
⎜
⎜
⎝

1
ωk

ω2k

...
ω(N−1)k

⎞

⎟⎟
⎟
⎟
⎟
⎠

of the Fourier matrix ΦN . Thus the real and imaginary parts

x(k) =
1
2
(φk +φk), y(k) =

1
2i
(φk−φk)

form a real basis of the corresponding eigenspaces. Writing x(k) = 1√
N
(ξ (k)

0 , . . .,

ξ (k)
N−1)

� and y(k) = 1√
N
(η(k)

0 , . . . , η(k)
N−1)

� one obtains for each k = 1, . . . ,N
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x(k)ν = cos
2kνπ

N
, y(k)ν = sin

2kνπ
N

, k = 1, . . . ,N,ν = 0, . . . ,N− 1.

This completes the proof for AN . The result on the Laplacian follows trivially as
LN = 2IN−AN. �

8.8 Compressions and Extensions of Laplacians

We begin by recalling the definition of the Schur complement. Let M be an N×N
matrix and I,J ⊂ {1, . . . ,N}. Then MIJ denotes the submatrix of M with row indices
in I and column indices in J, respectively.

Definition 8.49. Let M be an N ×N matrix and I ⊂ {1, . . . ,N} such that MII is
invertible. Let J = {1, . . . ,N} \ I �= /0. Then

M/MII := MJJ−MJIM
−1
II MIJ

is called the Schur complement.

The Schur complement has some basic properties that are easily established, as
follows.

Proposition 8.50. Let M be an N×N matrix and I ⊂ {1, . . . ,N} such that MII is
invertible. The Schur complement M/MII has the following properties:

1. rkM = rkMII + rkM/MII;
2. Let M be Hermitian; then M/MII is Hermitian with signature

sign(M) = sign(MII)+ sign(M/MII).

Proof. Without loss of generality, assume that I = {1, . . . ,r},1 ≤ r < n and M is
partitioned as

M =

(
M11 M12

M21 M22

)
.

The result follows easily from the identity

(
I 0

−M21M−1
11 I

)(
M11 M12

M21 M22

)(
I −M−1

11 M12

0 I

)
=

(
M11 0

0 M22−M21M−1
11 M12

)
.

�
The 2× 2 matrix
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(
1 −2
2 −3

)

shows that the Schur complement of a Hurwitz matrix need not be a Hurwitz matrix.
Information about the spectral properties of the Schur complement is provided by
the next result. For the proof we refer the reader to Fiedler (2008).

Theorem 8.51. Let M be a real N×N matrix with nonpositive off-diagonal entries
mij ≤ 0, i �= j. Let I ⊂ {1, . . . ,N}, with MII invertible. Suppose there exists a vector
x≥ 0 with Mx > 0. Then:

1. All eigenvalues of M have positive real part;
2. The eigenvalues of MII and M/MII have positive real parts, respectively;
3. The off-diagonal entries of MII and the Schur complement M/MII are both non-

positive. The inverses M−1
II and (M/MII)

−1 exist and are nonnegative matrices.

Let L denote the Laplacian matrix of an undirected, weighted graph Γ . Assume
that Δ = diag(δ1, . . . ,δN) denotes a diagonal matrix with nonnegative entries δ1 ≥
0, . . . ,δN ≥ 0. Then the matrix

L = L+Δ

is called a generalized Laplacian for Γ . Thus the generalized Laplacians L are
characterized as those matrices with nonpositive off-diagonal entries that satisfy
L e≥ 0. Let A denote the weighted adjacency matrix of Γ . The loopy Laplacian is
then the generalized Laplacian Q= L+Δ defined by setting δi := aii for i= 1, . . . ,N.

We now prove a central result on the submatrices of generalized Laplacians.

Theorem 8.52. Let Γ be an undirected, weighted graph with generalized Laplacian
matrix L .

1. Γ is connected if and only if L is irreducible.
2. Every eigenvalue and every principal minor of L are nonnegative.
3. For each I �= {1, . . . ,N}, LII is a positive definite matrix and its inverse (LII)

−1

is a nonnegative matrix.
4. Let Γ be connected. Then, for each I �= {1, . . . ,N}, both LII and the Schur

complement L /LII are generalized Laplacians.

Proof. Since the off-diagonal entries of −L coincide with those of the graph
adjacency matrix A of Γ , it follows that L is irreducible if and only if A is
irreducible. But this is equivalent to Γ being connected.

By Proposition 8.34, every principal submatrix of L is of the form

LII = ΔII +BIWB�I ,

where BI denotes the submatrix of the incidence matrix B formed by the rows that
are indexed by I. The matrix ΔII is a diagonal matrix with nonnegative entries. Thus
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LII has nonnegative off-diagonal terms and is positive semidefinite. This proves
claim 2. Assume that Γ is connected. Then for each proper subset I⊂{1, . . . ,N}, the
matrix BIWB�I is positive definite. In fact, x�BIWB�I x = 0 implies B�I x = 0. Extend
x to z ∈ R

N by adding zeros, so that B�z = B�I x. Since Ker B� = Re, therefore
z = λe. Since at least one entry of z is zero, we obtain λ = 0. Thus x = 0, which
proves positive definiteness of BIWB�I . In particular, LII = ΔII +BIW B�I is positive
definite for all proper index sets I. Moreover, LII is a generalized Laplacian matrix
because the off-diagonal entries are all nonpositive and LIIe ≥ 0. Let A denote
a real matrix with nonpositive off-diagonal entries such that all eigenvalues of A
have positive real part. By Theorem 5.2.1 in Fiedler (2008), one obtains that A−1

is a nonnegative matrix. Applying this result to A =LII we conclude that L −1
II is

nonnegative. This completes the proof of claim 3. Since LII is invertible, the Schur
complement L /LII = LJJ −LJIL

−1
II LIJ exists. Moreover, L −1

II is nonnegative
and the entries of LJI,LIJ are nonpositive. Thus all entries of −LJIL

−1
II LIJ are ≤

0. Since the off-diagonal entries of LJJ are all ≤ 0, this shows that the off-diagonal
entries of L /LII are nonpositive. Thus it remains to show that the diagonal entries
of the Schur complement are nonnegative. To this end, we simplify the notation by
assuming that I = {1, . . . ,r}. Then diagonal entries of L /LII are of the form

v�
(−L21L

−1
11 I

)(L11 L12

L21 L22

)(−L −1
11 L12

I

)
v = w�Lw,

for suitable choices of v,w. By claim 2, then w�Lw≥ 0, and the result follows. �
We now explore in more detail the underlying graphs that are associated with

forming submatrices and Schur complements. Let Γ = (V,E) be an undirected
weighted graph and V ′ ⊂ V a nonempty subset of r vertices in V . Let ΓV ′ =
(V ′,E∩(V ′×V ′) denote an induced graph with the induced weight adjacency matrix
A′. The relation between the Laplacians of ΓV ′ and Γ is established by the following
result, whose easy proof is omitted.

Proposition 8.53. Let I = {i1 < .. . < ir} ⊂ {1, . . . ,N} and V ′ = {vi1 , . . . ,vir}
denote the corresponding set of vertices in V . Let

L(Γ )II = (Lab)a,b∈I

denote the r× r principal submatrix of the Laplacian L(Γ ) = (Lij), with row and
column indices in I. Then

L(Γ )II = L(ΓV ′)+DV ′ ,

where DV ′ = diag (δ1, . . . ,δr) is a diagonal matrix with nonnegative entries
δi = ∑ j �∈I(aij + aji). In particular, the submatrix L(Γ )II of the Laplacian L is a
generalized Laplacian of the induced graph ΓV ′ = (V ′,E ∩ (V ′ ×V ′).
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For the Schur complement we introduce the following notion; see Fiedler (2008)
and Horn and Johnson (1990).

Definition 8.54. Let Γ = (V,E) be an undirected weighted graph on a vertex set
V = {1, . . . ,N} and I ⊂V . The Schur complement, or the Kron reduction, on J is
the graph ΓJ = (J,EJ) with the set of vertices J :=V \ I. Between vertices i, j ∈ J an
edge (i, j) ∈ E ′ is defined if and only if there exists a path from i to j such that all
its interior vertices (i.e., those of the path that differ from i and j) belong to W .

The Kron reduction of an undirected graph is an undirected graph on a subset of
vertices; however, it may contain self-loops even if Γ = (V,E) does not have self-
loops. The Kron reduction graph has some appealing properties that are partially
stated in the next result.

Theorem 8.55. Let Γ = (V,E) be an undirected weighted graph that is connected.
The Kron reduction of Γ is connected. The Schur complement L /LII of a
generalized Laplacian of Γ is a generalized Laplacian of the Kron reduction graph
ΓJ = (VJ,EJ).

Proof. For a proof that the Kron reduction is connected, we refer to Doerfler
and Bullo (2013). By the preceding reasoning, L(J) := L /LII is a generalized
Laplacian on the vertex set J. Thus it remains to show that the off-diagonal entries
Lij(J) are nonzero if and only if ij is an edge of the Kron reduction ΓJ = (J,EJ).
This is shown in Theorem 14.1.2 by Fiedler (2008) in the case where L possesses
a vector x ≥ 0 with L x > 0. In Theorem 3.4 by Doerfler and Bullo (2013), this is
shown for the so-called loopy Laplacian matrix of a graph. �

The Courant–Fischer minimax principle has important implications for the char-
acterization of the eigenvalues of submatrices of Hermitian matrices via interlacing
conditions. We state one of the simplest known results here, which is often attributed
to Cauchy and Weyl.

Theorem 8.56 (Eigenvalue Interlacing Theorem). Let M be a Hermitian n× n
matrix and I ⊂ {1, . . . ,n} a subset of cardinality r. Assume that the eigenvalues of
Hermitian matrices A are ordered increasingly as λ1(A) ≤ ·· · ≤ λn(A). Then, for
1≤ k≤ r,

λk(M) ≤ λk(MII)≤ λk+n−r(M). (8.27)

If in addition MII is positive definite, then for 1≤ k≤ n− r,

λk(M) ≤ λk(M/MII)≤ λk(MJJ)≤ λk+r(M).

Proof. For the proof of the first inequality we refer to Theorem 4.3.15 in Horn
and Johnson (1990). For the second claim note that the positive definiteness of
MII implies that of MJIM−1

II MIJ . Therefore, MJJ  MJJ −MJIM−1
II MIJ , and thus

λk(M/MII)≤ λk(MJJ) for all 1≤ k≤ n. Applying (8.27) to the submatrix MJJ gives
the result. �
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We next describe inequalities between the eigenvalues of the Laplacians of a
graph and induced subgraph.

Theorem 8.57. Let Γ = (V,E) be an undirected weighted graph and ΓV ′ = (V ′,E∩
(V ′ ×V ′) an induced subgraph on V ′ ⊂ V. Let 0 = λ1 ≤ λ2 ≤ ·· · ≤ λn, λ ′1 ≤ λ ′2 ≤
·· · ≤ λ ′r , and 0 = μ1 ≤ μ2 ≤ ·· · ≤ μr denote the eigenvalues of L(Γ ), L(Γ )V ′ , and
L(ΓV ′), respectively. Then for all 1≤ k ≤ r,

λk ≤ λ ′k ≤ λN−r+k,

k

∑
j=1

λ ′j ≥
k

∑
j=1

μ j +
k

∑
j=1

δ j.

In particular,

λN + · · ·+λN−r+1 ≥
r

∑
i=1

∑
j �=i

(aij + aji).

Proof. The first inequality follows from the interlacing theorem for eigenvalues of
nested Hermitian matrices; see, for example, Horn, Rhee and So (1998). The second
estimate follows from a standard eigenvalue inequality for sums of Hermitian
matrices. The last inequality follows from the other two. In fact, by the first
inequality, λn + · · ·+ λn−r+1 ≥ tr(L(Γ )V ′) = trL(ΓV ′) + DV ′ . This completes the
proof. �

Similar eigenvalue inequalities exist for the Schur complement of generalized
Laplacians. The straightforward proof of the next theorem is omitted.

Theorem 8.58. Let L denote a generalized Laplacian of an undirected, connected
graph, and let Lred = L /LII denote the Schur complement, |I| = r. Then the
following interlacing conditions for eigenvalues are satisfied:

λk(L )≤ λk(Lred)≤ λk(LJJ)≤ λk+r(L ) for 1≤ k ≤ N− r.

8.9 Exercises

1. Let λ1, . . . ,λn and μ1, . . . ,μm be the eigenvalues of the matrices A ∈ R
n×n

and B ∈ R
m×m, respectively. Prove that the eigenvalues of the Kronecker

product A⊗ B and of A⊗ Im + In⊗B are λiμ j and λi + μ j, respectively, for
i = 1 . . . ,n; j = 1, . . . ,m. Deduce that the Sylvester operator A⊗ Im− In⊗B is
invertible if and only if A and B have disjoint spectra.

2. Let λ1, . . . ,λn and μ1, . . . ,μm be the eigenvalues of the matrices A ∈ R
n×n and

B ∈ R
m×m, respectively. Let p(x,y) = ∑i, j ci jxiy j denote a real polynomial in
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two commuting variables. Generalize the preceding exercise by showing that
the eigenvalues of

∑
ij

cijA
i⊗B j

are equal to p(λk,μl).
3. The Hadamard product of two matrices A,B ∈ R

n×n is defined as the n× n
matrix A∗B=(aijbij). Prove that A∗B is a principal submatrix of A⊗B. Deduce
that the Hadamard product A∗B of two positive definite symmetric matrices A
and B is again positive definite.

4. Prove that the set of matrices A ∈ R
n×n, with e�A = e� and Ae = e, forms an

affine space of dimension (n− 1)2.
5. Prove Birkhoff’s theorem, stating that the set of n × n doubly stochastic

matrices form a convex polyhedron whose n! vertices are permutation matrices.
6. Let A∈C

n×n be unitary. Prove that the n×n matrix (|aij|2) is doubly stochastic.
7. Let A ∈ R

n×n be irreducible and D ∈ R
n×n be diagonal with AD = DA. Prove

that D = λ In is suitable for λ ∈R.
8. Let A ∈R

n×n be irreducible and D1, . . . ,DN−1 ∈ R
n×n diagonal, with

A = e2π
√−1k/NDkAD−1

k , k = 1, . . . ,N− 1.

Then there exists λk ∈ C, with Dk = λkDk
1 for k = 1, . . . ,N− 1.

9. A connected graph with N vertices, without loops and multiple edges, has at
least N− 1 edges. If the graph has more than N− 1 edges, then it contains a
polygon as a subgraph.

10. Prove that a graph is connected if and only if it has a spanning tree.
11. Consider the directed graph Γ on the vertex set V = {1,2,3,4,5,6} with

adjacency matrix

A =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0
1 0 0 0 1 0
0 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

.

(a) Prove that Γ is strongly connected.
(b) Prove that there exists a cycle of period two through vertex 1 and 1 has no

cycle of odd period.
(c) Prove that the period of A is 2.
(d) Compute the eigenvalues of A.

12. Let A∈R
n×n be nonnegative and irreducible. Show that (A+εI)n−1 > 0 for all

ε > 0.
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13. Consider the matrices

A1 =

⎛

⎜⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞

⎟⎟
⎠ , A2 =

⎛

⎜⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

⎞

⎟⎟
⎠ .

Check for the primitivity of the matrices and, if possible, determine the smallest
m ∈N such that Am

i > 0.
14. Show that the contraction constant for the Hilbert metric of

A =

(
1 1

2
1
2

1
3

)

is equal to

k(A) =
2−√3

2+
√

3
,

while the eigenvalues of A are λ± = 4±√13
6 . Deduce that k(A) is strictly smaller

than the convergence rate for the power iteration defined by A.
15. The primitivity index γ(A) of a nonnegative matrix A is defined as the smallest

m ∈N, with Am > 0. Prove that the n× n Wielandt matrix

A =

⎛

⎜⎜
⎜
⎜
⎝

0 1 . . . 0
...

. . .
. . .

...

0
. . . 1

1 1 . . . 0

⎞

⎟⎟
⎟
⎟
⎠

is primitive with primitivity index γ(A) = n2− 2n+ 2.
16. Prove that every nonnegative irreducible matrix A ∈ R

n×n with at least one
positive diagonal element is primitive.

17. Consider a real n× n tridiagonal matrix

A =

⎛

⎜
⎜
⎜
⎜
⎝

a1 b1 · · · 0

c1
. . .

. . .
...

...
. . .

. . . bn−1

0 · · · cn−1 an

⎞

⎟
⎟
⎟
⎟
⎠

with spectral radius r(A). Prove:

(a) If b jc j ≥ 0 for all j, then A has only real eigenvalues.
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(b) If b jc j > 0 for all j, then A has only real simple eigenvalues.
(c) Assume b j > 0, c j > 0, and a j ≥ 0 for all j. Then A is irreducible. Matrix

A is primitive if at least one a j > 0. If a1 = . . .= an = 0, then −r(A) is an
eigenvalue of A.

18. Let Γ = (V = {1, . . . ,N},E) be a finite directed graph and do( j) = |N o( j)|=
|{i ∈ V | ( j, i) ∈ Γ }| the out-degree of vertex j. For a real number 0 ≤ α < 1
define the N×N Google matrix G = (gi j) of the digraph Γ as

gi j :=

⎧
⎪⎪⎨

⎪⎪⎩

α
do( j) +

1−α
N i ∈N o( j) �= /0

1−α
N i �∈N o( j) �= /0

1
N N o( j) = /0.

(a) Prove that G is column stochastic and primitive,
(b) Prove that the largest eigenvalue of G is λ1 = 1 and the second largest

eigenvalue of G is λ2 = α .

19. The Leslie matrix is a nonnegative matrix of the form

A =

⎛

⎜
⎜
⎜
⎝

a1 a2 · · · an

b1 0 · · · 0
...

. . .
. . .

...
0 · · · bn−1 0

⎞

⎟
⎟
⎟
⎠
.

We assume an > 0 and b1 > 0, . . . ,bn > 0.

(a) Show that A is irreducible.
(b) Show that A is primitive whenever there exists i with ai > 0 and ai+1 > 0.
(c) Show that A is not primitive if n = 3 and a1 = a2 = 0.

20. Prove that the Cayley–Menger determinants of a formation x1, . . . ,xN ∈R
m are

nonpositive for k≤ N and are zero for k > m+ 1.

8.10 Notes and References

Classical references for nonnegative matrices, Markov chains, and the Perron–
Frobenius theorem include Gantmacher (1959), Horn and Johnson (1990), and
Seneta (1981). We also mention the excellent book by Fiedler (2008), which
provides a useful collection of results on special matrices and connections to
graph theory. Part of the material on stochastic matrices and the ergodic theorem
in Section 8.3 was inspired by the book of Huppert (1990). Infinite-dimensional
generalizations of the Perron–Frobenius theory can be found in the work of Jentzsch
(1912), Krein and Rutman (1950), and Krasnoselskii (1964). A special case of the
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Contraction Mapping Theorem 8.6 was applied by Pollicot and Yuri (1998) to prove
the existence of a unique Perron vector for aperiodic {0,1} matrices. For positive
matrices A, the existence of the Perron vector in Theorem 8.11 is well known and
easily deduced from purely topological arguments. In fact, the standard simplex C1

is homeomorphic to the closed unit ball, on which

x �→ Ax
e�Ax

defines a continuous map. Thus the Brouwer fixed-point theorem implies the
existence of an eigenvector x ∈C1 with positive eigenvalue. The papers by Bushell
(1986) and Kohlberg and Pratt (1982) provide further background on the Hilbert
metric and the analysis of positive operators. The sequence of power iterates (8.5)
to compute the Perron vector is reminiscent of the well-known power method from
numerical linear algebra,

xt+1 =
Axt

‖Axt‖ ,

for computing dominant eigenvectors of a matrix A. The convergence speed of
the general power method depends on the ratio |λ1|

|λ2| of the largest and second
largest eigenvalues. See Parlett and Poole (1973) and Helmke and Moore (1994)
for convergence proofs of the power method on projective spaces and Grassmann
manifolds.

Graph-theoretic methods have long been used for studying the convergence
properties of random walks on a graph, for analyzing synchronization and clustering
phenomena in physical systems, and for algorithms in distributed computing,
formation control, and networked control systems; we refer the reader to the
monographies by Bullo, Cortés and Martínez (2009) and Meshbahi and Egerstedt
(2010) for extensive background material and further references. Boyd, Diaconis
and Xiao (2004) developed linear matrix inequalities characterizing the fastest
Markov chain on a graph, while Xiao and Boyd (2004) studied linear iterations for
distributed averaging and consensus in networks. Ottaviani and Sturmfels (2013)
studied the problem of finding weights in a complete graph such that the associated
Markov chain has a stationary probability distribution that is contained in a specified
linear subspace. This problem is equivalent to characterizing the Laplacian matrices
A of a graph such that the pair (C,A) is not observable. This problem seems widely
open, but in a special situation (complete graph; weights are complex numbers),
Ottaviani and Sturmfels (2013) successfully computed the degree of the variety of
unobservable pairs.

The literature on formation shape control via distances and graph concepts
includes early work by Olfati-Saber, Fax and Murray (2007) and Doerfler and
Francis (2010). For characterizations of rigid graphs see Asimov and Roth (1978)
and Connelly (1993). References on Euclidean distance geometry and applications
include Crippen and Havel (1988), Dress and Havel (1993), and Blumenthal (1953).



466 8 Nonnegative Matrices and Graph Theory

The nonpositivity condition (8.10) for the Cayley–Menger determinants yields
a simple determinantal condition that is necessary for a nonnegative symmetric
matrix A with zero diagonal entries to be a Euclidean distance matrix. Blumenthal
(1953), Chapter IV, p. 105, has shown that every such matrix A is a Euclidean
distance matrix if and only if the Cayley–Menger determinants for all k×k principal
submatrices of A are nonpositive, k = 1, . . . ,N. The conditions of parts (d) and (e)
in Theorem 8.29 are due to Gower (1985) and Schoenberg (1935), respectively.

A reference for the proof of Theorem 8.45 and related material is Grenander
and Szegö (1958). The spectral properties of circulant matrices are well studied. An
important fact is that the set of all circulant matrices is simultaneously diagonalized
by the Fourier matrix (8.25). Further information on circulant matrices can be
found in Davis (1979) and the recent survey by Kra and Simanca (2012). For
a statement and proof of the Courant–Fischer minimax principle, see Horn and
Johnson (1990). A generalization is Wielandt’s minimax theorem on partial sums
of eigenvalues. The eigenvalue inequalities appearing in Theorem 8.57 are the
simplest of a whole series of eigenvalue inequalities, which can be derived from
eigenvalue inequalities on sums of Hermitian matrices. For a derivation of such
eigenvalue inequalities via Schubert calculus on Grassmann manifolds, see Helmke
and Rosenthal (1995). The full set of eigenvalue inequalities for sums of Hermitian
matrices has been characterized by Klyachko; his work is nicely summarized by
Fulton (2000). Such results should be useful in deriving sharp eigenvalue bounds
for the Schur complement of Laplacian matrices.



Chapter 9
Interconnected Systems

The system-theoretic study of interconnected systems is not new. It started with
the work by Gilbert (1963) on controllability and observability for generic classes
of systems in parallel, series, and feedback interconnections. Complete charac-
terizations for multivariable linear systems were obtained by Callier and Nahum
(1975) for series and feedback interconnections and in a short note by Fuhrmann
(1975) for parallel interconnections. We refer the reader to Chapter 10 for a proof
of these classical characterizations using the techniques developed here. However,
the interconnection structures of most complex systems are generally not of the
series, parallel, or feedback type. Thus, one needs to pass from the standard
interconnections to more complex ones, where the interconnection pattern between
the node systems is described by a weighted directed graph. This will be done in
the first part of this chapter. The main tool used is the classical concept of strict
system equivalence. This concept was first introduced by Rosenbrock in the 1970s
for the analysis of higher-order linear systems and was subsequently developed into
a systematic tool for realization theory through the work of Fuhrmann. Rosenbrock
and Pugh (1974) provided an extension of this notion toward a permanence principle
for networks of linear systems. Section 9.2 contains a proof of a generalization
of this permanence principle for dynamic interconnections. From this principle we
then derive our main results on the reachability and observability of interconnected
systems. This leads to very concise and explicit characterizations of reachability
and observability for homogeneous networks consisting of identical SISO systems.
Further characterizations of reachability are obtained for special interconnection
structures, such as paths, cycles, and circulant structures.

Before we delve into the technical details of this chapter, let us discuss some
simple examples on the reachability of interconnected systems (Fig. 9.1). The first
example is defined by a continuous-time consensus algorithm on a path graph whose
nodes are first-order scalar systems. Thus, for the path graph ΓN = (V ,E ) with

© Springer International Publishing Switzerland 2015
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1 2 3 4 5

Fig. 9.1 Interconnection graph of (9.1) for N = 5

vertex set V = {1, . . . ,N} and set of edges E = {{1,2},{2,3}, . . .,{N − 1,N}},
consider the autonomous dynamical system

ż1(t) = z2(t)− z1(t),

żi(t) = zi+1(t)− 2zi(t)+ zi−1(t), i = 2, . . . ,N− 1, (9.1)

żN(t) = zN−1(t)− zN(t).

Equivalently, the system can be written in matrix form as ż =−LNz, where

LN =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

denotes the Laplacian matrix of the graph ΓN . We emphasize that system (9.1)
achieves consensus in the sense that all solutions satisfy limt→∞ (zi(t)− z j(t)) = 0.
More generally, consider an autonomous system of linear differential equations

ż1 = a11z1 + · · ·+ a1NzN

...

żN = aN1z1 + · · ·+ aNNzN

(9.2)

with a matrix of coefficients A= (aij) ∈ R
N×N . To study the influence of a node on

the evolution of the remaining system variables, select, say, the last variable zN and
consider it a control variable. This leads to the linear control system

ẋ(t) = Ax(t)+ bu(t) (9.3)

in the variable x = col(z1, . . . ,zN−1), where

A =

⎛

⎜
⎝

a11 . . . a1N−1
...

. . .
...

aN−11 . . . aN−1N−1

⎞

⎟
⎠ , b =

⎛

⎜
⎝

a1N
...

aN−1N

⎞

⎟
⎠ .
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In particular, from (9.1) one obtains the reachable system

A =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 2

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

, b =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0
0
...
0
0

−1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.

More generally, one can select a finite number of state variables in an intercon-
nected autonomous system and replace them by free input variables that act on the
remaining system. Thus, starting from a system of ordinary differential equations,
one obtains a control system, and one can study its reachability properties. This
leads to the topic of pinning control. Now, suppose that certain of the entries aij

are set to zero, i.e., assume that the coefficients aij are defined by the adjacency
matrix of an undirected graph on N nodes. Then the reduced control system (9.3)
has an induced graph structure and clearly defines an interconnected linear system.
One can then ask about the extent to which the graph structure of the autonomous
system (9.2) impacts the reachability properties of the network (9.3). Such pinning
reachability questions have been considered in the past few years by a number
of researchers, including Tanner (2004), Liu, Slotine and Barabasi (2011), and
Parlangeli and Notarstefano (2012). The techniques that we will develop in this
chapter can be applied to such problems.

To further illustrate the issue of pinning control, let us consider some examples
of networks studied by Tanner (2004) and Parlangeli and Notarstefano (2012). The
first example is perhaps a bit surprising because it shows that a complete graph can
lead to unreachability.

Example 9.1. Suppose that A is an (unweighted) adjacency matrix of the complete
graph KN on N vertices. Then (9.3) is equal to

A =

⎛

⎜
⎝

1 · · · 1
...

. . .
...

1 · · · 1

⎞

⎟
⎠ , b =

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠ .

Obviously, the system (A,b) is unreachable for N ≥ 2. The same conclusion is true
if A is the Laplacian of KN .

Example 9.2. Here A is the Laplacian matrix of the path graph ΓN on N vertices.
The pinned system is then
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Fig. 9.2 Cycle graph

1

2

3

4

5

A =

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 2

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

, b =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

0
0
...
0
0

−1

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

,

which is reachable. One could extend this example by replacing the rth state variable
zr by an input. This situation has been analyzed by Parlangeli and Notarstefano
(2012).

Example 9.3. Now assume that A is the symmetric adjacency matrix of the cycle
graph on N vertices and edges {1,2},{2,3}, . . .,{N− 1,N},{N,1} (Fig. 9.2).

Thus A is the tridiagonal matrix

AN =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

0 1 1
1 0 1

1
. . .

. . .
. . .

. . . 1
1 1 0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

,

and therefore one obtains the pinned system for zN as

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1
1 0 1

1
. . .

. . .
. . .

. . . 1
1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, b =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

1
0...
0
0
1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

,

which is not reachable. Likewise, by pinning the variable zN−1, one obtains the
unreachable system
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A =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

0 1 1
1 0 1

0 1
. . .

. . .
. . .

. . . 1 0
1 0 0

1 0 0 0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

, b =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0
...
...
0
1
1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

.

One can also consider pinning control problems where the adjacency matrix A
is replaced by the associated Laplacian matrix. In that situation, one encounters
more interesting reachability phenomena, which have been studied by Parlangeli
and Notarstefano (2012).

The preceding examples show that the reachability of the pinned system depends
in a nontrivial way on the underlying graph structure of the system, as well as
on the selection of the pinned control variables. In Section 9.5, we will study the
reachability of such networks in greater generality. In fact, system (9.2) can be
interpreted as a system of n integrators,

ż1(t) = u1(t)

...

żN(t) = uN(t),

with feedback terms ui = ∑N
j=1 aijz j . If one replaces the integrator dynamics with a

general first-order systems żi = αizi+βiui with local state variables zi ∈R
ni , system

matrices αi,βi ∈ F
ni×ni , and using the same coupling terms ui = ∑N

j=1 aijz j, then the
closed-loop system is

ż1(t) = α1z1(t)+β1

N

∑
j=1

a1 jz j(t)

...

żN(t) = αNzN(t)+βN

N

∑
j=1

aNjz j(t) .

By pinning the last variable zN , one obtains the control system
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ż1(t) = α1z1(t)+β1

N−1

∑
j=1

a1 jz j(t)+β1a1Nu(t)

...

żN−1(t) = αN−1zN−1(t)+βN−1

N−1

∑
j=1

aN−1, jz j(t)+βN−1aN−1,Nu(t) .

Thus one can ask when such a system is reachable and how one can relate
reachability to the graph properties that define the structure of the matrix of coupling
parameters A. We will now develop systematic tools for the reachability and
observability analysis of such systems.

9.1 Interconnection Models

State-Space Representations. We present a state-space formulation of the situa-
tion we are interested in and introduce notation to be used subsequently. Consider
N discrete-time linear systems, which we refer to as node systems Σi, i = 1, . . . ,N,

xi(t + 1) = αixi(t)+βivi(t),

wi(t) = γixi(t).
(9.4)

Here αi ∈ F
ni×ni , βi ∈ F

ni×mi , and γi ∈ F
pi×ni are the associated system matrices,

and F denotes a field. Assume that each system is reachable and observable. To
interconnect the node systems, apply static coupling laws

vi(t) =
N

∑
j=1

Aijwj(t)+Biu(t) ∈ F
mi

with constant matrices Aij ∈ F
mi×p j and Bi ∈ F

mi×m, although more complex
dynamic interconnections laws are possible, too, and will be considered later on.
The interconnected output is

y(t) =
N

∑
i=1

Ciwi(t)+Du(t), with Ci ∈ F
p×pi, i = 1, . . . ,N.

To express the closed-loop system in compact matrix form, define n := n1+ · · ·+nN ,
m := m1 + · · ·+mN, p := p1 + · · ·+ pN . Moreover,
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A := (Aij)ij ∈ F
m×p, C := (C1, . . . ,CN) ∈ F

p×p, B :=

⎛

⎜⎜
⎝

B1
...

BN

⎞

⎟⎟
⎠ ∈ F

m×m, D ∈ F
p×m

and

α :=

⎛

⎜
⎝

α1
. . .

αN

⎞

⎟
⎠ ∈ F

n×n, β :=

⎛

⎜
⎝

β1
. . .

βN

⎞

⎟
⎠ ∈ F

n×m,

γ :=

⎛

⎜
⎝

γ1
. . .

γN

⎞

⎟
⎠ ∈ F

p×n, x(t) :=

⎛

⎜
⎝

x1(t)
...

xN(t)

⎞

⎟
⎠ ∈ F

n.

Thus, the global state-space representation of the node systems Σi is

x(t + 1) = αx(t)+βv(t),
w(t) = γx(t),

and the interconnection is

v(t) = Aw(t)+Bu(t),
y(t) = Cw(t)+Du(t) .

Here u(t) is the external input and y(t) the external output of the network. The
restriction to strictly proper rather than proper node systems is not crucial and is
done here only to simplify some of the subsequent expressions. Thus the network
dynamics has the state-space form

x(t + 1) = A x(t)+Bu(t), (9.5)

y(t) = C x(t)+Du(t),

with

A := α +βAγ ∈ F
n×n, B := βB ∈ F

n×m, C :=Cγ ∈ F
p×n. (9.6)

It is convenient to describe an interconnected system in terms of the transfer
functions of the node systems. The ith node transfer function is defined as a strictly
proper transfer function of McMillan degree ni and is given in state-space form as

Gi(z) = γi(zI−αi)
−1βi. (9.7)
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Define the node transfer function as

G(z) := diag(G1(z), . . . ,GN(z)) = γ(zI−α)−1β .

In the case where m = p, the interconnection transfer function is defined as

N (z) =C(zI−A)−1B+D. (9.8)

The global network transfer function is then defined as

NG(z) = C (zI−A )−1B+D;

thus, explicitly,

NG(z) =Cγ(zI−α−βAγ)−1βB+D. (9.9)

A network of systems (9.5) is called homogeneous if the transfer functions of
the node systems (9.7) are identical scalar rational functions that are strictly proper.
The reachability and observability analysis of homogeneous networks is particularly
easy, as is subsequently shown.

Polynomial Matrix Descriptions. A general class of higher-order system repre-
sentations, the so-called polynomial matrix descriptions (PMD), was introduced
by Rosenbrock (1970). In this case, Σi is defined in terms of systems of higher-order
difference equations:

Ti(σ)ξi = Ui(σ)vi,

wi = Vi(σ)ξi +Wi(σ)vi,
(9.10)

with transfer functions

Gi(z) =Vi(z)Ti(z)
−1Ui(z)+Wi(z).

Here, as well as in other parts of this book, σ denotes the backward shift operator
(4.8), defined for discrete-time systems. For continuous-time systems, σ denotes the
differentiation operator. Let

T (z) := diag(T1(z), . . . ,TN(z)) ∈ F[z]r×r,

and similarly define V (z),U(z),W (z). Here r = ∑N
i=1 ri. Using this notation, (9.10)

can be rewritten as the polynomial matrix representation

(
0
I

)
w =

(
T (σ) −U(σ)

V (σ) W (σ)

)(
ξ
v

)
.
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The transfer function of the decoupled system is

V (z)T (z)−1U(z)+W(z).

The interconnections are

v = Aw+Bu,
y = Cw+Du.

The network transfer function (for W = 0) is then

NG(z) = CV(z)(T (z)−U(z)AV(z))−1U(z)B+D.

Matrix Fraction Systems. A special, but interesting, class of polynomial matrix
representations is described as matrix fraction descriptions (MFD). Here, the node
systems Σi, i = 1, . . . ,N, are given by polynomial matrix descriptions:

D�,i(σ)ξi = N�,i(σ)vi,

wi = ξi,

with transfer function representations

Gi(z) = D�,i(z)
−1N�,i(z) = Nr,i(z)Dr,i(z)

−1.

Define the polynomial matrices D�(z) ∈ F[z]p×p,N�(z) ∈ F[z]p×m by

D�(z) = diag(D�,1(z), . . . ,D�,N(z)), N�(z) = diag(N�,1(z), . . . ,N�,N(z)),

and similarly for Dr(z),Nr(z). If the interconnections are given by

v(t) = Aw(t)+Bu(t),
y(t) = Cw(t)+Du(t) ,

then the network transfer function is

NG(z) = C(D�(z)−N�(z)A)−1N�(z)B+D
= CNr(z)(Dr(z)−ANr(z))−1B+D .

(9.11)
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9.2 Equivalence of Interconnected Systems

We next treat the mixed case, where several different models for decoupled node
systems are possible, namely, state space, left and right matrix fractions, and
polynomial system matrices. For each of the polynomial-based representations
one can associate a state-space realization via the shift realization described in
Theorem 4.26. The following theorem shows that the similarity of shift realizations
associated with different representations of a decoupled system is preserved for
interconnected systems. This is true despite the fact that, as a result of inter-
connection, the reachability and observability properties of the uncoupled node
systems may have been lost. In view of Definition 4.30, proving a similarity
of the realizations associated with polynomial system matrices is equivalent to
showing that the polynomial system matrices are strictly system equivalent. This
is the case even when the associated realizations are not minimal, and hence
the state-space isomorphism theorem is not applicable. This constitutes a great
simplification because strict system equivalence can be verified without computing
the realizations.

Special emphasis will be placed on polynomial matrix descriptions because they
cover all system representations of interest to us. Thus, we assume the node systems
have the polynomial matrix descriptions

Ti(z)ξi(z) =Ui(z)vi,

wi =Vi(z)ξi +Wi(z)vi ,
(9.12)

with transfer function Gi(z) = Vi(z)Ti(z)−1Ui(z)+Wi(z). The system interconnec-
tions are given by

vi =
N

∑
j=1

Aijwj +Biu,

y =
N

∑
j=1

Cjwj +Du.

(9.13)

Let

T (z) = diag(T1(z), . . . ,Tr(z)) ∈ F[z]r×r,

and similarly for V (z),U(z),W (z). Using this notation, (9.12) can be rewritten in
matrix form as

(
0
I

)
w =

(
T (z) −U(z)
V (z) W (z)

)(
ξ
v

)
. (9.14)
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Similarly, equation (9.13) can be rewritten as

v = Aw+Bu,

y = Cw+Du.

More generally, we allow for dynamic interconnections described by first-order
difference equations of the form

E(σ)v = A(σ)w+B(σ)u,

y =C(σ)w+Du.
(9.15)

Here E(z) is a square nonsingular polynomial matrix, A(z),B(z),C(z) are appropri-
ately sized polynomial matrices, and D is a constant feedthrough matrix. Assuming
that the rational function E(z)−1(A(z),B(z)) is proper, and by ignoring the output
part, consider a first-order shift realization for

E(σ)v = A(σ)w+B(σ)u

as

ζ (t + 1) = Fζ (t)+G1w(t)+G2u(t),

v(t) = Hζ (t)+ J1w(t)+ J2u(t).
(9.16)

Therefore, one obtains the strict system equivalence

(
E(z) −A(z) −B(z)

I 0 0

)
�FSE

(
zI−F −G1 −G2

H J1 J2

)
.

Clearly, ξ , v, and w are latent variables, whereas u and y are manifest variables.
Thus equations (9.14) and (9.15) can be combined to yield a polynomial matrix
description of the following closed-loop interconnected system:

⎛

⎜
⎜
⎝

0
0
0
I

⎞

⎟
⎟
⎠y =

⎛

⎜
⎜
⎝

T (z) −U(z) 0 0
V (z) W (z) −I 0

0 E(z) −A(z) −B(z)
0 0 C(z) D

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ξ
v
w
u

⎞

⎟
⎟
⎠ .

Similarly, for C(z) =C constant, the closed-loop interconnected system has the first-
order representation

z(t + 1) =Ac(t)+Bcu(t),

y(t) = Ccz(t)+Du(t),
(9.17)
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with system matrices

Ac =

(
α +βJ1γ βH

G1γ F

)
,Bc =

(
βJ2

G2

)
,Cc =

(
Cγ 0

)
.

Theorem 9.4. Consider two pairs of N node systems with polynomial system
matrices

(
T (ν)

i (z) −U (ν)
i (z)

V (ν)
i (z) W (ν)

i (z)

)

,ν = 1,2, i = 1, . . . ,N.

Assume that, for all i,

(
T (1)

i (z) −U (1)
i (z)

V (1)
i (z) W (1)

i (z)

)

�FSE

(
T (2)

i (z) −U (2)
i (z)

V (2)
i (z) W (2)

i (z)

)

.

Defining T (ν)(z) = diag(T (ν)
1 (z), . . . ,T (ν)

N (z)), and similarly for the other matrices,
then

(
T (1)(z) −U (1)(z)
V (1)(z) W (1)(z)

)
�FSE

(
T (2)(z) −U (2)(z)
V (2)(z) W (2)(z)

)
.

Assume that each of the two systems is connected by the same interconnection
rule (9.15). Then

⎛

⎜⎜
⎝

T (1)(z) −U (1)(z) 0 0
V (1)(z) W (1)(z) −I 0

0 E(z) −A(z) −B(z)
0 0 C(z) D

⎞

⎟⎟
⎠�FSE

⎛

⎜⎜
⎝

T (2)(z) −U (2)(z) 0 0
V (2)(z) W (2)(z) −I 0

0 E(z) −A(z) −B(z)
0 0 C(z) D

⎞

⎟⎟
⎠ .

(9.18)

Assume that C is constant, with

(
T (z) −U(z)
V (z) W (z)

)
�FSE

(
zI−α −β

γ 0

)

and

(
E(z) −A(z) −B(z)

I 0 0

)
�FSE

(
zI−F −G1 −G2

H J1 J2

)
.
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Then

⎛

⎜
⎜
⎝

T (z) −U(z) 0 0
V (z) W (z) −I 0

0 E(z) −A(z) −B(z)
0 0 C D

⎞

⎟
⎟
⎠�FSE

⎛

⎝
zI−α−βJ1γ −βH −βJ2

−G1γ zI−F −G2

Cγ 0 D

⎞

⎠ .

Proof. By our assumption, there exist polynomial matrices M(z),N(z),X(z),Y (z),
with M(z),T (2)(z) left coprime and T (1)(z),N(z) right coprime, for which

(
M(z) 0
−X(z) I

)(
T (1)(z) −U (1)(z)
V (1)(z) W (1)(z)

)
=

(
T (2)(z) −U (2)(z)
V (2)(z) W (2)(z)

)(
N(z) Y (z)

0 I

)
.

In turn, this implies

⎛

⎜
⎜
⎝

M(z) 0 0 0
−X(z) I 0 0

0 0 I 0
0 0 0 I

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

T (1)(z) −U (1)(z) 0 0
V (1)(z) W (1)(z) −I 0

0 E(z) −A(z) −B(z)
0 0 C(z) D

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

T (2)(z) −U (2)(z) 0 0
V (2)(z) W (2)(z) −I 0

0 E(z) −A(z) −B(z)
0 0 C(z) D

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

N(z) Y (z) 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎞

⎟
⎟
⎠ .

The left coprimeness of

⎛

⎜
⎜
⎝

M(z) 0 0 0
−X(z) I 0 0

0 0 I 0
0 0 0 I

⎞

⎟
⎟
⎠ and

⎛

⎜
⎜
⎝

T (2)(z) −U (2)(z) 0 0
V (2)(z) W (2)(z) −I 0

0 E(z) −A(z) −B(z)
0 0 C(z) D

⎞

⎟
⎟
⎠

follows from the left coprimeness of M(z) and T (2)(z), and similarly for right
coprimeness. Thus (9.18) follows. For the remaining part, observe that the following
strict equivalences are valid:

⎛

⎜
⎜
⎝

T (z) −U(z) 0 0
V (z) W (z) −I 0

0 E(z) −A(z) −B(z)
0 0 C D

⎞

⎟
⎟
⎠�FSE

⎛

⎜
⎜
⎜⎜
⎜
⎝

T (z) −U(z) 0 0 0
V (z) W (z) 0 −I 0

0 E(z) 0 −A(z) −B(z)
0 0 I 0 0
0 0 C 0 D

⎞

⎟
⎟
⎟⎟
⎟
⎠
�FSE
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⎛

⎜
⎜
⎜
⎜⎜
⎝

T (z) −U(z) 0 0 0
V (z) W (z) 0 −I 0

0 E(z) E(z) −A(z) −B(z)
0 0 I 0 0
0 0 C 0 D

⎞

⎟
⎟
⎟
⎟⎟
⎠
�FSE

⎛

⎜
⎜
⎜
⎜⎜
⎝

T (z) −U(z) 0 0 0
V (z) W (z) 0 −I 0

0 0 E(z) −A(z) −B(z)
0 −I I 0 0
0 0 C 0 D

⎞

⎟
⎟
⎟
⎟⎟
⎠

�FSE

⎛

⎜
⎜
⎜⎜
⎜
⎝

zI−α −β 0 0 0
γ 0 0 −I 0
0 0 zI−F −G1 −G2

0 −I H J1 J2

0 0 0 C D

⎞

⎟
⎟
⎟⎟
⎟
⎠
�FSE

⎛

⎝
zI−α−βJ1γ −βH −βJ2

−G1γ zI−F −G2

Cγ 0 D

⎞

⎠ .

�
We emphasize that the formulation of this theorem for polynomial matrix

descriptions covers several cases of interest, including nonminimal state-space
descriptions and (not necessarily coprime) matrix fraction descriptions. The
next result for constant interconnections is a straightforward consequence of
Theorem 9.4; however, the proof is more specific in exhibiting the required
isomorphisms. For ease of exposition we assume that the node transfer function
G(z) =V (z)T (z)−1U(z)+W(z) is strictly proper, with W (z) = 0.

Theorem 9.5. Assume the strictly proper transfer function G(z) of decoupled node
systems has the following, minimal, representations:

G(z) = γ(zI−α)−1β

= D�(z)
−1N�(z) = Nr(z)Dr(z)

−1 =V (z)T (z)−1U(z).
(9.19)

Let A,B,C,D be interconnection matrices.

1. The shift realizations associated with the interconnected polynomial system
matrices

(
T (z)−U(z)AV(z) −U(z)B

CV(z) D

)
,

(
Dr(z)−ANr(z) −B

CNr(z) D

)

are similar.
2. The shift realizations associated with the interconnected polynomial system

matrices

(
T (z)−U(z)AV(z) −U(z)B

CV(z) D

)
,

(
D�(z)−N�(z)A −N�(z)B

C D

)

are similar.
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3. The shift realizations associated with the interconnected polynomial system
matrices

(
D�(z)−N�(z)A −N�(z)B

C D

)
,

(
Dr(z)−ANr(z) −B

CNr(z) D

)

are similar.
4. The realizations associated with the interconnected polynomial system matrices

(
T (z)−U(z)AV(z) −U(z)B

CV(z) D

)
,

(
zI−α−βAγ −βB

Cγ D

)

are similar.

Proof. Without loss of generality, one can assume that D = 0.

1. By our assumption of minimality, using the state-space isomorphism theorem
and the definition of FSE, it follows that all polynomial system matrices

(
α −β
γ 0

)
,

(
D�(z) −N�(z)

I 0

)
,

(
Dr(z) −I
Nr(z) 0

)
,and

(
T (z) −U(z)
V (z) 0

)

are system equivalent. Our plan is to show that all polynomial system matrices
of the connected system, namely,

(
zI−α−βAγ −β

γ 0

)
,

(
D�(z)−N�(z)A −N�(z)

I 0

)
,

(
Dr(z)−ANr(z) −I

Nr(z) 0

)
, and

(
T (z)−U(z)AV(z) −U(z)

V (z) 0

)
,

are also system equivalent. Noting that the transfer function of the unconnected
system has the representation (9.19), it follows that there exists a polynomial
matrix S(z) for which T (z)−1U(z) = S(z)Dr(z)−1, and hence both the intertwin-
ing relation

U(z)Dr(z) = T (z)S(z)

and

Nr(z) =V (z)S(z)

hold. Since UANr = UAVS, the identity

(
U(z) 0

0 I

)(
Dr(z) −I
Nr(z) 0

)
=

(
T (z) −U(z)
V (z) 0

)(
S(z) 0

0 I

)
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implies

(
U(z) 0

0 I

)(
Dr(z)−ANr(z) −I

Nr(z) 0

)
=

(
T (z)−U(z)AV(z) −U(z)

V (z) 0

)(
S(z) 0

0 I

)
.

In turn, this implies

(
Dr(z)−ANr(z) −I

Nr(z) 0

)
�FSE

(
T (z)−U(z)AV(z) −U(z)

V (z) 0

)
.

2. The proof is similar.
3. The equality D�(z)−1N�(z) = Nr(z)Dr(z)−1 leads to the intertwining relation

(
N�(z) 0

0 I

)(
Dr(z)−ANr(z) −I

Nr(z) 0

)
=

(
D�(z)−N�(z)A −N�(z)

I 0

)(
Nr(z) 0

0 I

)
.

In turn, this implies

(
Dr(z)−ANr(z) −I

Nr(z) 0

)
�FSE

(
D�(z)−N�(z)A −N�(z)

I 0

)
, (9.20)

which proves the similarity of the associated shift realizations.
4. By the state-space isomorphism theorem, the shift realizations associated with

the polynomial system matrices

(
zI−α −β

γ 0

)
and

(
T (z) −U(z)
V (z) 0

)

are similar. Thus, applying Definition 4.30,

(
zI−α −β

γ 0

)
�FSE

(
T (z) −U(z)
V (z) 0

)
.

Our next step is to go from a state-space representation to a minimal right
matrix fraction representation. To this end, let H(z)Dr(z)−1 be a right coprime
factorization of (zI −α)−1β . This implies the intertwining relation βDr(z) =
(zI−α)H(z). Moreover, define Nr(z) = γH(z). Similarity implies system equiv-
alence, but one can actually write down the equivalence explicitly, namely,

(
β 0
0 I

)(
Dr(z) −I
Nr(z) 0

)
=

(
zI−α −β

γ 0

)(
H(z) 0

0 I

)
.
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Thus

(
Dr(z) −I
Nr(z) 0

)
�FSE

(
zI−α −β

γ 0

)
.

Passing on to the polynomial system matrices associated with a coupled system,
an easy computation shows that

(
β 0
0 I

)(
Dr(z)−ANr(z) −I

Nr(z) 0

)
=

(
zI−α−βAγ −β

γ 0

)(
H(z) 0

0 I

)
.

This implies

(
zI−α−βAγ −β

γ 0

)
�FSE

(
Dr(z)−ANr(z) −I

Nr(z) 0

)
. (9.21)

Using equations (9.20) and (9.21) and the transitivity of FSE, one obtains

(
zI−α−βAγ −β

γ 0

)
�FSE

(
T (z)−U(z)AV(z) −U(z)

V (z) 0

)
.

So far, the required system equivalences were shown for C = I and B = I.
However, it is easily seen that if two polynomial system matrices

(
T1(z) −U1(z)
V1(z) 0

)
,

(
T2(z) −U2(z)
V2(z) 0

)

are FSE, then for matrices B and C the polynomial matrices

(
T1(z) −U1(z)B

CV1(z) 0

)
,

(
T2(z) −U2(z)B

CV2(z) 0

)
.

are also system equivalent. This completes the proof. �
One can reformulate this result as follows.

Corollary 9.6 (Permanence Principle). Suppose strictly proper input-output sys-
tems Σ1, . . . ,ΣN are coupled by interconnection matrices A,B,C to define a network
Σ . Assume that the systems Σi are system equivalent to systems Σ̂i, i = 1, . . . ,N.
Let Σ̂ be a network obtained by interconnecting Σ̂1, . . . , Σ̂N using the identical
interconnections A,B,C. Then Σ is system equivalent to Σ̂ .

We list an obvious consequence of this result for poles and zeros of systems that
was introduced in Chapter 4.7. The proof is left to the reader. Recall that F denotes
the algebraic closure of F.
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Corollary 9.7. Assume that the strictly proper transfer function G(z) of the decou-
pled node systems has the following, minimal, representations:

G(z) = γ(zI−α)−1β ,

= D�(z)
−1N�(z) = Nr(z)Dr(z)

−1,

=V (z)T (z)−1U(z).

Consider the interconnection matrices A,B,C,D. Then:

1. The interconnected system (α +βAγ,βB,Cγ,D) has a finite zero at z ∈ F if and
only if

rk

(
T (z)−U(z)AV(z) −U(z)B

CV(z) D

)
< r+ grk;

here grk denotes the generic rank of NG(z);
2. (α +βAγ,βB,Cγ,D) has a pole at z ∈ F if and only if

det(T (z)−U(z)AV(z)) = 0;

3. Assume F = R. Then (α + βAγ,βB,Cγ,D) is discrete-time (continuous-time)
asymptotically stable if and only if det(T (z)−U(z)AV(z)) is a Schur (Hurwitz)
polynomial.

9.3 Reachability and Observability of Networks of Systems

The permanence principle is our main tool for analyzing the reachability and
observability properties of interconnected systems. The results will depend on the
type of interconnections, i.e., whether they are static or dynamic.

1. Static Interconnections. The question we are interested in is to decide when
an interconnected system in state-space form (9.5) is reachable or observable. Of
course, if the input and output interconnection matrices B,C are identity matrices,
then the effect of the interconnection matrix A is simply by the action of static output
feedback on the decoupled, block-diagonal system α,β ,γ . In particular, reachability
and observability would be preserved. However, except for this trivial case, it is
more difficult to characterize reachability and observability. A naive approach might
be to compute the n× nm-Kalman reachability matrix (or, equivalently, the Hautus
test) for system (9.5) and check its rank. But this requires checking the rank of a
potentially huge matrix. Moreover, owing to the additive perturbation structure of
A , the impact of interconnection parameters on the reachability properties is hard to
assess. Therefore, one searches for an alternative reachability characterization that
exhibits interconnection parameters and node dynamics in a more direct form.
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The characterization of the reachability and observability of the shift realization
associated with a polynomial system matrix, as in Theorem 4.26, allows us to easily
derive such characterizations for interconnected systems. Since reachability and
observability are preserved by FSE, Theorem 9.5 implies the following result.

Theorem 9.8. With the same assumptions as in Corollary 9.7, let

A = α +βAγ, B = βB, C =Cγ.

1. The transfer function NG(z) of an interconnected system has the following
representations:

NG(z) = C (zI−A )−1B+D

=C(D�(z)−N�(z)A)
−1N�(z)B+D = CNr(z)(Dr(z)−ANr(z))

−1B+D

= CV(z)(T (z)−U(z)AV(z))−1U(z)B+D.

2. The following statements are equivalent:

(a) The system (A ,B,C ) is reachable.
(b) D�(z)−N�(z)A and N�(z)B are left coprime.
(c) Dr(z)−ANr(z) and B are left coprime.
(d) T (z)−U(z)AV(z) and U(z)B are left coprime.

3. The following statements are equivalent:

(a) The system (A ,B,C ) is observable.
(b) D�(z)−N�(z)A and C are right coprime.
(c) Dr(z)−ANr(z) and CNr(z) are right coprime.
(d) CV(z) and T (z)−U(z)AV(z) are right coprime.

4. The system (A ,B,C ) is minimal if and only if Dr(z)−ANr(z) and B are left
coprime and Dr(z)−ANr(z) and CNr(z) are right coprime.

Proof. By Theorem 9.5, the triple (A ,B,C ) is similar to the shift realizations
of each of three polynomial matrix representations (D�(z)− N�(z)A,N�(z)B,C),
(Dr(z) − ANr(z),B,CNr(z)), and (T (z) −U(z)AV(z),U(z)B,CV(z)). The Shift
Realization Theorem 4.26 then implies that the reachability and observability
of these realizations is equivalent to left coprimeness and right coprimeness,
respectively. The result follows. �
Corollary 9.9. A necessary condition for the reachability/observability of an inter-
connected system is the reachability/observability of all node systems.
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Proof. By Theorem 9.8, an interconnected system is reachable if and only if the
polynomial matrices

⎛

⎝
T (z) −U(z) 0
V (z) 0 −I

0 I A

⎞

⎠ and

⎛

⎝
0
0
B

⎞

⎠

are left coprime. Clearly, for this, the left coprimeness of T (z) and U(z) is necessary.
Because of the diagonal nature of both polynomial matrices, this is equivalent
to the left coprimeness of Ti(z) and Ui(z) for all i. One argues similarly for
observability. �

Let us point out that a similar result, phrased in terms of decoupling zeros,
appeared in Rosenbrock and Pugh (1974). At that time, the connection between
decoupling zeros and the properties of reachability and observability had not yet
been clarified.

While Corollary 9.9 provides a simple necessary condition for reachability, the
condition is in general not sufficient. As a simple consequence of Theorem 9.8
one obtains the following Hautus-type characterization of the reachability and
observability of networks. Let F denote the algebraic closure of the field F.

Theorem 9.10. (a) (A ,B) is reachable if and only if

rk
(

T (z)−U(z)AV(z) U(z)B
)
= r, ∀z ∈ F.

(b) (C ,A ) is observable if and only if

rk

(
T (z)−U(z)AV(z)

CV(z)

)
= r, ∀z ∈ F.

The preceding result exhibits, in a clear way, how the different components
of the network contribute to reachability and observability. In comparison with
the Kalman reachability matrix, the size is reduced to r× (r +m). Note that for
homogeneous networks with scalar node functions, the matrices T (z),U(z),V (z)
become scalar multiples of the identity matrix. Therefore, Theorem 9.10 implies
that the reachability and observability properties of a homogeneous network are
actually independent of the choice of the strictly proper node function. Thus,
for homogeneous networks and scalar nodes, the network realization (A ,B) is
reachable if and only if (A,B) is reachable. This greatly simplifies the analysis of
scalar homogeneous networks; see Section 9.6 for further details and applications.
For homogeneous networks with multivariable node transfer functions, the result is
not true without further assumptions. We will now extend Theorem 9.8 to dynamical
interconnection laws and analyze in detail some special interconnection schemes.

2. Dynamic Interconnections. We next consider more general dynamical cou-
pling laws between the various node systems. This is important for network control
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applications, where one wants to allow for possible delays in interconnections, thus
modeling potential communication delays between subsystems. Let

x(t + 1) = αx(t)+βv(t)
w(t) = γx(t)

(9.22)

denote the uncoupled array of node systems. As before, assume that (α,β ,γ) is
reachable and observable with right and left coprime factorizations of the block-
diagonal transfer function

γ(zI−α)−1β = D�(z)
−1N�(z) = Nr(z)Dr(z)

−1.

Let γ(zI − α)−1β = V (z)T (z)−1U(z) +W (z) be a polynomial matrix fraction
decomposition, with V (z),T (z) right coprime and T (z),U(z) left coprime. Consider
the dynamic interconnection law (9.15) via

E(σ)v = A(σ)w+B(σ)u,

y =Cw+Du.

Here E(z) is a square nonsingular polynomial matrix, A(z) and B(z) are appropri-
ately sized polynomial matrices, and C and D are constant matrices. Assuming that
the rational function E(z)−1(A(z),B(z)) is proper, there exists a proper, first-order
shift realization as

ζ (t + 1) = Fζ (t)+G1w(t)+G2u(t),

v(t) = Hζ (t)+ J1w(t)+ J2u(t).
(9.23)

Equations (9.22) and (9.23) can be combined to yield the first-order representation

z(t + 1) =Acz(t)+Bcu(t),

y(t) = Ccz(t)+Du(t),
(9.24)

with system matrices

Ac =

(
α +βJ1γ βH

G1γ F

)
,Bc =

(
βJ2

G2

)
,Cc =

(
Cγ 0

)
.

The interconnected system then has the following PMD representation:

⎛

⎜
⎜
⎝

0
0
0
I

⎞

⎟
⎟
⎠y =

⎛

⎜
⎜
⎝

T (z) −U(z) 0 0
V (z) W (z) −I 0

0 E(z) −A(z) −B(z)
0 0 C D

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ξ
v
w
u

⎞

⎟
⎟
⎠ .
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The special choice T (z) = Dr(z),U(z) = I,V (z) = Nr(z),W (z) = 0 leads to the
following result.

Theorem 9.11. Given N node strictly proper systems, with right and left coprime
matrix fraction representations D�(z)−1N�(z) = Nr(z)Dr(z)−1, respectively, the
following strict system equivalences are fulfilled:

⎛

⎝
zI−α−βJ1γ −βH −βJ2

−G1γ zI−F −G2

Cγ 0 D

⎞

⎠�FSE

⎛

⎜
⎜
⎝

Dr(z) −I 0 0
Nr(z) 0 −I 0

0 E(z) −A(z) −B(z)
0 0 C D

⎞

⎟
⎟
⎠�FSE

⎛

⎝
I 0 0
0 −A(z)Nr(z)+E(z)Dr(z) −B(z)
0 CNr(z) D

⎞

⎠ .

Proof. The first equivalence follows from Theorem 9.4. The FSE representations

⎛

⎜
⎝

N�(z) −D�(z) 0 0
0 0 I 0
0 0 0 I

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎝

Dr(z) −I 0 0
Nr(z) 0 −I 0

0 E(z) −A(z) −B(z)

0 0 C D

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎝

0 −N�(z) D�(z) 0
0 E(z) −A(z) −B(z)

0 0 C D

⎞

⎟
⎠

as well as

⎛

⎝
0 0 0
0 I 0
0 0 I

⎞

⎠

⎛

⎝
I 0 0
0 −A(z)Nr(z)+E(z)Dr(z) −B(z)
0 CNr(z) D

⎞

⎠

=

⎛

⎝
0 −N�(z) D�(z) 0
0 E(z) −A(z) −B(z)
0 0 C D

⎞

⎠

⎛

⎜
⎜
⎝

I 0 0
0 Dr(z) 0
0 Nr(z) 0
0 0 I

⎞

⎟
⎟
⎠

are satisfied. It is easily seen that these representations define FSE transformations.
The result follows. �

We conclude that the reachability of the node systems and left coprimeness of
(E(z),A(z),B(z)) are necessary conditions for the reachability of a dynamically
interconnected network. The next theorem characterizes the reachability and observ-
ability properties of interconnected systems. The proof is an obvious consequence
of the preceding equivalence result and therefore omitted.

Theorem 9.12. Assume that (α,β ,γ) are reachable and observable and Nr and
Dr are right coprime, with Nr(z)Dr(z)−1 = γ(zI − α)−1β . Assume further that
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(F,(G1,G2),H) is reachable and observable with left coprime factorization
E(z)−1(A(z),B(z)) = (J1,J2)+H(zI−F)−1(G1,G2). Let

Ac =

(
α +βJ1γ βH

G1γ F

)
,Bc =

(
βJ2

G2

)
,Cc =

(
Cγ 0

)

denote the realization of the dynamically interconnected system (9.24).

1. (Ac,Bc,Cc) is reachable if and only if

rk
(

A(z)Nr(z)−E(z)Dr(z),B(z)
)
= n, ∀z ∈ F.

2. (Ac,Bc,Cc) is observable if and only if

rk

(
A(z)Nr(z)−E(z)Dr(z)

CNr(z)

)
= n, ∀z ∈ F.

As a special case of the general dynamical coupling law one can characterize
reachability and observability for delayed interconnection schemes of the form

vi(t) =
N

∑
j=1

Aijwj(t−Lij)+Biu(t)

for nonnegative integers Lij. This network is described as follows using the
interconnection law (9.15). We use the notations Li := max j=1,...,N Lij, i = 1, . . . ,N,
and Lij = Li−Lij ≥ 0. Define the polynomial matrices EL(z) = diag(zL1 , · · · ,zLN ),

AL(z) = (AijzLij)i, j=1,...,N ∈ F
p×m[z], B(z) := EL(z)B, and C(z) =C. One obtains the

following characterization of reachability and observability for delayed networks.

Theorem 9.13. The shift realization of a delayed network is reachable if and only if

rk
(

AL(z)Nr(z)−EL(z)Dr(z),EL(z)B
)
= n, ∀z ∈ F.

The shift realization of a delayed network is observable if and only if

rk

(
AL(z)Nr(z)−EL(z)Dr(z)

CNr(z)

)
= n, ∀z ∈ F.

As a special case, consider homogeneous networks of identical SISO systems
with node transfer functions Gi(z) =

p(z)
q(z) satisfying p(0) �= 0. In this situation the

preceding result implies the following corollary.

Corollary 9.14. Consider a network of identical node transfer functions
Gi(z) =

p(z)
q(z) satisfying p(0) �= 0. Assume that A is invertible and (A,B,C) is

reachable (observable). Assume further that all delays Lij are identical and
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equal to L ≥ 1. Then the delayed network (Ac,Bc,Cc) is reachable (observable),
independently of the value of L.

Proof. Let A = (Aij). Since Lij = L, one obtains Lij = 0, and thus A(z) = A. From
Theorem 9.12 we conclude that reachability is equivalent to (p(z)A− zLq(z)I,zLB)
having full row rank. For z = 0 this is true since p(0) �= 0 and A is invertible. For

z �= 0 this is equivalent to (A− zLq(z)
p(z) I,B) having full row rank, which again follows

from the reachability of (A,B). For observability one argues similarly. �

9.4 Homogeneous Networks

Clearly, the simplest classes of networks are the homogeneous ones, defined by
interconnections of identical linear systems with SISO node transfer function g(z).
Thus, assume that the dynamics of the identical node systems in a linear network
are described by a single scalar strictly proper transfer function

g(z) = γ(zIn−α)−1β ,

with α ∈ F
n×n,β ∈ F

n,γ ∈ F
1×n reachable and observable. This is a special

case of (9.7). Define h(z) = 1/g(z). Let N (z) = C(zI −A)−1B denote the p×m
interconnection transfer function. Then the network transfer function NG(z) of the
homogeneous network is NG(z) = C(h(z)I−A)−1B, i.e., it is the composition of
rational functions N ◦ h. Let (A ,B,C ) be the shift realization of the network
transfer functionNG(z) associated with a minimal factorization of g(z) = p/q. Then
the matrices in (9.6) are represented in Kronecker product form as

A = IN⊗α+A⊗βγ ∈ F
nN⊗nN ,

B = B⊗β ∈ F
nN×m,

C =C⊗ γ ∈ F
p×nN .

(9.25)

The following test for the reachability of homogeneous networks is a simple
consequence of Theorem 9.10. It was first stated and proved by Hara, Hayakawa
and Sugata (2009). Our proof is quite different and avoids complicated state-space
canonical form arguments.

Theorem 9.15. The shift realization (A ,B,C ) of NG(z), defined by (9.25), is
reachable (observable) if and only if the realization (A,B,C) of the interconnection
transfer function N (z) is reachable (observable). In particular, the reachability of
(A ,B,C ) is independent of the choice of the node transfer function g(z), as long
as g(z) is scalar rational and strictly proper.
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Proof. By Theorem 9.8, (A ,B,C ) is reachable if and only if Q(z)−P(z)A,P(z)B
are left coprime. The coprime factorization of the decoupled system Q(z)−1P(z) =
g(z)IN is Q(z) = q(z)IN , P(z) = p(z)IN , with g(z) = p(z)/q(z) coprime. Thus
(A ,B) is reachable if and only if

rk(q(z)IN − p(z)A, p(z)B) = N (9.26)

for all z ∈ F. If p(z) = 0, then, by coprimeness, q(z) �= 0, and (9.26) is satisfied.
The fundamental theorem of algebra implies that for all w ∈ F there exists z ∈ F,
with p(z) �= 0 and w = q(z)

p(z) . Dividing by p(z), it follows that the left coprimeness

condition is equivalent to rk(wIN −A,B) = N for all w ∈ F. Thus the reachability
of (A ,B) is equivalent to the reachability of (A,B), and we are done. One argues
similarly for observability and minimality. �

The amazing consequence of the preceding theorem is that reachability can be
analyzed completely independently of the choice of node function. We will now
make this even more explicit by relating coprime factorizations of NG and N .
Assume that (A,B)∈F

N×(N+m) is reachable with reachability indices κ1≥ ·· · ≥ κm.
Choose a right coprime factorization

(zI−A)−1B = N(z)D(z)−1

by N×m and m×m polynomial matrices N(z) and D(z), respectively. Therefore,
detD(z) = det(zI−A). Without loss of generality, one can assume that D(z) is in
column proper form, i.e., the leading coefficient matrix of D(z) is D0Δ(z), with D0

invertible and

Δ(z) = diag(zκ1 , · · · ,zκm).

Let g(z) denote a strictly proper, scalar rational transfer function with coprime
factorization g(z) = p(z)/q(z) and McMillan degree n. Define the homogenizations

Ng(z) = N(
q(z)
p(z)

)Δ(p(z)), Dg(z) = D(
q(z)
p(z)

)Δ(p(z)).

Proposition 9.16. Under the preceding assumptions, the following assertions are
true:

1. Ng(z) and Dg(z) are right coprime polynomial matrices and Dg(z) is in column
proper form.

2. detDg(z) = det(q(z)I− p(z)A).
3. The reachability indices of the shift realization of Ng(z)Dg(z)−1 are equal to

(nκ1, . . . ,nκm).

Proof. That Ng(z) and Dg(z) are polynomials follows easily from N(z) and D(z)
being in column proper form. For right coprimeness, one must show that
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rk

(
Ng(z)
Dg(z)

)
= m (9.27)

for all z in the algebraic closure of the field F. If z is not a zero of p, then Δ(p(z))
is invertible. Therefore, the rank condition (9.27) follows from the corresponding
rank condition for N(z) and D(z) at the point h(z) = q(z)

p(z) . If p(z) = 0, then Dg(z) =

D0Δ(q(z)) is invertible. Moreover, by the strict properness of N(z)D(z)−1, at such
a point z one has Ng(z) = 0. This proves right coprimeness. The column properness
of Dg(z) follows from the fact that the leading term of Dg(z) is D0Δ(q(z)). This
also implies part 3, i.e., that the reachability indices of the shift realization of
Ng(z)Dg(z)−1 are nκi for i = 1, . . . ,m.

2. It suffices to verify the formula for the transfer function for all z that are not zeros
of p(z). Note that

Ng(z)Dg(z)
−1 =N(h(z))D(h(z))−1 =C(h(z)I−A)−1B=C(q(z)I− p(z)A)−1 p(z)B.

Finally, for each z that is not a zero of p,

detDg(z) = detD(h(z))detΔ(p(z)) = detD(h(z))p(z)n = det(q(z)I− p(z)A)).

This completes the proof. �

9.5 Special Coupling Structures

Many coupling patterns in interconnected systems arise by specifying linear depen-
dency relations among the coefficients of the coupling matrices A,B,C. Thus, for
example, one may consider 0−∗ patterns in which the entries of A,B,C are either
0 or free independent variables. Other examples include block upper triangular
matrices, symmetric matrices, and Toeplitz matrices A. In this section, we will
explore the reachability task for some of these interconnection structures. A more
systematic approach would require tools from graph theory. Here we pursue modest
goals and focus on the analysis of special cases such as path graphs and circular
structures.

1. Paths. Path graphs or, more generally, trees are among the simplest hier-
archical interconnection patterns. Certainly, the easiest example of a coupling
pattern that comes from a path is the nearest-neighbor interconnection scheme
with controls at the first node. Thus, consider N node systems Σi with reachable
and observable state-space representations αi ∈ F

n×n, βi ∈ F
n×m, and γi ∈ F

p×n.
For i = 1, . . . ,N, let

γi(zI−αi)
−1βi = D�,i(z)

−1N�,i(z) = Nr,i(z)Dr,i(z)
−1 (9.28)
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denote left and right coprime factorizations of the associated transfer functions. For
simplicity assume m = p. Consider the state interconnection matrices

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 · · · · · · 0

Im
. . .

...
...

. . .
. . .

...
0 · · · Im 0

⎞

⎟
⎟
⎟
⎟
⎠
, B =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

0
...

Im
...
0

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

, (9.29)

the Im-component of B being at position 1 ≤ r ≤ N. Clearly, (9.29) represents a
nearest-neighbor interaction of N systems, with the external controls entering at
node r. The closed-loop system matrix then has the lower bidiagonal form

A =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

α1

β2γ1 α2

β3γ2
. . .
. . .

. . .

βNγN−1 αN

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

0
...
βr

0
...
0

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

. (9.30)

Note that, for r = 1, the network (9.30) is simply the series connection Σ1∧ . . .∧ΣN

of N systems and thus is reachable if and only if the (N − 1)m×Nm polynomial
Sylvester-type matrix

⎛

⎜
⎜
⎜
⎜
⎝

Nr,1(z) Dr,2(z)
. . .

. . .

. . .
. . .

Nr,N−1(z) Dr,N(z)

⎞

⎟
⎟
⎟
⎟
⎠

is left prime. Applying Theorem 9.8, one observes that the system is not reachable
for r > 1.

The situation becomes more interesting for symmetric couplings defined by the
interconnection matrices A = J⊗ Im and B = ek⊗ Im, where

J =

⎛

⎜⎜
⎜
⎜
⎜
⎝

0 1
1 0 1

1
. . .

. . .
. . .

. . . 1
1 0

⎞

⎟⎟
⎟
⎟
⎟
⎠

. (9.31)
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The interconnected system is then

A =

⎛

⎜
⎜
⎜
⎜
⎝

α1 β1γ2

β2γ1 α2
. . .

...
. . .

. . . βN−1γN

0 . βNγN−1 αN

⎞

⎟
⎟
⎟
⎟
⎠
, B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
.

βk

.

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
. (9.32)

Again, applying Theorem 9.8 to the coprime factorization (9.28), we conclude that
(9.32) is reachable if and only if the polynomial matrices

⎛

⎜
⎜⎜
⎜
⎝

Dr,1(z) Nr,1(z)

Nr,2(z) Dr,2(z)
. . .

...
. . .

. . . Nr,N−1(z)
0 . Nr,N(z) Dr,N(z)

⎞

⎟
⎟⎟
⎟
⎠
,

⎛

⎜
⎜
⎜⎜
⎜
⎝

0
.

Im

.

0

⎞

⎟
⎟
⎟⎟
⎟
⎠

are left prime. Equivalently, the polynomial matrix

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

Dr,1(z) Nr,1(z)
Nr,2(z) Dr,2(z) Nr,2(z)

. . .
. . .

. . .
Nr,k−1(z) Dr,k−1(z) Nr,k−1(z)

Nr,k+1(z) Dr,k+1(z) Nr,k+1(z)
. . .

. . .
. . .

Nr,N−1(z) Dr,N−1(z) Nr,N−1(z)
Nr,N(z) Dr,N(z)

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

is left prime.
For identical node systems with D(z) := Dr,1(z) = . . . = Dr,N(z) and

N(z) := Nr,1(z) = . . . = Nr,N(z), more explicit results can be obtained using the
spectral information on (9.31). By Theorem 8.45, matrix J has N distinct real
eigenvalues 2cos kπ

N+1 ,k = 1, . . . ,N, with eigenvectors given by the columns of

T =

√
2

N + 1

⎛

⎜
⎜
⎝

sin π
N+1 · · · sin Nπ

N+1
...

. . .
...

sin Nπ
N+1 · · · sin N2π

N+1

⎞

⎟
⎟
⎠ .

Note that the column vectors x(k) of T are pairwise orthogonal with Euclidean norm
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N + 1
2
‖x(k)‖2 =

N

∑
j=1

sin2(
kjπ

N + 1
) =

N
2
− 1

2

N

∑
j=1

cos
2kjπ
N + 1

=
N
2
− 1

2

N

∑
j=1

Re(ωk j) =
N + 1

2
,

where ω = e
2π
√−1

N+1 . Thus T =
√

2
N+1 (sin klπ

N+1 )k,l is a real orthogonal matrix such

that T−1JT is diagonal. Then T ⊗ IN diagonalizes A with eigenvalues 2cos kπ
N+1 ,k =

1, . . . ,N, each one occurring with multiplicity m. Moreover,

T−1er =

√
N + 1

2

⎛

⎜
⎝

sin rπ
N+1
...

sin Nrπ
N+1

⎞

⎟
⎠

has a zero entry if and only if N+1 divides rk for some 1≤ k≤N, i.e., if and only if
N+1 and r are not coprime. This leads to an explicit characterization of reachability
that is independent of the node system.

Theorem 9.17. The interconnected system (9.32) with identical nodes is reachable
if and only if N + 1 and r are coprime.

Proof. The matrix T ⊗ Im (IN⊗D(z)− J⊗N(z))T−1⊗ Im is block-diagonal with
block-diagonal entries D(z)− 2cos kπ

N+1 N(z), 1 ≤ k ≤ N. Therefore, the pair (IN ⊗
D(z)− J⊗N(z),T−1er⊗ Im) is left coprime if and only if T−1er has no zero entry,
i.e., if and only if r and N + 1 are coprime. �

2. Simple Circulant Structures. Here the reachability problem for linear
systems with special circulant interconnection structures are explored. We refer
the reader to Brockett and Willems (1974) and Lunze (1986) for earlier work on
circulant systems. Further motivation derives from the observation that such systems
present the simplest kind of systems with symmetries; see, for example, Hazewinkel
and Martin (1983). Symmetric systems also arise in recent studies on spatially
invariant systems; see, for example, Bamieh, Paganini and Dahleh (2002).

Consider now N nodes with transfer functions Gi(z) coupled circularly. Specif-
ically, in terms of minimal state-space realizations (9.4), one has the following
state-space equations describing the individual nodes (i = 1, . . . ,N):

σxi = αixi(t)+βivi(t),
wi(t) = γixi(t).

This by itself is not sufficient to describe an interconnected system. We need to
describe the cross influence between the nodes and the way in which the external
input influences the nodes. There are many options. The cross influence between
the nodes can be one- or two-sided nearest-neighbor interactions up to interactions
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between all nodes in the same way. Then one must consider how the external input
influences the individual nodes. The two extreme cases are, first, that the external
input is applied only to one node and, second, that it is applied directly to all nodes.
Similar cases of interest exist for the global output of an interconnected system. We
briefly review some of the options.

2a. Unidirectional Nearest-Neighbor Coupling and One-Node External
Control. The coupling information is described by the matrices

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 · · · 0 I

I
. . . 0
. . .

. . .
...

I 0

⎞

⎟
⎟
⎟
⎟
⎠
, B =

⎛

⎜
⎜
⎜
⎝

I
0
...
0

⎞

⎟
⎟
⎟
⎠
, C =

(
I 0 · · · 0

)
. (9.33)

The coupled system has the following representation:

A =

⎛

⎜
⎜
⎜⎜
⎝

α1 0 · · · 0 β1γN

β2γ1 α2
. . . 0

β3γ2
. . .

. . .
...

. . .
. . . 0

βNγN−1 αN

⎞

⎟
⎟
⎟⎟
⎠
, B =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

β1

0
...
...
0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

, C =
(
γ1 0 · · · 0

)
.

(9.34)

2b. Bidirectional Nearest-Neighbor Coupling and One-Node External Control.
The coupling in (9.33) is unidirectional. Alternatively, one can use the more
symmetric, nearest-neighbor, coupling described by

A =

⎛

⎜⎜
⎜
⎜
⎝

0 I I
I

. . .
. . .

. . .
. . .

. . .
. . .

. . . I
I I 0

⎞

⎟⎟
⎟
⎟
⎠
, B =

⎛

⎜⎜
⎜
⎝

I
0
...
0

⎞

⎟⎟
⎟
⎠
, C =

(
I 0 · · · 0

)
.

In this case, the coupled system has the following representation:

A =

⎛

⎜
⎜
⎜
⎜
⎝

α1 β1γ2 0 · · · β1γN

β2γ1 α2
. . . 0

0 β3γ2
. . .

. . .
...

...
. . .

. . . βN−1γN
βNγ1 0 · · · βNγN−1 αN

⎞

⎟
⎟
⎟
⎟
⎠
, B =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

β1

0
...
...
0

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

, C =
(
γ1 0 · · · 0

)
.

(9.35)
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2c. Full Coupling and One-Node External Control. The coupling is described by

A =

⎛

⎜
⎜
⎜⎜
⎝

0 I I
I

. . .
. . .

. . .
. . .

. . .
. . .

. . . I
I I 0

⎞

⎟
⎟
⎟⎟
⎠
, B =

⎛

⎜
⎜⎜
⎝

I
0
...
0

⎞

⎟
⎟⎟
⎠
, C =

(
I 0 · · · 0

)
.

In this case, the coupled system has the following representation:

A =

⎛

⎜⎜
⎜
⎜
⎝

α1 β1γ2 0 · · · β1γN

β2γ1 α2
. . . 0

0 β3γ2
. . .

. . .
...

...
. . .

. . . βN−1γN
βNγ1 0 · · · βNγN−1 αN

⎞

⎟⎟
⎟
⎟
⎠
, B =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

β1

0
...
...
0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

, C =
(
γ1 0 · · · 0

)
.

(9.36)

If all nodes have the same state-space representation, that is, in the homogeneous
case, then the matrices A in the representations (9.34), (9.35), and (9.36) will all
have a block-circulant structure; see the next subsection for a discussion of general
block-circulant structures.

For our purposes, it is advantageous to obtain matrix fraction representations of
the various interconnections. However, because the computations are similar, we
restrict ourselves to a single case, for which a characterization of reachability is
obtained, which is summarized by the following theorem. This should be compared
with the criteria for the reachability of series connections derived subsequently
in (10.5).

Theorem 9.18. Consider the node systems Σi, i = 1, . . . ,N, with coprime matrix
fraction representations as in (9.7). The circular interconnection system (9.34) is
reachable if and only if the polynomial matrix

⎛

⎜
⎜
⎜
⎝

Nr,1(z) Dr,1(z)
Nr,2(z) Dr,2(z)

. . .
. . .

Nr,N−1(z) Dr,N(z)

⎞

⎟
⎟
⎟
⎠

(9.37)

is left prime.

Proof. Applying Theorem 9.8, one sees that (9.34) is reachable if and only if the
pair of polynomial matrices

(Dr(z)−ANr(z),B) =

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

Dr,1 −Nr,N

−Nr,1 Dr,2
. . .

. . .

−Nr,N−1 Dr,N

⎞

⎟
⎟
⎟
⎠
,

⎛

⎜
⎜
⎜
⎝

Im

0
...
0

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠
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is left coprime. After a simple column operation, this is equivalent to the left
primeness of (9.37). �
3. Block Circulant Structures. Following Brockett and Willems (1974), we begin
by presenting a state-space formulation of the situation we are interested in and
introduce our subsequent notation. Since Fourier transform techniques will be
applied, we restrict ourselves to the field C of complex numbers. An N×N block-
circulant matrix has the form

A =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

A0 A1 · · · AN−2 AN−1

AN−1 A0 · · · · · · AN−2

AN−2
. . .

. . .
...

...
. . .

. . .
. . .

...
A1 · · · AN−2 AN−1 A0

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

,

where Ai denotes an n× n matrix with complex coefficients. Similarly, let B and C
denote block-circulant matrices, where the block matrices are of the form Bi ∈C

n×m

and Ci ∈ C
p×n. Consider the input and output matrices, respectively,

β =

⎛

⎜
⎜
⎜
⎝

β1

β2
...

βN

⎞

⎟
⎟
⎟
⎠
, γ =

(
γ1 γ2 · · · γN

)
.

Here, the submatrices satisfy βi ∈ C
m×r and γi ∈ C

s×p, respectively. Consider N
interconnected discrete-time block-circulant linear systems

x(t + 1) = Ax(t)+Bβu(t),

y(t) = γCx(t).
(9.38)

We are interested in characterizing when such systems are reachable. Let ω :=
exp(2π

√−1/N) denote the primitive Nth root of unity, and let

Φ =
1√
N
(ω(k−1)(�−1))k,� (9.39)

denote the N×N Fourier matrix. Note that the Fourier matrix Φ is the reachability
matrix of the reachable pair
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Δ(ω) =

⎛

⎜
⎜
⎜
⎝

1
ω

. . .

ωN−1

⎞

⎟
⎟
⎟
⎠
, 1 =

1√
N

⎛

⎜
⎜
⎜
⎝

1
1
...
1

⎞

⎟
⎟
⎟
⎠
.

It is easily seen that the block-circulant matrix is exactly of the form A = ∑N−1
i=0 Si⊗

Ai, where

S = ΦΔ(ω)Φ∗ =

⎛

⎜⎜
⎜
⎜
⎜
⎝

0 1
0 1

. . .
. . .
. . . 1

1 0

⎞

⎟⎟
⎟
⎟
⎟
⎠

(9.40)

denotes the standard N×N circulant matrix. In particular, finite sums and products
of block-circulant matrices with square blocks are block-circulant. Moreover, the
Fourier matrix is unitary and Φ⊗ In block-diagonalizes all block-circulant matrices
A = ∑N−1

i=0 Si⊗ Ai. Block-circulant matrices A are best analyzed in terms of the
associated matrix polynomial

A(z) :=
N−1

∑
k=0

Akzk ∈ C[z]n×n.

Thus

A = (Φ⊗ In)

⎛

⎜
⎜⎜
⎝

A(1)
A(ω)

. . .

A(ωN−1)

⎞

⎟
⎟⎟
⎠
(Φ∗ ⊗ In) ,

and similarly for B and C. This shows that one has full knowledge on the eigen-
structure of block-circulant matrices. Explicitly, the eigenvalues of block-circulant
matrices are the eigenvalues of A(1), . . . ,A(ωN−1), respectively, while the eigenvec-
tors of A are equal to (Φ⊗ IN)v for the eigenvectors v of diag(A(1), . . . ,A(ωN−1)).

Define b ∈ C
Nm×r, c ∈C

s×Np as

b = (Φ ⊗ Im)β =

⎛

⎜
⎜⎜
⎝

bN

b1
...

bN−1

⎞

⎟
⎟⎟
⎠
, c = γ(Φ∗ ⊗ Ip) =

(
cN c1 · · · cN−1

)
.
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Thus, in the discrete-time case (and similarly for continuous-time systems), the
block-circulant system (9.38) is state-space equivalent to the parallel connected
system

xk(t + 1) = A(ωk)xk(t)+B(ωk)bku(t),

yk(t) = ckC(ωk)xk(t), k = 1, . . . ,N.
(9.41)

We emphasize that this is simply the parallel sum of N systems (ckC(ωk),A(ωk),
B(ωk)bk). The s× r transfer function of system (9.41) is

NG(z) = cdiag(G1(z), · · · ,GN(z))b,

where Gk(z) =C(ωk)(zI−A(ωk))−1B(ωk). Let

(zI−A(ωk))−1B(ωk)bk := Nk(z)Dk(z)
−1

denote a right coprime factorization into polynomial matrices Nk(z),Dk(z), k ∈
1, . . . ,N. Thus Nk(z) and Dk(z) are n×r and r×r polynomial matrices, respectively.
From Theorem 10.4 one arrives at the following theorem.

Theorem 9.19. Assume that (A(ωk),B(ωk)bk) are reachable for k = 1, · · · ,N. The
block-circulant system (9.38) is reachable if and only if the N polynomial matrices
Dk(z) ∈ C[z]r×r,k = 1, . . . ,N are mutually left coprime. In particular, for r = 1 and
reachable pairs (A(ωk),B(ωk)bk),k = 1, . . . ,N, system (9.38) is reachable if and
only if the polynomials det(zI−A(ωk)) are pairwise coprime for k = 1, · · · ,N.

The preceding result generalizes previous results by Lunze (1986) and Brockett
and Willems (1974). These authors considered block-circulant control systems in
which each subsystem was controlled independently. Thus, they effectively assumed
that b was the identity matrix. This excludes several interesting cases, such as
leader–follower networks. The more general case treated here is motivated by the
more recent work of Brockett (2010), in which the inputs are broadcasted to all
nodes of a network. The next example has been studied by Lunze (1986).

Example 9.20. Consider the circulant system

x(t + 1) = Ax(t)+Bu(t)

with independent controls. Let A and B be circulant matrices with A(z) = A0−A1+
A1(1+ · · ·+zN−1) and B(z) = B0. For z = 1 one obtains A(1) = A0+(N−1)A1, and
A(ω i) = A0−A1 for i = 1, . . . ,N−1. Therefore, (A(z),B(z)) is reachable for all Nth
roots of unity z if and only if the two systems (A0−A1,B0) and (A0+(N−1)A1,B0)
are reachable. This coincides with the result by Lunze (1986). In contrast, if one
replaces B with Bβ , with β a column vector, then Theorem 9.19 implies that the
system is not reachable for N > 2.
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4. Periodic Interconnections. We proceed to discuss briefly an extension to
periodic interconnection laws for discrete-time systems. We refer the reader to
Bittanti and Colaneri (2010) for background material on periodic linear systems.
Thus, consider N reachable and observable discrete-time decoupled node systems

xk(t + 1) = αkxk(t)+βkvk(t),

wk(t) = γkxk(t), k = 1, . . . ,N,

with system matrices αk ∈ F
nk×nk ,βk ∈ F

nk×mk ,γk ∈ F
pk×nk . Equivalently, introduc-

ing the global state vectors x = col(x1, . . . ,xN) ∈ F
n, and similarly for the input and

output vectors v,w, one obtains the global decoupled system

x(t + 1) = αx(t)+βvk(t),

w(t) = γx(t),

where α = diag(α1, . . . ,αN), and one argues similarly for β ,γ . We emphasize at
this point that (α,β ,γ) is assumed to be a time-invariant reachable and observable
system. One could also investigate periodic node systems, but we will not do so
here. Let G(z) = Nr(z)Dr(z)−1 = γ(zI−α)−1β be a right coprime factorization of
the global node transfer function. Consider the periodic interconnection law

v(t) = Atw(t)+Btu(t),

y(t) =Ctw(t),

with At = At+τ ,Bt = Bt+τ ,Ct = Ct+τ time-varying matrices of period τ ∈ N. The
closed-loop, first-order system is then the τ-periodic system

x(t + 1) =At x(t)+Btu(t),

y(t) = Ct x(t),
(9.42)

with At =α+βAtγ,Bt = βBt ,Ct =Ctγ . For simplicity, let us focus on reachability.
Define

A =

⎛

⎜
⎜⎜⎜
⎜
⎝

0 Aτ

A1
. . .
. . .

. . .

Aτ−1 0

⎞

⎟
⎟⎟⎟
⎟
⎠
, B =

⎛

⎜⎜
⎜⎜
⎝

Bτ
B1

. . .

Bτ−1

⎞

⎟⎟
⎟⎟
⎠
, C =

⎛

⎜
⎜⎜⎜
⎜
⎝

0 Cτ

C1
. . .
. . .

. . .

Cτ−1 0

⎞

⎟
⎟⎟⎟
⎟
⎠
.

The reachability properties of a periodic system are characterized by the reachability
properties of the so-called lifted system. We refer the reader to Bittanti and Colaneri
(2010) for a discussion on the reachability properties of periodic systems and a proof
of the equivalence of the reachability of periodic systems and of the reachability of
lifted systems. Let S denote the standard τ× τ circulant matrix defined in (9.40).
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Proposition 9.21. The closed-loop periodic system (9.42) is reachable (observ-
able) if and only if the time-invariant lifted system

Ae = S�⊗α+(I⊗β )A(I⊗ γ), Be = (I⊗β )B, Ce =C(I⊗ γ)

is reachable (observable).

Since we are using the Fourier transform, let us assume from now on that the systems
are defined over the field F= R of real numbers or over the field F=C of complex
numbers. Define ω = e2π

√−1/τ ,ω = e−2π
√−1/τ , and let Φ denote the τ× τ Fourier

matrix. Then

(Φ∗ ⊗ I)Ae(Φ ⊗ I) = Δ(ω)⊗α +(I⊗β )Â(I⊗ γ), (Φ∗ ⊗ I)Be = (I⊗β )B̂,

where Δ(ω) = diag(1,ω , . . . ,ωτ−1), Â = (Φ∗ ⊗ I)A(Φ ⊗ I), and B̂ = (Φ∗ ⊗ I)B.
Thus (Ae,Be) is reachable if and only if (Δ(ω)⊗α +(I⊗ β )Â(I⊗ γ),(I⊗ β )B̂)
is reachable. The latter system is obtained by interconnecting the decoupled node
system

α̂ = diag(α,ωα, . . . ,ωτ−1α), β̂ = I⊗β , γ̂ = I⊗ γ

with the interconnection matrices Â and B̂. The transfer function of the system
(α̂, β̂ , γ̂) is easily computed from the right coprime factorization P(z)Q(z)−1 of
γ(zI−α)−1β as

Ĝ(z) := (I⊗ γ)(zI− α̂)−1(I⊗β ) = P̂(z)Q̂(z)−1,

with right coprime factors

Q̂(z) = diag
(
Dr(z),Dr(ωz), . . . ,Dr(ωτ−1z)

)
,

P̂(z) = diag
(
ωNr(ωz),ωNr(ωz), . . . ,ωτ−1Nr(ωτ−1z)

)
.

Applying Theorem 9.10 we arrive at the following corollary.

Corollary 9.22. A periodically interconnected network of linear systems (9.42) is
reachable if and only if the matrix

(
Q̂(z)− ÂP̂(z), B̂

)
has full row rank for all z.

9.6 Exercises

1. For matrix fraction representations (9.11), prove that the map

Z : XD −→ XD−NA, Zf = πD−NA( f )

defines an isomorphism of F[z]-modules.
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2. Let (κ1, . . . ,κm) denote the reachability indices of (A,B), and let (α,β ,γ) denote
a minimal realization of a McMillan degree n, SISO transfer function. Show that
the reachability indices of the homogeneous networkA = IN⊗α+A⊗βγ, B=
B⊗β are (nκ1, . . . ,nκm). Deduce that every state x of the network can be reached
from 0 in at most nκ1 steps.

3. Deduce from Proposition 9.16 the formula

δ (N ◦ h) = δ (N )δ (g)

for the McMillan degree of the network transfer function of a homogeneous
network. Apply this to obtain a new proof of Theorem 9.15.

4. Let λ ∈ C be nonzero and pC(z) := ∑N−1
j=0 c j

jz ∈ C[z]. A complex λ -circulant
matrix is a Toeplitz matrix of the form

Cλ =

⎛

⎜⎜
⎜
⎜
⎝

c0 c1 · · · cN−1

λcN−1
. . .

. . .
...

...
. . .

. . . c1

λc1 · · · λcN−1 c0

⎞

⎟⎟
⎟
⎟
⎠

, Sλ :=

⎛

⎜⎜
⎜
⎜
⎝

0 1 · · · 0

0
. . .

. . .
...

...
. . .

. . . 1
λ · · · 0 0

⎞

⎟⎟
⎟
⎟
⎠
.

a. Prove that a λ -circulant is equal to pC(Sλ ). Conversely, each such matrix is a
λ -circulant. Deduce that the set of λ -circulants is an Abelian algebra.

b. Let γ denote an Nth root of λ , i.e., γN = λ . Prove that the eigenvectors of
a λ -circulant matrix Cλ are the columns of the matrix diag(1,γ, . . . ,γN−1)Φ .
What are the eigenvalues?

5. Extend Theorem 9.19 to λ -circulant interconnection matrices A,B,C.
6. Compute the eigenvalues and eigenvectors of the N×N circulant matrix

A =

⎛

⎜
⎜
⎜
⎜
⎝

a b

b
. . .
. . .

. . .

b a

⎞

⎟
⎟
⎟
⎟
⎠
.

For which β ∈ R
N is ẋ(t) = Ax(t)+βu(t) reachable?

9.7 Notes and References

A natural question in network analysis is that of structural controllability, i.e., the
classification of all networks that are reachable for a generic choice of coupling
parameters. We refer the reader to Dion, Commault and van der Woude (2013) for
a survey on this topic. Liu, Slotine and Barabasi (2011) characterized all graphs
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such that (9.3) is structurally reachable, i.e., if the network is reachable for a
generic choice of the nonzero coefficients in the coupling parameters A,b. Their
work is based on the characterization by Lin (1974) on structural controllability
and makes it possible to estimate the percentage of so-called driver nodes in a
network, i.e., those state variables that, after pinning, lead to structurally reachable
systems. We emphasize that the work by Liu, Slotine and Barabasi (2011) deals
only with the very special situation in which the node systems are first-order
integrators ẋi = ui. For networks of a more general type of node system their
conclusions on structural controllability need not hold. Theorem 9.15 enables
one to take the first steps in that direction, i.e., to extend the graph-theoretic
characterization of the structural controllability of linear systems to homogeneous
networks. Characterizing structural controllability for heterogeneous networks is
an open problem. Linear systems theory as developed over abstract fields is useful
in several areas, including coding theory. This provides further motivation for the
algebraic approach taken in this book. Observability and state estimation tasks for
linear systems over finite fields are studied in Sundaram and Hadjicostis (2013).

Most of the present chapter is based on Fuhrmann and Helmke (2013). Our
central tool for the structural analysis of networks is the equivalence theorem
of Rosenbrock and Pugh (1974), extended in Theorem 9.4 to include dynamic
couplings. All the subsequent results proven in this chapter follow directly from
Theorem 9.4. Theorem 9.15 has been proven by Hara, Hayakawa and Sugata (2009)
using complicated canonical form arguments. The early paper by Sontag (1979),
which proves the same result in larger generality, has apparently been overlooked.

The key to a deeper understanding of homogeneous networks is the fact that
the network transfer functions NG = N ◦ h, see (9.9), is the composition of the
interconnection transfer function N (z), as defined by (9.8), with the reciprocal
h(z) = 1/g(z) of the scalar node transfer function g(z). This simple observation
in fact characterizes the transfer functions of homogeneous networks. The problem
of characterizing the transfer functions of homogeneous networks is thus equivalent
to the question, first raised by J.F. Ritt, of which rational functions can be written
as a composition of two rational functions. Ritt (1922) proved that a complex scalar
rational function f is the composition of two scalar rational functions if and only
if the Galois group (or monodromy group) of f is imprimitive. This shows that a
rational function f is the transfer function of a homogeneous network if and only
if the Galois group of f is imprimitive. Ritt also solved the decomposition problem
for complex polynomials; we refer the reader to Müller (1995) for a classification
of the Galois groups of indecomposable polynomials. Of course, a full classification
of Galois groups defined by rational functions is difficult and refers to the so-called
inverse problem of Galois theory. Even more so, the characterization of imprimitive
Galois groups of rational functions remains an open problem. We refer the reader
to Brockett (1983) for related work on Galois groups attached to linear feedback
systems. Algebraic-geometric characterizations of decomposable rational functions
in terms of root loci or associated Bezoutian curves have been obtained by Pakovich
(2011).
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The necessary conditions for transfer functions of homogeneous networks are
easily described in terms of fundamental system invariants. For example, the
McMillan degree of rational functions is multiplicative, i.e., δ ( f1 ◦ f2) = δ ( f1)δ ( f2)
is satisfied for rational functions f1, f2. A similar property holds for the Cauchy
index of a rational function. If F(z) = F(z)� is a real symmetric m×m proper
rational function, then the matrix Cauchy index CI(F), see Bitmead and Anderson
(1977), of F(z) is defined and the matrix Cauchy index of the composition F ◦ h
with h = 1/g satisfies

CI(F ◦ h) = CI(F) ·CI(g) . (9.43)

Consequently, this imposes a constraint on the Cauchy index of homogeneous
networks. Formula (9.43) follows easily from the well-known interpretation of the
Cauchy–Maslov index as the topological degree of the associated rational curve in
the Lagrange–Grassmann manifold; see, for example, Byrnes and Duncan (1981).
See Helmke (1989) for a generalization of formula (9.43) in terms of Bezoutian
matrices.

The question of characterizing homogeneous networks is reminiscent of, but
not equivalent to, the classical synthesis problem for electrical circuits, tackled by
Brune (1931) and Bott and Duffin (1949). An amazing M.S. thesis by Ladenheim
(1948) presents a catalog of 108 circuits that are claimed to realize all biquadratic
positive real transfer functions. Despite these efforts, and those of many others, this
fundamental circuit synthesis problem remains unsolved to date, but it has attracted
some attention lately; see, for example, Kalman (2010), Smith (2002), Jiang and
Smith (2011), and Hughes and Smith (2013).

Another interesting topic is the model reduction of networks of systems. There
exist several options for doing this, either by reducing the number of nodes and
coupling parameters or by order reduction of the node systems. For homogeneous
networks, the situation becomes particularly nice. Mullis and Roberts (1976) have
shown that if the discrete-time node transfer function g(z) is allpass with respect
to the unit circle, then the discrete-time reachability Gramian satisfies Wc(A ,B) =
Wc(A,B)⊗Wc(α,β ), and similarly for the observability Gramian. This has been
generalized by Koshita, Abe and Kawamata (2007) for bounded real transfer
functions g(z) and leads to useful techniques for model reduction by balanced
truncation.



Chapter 10
Control of Standard Interconnections

This chapter is devoted to several computational problems from Chapters 4 and 9
that are related to the concepts of reachability and observability. Having character-
ized the reachability of a linear system, or a network, we turn to the more difficult
problem of the computation of controls that steer a system from rest to a prescribed
state or, alternatively, steer a system to the zero state. Steering the system to a
specified state is not the only option. In many cases, one is satisfied in steering a
system to a function of the state, that is, to a partial state. This happens, in particular
and in a very natural way, when dealing with systems defined by higher-order
difference, or differential, equations.

In principle, Theorem 4.47 solves the problem of computing a steering controller.
Its drawback emerges in situations where the pair (A,B) is a result of coupling a
large number of nodes of much smaller McMillan degree. In such situations, one
would like to make intelligent use of the reachability information of the individual
nodes in order to reduce the complexity of computing the inverse of the reduced
reachability map R. This topic will be taken up in Section 10.2 for the case of
parallel connections.

Some of these computational problems will be studied by focusing on special
networks of linear systems. In principle, every algorithm for finding open-loop
inputs can be applied to networks of arbitrary size. However, such generic solution
approaches quickly face considerable numerical problems. A way out would be
to find decentralized computational methods that make use of local information.
In such generality, this is a widely open, exciting, and very relevant research
area. We restrict ourselves to some of the more common types of interconnection,
namely, parallel and series interconnections, and show how these results tie in
to polynomial interpolation theory. The solution to these problems involves the
embedding of left (right) prime polynomial matrices in unimodular ones. Such
unimodular embeddings have been encountered already in computing the inverses
of reachability maps. Hence, it comes as no surprise that such embeddings play a
central role in the study of open-loop controls.

© Springer International Publishing Switzerland 2015
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10.1 Standard Interconnections

It is well known that all Boolean operations can be reduced to a combination of
simple ones, such as AND, OR, and NEGATION. Similarly, the operations of
parallel, series, and feedback interconnection can be regarded as the building blocks
for designing large networks of control systems. These operations are studied next in
more detail, in particular, concerning their effects on reachability and observability.

1. Parallel Interconnection. Parallel coupling is certainly one of the easiest ways
to interconnect linear systems. The reason for this is that, in this case, there is no
direct interaction between the nodes, and the only coupling is via the external input
and output. However, controlling such a network is not that easy. Thus, for a finite
number N of linear control systems

ẋk(t) = Akxk(t)+Bkuk(t), k = 1, . . . ,N, (10.1)

with system matrices (Ak,Bk) ∈ R
nk×(nk+m), consider the parallel interconnected

system

ẋ1(t) = A1x1(t)+B1u(t)

...

ẋN(t) = ANxN(t)+BNu(t).

(10.2)

The subsystems (Ak,Bk) are referred to as the node systems of system (10.2). Of
course, the difference between the two systems (10.1) and (10.2) is that the first one
is completely decoupled with independent input functions while in the second one
all subsystems share the same input. One can also say that the input u(t) ∈ R

m is
broadcasted to all systems. When is such a system reachable and how does one
control the system? The first question is of course a classical one whose answer
goes back to the beginnings of linear state-space theory in the 1970s. Let us begin
with the formal definition of parallel connection of two input-output systems.

Definition 10.1. Consider systems Σi with proper rational transfer functions

Gi(z) =

(
Ai Bi

Ci Di

)
∈ F(z)p×m and state spaces Xi, i = 1,2. The parallel coupling,

Σ1∨Σ2, of the two systems is defined in the state space X1⊕X2 by the system

(
x(1)t+1

x(2)t+1

)

=

(
A1 0
0 A2

)(
x(1)t

x(2)t

)

+

(
B1

B2

)
ut ,

yt =
(

C1 C2
)
(

x(1)t

x(2)t

)

+(D1 +D2)ut .
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Schematically, this is expressed by the following diagram:

G2

G1

� �

�

� �

�

yu

The characterization of the reachability and observability properties of the
parallel connection of linear systems, stated below, is due to Fuhrmann (1975).

Theorem 10.2. Let G1(z),G2(z) ∈ F(z)p×m be proper transfer functions with

minimal realizations Gi(z) =

[
Ai Bi

Ci Di

]
and associated state spaces Xi, i = 1,2.

1. For parallel coupling the transfer function is

G(z) = G1(z)+G2(z) =

⎡

⎣
A1 0 B1

0 A2 B2

C1 C2 D1 +D2

⎤

⎦ . (10.3)

2. Let G1(z) and G2(z) be proper rational matrices admitting the following coprime
factorizations:

Gi(z) = Nr,i(z)Dr,i(z)
−1 = D�,i(z)

−1N�,i(z), i = 1,2. (10.4)

(a) The parallel coupling of the shift realizations associated with Nr,2(z)Dr,2(z)−1

and Nr,1(z)Dr,1(z)−1 is reachable if and only if Dr,1(z) and Dr,2(z) are left
coprime.

(b) The parallel coupling of the shift realizations associated with D�,2(z)−1N�,2(z)
and D�,1(z)−1N�,1(z) is observable if and only if D�,1(z) and D�,2(z) are right
coprime.

(c) The parallel coupling of the shift realizations associated with D�,2(z)−1N�,2(z)
and D�,1(z)−1N�,1(z) is minimal if and only if D�,1(z) and D�,2(z) are right
coprime and Dr,1(z) and Dr,2(z) are left coprime. Equivalently,

δ (G1 +G2) = δ (G1)+ δ (G2).

Proof. 1. The realization (10.3) is obvious.
Proof of 2.

(a) The coupling matrices are
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A =

(
0 0
0 0

)
,B =

(
I
I

)
,C =

(
I I

)
.

The transfer function of the coupled system is

G(z) =
(

I I
)
(

Nr,1 0
0 Nr,2

)(
Dr,1 0

0 Dr,2

)−1(
I
I

)
.

By Theorem 9.8, the associated shift realization is reachable if and only if(
Dr,1 0

0 Dr,2

)
and

(
I
I

)
are left coprime. Observing that

(
Dr,1 0 I

0 Dr,2 I

)
=

(
I 0
I I

)(
Dr,1 0 I
−Dr,1 Dr,2 0

)
,

this is the case if and only if Dr,1(z) and Dr,2(z) are left coprime. This proves
the claim.

(b) The proof is analogous to that of the previous part. It also follows from (a) by
duality considerations.

(c) The parallel coupling is minimal if and only if it is both reachable and
observable, which is equivalent to both coprimeness conditions. This proves
the first claim. The parallel coupling of the shift realizations of G1(z) and
G2(z) has a state space of dimension δ (G1)+ δ (G2). Since this realization is
both reachable and observable, it has dimension δ (G1 +G2), and the result
follows. �

Next, the analysis of the parallel connection of two nodes is extended to the case
of the parallel coupling of N node systems Σi, where the node transfer functions
have the coprime factorizations

Gi(z) = D�,i(z)
−1N�,i(z) = Nr,i(z)Dr,i(z)

−1.

For this, one needs the concept of mutual coprimeness introduced in Definition 3.13.
Note that, in the matrix case, mutual left coprimeness is a stronger condition than
pairwise left coprimeness. We prove the following resultant-type characterization
of mutual left coprimeness; a similar characterization is valid for mutual right
coprimeness.

Proposition 10.3. Nonsingular polynomial matrices Di(z) ∈ F[z]m×m, i = 1, . . . ,N,
are mutually left coprime if and only if the polynomial matrix

DN(z) :=

⎛

⎜
⎝

−D1(z) D2(z)
. . .

. . .

−DN−1(z) DN(z)

⎞

⎟
⎠ (10.5)

is left prime.



10.1 Standard Interconnections 511

Proof. For N = 2 the result is obvious, so let us assume that N ≥ 3. We first prove
sufficiency. If DN(z) is left prime, then so is DN−1(z). Thus, by induction, we can
assume that D1(z), . . . ,DN−1(z) are mutually left coprime. We next show that DN(z)
is left coprime with the least common right multiple of D1(z), . . . ,DN−1(z). To verify
this, partition DN into

DN =

(
DN−1 0
D′(z) DN(z)

)
,

with D′(z) =
(
0 · · · 0 −DN−1(z)

)
. By the left coprimeness of DN−1(z), there

exists a unimodular polynomial matrix U(z) ∈ GLm(N−1)(F[z]), with DN−1U(z) =
(Im(N−2),0). Let U ′(z) := col(U1(z), · · · ,UN−1(z)) denote the last block column
vector of U(z), with Ui(z) ∈ F[z]m×m. The entries of U ′(z) satisfy

Δ(z) := D1(z)U1(z) = · · ·= DN−1(z)UN−1(z).

In particular, Δ(z) is a common left multiple of D1(z), . . . ,DN−1(z). Since U ′(z)
is right prime, Δ(z) = l.c.r.m.{D1(z), . . . ,DN−1(z)} is in fact a least common right
multiple of D1(z), . . . ,DN−1(z). One easily checks D′(z)U(z) = (B(z),−Δ(z)) for a
suitable polynomial matrix B(z) ∈ F[z]m×m(N−2). This implies the identity

(
DN−1(z) 0

D′(z) DN(z)

)(
U(z) 0

0 Im

)
=

(
Im(N−2) 0 0

B(z) −Δ(z) DN(z)

)
.

After an elementary row operation on both sides of this equation one can reduce
B(z) to the zero matrix. This shows that DN is unimodularly equivalent to

(
Im(N−2) 0 0

0 −Δ(z) DN(z)

)
.

Thus, by the left primeness of DN(z), the polynomial matrices DN(z) and Δ(z) are
left prime. In the same way one verifies that Di(z) and l.c.r.m.{D j(z); j �= i} are left
prime. This completes the proof that D1(z), . . . ,DN(z) are mutually left coprime.

For the converse direction, assume that D1(z), . . . ,DN(z) are mutually left
coprime. Suppose that DN is not left prime, i.e., there exists λ ∈ F and a nonzero

row vector ξ = (ξ1, . . . ,ξN−1) ∈ F
1×m(N−1)

such that ξDN(λ ) = 0. Equivalently,
ξ1D1(λ ) = 0, ξN−1DN(λ ) = 0, and (ξi−1− ξi)Di(λ ) = 0 for i = 2, . . . ,N− 1. Let
Δ(z) := l.c.r.m.{D1(z), . . . ,DN−1(z)}. Then there are polynomial matrices Di(z)
that satisfy Di(z)Di(z) = Δ(z) for i = 1, . . . ,N− 1. Thus we conclude

ξN−1DN(λ ) = 0 and ξiΔ(λ ) = 0, for i = 2, . . . ,N− 1.
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Since DN(z) and Δ(z) are left coprime, this implies ξN−1 = 0. Proceeding induc-
tively, using the mutual coprimeness of D1(z), . . . ,DN−1(z), we conclude that ξ1 =
· · ·= ξN−2 = 0, and therefore ξ = 0. But this is a contradiction. �

An independent, though indirect, proof of the previous resultantlike characteri-
zation of mutual left coprimeness is given in Theorem 10.19 based on the analysis
of parallel coupling of N systems, to which we turn next. Let Σ1 ∨ ·· · ∨Σi denote
the parallel coupling of the first i systems. Define the parallel coupling of the Σi

inductively by

Σ1∨·· ·∨Σi+1 = (Σ1∨·· ·∨Σi)∨Σi+1.

Clearly, parallel coupling is an associative operation. In this case, the intercon-
nection matrices are

A =

⎛

⎜
⎝

0 · · · 0
...

. . .
...

0 · · · 0

⎞

⎟
⎠ , B =

⎛

⎜
⎝

I
...
I

⎞

⎟
⎠ , C =

(
I · · · I

)
.

We apply Theorem 9.8 and assume the transfer functions of the node systems have
the coprime factorizations (10.4). Let

Dr(z) =

⎛

⎜
⎝

Dr,1(z)
. . .

Dr,N(z)

⎞

⎟
⎠ , Nr(z) =

⎛

⎜
⎝

Nr,1(z)
. . .

Nr,N(z)

⎞

⎟
⎠ .

The reachability of the parallel interconnected system is equivalent to the left
primeness of

(Dr(z),B) =

⎛

⎜
⎝

Dr,1(z) I
. . .

...
Dr,N(z) I

⎞

⎟
⎠ . (10.6)

After suitable elementary row operations, it follows that this condition is in turn
equivalent to the left primeness of the resultant-type matrix

⎛

⎜
⎝

−Dr,1(z) Dr,2(z)
. . .

. . .

−Dr,N−1(z) Dr,N(z)

⎞

⎟
⎠ . (10.7)

Proceeding as in the case for N = 2 and using Proposition 10.3 we arrive at the
following theorem.
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Theorem 10.4. Let Σi, i = 1, . . . ,N, be systems with proper rational transfer
functions Gi(z) ∈ F(z)p×m and coprime factorizations (10.4). A necessary and
sufficient condition for Σ1∨·· · ∨ΣN to be reachable is that the Dr,i(z) are mutually
left coprime. �
2. Series Interconnection. Our next topic is the study of linear systems connected
in series. Our approach is inductive; we first analyze the series connection of two
systems and then move on to the general case. Schematically, this is expressed by
the following diagram:

G2G1� � �yu

Definition 10.5. Let Σi, i = 1,2, be systems with proper rational transfer functions

Gi(z) =

[
Ai Bi

Ci Di

]
and state spaces Xi, i = 1,2. Let G1(z) ∈ F(z)k×m and G2(z) ∈

F(z)p×k. The series coupling Σ1 ∧ Σ2 of the two systems is defined in the state
space X1⊕X2 as the system

(
x(1)t+1

x(2)t+1

)

=

(
A1 0

B2C1 A2

)(
x(1)t

x(2)t

)

+

(
B1

B2D1

)
ut ,

yt =
(

D2C1 C2
)
(

x(1)t

x(2)t

)

+D2D1ut .

The associated transfer function is

G(z) := G2(z)G1(z) =

⎡

⎣
A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1

⎤

⎦ . (10.8)

It is not easy to read off from a state-space representation of the transfer function
of a series connection meaningful conditions for reachability and observability.
This changes dramatically if one uses coprime factorization representations of the
transfer functions Gi(z).

Theorem 10.6. Let G1(z) ∈ F(z)q×m and G2(z) ∈ F(z)p×q be proper rational with

minimal realizations Gi(z) =

[
Ai Bi

Ci Di

]
in state spaces Xi, i = 1,2, respectively.

1. Let G1(z) ∈ F(z)k×m and G2(z) ∈ F(z)p×k have the coprime matrix fraction
representations

G1(z) = D�,1(z)−1N�,1(z) = Nr,1(z)Dr,1(z)−1,

G2(z) = D�,2(z)−1N�,2(z) = Nr,2(z)Dr,2(z)−1 .
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Then

δ (G2G1)≤ δ (G1)+ δ (G2). (10.9)

2. The series coupling of the shift realizations associated with Nr,2(z)Dr,2(z)−1 and
Nr,1(z)Dr,1(z)−1 is reachable if and only if the polynomial matrices Nr,1(z) and
Dr,2(z) are left coprime.

3. The series coupling of the shift realizations associated with D�,2(z)−1N�,2(z) and
D�,1(z)−1N�,1(z) is observable if and only if the polynomial matrices N�,2(z) and
D�,1(z) are right coprime.

4. The equality

δ (G2G1) = δ (G1)+ δ (G2)

is satisfied if and only if N�,2(z),D�,1(z) are right coprime and Nr,1(z) and Dr,2(z)
are left coprime.

Proof. 1. The realization (10.8) implies (10.9).
2. The proof is deduced from our results about the general interconnections of node

systems. For the nodes G1(z) and G2(z), the coupling matrices are

A =

(
0 0
I 0

)
,B =

(
I
0

)
,C =

(
0 I

)
.

By (9.11), the transfer function of the interconnected system is

G(z) =
(

0 I
)
(

Nr,1 0
0 Nr,2

)((
Dr,1 0

0 Dr,2

)
−
(

0 0
I 0

)(
Nr,1 0
0 Nr,2

))−1(
I
0

)

=
(

0 I
)
(

Nr,1 0
0 Nr,2

)(
Dr,1 0
−Nr,1 Dr,2

)−1(
I
0

)
.

Applying Theorem 9.8, the associated shift realization is reachable if and only if
the polynomial matrix

(
Dr,1 0 I
−Nr,1 Dr,2 0

)

is left prime. This is clearly the case if and only if Nr,1(z) and Dr,2(z) are left
coprime.

3. The proof is analogous to the proof of part 2.
4. Follows from parts 2 and 3. �
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The intuitive interpretation for, say, the left coprimenes of Nr,1(z) and Dr,2(z) is
that there are no cancellations between the left zeros of G1(z) and the right poles of
G2(z). We proceed next to examine the slightly more general problem of the series
coupling of N node systems Σi in terms of the coprime factorizations of the nodes

Gi(z) = D�,i(z)
−1N�,i(z) = Nr,i(z)Dr,i(z)

−1. (10.10)

First, let us introduce some notation. Let Σ1∧·· · ∧Σi denote the series coupling of
the first i systems. The series coupling of the systems Σi is inductively defined by

Σ1∧·· ·∧Σi+1 = (Σ1∧·· ·∧Σi)∧Σi+1.

Clearly, series coupling is an associative operation. In this case, the interconnection
matrices are

A =

⎛

⎜
⎜⎜
⎜
⎝

0 · · · · · · 0

I
. . .

...
. . .

. . .
...

I 0

⎞

⎟
⎟⎟
⎟
⎠
, B =

⎛

⎜⎜
⎜
⎝

I
0
...
0

⎞

⎟⎟
⎟
⎠
, C =

(
0 · · · 0 I

)
.

Our intention is to apply Proposition 9.8. To this end, let

Dr(z) = diag (Dr,1(z), . . . ,Dr,N(z)) , Nr(z) = diag (Nr,1(z), . . . ,Nr,N(z)) .

The reachability of the series interconnected system is equivalent to the left
primeness of (Dr(z)−ANr(z),B) or, equivalently, of

⎛

⎜
⎝

−Nr,1(z) Dr,2(z)
. . .

. . .

−Nr,N−1(z) Dr,N(z)

⎞

⎟
⎠ . (10.11)

We conclude by stating the following theorem.

Theorem 10.7. Let Gi(z) ∈ F[z]p×m be the transfer functions of the systems Σi, i =
1, . . . ,N, with coprime factorizations (10.10). A necessary and sufficient condition
for Σ1∧·· ·∧ΣN to be reachable is that the matrix in (10.11) is left prime. �

From this characterization one derives a necessary condition for the reachability
of series connections, i.e., that all pairs Nr,i(z),Dr,i+1(z) are left coprime for
i= 1, . . . ,N−1. However, these individual coprimeness conditions are not sufficient
because the zeros of a node might cancel a pole even if the nodes are not direct
neighbors. To obtain workable necessary and sufficient conditions, we proceed
recursively.
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Theorem 10.8. Consider the systems Σi, i = 1, . . . ,N, with right coprime factor-
izations Nr,i(z)Dr,i(z)−1 of the node transfer functions. Let Ni(z)Di(z)−1 denote the
right coprime factorization of the transfer function Gi(z) = Gi(z) · · ·G1(z) of Σ1 ∧
·· ·∧Σi, and let N̂i(z)D̂i+1(z)−1 be a right coprime factorization of Dr,i+1(z)−1Ni(z),
i < N. Define, inductively,

Ni+1(z) = Nr,i+1(z)N̂i(z),

Di+1(z) = Di(z)D̂i+1(z) .

Then a necessary and sufficient condition for Σ1 ∧ ·· · ∧ΣN to be reachable is that
one of the following equivalent conditions is satisfied:

1. The polynomial matrix (10.11) is left prime.
2. The polynomial matrices Ni(z) and Dr,i+1(z) are left coprime, for i= 1, . . . ,N−1.

Proof. The proof is by induction. Clearly, Σ1 ∧ ·· · ∧ ΣN is reachable if and only
if Σ1 ∧ ·· · ∧Σi is reachable for all i = 1, . . .N. For i = 1 it is assumed. Assuming
that Σ1 ∧ ·· · ∧ Σi is reachable and that Ni(z) and Dr,i+1(z) are left coprime, the
reachability of Σ1∧·· ·∧Σi+1 follows by applying Theorem 10.6.

Ni(z) and Di+1(z) are embedded in a doubly coprime factorization as follows:

(
Yi+1(z) Xi(z)
−Ni(z) Dr,i+1(z)

)(
D̂i+1(z) −X̂i(z)
N̂i(z) Ŷi+1(z)

)
=

(
I 0
0 I

)
.

Next, compute

(−Ni(z) Dr,i+1(z) 0
0 −Nr,i+1(z) Dr,i+2(z)

)
⎛

⎝
D̂i+1(z) −X̂i(z) 0
N̂i(z) Ŷi+1(z) 0

0 0 I

⎞

⎠

=

(
0 I 0

−Ni+1(z) ∗ Dr,i+2(z)

)
.

Clearly, the last polynomial matrix is left prime if and only if the polyno-
mial matrices Ni+1(z) and Dr,i+2(z) are left coprime. The result follows by
induction. �

A similar result can be obtained for the observability of the series connection
using left coprime factorizations of the nodes’ transfer functions. The details are
omitted.

3. Feedback Interconnection. Finally, our aim is to characterize the reachability
and observability of the feedback connection of a system with transfer function
G(z) and a controller with transfer function K(z). This case was first treated by
Callier and Nahum (1975). However, the subsequent analysis seems to be more
complete. The full system equations are
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G(e1 + y2) = y1,

K(e2 + y1) = y2.
(10.12)

The following diagram describes the feedback connection:

G

K

�

y2 e2

y1e1 � �

�

�

��� �

�

Proposition 10.9. Let G(z) ∈ F(z)p×m be proper rational with a proper controller
K(z)∈F(z)m×p such that I−G(z)K(z) is properly invertible. Assume G(z) and K(z)
have the following coprime factorizations:

G(z) = D�(z)−1N�(z) = Nr(z)Dr(z)−1,

K(z) = S�(z)−1R�(z) = Rr(z)Sr(z)−1.

(10.13)

Then:

1. The closed-loop transfer function Φ(z) from

(
e1

e2

)
to

(
y1

y2

)
is

Φ =

(
I −G
−K I

)−1(
G 0
0 K

)
=

(
G 0
0 K

)(
I −K
−G I

)−1

. (10.14)

The transfer function Φ(z) has the following coprime factorizations:

Φ(z) =

(
D� −N�

−R� S�

)−1(
N� 0
0 R�

)
=

(
Nr 0
0 Rr

)(
Dr −Rr

−Nr Sr

)−1

. (10.15)

2. The intertwining relation

(
N� 0
0 R�

)(
Dr −Rr

−Nr Sr

)
=

(
D� −N�

−R� S�

)(
Nr 0
0 Rr

)

is satisfied.
3. The polynomial system matrices associated with the coprime factorizations

(10.15) are FSE.
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4. The following equations are true:

det

(
D� −N�

−R� S�

)
= det(D�Sr−N�Rr) = det(S�Dr−R�Nr)

= det

(
Dr −Rr

−Nr Sr

)
.

5. The closed-loop transfer function Gf from e1 to y1 is

G f (z) =
(

I 0
)
Φ(z)

(
I
0

)

= (I−G(z)K(z))−1G(z) = G(z)(I−K(z)G(z))−1,

(10.16)

with the following equivalent representations:

G f (z) = Sr(z)(D�(z)Sr(z)−N�(z)Rr(z))
−1N�(z)

= Nr(z)(S�(z)Dr(z)−R�(z)Nr(z))
−1S�(z)

=
(

Nr 0
)
(

Dr −Rr

−Nr Sr

)−1(
I
0

)

=
(

I 0
)
(

D� −N�

−R� S�

)−1(
N�

0

)
.

(10.17)

Proof. 1. The system equations (10.12) can be written in matrix form as

(
I −G
−K I

)(
y1

y2

)
=

(
G 0
0 K

)(
e1

e2

)
.

It is easily calculated that

(
I −G
−K I

)−1

=

(
(I−GK)−1 G(I−KG)−1

(I−KG)−1K (I−KG)−1

)
,

and hence

(
y1

y2

)
=

(
(I−GK)−1G G(I−KG)−1K
(I−KG)−1KG (I−KG)−1K

)(
e1

e2

)
.

Representations (10.15) follow by substituting the coprime factorizations (10.13)
into equation (10.14). It is easily checked that the factorizations in (10.15) are
coprime factorizations.
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2. Follows from (10.15).
3. Follows from

⎛

⎜⎜
⎜
⎝

N� 0 0 0
0 R� 0 0
0 0 I 0
0 0 0 I

⎞

⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

Dr −Rr −I 0
−Nr Sr 0 −I

Nr 0 0 0
0 Rr 0 0

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

D� −N� −N� 0
−R� S� 0 −R�

I 0 0 0
0 I 0 0

⎞

⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

Nr 0 0 0
0 Rr 0 0
0 0 I 0
0 0 0 I

⎞

⎟⎟
⎟
⎠
.

The relevant coprimeness conditions follow from the assumed coprimeness of
factorizations (10.13).

4. First, note that from the coprime factorizations (10.13) it follows that detD� =
detDr and detS� = detSr. Next, compute

(
I 0

R�D
−1
� I

)(
D� −N�

−R� S�

)

=

(
D� −N�

0 S�−R�NrD−1
r

)

=

(
D� −N�

0 (S�Dr−R�Nr)D−1
r

)

.

By application of the multiplication rule of determinants, it follows that

det

(
D� −N�

−R� S�

)
= detD� ·det(S�Dr−R�Nr) ·detD−1

r

= det(S�Dr−R�Nr).

Similarly,

(
D� −N�

−R� S�

)(
I 0

S−1
� R� I

)

=

(
D�−N�S

−1
� R� −N�

0 S�

)

=

(
(D�Sr−N�Rr)S−1

r −N�

0 S�

)

,

which implies det

(
D� −N�

−R� S�

)
= det(D�Sr −N�Rr). The other equalities are

derived analogously.
5. Substituting representations (10.13) into (10.16), one obtains for the closed-loop

transfer function G f (z) the representations

G f (z) = Sr(z)(D�(z)Sr(z)−N�(z)Rr(z))−1N�(z)
= Nr(z)(S�(z)Dr(z)−R�(z)Nr(z))−1S�(z).

To obtain the third representation in (10.17), we use (10.15) and compute

G f (z) =
(

I 0
)
(

Nr 0
0 Rr

)(
Dr −Rr

−Nr Sr

)−1(
I
0

)

=
(

Nr 0
)
(

Dr −Rr

−Nr Sr

)−1(
I
0

)
.

The last representation in (10.17) is similarly derived. �
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Next, we derive the basic characterizations for the reachability and observability
of feedback interconnections.

Theorem 10.10. Apply the same notation as in Proposition 10.9.

1. The following statements are equivalent:

(a) The shift realization associated with each of the representations in (10.17) is
reachable.

(b) Nr(z) and Sr(z) are left coprime.
(c) D�(z)S�(z) and N�(z) are left coprime.
(d) R�(z)Nr(z) and S�(z) are left coprime.

2. The following statements are equivalent:

(a) The shift realization associated with each of the representations in (10.17) is
observable.

(b) N�(z) and S�(z) are right coprime.
(c) S�(z)Dr(z) and Nr(z) are right coprime.
(d) N�(z)Rr(z) and Sr(z) are right coprime.

Proof. 1. Follows by applying Theorem 9.8 to representations (10.17). For exam-
ple, the reachability of the shift realization is equivalent to the left coprimeness of

(
Dr(z) −Rr(z)
−Nr(z) Sr(z)

)
and

(
I
0

)

or to the left primeness of

(
Dr(z) −Rr(z) I
−Nr(z) Sr(z) 0

)
.

However, the last polynomial matrix is left prime if and only if the polynomial
matrices Nr(z) and Sr(z) are left coprime. The equivalence of reachability to the
other coprimeness conditions is similarly derived.

2. The proof proceeds on the same line as in part 1. �
Even a cursory comparison of Theorem 9.8 and Theorems 10.9–10.10 shows

a great similarity. This indicates that the dynamic output feedback problem is
equivalent to the analysis of networks of systems under dynamic coupling.

4. Clouds. So far, reachability and observability have been characterized for the
series and parallel connection of finitely many transfer functions. Our next aim is to
extend this to cases where the transfer functions of subsystems are network transfer
functions of homogeneous networks. Such systems of homogeneous networks,
interconnected in series or parallel, are called clouds. The results are stated only
for reachability; they also hold, mutatis mutandis, for observability.
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4.1. Series Connection. Consider, for i = 1,2, homogeneous networks Σi with
scalar strictly proper rational node transfer functions gi(z) = pi(z)/qi(z) of McMil-
lan degree ni and strictly proper interconnection transfer functions

N1(z) =C1(zIN1 −A1)
−1B1 ∈ F(z)p×m,

N2(z) =C2(zIN2 −A2)
−1B2 ∈ F(z)q×p.

The series connection of Σ1 with Σ2 then defines a heterogeneous network Σ1 ∧Σ2

with interconnection transfer function N (z) =C(zI−A)−1B and

A =

(
A1 0

B2C1 A2

)
, B =

(
B1

0

)
, C =

(
0 C2

)
.

The transfer function of the series connection network Σ1∧Σ2 is then

NG(z) =C(H(z)−A)−1B,

where

H(z) = diag(
q1(z)
p1(z)

IN1 ,
q2(z)
p2(z)

IN2).

Applying Theorem 9.10, one concludes that the series network Σ1∧Σ2 is reachable
if and only if the matrix has rank

rank

(
q1(z)I− p1(z)A1 0 p1(z)B1

−p2(z)B2C1 q2(z)− p2(z)A2 0

)
= N1 +N2

for all z∈ F. One can deduce a more easily manageable sufficient condition for con-
trollability. First, note that the reachability of (A1,B1),(A2,B2) is clearly necessary
for the reachability of Σ1∧Σ2. Moreover, the coprimeness of the polynomials p1(z)
and det(q2(z)− p2(z)A2) is also a necessary condition. One can prove, under the
restricted assumption that p≤ m, that Σ1∧Σ2 is reachable provided the poles of Σ2

are disjoint from the zeros of Σ1.

Theorem 10.11. Let p ≤ m, and assume that (A1,B1) and (A2,B2) are reachable.
The series connection Σ1∧Σ2 is reachable, provided the matrix

(
q1(z)I− p1(z)A1 −p1(z)B1

C1 0

)

has full row rank for all roots of det(q2(z)I− p2(z)A2).

Proof. Let Ni(z)Di(z)−1 be right coprime factorizations of the transfer functions
of Σi. By the coprimeness characterization of reachability for series connections,
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it follows that Σ1 ∧Σ2 is reachable provided N1(z),D2(z) are left coprime, i.e., the
p× (p +m) matrix (D2(z),N1(z)) has full row rank for all z ∈ F. Since p ≤ m,
a sufficient condition for this is that N1(z) has full row rank for all z that are
zeros of detD2(z). Proposition 9.16 implies that detD2(z) = det(q2(z)I− p2(z)A2).
Moreover, N1(z) has full row rank at z if and only if Σ1 does not have a zero at z,
i.e., the rank condition

rank

(
q1(z)I− p1(z)A1 −p1(z)B1

C1 0

)
= N1 + p

is satisfied. The result follows. �
The preceding result is easily extended to the series connection of a finite number

of homogeneous networks. The obvious, inductive, proof of the next theorem is
omitted.

Theorem 10.12. Let pi ≤ mi for i = 1, . . . ,N− 1, and assume that (Ai,Bi,Ci) are
reachable for i= 1, . . . ,N. Let Σi denote a homogeneous network with strictly proper
node transfer function gi(z) = pi(z)/qi(z) and interconnection transfer function
Ni(z) =Ci(zINi−Ai)

−1Bi. The series connection Σ1∧·· ·∧ΣN is reachable provided

rank

(
qi(z)INi − pi(z)Ai −pi(z)Bi

Ci 0

)
= Ni + pi

for all z, with

N

∏
j=i+1

det(q j(z)I− p j(z)A j) = 0

and i = 1, . . . ,N− 1.

4.2. Parallel and Feedback Connections. Similar results can be obtained for the
parallel connection Σ1 ∨ ·· · ∨ΣN of homogeneous networks Σi. We use the same
notation as was used earlier.

Theorem 10.13. Assume that (Ai,Bi) are reachable for i= 1, . . . ,N. Let Σi denote a
homogeneous network with strictly proper node transfer function gi(z) = pi(z)/qi(z)
and interconnection transfer function Ni(z) = (zINi−Ai)

−1Bi. The parallel connec-
tion Σ1 ∨ ·· · ∨ΣN is reachable provided the polynomials det(q j(z)I− p j(z)A j) are
pairwise coprime, j = 1, . . . ,N.

Proof. The parallel connection of N systems Σi is reachable if and only if
D1, · · · ,DN are mutually coprime. This condition is satisfied provided the
polynomials detD1, · · · ,detDN are pairwise coprime. The result follows from
Proposition 9.16. �
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Despite its rather restrictive coprimeness assumption, this result is quite useful
in designing concrete heterogeneous networks of systems that are reachable. In
fact, the theorem gives precise sufficient conditions for the construction of node
transfer functions g1, . . . ,gN such that the parallel sum Σ1∨·· ·∨ΣN is reachable for
interconnections defined by identical reachable pairs (A1,B1) = · · ·= (AN ,BN).

The feedback interconnection of two homogeneous systems Σ1,Σ2 with node
transfer functions g1,g2 is described by the interconnection transfer function
N (z) =C(zI−A)−1B, with

A =

(
A1 B1C2

B2C1 A2

)
, B =

(
B1

0

)
C =

(
C1 0

)
.

By Theorem 9.10, the feedback interconnection is reachable if and only if

rank

(
q1(z)I− p1(z)A1 −p1(z)B1C2 p1(z)B1

−p2(z)B2C1 q2(z)− p2(z)A2 0

)
= N1 +N2

for all z. By adding a suitable multiple of the last block column to the second one, it
follows that this condition is equivalent to

(
q1(z)I− p1(z)A1 0 p1(z)B1

−p2(z)B2C1 q2(z)− p2(z)A2 0

)

being full row rank for all z. But this in turn is equivalent to the series connection
Σ1∧Σ2 being reachable. This proves the following theorem.

Theorem 10.14. The feedback interconnection of two homogeneous networks
Σ1,Σ2 is reachable if and only if the series connection Σ1∧Σ2 is reachable.

10.2 Open-Loop Controls for Parallel Connections

While Theorem 10.4 effectively solves the reachability problem for parallel inter-
connection of N systems

ẋ1(t) = A1x1(t)+B1u(t)

...

ẋN(t) = ANxN(t)+BNu(t),

(10.18)

the question remains as to how one can compute a control function u : [0,T ]−→R
m

for the parallel connection of N systems that steers the zero state x = 0 in finite
time T > 0 to a terminal state x∗ = (x∗1, . . . ,x

∗
N) ∈ R

nN . Even more, one would
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like to be able to compute such a control u for (10.18) using knowledge of local
controls u∗k : [0,T ]−→ R

m that steer the node systems (10.1) from the zero state to
the local terminal states x∗k , k = 1, . . . ,N. Although such a problem looks daunting
at first sight, we will develop in this chapter an approach that enables us to
tackle such problems. To explain the basic idea of open-loop control of parallel
interconnections, let us begin with a rather informal discussion of discrete-time,
single-input, single-output (SISO) systems because these are much easier to analyze
than the general multivariable case. We first establish some useful notation.

Single-Input Systems. Consider an nth-order, discrete-time, single-input system

x(t + 1) = Ax(t)+ bu(t), t = 0,1,2, . . . .

An input sequence u0,u1, . . .uM−1 steers the zero state of the system into a desired
state x(M) = x∗ ∈R

n if and only if u(A)b = x∗ for the scalar polynomial

u(z) =
M−1

∑
k=0

uM−1−kzk.

We refer to u(z) as the input polynomial for x∗. The reachability of (A,b) is
equivalent to the existence of such an input polynomial. Moreover, the unique input
polynomial of minimal degree n− 1 is

u∗(z) = (1, . . . ,zn−1)(b,Ab, . . . ,An−1b)−1x∗.

Now consider the interconnected single-input systems

x1(t + 1) = A1x1(t)+ b1u(t),

x2(t + 1) = A2x2(t)+ b2u(t),
(10.19)

where Ai ∈R
ni×ni and bi ∈R

ni for i = 1,2. Assume that system (10.19) is reachable,
i.e., that (A1,b1) and (A2,b2) are both reachable and the characteristic polynomials

q1(z) = det(zI−A1), q2(z) = det(zI−A2)

are coprime. For local state vectors x∗1 ∈ R
n1 ,x∗2 ∈ R

n2 there exist unique input
polynomials u∗1(z) and u∗2(z) of degrees bounded by n1−1 and n2−1, respectively,
with

u∗1(A1)b1 = x∗1, u∗2(A2)b2 = x∗2.

By the coprimeness of the characteristic polynomials q1(z) and q2(z), there exist
unique polynomials c(z),d(z) ∈R[z] of degrees degc(z)< n2 and degd(z)< n1 that
satisfy the Bezout identity



10.2 Open-Loop Controls for Parallel Connections 525

c(z)q1(z)+ d(z)q2(z) = 1.

Note that, by the Cayley–Hamilton theorem, qi(Ai) = 0 for i = 1,2. Thus
d(A1)q2(A1) = I = c(A2)q1(A2). Consider the polynomial

u(z) = d(z)q2(z)u∗1(z)+ c(z)q1(z)u∗2(z).

Substituting matrices Ai into u(z) and using the Bezout equation one obtains

u(A1)b1 = d(A1)q2(A1)u
∗
1(A1)b1 = x∗1 ,

u(A2)b2 = c(A2)q1(A2)u
∗
2(A2)b2 = x∗2 .

Thus the (reverse) coefficients of the polynomial u(z) yield an input sequence that
steers (10.19) to the desired states.

The preceding solution approach can be extended in several directions. First, note
that it is very closely related to the Chinese remainder theorem, stated in Chapter 2.
Second, the degree of u(z) can be upper bounded by n1+n2 by replacing the factors
d(z)u∗1(z) and c(z)u∗2(z) with their remainders modulo q1(z) and q2(z), respectively.
Third, the construction of the control can be easily carried out for finitely many
parallel connected reachable SISO systems

x1(t + 1) = A1x1(t)+ b1u(t)

...

xN(t + 1) = ANxN(t)+ bNu(t).

(10.20)

Assume that for each of the N local subsystems (A j,b j) local control sequences
u j are known that steer the zero state to a desired terminal state x∗j . How can one
compute from such local controls a single global input sequence u that steers all
subsystems simultaneously to the desired terminal states? Ideally, one would like
to obtain a formula such as u = ∑N

j=1 f ju j that expresses the desired control as a
weighted sum of local controls, where the weights f j are suitable filter operators
that act on the respective local input. To answer this question one needs just a little
bit more notation.

Let q j(z) = det(zI−A j) denote the characteristic polynomial of A j, and define
q̂ j(z) = ∏i�= j qi(z). Assume that the pairs (A j,b j) are reachable for each j =
1, . . . ,N. The reachability of the parallel connection (10.20) is then equivalent to
the coprimeness of q j, q̂ j for each j = 1, . . . ,N. Let the polynomials c j(z) and d j(z)
denote the unique solutions of the Bezout equations

c j(z)q j(z)+ d j(z)q̂ j(z) = 1, j = 1, . . . ,N (10.21)
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with degrees degd j < n j. Proceeding as previously, one stores the input sequences
u0, . . . ,uM−1 for controlling (10.20) as coefficients of the associated input polyno-
mial u(z) =∑M−1

j=0 uM− j−1z j. Our basic control result for (10.20) is stated as follows.

Theorem 10.15. Assume that (10.20) is reachable. For local state vectors
x∗1, . . . ,x

∗
N, let u1(z), . . . ,uN(z) ∈ R[z] denote input polynomials satisfying

u1(A1)b1 = x∗1, . . . , uN(AN)bN = x∗N .

Then the input polynomial for (10.20)

u(z) =
N

∑
j=1

d j(z)q̂ j(z)u j(z) (10.22)

satisfies u(A j)b j = x∗j for all j.

Proof. From the Bezout equations (10.21) one obtains that dk(Ak)q̂k(Ak) = I and
d j(Ak)q̂ j(Ak) = 0 for j �= k. This implies

u(Ak)bk =
N

∑
j=1

d j(Ak)q̂ j(Ak)u j(Ak)bk = dk(Ak)q̂k(Ak)uk(Ak)bk = uk(Ak)bk = x∗k . �

The preceding computations of open-loop controls for discrete-time systems are
easily extended to continuous-time systems. Consider, for example, the parallel
connection of higher-order systems

qk(
d
dt
)zk(t) = u(t), k = 1, . . . ,N, (10.23)

with monic real polynomials qk(z) of degree nk. Assume that the system is
reachable, i.e., that the polynomials qk(z) and q̂k(z) := ∏ j �=k q j(z) are coprime
for each k. Then the product q(z) = q1(z) · · ·qN(z) is the least common multiple
and n := degq(z) = n1 + · · ·+ nN . The next result illustrates the so-called flatness
approach for solving open-loop control problems of (10.23).

Theorem 10.16. Let y(t) ∈Cn([0,T ]) and (z,u) := (z1, . . . ,zN ,u) : [0,T ]−→R
n+1

be a pair of functions defined as

zk(t) = q̂k(
d
dt
)y(t), u(t) = q(

d
dt
)y(t).

Then zk(t) ∈ Cnk([0,T ]),u(t) ∈ C([0,T ]) is a solution of (10.23). Conversely, all
solutions of (10.23) are obtained in this way. The function y satisfies y(0) = · · · =
y(n−1)(0) = 0 if and only if z( j)

k (0) = 0 for j = 0, . . . ,nk− 1; k = 1, . . . ,N.
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Proof. From qk(
d
dt )zk = q( d

dt )y(t) = u(t) one obtains that (zk(t),u(t)) solves
(10.23). q̂1, . . . , q̂N are coprime. Thus

(
q̂1(z), . . . ,zn1−1q̂1(z), . . . , q̂N(z), . . . ,

znN−1q̂N(z)
)

is a basis of the space of polynomials of degree < n. This implies
that the initial data conditions on the derivatives of zk at t = 0 correspond uniquely,
and linearly, to conditions on the first n derivatives of y at t = 0. For a solution zk,u
of (10.23) let y ∈ Cn([0,T ]) denote the unique solution of q( d

dt )y = u. Then both
functions zk and q̂k(

d
dt )y satisfy (10.23) and have the same initial conditions. The

result follows. �
Example 10.17. Inspired by Rouchon (2005), we discuss the computation of open-
loop controls for the parallel connection of harmonic oscillators

z̈k(t)+ω2
k zk(t) = u(t), k = 1, . . . ,N. (10.24)

Suppose one wants to steer a system in finite time T > 0 from the zero initial state
at t = 0 to col(Le1, . . . ,Le1), where L > 0 and e1 denotes the first standard basis
vector in R

2. Assuming that the frequencies 0 < ω2
k �= ω2

l are pairwise distinct, it
follows that (10.24) is reachable. To compute the control u(t), consider the coprime
polynomials

qk(z) = z2 +ω2
k , and q̂k(z) = ∏

j �=k

(z2 +ω2
j ),

with least common multiple q(z) = ∏N
j=1(z

2 +ω2
j ). By coprimeness, there exist

unique polynomials ck(z),dk(z) ∈ R[z] with degdk < 2 and

ck(z)qk(z)+ dk(z)q̂k(z) = 1.

In fact, dk(z) is equal to the constant polynomial dk(z) = ∏ j �=k(ω2
j −ω2

k )
−1. Next,

for a 2N-times continuously differentiable function y : [0,T ] −→ R, consider the
functions

zk(t) = q̂k(
d
dt
)y(t), u(t) = q(

d
dt
)y(t). (10.25)

It follows from qk(
d
dt )zk(t) = q( d

dt )y(t) = u(t) that zk(t) is a solution of (10.24). The
control conditions zk(0) = żk(0) = 0 and zk(T ) = L, żk(T ) = 0 then easily translate
as the interpolation conditions (k = 1, . . . ,N)

q̂k(
d
dt
)y(0) = 0, q̂k(

d
dt
)ẏ(0) = 0, q̂k(

d
dt
)y(T ) = L, q̂k(

d
dt
)ẏ(T ) = 0.

(10.26)
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The N even polynomials q̂1(z), . . . , q̂N(z) of degree 2N− 2 are linearly independent
and thus form a basis of the space of all even polynomials of degree ≤ 2N − 2.
Therefore, conditions (10.26) are equivalent to

y(0) = 0, y(T ) = L, y(i)(0) = y(i)(T ) = 0, i = 1, . . . ,2N− 1.

Thus every solution of this Hermite interpolation problem solves, via (10.25), the
control problem.

Multivariable Systems. Theorem 10.15 presents a simple formula (10.22) for the
global control of (10.20) in terms of a weighted sum of local controls for the
decoupled systems (A j,b j). The polynomial weights d j(z)q̂ j(z) are independent of
the desired local states x∗j and can be computed by solving N Bezout equations.
Moreover, by replacing u(z) with the remainder polynomial u∗(z) obtained by
division with remainders u(z) = m(z)q1(z) · · ·qN(z) + u∗(z), one obtains a global
control of minimal degree bounded by n1 + · · · + nN . All this requires only
elementary operations from polynomial algebra (Euclidean algorithm, division with
remainders) for which efficient implementations are known. At this stage, the reader
may wonder why we did not simply invert the reachability matrix of the parallel
interconnection scheme (10.19) to compute the minimal-length input sequence. The
reason for this is that we wanted to find controls that are computed from local
controls u∗i , and the inversion of the global reachability matrix does not allow one
to do so. In fact, our solution, although possibly of higher degree than necessary,
has an advantage in comparison with the global inversion method. The solutions
c j(z),d j(z) to the N Bezout equations must be computed only once. By choosing
solutions of the Bezout equations in an appropriate way, for example by using
Newton interpolation, may even pave the way toward recursive computations of
u(z). This scheme is therefore favorable if the number of parallel connected systems
changes or, more generally, if the effects of changing the coupling parameters
in an interconnected system are of interest. The multivariable case poses more
difficulties and will be treated next in full generality, including a discussion of
related interpolation problems.

In accordance with the general philosophy that decomposing a complex problem
into a finite number of easier ones reduces the complexity of the solution, we
approach the terminal state problem for a parallel connection of node systems by
using local minimal controllers as the building block for a global controller. Assume
that (Ai,Bi) ∈ F

ni×ni×F
ni×m, i = 1, . . . ,N are reachable pairs. The reachability map

R(Ai,Bi) : F[z]m −→ XzI−Ai is defined as in (4.54). From

KerR(Ai,Bi) = Di(z)F[z]
m

one deduces the coprime factorization

(zI−Ai)
−1Bi = Ni(z)Di(z)

−1. (10.27)
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The map Ri : XDi −→ XzI−Ai , i.e., the reduced reachability map for the ith node, is

Riui = πzI−AiBiui.

For ξi ∈ XzI−Ai , the polynomial ui = R−1
i ξi is the minimal steering controller.

Our principal aim in what follows is to compute the minimal steering controller
for the parallel connection of the nodes based on the availability of the minimal
steering controllers for the individual nodes. The parallel connection of the node
pairs {(Ai,Bi) | i = 1, . . . ,N} is the pair (A,B), defined by

A =

⎛

⎜
⎝

A1
. . .

AN

⎞

⎟
⎠ , B =

⎛

⎜
⎝

B1
...

BN

⎞

⎟
⎠ . (10.28)

In general, the pair (A,B) need not be reachable. When it is, the computation
of a control sequence steering the system from the origin to a terminal state
follows Theorem 4.47. However, to significantly minimize computations, one
wants to utilize all the available information on the individual nodes. The relevant
assumptions on the node system are collected as follows.

Assumption A. Let (Ai,Bi) ∈ F
ni×ni × F

ni×m, i = 1, . . . ,N, be reachable pairs.
Assume that Ni(z)Di(z)−1 is a right coprime factorization of (zI−Ai)

−1Bi. Assume
further that the intertwining relation BiDi(z) = (zI −Ai)Ni(z) is embedded in the
doubly coprime factorization

(
Yi(z) Xi(z)
−Bi zI−Ai

)(
Di(z) −Xi(z)
Ni(z) Y i(z)

)
=

(
I 0
0 I

)
. (10.29)

Define the pair (A,B) by (10.28) and

D(z) = l.c.r.m.{Di(z)|i = 1, . . . ,N},
Li(z) = D−1

i (z)D(z),

Li(z) = l.c.r.m.{D j(z)| j �= i},
Di(z) = Li(z)

−1D(z).

(10.30)

To enhance readability, we split our main result into three theorems.

Theorem 10.18. Under assumption A, the following assertions are true:

1. The factorizations

D(z) = Di(z)Li(z) = Li(z)Di(z) (10.31)

are satisfied by L1(z), . . . ,LN(z) and L1(z), . . . ,LN(z) right coprime and left
coprime, respectively.
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2. Defining

H(z) =

⎛

⎜
⎝

H1(z)
...

HN(z)

⎞

⎟
⎠=

⎛

⎜
⎝

N1(z)L1(z)
...

NN(z)LN(z)

⎞

⎟
⎠ ,

the intertwining relation

BD(z) = (zI−A)H(z)

is satisfied by

(zI−A)−1B = H(z)D(z)−1

coprime factorizations.
3. The direct sum decomposition

XzI−A = XzI−A1⊕·· ·⊕XzI−AN

holds.
4. There exist uniquely determined polynomial matrices Φi(z), i = 0, . . . ,N, for

which

I = D(z)Φ0(z)+
N

∑
i=1

Li(z)Φi(z). (10.32)

5. The intertwining relation (10.31) is embeddable in the following doubly coprime
factorization:

(
Ei(z) Fi(z)
−Li(z) Di(z)

)(
Di(z) −Fi(z)
Li(z) Ei(z)

)
=

(
I 0
0 I

)
. (10.33)

Proof. 1. Factorizations (10.31) follow from (10.30). The right coprimeness of the
Li(z) follows from the fact that D(z) is the least common right multiple of the
Di(z).

2. Since

(zI−Ai)
−1Bi = Ni(z)Di(z)

−1 (10.34)

are coprime factorizations, this implies the intertwining relation

BiDi(z) = (zI−Ai)Ni(z), (10.35)

which by the coprimeness assumption implies the embeddability of the inter-
twining relation in the doubly coprime factorization (10.29). Without loss of
generality, one can assume that Xi(z)(zI −Ai)

−1 and, hence, Di(z)−1Xi(z), are
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strictly proper. In particular, Xi is constant. Multiplying (10.35) on the right by
Li(z), one obtains

BD(z) = (zI−A)H(z). (10.36)

The right coprimeness of Ni(z),Di(z) implies the right coprimeness of
H(z),D(z). To see this, one observes that, by construction, Ni(z) and Di(z)
are right coprime. Hence, there exist polynomial matrices Xi(z) and Yi(z) for
which

Xi(z)Ni(z)+Yi(z)Di(z) = I, i = 1, . . . ,N. (10.37)

By the right coprimeness of the Li(z), there exist polynomial matrices Zi(z) for
which

N

∑
i=1

Zi(z)Li(z) = I. (10.38)

From the Bezout equations (10.37) and (10.38), and recalling that Hi(z) =
Ni(z)Li(z), one obtains Li(z) = Xi(z)Hi(z)+Yi(z)D(z). Hence,

I =
N

∑
i=1

Zi(z)Li(z) =
N

∑
i=1

Zi(z)(Xi(z)Hi(z)+Yi(z)D(z))

=
N

∑
i=1

(Zi(z)Xi(z))Hi(z)+ (
N

∑
i=1

Zi(z)Yi(z))D(z),

which shows the right coprimeness of H(z) and D(z).
3. Follows from the fact that A has the diagonal representation (10.28).
4. From the direct sum decomposition F[z]m = XD⊕DF[z] it follows, using (3.18),

that

F[z]m =
N⊕

i=1

LiXDi
⊕DF[z]m.

This implies the existence of polynomial matrices Φi(z), i = 0, . . . ,N that satisfy
(10.32).

5. Follows from the fact that Di(z) and Li(z) are left coprime and Li(z) and Di(z)
are right coprime. �

Theorem 10.19. Under assumption A, the following statements are equivalent:

1. The pair (A,B), defined in (10.28), is reachable.
2. zI−A,B are left coprime.
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3. The reduced reachability map R : XD −→ XzI−A, defined by

Ru = πzI−ABu, u(z) ∈ XD, (10.39)

is an F[z]-isomorphism.
4. dimXD = n = ∑N

i=1 ni.
5. Factorizations (10.31) are skew-prime factorizations.
6. The polynomial matrices Di(z), i = 1, . . . ,N, are mutually left coprime.
7. The polynomial matrices Di(z), i = 1, . . . ,N, are mutually right coprime.
8. There are direct sum representations

XD = XD1⊕·· ·⊕XDN

and

XD = L1XD1
⊕·· ·⊕LNXDN

. (10.40)

9. The polynomial resultant-type matrix (10.5) is left prime.

Proof. 1⇔ 2: Follows from Corollary 4.12.
1⇔ 3: Since (A,B) is assumed to be a reachable pair, the reachability map

R is a surjective homomorphism. This implies that dimXD ≥ n = ∑N
i=1 ni =

∑N
i=1 dimXDi . On the other hand, since D(z) = l.c.r.m.{Di(z)|i = 1, . . . ,N}, one

must have dimXD ≤ ∑N
i=1 dimXDi . The two equalities, taken together, imply the

equality

dimXD =
N

∑
i=1

dimXDi .

3⇔ 4: R is, by the left coprimeness of (zI−A),B, a surjective homomorphism.
Since dimXD = n, it is also injective and, hence, an isomorphism.
The equivalence of statements 4, 5, 6, 7, and 8 follows from Theorem 3.19.

1⇔ 9: Follows from (10.6).
�

Theorem 10.20. Assume that Fi(z)Di(z)−1 and Di(z)−1Fi(z), arising from the
doubly coprime factorization (10.33), are strictly proper. Under assumption A, the
following assertions are true:

1. Define the maps Ui : XDi
−→ XDi , Ri : XDi −→ XzI−Ai and Vi : XDi

−→ XzI−Ai ,
i = 1, . . . ,N, by
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Ui fi = πDiLi fi,

Rigi = πzI−AiBigi,

Vi fi = πzI−AiBiLi fi.

All three maps are F[z]-isomorphisms, and the following diagram is
commutative:

XDi
XDi

X −Ai

i i

i �

	
	

	
	

The inverses of these maps are

U −1
i gi = πDi

Figi,

R−1
i ξi = πDi Xiξi,

V −1
i ξi = πDi

FiXiξi.

(10.41)

2. Let the reduced reachability map R : XD −→ XzI−A be defined by (10.39). Let
u(z) ∈ XD have the representation u(z) = ∑N

j=1 L jπDj
F ju j(z) with respect to the

direct sum representation (10.40). Then

Ru =R
N

∑
j=1

L jπDj
F ju j(z) =

⎛

⎜
⎝

ξ1
...

ξN

⎞

⎟
⎠=

⎛

⎜
⎝

πzI−A1B1u1
...

πzI−AN BNuN

⎞

⎟
⎠=

⎛

⎜
⎝

R1u1
...

RNuN

⎞

⎟
⎠ ,

i.e.,

R �R1⊕·· ·⊕RN. (10.42)

3. The intertwining relation

(FiXi)(zI−Ai) = Di(FiXi) (10.43)

exists and is embeddable in the following doubly coprime factorization:
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(
Di(z) Fi(z)Xi(z)

Ni(z)Li(z) Y i(z)+Ni(z)Ei(z)Xi(z)

)(
Ei(z)+Fi(z)Yi(z)Li(z) −Fi(z)Xi(z)

−BiLi(z) zI−Ai

)

=

(
I 0
0 I

)

. (10.44)

Proof. 1. The proof follows from Theorems 3.20 and 3.21. The intertwining
relation Li(z)Di(z) =Di(z)Li(z) and the associated coprimeness conditions imply
that Ui is an F[z]-isomorphism. Similarly, the intertwining relation BiDi(z) =
(zI − Ai)Ni(z) implies that Ri is an F[z]-isomorphism. The two intertwining
relations imply a third one, namely, (BiLi(z))Di(z) = (zI−Ai)(Ni(z)Li(z)), which
implies that Vi, which is the composition of two F[z]-isomorphisms, is also an
F[z]-isomorphism.

Next, embed the intertwining relation Li(z)Di(z) = Di(z)Li(z) in the doubly
coprime factorization (10.33). By Theorem 3.21, the map U −1

i : XDi −→ XDi
is

U −1
i gi = πDi

Figi.

Similarly, embed the intertwining relation BiDi(z) = (zI−Ai)Ni(z) in the doubly
coprime factorization (10.29). Applying Theorem 3.21 once more, the map R−1

i :
XzI−Ai −→ XDi is

R−1
i ξi = πDi Xiξi.

Finally, compute

V −1
i ξi =U −1

i R−1
i ξi = πDiFiπDiXiξi = πDi

FiXiξi.

2. Using (10.28) we compute

R f = π(zI−A)B f = (zI−A)π−

(

zI−A)−1B
N

∑
j=1

L j(z) f j(z))

)

=

⎛

⎜
⎜
⎜⎜
⎜
⎝

(zI−A1)π−(zI−A1)
−1B1 ∑N

j=1 L j(z) f j(z)
.

.

.

(zI−AN)π−(zI−AN)
−1BN ∑N

j=1 Lj(z) f j(z)

⎞

⎟
⎟
⎟⎟
⎟
⎠
.

Using the coprime factorization (10.34), and noting that Lj = l.c.r.m.{Dk|k �= j},
and hence that, for k �= j, Dk(z)−1Lj(z) ∈ F[z]m×m, it follows that
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π(zI−Ai)BiL j f j = (zI−Ai)π−(zI−Ai)
−1BiL j(z) f j(z)

= (zI−Ai)π−NiD
−1
i L j(z) f j(z) =

{
0 j �= i,

Ri fi j = i.

3. From the doubly coprime factorizations (10.29) and (10.33) one obtains the
intertwining relations Xi(z)(zI − Ai) = Di(z)Xi and Fi(z)Di(z) = Di(z)Fi(z),
respectively. Computing

Fi(z)Xi(z)(zI−Ai) = Fi(z)Di(z)Xi = Di(z)Fi(z)Xi (10.45)

proves (10.43).
The doubly coprime factorizations (10.29) and (10.33) provide eight inter-

twining relations and eight Bezout equations. These are utilized in checking
(10.44). Since (10.43) has been established, one computes

Di(Ei +FiYiLi)+FiXiBiLi = DiEi +DiFiYiLi +FiXiBiLi

= (I−FiLi)+FiDiYiLi +FiXiBiLi

= (I−FiLi)+Fi(DiYi +XiBi)Li = I.

Next we check

NiLi(Ei +FiYiLi)− (Y i +NiEiXi)BiLi = NiEiLi +NiLiFiYiLi−Y iBiLi−NiEiXiBiLi

= NiEiLi +NiLiFiYiLi−NiYiLi−NiEiXiBiLi

= NiEi(I−XiBi)Li−Ni(I−LiFi)YiLi

= NiEiDiYiLi−NiEiDiYiLi = 0.

Finally, we compute

NiLiFiXi +(Y i +NiEiXi)(zI−Ai) = NiLiFiXi +Y i(zI−Ai)+NiEiXi(zI−Ai)

= NiLiFiXi + I−NiXi +NiEiDiXi

= I−Ni(I−LiFi−EiDi)Xi = I.

�
The next result states the desired formula for open-loop control of parallel

connections.
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Theorem 10.21. Here we use the same notation as in Theorem 10.20.

1. A doubly coprime embedding of the intertwining relation (10.36) is

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

D(z) −Ξ1(z) . . . −ΞN(z)
H1(z) Θ 11(z) . . Θ1N(z)

. . . . .

. . . .

. . .
HN(z) ΘN1(z) . . . ΘNN(z)

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

Θ(z) Ξ1(z) . . . ΞN(z)
−B1 zI−A1
. .
. .
. .

−BN zI−AN

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

I 0 . . . 0
0 I
. .
. .
. .
0 I

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Θ(z) Ξ1(z) . . . ΞN(z)
−B1 zI−A1
. .
. .
. .

−BN zI−AN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

D(z) −Ξ1(z) . . . −ΞN(z)
H1(z) Θ11(z) . . Θ1N(z)

. . . . .

. . . .

. . .
HN(z) ΘN1(z) . . . ΘNN(z)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

I 0 . . . 0
0 I
. .
. .
. .
0 I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(10.46)

where

Ξ i = LiFiXi,

Θ ii = Y i +NiEiXi,

Θ ij =−NiD
−1
i L jF jX j,

Ξ j = FjXj .

(10.47)

2. For ξ = col(ξ1, . . . ,ξN) ∈ XzI−A, the map R−1 : XzI−A −→ XD is

u(z) =R−1ξ =
N

∑
j=1

L j(z)πDj
F ju j =

N

∑
i=1

Li(z)πDi
FiπDj X jξ j. (10.48)

Thus u(z), defined by (10.48), is the minimal steering controller to the state ξ .

Proof. 1. Our proof is computational. Let Pij and Qij, i, j = 0, . . . ,N, denote the
i, j block element of the first product in (10.46) and of the second product in
(10.46). Since the first double coprime factorization in (10.46) follows from
the second one, only the formulas for Qij need to be checked. Our strategy is
to derive the necessary conditions for the unknown parameters in the doubly
coprime factorization (10.46) and then show sufficiency. We shall make use of
the doubly coprime factorization (10.29), which is equivalent to the following
equations (i = 1, . . . ,N):
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Yi(z)Di(z)+Xi(z)Ni(z) = I, Yi(z)Xi(z) = Xi(z)Y i(z),

BiXi(z)+ (zI−Ai)Y i(z) = I, BiDi(z) = (zI−Ai)Ni(z),

and

Di(z)Yi(z)+Xi(z)Bi = I, Di(z)Xi(z) = Xi(z)(zI−Ai),

Y i(z)(zI−Ai)+Ni(z)Xi(z) = I, Ni(z)Yi(z) = Y i(z)Bi.

Derivation of Formulas in (10.47).

1. We need to solve equations Qii for Ξ i and Θ ii in I = BiΞ i + (zI − Ai)Θ ii.
From the doubly coprime factorization (10.29) we have that I = BiXi+
(zI − Ai)Y i. Subtracting the two equations one obtains Bi(Ξ i − Xi)+
(zI −Ai)(Θ ii−Y i) = 0. From the doubly coprime factorization (10.29) we
have that

Ξ i(z) = Xi(z)−Di(z)S(z),

Θ ii(z) = Y i(z)+Ni(z)S(z)
(10.49)

for some polynomial matrix S(z).
2. Inspection of equations Qij, j �= i. From (10.46) we obtain

0 = BiΞ j(z)+ (zI−Ai)Θ ij(z).

This implies that, for some polynomial matrix T (z),

Ξ j(z) =−Di(z)T (z), Θ ij(z) = Ni(z)T (z).

Thus Ξ j(z) is left divisible by all Di(z), i �= j, and, hence, also by their least
common right multiple Lj(z), i.e., there is the factorization

Ξ j(z) =−Lj(z)R(z). (10.50)

Comparing (10.49) with (10.50) shows Xi−DiS=−LiR or, equivalently, Xi =
DiS−LiR. Now, the doubly coprime factorization (10.33) implies the Bezout
identity DiEi +LiFi = I and in turn the equality

Xi(z) = Di(z)Ei(z)Xi(z)+Li(z)Fi(z)Xi(z).

Comparing the two representations of Xi(z) one infers R(z) = −Fi(z)X i(z)
and S(z) = Ei(z)Xi(z). Substituting back into (10.49),

Ξ i = Xi−DiS = Xi−DiEiXi = (I−DiEi)Xi = LiFiXi.
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Similarly,

Θ ii(z) = Y i(z)+Ni(z)S(z) = Y i(z)+Ni(z)Ei(z)X i(z).

From the equality DiT = LjR one obtains T = D−1
i L jR =−D−1

i L jF jX j, and
this implies

Θ ij(z) =−Ni(z)Di(z)
−1L j(z)F j(z)X j(z).

Verification of Double Coprime Embedding (10.46).

1. Qi0: We use the doubly coprime factorization (10.27), multiplied on the right
by Li(z), to get

0 = (−BiDi(z)+ (zI−Ai)Ni(z))Li(z) =−BiD(z)+ (zI−Ai)Hi(z).

2. Qii: With Ξ i = LiFiXi and Θ ii = Y i +NiEiXi, one computes

(−Bi)(−LiFiXi)+ (zI−Ai)(Y i +NiEiXi)

= Bi(I−DiEi)Xi +(zI−Ai)Y i +(zI−Ai)NiEiXi

= BiXi−BiDiEiXi +(I−BiXi)+ (zI−Ai)NiEiXi

=−(zI−Ai)NiEiXi + I+(zI−Ai)NiEiXi = I.

3. Qij, j �= i: By (10.30), L j(z) = l.c.r.m.{Dk(z)|k �= j}, which implies that Kij :=
D−1

i L j = l.c.r.m.{Dk(z)|k �= i, j} is polynomial. With Θ ij =−NiKijF jX j, then

(−Bi)(−Ξ j)+ (zI−Ai)Θ ij = (−Bi)(−L jF jX j)+ (zI−Ai)(−NiKijF jX j)

= BiL jF jX j−BiDiD
−1
i L jF jX j = 0.

Q00: As previously, one computes

I =ΘD+
N

∑
i=1

ΞiHi =ΘD+
N

∑
i=1

FiXiNiLi

=ΘD+
N

∑
i=1

Fi(I−YiDi)Li =ΘD+
N

∑
i=1

FiLi−
N

∑
i=1

FiYiD

= (Θ −
N

∑
i=1

FiYi)D+
N

∑
i=1

FiLi.

Q0 j: In the computation the following identity is used:



10.2 Open-Loop Controls for Parallel Connections 539

(Θ −
N

∑
i=1

FiYi) = (I−
N

∑
i=1

FiLi)D
−1 = D−1(I−

N

∑
i=1

LiFi).

Note that from the Bezout identity D jE j+LjF j = I one obtains E j =D−1
j (I−

LjF j). In turn, this implies FjD−1
j L jF jX j = −FjE jX j +FjD−1

j Xj. We also

use the identity F j(z)D j(z) = D j(z)Fj(z) and the factorizations D(z) =

D j(z)Lj(z) = Lj(z)D j(z). With this information, a lengthy computation yields

−ΘΞ j +
N

∑
i=1

ΞiΘ ij =−ΘΞ j +∑
i�= j

ΞiΘ ij +Ξ jΘ j j

=−ΘL jF jX j +∑
i�= j

(FiXi)(−NiD
−1
i L jF jX j)+FjXj(Y j +NjE jX j)

=−ΘL jF jX j−∑
i�= j

Fi(I−YiDi)D
−1
i L jF jX j +FjXjY j +FjXjNjE jX j

=−(Θ −∑
i�= j

FiYi)LjF jX j− (∑
i�= j

FiD
−1
i )LjF jX j +FjXjY j +FjXjNjE jX j

=−(Θ −∑
i�= j

FiYi)LjF jX j− (∑
i�= j

FiD
−1
i )LjF jX j +FjXjY j +Fj(I−YjD j)E jX j

=−(Θ −∑
i�= j

FiYi)LjF jX j− (∑
i�= j

FiD
−1
i )LjF jX j +FjXjY j +FjE jX j

−FjYj(I−L jF j)X j

=−(Θ −∑
i�= j

FiYi)LjF jX j− (∑
i�= j

FiD
−1
i )LjF jX j +FjE jX j +FjYjL jF jX j

=−(Θ −
N

∑
i=1

FiYi)LjF jX j− (∑
i�= j

FiD
−1
i )L jF jX j +FjE jX j

=−(I−
N

∑
i=1

FiLi)D
−1L jF jX j− (∑

i�= j

FiD
−1
i )LjF jX j +FjE jX j

=−(I−
N

∑
i=1

FiLi)D
−1L jF jX j− (

N

∑
i=1

FiD
−1
i )L jF jX j +FjD

−1
j X j

=−D−1L jF jX j +
N

∑
i=1

Fi(LiD
−1−D−1

i )L jF jX j +FjD
−1
j X j

=−D
−1
j F jX j +FjD

−1
j X j = 0.

2. The direct sum representation (10.40) indicates that one can embed the spaces
XDi in XD to get a global steering controller. To this end, assume that ui(z) ∈
XDi is the minimal control that steers (Ai,Bi) to the state ξi at time zero. By
Theorem 4.47, ui(z) = πDiXiξi. In view of the direct sum (10.40), the naive
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embedding ui �→ Liui is not the right one. A correction proceeds by using the
map U −1

i , defined in (10.41), to construct the embeddingE : XD1⊕·· ·⊕XDN −→
XD by

u(z) = E col(u1(z), . . . ,uN(z)) =
N

∑
j=1

L jπDj
F ju j.

Here Fi(z) arises from the doubly coprime factorization (10.33). Clearly,

u(z) =
N

∑
j=1

LjπDj
F ju j =

N

∑
j=1

L jπDj
F jπDiXiξi

=
N

∑
j=1

LjπDj
F jXiξi.

We prove next that Riu = ξi for all i. To show this, we compute

Riu = πzI−Ai Bi

N

∑
j=1

L jπD j F jX jξ j =
N

∑
j=1

(zI−Ai)π−(zI−Ai)
−1BiL jπD j

F jX jξ j

=
N

∑
j=1

(zI−Ai)π−(zI−Ai)
−1BiL jD jπ−D

−1
j F jX jξ j

=
N

∑
j=1

(zI−Ai)π−NiD
−1
i Dπ−D

−1
j F jX jξ j

=
N

∑
j=1

(zI−Ai)π−NiLiπ−D
−1
j F jX jξ j

=
N

∑
j=1

(zI−Ai)π−NiLiD
−1
j F jX jξ j = (zI−Ai)π−NiLiD

−1
i FiXiξi

= (zI−Ai)π−NiD
−1
i LiFiXiξi = (zI−Ai)π−NiD

−1
i (I−DiEi)Xiξi

= (zI−Ai)π−NiD
−1
i X iξi = (zI−Ai)π−(zI−Ai)

−1BiXiξi

= πzI−Ai BiπDi Xiξi =RiR
−1
i ξi = ξi.

In this computation we used the representations of the projections πzI−Ai and
πDj

, the factorizations D(z) =Di(z)Li(z) = Li(z)Di(z), the coprime factorizations

(zI−Ai)
−1Bi = Ni(z)Di(z)−1, the Bezout equation Li(z)Fi(z)+Di(z)Ei(z) = I,

and the fact that, for i �= j, Li(z)D j(z)−1 is a polynomial matrix. This completes
the proof of (10.48). �
We add a few remarks on the duality information encoded in the doubly coprime

factorization (10.46). The factorizations D(z) = Li(z)Di(z) = Di(z)Li(z) lead to two
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direct sum decompositions, namely, XD = L1XD1
⊕·· ·⊕LNXDN

and XD� = L�1 XD�1
⊕·· · ⊕ L�N XD�N

. These two direct sum decompositions are dual in the sense of the
duality pairing

< f ,g >= [D−1 f ,g], f (z) ∈ XD, g(z) ∈ XD�

and therefore imply X∗D = XD� . Also, the orthogonality relations L�i XD�i
⊥ L jXDj

are satisfied for i �= j. To see this, one computes, with fi(z) ∈ XD�i
and g j(z) ∈ XDj

,

〈L�i fi,Ljg j〉 = [(D−1)�L�i fi,Ljg j] = [ fi,LiD−1L jg j] = [ fi,D−1
i L jg j] = 0.

This computation depends on the fact that, because of (10.30), for i �= j,
Di(z)−1L j(z) is polynomial. The doubly coprime factorization (10.46) yields
basis matrices that correspond to the foregoing direct sums. Thus Ξ(z) =(
Ξ 1(z) . . . ΞN(z)

)
is a basis matrix for XD, whereas H�(z)=

(
H�

1 (z) . . . H�
N (z)

)

is a basis matrix for XD� .
The previous theorem focused on constructing a minimal global steering con-

troller from the minimal local controllers. However, the same methodology can be
applied if one drops the minimality constraints.

Proposition 10.22. The same notation and assumptions apply here as for Theo-
rem 10.18. Assume further that ui(z) ∈ F[z]m are controllers that steer the nodes to
prescribed states at time zero, i.e., Riui = πzI−AiBiui = ξi, i = 1, . . . ,N. Then the
input polynomial

u =
N

∑
j=1

L jF ju j

is a global steering controller for the parallel connection.

Proof. The proof is by a computation analogous to the proof of Theorem 10.20.
With (A,B) defined by (10.28), one obtains π(zI−A)Bu =

π(zI−A)B
N

∑
j=1

LjF ju j =

⎛

⎜
⎝

(zI−A1)π−(zI−A1)
−1B1 ∑N

j=1 L j(z)F j(z)u j(z)
...

(zI−AN)π−(zI−AN)
−1BN ∑N

j=1 L j(z)F j(z)u j(z)

⎞

⎟
⎠ .

Now, using the fact that, for i �= j, Di(z)−1L j(z) is polynomial, one can check that

π(zI−Ai)Bi

N

∑
j=1

L jF ju j =
N

∑
j=1

(zI−Ai)π−(zI−Ai)
−1BiL jF ju j

=
N

∑
j=1

(zI−Ai)π−NiD
−1
i L jF ju j = (zI−Ai)π−NiLiD

−1
i Fiui
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= (zI−Ai)π−NiLiFiD
−1
i ui = (zI−Ai)π−Ni(I−EiDi)D

−1
i ui

= (zI−Ai)π−NiD
−1
i ui = (zI−Ai)π−(zI−Ai)

−1Biui = ξi.

�
Next, the problem of recursive computation of (minimal) steering controllers is

addressed. To this end, we introduce some notation. Assume all pairs (A j,B j) are
reachable, and so, for all i, is the parallel connection of the first i nodes. Let

(zI−Ai)
−1Bi = Ni(z)Di(z)

−1

be coprime factorizations. Let

i

∑
j=1

(zI−A j)
−1B j =

i

∑
j=1

Nj(z)D j(z)
−1 = Ni(z)Di(z)

−1,

with Ni(z),Di(z) right coprime. Since Di(z) = l.c.r.m.{D1, . . . ,Di}, it follows that
Di+1 = l.c.r.m.{Di,Di+1}. Because of our assumption of the reachability of the
parallel connection, the polynomial matrices Di(z),Di+1(z) are left coprime. This
implies the existence of right coprime polynomial matrices Li(z),Li+1(z) that satisfy
the factorizations

Di+1(z) = Di(z)Li(z) = Di+1(z)Li+1(z).

Define

Li(z) = Di+1(z), Di(z) = Li+1(z),
Li+1(z) = Di(z), Di+1(z) = Li(z).

Using these, one obtains the factorizations

Di+1(z) = Li(z)Di(z) = Li+1(z)Di+1(z).

This implies the direct sum decomposition

XDi+1
= LiXDi ⊕ Li+1XDi+1

.

10.3 Open-Loop Control and Interpolation

The proof of Theorem 10.20 suggests that interesting connections exist between
open-loop control and interpolation theory for rational functions. We illustrate this
point by examples.

Example 10.23 (Scalar Lagrange interpolation). The proof of the following lemma
is by a straightforward computation.
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Lemma 10.24. Assume f (z) ∈ F[z] and λi ∈ F with f (λi) �= 0. Then z−λi and f (z)
are coprime, and the associated doubly coprime factorization is

(
− 1

f (λi)
f (z)− f (λi)

z−λi

1
f (λi)

− f (z) (z−λi)

)(
z−λi − 1

f (λi)

f (z) − 1
f (λi)

f (z)− f (λi)
z−λi

)

=

(
1 0
0 1

)
.

Assume next that d(z) = ∏N
i=1(z−λ j), with the λi distinct. Let the node pairs be

(Ai,bi) = (λi,1). The parallel connection of the nodes has the representation

A =

⎛

⎜
⎝

λ1
. . .

λn

⎞

⎟
⎠ , b =

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠ .

Let the Lagrange interpolation polynomials li(z), i = 1, . . . ,N, be defined by

li(z) =∏
j �=i

z−λ j

λi−λ j
.

To apply Theorem 3.19, we compute Di(z) = Di(z) = z− λi, Li(z) = Li(z) =
∏ j �=i(z−λ j), D(z) = ∏N

j=1(z−λ j). The doubly coprime factorization (10.33) takes
the form

(
− 1

Li(λi)
Li(z)−Li(λi)

z−λi

1
Li(λi)

−Li(z) (z−λi)

)(
z−λi − 1

Li(λi)

Li(z) − 1
Li(λi)

Li(z)−Li(λi)
z−λi

)

=

(
1 0
0 1

)
,

which implies Ei(z) = Ei(z) = − 1
Li(λi)

Li(z)−Li(λi)
z−λi

and Fi(z) = Fi(z) = − 1
Li(λi)

.
Similarly, the doubly coprime factorization (10.29) takes the form

(
0 1
−1 z−λi

)(
z−λi −1

1 0

)
=

(
I 0
0 I

)
,

which implies Hi(z) = 1, Xi(z) = Xi(z) =−1, and Yi(z) = Y i(z) = 0.
With these identifications, one computes

Ξ i =−LiFiXi =−Li(z)
1

Li(λi)
=−li(z),

Θ ii = Y i−HiEiXi =− 1
Li(λi)

Li(z)−Li(λi)

z−λi
=

1− li(z)
z−λi

,

Θ ij =−HiD
−1
i L jF jX j =− 1

Li(λi)
∏

k �=i, j

(z−λk),

Ξ j =−FjXj =− 1
Lj(λ j)

.
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The embedding in the doubly coprime factorization (10.46) is

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

∏N
k=1(z−λk) −l1(z) . . . −lN(z)

L1(z)
1−l1(z)

z−λ1
. . −l1(z)

z−λN

. . . . .

. . . .

. . .

LN(z)
−ln(z)
z−λ1

. . . 1−lN(z)
z−λN

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0 L1(λ1)
−1 . . . LN(λN)

−1

−1 z−λ1

. .

. .

. .

−1 z−λN

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

= IN+1 .

Note that

u(z) =R−1ξ = πd
(

l1(z) . . . lN(z)
)
ξ =

N

∑
i=1

ξili(z)

is the required minimal-degree control sequence. So the minimal-degree control
sequence is equivalent to the solution to the Lagrange interpolation problem of
finding the minimal-degree polynomial u(z) ∈ F[z] satisfying the interpolation
constraints u(λi) = ξi, i = 1, . . . ,N.

Example 10.25 (Scalar Newton interpolation). Again, assume that d(z) =

∏n−1
j=0(z−λ j), with λi distinct. Define, for i = 1, . . . ,n,

di(z) =
i−1

∏
j=0

(z−λ j), pi(z) =
n−1

∏
j=i+1

(z−λ j).

We refer to d0, . . . ,dn−1 and to p0, . . . , pn−1 as the Newton interpolation polyno-
mials and dual Newton interpolation polynomials, respectively. Relative to the
duality pairing

< f ,g >= [d−1 f ,g], f (z),g(z) ∈ Xd ,

one has X∗d = Xd . The Newton interpolation polynomials form a basis for Xd and
the dual Newton interpolation polynomials form the dual basis, i.e., < di, p j >= δij.
Consider the input pair (A,b):

A =

⎛

⎜⎜
⎜
⎝

λ0

1 λ1
. . .

. . .

1 λn−1

⎞

⎟⎟
⎟
⎠

, b =

⎛

⎜⎜
⎜
⎝

1
0
...
0

⎞

⎟⎟
⎟
⎠
.

It is easily verified that (A,b) arises from the series connection of the node systems(
λi 1
1 0

)
, i = 0, . . . ,n−1. Also, (A,b) is simply the matrix representation of (Sd ,πd)
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in the Newton interpolation basis. In this case, the embedding of the intertwining
relation in a doubly coprime factorization is

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

∏n−1
j=0(z−λ j) −1 −(z−λ0) . . −∏n−2

j=0(z−λ j)

∏n−1
j=1(z−λ j) 0 −1 . . −∏n−2

j=1(z−λ j)

. . . . .

. . . . .

. . . −1

∏n−1
j=n(z−λ j) 0 . . . 0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0 0 . . . 1
−1 z−λ0

0 −1 .

. .

. .

0 −1 z−λn−1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

1 0 . . . 0
0 1
. .

. .

. .

0 1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.

Note that R−1ξ = πd
(

d0(z) . . . dn−1(z)
)
ξ = ∑n−1

i=0 ξidi(z) is the required
minimal-degree control sequence. Thus the minimal-degree control sequence is
equivalent to the solution to the Newton interpolation problem of finding the
minimal-degree polynomial u(z) ∈ F[z] with interpolation constraints u(λi) =
ξi, i = 0, . . . ,n− 1. We note that solving the scalar Newton interpolation problem
is equivalent to expanding u(z) with respect to the direct sum decomposition
Xd =

⊕n−1
i=0 diXz−λi+1

using the preceding interpolation constraints. In this form,
the method can be extended to the multivariable, high-degree case.

Next, we proceed to explore the connection between the reachability of the
parallel connection of N reachable nodes of McMillan degree one and tangential
Lagrange interpolation. For a comprehensive treatment of tangential interpolation
theory, in the spirit of this book, see Fuhrmann (2010).

Definition 10.26. Let λi ∈ F, ξi ∈ F
m×1, ηi ∈ F

p×1 be such that the vectors

{ ξi

z−λi
|i = 1, . . . ,N} are linearly independent. The right tangential Lagrange

interpolation problem asks one to find find a polynomial matrix Λ(z) ∈ F[z]p×m

satisfying

Λ(λi)ξi = ηi, i = 1, . . . ,N.

It is worth pointing out that, contrary to the scalar case, the interpolation points
λi need not be distinct. In fact, one can impose up to m linearly independent
interpolation constraints at each interpolation point. Our subsequent treatment is
based on Theorem 10.18, and we will use the same notation. Thus, assume the
nodes are (Ai,Bi) with coprime factorizations (zI − Ai)

−1Bi = Ni(z)Di(z)−1. We
restrict ourselves to the special case where all spaces XDi are one-dimensional, i.e.,
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dimXDi = degdetDi = 1. Using the isomorphism XDi � XDi and the shift invariance

of XDi , a nonzero hi(z) ∈ XDi is necessarily of the form hi(z) =
ζi

z−λi
, with ζi ∈ F

m

and Di(λi)ζi = 0. Define the polynomial matrix D(z) by (10.30). The assumption
that the Di(z) are mutually left coprime translates to the linear independence of the

ζi
z−λi

. The assumption that dimXDi = 1 means that Ai is scalar and necessarily Ai = λi

for some λi ∈ F. Let now (zI−A)−1ξ = ∑N
i=1 ξi(zI−A)−1ei denote an element of

XD. Then

R̂−1(zI−A)−1ξ =−Ξ(σ)
N

∑
i=1

ξi(zI−A)−1ei =−π−Ξ
N

∑
i=1

ξi
ei

z−λi

=−
N

∑
i=1

ξi
Ξ(λi)ei

z−λi
=−

N

∑
i=1

ξi
Ξi(λi)

z−λi

=−
N

∑
i=1

ξiFi(λi)Xi.

As in Theorem 10.18, one has the direct sum representations XD = ⊕N
i=1LiXDi and,

with Di(z) := diag(1, ..,z−λi,1, ..,1), XzI−A =⊕N
i=1XDi

.
We can now analyze the open-loop control task for the parallel connection of N
reachable nodes in terms of tangential interpolation. For simplicity, we restrict
ourselves to the case of McMillan degree 1 nodes.

Theorem 10.27. Let the pair (A,B), defined by (10.28), be reachable, and assume
(λi,Bi) = (Ai,Bi) ∈ F

1×1×F
1×m, i = 1, . . . ,N. Assume that Ni(z)Di(z)−1 is a right

coprime factorization of (zI−λi)
−1Bi. Also, let {e1, . . . ,eN} be the standard basis

in XzI−A = F
N.

1. For each i

H(λi)Fi(λi)Xi = ei. (10.51)

2. There exists a unique basis B in XD that is the image under R−1, the inverse
of the reduced reachability map, of the standard basis in F

n. This basis is
{L1(z) f1(z), . . . ,LN(z) fN (z)}, where the fi(z) are defined by

fi(z) = Di(z)
Fi(λi)Xi

z−λi
.

3. The reduced reachability map R maps the basis {L1(z) f1(z), . . . ,LN(z) fN(z)}
onto the standard basis of XzI−A.

4. Let R be defined by (4.55). Define the map R̂ : XD −→ XzI−A via the commuta-
tivity of the following diagram:
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XD X −A

XD X −A

D( () − A)−1

�

�

�

�

Then R̂ is

R̂ = H(σ), (10.52)

and its inverse is

R̂−1 = Ξ(σ). (10.53)

5. Let R : XD −→XzI−A be defined by (4.55), and let R̂−1 : XzI−A −→ XD be defined
through the commutativity of the following diagram:

X −A XD

X −A XD

− DA ( )−1

−1

−1
�

�

�

�

Then

R̂−1
i

ei

z−λi
=

Fi(λi)Xi

z−λi
.

6. The polynomial matrix Ξ(z) satisfies the following right tangential interpolation
conditions:

Ξ(λi)ei = Ξi(λi) = Fi(λi)Xi, i = 1, . . . ,N. (10.54)

7. The minimal-degree control sequence that steers the system from the zero state
to the state ξ = ∑N

i=1 ξiei coincides with the coefficients of the polynomial vector
u(z) ∈ XD

u(z) = (R−1ξ )(z) =−
N

∑
i=1

ξiLi(z)

(
Di(z)

Fi(λi)Xi

z−λi

)
,
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i.e., of the polynomial vector u(z) ∈ XD that satisfies the interpolation conditions

πDj Li(z)

(
Di(z)

Fi(λi)Xi

z−λi

)
=

{
0 j �= i,

Di(z)
Li(λi)Fi(λi)Xi

z−λi
j = i.

Proof. 1. From the doubly coprime factorization (10.46) follows the Bezout iden-
tity H(z)Ξ(z) +Θ(z)(zI −A) = I, which in turn implies H(z)Ξi(z) +Θ(z)(z−
λi)ei = ei. Using (10.47) and evaluating it at z = λi implies (10.51).

2. Let {e1, . . . ,eN} be the standard basis in XzI−A = F
N . The map R−1, the inverse

of the reduced reachability map, is given by (4.60). For ξ = ∑N
i=1 ξiei ∈ XzI−A,

one computes, using the identity Ξ(z)(zI−A) = D(z)Ξ(z) [obtained from (4.58)
and (10.31)],

R−1ξ = πDΞξ = πDΞ
N

∑
i=1

ξiei =
N

∑
i=1

ξiπDΞei

=
N

∑
i=1

ξiDπ−D−1Ξei =
N

∑
i=1

ξiDπ−Ξ(zI−A)−1ei =
N

∑
i=1

ξiDπ−
Ξei

z−λi

=
N

∑
i=1

ξiDπ−
Ξi

z−λi
=

N

∑
i=1

ξiD
Ξi(λi)

z−λi
=

N

∑
i=1

ξiLi

(
Di

Fi(λi)Xi

z−λi

)
=

N

∑
i=1

ξiLi fi.

One can apply identity (10.43), which in our case takes the form (Fi(z)Xi(z))
(zI−λi) = Di(z)(Fi(z)Xi), to obtain

Di(λi)Fi(λi)Xi = 0. (10.55)

This implies fi(z) ∈ XDi , and hence is a basis for it. That {L1(z) f1(z), . . . ,LN(z)
fN(z)} is a basis for XD follows from the direct sum decomposition (10.40).

3. This is clear, since Li fi =R−1ei. A direct proof is also possible using the identity
(10.51) and the computation

R(Li fi) = πzI−ABLi fi = (zI−A)π−(zI−A)−1BLi fi

= (zI−A)π−HD−1Li fi = (zI−A)π−HD−1LiDi
Fi(λi)Xi

z−λi

= (zI−A)π−H
Fi(λi)Xi

z−λi
= (zI−A)

H(λi)Fi(λi)Xi

z−λi

= H(λi)Fi(λi)Xi = ei.

4. Since R is an F[z]-homomorphism, so is R̂. From the intertwining relation (4.57)
one obtains, for h(z) ∈ XD,
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R̂h = (zI−A)−1πzI−ABDh = (zI−A)−1(zI−A)π−(zI−A)−1BDh = π−Hh

= H(σ)h.

Thus (10.52) follows.
5. From the intertwining relation (4.61) one obtains, for h(z) ∈ XzI−A,

R̂−1h = D−1πDΞ(zI−A)h = D−1Dπ−D−1Ξ(zI−A)h = π−Ξh = Ξ(σ)h.

6. We use representation (10.53) to compute

R̂−1 ei

z−λi
= Ξ(σ)

ei

z−λi
= π−

Ξi

z−λi
=

Ξi(λi)

z−λi
=

Fi(λi)Xi

z−λi
,

which proves (10.54).
7. Recall from Theorem 3.19 that Li(z) = l.c.r.m.{D j(z)| j �= i}. Noting that, for

j �= i, both D j(z)−1Li(z) and Di(z)
Fi(λi)Xi

z−λi
are polynomial, one obtains

πDj Li(z)

(
Di(z)

Fi(λi)Xi

z−λi

)
= D jπ−(D−1

j Li)

(
Di

Fi(λi)Xi

z−λi

)
= 0.

On the other hand, for j = i,

πDi Li(z)

(
Di(z)

Fi(λi)Xi

z−λi

)
= Diπ−D−1

i LiDi
Fi(λi)Xi

z−λi
= Di(z)π−

LiFi(λi)Xi

z−λi

= Di(z)

(
Li(λi)Fi(λi)Xi

z−λi

)
.

Note that Di(z)
(

Li(λi)Fi(λi)Xi
z−λi

)
∈ XDi . This follows from (10.55) since

Di(λi)Li(λi)Fi(λi)Xi = Li(λi)Di(λi)Fi(λi)Xi = 0.

�

10.4 Exercises

1. Show that W (z) =

(
( z+1

z )2 − z+1
z2

0 z+1
z

)

admits a minimal factorization

W (z) =W1(z)W2(z), with δ (W1) = 2 and δ (W2) = 1.

2. Show that W (z) =

(
z 0
1 z

)−1(
z− 1 0

1 z− 1

)
admits no nontrivial, minimal fac-

torization W (z) =W1(z)W2(z).
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3. Let (A,b) ∈ R
n×n×R

n be reachable, q(z) = det(zI−A).

a. Prove that there exists a unique row vector c∈R
1×n with cb= · · ·= cAn−2b=

0 and cAn−1b = 1. Moreover, the observability matrix O(c,A) is invertible.
b. Prove that for every trajectory (x(·),u(·)) ∈ C1([0,T ],Rn)×C([0,T ]) of ẋ =

Ax+ bu there exists a unique Cn-function y ∈Cn([0,T ]) with

O(c,A)x =

⎛

⎜
⎝

y
...

y(n−1)

⎞

⎟
⎠ , u = q(

d
dt
)y. (10.56)

Conversely, for y ∈Cn([0,T ]), each pair of functions (x,u) satisfying (10.56)
solves ẋ = Ax+ bu.

4. Characterize when the circulant system x(t + 1) =A x(t)+βu(t), with

A =

⎛

⎜
⎜⎜
⎜
⎝

a0 a1 · · · aN−1

aN−1
. . .

. . .
...

...
. . .

. . . a1

a1 · · · aN−1 a0

⎞

⎟
⎟⎟
⎟
⎠

,β =

⎛

⎜⎜
⎜
⎝

β1

β2
...

βN

⎞

⎟⎟
⎟
⎠
∈R

N ,

is reachable. For N = 3, a0 = 2,a1 = 0,a2 = 1 and β1 = β2 = 1,β3 =−1 construct
a control that steers (0,0,0)� to (1,−1,1)�.

5. Let ωk > 0, with ω2
i �= ω2

j for i �= j. Find an open-loop control that steers the
zero state of the parallel connection of harmonic oscillators

z̈k +ω2
k zk = u, k = 1, . . . ,N

to (L,0,L,0, . . . ,L,0) ∈ R
2N in finite time T > 0.

6. Let r ≥ 0,ω > 0.

a. Compute an open-loop control u∗(t) that steers the systems

d
dt

(
z
ż

)
=

(
0 1
−ω2 −r± 1

)(
z
ż

)
± 1√

2
bu∗(t)

from the zero state to the state (1,0)� in finite time T > 0.
b. Compute a control u(t) that steers the coupled system

d
dt

⎛

⎜
⎜
⎝

x1

ẋ1

x2

ẋ2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0 1 0 0
−ω2 −r 0 1

0 0 0 1
0 1 −ω2 −r

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x1

ẋ1

x2

ẋ2

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠u(t)

from the zero state to the state (1,0,1,0)� in finite time T > 0.
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10.5 Notes and References

The case of two systems connected in series was treated in Callier and Nahum
(1975), where reachability and observability characterizations were obtained. In
a short note by Fuhrmann (1975), this was extended to parallel connections. The
extension to more than two interconnected systems is done here for the first
time. It leads in particular to new resultant-type conditions (10.7) and (10.11)
for the mutual coprimeness of matrix polynomials. One can extend the analysis
of open-loop control for parallel connections to the series connection case. This
involves a generalized, tangential Newton interpolation; however, because of the
computational complexity, the details are omitted. We observe that one might also be
able to handle other structures, such as tree structures or series-parallel connections,
in the same way. Clearly, the present results are in no way final from a computational
point of view. There is a potential for deriving minimal-length, open-loop controls
for more general structures. In a similar direction, one would also like to extend
this circle of ideas to the computation of stabilizing, or optimal, feedback controls
for networks using knowledge of stabilizing, or optimal, feedback controls for the
individual node systems.

In this chapter, our focus has been on the analysis of systems arising from
interconnecting simple systems in some structured way. Of significant interest is
also the inverse problem, namely, to realize a desired system transfer function via
standard interconnections of simpler systems. Representing a system whose transfer
function has the coprime factorizations G(z) = D�(z)−1N�(z) = Nr(z)Dr(z)−1 as
a parallel connection is tantamount to finding partial fraction decompositions of
the form G(z) = ∑s

i=1 D�,i(z)−1N�,i(z) = ∑s
i=1 Nr,i(z)Dr,i(z)−1. If one wants minimal

representations, i.e., satisfying δ (D) = ∑s
i=1 δ (D�,i), then this is equivalent, to the

mutual right coprimeness of the D�,i(z). Thus, partial fraction decompositions are
the key to determining whether a transfer arises from a parallel interconnection.
One way to obtain partial fraction decompositions is by applying Theorem 3.15.
Consider a spectral factorization d(z) = detD(z) = d1(z) · · ·ds(z) with the di(z)
pairwise coprime. By Theorem 3.14, this leads to factorizations D(z) = Di(z)Ei(z),
with the Di(z) mutually left coprime and the Ei(z) mutually right coprime. These
imply corresponding partial fraction decompositions. Of course, finer partial frac-
tion decompositions may exist.

The inverse question for the series connection has been partially answered, in the
Hilbert space context, by Sakhnovich (1976). An algebraic version of this result was
derived in Bart, Gohberg and Kaashoek (1979), which is stated as follows.

Theorem 10.28. Let G(z) be a biproper rational matrix function with minimal
realization (A,B,C, I) in the state space X . There exists a minimal rational matrix
factorization

G(z) = G1(z)G2(z) (10.57)

if and only if there exists a direct sum decomposition X =X1⊕X2 for which X1

is A-invariant and X2 is (A−BC)-invariant.
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Here a factorization (10.57) is called a minimal factorization if δ (G) = δ (G1)+
δ (G2). This was extended, using polynomial methods, in Shamir and Fuhrmann
(1985).

Theorem 10.29. Let G(z) be a biproper rational matrix function with coprime
factorization G(z) = T (z)−1D(z). There exists a minimal factorization (10.57) if
and only if there exist factorizations T (z) = T1(z)T2(z) and D(z) = D1(z)D2(z)
such that XT = T1XT2 ⊕D1XD2 . In this case, G1(z) = T2(z)−1D1(z) and G2(z) =
T 1(z)−1D2(z), where E(z) = T1(z)D1(z) = D1(z)T 1(z) is a l.c.r.m. of T1(z) and
D1(z) such that T (z)−1E(z) is biproper.

For proofs of these theorems we refer the reader to the cited sources.
Inverse problems for feedback connections, or more complicated system archi-

tectures, are an open research problem. This indicates that the available results on
inverse problems for networks are meager and hardly scratch the surface of this
important research area. These problems have a close affinity to classical network
synthesis and, after close to a century of research, remain mostly unsolved; see,
however, Kalman (2010). It seems that finding a minimal realization, be it a state
space or polynomial, is not sufficient in practice. One must take into account other
considerations, such as, for example, hierarchy, efficiency, internal communication
delays, and robustness against failures. It is our conviction that this is an important
area for future research. One of the authors recalls a conversation with the late
George Zames (in 1978 in Montreal), in which Zames emphasized the importance
of this line of research. It seems to be an idea whose time has come.



Chapter 11
Synchronization and Consensus

Synchronization is one of the fundamental aspects of self-organization in networks
of systems. More generally, the emergence of macroscopic states is frequently
encountered in dynamical systems when one starts to study coupling effects. Well-
known examples include synchronization of oscillators, the emergence of consensus
states in models that describe the opinion dynamics of social networks or multiagent
systems, or flocking phenomena in biological networks such as swarms of birds or a
school of fish. In all these different network models the dynamics of the individual
states may “cluster” together or “synchronize” toward a common state that exhibits
the system with a unique characteristic identity. The analysis and control of such
synchronized states thus becomes an interesting new task for the design of networks.
The phenomenon of synchrony was apparently noticed first by Huygens, who was,
alongside his scientific activity, also a clock maker. Huygens noticed that two
pendulum clocks hanging on a wall tend to synchronize. With time, a multitude
of synchronization phenomena were observed in different fields, including, for
example, ciliary beating in biology, laser physics, and the firing of neurons as in
Parkinson disease. Although most realistic models are of course nonlinear, it appears
to be of fundamental interest to explore these issues first in the simplified context of
linear systems theory.

The synchronization of interconnected dynamical systems refers to the task of
studying and designing coupling laws that force the state vectors of the node systems
to converge to each other. In a classical model by Vicsek et. al. (1995), a simple
local averaging rule was introduced as a basis for studying the cooperative behavior
of animals. The closely related concept of consensus has emerged through studies
of multiagent systems and social and computer networks. Obviously, the process of
achieving a consensus is a fundamental step that leads to coherent social network
structures. A fundamental model for opinion dynamics is due to Krause (1997)
and exhibits interesting clustering and consensus effects. The Hegselmann–Krause
model is a simplification of the Vicsek model that makes it more attractive for
engineering implementations.
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The coupling structure of a multiagent network is defined by a weighted
graph whose vertices correspond to the agent dynamics, while the weights of
the edges relate to the coupling strengths. Thus the underlying graph structure
plays an important role in investigating synchronization phenomena. In the systems
engineering literature, diffusive coupling models have been popular for studying
synchronization, but more general coupling topologies are of obvious interest,
too. Nondiffusive couplings arise, for instance, in systems biology; an example is
a model of gene-regulatory networks with a cyclic graph structure, as proposed
in Hori, Kim and Hara (2011). In the sequel, we will allow for more general
interconnection structures than diffusive coupling, with the consequence that the
interconnection matrix is no longer a Laplacian matrix. We present a fairly general
approach to problems of synchronization and clustering for networks of identical
linear systems. Since the mathematical problems of consensus are somewhat easier
to describe, we first present an overview of the main models used in this field. We
describe simple autonomous models for mean value consensus and then examine
synchronization, for both first-order and higher-order system dynamics. For the
latter system class, synchronization is often referred to as both partial state and
output synchronization.

11.1 Consensus and Clustering in Opinion Dynamics

Dynamical systems that achieve consensus or clustering may serve as models for
opinion dynamics in social networks. Consensus in a network occurs when the
participants agree upon their opinions, while clustering refers to the formation of
different opinion spectra. We describe simple models for social dynamics using
systems of differential or difference equations that exhibit cooperative dynamics.
Consider a finite number of agents that are allowed to communicate their opinion
on a certain topic. We identify the opinion of the i− th agent with a real variable
xi ∈ R, while communication among the agents is modeled by an interconnection
graph. The topology of the graph is determined by the pattern describing the extent
to which the opinions of each agent are influenced by the opinions of the other
agents. Thus the opinions of N agents in the network are described by the evolution
of a vector x ∈ R

N , while the communication pattern is specified by a real N×N
matrix A(x). The simplest class of models for consensus that have been described in
the literature is of the form

ẋ = A(x)x, (11.1)

where the equilibrium states of (11.1) correspond to the consensus states with
equal components x1 = · · · = xN . The task is to specify realistic interconnection
matrices A(x) such that all solutions of (11.1) converge to a consensus state.
Thus consensus, or synchronization, is essentially a stabilization problem in a
subspace of desired states. Monotone maps x �→ A(x)x are one method of choice
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here. Another phenomenon of interest is clustering, i.e., the effect that only certain
classes of agents become asymptotically equal to each other. Further related topics
of interest are synchronization of higher-order systems, distributed computing,
formation control and Markov chains on a graph.

In this section we analyze a linear model for mean value consensus and then turn
to a brief description of nonlinear models for consensus. In the subsequent sections
we will then completely focus on the synchronization of identical node systems.

1. Linear Models for Consensus. We describe a simple linear model for
consensus that is already useful for a number of applications. Let Γ = (V,E)
denote a weighted digraph without loops on V = {1, . . . ,N} with adjacency matrix
A = (aij). Every vertex i is thought of as representing a dynamic agent xi ∈ R

n

described by a linear system

ẋi = αxi +βvi,

wi = γxi,
(11.2)

with input vi. A dynamical network with protocol v is then a feedback system

ẋi = αxi +βvi,

vi =
N

∑
j=1

aijw j .
(11.3)

Definition 11.1. System (11.3) solves the consensus problem for a function y =
k(x) if there exists an interconnection matrix A and an asymptotically stable
equilibrium point x∗ ∈ R

nN of

ẋ =
(

IN⊗α +(IN⊗β )A(IN⊗ γ)
)

x

such that x∗1 = · · ·= x∗N = k(x(0)). If k is chosen as the mean value k(x) = 1
N ∑N

i=1 xi,
then this is called the solution to the mean value consensus (MVC) problem.

In its simplest possible form, the mean value consensus system for a system of
integrators (where α = 0 and β = γ = In)

ẋi = vi, i = 1, . . . ,N

is of the form

ẋi =
N

∑
j=1

Aij(x j− xi), i = 1, . . . ,N,
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where A ∈R
N×N is the adjacency matrix of a digraph Γ . Let

L = diag(Ae)−A

denote the associated Laplacian matrix and e := (1, . . . ,1)� ∈ R
N . Thus, for

interconnection matrices of the form A = L⊗ In, one obtains the standard MVC
system as

ẋ =−(L⊗ In)x. (11.4)

For the general control system (11.2) and interconnection matrix A = L⊗K one
obtains the dynamic MVC system

ẋ =
(
IN⊗α−L⊗βKγ

)
x.

This model will be studied in more detail in Section 11.2 on synchronization.
We begin with a discussion of (11.4). A directed weighted graph Γ with

adjacency matrix A and Laplacian L is called balanced if

N

∑
j=1

aij =
N

∑
j=1

aji

for all i. This is equivalent to e�L = 0. Note that Le = 0 is always satisfied for
Laplacian matrices. Obviously, an undirected graph is balanced. The following
characterization of systems that achieve mean value consensus is due to Olfati-
Saber, Fax and Murray (2004).

Theorem 11.2. Let Γ be a strongly connected weighted digraph and L the associ-
ated Laplacian. Then Le = 0, and there exists a unique row vector c ∈ R

1×N, with
cL = 0 and ce = 1. Moreover, the following properties are satisfied:

1. Every solution of (11.4) converges to a scalar multiple of e, i.e., for each initial
condition x(0),

lim
t→∞

x(t) = (ec⊗ In)x(0). (11.5)

In particular,

lim
t→∞

e−tL⊗In = ec⊗ In. (11.6)

2. System (11.4) achieves mean value consensus if and only if Γ is balanced, i.e., if
and only if e�L = 0. In that case,

lim
t→∞

e−tL⊗In =
1
N

ee�⊗ In.
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Proof. Since Γ is strongly connected, Theorem 8.36 shows that the Laplacian
matrix L has a simple eigenvalue λ1 = 0, with eigenvector e and N− 1 eigenvalues
λ2, . . . ,λN with positive real part. In particular, the left kernel of L is one-
dimensional. After a similarity transformation S, one can assume that

−SLS−1 =

(
0 L12

0 L22

)
,

with L22 Hurwitz. Using the block-diagonal structure of SLS−1, the matrix exponen-
tial of SLS−1 is readily computed. This shows that

lim
t→∞

e−tSLS−1
=

(
1 −L12L−1

22
0 0

)
,

and the row vector λ� = (1,−L12L−1
22 ) satisfies λ�SLS−1 = 0 and λ�e1 = 1. Thus

c := λ�S satisfies cL = 0 and ce = cS−1e1 = λ�e1 = 1. Since the kernel of L is
one-dimensional, c is uniquely determined.

One concludes that limt→∞ e−tL exists and is of the form limt→∞ e−tL = ec. The
identity

e−tL⊗In = e−tL⊗ In

then implies

lim
t→∞

e−tL⊗In = ec⊗ In.

This proves (11.6), which in turn implies (11.5). The stronger mean value consensus
property is satisfied if and only if

lim
t→∞

e−tL⊗In x(0) =
1
N
(ee�⊗ In)x(0)

for all initial conditions x(0). By (11.6), this is equivalent to ec⊗ In = 1
N ee� ⊗ In,

i.e., to c = 1
N e�. This completes the proof. �

This result is easily extended as follows to graphs with time-varying intercon-
nections. We present here only one such extension. Let L denote a compact set of
real N×N matrices such that every element L ∈ L has nonnegative nondiagonal
entries, satisfies Le = 0, e�L = 0, and is irreducible.

Theorem 11.3. Let L : [0,∞)−→L be piecewise continuous. The solutions x(t) ∈
R

nN of

ẋ(t) =−(L(t)⊗ In)x(t) (11.7)
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satisfy

lim
t→∞

x(t) =
1
N
(ee�⊗ In)x(0),

with error bounds

‖x(t)− 1
N
(ee�⊗ In)x(0)‖2 ≤ e−2tκ‖(InN− 1

N
ee�⊗ In)x(0)‖2 ≤ e−2tκ‖x(0)‖2,

where κ := minL∈L λ2(L+L�)> 0.

Proof. Since L is a compact set of irreducible Laplacians, 0 is a simple eigenvalue
of each matrix L∈L . Moreover, by Theorem 8.36, the assumption e�L = 0 implies
that the symmetric matrix P=L+L� is positive semidefinite with simple eigenvalue
0. Let λ1(P) = 0 ≤ λ2(P)≤ ·· · ≤ λN(P) denote the eigenvalues of P. Thus λk(L+
L�) > 0 for all L ∈L and 2 ≤ k ≤ N. Since L is compact, κ exists and is strictly
positive. Since λ2(L+L�) is the smallest eigenvalue of the restriction of L+L� on
the invariant subspace (e⊗R

n)⊥, we see that

2δ�L⊗ Inδ = δ�
(
(L+L�)⊗ In

)
δ ≥ λ2(L+L�)‖δ‖2 ≥ κ‖δ‖2

for all δ ∈ (e⊗R
n)⊥. Then every solution x(t) of (11.7) satisfies ee�x(t) = ee�x(0)

since (ee�⊗ In)(L⊗ In) = 0. Thus

δ (t) := (Inn− 1
N

ee�⊗ In)x(t) = x(t)− 1
N
(ee�⊗ In)x(0)

is a solution of (11.7). This implies

dδ�δ
dt

= 2δ�
dδ
dt

=−2δ�(L⊗ In)δ ≤−2κ‖δ‖2.

Therefore,

‖δ (t)‖ ≤ e−tκ‖δ (0)‖,

and the result follows. �
Similar results are valid in the discrete-time case when the Laplacian matrix L is

replaced by the normalized Laplacian matrix

F = D−1A.
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Here D = diag(Ae) and A denotes the adjacency matrix of a weighted graph. If A is
nonnegative, then the normalized Laplacian is a stochastic matrix. The following
result gives a simple sufficient condition for consensus, which can be generalized in
several directions (see Section 11.7, “Notes and References”).

Theorem 11.4. Let x(0) ∈ R
n and F be a primitive stochastic matrix. Then there

exists a real number x∗ such that the solution

x(t + 1) = Fx(t)

satisfies

lim
t→∞

x(t) = x∗e.

In particular, this is satisfied for normalized Laplacians of connected graphs Γ with
at least one loop around a vertex.

Proof. The primitivity of F implies (Theorem 8.18) that limt→∞ Ft = ec for some
c ∈ R

1×n. This implies the result. �
2. Distributed Algorithm for Solving Linear Equations. We illustrate the pre-
ceding analysis by showing how consensus algorithms can be used to design
distributed methods for solving linear systems of equations. Distributed computing
is of course a vast topic, and we leave it to the reader to explore further applications
in this field.

Let us start with a classical problem from linear algebra, i.e., the computation
of intersection points of a finite number of affine linear subspaces Li = ai +Vi, i =
1, . . . ,N, of a d-dimensional Hilbert space H. We are interested in computing points
x∗ ∈ E in the intersection L1∩·· ·∩LN . For simplicity, let us assume that the vector
spaces Vi are in general position in the sense that the direct sum decomposition

V⊥1 ⊕·· ·⊕V⊥N =H

is satisfied. This implies both V1∩·· ·∩VN = {0} and ∑N
i=1 dimV⊥i = d. In particular,

whenever L1, . . . ,LN intersect, they intersect at a unique point

L1∩·· ·∩LN = {x∗},

and our goal is to compute the unique intersection point x∗. Of course, there
are several methods available to do this, but our focus is on demonstrating how
consensus algorithms can help in computing x∗. To this end, we introduce the
selfadjoint projection operators Pi : H−→Vi ⊂H onto Vi, with kernel V⊥i . Then the
direct sum P = diag(P1, . . . ,PN) : HN −→ H

N is a selfadjoint projection operator
onto V1⊕·· ·⊕VN ⊂H

N .
We next present graph-theoretic ideas relevant for distributed computing. Fix an

undirected and connected graph Γ whose set of vertices V = {1, . . . ,N} is labeled
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by the N linear subspaces Vi, together with a set of M edges E that define which
vertices can interact with each other during the course of running the algorithm. Let
A denotes the associated 0,1-adjacency matrix of the graph. For technical reasons
we assign to each vertex a single self-loop of the graph, so that the diagonal entries
of the adjacency matrix are all equal to 1. Let di ≥ 2 denote the degree of the ith
vertex, and set D := diag(d1, . . . ,dN). Let B = (bij) ∈ R

N×M denote the oriented
incidence matrix of the graph defined by (8.13). Since Γ is connected, the incidence
matrix B has full row rank N− 1, and therefore the kernel of B has dimension M−
N + 1. The normalized graph Laplacian is the stochastic matrix

L = D−1A= IN−D−1BB�.

We need the following lemma.

Lemma 11.5. Assume that V⊥1 ⊕·· ·⊕V⊥N =H. Then

KerP(B⊗ Id) = Ker(B⊗ Id).

Proof. We first prove

Ker(B�⊗ Id)∩ ImP = {0}. (11.8)

In fact, x ∈ Ker(B� ⊗ Id) implies that x = e⊗ v for a suitable element v ∈ H.
Therefore, x ∈Ker(B�⊗ Id)∩ ImP if and only if x = e⊗v, and there exist elements
ξ1, . . . ,ξN with v = P1ξ1 = · · ·= PNξN . Equivalently,

v ∈
N⋂

j=1

ImPj =
N⋂

j=1

Vj = {0}.

This proves (11.8). By taking orthogonal complements,

Im(B⊗ Id)+KerP =H
N .

Since rk(B⊗ Id) = d rkB = d(N − 1) and dimKerP = ∑N
i=1 dimV⊥i = dimH = d,

one concludes that Im(B⊗ Id)∩KerP = {0}. This implies the result. �
Proposition 11.6. Assume that V⊥1 ⊕ ·· · ⊕V⊥N = H. Then each eigenvalue λ of
P(L ⊗ Id)P is real and satisfies −1 < λ < 1.

Proof. The normalized Laplacian D−1A has nonzero entries on the diagonal. Thus
Theorem 8.42 applies and implies that all eigenvalues of L ⊗ Id are real and are
contained in the interval (−1,1]. Applying a similarity transformation, we see

that the same property is true for the symmetric matrix D−
1
2 AD−

1
2 ⊗ Id . Since P

is a projection operator, the spectrum of P(D−
1
2 AD−

1
2 ⊗ Id)P is contained in the

convex hull of the spectrum of D−
1
2 AD−

1
2 ⊗ Id , i.e., it is contained in (−1,1]. Using
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D
1
2 P(L ⊗ Id)PD−

1
2 = P(D−

1
2 AD−

1
2 ⊗ Id)P, one concludes that P(L ⊗ Id)P has

all its eigenvalues in (−1,1]. It remains to show that 1 is not an eigenvalue of
P(L ⊗ Id)P. In fact, otherwise there exists v ∈ ImP with P(L ⊗ Id)v = v. Since
D−1A = I −D−1L = I −D−1BB�, this is equivalent to P(D−1BB� ⊗ Id)v = 0.
Since P and D⊗ Id commute, this is equivalent to P(BB� ⊗ Id)v = 0. Thus, using
Lemma 11.5, (BB� ⊗ Id)v = 0 or, equivalently, (B� ⊗ Id)v = 0. This shows that
v ∈ Ker(B�⊗ Id)∩ ImP. By (11.8), thus v = 0, and we are done. �

After these preparatory remarks, we are now ready to introduce and study the
distributed algorithm for subspace intersections. The key idea is very simple to
describe. Suppose one has computed for each t ∈ N and i = 1, . . . ,N an element
xi(t) ∈ Li. Then for each ui(t) ∈H the linear control system

xi(t + 1) = xi(t)+Piui(t)

evolves in the affine subspace Li. In fact, the right-hand side describes all elements
of Li. Choose the input vector ui(t) such that the difference

‖xi(t + 1)− 1
di

∑
j∈Ni

x j(t)‖2

is minimized. By a straightforward computation, this leads to the recursion

xi(t + 1) = (Id−Pi)xi(t)+Pi

(
1
di

∑
j∈Ni

x j(t)

)

, xi(0) ∈ Li, (11.9)

which is clearly in distributed form. Using the vector notation x(t) = col(x1(t),
. . . ,xN(t)), this is equivalent to

x(t + 1) = (IdN−P)x(t)+P(L ⊗ Id)x(t), x(0) ∈ L1×·· ·×LN .

Theorem 11.7. Assume that V⊥1 ⊕ ·· · ⊕V⊥N = H. Then the distributed algorithm
(11.9) converges exponentially fast from every initial point x(0) ∈ L1× ·· ·×LN to
e⊗ x∗, where x∗ ∈H denotes the unique intersection point of L1∩·· ·∩LN.

Proof. Let z(t) := x(t)− e⊗ x∗. Then z(t) satisfies the recursion

z(t + 1) = P(L ⊗ Id)z(t).

By Lemma 11.6, the eigenvalues of P(L ⊗ Id) are in the open unit interval (−1,1).
Thus z(t) converges exponentially fast to 0. The result follows. �

Of course, it is trivial to apply the preceding ideas to solving linear equations
Ax = b. Let A ∈ R

n×n, with nonzero row vectors A1, . . . ,An ∈ R
1×n and b =

col(b1, . . . ,bn) ∈ R
n. Defining the affine hyperplanes
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Li = {xi ∈ R
n | Aixi = bi}

with subspaces Vi = KerAi we see that the solutions of Ax = b are just the
intersection points in L1 ∩ ·· · ∩ Ln. Moreover, A is invertible if and only if V⊥1 ⊕
·· ·⊕V⊥n = R

n. The projection operators are

Pi = I− A�i Ai

‖Ai‖2 .

The next consequence of Theorem 11.7 is obvious.

Theorem 11.8. Let A be invertible. Then the distributed algorithm

xi(t + 1) =
A�i bi

‖Ai‖2 +(I− A�i Ai

‖Ai‖2 )

(
1
di

∑
j∈Ni

x j(t)

)

, Aixi(0) = bi,

converges from each solution of Aixi(0) = bi, i = 1, . . . ,n, exponentially fast to
col(A−1b, . . . ,A−1b).

3. Nonlinear Models for Consensus. Of course, the preceding, rather brief, discus-
sion of linear consensus models can be extended in several directions, including to a
study of the effects of dynamic or stochastic interconnections, allowing for nonlinear
models and analyzing robustness issues. Here we focus on nonlinear models. We
begin with a rather straightforward extension of Theorem 11.3 to nonlinear coupling
models of the form

ẋ =−(L(x)⊗ In)x. (11.10)

Of course, discrete-time models can be considered as well. Here x �→ L(x) denotes
a smooth function of Laplacian N×N− matrices

L(x) = D(x)−A(x),

where D(x) = diagA(x)e. To define A(x), we introduce an influence function as a
smooth strictly positive function χ : R −→ [0,∞) that is monotonically decreasing
on [0,∞). The function χ is regarded as a measure of how strongly mutual agents
influence each other. Thus, in applications to opinion dynamics, two agents, xi and
x j, are thought of as influencing each other’s opinions if the value of the influence
function χ(xi−x j) is large, and small otherwise. Possible choices for such influence
functions are, for example,

(a) Constant functions;
(b) The indicator function χr = χ[−r,r] on a compact interval [−r,r];

(c) The potential χ(x) = k(1+ x2)−β for β > 0;
(d) The Gaussian distribution χ(x) = e−x2

.
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Let M = (mij) denote a nonnegative matrix, for example, the weighted adjacency
matrix of a graph. Thus M defines the relevant interconnections that are allowed
between the various agents. Consider the adjacency matrix of a time-varying
neighborhood graph defined as

A(x) = (mijχ(‖xi− x j‖) ∈ R
N×N .

Note that A(x) is symmetric for all x whenever the scaling matrix M is symmetric.

Theorem 11.9. Assume that M is irreducible, symmetric, and nonnegative. For
each initial condition x(0) the unique solution x(t) of (11.10) exists for all t ≥ 0.
Moreover, ‖xi(t)− x j(t)‖ converges to 0 as t → ∞.

Proof. Let Δ = e⊗R
n denote the diagonal in R

nN = R
n⊗·· ·⊗R

n, and let

φ(x) = min
x∈Δ⊥

x�(L(x)⊗ In)x
‖x‖2

denote the Fiedler number, i.e., φ(x) = nλ2(x), where λ2(x) denotes the second
smallest eigenvalue of L(x). Thus

x�(L(x)⊗ In)x =
1
2

N

∑
i, j=1

aij‖xi− x j‖2 ≥ φ(x)‖x‖2.

For each solution of (11.10),

d
dt
‖x‖2 =−2x�(L(x)⊗ In)x≤−φ(x)‖x‖2 ≤ 0.

Thus the norm ‖x(t)‖ decreases monotonically, and therefore x(t) is positively
bounded. This shows the existence of solutions for all t ≥ 0. To proceed with the
analysis, we need a lower bound on the Fiedler number. This is achieved as follows.
Let LM = DM −M denote the associated Laplacian of M. Since M is assumed to
be irreducible, the Fiedler number μ of LM is strictly positive. Moreover, by the
monotonicity of χ ,

χ(‖xi− x j‖2)≥ χ(
N

∑
i, j=1

‖xi− x j‖2) = χ((2N− 1)‖x‖2).

By the symmetry of L, we have that (e�⊗x�)(L⊗ In) = 0. Therefore, the orthogonal
complement Δ⊥ is invariant under the flow of (11.10). Thus, for all 0 �= x ∈ Δ⊥,
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d
dt
‖x‖2 =−

N

∑
i, j=1

aij‖xi− x j‖2 =−
N

∑
i, j=1

mijχ(‖xi− x j‖2)‖xi− x j‖2

≤−χ((2N− 1)‖x‖2)
N

∑
i, j=1

mij‖xi− x j‖2

=−2x�(LM⊗ In) xχ((2N− 1)‖x‖2)

≤−2μχ((2N− 1)‖x‖2)‖x‖2 < 0.

This shows that each solution x(t) of (11.10) satisfies limt→∞ dist(x(t),Δ) = 0. The
result follows. �

The Vicsek model is one of the first nonlinear models for swarm formation
in a multiagent dynamical system. The system studied by Vicsek et. al. (1995)
is described as follows. Consider N agents x1, . . . ,xN ∈ R

2 in Euclidean space,
modeled as simple integrators

ẋi = ui, i = 1, . . .N.

For positive real numbers r > 0, define as follows a time-varying undirected
neighborhood graph Γ (t) = (V,E(t)), with the set of vertices V = {1, . . . ,N}.
The edges are characterized by the property that {i, j} ∈ E(t) if and only if
‖xi(t)− x j(t)‖ ≤ r. Let Ni(t) = { j | ‖xi(t)− x j(t)‖ ≤ r} denote the set of ni(t)
neighbors of agent i at time t. The agents are allowed to move with constant velocity
but varying directions in the plane. The goal is to create a distributed feedback law
that enables agents to synchronize the directions in which they move.

For discrete-time systems, a simple idea about how to achieve this is that each
agent averages over the directions of all other agents within his/her neighborhood
region. Following Jadbabaie, Lin and Morse (2003), this can be formalized in the
following simple mean value consensus model. Fix a desired speed as v > 0 and

θi(t + 1) =
1

ni(t)
∑

j∈Ni(t)

θ j(t)

xi(t + 1) = xi(t)+ ve
√−1θi(t+1).

(11.11)

Here 0 ≤ θi < 2π denotes the polar angle of xi. This can be conveniently rewritten
as follows. Let θ = (θ1, . . . ,θN)

� ∈ [0,2π ]N, and let

χr(t) =

{
1 0≤ t ≤ r,

0 t > r

denote the characteristic function. The graph adjacency matrix of Γ (t) is
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A(t) := (χr(‖xi(t)− x j(t)‖).

Let D(t) = diag(A(t)e), and let

F(t) = D(t)−1A(t)

denote the normalized Laplacian. F(t) is also called a flocking matrix. The discrete-
time Vicsek model is then

θ (t + 1) = F(t)θ (t). (11.12)

Consensus in the Vicsek system occurs, provided for each initial condition θ (0)
there exists a constant θ∗ ∈ [0,2π ] such that the solution of (11.12) satisfies

lim
t→∞

θi(t) = θ∗

for i = 1, . . . ,N. Sufficient conditions for consensus depend on certain connectivity
properties of the time-varying graphs Γ (t), such as, for example, that the flocking
matrix is primitive for all t. Note that the flocking matrix F(t) is a nonnegative
matrix that is congruent to the adjacency matrix A(t). Therefore, F(t) is irreducible
if and only if A(t) is irreducible, or, equivalently, if and only if the graph Γ (t) is
strongly connected. Moreover, F(t)e= e. Therefore, F(t) is a stochastic matrix with
positive entries on the diagonal. Thus, Theorem 8.23 implies that F(t) is primitive
if and only if Γ (t) is strongly connected. Note further that F(t) being a stochastic
matrix for all t implies that the solutions θ (t) of the Vicsek model leave [0,2π ]N
invariant.

Although the results on linear consensus provide explicit sufficient conditions
for a consensus of general time-varying systems (11.12), they cannot be directly
applied to the Vicsek model (11.11). In fact, in the Vicsek model (11.11) the entries
of the flocking matrix F(t) depend on the relative distances ‖xi(t)− x j(t)‖ of the
agents and thus depend in turn on θ (t). This shows that connectivity assumptions on
the time-varying neighborhood graph, such as, for example, the primitivity of F(t),
cannot be assumed a priori. What is needed are assumptions on, for example, the
initial positions x1(0), . . . ,xN(0) of the agents that guarantee that F(t) will remain
primitive for all t. This is difficult to verify for the Vicsek model because of the hard
constraints defined by the characteristic function χr(t).

A simplification of the Vicsek model is due to Krause (1997). While the Vicsek
swarm model is a second-order model that describes the evolution of points in the
plane, the Hegselmann–Krause model Hegselmann and Krause (2002) works in
the real line. Its main motivation is drawn from understanding the dynamics of social
networks, in particular the formation and development of opinions in such networks.
We regard an opinion of an agent as a real variable x. Thus the opinion dynamics in a
network of N agents is described by the evolution of N real variables x1, . . . ,xN ∈R.
In its simplest form, the Hegselmann–Krause model is
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xi(t + 1) =
∑ j:|xi(t)−x j (t)|≤r x j(t)

|{ j : |xi(t)− x j(t)| ≤ r}| , i = 1, . . . ,N. (11.13)

Here agents i and j are thought of as influencing each other if and only if the distance
between their opinions is small, i.e., |xi − x j| ≤ r. This defines a state-dependent
weighted adjacency matrix A(x) = (aij(x)), with

aij(x) =

{
1 if |xi− x j| ≤ r

0 else.

More generally, using the notion of influence functions, one can define the adjacency
matrix of a time-varying neighborhood graph of opinions as

A(x) = (χ(‖xi− x j‖) ∈R
N×N

and the flocking matrix as the normalized Laplacian

F(x) = D(x)−1A(x), D(x) = diag(A(x)e).

Thus the ij-entry of A(x) is small whenever agents xi and x j are not influencing each
other’s opinions. The generalized Hegselmann–Krause model for opinion dynamics
is then

x(t + 1) = F(x(t))x(t), t ≥ 0.

Thus, while the Hegselmann–Krause model (11.13) looks similar to the Vicsek
model (11.11), the dynamics of (11.13) are simpler than that of (11.11). Without
going into details, we mention that there exists an elegant convergence theory for
the Krause model that is based on the theory of monotone operators.

11.2 Synchronization of Linear Networks

Using the theory of interconnected systems developed in Chapter 9, we now proceed
to a general synchronization analysis of networks of linear systems. We consider
networks of N identical interconnected linear systems, where the dynamics of each
node i = 1,2, . . . ,N are described in state-space form as

ẋi(t) = αxi(t)+βvi(t),

wi(t) = γxi(t).
(11.14)
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Here the node system α ∈ R
n×n, β ∈ R

n×m, γ ∈ R
p×n is assumed to be reachable

and observable. To define a network of such identical linear systems, we fix a state
interconnection structure, defined by a matrix A ∈ R

mN×pN , and input/output
interconnection matrices B = (B�1 , . . . ,B

�
N )
� ∈ R

mN×q and C = (C1, . . . ,CN) ∈
R

l×pN , with Bi ∈ R
m×q and Ci ∈ R

l×p, respectively. In the sequel, we will consider
A as an N×N block matrix A = (Aij), with blocks Aij ∈ R

m×p. In particular, A is a
square matrix if and only if p = m. Let u = col(u1, . . . ,uq) ∈R

q denote the external
control input applied to the whole network. The input to node i is then

vi(t) =
N

∑
j=1

Aijwj(t)+Biu(t). (11.15)

Like the external input to the network, the output of the network is a linear combi-
nation of the individual node outputs wi as y(t) =Cw(t), with w = col(w1, . . . ,wN)
and y ∈ R

l . Let x = col(x1, . . . ,xN) ∈ R
nN denote the global state of the network.

A directed weighted state interconnection graph Γ = (V,E) is associated with
the state interconnection structure of the system as follows. The set of vertices V =
{1, . . . ,N} corresponds to node systems (11.14). An edge (i, j) ∈ E from system i
to system j is defined if and only if Aij �= 0. We emphasize that the weights Aij

of the graph are matrices, unless p = m = 1. Similarly, graphs are defined for the
input/output interconnection, respectively. So-called diffusive coupling refers to the
special situation where p = m = 1 and A is the Laplacian matrix of an undirected
weighted graph. Thus aij < 0 if and only if nodes i �= j are connected. Otherwise, for
i �= j we define aij = 0. The diagonal elements of the Laplacian matrix A are defined
by aii = −∑ j �=i aij. Then the interconnection law (11.15), with Bi = 0 and diffusive
coupling, becomes

vi(t) = ∑
j �=i

aij(wj(t)−wi(t)).

In the sequel, unless stated otherwise, we will not make restrictive assumptions on
the structure of A. In particular, we will not assume that A is a Laplacian matrix or
assume that the off-diagonal entries have a specific sign.

Using the interconnection matrices A,B,C and node dynamics α,β ,γ , the
resulting linear network has the form

ẋ(t) =A x(t)+B u(t),

y(t) = C x(t),
(11.16)

where

A = IN⊗α +(IN⊗β )A(IN⊗ γ) ∈ R
nN×nN B = (IN⊗β )B ∈ R

nN×q,

C =C(IN⊗ γ) ∈ R
l×nN .
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Stated in terms of transfer functions, one obtains the node transfer function

G(z) = γ(zIn−α)−1β

and associated left and right coprime factorizations

G(z) = D�(z)
−1N�(z) = Nr(z)Dr(z)

−1 =V (z)T (z)−1U(z).

Note that in this special case of a homogeneous network, our notation differs slightly
from the preceding one. The network transfer function is

NG(z) = C (zInN−A )−1B

and

NG(z) =C
(

IN⊗D�(z)− (IN⊗N�(z))A
)−1

(IN⊗N�(z))B

=C(IN⊗V(z))
(

IN⊗T (z)− (IN⊗U(z))A(IN⊗V (z))
)−1

(IN⊗U(z))B.

In principle, there exist two different approaches to the design of such networks.
The first one, on which we will mainly focus in the sequel, is to consider the
interconnection terms A,B,C as free design parameters. A natural question in this
direction then concerns the design of networks, i.e., how one can change the system
dynamics of the network (11.16) by a suitable choice of the coupling parameters
A,B,C. This is closely related to feedback control problems, such as stabilization or
self-organization. A second approach would consist in assuming the interconnection
structure to be fixed and designing local controllers for the node system to change
the dynamics of the network.

To treat synchronization issues more broadly, we recall some basic terminology
from geometric control theory. Consider an invariant subspace V ⊂X of a linear
operator A : X −→ X . Then there are two induced linear maps, the restriction
operator A|V : V −→ V and the corestriction A|X /V : X /V −→ X /V . The
invariant subspace V is called outer stable if all eigenvalues of the corestriction
A|X /V have negative real part. Consider a linear system with m inputs and p outputs,

ẋ(t) =A x(t)+B u(t),

y(t) = C x(t),

on an n-dimensional state space X � R
n. A linear subspace V ⊂ X is called

controlled invariant, or (A ,B)− invariant, if

AV ⊂ V + Im B.
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Equivalently, V is controlled invariant if and only if there exists a state feedback
matrix F ∈ R

m×n, with

(A +BF)V ⊂ V .

V is called an outer stabilizable controlled invariant subspace if V is an outer sta-
ble invariant subspace for A +BF . Similarly, V is called conditioned invariant,
or (C ,A )− invariant, if

A (V ∩Ker C )⊂ V

or, equivalently, if there exists an output injection transformation J ∈R
n×p, with

(A + JC )V ⊂ V .

If V is outer stable for A + JC , then V is called an outer detectable conditioned
invariant subspace. A linear subspace V is called (A ,B,C ) invariant if it is
simultaneously controlled invariant and conditioned invariant.

The term synchronization is usually linked to a concept of stability requiring
that the state trajectories of the coupled node systems converge asymptotically to
each other. Thus, for the interconnected system (11.16) with input u = 0, we require

lim
t→∞

‖xi(t)− x j(t)‖= 0 (11.17)

for all i, j = 1, . . . ,N. Here ‖ · ‖ denotes the Euclidean norm on R
n. Let e =

(1, . . . ,1)� ∈R
N , and let

Δn = e⊗R
n = {col(ξ , . . . ,ξ ) | ξ ∈ R

n} ⊂ R
nN

be the linear subspace spanned by the column vectors of the matrix e⊗ In. Thus Δn

defines the diagonal in the N-fold direct sum space Rn⊕ . . .⊕R
n. We refer to Δn as

the synchronization subspace. Let

dist(x,Δ) = min
v∈Δ

‖x− v‖

denote the distance of a point x∈R
nN to Δn. Then, for the global state of the network

x(t), the convergence property (11.17) is equivalent to

lim
t→∞

dist(x(t),Δ) = 0.

For our purposes this property is a bit too weak because it does not imply an
invariance of Δ under the flow. We therefore give the following stricter definition.
The spectrum of a matrix M, that is, the set of eigenvalues, is denoted by σ(M). The
set C− = {z ∈ C | Re(z) < 0} denotes the left half-plane in the field of complex
numbers.
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Definition 11.10. The state interconnection matrix A synchronizes (11.16), or
(11.14), is synchronizable by A provided the following conditions are satisfied:

(i) Synchronization Preservation: The subspace Δ = e⊗R
n is invariant under

A = IN⊗α +(IN⊗β )A(IN⊗ γ).
(ii) Outer Stability: For all initial values x(0) ∈ R

nN and input u(t) = 0, the
solutions of (11.16) satisfy

lim
t→∞

‖xi(t)− x j(t)‖= 0 for all i, j = 1, . . . ,N.

Similarly, system (11.14) is called synchronizable by state feedback, or output
injection, provided conditions (i) and (ii) are true for γ = In and A ∈ R

nN×pN or
β = In and A∈R

mN×nN , respectively. In either case, the restriction of IN⊗α+(IN⊗
β )A(IN⊗ γ) on the invariant subspace Δn is called the synchronization dynamics.

Obviously, the attractivity condition (ii) for synchronization is equivalent to the
condition that the corestriction A |

RnN/Δ is Hurwitz. Thus one obtains the following
proposition.

Proposition 11.11. The state interconnection matrix A synchronizes (11.16) if and
only if Δn is an outer stable invariant subspace for A = IN⊗α+(IN⊗β )A(IN⊗γ).

Note that A is, in output feedback form,

A = IN⊗α+(IN⊗β )A(IN⊗ γ) (11.18)

for the decoupled system (IN⊗α, IN⊗β , IN⊗ γ). Moreover, for γ = In, (11.18) is in
state feedback form, while for β = In one obtains output injection transformations.
Thus, in view of Exercise 1, the synchronizability of (11.14) implies that Δ is
both an outer detectable conditioned invariant and outer stabilizable controlled
invariant subspace of the decoupled system (IN ⊗α, IN ⊗β , IN ⊗ γ). However, this
reformulation in terms of geometric control theory does not take into consideration
the underlying graph structure that defines the network. The problem is that no char-
acterization of conditioned invariant subspaces is known such that the associated
output injection transformations have a prescribed pattern of unconstrained entries
and zero entries.

Definition 11.10 imposes no restrictions on the synchronization dynamics. In
particular, it is very well possible and allowable that the synchronization dynamics
are asymptotically stable, which sounds counterintuitive. In many studies of the
synchronization phenomena, therefore, additional assumptions, such as marginal
stability of the synchronization dynamics, are imposed. In the sequel we will not
require such additional assumptions because they are often easily handled in a
second design step.

The outer stability condition can be replaced by the equivalent condition that
there exists a solution trajectory of the form e⊗ ξ (t) ∈ Δ of (11.16) such that
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lim
t→∞

‖xi(t)− ξ (t)‖= 0 for all i = 1, . . . ,N.

The existence of ξ (t) is easily established; see, for example, the proof of Theo-
rem 11.13.

We now aim at characterizing networks that are synchronizable. For simplicity,
we focus on a special class of interconnection matrices that have been treated mainly
in the literature on synchronization and consensus.

Definition 11.12. A state interconnection matrix A is called decomposable if there
exist real matrices L ∈ R

N×N ,K ∈ R
m×p, with

A = L⊗K.

The matrix L then carries the main information about the underlying graph
structure of the network, while K presents a uniform connection structure between
the individual inputs and outputs of the nodes.

Theorem 11.13. Assume that (α,β ,γ) ∈ R
n×n ×R

n×m ×R
p×n satisfies rk β =

m, rk γ = p. Let e = (1, . . . ,1)� ∈R
N. Then (11.16) is synchronized by A = L⊗K if

and only if the following properties are satisfied:

1. Le = λe for some λ ∈ R. Either λ is a simple eigenvalue of L or α +λβKγ is
Hurwitz.

2. α + μβKγ is Hurwitz for all other eigenvalues μ �= λ of L.

Proof. We first prove the sufficiency part. Let SLS−1 = J be in Jordan canonical
form, with eigenvalues λ1, . . . ,λn (counted with multiplicities). Then

(S⊗ I)A (S−1⊗ I) = IN⊗α + J⊗βKγ.

Thus, without loss of generality, one can assume that L is in Jordan canonical form
with a block upper triangular matrix

IN⊗α + J⊗βKγ =

⎛

⎜
⎜
⎜⎜
⎝

α +λ1βKγ ∗ . . . ∗
0 α +λ2βKγ ∗ ...
...

. . . ∗
0 . . . 0 α +λNβKγ

⎞

⎟
⎟
⎟⎟
⎠
.

Without loss of generality, assume that λ = λ1. Clearly, e is an eigenvector of L if
and only LRe =Re. Equivalently, for all v∈R

n, we have that A (e⊗v) = (IN⊗α+
L⊗βKγ)(e⊗ v) = e⊗ (αv+λβKγv)∈ Δ , i.e., A Δ ⊂ Δ . Thus e is an eigenvector
of L if and only if Δ is A -invariant. If α +λβKγ is Hurwitz, then, by condition 2,
all block matrices α + λiβKγ are Hurwitz. Thus A is Hurwitz. Moreover, Δ is
A -invariant. Thus A = L⊗K synchronizes. If λ = λ1 is a simple eigenvalue of L,
then (S−1⊗ I)Δ coincides with the subspace spanned by the first n basis vectors
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for the matrix α +λβKγ . By condition 2, all solutions of the transformed system
(IN⊗α + J⊗βKγ) converge to (S−1⊗ I)Δ . This again proves synchronization.

For the converse direction, note that the A -invariance of Δ implies that e is an
eigenvector of L. Assume that λ is not a simple eigenvalue, and α +λβKγ is not
Hurwitz. For simplicity assume, for example, that L contains a Jordan block of the
form

(
λ 1
0 λ

)
.

The other cases are treated similarly. Then I⊗α + J⊗βKγ is upper triangular and
contains a diagonal block of the form

(
α +λβKγ βKγ

0 α +λβKγ

)
.

But the system

ẋ1 = (α +λβKγ)x1 +βKγx2,

ẋ2 = (α +λβKγ)x2

is not synchronizing, as can be seen by choosing x2 = 0 and x1 in the unstable
eigenspace of α + λβKγ . This proves the first condition. The second condition
follows by similar reasoning as above. �

Theorem 11.13 shows that the synchronization task for an interconnection matrix
L⊗K is equivalent to a robust output feedback stabilization task. Such problems are
in general hard to solve. In the next section, we derive a sufficient condition in the
SISO case. The problem becomes simpler if we restrict ourselves to state feedback
transformations, i.e., for γ = In and A = L⊗K, with K ∈ R

m×n. In that case, it is
possible to solve the synchronization task by a simple constructive procedure based
on algebraic Riccati equations. This is well known if the network is defined by a
weighted Laplacian; see, for instance, Tuna (2009), and is still a viable approach for
more general interconnection structures. The next result is a simple improvement of
standard linear regulator theory.

Lemma 11.14. Let (α,β ) be stabilizable and P = P� > 0,P ∈R
n×n be the unique

symmetric and positive definite solution of the algebraic Riccati equation

α�P+Pα−Pββ�P+ In = 0. (11.19)

Then for all λ ∈ C, with Re(λ )≥ 1
2 , one obtains

σ(α−λββ�P)⊂ C− .
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Proof. Since (α,β ,γ = In) is stabilizable and detectable, there exists a unique
symmetric positive definite solution P of the algebraic Riccati equation (11.19).
Thus, for complex numbers λ , one obtains

P(α−λββ�P)+ (α�− λ̄Pββ�)P

= Pα +α�P− 2Re(λ )Pββ�P

=−In +(1− 2Re(λ ))Pββ�P.

Since by assumption 1− 2Re(λ ) ≤ 0, the matrix on the right-hand side of the
equality is negative definite. The assertion then follows from Theorem 5.44 provided
the pair

(F,G) :=
(
α�− λ̄Pββ�, In +(2Re(λ )− 1)Pββ�P

)

is reachable. But this is obvious, because G = In + (2Re(λ ) − 1)Pββ�P is
invertible. The result follows. �
Theorem 11.15. Assume that (α,β ) is stabilizable and γ := In. Let P = P� be the
unique positive definite symmetric solution of the algebraic Riccati equation

α�P+Pα−Pββ�P+ In = 0.

Let L ∈ R
N×N be a matrix with Le = λe and simple eigenvalue λ . Assume that

all other eigenvalues μ �= λ of L satisfy Re(μ) > 0 [or satisfy Re(μ) < 0 for all
eigenvalues μ �= λ ]. Choose τ ∈R such that for all eigenvalues μ �= λ the inequality
τ Re(μ)≥ 1

2 is fulfilled, and set K := τβ�P ∈R
m×n. Then the state interconnection

matrix A = L⊗K synchronizes the network (11.16).

Proof. Re(τμ)≥ 1
2 , and thus, by Lemma 11.14, we obtain

σ(α− μβK) = σ(α− μτββ�P)⊆ C− .

The result follows from Theorem 11.13. �
The preceding result leads to an explicit sufficient condition for synchronization.

Corollary 11.16. Assume that (α,β ) is stabilizable and γ := In. Let P = P� be the
unique positive definite symmetric solution of the algebraic Riccati equation

α�P+Pα−Pββ�P+ In = 0.

Let L be the graph Laplacian of a weighted strongly connected digraph Γ , and let
λ2 denote the eigenvalue of L with smallest positive real part. Then A = τL⊗β�P
synchronizes (11.16) for
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τ ≥ 1
2Re λ2

> 0.

Proof. By Theorem 8.36, λ1 = 1 is simple and all other eigenvalues λi �= 1 have
positive real part. Thus the result follows from Theorem 11.15. �

Stronger results can be obtained for restricted classes of node transfer functions.
Recall that a square m×m strictly proper rational transfer function G(z) = γ(zIn−
α)−1β is positive real if G has only poles in the closed left half-plane and

G(z)+G(z)�  0 (11.20)

is positive semidefinite for all complex numbers z, with Re z > 0. Let (α,β ,γ)
be reachable and observable. The Positive Real Lemma then asserts that G(z) is
positive real if and only if there exists a positive definite symmetric matrix P such
that

−Pα−α�P 0,

γ = β�P.
(11.21)

Moreover, G(z) is strictly positive real, i.e., (11.20) is valid for all z, with Re z≥ 0,
if and only if (11.21) is satisfied with −Pα −α�P  0 being replaced by −Pα −
α�P� 0.

The following lemma is proven next.

Lemma 11.17. Assume that (α,β ,γ) is reachable and observable, with m = p such
that G(z) = γ(zIn−α)−1β is positive real. Then for all complex numbers λ with
Re λ > 0, the spectrum of α−λβγ satisfies

σ(α−λβγ)⊂ C−.

Proof. By the Positive Real Lemma, a positive definite symmetric matrix P exists,
with

−(α−λβγ)∗P−P(α−λβγ) =−α�P−Pα +λγ�β�P+λPβγ

=−α�P−Pα + 2Reλγ�γ

 2Reλγ�γ.

The pair (α−λβγ,γ) is observable. Thus every complex eigenvector v of α−λβγ
with eigenvalue w satisfies γv �= 0 and

−2Re(w)v∗Pv≥ 2Re λ‖γv‖2 > 0. �

This leads to the following simple sufficient condition for synchronization.
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Theorem 11.18. Let (α,β ,γ) be reachable and observable, with m = p such that
G(z) = γ(zIn−α)−1β is positive real. Let L be the graph Laplacian of a weighted
strongly connected digraph Γ . Then the state interconnection matrix A = L⊗ Im

synchronizes the network (11.16).

Proof. The eigenvalues of L are λ1 = 0,λ2, . . . ,λN , with 0<Re(λ2)≤ . . .≤Re(λN).
Applying Lemma 11.17 one concludes that the eigenvalues of α − λiβγ have
negative real part for i = 2, . . . ,N. Thus the result follows from Theorem 11.13. �

11.3 Synchronization of Homogeneous Networks

In this section, we consider networks of linear systems that are SISO, that is, the
node systems (11.14) are defined by reachable and observable systems α ∈ R

n×n,
β ∈ R

n, and γ ∈ R
1×n. Let g(z) := γ(zIn−α)−1β denote the scalar strictly proper

transfer function of the node system. Let

h(z) =
1

g(z)

be the reciprocal of the transfer function. We allow for arbitrary multivariable
interconnection matrices (A,B,C) ∈ R

N×N ×R
N×m×R

p×N , with interconnection
transfer function N (z) =C(zIN −A)−1B. Thus the network transfer function is

Ng(z) =C(h(z)IN −A)−1B,

i.e., can be represented as the composition

Ng(z) =N (h(z))

of the interconnection transfer functionN (z) with h(z). It is shown in Theorem 9.15
that a homogeneous network (A ,B,C ) is reachable and observable if and only if
(A,B,C) is reachable and observable. In the sequel we will always assume this. We
next prove a simple frequency-domain characterization of the synchronizability of
SISO node systems.

Theorem 11.19. Assume that A satisfies Ae= λe, with λ a simple eigenvalue. Then
A synchronizes the homogeneous network (11.16) if and only if

h(C+)∩σ(A)\ {λ}= /0. (11.22)

Proof. Let g(z) = p(z)
q(z) be a coprime factorization. Suppose A synchronizes (11.16).

Let λ1 := λ ,λ2, . . . ,λN denote the eigenvalues of A. By Theorem 11.13, the
characteristic polynomials
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det(zIn− (α +λiβγ)) = q(z)−λip(z)

are Hurwitz for i = 2, . . . ,N. This shows condition (11.22). Conversely, assume that
(11.22) is satisfied. Then, for all z ∈ C+ and all 2 ≤ i ≤ N, one obtains h(z) �= λi,
i.e., q(z)−λip(z) �= 0. Thus q(z)−λi p(z) is a Hurwitz polynomial for all 2≤ i≤N.
This completes the proof. �

This leads to the following explicit description of synchronizing homogeneous
networks.

Theorem 11.20. N identical SISO minimal systems

ẋi(t) = αxi(t)+βui(t),

yi(t) = γxi(t)
(11.23)

are synchronizable if and only if there exists a scalar proper rational real transfer
function f (z) ∈R(z) of McMillan degree N− 1 with

f−1(∞)∩h(C+) = /0.

Proof. Suppose (11.23) is synchronizable through an interconnection matrix A,
where λ is a simple eigenvalue of A and Ae = λe. Thus A is similar to an upper
triangular matrix

(
λ A12

0 A22

)

such that IN−1⊗α + A22⊗ βγ is Hurwitz. The set of such matrices L22 is open,
and therefore one can assume, without loss of generality, that A22 has N−1 distinct
eigenvalues λ2, . . . ,λN that are distinct from λ . Thus we constructed a self-conjugate
set of complex numbers λ2, . . . ,λr such that q(z)−λi p(z) is Hurwitz for i = 2, . . . ,r.
Choose a real transfer function f (z) of McMillan degree N− 1 that has its poles
exactly at λ2, . . . ,λN . Then f−1(∞)∩ h(C+) = /0. Conversely, assume that f (z) is
a real rational transfer function whose poles are disjoint from h(C+). Choose a
minimal realization f (z) = c(zIN−1−M)−1b, and let λ be a real number disjoint
from the poles of f . Let S ∈ GLN(R) be such that Se1 = e. Then

A = S

(
λ 0
0 M

)
S−1

is an interconnection matrix that synchronizes. �
The proof shows that the existence of synchronizing interconnection matrices is

equivalent to an inverse eigenvalue problem with spectral constraints. For instance,
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to construct an interconnection matrix A with nonnegative entries requires solving
the inverse eigenvalue problem of finding a nonnegative matrix with spectrum in
h(C+).

11.4 Polynomial Model Approach to Synchronization

Synchronization is usually defined and studied in the state-space context. However,
our example of coupled oscillators from the introduction shows that it might be
preferable to perform the study in a functional context and use the concept of state
maps to see the connection with the state-space analysis. In this section we recall the
preceding chapters to aim at a polynomial approach to synchronization. Our starting
point is a polynomial matrix representation of the node system by taking N identical
higher-order systems of differential equations

D�(σ)ξi = N�(σ)vi, i = 1, . . . ,N. (11.24)

Here σ = d
dt denotes the differentiation operator, and N�(z) ∈ R[z]p×m and D�(z) ∈

R[z]p×p are polynomial matrices, with D�(z) nonsingular. We assume that the
associated transfer function

G(z) = D�(z)
−1N�(z)

is strictly proper. More generally, one could incorporate outputs by considering the
general class of Rosenbrock systems

T (σ)ξi =U(σ)vi,

w =V (σ)ξi +W (σ)vi.

We will consider these systems later on. Of course, one can always replace the
differentiation operator σ with the backward shift, thereby studying higher-order
systems of difference equations. We freely use the terminology and results from
Chapter 4.

To simplify our discussion, we will initially assume that the couplings between
these systems are defined by a decomposable state interconnection matrix A = L⊗
K ∈ R

mN×pN , leading to a state feedback transformation

v = (L⊗K)ξ +Bu.

As previously, matrix L incorporates the underlying interconnection structure
defined by the graph of the network. The resulting interconnected system is then
of the form

(
IN⊗D�(σ)−L⊗N�(σ)K

)
ξ =

(
IN⊗N�(σ)

)
Bu. (11.25)
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Defining

T (z) = IN⊗D�(z)−L⊗N�(z)K,

U (z) =
(
IN⊗N�(z)

)
B,

one obtains the associated transfer function of the network (11.25) as

Φ(z) =T (z)−1U (z) =
(

IN⊗D�(z)−L⊗N�(z)K
)−1(

IN⊗N�(z)
)
B.

Note that T (z) is factored as

T (z) = (IN⊗D�(z))(IpN −L⊗G(z)K),

and IpN − L ⊗ G(z)K is biproper. Thus T (z) is nonsingular and Φ(z) =
T (z)−1U(z) = (IpN−L⊗G(z)K)(IN⊗G(z))B) is strictly proper.

To study the effects of couplings, it is crucial to compare the relevant polynomial
model spaces. Let XD�

denotes the polynomial model of the individual node system
(11.24), so that

XIN⊗D�
= XD�

⊕·· ·⊕XD�

denote the state space of the decoupled system. Similarly,

XT = XIN⊗D�−L⊗N�K

denotes the state space of the interconnected system. The connection between these
two spaces is clarified by the following lemma.

Lemma 11.21. 1. Let V (z)∈R[z]r×r,U(z)∈R[z]r×m be polynomial matrices, with
V (z) nonsingular, such that the transfer function V (z)−1U(z) is strictly proper.
Then, for a matrix A ∈ R

m×r, the polynomial model spaces XV and XV−UA are
equal as sets and the map

πV−UA : XV −→ XV−UA,

πV−UA( f ) = (V −UA)π−((V −UA)−1 f )

defines an isomorphism of vector spaces (but in general not of R[z]-modules).
2. In particular, XIN⊗D�

= XT as sets and the map

πT : XIN⊗D�
−→ XT , πT ( f ) =T (z)π−(T (z)−1 f (z))
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is an isomorphism of vector spaces. Moreover, each f ∈ XD�
satisfies

πT (e⊗ f ) = e⊗ f . (11.26)

Proof. By the strict properness of V (z)−1U(z), we see that

(V (z)−U(z)A)−1 = (Ir−V(z)−1U(z)A)−1V (z)−1

is fulfilled, with Ir − V (z)−1U(z)A biproper. Therefore, if f is a vector of
polynomials, then V (z)−1 f (z) is strictly proper if and only if (V (z)−U(z)A)−1 f (z)
is strictly proper. This shows the equality of the polynomial models XV =
XV−UA as sets. The linearity of πV−UA is obvious. Suppose f ∈ XV satisfies
(V − UA)π−((V − UA)−1 f ) = 0. Then g(z) = (V (z) −U(z)A)−1 f (z) = (Ir −
V (z)−1U(z)A)−1V (z)−1 f (z) is a polynomial. Since V (z)−1 f (z) is strictly proper
and Ir − V (z)−1U(z)A is biproper, this implies that the polynomial g(z) =
(V (z)−U(z)A)−1 f (z) is strictly proper. Therefore, f = 0. This shows the injectivity
of πV−UA. For surjectivity, let f be an element of XV−UA = XV . Since πV−UA is
a projection operator, πV−UA( f ) = f . This shows the surjectivity of πV−UA and
completes the proof of the first claim.

The second claim is a simple consequence of the first claim by setting V = IN⊗
D�,U = IN⊗N�,A = L⊗K. Finally, (11.26) follows from a simple calculation

πT (e⊗ f ) =T π−(T −1e⊗ f ) =T π−
(
(IpN−L⊗G(z)K)−1(e⊗D−1

� f )
)

=T ((IpN−L⊗G(z)K)−1e⊗D−1
� f )

= (IN⊗D�)e⊗D−1
� f

= e⊗ f .

Here the third equation is true since D−1
� f is strictly proper and (IpN−L⊗G(z)K)−1

is biproper. �
One can identify XD�

with the diagonal in the direct sum XIN⊗D�
= XD�

⊕ . . .⊕XD�
,

i.e.,

XD�
� {e⊗ f (z) | f ∈ XD�

} ⊂ XIN⊗D�
.

Similarly, using the identity (11.26), we define the diagonal in XT as

Δ := {e⊗ f (z) ∈ XT | f ∈ XD�
}.

Δ is called the synchronization space of the network (11.25). Let SIN⊗D�
and ST

denote the shift operators on the polynomial models XIN⊗D�
and XT , respectively.

By Lemma 11.21, we know that the vector space isomorphism πT is not a module
homomorphism, i.e., πT is not commuting with the shifts. We now show that by
restricting πT to the respective diagonal spaces a module isomorphism is obtained.
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Lemma 11.22. Assume that e is an eigenvector of L with eigenvalue λ .

1. The restriction of πT on the diagonal XD�
of XIN⊗D�

τ : XD�
−→ Δ , τ( f ) = e⊗ f

is an isomorphism of R-vector spaces.
2. Δ is an invariant subspace of the shift, i.e., ST (Δ)⊂ Δ .
3. There is a conjugacy of the shift operators

ST |Δ � SD�−λN�K .

In particular,

det(zI− ST |Δ) = det(D�(z)−λN�(z)).

Proof. That τ defines an isomorphism of vector spaces is an obvious consequence of
Lemma 11.21. Each vector of polynomials g(z) satisfies the identity T (z)e⊗g(z) =
e⊗D�(z)g(z)−Le⊗N�(z)Kg(z) = e⊗ (D�(z)−λN�(z)K)g(z). Thus each vector of
polynomials f satisfies T (z)e⊗ (D�−λN�K)−1 f = e⊗ f , and therefore

T (z)−1(e⊗ f (z)) = e⊗ (D�(z)−λN�(z)K)−1 f (z).

For vector polynomials f , Lemma 11.21 implies that f ∈ XD�
if and only if f ∈

XD�−λN�K . Thus f ∈ XD�
satisfies

ST (e⊗ f ) =T π−(T −1(e⊗ zf )

= (IN⊗D�−L⊗N�K)π−(e⊗ (D�−λN�K)−1zf )

= e⊗D�π−((D�−λN�K)−1zf )− e⊗λN�Kπ−((D�−λN�K)−1zf )

= e⊗πD�−λN�K(zf ) ∈ Δ .

Here the second equation follows from identity (11.4). This shows the invariance
of Δ under the shift ST as well as the conjugacy of ST |Δ , with SD�. This completes
the proof. �

With all these facts at hand, we proceed to define synchronization for a higher-
order system as follows.

Definition 11.23. Let G(z) = D�(z)−1N�(z) be a left coprime factorization of the
strictly proper transfer function G(z), and let T (z) = IN ⊗D�(z)− L⊗N�(z)K.
The network (11.25) of higher-order systems synchronizes with the interconnection
matrix L⊗K if it synchronizes for the shift realization on XT . Equivalently, then
Δ ⊂ XT is an outer stable invariant subspace for the shift operator ST on XT .
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We thus have defined the synchronization of polynomial models (11.25) by the
synchronization of the associated shift realizations. For further clarification, let us
consider the polynomial models and associated shift operators in more detail. Let
(α,β ,γ) denote the shift realization of the node identical transfer function G(z) =
D�(z)−1N�(z). Thus the shift realization of the decoupled transfer function IN ⊗
D�(z)−1N�(z) on the state space XIN⊗D�

is

(IN⊗α) f = SIN⊗D�
f = πIN⊗D�

(zf ),

(IN⊗β )ξ = πIN⊗D�
(IN⊗N�(z)ξ ) = (IN⊗N�(z))ξ ,

(IN⊗ γ) f = ((IN⊗D�)
−1 f )−1.

Similarly, the shift operator of the transfer function T (z)−1U (z) = (IN ⊗D�(z)−
L⊗N�(z)K)−1N�(z)B on the state space XT is

ST f = πT (zf ).

Note that for f ∈ XIN⊗D�
one has (T −1 f )−1 = ((IN ⊗D�)

−1 f )−1. Therefore,

ST f = T π−(zT −1 f )

= zf −T π+(zT
−1 f )

= zf −T (T −1 f )−1

= zf −T ((IN⊗D�)
−1 f )−1.

Similarly, for f ∈ XIN⊗D�
,

SIN⊗D�
f = IN⊗D�π−(z(IN ⊗D�)

−1 f ) = zf − (IN⊗D�)(IN ⊗D−1
� f )−1.

Using T (z) = IN ⊗D�(z)−L⊗N�(z)K, this shows the identity of linear operators
on XIN⊗D�

= XT :

ST f = SIN⊗D�
f +L⊗N�K(D−1

� f )−1.

Using the N-fold direct sum decomposition XIN⊗D�
= XD�

⊕ ·· · ⊕ XD�
, the shift

operator ST has the form

ST = IN⊗α +(IN⊗β )(L⊗K)(IN⊗ γ)

= IN⊗α +L⊗βKγ.

Therefore, Δ is an outer stable invariant subspace for the shift ST if and only if
Δ ⊂ XIN⊗D�

is an outer stable invariant subspace for IN⊗α+L⊗βKγ . This leads us
to the following characterization of synchronization in the polynomial model XT .
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Theorem 11.24. Let G(z) = D�(z)−1N�(z) be a left coprime factorization of the
strictly proper transfer function, and let (α,β ,γ) be a minimal realization of G(z).
Let A= L⊗K be a decomposable state interconnection matrix. Assume that Le= λe
for a simple eigenvalue λ . The following statements are equivalent:

(a) The network (11.16) of higher-order systems synchronizes.
(b) Δ is an outer stable subspace for IN⊗α +L⊗βKγ .
(c) The following two conditions are satisfied:

(c1) ST (Δ)⊂ Δ .
(c2) For all eigenvalues μ �= λ of L,

det (D�(z)− μN�(z)K)

is a Hurwitz polynomial.

Proof. The shift operator ST is isomorphic to A = IN⊗α+L⊗βKγ . Thus ẋ =A x
synchronizes if and only if ST (Δ) ⊂ Δ and the corestriction of ST on XT /Δ has
only eigenvalues with negative real part. Thus (a) and (b) are equivalent. It was
shown in Lemma 11.22 that the restriction operator ST |Δ is conjugate to the shift
operator SD�(z)−λN�(z)K . Therefore, detT (z) = det(zI− ST ) and

det(zI− ST |Δ) = detSD�(z)−λN�(z)K = det(D�(z)−λN�(z)K).

Let λ = λ1, . . . ,λN denote the not necessarily distinct eigenvalues of L. Following
the proof of Theorem 11.13 we see that

detT (z) =
N

∏
i=1

det(D�(z)+λiN�(z)K).

Since det(ST |Δ) = det(D�(z)−λN�(z)K), we conclude from

detT = det(ST |Δ)det(ST |(XT /Δ))

that

N

∏
i=2

det(D�(z)−λiN�(z)K)

equals the characteristic polynomial of the corestriction ST |(XT /Δ). This com-
pletes the proof. �

In the preceding approach, synchronization of a higher-order system (11.24) was
defined via synchronization of the associated shift realization. One wonders if a
direct approach is possible. We consider the synchronization task for Rosenbrock
node systems of the general form
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T (σ)ξi =U(σ)vi,

wi =V (σ)ξi +W(σ)vi, i = 1, . . . ,N.
(11.27)

We assume that T (z) is a nonsingular r× r polynomial matrix and that the transfer
function

G(z) =V (z)T (z)−1U(z)+W(z)

is strictly proper. We use the following simplified notation for the decoupled
system as

T = IN⊗T, U = IN⊗U, V = IN⊗V.

We consider couplings among the partial state components defined by a coupling
matrix A ∈ R

mN×pN . In the sequel, we will restrict ourselves to a special class of
interconnection matrices.

Definition 11.25. An N×N block matrix A=(Aij) with blocks Aij ∈R
m×p is called

admissible provided

< A >:=
N

∑
j=1

A1 j = · · ·=
N

∑
j=1

ANj.

This definition is general enough to cover all preceding cases of interest. Thus every
decomposable matrix A=L⊗K, with L a Laplacian matrix, is admissible, as is every
finite sum A = L1⊗K1 + . . .⊗+Ls⊗Ks, with N×N Laplacian matrices L1, . . . ,Ls.
Thus the interconnected closed-loop system on partial states is

(
T (σ)−U (σ)AV (σ)

)
ξ = 0. (11.28)

Define the partial state synchronization space of (11.27) as

Δps := {(ξ , . . . ,ξ ) | ξ ∈ R
r} ⊂ R

rN .

Similarly, we define the state synchronization space as

Δ := {( f1, . . . , fN) ∈ XT −U AV | f1 = · · ·= fN}.

Here XT −U AV denotes the polynomial model associated with the nonsingular
polynomial matrix T (z)−U (z)AV (z). Note that, in general, the two spaces do not
have the same dimension. For admissible interconnection matrics the polynomial
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matrix T (z)−U (z)AV (z) is nonsingular and maps polynomial vectors of the form
e⊗ f (z) onto polynomial vectors e⊗g(z). More precisely, for f (z) ∈R[z]r, one has

(
T (z)−U (z)AV (z)

)
e⊗ f (z) = e⊗ (T −U < A >V ) f . (11.29)

We proceed by giving two definitions of synchronization, one for the partial states
and the other one in the state space.

Definition 11.26. Let A be an admissible interconnection matrix.

(a) The partial state system (11.28) synchronizes provided all solutions ξ (t) =
(ξ1(t), . . . ,ξN(t)) of (11.28) satisfy

lim
t→∞

‖ξi(t)− ξ j(t)‖= 0. (11.30)

(b) The shift realization of (11.28) synchronizes provided Δ ⊂ XT −U AV is an
outer stable invariant subspace of the shift operator ST −U AV : XT −U AV −→
XT −U AV .

We next prove that these two definitions are actually equivalent and derive a poly-
nomial matrix characterization. Our result is a natural extension of Theorem 11.24.

Theorem 11.27. Partial state synchronization of the Rosenbrock system (11.28) is
equivalent to the synchronization of the associated shift realization. In either case,
synchronization is satisfied if and only if

det(T (z)−U (z)AV (z))
det(T (z)−U(z)< A >V (z))

is a Hurwitz polynomial.

Proof. By assumption on A, the higher-order system (11.28) induces a higher-order
system on the quotient space R

rN/Δps. Thus the asymptotic stability condition
(11.30) is equivalent to the asymptotic stability of the induced system on R

rN/Δps.
In view of (11.29), this in turn is equivalent to the polynomial

det(T (z)−U (z)AV (z))
det(T (z)−U(z)< A >V (z))

being Hurwitz. Similarly, (11.28) synchronizes for the shift realization if and only if
Δ is an outer stable invariant subspace for the shift operator ST −U AV on XT −U AV .
The assumption on A implies that Δ is invariant under the shift. In fact, for f =
( f1, . . . , fN) = e⊗ g ∈ Δ , and writing T̂ :=T −U AV for short,
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ST̂ ( f ) = T̂π−(T̂−1zf )

= T̂π−(e⊗ (T −U < A >V )−1zg)

= e⊗ (T −U < A >V )π−(e⊗ (T −U < A >V )−1zg)

= e⊗ ST−U<A>V ( f ) ∈ Δ .

(11.31)

This proves the invariance of Δ . For a nonsingular polynomial matrix D�(z),
the characteristic polynomial of the shift operator SD�

on XD�
coincides with

detD�(z). By (11.31), the restriction of the shift ST̂ on Δ is conjugate to the shift
operator ST−U<A>V . Therefore, the characteristic polynomial of the ST̂ |Δ is equal to
det(T (z)−U(z)<A>V (z)). Thus the characteristic polynomial of the corestriction
ST̂ on XT̂/Δ is equal to

det(ST̂ )

det(ST̂ |Δ)
=

det(ST̂ )

det(T (z)−U(z)< A >V (z))
.

This completes the proof. �
The following invariance principle states that partial state synchronization holds

irrespective of the choice of coprime factorization for the node models.

Theorem 11.28. Suppose that the Rosenbrock node systems ΣVT−1U+W and
Σ

VT−1U+W
are strictly system equivalent. Let A be an admissible interconnection

matrix. Then partial state synchronization for T (z)−U (z)AV (z) is satisfied if and
only if it is satisfied for T (z)−U (z)AV (z).

Proof. By Corollary 9.6, the two networks obtained from ΣVT−1U+W and Σ
VT−1U+W

by coupling them with the same interconnection matrix A are strictly system
equivalent. In fact, by a careful inspection of the proof of Corollary 9.6, the strict
system equivalences can be seen to preserve the sets of synchronized states Δ and
Δ , respectively. Thus

det(T (z)−U (z)AV (z)) = det(T (z)−U (z)AV (z)).

Moreover, the same is true of the determinants of the corestrictions. The result
follows. �
Output Synchronization The preceding results lead to a simple characterization
of output synchronization. To simplify matters, we will work with discrete-time
state-space systems. We begin with deriving a simple version of the internal model
principle. Consider a linear discrete-time system

x(t + 1) = Ax(t),

y(t) = Cx(t).
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Then the set of possible output sequences (y(t)|t ∈N) is

Y = {(CAtx0) | x0 ∈ R
n}

or, equivalently,

Y = CXzI−A.

We refer to Y as the output behavior of (C,A). If (C,A) is observable, then clearly
this defines an autonomous behavior. In fact, for a left coprime factorization

C(zI−A)−1 = D�(z)
−1N�(z)

and (C,A) observable, Proposition 4.36 implies that

CXzI−A = XD� .

Next we consider a second discrete-time system in first-order form as

x1(t + 1) = A1x1(t),

y1(t) =C1x1(t).

Let Y1 = C1XzI−A1 denote the associated output behavior. We say that the output
behavior Y is a subbehavior of Y1 whenever Y ⊂ Y1 or, equivalently, whenever

CXzI−A ⊂C1XzI−A1 .

We arrive at the following version of the internal model principle, i.e., the
characterization of subbehaviors of an autonomous behavior.

Proposition 11.29. Assume that the pairs (C,A) and (C1,A1) are observable. Then
Y is a subbehavior of Y1 if and only if there exists an invertible transformation
T ∈ GLn1(R) such that

TA1T−1 =

(
A A′′1
0 A′1

)
, C1T−1 =

(
C C′1

)
.

Proof. Using the observability of (C1,A1), one obtains the left coprime
factorizations

C1(zI−A1)
−1 = D�,1(z)

−1N�,1(z).
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Moreover, (C1,A1) is isomorphic to the shift realization of D−1
�,1N�,1, and similarly

for (C,A). Proposition 4.36 implies that Y1 = XD�,1 . Therefore, Y is a subbehavior
of Y1 if and only if the inclusion

XD� ⊂ XD�,1 .

By Theorem 3.35, the subspace XD� is a submodule of XD�,1 , i.e., SD�,1XD� ⊂ XD� .
In particular, from Theorem 4.26 one obtains the equivalence of shift realizations
A1|XD� � SD�,1 |XD� � SD�

� A, and C1|XD� �C. This completes the proof. �
Now we apply these ideas to output synchronization. Consider an observable pair

(γ,α) with left coprime factorization

γ(zI−α)−1 = D�(z)
−1N�(z).

Then the interconnected system with coupling matrix A = L⊗K is

x(t + 1) =A x(t),

y(t) = C x(t),
(11.32)

where A = IN ⊗ α + L⊗ Kγ and C = I ⊗ γ . Note that this system is output
injection equivalent to the direct sum system (IN⊗ γ, IN⊗α), and therefore (C ,A )
is observable. Let Y denote the output behavior of (11.32). From the left coprime
factorization

C (zI−A )−1 =T (z)−1U (z),

with

T (z) = IN⊗D�(z)−L⊗N�(z)K, U (z) = IN⊗N�(z),

we obtain

Y = CXzI−A = XT (z).

Definition 11.30. The synchronized output behavior of (11.32) is defined as the
intersection of the diagonal in z−1

R[[z−1]]pN with Y , i.e.,

Ysync := {(h1(z), . . . ,hN(z)) ∈ XT | h1(z) = · · ·= hN(z)}.

System (11.32) is called output synchronized if the following requirements are
satisfied:

1. There exists an initial state x0 with output y(t) = col(y1(t), . . . ,yN(t)) satisfying
ysync(t) := y1(t) = · · ·= yN(t) for all t ≥ 0.
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2. For all initial conditions,

lim
t→∞

‖y(t)− e⊗ ysync(t)‖= 0.

Arguing as in the proof of Theorem 11.27, it is easily seen that Ysync is a sub-
module of Y . We obtain a very simple characterization of output synchronizability.

Theorem 11.31. Assume Le = λe. System (11.32) is output synchronizable if and
only if

1. The synchronized output behavior is nonempty, i.e., Ysync �= /0. Moreover,

XD�−λN�K � Ysync ⊂ XT .

2. det(D�(z)− μN�(z)K) is a Hurwitz polynomial for all eigenvalues μ �= λ of L.

Proof. Clearly, condition 1 is equivalent to the existence of an element in the
output behavior Y of (11.32), with all components being equal. This proves the
equivalence of condition 1 with Ysync �= /0. For the other points, note that output
synchronization is equivalent to partial state synchronization of the system

T (σ)ξ = 0.

Using KerT (σ) = XT , Theorem 11.27 implies that output synchronization is
equivalent to synchronization of the associated shift realization of XT , i.e., that

det(I⊗D�(z)−L⊗N�(z)K)

det(D�(z)−λN�(z)K)
= ∏

μ∈σ(L)\{λ}
det(D�(z)− μN�(z)K)

is a Hurwitz polynomial. This completes the proof. �
Clustering. Finally, let us briefly discuss the more difficult question of clustering
partial state vectors. While synchronization deals with the issue of driving the states
of all the node systems of a network to each other, clustering is concerned with
the more general task of allowing for different states to which the system can
be driven. For simplicity, we focus on just two clusters; the general case can be
treated similarly at the expense of more involved notation. Thus, for I = {1, . . . ,r}⊂
{1, . . . ,N},J := {r+ 1, . . . ,N}, let

Δps(IJ) = {(ξ1, . . . ,ξN) | ξ1 = · · ·= ξr, ξr+1 = · · ·= ξN}

denote the set of IJ-clustered partial states. Taking the union of all nontrivial
subsets I one obtains the set of 2-clustered partial states as

Δ [2]
ps =

⋃

0<|I|<N

Δps(IJ).
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Similarly, we define the set of I-clustered states as

Δ(IJ) = {( f1, . . . , fN) | f1 = · · ·= fr, fr+1 = · · ·= fN}

in the polynomial model XT −U AV . The same made be said of the subset of 2-
clustered states. The counterpart to the set of admissible interconnection matrices
is defined as follows (for IJ clustering only).

Definition 11.32. A block matrix A = (Aij) with m × p blocks Aij is called
IJ-admissible if there are m× p matrices AII ,AIJ ,AJI ,AJJ , with

r

∑
j=1

A1 j = · · ·=
r

∑
j=1

Arj := AII ,
N

∑
j=r+1

A1 j = · · ·=
N

∑
j=r+1

Arj := AIJ ,

r

∑
j=1

Ar+1, j = · · ·=
r

∑
j=1

ANj := AJI ,
N

∑
j=r+1

Ar+1, j = · · ·=
N

∑
j=r+1

Ar+1, j := AJJ .

Define

< A >IJ=

(
AII AIJ

AJI AJJ

)
.

The definition of IJ clustering then reads as follows.

Definition 11.33. Let A be an IJ-admissable interconnection matrix.

(a) The partial state system (11.28) IJ-clusters provided all solutions ξ (t) =
(ξ1(t), . . . ,ξN(t)) of (11.28) satisfy

lim
t→∞

‖ξi(t)− ξ j(t)‖= 0 for all i, j = 1, . . . ,r,

lim
t→∞

‖ξi(t)− ξ j(t)‖= 0 for all i, j = r+ 1, . . . ,N.

(b) The shift realization of (11.28) IJ-clusters provided Δ(IJ) ⊂ XT −U AV is an
outer stable invariant subspace of the shift operator ST −U AV : XT −U AV −→
XT −U AV .

Following the preceding analysis, one can then easily prove the next result; we omit
the straightforward details.

Theorem 11.34. Let A be IJ-admissible. Partial state IJ-clustering of the Rosen-
brock system (11.28) is equivalent to IJ-clustering of the associated shift realization.
In either case, IJ-clustering occurs if and only if

det(T (z)−U (z)AV (z))
det(T (z)−U(z)< A >IJ V (z))
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is a Hurwitz polynomial. The eigenvalues of the interconnected system on the IJ-
clustered states are the roots of the polynomial

det(T (z)−U(z)< A >IJ V (z)).

In the special case of a decomposable interconnection matrix A = L⊗K, the
result can be stated in a more convenient form as follows.

Theorem 11.35. Let K be arbitrary, and assume there are real numbers
λ11,λ12,λ21,λ22 such that

L =

(
L11 L12,

L21 L22,

)
,

with L11 ∈ R
r×r,L22 ∈ R

(N−r)×(N−r) and LijE = λijE for all ij. Here E denotes the
matrix of appropriate size, with all entries equal to 1. Let

Δcl(z) := det

(
T (z)− rλ11U(z)KV(z) −(N− r)λ12U(z)KV(z)
−rλ21U(z)KV(z) T (z)− (N− r)λ22U(z)KV(z)

)
.

Then IJ-clustering occurs in the Rosenbrock system (11.28) and A = L⊗K if and
only if

det(IN⊗T (z)−L⊗U(z)KV(z))
Δcl(z)

(11.33)

is a Hurwitz polynomial. The eigenvalues of the interconnected system on the
IJ-clustered states are the roots of the polynomial

det

(
T (z)− rλ11U(z)KV(z) −(N− r)λ12U(z)KV(z)
−rλ21U(z)KV(z) T (z)− (N− r)λ22U(z)KV(z)

)
. (11.34)

Example 11.36. We investigate clustering for the case of three symmetrically
coupled oscillators (λ �= 0):

ẍ1 + aẋ1 + bx1 = λ ẋ2,

ẍ2 + aẋ2 + bx2 = λ (ẋ1 + ẋ3),

ẍ3 + aẋ3 + bx3 = λ ẋ2.

Thus T (z) = z2 + az + b,U(z) = 1,V (z) = z. The interconnection matrix is
A = L⊗K = L, with K = 1 and
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L = λ

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠

having the characteristic polynomial z(z2− 2λ 2). Note that e is not an eigenvector
of A = L, and therefore the network does not synchronize independently of the
parameter value. By permuting the second and third columns and rows of L, we
see that L is permutation equivalent to

(
L11 L12

L21 L22

)
= λ

⎛

⎝
0 0 1
0 0 1
1 1 0

⎞

⎠ .

Thus L is admissible for I = {1,3},J = {2}with λ11 = 0,λ12 = λ ,λ21 = λ ,λ22 = 0.
The characteristic polynomial for the coupled system is

det(T (z)I3−LU(z)V (z)) = T (z)(T (z)2− 2λ 2z2),

which is Hurwitz if and only if a >
√

2|λ | and b > 0. Polynomial (11.34) is

T (z)2− 2λ 2z2.

Thus the quotient (11.33) is the polynomial T (z). One concludes that asymptotic
clustering occurs if and only if T (z) is Hurwitz, i.e., a > 0,b > 0.

11.5 Examples: Arrays of Oscillators

Because synchrony is usually connected to periodic phenomena, the basic com-
ponents for modeling are mostly taken to be nonlinear oscillators. However,
simpler linear system models, such as the classical harmonic oscillator, can be
used for the same purpose. Of course, because its failure is structurally stable, the
harmonic oscillator is an unsuitable model for most periodic physical phenomena.
Nevertheless, the analysis of synchronization phenomena for the harmonic oscillator
provides important insights into the general theory of synchronization. Arrays of
coupled damped oscillators are perhaps the simplest models for synchronization of
linear systems. The theory of such networks can be developed quite generally using
tools from spectral graph theory developed in Chapter 8. Here we focus on applying
such an analysis to the case of a finite number of damped harmonic oscillators
that are ordered either linearly or circularly. The exposition is largely based on
Fuhrmann, Priel, Sussmann and Tsoi (1987).
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I. Linear Arrays of Oscillators. We begin by discussing an extension of the
example in the introduction to a linear chain of N coupled identical oscillators. Thus,
consider the dynamic equations

ẍ1 + aẋ1+ bx1 = 0,

ẍ2 + aẋ2+ bx2 = λ ẋ1

...

ẍN + aẋN + bxN = λ ẋN−1.

Here λ �= 0 is assumed to be constant. Each SISO node system is in first-order
form as

α =

(
0 1
−b −a

)
, β =

(
0
1

)
, γ =

(
0 1

)
, (11.35)

or, equivalently, via the strictly proper transfer function

g(z) = γ(zI2−α)−1β =
z

z2 + az+ b
.

Assuming b �= 0, which we will assume from now on, ensures the coprimeness of
the factors z and z2 + az+ b (Figure 11.1). The state interconnection matrix for this
system is decomposable as A = L⊗K = L, with K = 1 and

L = λ

⎛

⎜
⎜
⎜
⎝

0
1 0

. . .
. . .

1 0

⎞

⎟
⎟
⎟
⎠

.

In particular, L is nilpotent and e is not an eigenvector of L. Thus synchronization
for this chain of oscillators does not occur. We rewrite this vectorially as a first-order
system ẋ =A x, where A ∈R

2n×2n has the block lower triangular form

1 2 3 4 5

Fig. 11.1 Directed simple path
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⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

0 1
−b −a
0 0 0 1
0 λ −b −a

. . .
. . .

. . .
. . .

0 0 0 1
0 λ −b −a

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

.

In this case, the spectral analysis becomes particularly simple because, by the lower
triangular structure, one obtains

det(zI−A ) = (z2 + az+ b)N.

Clearly, this is also the minimal polynomial of our system. The system becomes
a bit more interesting if we add inputs u(t) to the system. For example, we might
consider the case where only the first node is controlled, i.e., we consider

ẍ1 + aẋ1+ bx1 = u(t),

ẍ2 + aẋ2+ bx2 = λ ẋ1

...

ẍN + aẋN + bxN = λ ẋN−1.

(11.36)

The network transfer function N (z) from the input to the states then becomes

⎛

⎜⎜
⎜
⎜
⎝

z2 + az+ b

−λ z
. . .
. . .

. . .

−λ z z2 + az+ b

⎞

⎟⎟
⎟
⎟
⎠

−1⎛

⎜⎜
⎜
⎜
⎜
⎝

1
0
...
0
0

⎞

⎟⎟
⎟
⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎜
⎜
⎝

(z2 + az+ b)−1

λ z(z2 + az+ b)−2

...
(λ z)N−2(z2 + az+ b)−N+1

(λ z)N−1(z2 + az+ b)−N

⎞

⎟⎟
⎟
⎟
⎟
⎠

.

Obviously, for λ �= 0, this is a left coprime factorization, and thus (11.36) is
reachable.

Next we move on to symmetrically coupled arrays of oscillators (Figure 11.2).

1 2 3 4 5

Fig. 11.2 Undirected simple path
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Specifically, we consider the system

ẍ1 + aẋ1+ bx1 = λ ẋ2,

ẍ2 + aẋ2+ bx2 = λ (ẋ1 + ẋ2)

...

ẍN−1 + aẋN−1 + bxN−1 = λ (ẋN−1 + ẋN),

ẍN + aẋN + bxN = λ ẋN−1.

(11.37)

We assume that λ > 0. The matrix A has again the tensor product structure A :=
In⊗α +L⊗βγ , but L has the symmetric matrix representation

L = λ

⎛

⎜
⎜
⎜⎜
⎜
⎝

0 1
1 0 1

1
. . .

. . .
. . .

. . . 1
1 0

⎞

⎟
⎟
⎟⎟
⎟
⎠

.

Matrix L has a tridiagonal symmetric Toeplitz structure. By Theorem 8.45, we know
that the eigenvalues of L are distinct and equal to 2cos kπ

N+1 for k = 1, . . . ,N, with
an explicit formula for the eigenvectors, too. Thus the solutions of (11.37) can be
written down in closed form. We will not do that here. Since e is not an eigenvalue
of L, the system does not synchronize.

II. Circular arrays of oscillators. In the circularly oriented case, the interconnec-
tion structure is depicted as in Figure 11.3. Explicitly, we consider the system

Fig. 11.3 Directed cycle
graph

1

2

3

4

5
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ẍ1 + aẋ1+ bx1 = λ ẋN ,

ẍ2 + aẋ2+ bx2 = λ ẋ1

...

ẍN + aẋN + bxN = λ ẋN−1.

(11.38)

Obviously, its state space is 2N-dimensional and the dynamic equations can be
written in first-order block circulant form, ẋ =A x, as follows:

d
dt

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

x1

ẋ1
...
...
...

xN

ẋN

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0
−b −a 0 λ
0 0 0 1
0 λ −b −a

. . .
. . .
. . .

. . .

0 0 0 1
0 λ −b −a

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

x1

ẋ1
...
...
...

xN

ẋN

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

.

Using the special structure of matrix A , its characteristic polynomial turns out to be

dA (z) = (z2 + az+ b)N−λNzN .

It is more convenient to analyze the system using the associated polynomial system
matrices. We note that the coupling under consideration has a preferential direction.
Later, we will also study more symmetric couplings. The interconnection matrix is
A =C, where

C =

⎛

⎜
⎜
⎜
⎜
⎝

0 1

1
. . .
. . .

. . .

1 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Note that C has the structure of a circulant matrix and thus can be diagonalized
by the Fourier matrix. Its eigenvalues are exactly the N − th roots of unity

1,ω , . . . ,ωN−1, where ω = e
2π
√−1
N denotes the primitive root of unity. Note further

that 1 is always an eigenvalue of C with associated eigenvector e. To analyze
the synchronization of (11.38), we consider the closed-loop polynomial system
matrix T (z) := (z2 +az+b)IN−zλC. The characteristic polynomial of A coincides
with the determinant of T (z). The zeros of detT (z) are equal to the roots of
z2 +(a−λωk)z+ b for k = 0, . . . ,N− 1.
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Theorem 11.37. Let a,λ > 0. System (11.38) synchronizes if and only if

a > λ cos
2π
N

, b > 0.

Proof. Using the stability test for complex polynomials via the positivity of the
Hermite–Fujiwara matrix (Theorem 5.52), a complex polynomial p(z) = z2 +uz+v
is Hurwitz if and only if the Hermite–Fujiwara matrix

H2(p) = 2

(
Re(uv̄) −i Imv
i Imv Reu

)

is positive definite, i.e., if and only if

Re(u)> 0, Re(u)Re(uv̄)> Im2(v).

In our situation, u = a−λωk,v = b, with a,b,λ > 0 real. Thus z2 +(a−λωk)z+b
is Hurwitz for k = 1, . . . ,N− 1 if and only if b > 0 and a− λ cos 2kπ

N > 0 for k =
1, . . . ,N− 1. The result follows. �

Note that, under our assumption that a,b,λ > 0, the inequality |a− λωk| ≤
a+λ is valid for all 1 ≤ k ≤ N. Thus, if (a+ λ )2 < 4b, then there is oscillatory
motion, with the different modes having damping terms of the form e−σkt , with

σk =Re a−λωk

2 . Obviously, the mode with the slowest rate of decay is the one where
σk is (algebraically) the largest, and this occurs when ωk = 1, i.e., for k = 0. It is of
interest to identify this mode. Indeed, if we look for eigenvectors of A of the form
(ξ , . . . ,ξ ,η , . . . ,η)�, then A x = λx reduces to the pair of equations

η = λξ ,
−b− aη+λη = λη ,

which leads to the equation

(λ 2 +(a−λ )λ + b)ξ = 0,

whose roots are eigenvalues of A . Thus we see that the slowest rate of decay is in
the synchronized mode.

If we apply symmetric nearest-neighbor coupling, we obtain

ẍk + aẋk + bxk = λ (ẋk−1 + ẋk+1) k = 1, . . . ,N, (11.39)

with the understanding that x0 = xN and xN+1 = x1. The interconnection matrix A is
the symmetric, circulant Toeplitz matrix
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A =−λΓ =−λ

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

0 1 1
1 0 1

1
. . .

. . .
. . .

. . . 1
1 0 1

1 1 0

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

,

which has e as an eigenvector. The associated eigenvalue −2λ is simple. By
Theorem 8.48, the eigenvalues of A are −2λ cos( 2kπ

N ) for k = 1, . . . ,N. The
polynomial system matrix is T (z) = (z2 + az+ b)IN−λ zΓ . System (11.39) can be
written in state-space form as ẋ =A x, where

A = IN⊗α−λΓ ⊗βγ.

Here (α,β ,γ) are as in (11.35). We observe that the eigenvalues of A are equal to
the roots of the determinant detT (z), i.e., to the roots of

z2 +(a− 2λ cos(
2kπ
N

))z+ b = 0.

Note that k = N corresponds to the synchronized mode e. Note further that a−
2λ cos 2kπ

N < a− 2λ for all 1≤ k < N. We arrive at the following theorem.

Theorem 11.38. The symmetrically connected cycle (11.39) synchronizes if and
only if z2 + (a− 2λ cos( 2kπ

N ))z + b is Hurwitz for k = 1, . . . ,N − 1. Equivalently,
synchronization occurs if and only if b > 0 and a > 2λ cos 2π

N . The eigenvalues for
the synchronized dynamics are equal to the roots of z2 +(a− 2λ )z+ b. All other
eigenvalues of the system matrix A have real part < a− 2λ .

11.6 Exercises

1. Prove the following result from Trentelmann, Stoorvogel and Hautus (2001):
A linear subspace V ⊂ X is (A,B,C)-invariant if and only if there exists an
output feedback transformation K such that (A+BKC)V ⊂ V .

2. (a) Show that a homogeneous synchronizing network for the real rational node
transfer function

g(z) =
αz+β

z2 + az+ b
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exists if and only if there is a complex number λ ∈ C satisfying the
inequalities

a|λ |2−α Reλ > 0,
(
a|λ |2−α Reλ

)(
ab|λ |2 +αβ − (aβ + bα)Reλ

)
> β 2(Imλ )2.

(b) Deduce that a homogeneous synchronizing network for

g(z) =
εz+ 1
z2 + 1

exists if and only if ε �= 0.
3. Give necessary and sufficient conditions when the system of four coupled

second-order systems

ẍ1 + aẋ1 + bx1 = λ ẋ2,

ẍ2 + aẋ2 + bx2 = λ (ẋ1 + ẋ3),

ẍ3 + aẋ3 + bx3 = λ (ẋ2 + ẋ4),

ẍ4 + aẋ4 + bx4 = λ ẋ3

clusters at x1,x4 and x2,x3, respectively.

11.7 Notes and References

There exists a huge literature from physics and systems engineering on synchro-
nization, clustering, and consensus; we refer the reader to the survey paper by
Doerfler and Bullo (2014) and the references therein. A new idea was recently
proposed by R.W. Brockett in his 2014 Bernoulli lecture at the International
Symposium on the Mathematical Theory of Networks and Systems (MTNS 2014)
in Groningen, the Netherlands. Brockett asks a fundamental question concerning
the potential mechanisms for synchronization: Given a symmetric matrix Q with
distinct eigenvalues and a second-order system of the form

ẍ+η(x, ẋ)+Qx = f (x, ẋ,z),

ż = g(x, ẋ,z),

what are the simplest, physically plausible choices of f and g that result in
synchronization? He argues that the system

ẍ+η(x, ẋ)+ (Q+Z)x = 0,

Ż =−αZ+ xẋ�− ẋx�
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should be an interesting candidate. See Brockett (2003) and Brockett (2013) for a
study of closely related equations that underpin this belief.

Theorem 11.4 can be extended to normalized Laplacians of time-varying graphs
Γ (t) under weak connectivity assumptions. Let Γi = (V,Ei), i = 1, . . . ,m, denote
finitely many weighted directed graphs on the same vertex set V with associated
adjacency matrices A1, . . . ,Am. The union Γ = Γ1∪·· · ∪Γm is the graph Γ = (V,E)
with edge set E = E1 ∪ ·· · ∪Em. Consensus results for time-varying graphs were
established by Jadbabaie, Lin and Morse (2003) under the assumption that there
exists T ∈ N such that the union of graphs Γ (kT)∪Γ (kT + 1)∪·· ·∪Γ (kT +T)
is connected for all k ∈ N0. Cao, Morse and Anderson (2008) have derived more
generally sufficient conditions for consensus if the time-varying graph of each
flocking matrix F(t) has a root for all t.

There exists by now a rich and rapidly growing literature on distributed control
and distributed optimization. We refer the reader to Tsitsiklis, Bertsekas and Athans
(1986) and the book by Bertsekas and Tsitsiklis (1989) for early contributions and
further references. The distributed algorithm (11.9) for finding intersection points
of affine subspaces has appeared several times in more general contexts; see, for
example, Nedic, Ozdaglar and Parrilo (2010) for intersections of convex sets and for
an explanation of the connection with the classical alternating projection method by
von Neumann. Theorem 11.8 is due to Mou and Morse (2013).

Simple simulation experiments – see, for example, Blondel, Hendrickx and
Tsitsiklis (2009) – show that trajectories in the Hegselmann–Krause model (11.13)
do not converge to a common consensus state; instead, they cluster around certain
limit points. Thus the Hegselmann–Krause model is really more a model for
clustering rather than for consensus. The fine structure of the cluster states is quite
interesting and requires further mathematical analysis. For example, it has been
experimentally observed, and is conjectured to be true in general, that the solutions
of (11.13) actually cluster in distances of |x∗i − x∗j | ≥ 2r. Moreover, the distribution
of the cluster points is not exactly evenly distributed, even for uniform distributions
of the initial conditions. For extensions of the Krause model to continuous-time
models, see Blondel, Hendrickx and Tsitsiklis (2009, 2010).

Consensus problems for second-order systems, including consensus among
velocities, have been treated by, for example, Anderson, Lin and Deghat (2012) and
Ren (2008). Cucker and Smale (2007) proposed a new consensus algorithm for the
velocities of N second-order agents in R

3 using the state-dependent graph adjacency
matrix and Laplacian

A(x) =
(
(1+ ‖xi− x j‖2)−β

)

i, j
and L(x) = diag(A(x)e)−A(x),

respectively. They established asymptotic convergence results for the velocities in
the network of second-order systems

ẍ+(I3N−L(x)⊗ I3)ẋ = 0,
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depending on whether β < 1
2 or β ≥ 1

2 . Extensions to general interconnection graphs
are in Cucker and Smale (2007a).

From a systems engineering point of view, synchronization is a property that is
desirable for the purpose of using feedback strategies. A well-known decentralized
control approach to synchronization assumes a fixed diffusive coupling, together
with N local feedback controllers around the node systems. The synchronization
task then becomes to tune the local feedback controllers so that the network
synchronizes. This design strategy is quite different from the approach taken
here, where one aims to achieve synchronization via appropriate selections of the
coupling terms. Whatever approach one prefers, there is plenty of room for further
improvements. For example, one might replace the local feedback controllers by
adaptive ones. Such an approach has been proposed by Helmke, Prätzel-Wolters
and Schmidt (1991) and Ilchmann (2013), where synchronization is modeled as an
adaptive tracking problem for networks of systems. This leads to synchronization
results that are robust with respect to variations in both the interconnection and
system parameters.

Synchronization problems for homogeneous networks of linear systems using
state feedback transformations have been explored by Scardovi and Sepulchre
(2009) and Tuna (2008), for example. Robust synchronization tasks using state
feedback and output injection are studied in Trentelmann, Takaba and Monshizadeh
(2013). Variants of Theorem 11.13 for diffusive coupling have been shown by
several researchers, including Ma and Zhang (2010) and Lunze (2011). For net-
works with diffusive couplings and using state feedback with γ = In, Ma and Zhang
(2010) have shown that synchronizability is equivalent to (α,β ) being stabilizable
and the graph being connected. Other versions of synchronizability via output
injection were studied by Tuna (2009). Versions of the internal model principle for
synchronization have been considered by Wieland, Sepulchre and Allgöwer (2011)
and Lunze (2012), who proved a special case of Proposition 11.29. Using state-space
methods, Lunze (2012) proved an extension of Theorem 11.31 for heterogenous
networks, however under the strong additional assumption that the system matrices
of the agents are diagonalizable. We believe that the results for higher-order systems
introduced in Section 11.4 lead to a more natural approach to synchronization than
standard state-space methods.



Chapter 12
Control of Ensembles

The purpose of this chapter is to provide an introduction to the emerging field of
ensemble control for linear systems, i.e., the control of families of linear systems.
Ensemble control refers to the task of controlling a large, potentially infinite, number
of states, or systems, using a single-input function or a single-feedback controller.
Thus, controlling ensembles is very much at the core of a robust theory of networks
of systems. The study of ensembles is motivated from quite different applications.

• A classical example from physics concerns the conversion of heat into work by
control of the heat flow and volume. Here the node systems are the gas molecules
whose dynamics are described via the formalism of statistical mechanics. Of
course, the sheer magnitude of the system, consisting roughly of N � 6×
1023 molecules per mole, calls for a thermodynamical or statistical mechanics
approach rather than ab initio calculations.

• Quantum control of weakly coupled identical particles in nuclear magnetic
resonance spectroscopy is another interesting area that has attracted much interest
recently. Here the goal is to control a possibly large system of spins by applying
short pulses of an electromagnetic field. The system is described by a controlled
Liouville–von Neumann master equation evolving on density operators or Lie
groups of unitary matrices. A closely related question concerns the control of
parameterized families of systems using open-loop controls that are independent
of the parameters. Open-loop control has recently acquired popularity in quantum
control through the work of Li and Khaneja (2006), for example.

• The task of controlling probability distributions in the state space for a finite-
dimensional control system leads to the control of Liouville transport equations
or, more generally, of Fokker–Planck equations.

© Springer International Publishing Switzerland 2015
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• Another area of interest is the control of parameter-varying systems using
parameter-independent open-loop or closed-loop controllers. As a specific
instance we mention the so-called blending problem from the late 1970s, which
seeks to find parameter-independent feedback control laws that stabilize a family
of linear systems.

In all these areas the question arises of how to approximately control a family
of systems or of state variables. Thus the key ideas behind studying ensembles of
linear systems are the same as those for studying large-scale systems. For complex
dynamical systems the goals of controlling the entire collection of states is often
asking for too much and needs to be replaced by more realistic goals, such as
controlling, for example, the mean value or covariance of the state variables. This
happens, for example, in the control of open quantum systems where the state
variables are defined by density operators that describe an average of state variables.
It also happens in daily life experience, for example, in cooking a meal in an oven.
Here the interesting task is not so much to control the temperature distribution in
the oven but rather to create an average temperature profile that yields the desired
result. The same issue arises in motion control problems for infinite platoons of
vehicles, as in the work by Rogge and Aeyels (2008), or for spatiotemporal systems
described by partial differential equations (PDEs), on which see Bamieh, Paganini
and Dahleh (2002). Using Fourier-transform techniques, spatially invariant control
systems can be identified with parameter-dependent families of linear systems. This
opens the door to applications of a variety of different approaches to distributed
large-scale systems. Parameter-dependent systems can also be regarded as infinite-
dimensional systems defined on suitable Banach or Hilbert spaces of functions.
This brings about many opportunities for interactions between functional analysis
and parametric systems. We also mention the theory of systems over rings as a
systematic algebraic approach to analyzing parameter-dependent systems.

In this chapter we focus on the specific task of finding open-loop controls that
steer a system from a family of initial states to another family of terminal states
using a single open-loop control function that is independent of the parameters. We
then illustrate how this question arises in a number of different applications, i.e.,
for controlling PDEs, controlling spatially-invariant systems such as platoons or to
the robust control of networks of linear systems. We turn now to a more detailed
description of such issues and begin to explain their mutual relationships.

12.1 Control of Parametric Families of Systems

The starting point for our analysis of ensembles of linear systems are parameter-
dependent linear systems of the form

∂
∂ t

x(t,θ ) = A(θ )x(t,θ )+B(θ )u(t), x(0,θ ) = 0. (12.1)
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Of course, one could equally well consider families of discrete-time systems

x(t + 1,θ ) = A(θ )x(t,θ )+B(θ )u(t), x(0,θ ) = 0,

and our results apply to this case, too. For simplicity we assume that the system
matrices A(θ ) ∈ R

n×n and B(θ ) ∈ R
n×m vary continuously in a compact domain

P of parameters θ in Euclidean space R
d . The analysis of such families of linear

systems can be carried out in several directions. A straightforward issue to begin
with is the search for parameter-dependent controls that steer the systems from a
family of initial states to a family of desired terminal states. A restriction here might
be on the degree of continuity or smoothness in the parameters that is imposed
on the controls. For instance, if the system matrices depend polynomially on a
parameter, it may be desirable that the same be true for the feedback controllers
and input functions. This leads to the control problems for systems over rings
that have been discussed intensively in algebraic systems theory during the course
of the past four decades. We refer the reader to the early work of, for example,
Hazewinkel (1981), Sontag (1976), Tannenbaum (1981), and Conte and Perdon
(2000) for further details. Another extreme case of studying families of systems –
and this is the scenario that we will study in the remainder of this chapter – is to
search for input functions or feedback laws that are independent of the parameters of
systems and steer prescribed families of initial and terminal states arbitrarily close
to each other. We refer to this as the ensemble control problem. Thus ensemble
control refers to a specific class of robust control problems, and a priori it is not
obvious whether or not such problems can be solved.

Let p and q be integers, with 1≤ p,q≤∞. The input to a state operator of (12.1)
at time T is RT : Lp([0,T ],Rm)−→ Lq(P,Rn)

RT (u)(θ ) =
∫ T

0
e(T−s)A(θ)B(θ )u(s)ds.

Note that RT is an integral operator with continuous kernel K : P× [0,T ]−→ R
n,

K(θ ,s) = e(T−s)A(θ)B(θ ).

It is a well-known consequence of the assumed continuity of A(·),B(·) on the
compact parameter space P that RT defines a bounded linear operator. In fact, RT

is a compact operator for 1 < p ≤ ∞ and 1 ≤ q < ∞. Moreover, by the continuity
of A(·),B(·), the operator RT is compact, even as an operator from Lp([0,T ]) to
C(P,Rn) and 1 ≤ p ≤ ∞. From the compactness of RT we deduce that RT has a
closed image if and only if RT has finite rank. Clearly, RT has finite rank for each
linear operator of the form K(θ , t) = ∑k

j=1 φ j(t)ψ j(θ ). In particular, this is true if
A is parameter independent; however, for general parameter-dependent systems the
finite-rank property cannot be expected.

After these functional analytic generalities, we proceed to introduce the notion
of ensemble reachability that we are interested in.
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Definition 12.1. Let 1 ≤ p ≤ ∞. System (12.1) is uniformly ensemble reachable
if for every continuous function x∗ : P−→R

n and every ε > 0 there exists a control
u ∈ Lp([0,T ],Rm) such that the induced state trajectory satisfies

sup
θ∈P
‖x(T,θ )− x∗(θ )‖< ε. (12.2)

Instead of trying to construct controls that achieve the uniform ensemble
reachability condition (12.2), one can also search for controls u(t) that minimize
the Lq-norms for 1≤ q≤ ∞,

(∫

P
‖x(T,θ )− x∗(θ )‖qdθ

) 1
q

< ε. (12.3)

We then say that the system is Lq-ensemble reachable. If the conditions in (12.2) or
(12.3) are satisfied for ε = 0, then the system is called exactly ensemble reachable.
Of course, the important point here is the ability to choose the input function
independently of the parameter θ , and it is not at all obvious that systems of this
kind do in fact exist.

This notion of ensemble reachability is intimately related to standard concepts
from infinite-dimensional systems theory, such as approximate reachability and
reachability. Let A : X −→ X and B : U −→ X be bounded linear operators on
Banach spaces X and U , respectively. A linear system

ẋ(t) =A x(t)+Bu(t) (12.4)

is called approximately reachable if the reachable set of 0 is dense in X . See
Fuhrmann (1972) and Curtain and Zwart (1995) for the (now classical) character-
izations of approximate reachability in a Hilbert space via the condition that the
reachability operator has a dense image. A result of Trigianni (1975) implies that
parameter-dependent linear systems (12.1) are never exactly ensemble reachable.
Thus the approximate notions of (uniform or Lq-) ensemble reachability are the
only meaningful ones.

The mathematical connection between ensemble reachability and approximate
reachability is easy to describe. Explicitly, for uniform ensemble control, let
X denote the Banach space of R

n-valued continuous functions on the compact
parameter space P, endowed with a supremum norm. Similarly, for Lq-ensemble
reachability, choose X = Lq(P,Rn). In either case, a continuous family of linear
systems (A(θ ),B(θ )) defines a linear system of the form (12.4) on a Banach space
X with a finite-dimensional space of control values U = R

m. Here

A : X −→ X , (A x)(θ ) := A(θ )x(θ ) (12.5)
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denotes the bounded linear multiplication operator, while the input operator

B : Rm −→ X , (Bu)(θ ) := B(θ )u (12.6)

is defined via an m-tuple of Banach-space elements, i.e., by the columns of B(·).
Proposition 12.2. Let bounded linear operators A and B be defined as in (12.5)
and (12.6), respectively. The parameter-dependent system (12.1) is uniformly (or
Lq-) ensemble reachable if and only if system (12.4) on the Banach space X is
approximately reachable.

Proof. We focus on uniform ensemble reachability and the Banach space X =
C(P,Rn); the proof for Lq-ensemble reachability goes mutatis mutandis. Let t �→
x(t) ∈ X denote the unique solution to (12.4), with x(0) = 0. Then t �→ x(t;θ ) is the
unique solution to (12.1), with x(0;θ ) = 0 for θ ∈ P. The approximate reachability
of (12.4) then says that for the continuous function x∗ : P −→ R

n and ε > 0 there
exists T > 0 such that ‖x(T )− x∗‖ = supθ∈P ‖x(T,θ )− x∗(θ )‖. But this is simply
the condition for uniform ensemble reachability. �

Thus the parameter-dependent system (12.1) is uniformly ensemble reachable if
and only if the infinite-dimensional system (12.4) is approximately reachable. In the
same way, by replacing the Banach space X with the Hilbert space H = L2(P,Rn),
one concludes that the L2-ensemble reachability of (12.1) becomes equivalent to the
approximate reachability of the infinite-dimensional system (12.4). Unfortunately,
the conditions for approximate reachability stated in Curtain and Zwart (1995);
Jacob and Partington (2006) depend on an explicit knowledge of a Riesz basis of
eigenvectors for the Hilbert-space operator A . However, except for trivial cases
where, for example, A(θ ) has constant eigenvalues, the multiplication operator
A defined by A(θ ) does not have a point spectrum, and therefore the spectral
conditions in Curtain and Zwart (1995) are not satisfied here. In the next section,
we will explain how such difficulties can be avoided using tools from complex
approximation theory.

12.2 Uniform Ensemble Reachability

Next we provide necessary, as well as sufficient, conditions for the uniform
ensemble reachability of linear systems (12.1). These conditions are true, verbatim,
for discrete-time systems as well. Let

(zI−A(θ ))−1B(θ ) = Nθ (z)Dθ (z)
−1

be a right coprime factorization by a rectangular polynomial matrix Nθ (z)∈R
n×m[z]

and a nonsingular polynomial matrix Dθ (z) ∈ R
m×m[z]. We first state the necessary

conditions for uniform ensemble reachability.
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Proposition 12.3 (Necessary Conditions). Let P be a subset of Rd such that the
interior points of P are dense in P. Assume that the family of linear systems
(A(θ ),B(θ ))θ∈P is uniformly ensemble reachable. Then the following properties
are satisfied:

1. For each θ ∈ P the system (A(θ ),B(θ )) is reachable.
2. For finitely many parameters θ1, . . . ,θs ∈ P, the m×m polynomial matrices

Dθ1(z), . . . ,Dθs(z) are mutually left coprime.
3. For m+ 1 distinct parameters θ1, . . . ,θm+1 ∈ P the spectra of A(θ ) satisfy

σ(A(θ1))∩·· ·∩σ(A(θm+1)) = /0.

4. Assume m = 1. The dimension of P satisfies dim P≤ 2. If A(θ ) has a simple real
eigenvalue for some θ ∈ P, then dim P≤ 1.

Proof. Consider a parameter value θ ∈ P and state vector ξ ∈ R
n. Choose a

continuous map x∗ : P−→R
n, with x∗(θ ) = ξ . For ε > 0 there exists by assumption

an input function u : [0,T ]−→R
m such that

sup
θ∈P
‖x(T,θ )− x∗(θ )‖< ε.

In particular, we obtain ‖x(T,θ )−ξ‖< ε . Thus ξ is in the closure of the reachable
set of 0; since the reachable sets of linear systems are closed in R

n, this shows that
(A(θ ),B(θ )) is reachable. By the same reasoning, the ensemble reachability of the
family (A(θ ),B(θ ))θ implies reachability for the parallel interconnection

Ā :=

⎛

⎜
⎝

A(θ1) 0
. . .

0 A(θs)

⎞

⎟
⎠ , B̄ :=

⎛

⎜
⎝

B(θ1)
...

B(θs)

⎞

⎟
⎠ (12.7)

of finitely many linear systems (A(θi),B(θi)), i = 1, . . . ,s. By Theorem 10.2, the
parallel interconnection (12.7) of reachable linear systems is reachable if and only
if the m×m polynomial matrices Dθ1(z), . . . ,Dθs(z) are mutually left coprime. This
completes the proof of the second claim.

The reachability of (12.7) implies that there are at most m Jordan blocks in Ā for
each eigenvalue of Ā. Thus σ(A(θ1))∩·· ·∩σ(A(θs)) = /0 is satisfied for s≥ m+ 1
distinct parameters θ1, . . . ,θs, because otherwise there would exist an eigenvalue of
Ā with at least m+ 1 Jordan blocks. This proves the third claim.

The last claim follows from the third claim. In fact, let λ (θ ) denote a branch
of the eigenvalues of A(θ ). Since the eigenvalues of a matrix depend continuously
on the parameters θ , one concludes from the fourth claim that the functions θ �→
λ (θ ) ∈ C = R

2 are continuous and injective. Therefore, since continuous injective
functions do not increase dimensions, one concludes that dim P ≤ dim R

2 = 2.
Moreover, if there exists a real branch of eigenvalues λ (θ ) of A(θ ), then dim P≤ 1.
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If λ (θ0) is a simple eigenvalue of A(θ0), then there exists an open neighborhood U
of θ0 in P such that for all θ ∈U the eigenvalue λ (θ ) is real. This completes the
proof. �

The preceding proof, using Theorem 10.2, shows an interesting connection
between ensemble reachability for finite parameter sets P and reachability for
parallel interconnection schemes of single-input systems.

Corollary 12.4. Assume that P = {θ1, . . . ,θs} ⊂ R
d is finite. Then a family of

single-input systems (A(θ ),b(θ ))θ∈P is uniformly ensemble reachable if and only if
the following two conditions are satisfied:

1. (A(θi),b(θi)) is reachable for i = 1, . . . ,s.
2. The characteristic polynomials det(zI−A(θi)) and det(zI−A(θ j)) are coprime

for all i �= j.

Proof. This is an obvious consequence of Proposition 12.3. �
In the discrete-time case, as is further explained in Chapter 10.1, one can

strengthen this result by deriving explicit formulas for the inputs that steer to a
desired state. In fact, the minimum-time ensemble control task for finite parameter
sets becomes equivalent to the Chinese remainder theorem. We illustrate this
approach for single-input systems. Let θ1, . . . ,θs ∈ P. The uniform ensemble
reachability of the finite family (A(θi),b(θi)) is equivalent to the systems (Ai,bi) :=
(A(θi),b(θi)), i = 1, . . . ,s being reachable, with pairwise coprime characteristic
polynomials qi(z) = det(zI−Ai). Define q̂i(z) :=∏ j �=i q j(z) and q(z) :=∏ns

j=1 q j(z).
Without loss of generality, we can assume that (Ai,bi) are in controllability
canonical form with local state spaces

Xq j := {p ∈R[z] | deg p < degq j = n j}.

Consider the parallel connection system

A =

⎛

⎜
⎝

A1 0
. . .

0 As

⎞

⎟
⎠ , b =

⎛

⎜
⎝

b1
...

bs

⎞

⎟
⎠ .

The state space of this global system is

Xq := {p ∈ R[z] | deg p < degq = n},

with direct sum decomposition

Xq := q̂1(z)Xq1 ⊕·· ·⊕ q̂s(z)Xqs .
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Assume that local target state vectors x∗j ∈R
n j are chosen. These vectors uniquely

define polynomial elements r j(z) ∈ Xq j of degree < n j via

x∗j = (x∗0 j, . . . ,x
∗
n j−1, j) and r j(z) =

n j−1

∑
i=0

x∗ijz
i.

Thus the components of x∗j are simply the coefficients of the polynomial r j. The
ensemble control goal is then to find a polynomial f (z) ∈ Xq such that its remainder
modulo q j is r j . In fact, the coefficients u0, . . . ,un−1 of the polynomial f (z) =

∑n−1
i=0 un−i−1zi are then simply the desired inputs that steer the system from zero to

the local states x∗j . In particular, the minimum length of such an ensemble control is
n = degq =∑s

j=1 n j, as it should be. To compute f (z), we apply the Bezout identity.
Thus, by the coprimeness of q j, q̂ j, there exist unique polynomials a j(z) of degree
< n j and b j(z) with

a j(z)q̂ j(z)+ b j(z)q j(z) = 1. (12.8)

Define

f (z) =
s

∑
j=1

r j(z)a j(z)q̂ j(z). (12.9)

The Chinese remainder theorem then asserts that f is a unique polynomial of degree
n that has r j as remainder modulo q j. The coefficients of f thus give the desired
controls for (A,b).

Example 12.5. In the discrete-time case and for the parallel connection of s
harmonic oscillators, it is very easy to carry out the calculations. For θ1 < · · ·< θs,
let

A j :=

(
0 −θ 2

j

1 0

)

, b j :=

(
1
0

)
.

Thus (A j,b j) is in controllability canonical form, with q j(z) = z2 +θ 2
j , j = 1, . . . ,s,

pairwise coprime. In this example, the Bezout equation (12.8) is easily solved by
the constant polynomial

ak(z) = ∏
j �=k

(θ 2
j −θ 2

k )
−1, k = 1, . . . ,s.

For the local states r j(z) = ξ1(θ j) + ξ2(θ j)z, formula (12.9) for the remainder
polynomial is then



12.2 Uniform Ensemble Reachability 609

f (z) =
s

∑
j=1

(ξ1(θ j)+ zξ2(θ j))∏
k �= j

z2 +θk
2

θ 2
k −θ 2

j

.

Note that this is exactly the degree 2s−1 Lagrange interpolation polynomial that
satisfies

f (±√−1θ j) = r j(±
√−1θ j)

for j = 1, . . . ,s. However, for equidistant choices of the interpolation points, this
solution suffers from the well-known Runge phenomenon. Thus, while f (z) is a
perfect match to the data at z =

√−1θ j , the approximation error will blow up
at the boundary points of the interval P. Better approximants can be obtained by
interpolating at Chebyshev points.

It is considerably harder to establish sufficient conditions for uniform ensemble
control, even if one restricts oneself to single-input systems depending on a scalar
parameter θ . Li (2011) has proposed an operator-theoretic characterization of
L2-ensemble reachability for general time-varying linear multivariable systems.
However, that characterization is stated in terms of the growth rates of singular
values of the input-state operator and, thus, is difficult to verify, even for the time-
invariant linear systems (12.1). We next state a result that leads to easily verifiable
conditions.

Theorem 12.6 (Sufficient Condition). Let P = [θ−,θ+] be a compact interval. A
continuous family (A(θ ),b(θ )) of linear single-input systems is uniformly ensemble
reachable (or, more generally, Lq-ensemble reachable for 1 ≤ q ≤ ∞) provided the
following conditions are satisfied:

(a) (A(θ ),b(θ )) is reachable for all θ ∈ P.
(b) For pairs of distinct parameters θ ,θ ′ ∈P,θ �= θ ′, the spectra of A(θ ) and A(θ ′)

are disjoint:

σ(A(θ ))∩σ(A(θ ′)) = /0.

(c) For each θ ∈ P the eigenvalues of A(θ ) have an algebraic multiplicity of one.

Conditions (a) and (b) are also necessary for uniform ensemble reachability.

Static output feedback control presents an interesting situation where all these
assumptions fall easily into place. Thus, consider a fixed reachable and observ-
able linear system (A,b,c). Let P = [θ−,θ+] denote a compact interval of gain
parameters. Then, for real values of θ , the closed-loop characteristic polynomial
is det(A−θbc) = q(z)+θ p(z), with p,q coprime and

c(zI−A)−1b =
p(z)
q(z)

.
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In particular, for distinct numbers θ �= θ ′ there exists no complex number z with
q(z) + θ p(z) = 0 = q(z) + θ ′p(z). Theorem 12.6 therefore implies the following
corollary.

Corollary 12.7. Let (A,b,c) be a reachable and observable SISO system. The
(discrete-time or continuous-time) output feedback system (A−θbc,b) is uniformly
ensemble reachable if the eigenvalues of A−θbc are simple for all θ ∈ [θ−,θ+].

�
The proof of Theorem 12.6 is much easier for discrete-time systems, and

therefore we first prove the result for discrete-time single-input systems. In this
situation the uniform ensemble reachability condition can be restated in a more
convenient form.

Lemma 12.8. A family {(A(θ ),b(θ )),θ ∈ P} of discrete-time single-input systems
is uniformly ensemble reachable on P if, for all ε > 0 and all continuous functions
x∗ : P→R

n, there exists a real scalar polynomial p(z) ∈ R[z] such that

sup
θ∈P
‖p(A(θ ))b(θ )− x∗(θ )‖ < ε.

Proof. For an input sequence u(0), . . . ,u(T − 1) the solution is

x(T,θ ) =
T−1

∑
k=0

A(θ )kb(θ )u(T − 1− k) = p(A(θ ))b(θ ),

where p(z) = ∑T−1
k=0 uT−k−1zk. Thus the input sequence is parameter independent if

and only if the polynomial p(z) is parameter independent. �
Using this basic observation we can characterize the uniform ensemble reacha-

bility property in explicit form as follows.

Proposition 12.9. Assume that the discrete-time system (A(θ ),b(θ )) is reachable
for θ ∈ P = [θ−,θ+]. The following statements are equivalent:

(a) (A(θ ),b(θ ))θ is uniformly ensemble reachable.
(b) For continuous families of polynomials uθ (z) ∈ R[z] of degree < n and ε > 0,

there exists a polynomial p ∈ R[z] with

‖p(A(θ ))b(θ )− uθ(A(θ ))b(θ )‖< ε.

(c) For continuous families of polynomials uθ (z) ∈ R[z] of degree < n and ε > 0,
there exists a scalar polynomial p(z) ∈ R[z] with ‖(p(A(θ ))− uθ(A(θ ))‖< ε .

Assume that for each θ ∈ P the eigenvalues of A(θ ) are distinct. Let

C := {(z,θ ) ∈ C×P | det(zI−A(θ )) = 0}.
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Then each of the preceding conditions is equivalent to the following statements:

(d) For continuous families of polynomials uθ (z) ∈R[z] of degree < n and a ε > 0,
there exists a polynomial p ∈ R[z] with

|p(z)− uθ(z)| < ε ∀(z,θ ) ∈C.

Proof. Let

R(A,b) = (b,Ab, . . . ,An−1b)

denote the n× n reachability matrix. By reachability, the matrix R(A(θ ),b(θ )) is
invertible for each θ ∈ P. For x∗ : P−→R

n continuous, define a polynomial uθ (z)∈
R[z] of degree < n as

uθ (z) = (1,z, . . . ,zn−1)R(A(θ ),b(θ ))−1x∗(θ ).

Conversely, every continuous family of polynomials uθ (z) of degree < n can
be written in this way. Since uθ (A(θ ))b(θ ) = x∗(θ ), Lemma 12.8 implies the
equivalence of (a) with (b). Obviously, condition (c) implies (b). Assume that
the estimate ‖( f −uθ )(A(θ ))b(θ )‖< ε holds. Then ‖( f −uθ )(A(θ ))A(θ )kb(θ )‖<
ε · supθ∈P ‖A(θ )‖k. Therefore,

‖( f − uθ )(A(θ ))‖ < cε

for the constant c = supθ∈P ‖R(A(θ ),b(θ ))−1‖max0≤k≤n−1‖A(θ )‖k. Thus (b)
implies (c). Now consider a matrix X with distinct eigenvalues λ1, . . . ,λn. Then, for
real polynomials F and ε > 0, the operator norm bound ‖F(X)‖ < ε is equivalent
to |F(λi)|< δ (ε), i = 1, . . . ,n. Here δ (ε) goes to zero if and only if ε goes to zero.
This shows that condition (d) is equivalent to (c), and we are done. �
1. Proof of Theorem 12.6 for Discrete-Time Systems. We now prove Theo-
rem 12.6 for discrete-time systems. Our proof depends on Mergelyan’s theorem,
a rather deep theorem from complex approximation theory. It is stated here for
convenience; see Chapter II in Gaier (1987) for a proof. Let Ĉ denote the one-point
compactification of C, i.e., the complex plane which is extended by including the
point ∞.

Theorem 12.10 (Mergelyan). Suppose K is compact in Ĉ such that the comple-
ment Ĉ \K is connected. Suppose that f : K −→ C is a continuous function that
is holomorphic in the interior of K. Then for every ε > 0 there exists a complex
polynomial p(z) ∈ C[x] such that, for all z ∈ K,

| f (z)− p(z)|< ε.
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We note that this theorem applies in particular in the special case where K has no
interior points. In that case, the analyticity condition on f is superfluous.

Proof. The claims in Theorem 12.6 concerning necessity all follow from
Lemma 12.3. Consider the compact set

C := {(z,θ ) ∈ C×P | det(zI−A(θ )) = 0}

and the projection map π : C −→ C defined by π(z,θ ) = z. Since P is compact, it
follows that C and, therefore, the image K := π(C) are compact. Condition (b) of
Theorem 12.6 is equivalent to π being injective on C, and therefore π : C −→ K is a
homeomorphism onto K. Thus, there exists a continuous map σ : K −→C,σ(z) =
(z,τ(z)) that is a right inverse of π . The continuous map τ : K −→ P has the
property that z ∈ K ⇐⇒ (z,τ(z)) ∈ C. Since the eigenvalues of A(θ ) define the
continuous functions of θ and are assumed to be distinct for each θ ∈ P, one
concludes that K = K1 ∪ ·· · ∪Kn ⊂ C consists of exactly n disjoint homeomorphic
copies Kj of P. Since P is simply connected, so is K, and thus the complement
C \K is connected. Moreover, K has an empty interior. Therefore, one can apply
Mergelyan’s Theorem 12.10 to uniformly approximate continuous functions F on
K by polynomials. For a continuous family of desired states x∗(θ ), define the
polynomial uθ in z as

uθ (z) = (1,z, . . . ,zn−1)R(A(θ ),b(θ ))−1x∗(θ ).

Replacing the variable θ in uθ with θ = τ(z) we obtain a continuous function

F : K −→C, F(z) := uτ(z)(z).

Thus the theorem by Mergelyan asserts that there exists a polynomial p(z), with
|p(z)−F(z)|< ε , uniformly on K. Equivalently, there exists a polynomial p(z) such
that

|p(z)− uθ (z)|< ε ∀(z,θ ) ∈C. (12.10)

Note that uθ (z) is a real polynomial. Thus, by a possible replacement of p(z) by
1
2(p(z)+ p(z)), we can assume that (12.10) is satisfied for a real polynomial p(z).
The result follows from Proposition 12.9. This completes the proof of Theorem 12.6
in the discrete-time case. �
2. Proof of Theorem 12.6 for Continuous-Time Systems. For continuous-time
systems

ẋ = A(θ )x(t,θ )+ b(θ )u(t), x0(θ ) = 0,

we apply a sampling argument. For each positive sampling period τ > 0, consider
the discrete-time system
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x(t + 1,θ ) = F(θ )x(t,θ )+ g(θ )u(t), x0(θ ) = 0, (12.11)

where

F(θ ) := eτA(θ), g(θ ) =
(∫ τ

0
esA(θ)ds

)
b(θ ).

The result now follows from showing the next proposition.

Proposition 12.11. Let (A(θ ),b(θ )) satisfy the assumptions of Theorem 12.6. Then
the sampled system (12.11) satisfies the assumptions, too.

Proof. By the compactness of P, there exists τ∗ > 0 such that all conditions of
Theorem 12.6 are satisfied for the discrete-time system (F(θ ),G(θ )) and all 0< τ <
τ∗. It is well known that the reachability of a continuous-time linear system (A,b)
implies the reachability of the sampled discrete-time system (F,g) if the sampling
period is sufficiently small. Thus the pointwise reachability condition (a) implies the
same condition for (F(θ ),g(θ )). The other conditions follow from the continuity of
the eigenvalues and local injectivity of the matrix exponential function. �

Applying Proposition 12.11, the proof of Theorem 12.6 for the discrete-time
case implies the uniform ensemble reachability of the discrete-time system (12.11).
Note that, under sampling, the continuous- and discrete-time solutions coincide at
the sampling points. Therefore, the finite-length input sequence uk for the uniform
ensemble reachability of (F(θ ),g(θ )) induces a piecewise constant input function
uτ : [0,T ]−→R that performs the uniform ensemble control task for the continuous-
time system (12.1). This completes the proof of our main theorem. �

As mentioned earlier, conditions (a) and (b) in Theorem 12.6 are actually
necessary conditions. The next result shows that the ensemble reachability of
discrete-time systems can be shown under weaker assumptions than condition (c).

Proposition 12.12. Let P = [θ−,θ+] be a compact interval. A continuous family
(A(θ ),b(θ )) of linear discrete-time single-input systems is uniformly ensemble
reachable provided the following conditions are satisfied:

(a) (A(θ ),b(θ )) is reachable for all θ ∈ P.
(b) For pairs of distinct parameters θ ,θ ′ ∈P,θ �= θ ′, the spectra of A(θ ) and A(θ ′)

are disjoint:

σ(A(θ ))∩σ(A(θ ′)) = /0.

(c) The characteristic polynomial of A(θ ) is of the form zn−an−1zn−1−·· ·−a1z−
a0(θ ), with a1, . . . ,an−1 constant real numbers.

Proof. Without loss of generality, we can assume that A(θ ),b(θ ) is in control-
lability normal form for each θ . The polynomial π(z) := zn − an−1zn−1 − ·· · −
a1z satisfies π(A(θ )) = a0(θ )In. Moreover, A(θ )k−1e1 = ek for k = 1, . . . ,n. By
condition (b), we see that a0 : P −→ R is injective, and hence the inverse function
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a−1
0 : a0(P) −→ P exists and is continuous. Using the Weierstrass approximation

theorem there exist polynomials f1(t), . . . , fn(t) ∈R[t] such that, for k = 1, . . . ,n,

sup
t∈a0(P)

| fk(t)− e�k x∗(a−1
0 (t)|< ε

or, equivalently, supθ∈P | fk(a0(θ ))− e�k x∗(θ )| < ε. The real polynomial f (z) :=
∑n

k=1 fk(π(z))zk−1 satisfies

f (A(θ ))e1 =
n

∑
k=1

fk(π(A(θ )))A(θ )k−1e1 =
n

∑
k=1

fk(a0(θ ))ek.

This implies supθ∈P ‖ f (A(θ ))b(θ )− x∗(θ )‖∞ < ε , and the result follows. �
We illustrate the applicability of the preceding results by means of three examples.

Example 12.13 (L2-Ensemble Observability). We briefly discuss the dual version
of ensemble reachability, i.e., ensemble observability. Since duality theory is easier
in a Hilbert-space context, we focus on the notions of L2-ensemble observability.

Definition 12.14. Assume that A(θ ) ∈ R
n×n,C(θ ) ∈ R

p×n vary continuously in a
compact parameter domain P⊂R

d . The parameter-dependent system

∂x(t,θ )
∂ t

= A(θ )x(t,θ ), x(0, ·) ∈ L2(P,Rn),

y(t) =
∫

P
C(θ )x(t,θ )dθ

(12.12)

is called L2-ensemble observable if there exists T > 0 such that y(t) = 0 on [0,T ]
implies x(0,θ ) = 0 for all θ ∈ P.

Definition 12.14 implies that one can reconstruct the L2-initial state x(0, ·) of
(12.12) from the average values

∫

P
C(θ )x(t,θ )dθ , 0≤ t ≤ T,

of the outputs C(θ )x(t,θ ). Thus ensemble observability is a rather strong property
that is particularly useful in, for example, biological parameter identification tasks
where often only an averaged type of output information is available.

System (12.12) is equivalent to the linear system

ẋ(t) =A x(t), x(0) ∈ L2(P,Rn),

y(t) = C x(t)
(12.13)
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on the Hilbert space X = L2(P,Rn). Here A : X −→ X ,C : X −→ R
p are bounded

linear operators defined by

(A x)(θ ) = A(θ )x(θ ), (C x)(θ ) =
∫

P
C(θ )x(θ )dθ ,

respectively. Thus, A is a multiplication operator while C is an integration operator.
The preceding notion of ensemble observability is equivalent to the notion of
the approximate observability of (12.13), as defined in Curtain and Zwart (1995),
Definition 4.1.12. Moreover, Lemma 4.1.13 in Curtain and Zwart (1995) implies
that (12.13) is approximate observable if and only if the dual system

∂
∂ t

x(t,θ ) = A(θ )�x(t,θ )+C(θ )�u(t), x(0,θ ) = 0, (12.14)

is L2-ensemble reachable. Therefore, Theorem 12.6 applies to (12.14) for p = 1.
This shows that every continuous one-parameter family (A(θ ),C(θ )),θ ∈ P =
[θ−,θ+], of single-output linear systems is L2-ensemble observable provided the
following three conditions are satisfied:

1. (A(θ ),C(θ )) is observable for all θ ∈ P.
2. The spectra of A(·) are pairwise disjoint, i.e.,

σ(A(θ ))∩σ(A(θ ′)) = /0, ∀θ ,θ ′ ∈ P,θ �= θ .

3. For each θ ∈ P the eigenvalues of A(θ ) have an algebraic multiplicity of one.

Example 12.15 (Robust Numerical Integration.). The simplest numerical integra-
tion method is certainly the Euler-step method. For a continuous-time linear control
system ẋ = Ax+Bu, this yields the discrete-time system

x(t + 1,h) = (I + hA)x(t,h)+ hBu(t), (12.15)

with a step-size parameter h > 0. One can then ask whether the family of discretized
systems (12.15) can be robustly controlled using a control sequence u(t), t ∈ N,
that is independent of the step-size h > 0. Theorem 12.6 provides a simple answer.
Assume that the pair (A,B) is reachable. Then for each parameter h > 0 the pairs
(I + hA,hB) are also reachable. Moreover, assume that A has only simple, distinct
eigenvalues λ1, . . . ,λn that satisfy

λ j �= cλi (12.16)

for all c > 0 and i �= j. Then the eigenvalues 1+ hλ1, . . . ,1+ hλn of I + hA are also
simple and satisfy 1+hλi �= 1+h′λ j for h �= h′. Thus the discretized system (12.15)
is ensemble reachable for compact intervals P ⊂ (0,∞) of step-size parameters
provided (A,B) is reachable and A has distinct simple eigenvalues that satisfy
(12.16).
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This shows that the Euler-step approximation (12.15) of a continuous-time
control system ẋ = Ax + Bu inherits the reachability properties in a very strong
sense, i.e., (12.15) can be controlled in a step-size independent way. It would be
interesting to see whether this property carried over to more general, higher-order,
Runge–Kutta methods.

Example 12.16 (Robust Open-Loop Synchronization.). We describe an application
of Theorem 12.6 to the synchronization of N identical harmonic oscillators

ÿ(t)+ω2y(t) = v(t),

with state-space realization

A :=

(
0 −ω
ω 0

)
, b :=

( 1
ω
0

)
, c :=

(
0 1

)
.

The identical frequency ω of the harmonic oscillators is assumed to be known. We
assume that the oscillators are coupled in a ring with unknown coupling strength κ ,
which can vary over a compact interval P := [κ−,κ+]⊂ (0,∞) of positive numbers.
Thus the network topology is described by a directed simple cycle graph with N
nodes and weighted adjacency matrix κS, with the circulant matrix

S :=

⎛

⎜
⎜⎜
⎜
⎝

0 1 0

0
. . .

. . .
. . .

. . . 1
1 0 0

⎞

⎟
⎟⎟
⎟
⎠
.

We assume that the numbering of the harmonic oscillators is such that a single
external input is applied to the first harmonic oscillator. Thus the input-to-state
interconnection matrix is e1 = (1,0, . . . ,0)�. The dynamics of the overall network
is thus of the form

∂
∂ t x(t,κ) =

(
I⊗A+κS⊗ bc

)
x(t,κ)+

(
e1⊗ b

)
u(t),

x(0,κ) = x0,
(12.17)

where x0 ∈ R
2N denotes the initial state of the network. Let e = (1, . . . ,1)�, and

let x∗ ∈ R
2 denote the desired terminal state to which the harmonic oscillators are

supposed to synchronize. The network of harmonic oscillators (12.17) is called
robustly synchronizable from x0 ∈ R

2N to e⊗ x∗ ∈ R
2N if for every ε > 0 there

exists T > 0 and an input function u : [0,T ]→ R such that the state x(t) of (12.17)
satisfies

sup
κ∈P
‖x(T,κ)− e⊗ x∗‖< ε.
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We emphasize that the input u acts here as a universal input for the parameter-
dependent network that steers x0 to the synchronized state 1⊗ x∗ uniformly for all
coupling strength parameters κ ∈ P.

We next show, using Theorem 12.6, that the network (12.17) of harmonic oscilla-
tors robustly synchronizes from every initial state x0 ∈R

2N at a vector 1⊗x∗ ∈R
2N

of identical terminal states x∗. Let Φ denote the N×N Fourier matrix (9.39) and
ω = e2π

√−1/N . Thus, using (9.40), it follows that Φ∗SΦ = diag
(
1,ω , . . . ,ωN−1

)

and Φe1 =
1√
N

e. Applying the state-space similarity transformation z := (Φ∗ ⊗ In)x

using the unitary matrix Φ∗ ⊗ In, we see that (12.17) is similar to the decoupled,
parameter-dependent system

∂
∂ t

z j(t,κ) =
(

A+κe2π j
√−1/N)bc

)
z j(t,κ)+

√
Nbu(t), j = 1, . . . ,N

z(0,κ) = Φ∗x0.

This system is the parallel connection of reachable linear systems. Moreover, the
eigenvalues of I⊗A+κS⊗ bc are equal to

N⋃

j=1

{
z ∈ C : z2 +ω2−κω j = 0

}
.

These eigenvalues are distinct and simple if, for example, 1 �∈ P = [κ−,κ+].
Moreover, under this condition, the eigenvalues for different κ �= κ ′ are distinct. This
implies that I⊗A+κS⊗bc is reachable and conditions (a)–(c) of Theorem 12.6 are
satisfied. One concludes that the network (12.17) is robustly synchronizable from
every initial state provided 1 �∈ [κ−,κ+]. Similarly, robust synchronization can be
established for more complicated network structures.

12.3 Control of Platoons

The Fourier transform provides an elegant way to utilize the preceding results
on uniform ensemble control for the control of partial differential equations and
platoons of systems. Although this point of view has appeared already in previous
work by, for example, Green and Kamen (1985), Bamieh, Paganini and Dahleh
(2002), and Curtain, Iftime and Zwart (2009), the control tasks that we consider
here have not been addressed before. In fact, the previously cited works consider
only scenarios where each subsystem is controlled by individual, independent input
functions. Thus such approaches use an infinite number of control functions and are
therefore severely limited in applicability. In contrast, we focus on the reachability
of systems that employ a finite number of input functions that are distributed over
the entire network. For controlling platoons or swarms of systems this approach
appears to be more appropriate.
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1. Finite Platoons Consider the task of controlling a finite platoon of N vehicles
on a line. If each vehicle is controlled individually by independent input functions,
then clearly the overall system will be reachable. A more interesting situation arises
when one considers inputs that are broadcasted to all systems simultaneously. Thus
all vehicles are controlled by the same input function (or by a small number of input
functions). By assuming nearest-neighbor interactions, we obtain the control system

ẋ1 =−x2 + x1 + u(t)

ẋ2 =−x3 + 2x2− x1 + u(t)

...

ẋN−1 =−xN + 2xN−1− xN−2 + u(t)

ẋN =−xN−1 + xN + u(t).

In matrix form the system is ẋ(t) = Ax(t)+ bu(t), where

A =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

, b =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

1
1
...
...
1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

. (12.18)

To check for reachability, we apply the Hautus test. Recall from Theorem 8.46 that
the eigenvalues of A are nonrepeated and are equal to λk = 2− 2cos (k−1)π

N ,k =

1, . . . ,N. Moreover, ξ (k) = (sin kπ
N+1 , . . . ,sin kNπ

N+1 )
� is an eigenvector for the eigen-

value λk. Define ω = e
√−1π
N+1 . Thus

b�ξ (k) =
N

∑
ν=1

sin
kνπ

N + 1
= Im

N

∑
ν=1

ωkν

= Im

(
1−ωk(N+1)

1−ωk − 1

)

= Im

(
1− (−1)k

1−ωk − 1

)

=

⎧
⎨

⎩

0 if k is even,
sin kπ

N+1

1−cos kπ
N+1

if k is odd

is zero if and only if 1 ≤ k ≤ N is even. This implies that the system is not
reachable. In contrast, consider the case where b = ek for some 1≤ k≤ N. From the
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tridiagonal structure of A it is easily seen that (A,e1) is reachable. The subsequent
characterization of reachability shows an interesting connection to elementary
number theory.

Theorem 12.17. Let (A,b) be defined by (12.18).

1. The pair (A,b) is not reachable.
2. (A,ek) is reachable if and only if k and N + 1 are coprime.
3. (A,ek + e�) is reachable provided both pairs k + �,N + 1 and k− �,N + 1 are

coprime.
4. The two-input system (A,(ek,e�)) is reachable if and only if there exists no

1≤ r ≤ N such that N + 1 divides both rk and r�.

Proof. The first part has already been shown. For the second part note that e�k ξ (r) =

sin krπ
N+1 = 0 if and only if N + 1 divides kr. Suppose that k and N + 1 are coprime.

Then N + 1 divides kr if and only if N + 1 divides k. But this is impossible because
1 ≤ k ≤ N. Thus the coprimeness of k and N + 1 implies e�k ξ (r) �= 0 for all 1 ≤
r ≤ N, i.e., it implies the reachability of (A,ek). Conversely, assume that d ≥ 2 is
the greatest common divisor of k,N +1. Then k = k′d and N +1 = N′d for suitable
integers 1≤ k′,N′ ≤ N. Then (N +1)k′ = kr for r := N′ ≤ N. Thus e�k ξ (r) = 0, and
therefore (A,ek) cannot be reachable.

By the Hautus criterion, the reachability of (A,ek + e�) is violated if and only
if there exists 1 ≤ r ≤ N such that sin krπ

N+1 + sin �rπ
N+1 = 0. Recall that sin(πx) =

sin(πy) if and only if either x+ y is an odd integer or x− y is an even integer. Thus,
reachability holds if and only if r(k−�) �∈ (2Z+1)(N+1) and r′(k+�) �∈ 2Z(N+1)
is valid for all 1≤ r,r′ ≤ N. Certainly this is the case if k+ �,N+1 are coprime and
k− �,N+1 are coprime. This implies the result. Finally, the reachability of the two-
input system (A,(ek,e�)) is equivalent to the condition that there exists no 1≤ r≤N
with sin krπ

N+1 = sin �rπ
N+1 = 0. This proves the result. �

Similarly, let us consider the situation where vehicles proceed on a circular
domain. In this case, we obtain the linear control system ẋ(t) = Fx(t)+ gu(t) with
system matrices

F =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

2 −1 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 −1 2

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

, g =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

1
1
...
...
1

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

. (12.19)

See Notarstefano and Parlangeli (2013) and Chapter 9 for reachability results on
closely related linear systems evolving on circular arrays. The eigenvalues of the
circulant matrix F are equal to 2− 2cos 2kπ

N ,k = 1, . . . ,N. Thus, for N ≥ 2, the
symmetric matrix F always has eigenvalues with a multiplicity of 2. Therefore, the
circulant system (F,g) is not reachable. This also follows directly from the fact that
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Fg= 0. However, contrary to the preceding case of platoons on a line, the occurrence
of eigenvalues with multiplicities ≥ 2 in the Jordan canonical form of F shows that
the system (F,g) is not reachable for each choice of g. Thus we need at least two
independent inputs to control a platoon on a circle. The next result describes some
of the possibilities for controlling with two inputs.

Theorem 12.18. Let 1 ≤ k < � ≤ N and F be defined by (12.19). There exists no
vector g such that (F,g) is reachable. The two-input system (F,(ek,e�)) is reachable
if and only if N and k− � are coprime.

Proof. By Theorem 8.48, the eigenspaces of F are either one-dimensional and
spanned by u := e1 + · · ·+ eN (for r = N) or by u := e1− e2 + e3− ·· ·+ eN (for
N = 2m,r = m) or are two-dimensional with a basis

x(r) =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

1
cos( 2rπ

N )

cos( 4rπ
N )

...

cos( 2(N−1)rπ
N )

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

, y(r) =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

1
sin( 2rπ

N )

sin( 4rπ
N )

...

sin( 2(N−1)rπ
N )

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

.

Thus reachability is satisfied whenever the inner products of ek,e� with the basis of
eigenvectors does not vanish. Computing the inner products we obtain

< ek,u >=< e�,u >= 1, < ek,v >= (−1)k, < e�,v >= (−1)�,

< ek,x
(r) >= sin

2(k− 1)rπ
N

, < e�,x
(r) >= sin

2(�− 1)rπ
N

,

< ek,y
(r) >= cos

2(k− 1)rπ
N

, < e�,x
(r) >= cos

2(�− 1)rπ
N

.

Thus the inner products with the eigenvectors are nonzero for the simple eigenvalues
λr, with r = N or r = m,N = 2m. For the other cases assume that v = αx(r) +βy(r)

is an eigenvector of F for λr, with < v,ek >=< v,e� >= 0. Then

α sin
2(k− 1)rπ

N
+β cos

2(k− 1)rπ
N

= 0,

α sin
2(�− 1)rπ

N
+β cos

2(�− 1)rπ
N

= 0.

This has a nonzero solution (α,β ) if and only if sin 2(k−�)rπ
N = 0. This is equivalent

to the condition that N divides (k− �)r. Since r < N, this implies reachability if and
only if N and k− � are coprime. �

Using the theory developed in Chapter 9, it is easy to extend the reachabil-
ity analysis of platoons from first-order scalar systems to higher-order systems.
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As an example, consider a homogeneous network of identical higher-order systems
of the form

q(
d
dt
)yi(t) = p(

d
dt
)vi(t)

vi(t) = yi+1(t)− 2yi(t)+ yi−1(t)+ biu(t), i = 1, . . . ,N.

(12.20)

Here b = col (b1, . . . ,bN) ∈ R
N , and p(z) and q(z) denote coprime real scalar

polynomials with deg p < deqq = n. Defining Q(z) = q(z)IN , P(z) = p(z)IN , and
A as in (12.18) we see that (12.20) is equivalent to the homogeneous network

(
Q(

d
dt
)−P(

d
dt
)A

)
y(t) = P(

d
dt
)bu(t).

Applying Theorem 9.15, one concludes that the network (12.20) is reachable if
and only if (A,b) is reachable. Thus, for b = ek, the network (12.20) is reachable
if and only if N + 1 and k are coprime, independently of the choice of coprime
polynomials p(z),q(z). Similarly, reachability results for platoons of higher-order
systems with circulant interconnection matrices are obtained.

2. Infinite Platoons. We now turn to an analysis of infinite platoons and their
reachability properties. Infinite platoons are infinite-dimensional control systems
where the spatial variable is constrained to either N or Z. The coordinates of infinite
platoons are therefore defined by either one-sided infinite sequences (xk)k∈N0 or bi-
infinite sequences (xk)k∈Z of elements xk ∈ R

n. In either case, we obtain a Hilbert
space �2

+(R
n) or �2(Rn) of square summable sequences with norms

‖x‖2 =
∞

∑
k=0

|xk|2, ‖x‖2 =
∞

∑
k=−∞

|xk|2,

respectively. The interpretation of, for example, the set of integers Z with the spatial
domain of a platoon is due to the identification of curves t �→ x(t) in �2(Rn) with
functions x : Z×R −→ R

n,(k, t) �→ x(k, t) := x(t)k. In such an interpretation the
space Z corresponds to the spatial variable, while t corresponds to time. We follow
the work by Curtain, Iftime and Zwart (2009), who developed an operator-theoretic
analysis of infinite platoons in the Hilbert space �2(Rn) of bi-infinite sequences.
We also refer to the more recent work by Feintuch and Francis (2012) for a deeper
analysis of stability problems for platoons in the Banach space of �∞ sequences.
Restricting the coordinates to the Hilbert-space context of �2 sequences enables
us to employ Fourier-transform techniques. In a second step, we then connect
the reachability analysis of infinite platoons to that for parameter-dependent linear
systems.

Restricting the coordinates to the Hilbert-space context of �2 sequences enables
us to employ Fourier-transform techniques. For bi-infinite sequences x of vectors
xk ∈C

n,k ∈ Z, define the associated Fourier series
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x(e
√−1θ ) :=

∞

∑
k=−∞

x−
√−1kθ

ke .

Conversely, with functions f ∈ L2(S1,Cn) on the unit circle S1 one associates the
sequence of Fourier coefficients

xk( f ) =
1

2π

∫ 2π

0
f (e

√−1θ )e
√−1kθ dθ , k ∈ Z.

The discrete Fourier transform

F : �2(Cn)−→ L2(S1,Cn), F (x) = x(e
√−1θ )

then defines a linear isomorphism whose inverse is defined by the Fourier coeffi-
cients via

F−1 : L2(S1,Cn)−→ �2(Cn), F−1 f = (xk( f ))k∈Z.

By the Plancherel formula, the discrete Fourier transform defines an isometry of
Hilbert spaces, i.e., for all x ∈ �2(Cn),

‖x‖�2 = ‖Fx‖L2 .

Similarly, the discrete Fourier transform of a one-sided sequence (xk)k≥0 ∈ �2
+(C

n)
is defined as

x(e
√−1θ ) :=

∞

∑
k=0

x−
√−1kθ

ke ,

which defines an element of the Hardy space H2(D;Cn) on the unit disc D. The
discrete Fourier transform

F : �2
+(C

n)−→H2(D;Cn), F (x) = x(e
√−1θ )

then maps �2
+(C

n) isometrically onto H2(D;Cn) = H2(D)n, the Hardy space of n-
tuples of holomorphic functions on the open unit disc that are Lebesgue square
integrable on the unit circle.

Following these preliminaries, we now turn to a study of bi-infinite platoons on
Z. The simplest classes of such models are spatially invariant and have the form

ẋk(t) =
∞

∑
j=−∞

A jxk− j(t)+
∞

∑
j=−∞

B juk− j(t), k ∈ Z, (12.21)

where Ak ∈ R
n×n and Bk ∈ R

n×m. Here we assume that the inputs and state
sequences are in �2, i.e., (xi) ∈ X = �2(Cn) and (ui) ∈ U = �2(Cm), respectively.
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To specify conditions that the convolution operators A : X −→ X and B : U −→ X ,
with

(A x)k =
∞

∑
j=−∞

A jxk− j, (Bu)k =
∞

∑
j=−∞

B juk− j,

are well defined, we impose a condition on their Fourier symbols

A(e
√−1θ ) =

∞

∑
j=−∞

A je
−√−1 jθ , B(e

√−1θ ) =
∞

∑
j=−∞

B je
−√−1 jθ .

Assume that both A(·) and B(·) are elements of L∞(S1,Cn×n) and L∞(S1,Cn×m),
respectively. This guarantees that the associated multiplication operators

A : L2(S1,Cn)−→ L2(S1,Cn), x(e
√−1θ ) �→ A(e

√−1θ )x(e
√−1θ ),

B : L2(S1,Cm)−→ L2(S1,Cn), u(e
√−1θ ) �→ B(e

√−1θ )u(e
√−1θ )

are bounded linear operators with operator norms

‖A ‖= ‖A(·)‖∞ = ess sup0≤θ≤2π ‖A(e
√−1θ )‖,

‖B‖= ess sup0≤θ≤2π ‖B(e
√−1θ ).‖

It follows that the infinite-dimensional control system

ẋ(t) =A x(t)+Bu(t) (12.22)

that describes the platoon model (12.21) is well defined on the Hilbert space
L2(S1,Cn). Note that the inputs for (12.22) assume values in the infinite-dimensional
Hilbert space L2(S1,Cm). We present the following Hautus-type condition for
approximate reachability.

Theorem 12.19. The infinite platoon (12.21) is approximately reachable on the
Hilbert space L2(S1,Cn) if and only if the reachability rank condition

rk
(

zIn−A(e
√−1θ ), B(e

√−1θ )
)
= n

is satisfied for all z ∈C and almost all θ ∈ [0,2π ].

Proof. By the isometric properties of the Fourier transform, both systems (12.21)
and (12.22) are similar and thus have identical reachability properties. Character-
izations of the approximate reachability of linear systems on a Hilbert space are
well known; see, for example, the textbook by Curtain and Zwart (1995). In fact,
approximate reachability in finite time T > 0 is guaranteed for (12.22) if and only if
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the image of the reachability operator RT : L2([0,T ],X)−→ L2(S1,Cn),

RT u =

∫ T

0
e(T−s)ABu(s)ds,

is dense in L2(S1,Cn). Since the closure Im RT of the image of RT coincides with
the kernel of the dual operator, we conclude that the approximate reachability of
(12.21) is equivalent to the condition

∫ 2π

0
f (e

√−1θ )∗ exp(tA(e
√−1θ ))B(e

√−1θ )dθ = 0 for all t ≥ 0 =⇒ f (e
√−1θ ) = 0.

Of course, this is equivalent to the familiar Kalman rank condition

rk
(

B(e
√−1θ ), . . . ,A(e

√−1θ )nB(e
√−1θ )

)
= n

for almost all θ ∈ [0,2π ]. Thus the result follows by applying the standard Hautus
conditions for linear systems. �

A crucial implication for the convergence dynamics of platoons, when working
in the Hilbert space �2, is that all trajectories (xn(t))n converge to zero as n→±∞.
Of course, this is a very restrictive assumption that is often not desirable in practice.
For such reasons, Feintuch and Francis (2012) started an investigation of platoons
in the Banach space �∞ of bounded bi-infinite sequences in R. We endow �∞ with
the norm

‖x‖∞ = sup
n∈Z
|xn|,

which turns �∞ into a Banach space. Since methods from Fourier analysis cannot be
applied, the analysis becomes more difficult. We do not go into details here but refer
the reader to Feintuch and Francis (2012) for a discussion of several simple cases.

3. Finite-Dimensional Control of Platoons. A further drawback of the preceding
analysis is that it assumes an infinite-dimensional Hilbert space of input values. We
now extend the reachability analysis of platoons to the more difficult, and more
interesting, case of finite-dimensional controls.

We start with a simple example of a one-sided infinite platoon over N0 that was
first described decades ago by Fuhrmann (1972). Consider the discrete-time control
system in �2

+(C)

x(t + 1) = Sx(t)+ bu(t), (12.23)
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where b ∈ �2
+(C) and

S : �2
+(C)−→ �2

+(C), S(x0,x1,x2, . . .) := (0,x0,x1, . . .),

S∗ : �2
+(C)−→ �2

+(C), S(x0,x1,x2, . . .) := (x1,x2,x3, . . .)

denotes the right shift operator and left shift operator, respectively. Thus S and S∗
are bounded linear operators on �2

+(C). S is an isometry while S∗ is a contraction.
The study of these shift operators is due to Beurling (1949). The spectral properties
of S and S∗ are well known; for example, S does not have eigenvalues. The spectrum
of both S and S∗ is equal to the closed unit disc D. The set of eigenvalues of S∗ is
D, and the associated eigenvector of each eigenvalue λ ∈ D is (1,λ ,λ 2,λ 3, . . .).
Equivalently, expressed in the Hardy space H2(D), the associated eigenfunction is

eλ (z) =

√
1−|λ |2
1−λ z

.

Spelled out in the coordinates of the sequence x(t), system (12.23) is equivalent
to the 2D system [x−1(t) := 0]

xk(t + 1) = xk−1(t)+ bku(t), t,k ∈ N0.

Let

b(e
√−1θ ) =

∞

∑
k=0

bkek
√−1θ

denote the discrete Fourier transform of b. Since b ∈ �2
+(C), the Fourier transform

b(·) extends to a holomorphic function in D and b(z) ∈ H2(D). Note that if b(z)
is a rational function with no poles and zeros in the closed unit disc, then b is an
outer function. The following result by Beurling (1949) appears as Lemma 4.1 in
Fuhrmann (1972). Since b(z) = 2

2−z = ∑∞
k=0 2−kzk is outer, the result implies that

the platoon system [x−1(t) := 0]

xk(t + 1) = xk−1(t)+ 2−ku(t), t,k ∈ N0.

is approximately reachable.

Theorem 12.20. System (12.23) is approximately reachable in �2
+(C) if and only if

b is an outer function.

Proof. For the convenience of the reader we recall the main arguments from
Fuhrmann (1972). System (12.23) is approximately reachable at zero if and
only if the functions e

√−1kθ b(e
√−1kθ ) span H2. The span V is invariant under

multiplication by e
√−1kθ , and therefore Beurling’s theorem implies that V = qH2
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for an inner function q. Thus b ∈ qH2, i.e., q divides b. Thus V = H2 if and only
if b does not contain a nontrivial inner function. By the inner-outer factorization
theorem, this is equivalent to b being outer. �

The situation becomes quite different if we replace the forward shift operator S
in (12.23) with the backward shift S∗. The approximate reachability of

x(t + 1) = S∗x(t)+ bu(t) (12.24)

is equivalent to b being a cyclic vector for S∗. The question of characterizing cyclic
vectors for the backward shift was first raised and answered by Douglas, Shapiro and
Shields (1970) and extended to the multivariable case in Fuhrmann (1976b). Their
characterization is, however, not as simple as that for S. A sufficient condition by
Douglas, Shapiro and Shields (1970) for the cyclicity of b for the backward shift is
that the Fourier transform b(z) ∈ H2 can be analytically continued across all points
of an arc in S1, with the exception of an isolated branch point in the arc. An example
of a cyclic vector is b(z) = exp(1/(z−2)). No rational function b(z) ∈H2 is cyclic,
and therefore rational stable functions lead to a nonreachable system (12.24). In fact,
from Kronecker’s theorem 4.18 one can deduce that the span of the orbit (S∗)nb is
finite-dimensional.

It is possible to extend the analysis to broader classes of one-sided platoon mod-
els. Let a(z)=∑∞

j=0 a jz j denote an analytic function in H2(D), with sup|z|≤1 |a(z)|<
∞, and let b(z) = ∑∞

j=0 b jz j ∈ H2(D). Then the discrete-time single-input linear
control system on �2

+(C) is well defined as

x(t + 1) = a(S)x(t)+ bu(t) (12.25)

or, equivalently, as

xk(t + 1) =
k

∑
j=0

ak− jx j(t)+ bku(t), t,k ∈ N0.

Note that for a(z) = z this specializes to (12.23). For the proof of the subsequent
theorem, we apply methods from the theory of composition operators in Hardy
spaces; see, for example, Douglas, Shapiro and Shields (1970) and Shapiro (1993)
for further details. In particular, we make use of the following classical result by
Walsh (1965) for polynomial approximations.

Theorem 12.21 (Walsh). Let a : D −→ C be an injective holomorphic function
such that the boundary of a(D) is a Jordan curve. Then the set {p ◦ a | p ∈ C[z]} of
polynomials in a is dense in H2(D).

The discussion of the following two examples is taken from Bourdon and Shapiro
(1990).
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Example 12.22. The univalent function a(z)= z
2−z ∈H∞(D) maps the closed disc D

conformally into itself with fixed points 0,1. Note that sup|z|≤1 |a(z)| = 1. The

composition operator Ca : H2(D) −→ H2(D) is bounded but does not have cyclic
vectors. Therefore, system (12.25)

xk(t + 1) =
k−1

∑
j=0

2 j−kx j(t)+ bku(t), t,k ∈N0,

is for no b ∈ �2
+(C) approximately reachable in �2

+(C). On the other hand, the
univalent function a(z) = 1

2−z ∈H∞(D) has z = 1 as its only fixed point and satisfies
sup|z|≤1 |a(z)|= 1. The composition operator Ca : H2(D)−→H2(D) is bounded and

cyclic. Thus there exists a generic set of elements b ∈ �2
+(C) such that

xk(t + 1) =
k

∑
j=0

2 j−k−1x j(t)+ bku(t), t,k ∈N0,

is approximately reachable in �2
+(C).

The following generalization of Theorem 12.20 is a simple consequence of the
Walsh theorem.

Theorem 12.23. Let b ∈ �2
+(C). Assume that a ∈ H2(D) defines an injective

analytic function a : D −→ C such that the boundary of a(D) is a Jordan curve.
Assume further that sup|z|≤1 |a(z)| < 1. System (12.25) is approximately reachable

in �2
+(C) if and only if b is an outer function.

Proof. The reachable set V consists of all functions (p ◦ a)b, where p ∈ C[z] is
a polynomial. By Theorem 12.21 of Walsh, this implies that the closure V of the
reachable set in H2 is equal to bH2. Let b = fg, with f inner and g outer, denote the
inner-outer factorization of b. Then the closure of the reachable set bH2 = fH2 is
equal to H2 if and only if f is constant, i.e., if and only if b is outer. �

Actually, a stronger version of Walsh’s theorem is valid asserting that the
polynomials in a are uniformly dense in the space of uniformly continuous bounded
analytic functions on D. This implies approximate reachability in �2

+(C) with
respect to the sup-norm on H2. We next proceed to show how one can apply such
uniform approximation techniques in a more general context. Consider bi-infinite
platoons with spatial domain Z, where m controls u(t) = (u1(t), . . . ,um(t))� ∈ R

m

are broadcasted to the platoon using

uk(t) = βku(t),
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where βk ∈ R
m×m. This leads to the broadcast control platoon system

ẋk(t) =
∞

∑
j=−∞

A jxk− j(t)+
∞

∑
j=−∞

B jβk− ju(t), k ∈ Z.

We assume that the bi-infinite sequence of matrices β = (βk) defines an L2 Fourier
transform

β (e
√−1θ ) :=

∞

∑
k=−∞

β−
√−1kθ

ke ∈ L2(S1;Cm×m).

The assumptions on A and B are as previously. Define matrix-valued functions as

A(e
√−1θ ) =

∞

∑
k=−∞

A−
√−1kθ

ke , B̂(e
√−1θ ) = B(e

√−1θ )β (e
√−1θ ).

The associated multiplication operators

A : L2(S1,Cn)−→ L2(S1,Cn) and B̂ : Cm −→ L2(S1,Cn)

are bounded linear operators, whereas the input-state operator B̂ is finite-
dimensional and therefore defines a compact operator. We thus obtain the system
on the Hilbert space L2(S1;Cn) with finite-dimensional controls as

ẋ(t) =A x(t)+ B̂u(t). (12.26)

The associated finite-dimensional, parameter-dependent, linear system on C
n is

ż(t) =A (e
√−1θ )z(t)+B(e

√−1θ )β (e
√−1θ )u(t),

with parameter space S1 being the unit circle. For a compact subset P⊂ S1 consider
the Hilbert spaces

L2
P(C

n) = { f ∈ L2(S1;Cn) | f = 0 outside P}, �2
P =F−1(L2

P),

with the isomorphism of Hilbert spaces L2
P(C

n)� L2(P,Cn).

By extending square-integrable matrix-valued functions A(e
√−1θ ), B(e

√−1θ ),
and β (e

√−1θ ) on P by zero to functions on S1 one can identify these matrix
functions with unique elements of, for example, L2

P(C
n×n). Then the linear mul-

tiplication operators A and B̂ map L2
P(C

n) and R
m into L2

P(C
n). In particular, the

linear system (12.26) is restricted to a control system on the Hilbert space L2
P(C

n).
In the single-input case we obtain the following approximate reachability result.
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Theorem 12.24. Let m= 1, and let P �= [0,2π ] denote a nonempty compact interval
contained in [0,2π ]. Assume that the matrix-valued functions θ �→ A(e

√−1θ ),
B(e

√−1θ ), and β (e
√−1θ ) are continuous on P. Assume further that the following

conditions are satisfied:

1. The pair (A(e
√−1θ ),B(e

√−1θ )β (e
√−1θ )) is reachable for all θ ∈ P.

2. The spectra of A(e
√−1θ ) and A(e

√−1θ ′) are disjoint for each θ ,θ ′ ∈ P,θ �= θ ′.
3. The eigenvalues of A(e

√−1θ ) are simple for each θ ∈ P.

Then the restricted system (12.26) on the Hilbert subspace L2
P(C

n) is approximately
reachable in finite time T > 0.

Proof. Let b(e
√−1θ ) := B(e

√−1θ )β (e
√−1θ ). Theorem 12.6 implies that the

parameter-dependent system

∂x(t,θ )
∂ t

= A(e
√−1θ )x(t,θ )+ b(e

√−1θ )u(t), θ ∈ P,

is uniformly ensemble reachable in finite time. Note that

∫ T

0
exp((T − s)A )B̂u(s)ds

coincides with the L2
P function

θ �→
∫ T

0
exp

(
(T − s)A(e

√−1θ )
)

b(e
√−1θ )u(s)ds.

This implies that the image of the reachability operator RT : L2([0,T ];Cm) −→
L2(P,Cn) = L2

P(C
n),

RT (u) =
∫ T

0
exp((T − s)A )B̂u(s)ds,

is dense in L2
P(C

n). This completes the proof. �

12.4 Control of Partial Differential Equations

In this section we explore several instances where the control of PDEs interacts
with networks of systems. This includes the realization of interconnected systems
and platoons as discretizations of PDEs and showing how results from parametric
linear systems can be used to gain further insight into PDEs using Fourier-transform
techniques. Finally, we explain how one can control the state-space probability
distributions of linear systems by solving the associated control task for the
Liouville equation.
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1. Networks as Discretizations of the Heat Equation. Let us consider one of the
simplest PDEs, the classical heat equation in one spatial variable z ∈ [0,1], with
boundary controls

∂ψ(t,z)
∂ t

=
∂ 2ψ(t,z)

∂ z2 ,

ψ(0,x) = 0, ψ(t,0) = u0(t), ψ(t,1) = u1(t).

Here the boundary value functions u0(t) and u1(t) are regarded as control variables.
For each nonnegative integer N and step size h = 1

N we subdivide the domain [0,1]
into N + 1 equidistant points zi = ih, i = 0, . . . ,N. Consider a lumped discretization
as x(t) = (ψ(t, 1

N ), . . . ,ψ(t, N−1
N ))� ∈ R

N−1, and assume that the boundary value
functions u(t) = (u0(t),u1(t))� are known. Then the boundary value condition
ψ(0,x) = 0 corresponds to the initial condition x(0) = 0. Using standard Taylor

approximations we can replace the second-order differential operator ∂ 2ψ(t,z)
∂ z2 with

its associated difference operator as

ψ(t,z+ h)− 2ψ(t,z)+ψ(t,z− h)
h2 .

By neglecting second-order error terms we end up with the discretized form of the
heat equation as

ẋ(t) =
1
h2 (Ax(t)+Bu(t)) . (12.27)

Of course, after rescaling time in x,u via x(h2t),u(h2t) this system becomes
equivalent to the linear system ẋ= Ax+Bu. Here (A,B)∈R

(N−1)×(N−1)×R
(N−1)×2

are the reachable pair

A =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

−2 1
1 −2 1

1
. . .

. . .
. . .

. . . 1
1 −2 1

1 −2

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

1 0
0 0
...

...
...

...
0 1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

. (12.28)

Note that (12.27) is an interconnected system for N − 1 identical first-order
integrators ẋi = vi, coupled by interconnection matrices (12.28) for the states and
inputs, respectively. Note further that A defines a Laplacian matrix for a tree, and
its spectrum was analyzed in Chapter 7. It is easily seen that the discretized heat
equation (12.27) is reachable.
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As another example, consider the control of the heat equation on the unit circle,
formulated as a periodic boundary value problem as

∂ψ(t,z)
∂ t

=
∂ 2ψ(t,z)

∂ z2 + u(t)g(z),

ψ(t,0) = ψ(t,1),

where g(z) = g(z+1) is assumed to be periodic with period one. By discretizing this
system using xN = x0,xN+1 = x1 and setting g(ih) = bi we obtain the single-input
control system ẋ = 1

h2 (Ax+ bu) with

A =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 1
1 −2 1

1
. . .

. . .
. . .

. . . 1
1 −2 1

1 −2

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

b1

b2
...
...

bN

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

. (12.29)

Here, A is a circulant matrix, and the reachability of such systems was analyzed
in Chapter 9 using the module structure on the set of circulant matrices. We refer
to Brockett and Willems (1974) for further discussion of discretized PDEs from a
module-theoretic point of view. Note that (12.29) is, up to sign, identical with the
finite platoon system (12.19). In particular, Theorem 12.18 implies that (12.29) is
not reachable.

The discretization process can be applied to more general boundary value
problems. We illustrate this by the following variant of the controlled heat equation

∂ψ(t,z)
∂ t

=
∂ 2ψ(t,z)

∂ z2 , (t,z) ∈ [0,T ]× [0,1],

∂ψ(t,0)
∂ z

= 0,
∂ψ(t,1)

∂ z
= u(t).

We refer the reader to Chapter 2.5.3 in the book by Coron (2007) for a detailed
discussion of the reachability properties of this system, including an approximate
reachability result Theorem 2.76 that is derived using flatness techniques. Using
Taylor approximations (with step sizes identical to those for the second derivative
term),

ψ(t,h)−ψ(t,0)
h

and
ψ(t,1)−ψ(t,1− h)

h
,

for ∂ψ(t,0)
∂ z and ∂ψ(t,1)

∂ z , respectively, the boundary conditions become ψ(t,h) = ψ
(t,0) and ψ(t,1) = ψ(t,1−h)+hu(t). Thus we arrive at the reachable single-input
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system

ẋ(t) =
1
h2 (Ax(t)+ hbu(t)) ,

with

A =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 1
1 −2 1

1
. . .

. . .
. . .

. . . 1
1 −2 1

1 −1

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

, b =

⎛

⎜
⎜
⎜
⎜
⎝

0
...
...
1

⎞

⎟
⎟
⎟
⎟
⎠
.

Again, this system is reachable and can be rescaled to standard form ẋ = Ax+ bu.
The spectral properties of matrix A were discussed in Section 8.7.

Instead of assuming a compact spatial domain, one can also consider the heat
equation on an unbounded domain. This leads to infinite platoons of systems as
their discretizations. Thus, consider, for example, the controlled heat equation on
the nonnegative real line [0,∞):

∂ψ(t,z)
∂ t

=
∂ 2ψ(t,z)

∂ z2 + g(z)u(t),

ψ(0,z) = 0.

Consider a lumped approximation x(t) = (xk(t)) = (ψ(t,k))k∈N0 ∈ �2
+ of ψ , and

(bk)k∈N0 := (g(k))k∈N0 ∈ �2
+ with step size h = 1. Using the standard discretization

for the second-order derivative one obtains the infinite platoon

ẋk(t) = xk+1(t)− 2xk(t)+ xk−1(t)(t)+ bku(t), k ∈ N0.

This shows that the study of infinite platoons can be of use for the control of PDEs.
The preceding examples illustrate that interesting interconnection matrices arise

as discretizations of PDEs. One can take this idea a step further by considering
discretizations of parametric linear systems coupled by diffusive terms. This leads
to networks of linear systems. Thus, consider, for example, the family of linear
systems

∂ψ(t,z)
∂ t

= αψ(t,z)+βv(t,z),

y(t,z) = γψ(t,z),

v(t,z) =
∂ 2y(t,z)

∂ 2z
+Bu(t),
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where the SISO system (α,β ,γ) ∈ R
n×n×R

n×R
1×n is reachable and observable,

z ∈ [0,1] and ψ(t,z) ∈ R
n. By discretizing the second-order differentiation term as

before we arrive at the interconnected linear system

ẋ = (IN ⊗α+A⊗βγ)x+(B⊗β )u(t),

where A is defined in (12.28) and B is arbitrary. By Theorem 9.15, this network is
reachable whenever (A,B) is reachable. If the spatial domain [0,1] is replaced by
the real line R, this leads to infinite networks of linear systems.

2. Fourier-Transform Techniques. The preceding examples showed how large-
scale interconnected control systems arise naturally as discretizations of boundary
control problems for PDEs. Using Fourier-transform techniques, one can associate
families of control systems to such PDEs on R

d . To illustrate this idea, we consider
the controlled heat equation in one spatial variable on the real line R:

∂ψ(t,z)
∂ t

= aψ(t,z)+
∂ 2ψ(t,z)

∂ z2 + u(t)

√
2
π

sin(Rz)
z

,

ψ(0,z) = 0.

(12.30)

Our goal is to find a control function u(t) that steers the initial temperature
distribution ψ(0,z) = 0 to a final distribution ψ(T,z) = ψ∗(z) in finite time T > 0.
More specifically, for ε > 0 and a function ψ∗ in the Sobolev space W 2(R) we want
to find T > 0 and a control u : [0,T ]−→R such that

∫ ∞

−∞
(ψ(T,z)−ψ∗(z))2 dz < ε. (12.31)

We refer to this as the approximate reachability task for ψ∗ in (12.30). We
emphasize that the control function in our problem is independent of the spatial
variable z. Thus the freedom one has in controlling the system is quite limited. To
approach such reachability questions, it is useful to note that (12.30) has a unique
solution ψ(t,z) ∈C1([0,∞),W 2(R)∩W 1

0 (R)) for piecewise smooth input functions
u(t); see Pazy (1983), Corollary 7.2.8. Thus the control problem is meaningful only
by assuming ψ∗ ∈W 2(R)∩W 1

0 (R). Since the space C∞
0 (R) of smooth functions

with compact support is dense in W 2(R), one has W 1
0 (R) = W 2(R). Thus the

control problem for the heat equation (12.30) on the real axis takes place in
W 2(R). Our approach now is to replace the heat equation by an ordinary differential
equation using the Fourier transform. This enables us to show that, under suitable
assumptions on ψ∗, such approximate reachability tasks for PDEs are related to the
ensemble control problem for parameter-dependent linear systems.
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Recall that the Fourier transform on R defines the linear isometry F :
L2(R)−→ L2(R),

(Fψ)(θ ) :=
1√
2π

∫ ∞

−∞
e−
√−1θzψ(z)dz,

with inverse transform

(F−1 f )(z) :=
1√
2π

∫ ∞

−∞
e
√−1θz f (θ )dθ .

It is well known that F maps the Sobolev space W 2(R) exactly onto the space of
all functions φ(θ ) such that (1+ |θ |)2φ(θ ) ∈ L2(R). Let

H(x) =

{
1 for x≥ 0,

0 otherwise

denote the Heaviside function. Note that for each R > 0 the Fourier transform of√
2
π

sin(Rz)
z is equal to H(R− |z|). Thus, by Fourier-transforming equation (12.30),

we obtain for x(t,θ ) := (Fψ)(t,θ ) the parameter-dependent control system

ẋ = (a−θ 2)x(t,θ )+H(R−|θ |)u(t), x(0,θ ) = 0. (12.32)

By restricting ourselves to the compact parameter domain P = [0,R] we obtain the
linear parameter-dependent system

ẋ = (a−θ 2)x(t,θ )+ u(t), x(0,θ ) = 0. (12.33)

Since the Fourier transform defines an isometry on L2(R), the approximate
reachability of the PDE (12.30) on the spatial domainR is equivalent to the existence
of an input function u(t) that is independent of the parameter θ ∈ [0,R] and has the
following approximation property: For each function θ �→ x∗(θ ) of terminal states
in F (W 2) and ε > 0 there exists T > 0 such that the solution of (12.30) satisfies

∫ R

0
(x(T,θ )− x∗(θ ))2 dθ < ε.

Thus we see that the approximate reachability task for the heat equation is equivalent
to L2-ensemble reachability for a simple family of first-order linear systems. Our
previous results on uniform ensemble reachability apply and yield corresponding
results on approximate reachability for PDEs. However, there is a “but” insofar
as our results will only imply reachability within a certain frequency band. These
observations are in harmony with stronger positive approximate reachability results
established for the heat equation (12.30) on arbitrary bounded domains; see
Theorem 2.76 in the book by Coron (2007).
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Theorem 12.25. Assume that ψ∗(z) ∈ W 2 is such that its Fourier transform
x∗(θ ) = F (ψ∗)(θ ) is an even function of θ with support contained in [−R,R].
Then the heat equation (12.30) is approximately reachable to ψ∗.

Proof. We first show that the approximate reachability of the heat equation to ψ∗ is
equivalent to the L2-ensemble reachability of the linear parametric system (12.33)
to x∗. By Theorem 12.6, the family (12.33) is uniform ensemble reachable on the
parameter interval [0,R]. This then completes the proof. To prove the equivalence
of the two notions of reachability, suppose that u is an input such that ψ(T, ·) ∈W 2

satisfies (12.31). Then x(t,θ ) = F (ψ(t, ·) is a solution of (12.32). Since F is an
isometry on L2, we obtain for x∗ :=F (ψ∗)

∫ ∞

−∞
(ψ(T,z)−ψ∗(z))2 dz =

∫ ∞

−∞
(x(T,θ)− x∗(θ))2 dθ =

∫ R

−R
(x(T,θ)− x∗(θ))2 dθ

= 2
∫ R

0
(x(T,θ)− x∗(θ))2 dθ < 2ε .

Here the second equation follows from the support property of x∗, while the
third follows from the evenness of the functions x(T,θ ) and x∗(θ ). Conversely, for
each solution x(t,θ ) of (12.33) we note that H(R− |θ |)x(t,θ ) defines a solution
of (12.32). Since θ �→ H(R− |θ |)x(t,θ ) has compact support, (1 + |θ |)2H(R−
|θ |)x(t,θ ) also has compact support. Thus H(R− |θ |)x(t,θ ) is an element of
F (W 2(R)) for all t ≥ 0. This shows that the inverse Fourier transform F−1(H(R−
|θ |)x(t,θ )) maps solutions to (12.32) bijectively to the solutions of the heat
equation (12.30). �
3. Control of Liouville Equation. We now present a reachability result by Brockett
on the Liouville equation, restricted to the space of Gaussian distributions. We
begin by deriving the classical Liouville transport equation for time-varying vector
fields. Let f (x, t) be a time-varying complete Ck-vector field on a smooth orientable
Riemannian manifold M. Let dx denote the canonical volume form on M and ρ(0, ·)
denote a smooth function with

∫

M
ρ(0,x)dx = 1.

Let φt,s denote the flow semigroup of f . Thus φt,s is a diffeomorphism on M with
φt,sφs,t = idM and

∂φt,s(x)
∂ t

= f (φt,s(x), t).

Define

ρ(t,x) = ρ(0,φ0,t(x))detDφ0,t(x),
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i.e., ρ(t,x)dx is the pullback of the volume form ρ(0,x)dx by the diffeomorphism
φ0,t . Applying the transformation theorem one concludes that, for all t,

∫

M
ρ(t,x)dx = 1.

Consider a smooth function ψ(x) on M with compact support. By a change of
variables,

∫

M
ψ(x)ρ(t,x)dx =

∫

M
ψ(x)ρ(0,φ0,t(x))detDφ0,t(x)dx =

∫

M
ψ(φt,0(x))ρ(0,x)dx,

and so, by differentiating both sides, we obtain

∫

M
ψ(x)

∂ρ(t,x)
∂ t

dx =
d
dt

∫

M
ψ(x)ρ(t,x)dx =

∫

M

∂ψ(φt,0(x))
∂ t

ρ(0,x)dx

=

∫

M
dψ(φt,0(x)) f (φt,0(x), t)ρ(0,x)dx

=

∫

M
dψ(x) f (x, t)ρ(0,φ0,t (x))detDφ0,t(x)dx

=

∫

M
dψ(x) f (x, t)ρ(t,x)dx.

For time-varying vector fields F , the divergence on M satisfies the well-known iden-
tity div(ψ(x)F(x, t)) = dψ(x)F(x, t) + ψ(x)divF(x, t). Applying the divergence
theorem, we obtain, for F(x, t) = ρ(t,x) f (x, t),

∫

M
ψ(x)

∂ρ(t,x)
∂ t

dx =−
∫

M
ψ(x)div( f (x, t)ρ(t,x))dx+

∫

M
div(ψ(x) f (x, t)ρ(t,x))dx

=−
∫

M
ψ(x)div( f (x, t)ρ(t,x))dx.

Thus we conclude that ρ(t,x) satisfies the transport equation

∂ρ(t,x)
∂ t

=−div( f (x, t)ρ(t,x)), ρ(0,x) = ρ(x). (12.34)

Conversely, if ρ is a Ck-function on R
n, then ρ(t,x) = ρ(φ0,t(x))detDφ0,t(x) is the

unique Ck-solution of the initial value problem (12.34). Applying this equation to a
control affine vector field f (x)+ ug(x), a major distinction between open-loop and
closed-loop control becomes manifest. In fact, for open-loop controls we obtain a
control system on the space of density functions as

∂ρ(t,x)
∂ t

=−div( f (x)ρ(t,x))− u(t)div(g(x)ρ(t,x)),
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while smooth feedback control leads to

∂ρ(t,x)
∂ t

=−div( f (x)ρ(t,x))− u(x)div(g(x)ρ(t,x))− du(x)g(x)ρ(t,x).
(12.35)

The difference appears already for linear systems f (x,u) =Ax+Bu in R
n. We obtain

the open-loop transport equation

∂ρ(t,x)
∂ t

=−tr (A)ρ(t,x)− (Ax+Bu)�∇ρ(t,x), (12.36)

while the closed-loop state feedback u = Kx leads to

∂ρ(t,x)
∂ t

=−tr (A+BK)ρ(t,x)− ((A+BK)x)�∇ρ(t,x). (12.37)

The open-loop solution of (12.36) is

ρ(t,x) = e−t trAρ
(

0,e−tA(x−
∫ t

0
e(t−s)ABu(s)ds)

)
,

while the closed-loop solution of (12.37) under the state feedback u = Kx is

ρ(t,x) = e−t tr(A+BK)ρ(0,e−t(A+BK)x).

A Gaussian distribution function with positive definite covariance matrix Q =
Q� > 0 and mean value μ ∈ R

n is defined as

gQ,μ(x) =
1

√
(2π)n detQ

exp

(
−1

2
(x− μ)�Q−1(x− μ)

)
.

Let P denote the convex set of positive definite real symmetric n× n matrices
Q. Since the map (Q,μ) �→ gQ,μ is injective, we see that the set of Gaussian
distributions forms a smooth manifold G that is diffeomorphic to P ×R

n and
is embedded into C∞(Rn). Moreover, the Gaussian distribution satisfies, for every
invertible transformation S ∈ GL+(n,R) with positive determinant and μ ∈ R

n, the
identity

gSQS�,Sμ(x) =
1

detS
gQ,μ(S

−1x).
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We now consider the effect of transporting a Gaussian distribution by a linear
control system. The solutions of the linear system ẋ = Ax+Bu are

x(t) = φt,0(x) = etAx+
∫ t

0
e(t−s)ABu(s)ds,

with

φ0,t(x) = e−tAx−
∫ t

0
e−sABu(s)ds.

Therefore,

gQ,μ(φ0,t(x)) = et tr(A)gQ(t),μ(t)(x),

with

Q(t) = etAQetA� , μ(t) = φt,0(μ) = etAμ +

∫ t

0
e(t−s)ABu(s)ds.

This implies the explicit formula for the L2-distance

∫

Rn
(gQ,μ(x)− gQ(t),μ(t)(x))

2dx =
1

√
(4π)n detQ

+
e−t trA

√
(4π)n detQ

−
2exp

(
− 1

2 (μ− μ(t))�(Q+ etAQetA�)−1(μ− μ(t))
)

√
(2π)n det(Q+ etAQetA�)

.

Now consider the bilinear control system

ẋ = (A+BK(t))x+Bu(t),

where K(t) and u(t) act as independent control functions. Thus, by this process, we
combine open-loop and closed-loop controls for the transport equation (12.39) on
Gaussian density functions. This induces the control system on the parameter space
for Gaussian densities as

Q̇(t) = (A+BK(t))Q(t)+Q(t)(A+BK(t))�,

μ̇(t) = (A+BK(t))μ(t)+Bu(t),
(12.38)

which is equivalent to the restriction of (12.39) on G .
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Theorem 12.26 (Brockett (2012)). Assume that (A,B) is reachable. Then the
control system (12.38) on P ×R

n is reachable. For pairs (Q0,μ0) and (Q1,μ1)
in P×R

n there exists T > 0 and control functions u(t) and K(t) on [0,T ] that steer
(12.38) from (Q0,μ0) to (Q1,μ1).

Proof. The tangent space of P at Q consists of all matrices of the form LQ+QL�,
with L ∈ R

n×n. Thus the solutions Q(t) and μ(t) of (12.38) exist for all time and
stay in P×R

n. Every positive definite matrix Q can be factored as Q = XX�, with a
factor X ∈ GL+(n,R) of positive determinant. Thus it suffices to prove reachability
for the lifted system on GL+(n,R)×R

n:

Ẋ(t) = (A+BK(t))X(t),

μ̇(t) = (A+BK(t))μ(t)+Bu(t).

This in turn is reachable if and only if the decoupled system

Ẋ(t) = (A+BK(t))X(t),

μ̇(t) = Aμ(t)+Bu(t)

is reachable. The second subsystem is linear and, thus, by assumption on (A,B),
is reachable on R

n in time T > 0. The first equation is bilinear. The reachability
of this system follows from a beautiful argument by Brockett (2012) that we now
sketch. Recall that a bilinear control system on a Lie group is reachable provided
the system is accessible and there exists a constant control such that the system is
weakly Poisson stable; see Lian, Wang and Fu (1994). Since (A,B) is reachable,
there exists a feedback matrix K such that L := A+BK has distinct eigenvalues that
are integer multiples of 2π

√−1. Thus there exists a (constant) control K such that
etL is periodic. This shows that Ẋ(t) = (A+BK(t))X(t) is weakly Poisson stable
for a suitable constant input. So it remains to prove the accessibility of the system.
To this end, we compute the system Lie algebra g. Thus g contains A together with
every square matrix whose image is contained in that of B. The Lie bracket of A and
BK is [A,BK] = ABK−BKA. Hence, g contains every matrix whose image space
is contained in that of AB. By iterating this argument, we see that g contains all
matrices whose image space is contained in the image space of (B,AB, . . . ,AnB).
By the reachability of (A,B), this implies that g contains all real n× n matrices.
Therefore, the Lie algebra rank condition shows the accessibility of the bilinear
system. �

The preceding proof shows that open-loop control enables one only to control the
mean value of a Gaussian state distribution. To control both the mean and variance of
a Gaussian distribution, one needs to apply both open-loop and closed-loop controls
in the bilinear affine form u(t,x) = K(t)x+ u(t). We conclude with the following
straightforward consequence of Theorem 12.26.
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Theorem 12.27. Assume that (A,B) is reachable. The transport system

∂ρ(t,x)
∂ t

=−tr (A+BK(t))ρ(t,x)− ((A+BK(t))x+Bu(t))�∇ρ(t,x), (12.39)

with independent controls u(t) and K(t), leaves the manifold G of Gaussian
distributions invariant. Using the controlled flow (12.39), one can steer in finite time
T > 0 two Gaussian distributions gQ1,μ1 and gQ2,μ2 into each other. Thus (12.39) is
reachable on G .

The preceding result can be generalized in several directions. First, one might
consider replacing the set of positive definite matrices by the positive cone in a
Euclidean Jordan algebra. Instead of using state feedback A+BK, one could study
the effects of output feedback A+BKC. Finally, one might consider networks of
systems and try to establish controllability results for the mean and covariance of
state vectors in such interconnected systems. We leave these problems for future
research.

12.5 Exercises

1. Show that the discrete-time system xt+1(θ ) = A(θ )xt(θ )+ b(θ )ut , with

A(θ ) =
(

θ 1
0 θ

)
, b(θ ) =

(
0
1

)
,

is not ensemble reachable over P = [0,1].
2. Show that the discrete-time system xt+1(θ ) = A(θ )xt(θ )+ b(θ )ut , with

A(θ ) =
(

0 1
0 θ

)
, b(θ ) =

(
0
1

)
,

is ensemble reachable over P = [0,1].
3. Let P = [0,1]. Consider the infinite sequence of systems

Ak(θ ) =
(

0 −θ 2− 1/k2

0 2θ

)
, bk(θ ) =

(
1
0

)
.

a. Verify that Ak(θ ) and bk(θ ) are uniformly ensemble reachable for each finite
k, but the limiting system A∞(θ ),b∞(θ )) is not uniformly ensemble reachable.

b. Prove that the set of uniformly ensemble reachable SISO systems is neither
open nor closed in the topology of uniform convergence.
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4. Let (A,b,c) ∈ R
n×n×R

n×R
1×n be reachable and observable, R > 0 fixed, and

assume that A−θ 2bc has distinct eigenvalues for θ ∈ P = [0,R]. Let x∗(θ ) be a
continuous function on P. Prove that there exists T > 0 and a piecewise constant
input function u : [0,T ] −→ R such that the Fourier transform of the unique
solution ψ(t,z) ∈R

n of the coupled system of PDEs

∂ψ
∂ t

(t,z) = (A+
∂ 2

∂ z2 bc)ψ(t,z)+ bu(t)

√
2
π

sin(Rz)
z

, ψ(0,z) = 0,

satisfies

max
θ∈P

‖(Fψ)(T,θ )− x∗(θ )‖< ε.

5. Prove the following formula for the L2-distance of two Gaussian distributions:

F(Q1,Q2,μ1,μ2) :=
∫

Rn
(gQ1,μ1(x)− gQ2,μ2(x))

2dx =
1

√
(4π)n detQ1

+

1
√
(4π)n detQ2

− 2exp
(− 1

2(μ1− μ2)
�(Q1 +Q2)

−1(μ1− μ2)
)

√
(2π)n det(Q1 +Q2)

.

Show that for fixed values of Q1 and μ1 the function (Q,μ) �→ F(Q1,Q,μ1,μ) is
strictly convex and assumes its minimum value at Q = Q1,μ = μ1.

12.6 Notes and References

Open-loop control issues for ensembles of systems have been studied in order
to design robust compensating pulse sequences in quantum control and NMR
spectroscopy; see, for example, Li and Khaneja (2006). The main motivation here
comes from the known difficulties of quantum mechanical observations, which
makes feedback strategies difficult to implement. Rigorous results for the ensemble
control of infinite-dimensional bilinear systems have been obtained by Beauchard,
Coron and Rouchon (2010). Open-loop control is also of interest for understanding
biological formation control tasks for flocks of systems; see, for example, Brockett
(2010). Perhaps the best control strategies are neither pure open-loop nor feedback
control, and a mixture of the two seems more promising. This point of view has been
stressed in a number of recent papers on minimum attention control, for example, by
Brockett (1997), Brockett (2008), and Brockett (2012). These general control issues
of how to best combine open- and closed-loop control strategies certainly deserve
further study.

A well-studied issue in controlling parameter-dependent systems is that of
robustness, where the goal is to find input functions that achieve a desired control
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objective, irrespective of parameter variations in the system. This can be done either
in closed-loop, using feedback transformations, or open-loop control strategies.
A classical robust feedback control problem is the so-called blending problem,
namely, the task of finding a dynamic output feedback controller that simultaneously
stabilizes a one-parameter family of scalar transfer functions; see, for example,
Khargonekar and Tannenbaum (1985); Tannenbaum (1980) for a solution to special
cases via Nevanlinna–Pick interpolation. To date, no general solution to the blending
problem for families of MIMO systems is known. Proceeding in a different
direction, we mention the pioneering work by Kharitonov on robust stability. In fact,
the paper by Kharitonov (1978) has inspired several researchers to find switching
controllers for the stabilization of polytopic families of linear systems; see, for
example, Ghosh (1985).

The approximation theorem of Mergelyan (1952) is a very natural generalization
of the Stone–Weierstrass theorem, but known proofs as in Gaier (1987) are not
constructive. Runge’s approximation theorem is a weaker version of Mergelyan’s
theorem, where the approximating polynomials get replaced by rational functions.
Error results for the polynomial approximations in Mergelyan’s theorem are
obtained by Saff and Totik (1989). A potentially interesting method for computing
input sequences for ensemble control is provided by the Faber polynomials (we
are grateful to Christian Lubich for suggesting this to us). Faber polynomials
p j(z), j ∈N, allow one to approximate analytic functions f (z) in a complex domain
K by a convergent series of the form c0 +∑∞

j=1 c j p j(z), where only the coefficients
c j depend on f (z). Such polynomials exist if the complement of K in the extended
complex plane is simply connected.

Corollary 12.4 characterizes ensemble reachability for a finite set of parameters.
The proof shows that this statement, i.e., the characterization of reachability for
the parallel connection of finitely many SISO systems, is equivalent to the Chinese
remainder theorem or to Lagrange interpolation. Thus corresponding reachability
results should follow for parallel connections of countably many SISO systems via
interpolation results for analytic functions such as the Mittag–Leffler theorem. We
refer to Helmke and Schönlein (2014) for a proof of Theorem 12.6. Condition (c)
in Theorem 12.6, stating that all eigenvalues of A(θ ) are simple, cannot be removed
easily. Exercise 1 gives a counterexample. Proposition 12.12 and Exercises 1 and 3
are due to Scherlein (2014).

It has been shown that, by restricting the set of parameters in (12.1) to a finite
subset, a parametric family of systems is equivalent to the parallel connection of
linear systems. This can be generalized as follows. Consider a mixed differential
and integral Volterra equation of the form

∂
∂ t

x(t,θ ) = A(θ )x(t,θ )+
∫

P
K(θ ,θ ′)x(t,θ ′)dθ ′+B(θ )u(t). (12.40)

Here we allow for rather general classes of kernel functions K(x,y). Note that if P
is a compact group and the integral defines a convolution operator with respect to
the Haar measure, then the class of spatially invariant systems studied by Bamieh,
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Paganini and Dahleh (2002) is obtained. Moreover, if one replaces the integral term
with a Riemann sum and restricts oneself to the finite subset of N sampling points
θi, then one obtains

∂
∂ t

x(t,θi) = A(θi)x(t,θi)+
N

∑
j=1

K(θi,θ j)x(t,θ j)+B(θi)u(t),

i.e., one obtains the general equations for a linear network of systems (9.5) studied
in Chapter 9. This shows that spatiotemporal systems of the form (12.40) are
the infinite-network counterparts of the finite system interconnections studied in
Chapter 9. For general existence and uniqueness results for integral equations of the
Volterra type we refer the reader to Väth (2000). We are not aware of systematic
studies of the reachability or observability properties of systems of the form 12.40.

Theorem 12.19 and generalizations to exact reachability are due to Curtain,
Iftime and Zwart (2009). The textbook by Curtain and Zwart (1995), Section 4.2,
provides simple sufficient conditions for approximate reachability in a Hilbert
space. These conditions require knowledge of a Riesz basis of eigenvectors and
therefore do not apply to multiplication operators, which have a continuous
spectrum. Multiplication operators on spaces of L2-functions are not compact;
the spectral approximation properties of such operators using finite-dimensional
operators therefore become a nontrivial issue. We refer to Morrison (1995) for a
nice presentation of results and examples in this direction.

The reachability properties of systems in Hardy spaces of analytic functions
were derived by Fuhrmann (1972) and depend on Beurling’s characterization of
shift-invariant subspaces. We refer the reader to Fuhrmann (2012) for a discussion
of SISO systems in a Hardy-space context that is close to the spirit of this book.
A characterization of cyclic vectors for the backward shift is due to Douglas,
Shapiro and Shields (1970). Composition operators on H2 provide interesting
examples of infinite-dimensional dynamical systems, and indeed of control systems.
Littlewood’s subordination principle, see, for example, Shapiro (1993), asserts that
every composition operator Cφ ( f ) = f ◦ φ by an analytic function φ : D −→ D,
with φ(0) = 0, takes the Hardy space H2 into itself. This implies a generalization
of the situation studied in Section 11.3 to infinite homogeneous networks, i.e., that
the network transfer function Ng(z) = N (h(z)) of a homogeneous network with
interconnection transfer function N ∈ H2 is always in H2 provided h(z) = 1/g(z)
is an inner function with h(0)= 0. A nontrivial control system on spaces of univalent
analytic functions is defined by Löwner’s equation on the unit disc D

∂w(t,z)
∂ t

=−e
√−1u(t) +w(t,z)

e
√−1u(t)−w(t,z)

w(t,z), w(0,z) = z.

Here the complex parameter z varies in the open unit disc. A generalization of this
system on suitable matrix balls and its reachability properties would be interesting
to study. For a study of the cyclicity and hyper cyclicity of composition operators,
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and further connections to universality in a function-theoretic context, we refer
the reader to Grosse-Erdmann (1999). It seems that the connection to questions of
reachability and observability has been overlooked within this circle of ideas.

A generalization of the Liouville equation (12.35) that has been frequently
studied is the Fokker–Planck equation

∂
∂ t

ρ(x, t) =
1
2

n

∑
i, j=1

∂ 2

∂xi∂x j
(aij(x, t,u)ρ(x, t))−

n

∑
i=1

∂
∂xi

(bi(x, t,u)ρ(x, t)) .

It is well known that the Fokker–Planck equation describes the evolution of prob-
ability density functions that are propagated by stochastic differential equations;
see, for example, Hazewinkel and Willems (1981) for a collection of articles on
the subject. Thus, similar to the Liouville equation, the Fokker–Planck equation
is a natural object of study in ensemble control. We refer the reader to Jordan,
Kinderlehrer and Otto (1998) for a demonstration of the connection with steepest
descent flows on spaces of probability measures with respect to the Wasserstein
metric and to Blaquiere (1992) and Poretta (2014) for reachability results on the
Fokker–Planck equation.
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Symbols
(A,B) invariant subspace, 331
< ·, ·>C, 265
D-positive polynomial, 266
Lq-ensemble reachable, 604
M∗(z,w), 265
SD, 116
SD, 88
T -trackable output, 362
T ∗, 217
TA, 129
X(G), 183
XD, 116
XD, 87
XU , 339
Z(G), 183
ZK ,ZC, 367, 386
[·, ·], 122
[·, ·]C, 264
Σ1∨Σ2, 508
Σ1∨ · · ·∨Σi, 512
Σ1∧Σ2, 513
Σ1∧ · · ·∧Σi, 515
F-Kronecker product, 226
F[z]-Kronecker product, 226
F (V ), 331
G (V ), 341
F , 283
FON(V ), 334
G , 285
Oi(K,A), 394
O(C,A), 199
O∗, 199

HomF[z](XD1 ,XD2), 244
HomF(XD1 ,XD2), 244
BilS,R(M,N;L), 214
πD, 117
πT , 123
π+,π−, 86
πD, 87
πD1(z)⊗D�2 (w), 226
πD1(z)⊗D�2 (z), 226
σ , 114, 115
τD, 117
e, 418, 425
Ã(z), 264
l2(N), 85
C (A), 102
TA, 129

A
abstract realization, 157
adapted coprime factorization, 366
adjoint transformation, 217
admissible sequence, 142
algebraic dual space, 123
annihilator, 220
aperiodic matrix, 420
approximate reachability, 604
asymptotic observer, 374
asymptotic stability, 256
asymptotic tracking observer, 374
autonomous behavior, 116
autonomous system, 317
autoregressive representation, 149
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B
backward shift, 114, 115
backward shift operator, 148, 474
Barnett formula, 255
basis matrix, 175
Bezout equation, 30
Bezout map, 251, 252
Bezout matrix, 254
Bezout operator, 253
Bezoutian form, 251, 254, 275
Bezoutian matrix, 103, 275
biproper function, 52, 130
blending problem, 602
block-circulant matrix, 498
broadcasting, 2, 508
Brunovsky canonical form, 299

C
canonical Laplacian, 443
canonical realization, 157
canonically weighted digraph, 431
causality, 143
Cayley–Menger variety, 435
Cayley–Menger determinant, 436
Cayley–Menger matrix, 437
Chinese remainder theorem, 34, 126
clouds, 520
cokernel, 131
column degrees, 41
column properness, 41
commutant, 102
commutant lifting theorem, 69, 247
compatible controlled invariant subspaces, 332
compatible subspaces, 341
complete graph, 435
conditioned invariant subspace, 341, 569
connected graph, 428
consensus problem, 555
constant gain feedback, 281
continued fractions, 32
contraction, 415
control basis, 255, 273, 304
control canonical form, 304
controllability indices, 292
controlled invariant subspace, 331, 568
coprime factorizations over RH∞, 322
cyclic vector, 107
cyclicity, 107

D
decomposable interconnection, 571
degree, 28

degree of a polynomial vector, 41
descriptor system, 90
detectable, 317
detectable output, 362
diffusive coupling, 567
direct sum, 92
directed graph (digraph), 427
discrete topology, 313
divisor, 24, 28
dominance order, 311
doubly stochastic matrix, 424
doubly coprime factorization, 54, 105, 323
dual basis matrix, 175
dual Kronecker indices, 397
dual Newton interpolation polynomials, 544
dual pairing, 122
duality, 122
dynamic feedback control, 281
dynamic MVC system, 556
dynamic output feedback, 319

E
edges, 429
eigenvalue of a polynomial matrix D(z), 269
elementary divisors, 66, 110
ensemble observability, 614
ergodic theorem, 422
error trajectory, 374
estimation error, 357, 374
Euclidean distance matrix, 435
Euclidean group, 439

F
Faber polynomials, 642
factor group, 25
factorization indices, 56
feedback connection, 319, 516
feedback control, 281
feedback group, 283
feedback interconnection, well-posed, 319
feedback stabilizability, 314
field of fractions, 71
finite zeros, 483
finite-dimensional linear system, 144
finite-dimensional realization, 157
finitely determined observer, 374
flat output, 196, 206
flatness, 526
flocking matrix, 447
formal power series, 86
formation, 434
Fourier transform, discrete, 625
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Fourier matrix, 498
Fourier transform, 634
Fourier transform, discrete, 622
free module, 38
friend, 341
Fuhrmann system equivalence, 170
full submodule, 39, 67
functional observer, 374
future, 142

G
Gaussian distribution, 637
generalized Bezout matrix, 253
generalized Bezoutian, 244
generalized circulant matrix, 503
generalized descriptor systems, 146
generalized Laplacian, 458
Google matrix, 464
graph, 429
greatest common divisor, 28
greatest common left divisor, 46
greatest common left Kronecker divisor, 237
greatest common right divisor, 46

H
Hadamard product, 462
Hankel operator, 143, 155
Hautus criterion, 154
Hegselmann-Krause model, 565
Hermite normal form, 59
Hermite–Fujiwara form, 273
Hermite–Fujiwara matrix, 274
Hermitian adjoint matrix, 258
Hermitian dual pairing, 258
Hermitian map, 258
Hermitian polynomial matrix, 265
highest column degree coefficient matrix, 41
Hilbert metric, 414
homogeneous network, 474
homogeneous polynomial Sylvester equation,

243
HPSE, 243
Hurwitz matrix, 458
Hurwitz polynomial, 259

I
ideal, 24
incidence matrix, 441
index, 418
inertia of a matrix, 262
infinitesimal rigidity, 439

inner detectable, 343
inner stabilizable, 335
input space, 144
integral domain, 24
interconnection transfer function, 474
internal model principle, 586
internal stability, 320
interpolation, 542, 545
intertwining map, 102, 103
intertwining relation, 53
invariant factors, 62, 66
invariant subspaces, 91
irreducible matrix, 418, 424
irreducible ring element, 26
isomorphic polynomial models, 94
isomorphic systems, 161

J
Jacobson radical, 75
Jordan canonical form, 111

K
Kalman decomposition, 308
Kalman rank condition, 154
kernel representation, 246
Kron reduction, 460
Kronecker, 160
Kronecker indices, 301
Kronecker matrix product, 411
Kronecker product polynomial model, 228
Kronecker product rational model, 231
Kronecker–Hermite canonical form, 60

L
Lagrange interpolation polynomials, 543
Laplacian of a digraph, 442
Laplacian operator, 446
latent variables, 147
Laurent operator, 143
Laurent series, 86
least common left multiple, 46
least common multiple, 28
least common right multiple, 46
left coprime, 48
left factorization group, 58
left prime, 49
left Wiener–Hopf factorization, 55
Leslie matrix, 464
lifted system, 502
local ring, 72
Local-Global Principle, 74
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localization, 70
Luenberger observer, 357
Lyapunov equation, 261
Lyapunov inequality, 260, 262

M
Markov chain, 425
Markov parameters, 146
matrix tree theorem, 448
matrix Cauchy index, 505
matrix fraction systems, 475
McMillan degree, 31, 163
mean value consensus (MVC) problem, 555
memoryless controller, 281
minimal basis, 41
minimal factorization, 552
minimal indices of a module, 45
minimal input, 190
minimal realization, 163
minimal rigidity, 440
minimax principle, 444
module, 36
module isomorphism, 37
multiplicatively closed, 70
mutual coprimeness, 28
mutual left coprimeness, 94
mutual right coprimeness, 94

N
Nakayama Lemma, 75
neighborhood, 427
network transfer function, 474
Newton interpolation polynomials, 544
node system, 472
node transfer function, 474
nonnegative matrices, 412
nonnegative polynomial, 265
normalized Laplacian, 447, 558

O
observability indices, 292
observability map, 199
observability subspace, 342
observable output, 362
observable realization, 157
observable system, 151
observer, 355
observer gain matrix, 357
observer Sylvester equation, 376
open-loop control, 281
open-loop stabilizable, 313

orbits, 284
order, 41
order indices of a module, 45
order of a submodule, 45
orientation, 427
outer detectable, 343
outer detectable subspace, 569
outer stabilizable, 335, 569
outer stable subspace, 568
output behavior, 586
output feedback, 281
output injection equivalence, 285, 364
output injection group, 285
output injection stable, 318
output nulling friend, 334
output nulling reachability subspace, 334
output nulling subspace, 334
output space, 144
output synchronization, 587

P
Paltoons, infinite, 621
parahermitian, 269
parahermitian adjoint, 269
parallel coupling, 508, 512
partial observability matrix, 394
partial state synchronization space, 583
partial states, 147
past, 142
path, 430
periodic system, 421
permanence principle, 483
Perron Frobenius Theorem, 417
Perron vector, 418
pinning control, 469
Platoons, finite, 618
pole module, 183
poles of a transfer function, 178
polynomial Brunovsky form, 299
polynomial equivalence, 63
polynomial Jordan form, 110
polynomial matrix description, 146, 474
polynomial model, 87
polynomial model, rectangular, 339, 347
polynomial Sylvester equation, 243
polynomial Sylvester operator, 242
polynomial system matrix, 7, 147
positive definite map, 258
positive real function, 574
Positive Real Lemma, 574
positive semidefinite matrices, 413
primary decomposition, 110
prime element, 26
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primitive matrix, 424, 433
primitivity index, 433
principal ideal domain, 25
projective metric, 413
proper rational function, 52
PSE, 243

Q
quadratic form, 266
quotient module, 37
quotient ring, 26

R
rational function, 31
rational model, 116
rational model, rectangular, 347
Rayleigh quotient, 416
reachability indices, 292
reachability map, 190
reachable, 151
reachable realization, 157
reachable subspace, 190
reconstructibility index, 362
reconstructible output, 362
reduced observability map, 200
reduced reachability map, 190, 196, 529, 532
reflected polynomial, 153
representing kernel, 246
residue, 86, 223
residue classes, 25
restricted input/output map, 143
restricted shift, 116
restricted state feedback equivalent, 301
restricted state feedback group, 301
reverse graph, 442
right coprime, 49
right prime, 49
Right tangential Lagrange interpolation, 545
rigid formation, 440
rigid graph, 440
rigidity matrix, 439
ring isomorphism, 25
ring homomorphism, 25
robust synchronization, 616

S
saturated set of polynomials, 316
Schur complement, 457
Schur polynomial, 259

Schur stable matrix, 313
self-adjoint map, 258
separable rational functions, 232
separation principle, 358
series coupling, 513
sesquilinear form, 257
shift operator, 88
shift realization, 164, 169
similar systems, 161
skew complement, 99
skew primeness, 98
Smith normal form, 49, 61
Smith–McMillan form, 62
spanning tree, 431
spectral assignability, 374
spectral decomposition, 117
spectral graph theory, 441
spectral radius, 418
stability domain, 259, 313
stabilizable pair, 313
stable matrix, 269
stable polynomial matrix, 269, 313
standard basis, 254, 273
standard inner product, 258
standard MVC system, 556
state feedback, 281
state feedback action, 284
state feedback equivalence, 284
state feedback irreducible, 296
state feedback law, 283
state feedback stabilizer group, 300
state module, 157
state observer, 357
state space, 144, 157
state synchronization space, 583
state-space description, 144
state-space isomorphism theorem, 162
state-space realization, 146, 157
stochastic matrix, 424
strict system equivalence, 170
strictly proper power series, 86
strictly proper rational functions, 52
strongly tracking observer, 374
subgraph, 428
Sylvester operator, 242
Sylvester equation, 242
synchronization, 7, 13
synchronization dynamics, 570
synchronization space, 579
synchronized output behavior, 587
system dimension, 144
system intertwining maps, 161
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T
tensor product, 211
tensor product of linear maps, 213
tensored polynomial model, 138
tight conditioned invariant subspace, 341
Toeplitz induced operator, 132
Toeplitz operator, 129
Toeplitz operator symbol, 129
torsion, 67
tracking index, 362
tracking observer, 374
transfer function, 146
transversal intersection, 92
two-variable Kronecker product rational

model, 231
two-variable Toeplitz operators, 231

U
uniform ensemble reachability, 604
unimodular equivalence, 59
unimodular left equivalence, 59
unimodular polynomial matrix, 40
unimodular right equivalence, 59

unit, 26
unobservable subspace, 199

V
vector space annihilator, 216
vector space dual, 216
vertices, 429
Vicsek model, 564

W
Weierstrass decomposition, 90
weighted adjacency matrix, 431
weighted digraph, 431
Weyl eigenvalue inequality, 445
Wiener–Hopf factorization, 131
Wiener–Hopf factorization, right, 56
Wiener–Hopf indices, left, 56, 131
Wiener–Hopf indices, right, 56

Z
zero divisor, 24
zero module, 183
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