
Chapter 11
Genetic Engineering for Microalgae Strain
Improvement in Relation to Biocrude
Production Systems

Evan Stephens, Juliane Wolf, Melanie Oey, Eugene Zhang,
Ben Hankamer and Ian L. Ross

Abstract An advanced understanding of the genetics of microalgae and the
availability of molecular biology tools are both critical to the development of
advanced strains, which offer efficiency advantages for primary production, and
more specifically in the context of production for biocrude and renewable energy.
Consequently, we outline the current state of the art in microalgal molecular
biology including the available genome sequences, molecular techniques and
toolkits, amenable strains for transformation of nuclear and plastid genomes, and
the control of transgenes at both transcriptional and translational levels. We also
examine some strategies for improvement of expression and regulation. We suggest
the primary strategies in strain improvement that are most relevant to biocrude
applications; briefly illustrate the process of photosynthesis to enable identification
of targets for improvement of net photosynthetic conversion efficiency in mass
cultivation; and further discuss how improvement of metabolic systems may also be
achieved and benefit production models. Finally, we acknowledge the aspects of
prudent risk assessment and consequent regulation that are developing and how our
knowledge of natural algae in existing ecosystems, and GM work in conventional
agriculture both contribute lessons to these discussions. We conclude that if
properly managed, these developments provide significant potential for increasing
global capacity for renewable fuel production from microalgae and that these
developments could also have benefits for other applications.

E. Stephens � J. Wolf � M. Oey � E. Zhang � B. Hankamer � I.L. Ross (&)
Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
e-mail: i.ross@imb.uq.edu.au

E. Stephens � J. Wolf � B. Hankamer � I.L. Ross
Solar Biofuels Research Centre, The University of Queensland, Queensland, Australia

© Springer International Publishing Switzerland 2015
N.R. Moheimani et al. (eds.), Biomass and Biofuels from Microalgae,
Biofuel and Biorefinery Technologies 2, DOI 10.1007/978-3-319-16640-7_11

191



11.1 Introduction

The Need for Strain Improvement While microalgae are a proven and promising
platform for the production of high-value products, their greatest potential arguably
lies in their ability to capture solar energy and convert it to chemical energy in the
form of high energy density fuel feedstocks with low net carbon emissions. The
importance of this is highlighted by the fact that*80 % of global energy demand is
supplied in the form of fuels, while only *20 % is utilised as electricity (BP 2014;
Stephens et al. 2013b). Consequently, there is a great need for renewable fuel
production systems that have an economic and energetically positive return on
investment (ROI), and microalgae are one of the very few options for making this a
reality at scale.

Thermochemical processing of whole biomass to biocrude is a promising area of
research and current commercialisation. At first glance this processing strategy does
appear to promise increased yields, since in addition to lipids, other organic mol-
ecules such as proteins, starch and cellulose can be converted. It may also address
some of the conventional cost/energy bottlenecks, particularly as complete dewa-
tering and cell disruption are not needed. But it must also be considered that, in
contrast to the extraction of a relatively homogenous product such as TAGs and
neutral lipids, the resultant output product from hydrothermal liquefaction (HTL)
can vary in quality from a type I kerogen (a complex carbonaceous organic com-
pound) (Speight 2006) to a higher grade biocrude, equivalent to the best petroleum
crudes. The quality of the output depends upon the efficiency of the HTL process as
well as the composition of the initial biomass. While the upgrading of kerogen to
biocrude can be a much simpler process than lipid extraction from microalgae
biomass, it remains an economic and energetic cost in the process. Thus, the
technology can be streamlined partly by the development of microalgal production
strains that have a more desirable composition for HTL processing and conse-
quently improve the quality of biocrude output. The marketability of the biocrude
product to fuel producers depends upon specific quality criteria including high
carbon and hydrogen content and low oxygen, nitrogen and sulphur levels. Other
qualitative considerations include acyl chain lengths and saturation, as well as finer
points related to fuel standards. To achieve such standards and ultimately obtain a
biocrude product that is comparable to conventional petroleum crude, HTL kero-
gens and oils can require fractionation to a higher grade product. This additional
process step results in material losses and increased energy costs which offset some
of the anticipated benefit of this production strategy. This poses a significant
operational loss unless the residual fraction can be efficiently recycled back to
production (e.g. through strategies such as anaerobic digestion or gasification) or
otherwise contributes to cost recovery and energy balance.

Strain development through the use of molecular biology has greater flexibility
than conventional breeding and strain development techniques. This may translate
to increases in overall productivity (greater volumes to process) and greater carbon
density (higher grade biocrude output) and so is of importance for advancing this
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production strategy. Knowledge of algal genetics is not yet as sophisticated as other
model systems. The ability to engineer algal biology is correspondingly limited at
present, but is growing rapidly. Here, we discuss the ongoing development of
molecular research for greater understanding of microalgae systems. In particular,
we summarise the increasing set of available molecular techniques (Sect. 11.2),
their application to microalgae technologies (Sect. 11.3) and the establishment of
prudent regulatory systems to ensure these systems become environmentally
responsible and socially accepted (Sect. 11.4).

11.2 Molecular Biology Capacity in Microalgae

11.2.1 Genomics and Molecular Biology of Microalgae

Microalgae-based biocrude production is an established technology, but compared
to conventional fossil fuel extraction, it is energetically unattractive and the
chemistry poorly understood. Improvements in process chemistry are necessary for
microalgae biocrude to compete successfully with fossil fuels and non-algal biofuel
technologies and to reach its full potential. While conventional strategies for strain
development can yield significant improvements, genetic modification (GM) has
the potential to improve aspects of biocrude production more rapidly and poten-
tially to greater effect. As the primary aim of HTL is to generate more biocrude
product per unit biomass with reduced energy costs, the manipulation of the initial
biomass quality and yield, as well as aspects of the HTL chemistry (e.g. N & S
content), may be amenable to GM strategies. The first step is to determine what
traits would be helpful for HTL processing; the second is to identify how manip-
ulating algal genetics can produce those traits.

Genetic Research in Microalgae To engineer beneficial traits into production
strains, sufficient knowledge of algal biology is required to conduct targeted opti-
misation. This is embodied primarily in both the understanding of the most
appropriate effects to target and of the methods to enable their engineering. Just as
bacterial engineering rests upon a deep knowledge of bacterial biochemistry and
genetics, algal GM biotechnology needs to rest upon a firm foundation of funda-
mental research into the way that algal genomes work. Despite the commonality of
fundamental genetic mechanisms across the span of life on Earth, great variety is
also present, and a consistent lesson is that ‘the devil is in the detail’ with respect to
individual organisms. Consequently, the specifics matter greatly. Further, much
biological variability will have accumulated from the ancient origins of algal phyla
and their early divergence from plants and animals. Much specific knowledge of
algal gene regulation will therefore be required before skilful, efficient and routine
genetic manipulation will be possible. The recently expanded library of available
algal genomes is a welcome advance but is of limited utility until these genomes are
systematically mapped, curated, annotated and understood, a much more time-
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consuming task than the actual sequencing. Systematic approaches such as the
generation of knockout mutants of all Chlamydomonas genes at Stanford University
(Zhang et al. 2014) and the transcriptomic (FANTOM) approaches pioneered at
RIKEN in Japan (Forrest et al. 2014) are needed to provide the ability to quickly
and with certainty assign biological functions to specific genes and curate algal
genomes similarly to those of mammals. While microalgal genomes are undoubt-
edly simpler than the human genome, the resources allocated to studying them are
miniscule by comparison, and the molecular toolkit is sparse, especially the lack of
specific antibodies.

Advancements in Genomics Genome sequencing and sequence analysis is an
important first step in deepening our understanding of microalgal systems and
ultimately developing improved engineering processes. Only a very small number
of genomes are available particularly when considered against the huge microalgal
species diversity; however, the number of genome sequencing programs is steadily
increasing (see Table 11.1). The National Centre for Biotechnology Information
(NCBI) now contains 25 green algae genomes either in full, as scaffolds, or for
which sequencing is currently underway (www.ncbi.nlm.nih.gov/genomes). Fur-
thermore, there are novel bioinformatic tools (e.g. KEGG assignments accessible at
www.genome.jp/kegg), and as BioModels databases accessible at www.ebi.ac.uk/
biomodels-mainwww.ebi.ac.uk/biomodels-mainwww.ebi.ac.uk/biomodels-
mainwww.ebi.ac.uk/biomodels-main) become available online, they will enable
researchers to predict and characterise gene regulatory pathways, forecast outcomes
of metabolic shifts and functionally annotate de novo genomes of diverse algal
species.

Genetic Mechanisms The existence of functional microRNAs in Chlamydomonas
(Molnar et al. 2007) demonstrates that much of the convoluted genomic biology
being revealed in mammals can also be expected in these simple organisms. The
general schema of molecular pattern receptors, signal transduction mechanisms, and
complex transcription factor-mediated feedback control of nuclear genes is to be
expected, and many of the protein motifs will be familiar (e.g. helix-loop-helix
transcription factors). However, given the evolutionary distance between different
algal clades and between algae and land plants, it is to be expected that apart from
highly conserved central mechanisms (core metabolism, cell replication, and
mitochondrial and photosynthetic machinery), many baroque variations remain to
be discovered. Algal genetics lags far behind algal physiology, much of which is
common to plants in specific detail as well as general principles. To fill this gap,
high-throughput gene analysis and bioinformatics will be critical for rapid mapping
of the overall territory, even if painstaking molecular analysis is still needed for
final validation of proposed biochemical and information pathways.

The algal genes that have so far been studied in detail illustrate this need.
Significant changes to cell status, such as nutrient limitation (sulphate, nitrogen,
iron, copper), lead not to up-regulation of a few receptors or import proteins, but to
coordinated changes of thousands of genes, which resemble those waves of altered
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gene expression seen in multicellular organisms. Only high-throughput mapping
can provide the necessary background to support the efficient dissection of these
biological responses. Apart from nutrient limitation, the kinds of coordinated
responses which might be expected include photoacclimation, responses to pre-
dators and pathogens, differentiation-like developmental programs and adaptions to
environmental niches. Fortunately, many of the tools developed for the study of
other organisms can readily be adapted for algal biology. These include powerful
genome-editing platforms either developed [zinc finger nucleases, TALENs (Gao
et al. 2014; Sizova et al. 2013)] or under-development [CRISPR/Cas (Sander and
Joung 2014)]. Although not yet routine, the ability to conduct precise genome
engineering will greatly advance the speed and scope of algal GM production.

Case Studies A number of genetic responses in algae have been described, mainly
in response to key physiological processes such as photosynthesis, nutrient limi-
tation and circadian rhythm. These include the analysis of the transcriptional
responses of the light-harvesting complex (LHC) genes to light and circadian
signals, the carbon concentrating mechanism (CCM) in response to CO2 limitation,
and responses to iron, copper and sulphur limitation.

Few of the estimated 234 transcription factors and regulators initially identified
bioinformatically in the Chlamydomonas genome (Riano-Pachon et al. 2008) have
even tentative roles assigned to them. Although no promoters have been compre-
hensively analysed, several have been cloned and their behaviours studied and
utilised for experimental systems. The best examples are the light-harvesting
antenna genes which are regulated both by light and by circadian mechanisms. In
addition to promoter regulation, post-transcriptional regulation has been demon-
strated by an mRNA binding protein CHLAMY1, composed of two subunits (C1
and C3). In turn, an E-box-like promoter element has been shown to be involved in
the regulation of the circadian rhythm protein C3 (Seitz et al. 2010) and some
binding factors isolated. Regulatory factors controlling the CCM have been iden-
tified [CCMl (Fang et al. 2012; Fukuzawa et al. 2001); LCR1 (Ohnishi et al. 2010;
Yoshioka et al. 2004)]. Iron-responsive elements have been identified in several
genes [Fox1 (Allen et al. 2007; Fei et al. 2009), Atx1, Fbp1, Fld, Fea1], while the
copper response regulator CRR1 has been shown to mediate copper and zinc
responses (Malasarn et al. 2013; Sommer et al. 2010) and anaerobiosis [HydA1
(Lambertz et al. 2010; Pape et al. 2012) and Fdx5]; other nutrient uptake regulatory
genes include those for sulphur SAC1 (Davies et al. 1996; Moseley et al. 2009) and
phosphate PSR1 (Moseley et al. 2009; Wykoff et al. 1999). Although this represents
a beginning, it pales in comparison with the extensive analyses of animal genomes,
and when contrasted to the *15,000 genes of Chlamydomonas, it is unlikely that
this subset will provide an adequate basis for modelling promoter function in algae
in general.

Some analysis has started in species other than Chlamydomonas including
Dunaliella (Jia et al. 2012; Lu et al. 2011; Park et al. 2013), and some crossover is
expected from plant gene analysis especially in Arabidopsis. A start has also been
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made in understanding the role of mRNA regulation (Schulze et al. 2010; Wobbe
et al. 2009) and chromatin remodelling in Chlamydomonas (Strenkert et al. 2011,
2013). While miRNA regulation has been demonstrated (Molnar et al. 2007;
Yamasaki et al. 2013), little detail is available, nor is epigenetics well understood.
In summary, the detail and breadth of examples typical of the regulation of
mammalian promoters and their resultant mRNAs is sorely lacking for algal gen-
omes. Consequently, close study of a set of promoter control mechanisms as
models is badly needed and will greatly advance the level of understanding in this
area, enabling much more sophisticated photosynthetic engineering, including the
discovery of useful inducible/repressible promoters, and the ability to manipulate
metabolic pathways and cellular strategies which are normally tightly regulated by
photosynthesis. Lipid and starch accumulation, photoprotection and cellular repli-
cation, for example, are all cellular functions which are desirable to control for
biotechnology applications. Abundant proteins including rubisco and LHC proteins
represent substantial cellular resources. Some LHC adaptive functions are important
to retain or enhance; others are potentially dispensable under bioreactor conditions
or can even reduce biomass growth if allowed to operate naturally. Resource
allocation within a cell is complex (Pahlow and Oschlies 2013) and only partly
within our control as over- or under-production of specific metabolites can be
detrimental to the fitness of the organism and feedback regulation in algae is
incompletely understood. Therefore, opportunities exist for the development of the
excretion of the end product (e.g. H2 produced from water via the photosynthetic
machinery; volatile metabolic intermediates (Melis 2013); specific secretion
mechanisms for proteins and lipids).

The study of gene regulation has traditionally proceeded through intensive
analysis of specific cases. As broad understanding evolves of the kinds of mech-
anisms that are present in biological systems, the emphasis has shifted to high-
throughput analyses starting with microarrays and mass mutant libraries, and it is to
be expected that this will quickly generate large amounts of data once algal
genomics matures. Nonetheless, there are very few case studies of algal genetic
mechanisms, and the study of particular cases will still be vital to anchor, interpret
and calibrate the results of mass data acquisition.

11.2.2 Techniques for Genetic Modification of Algae

Characteristics such as high photon conversion efficiency, fast growth rate, high
growth density, high oil/carbon content, ease of harvesting and high pathogen/
predator resistance all represent aspects of importance for the development of high
efficiency microalgal production strains. So far, however, there have not been any
reports of a single species that is able to meet each of these criteria. The importance
of microalgae bioprospecting and breeding, apart from establishing a solid basis for
high efficiency strain development, lies in the identification of novel biological
mechanisms and algal systems which can be exploited by genetic engineering.
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Ideally, these will form libraries of traits, which in combination with tools to
conduct species-specific engineering will enable strain customisation. In this con-
text, it is of note that algae possess three genetic systems: the nuclear, the mito-
chondrial and the plastid genome, each of which may be genetically manipulated.

The green alga Chlamydomonas reinhardtii is arguably the most widely used
model alga, at least in terms of fundamental biology; its physiology is well
described, multiple mutants exist, all three of its genomes have been sequenced
(Maul et al. 2002; Merchant et al. 2007; Popescu and Lee 2007), and a range of
molecular tools have been developed to facilitate its genetic engineering. It contains
one chloroplast with a 203 kb circular genome encoding about 100 genes (Maul
et al. 2002). The chloroplast genome of C. reinhardtii is AT-rich and highly
polyploid with a copy number of about 50–80 copies per chloroplast (Maul et al.
2002). With this high genome copy number, the chloroplast has been the choice of
heterologous protein production since protein levels of over 40 % of total soluble
protein (TSP) can be achieved (Surzycki et al. 2009). The nuclear genome of C.
reinhardtii has a high GC content and frequent repeat regions. Protein accumulation
is often lower compared to expression in the chloroplast, and transgenes can often
be silenced. However, transgene expression from the nucleus offers several
advantages such as inducible expression, post-translational modifications and het-
erologous protein-targeting to various compartments within the cell and secretion.
The mitochondrial genome of C. reinhardtii is also polyploid with around 50–100
genome copies organised in about 20–30 nucleoids (Hiramatsu et al. 2006). It
consists of a 15.8 kb linear DNA molecule which has been fully sequenced, and
telomeres corresponding to inverted repeats of ∼500 bp are located at each end,
with 40-bp single-stranded extensions (Vahrenholz et al. 1993). Compared with the
mitochondrial genome typically found in vascular plants, it is extremely compact
with 14 genes encoding in total only eight proteins (Remacle et al. 2006) and three
tRNAs. The low tRNA content suggests that cytosolic tRNAs are imported, a
process known to take place in plant and human mitochondria, making it an
interesting potential model system for more detailed process analysis (Remacle
et al. 2012).

11.2.3 Molecular Toolkits—Genetic Engineering
of the Different Compartments

Nuclear Transformation There are a variety of established transformation meth-
ods to integrate heterologous DNA into the nuclear genome including particle
bombardment (Debuchy et al. 1989; Kindle et al. 1989; Mayfield and Kindle 1990),
agitation of cell-wall-deficient strains with glass beads (Kindle 1990), electropor-
ation (Shimogawara et al. 1998), agitation with silicon carbide whiskers (Dunahay
1993) and biologically mediated gene transfer by Agrobacterium tumefaciens
(Kumar et al. 2004). In C. reinhardtii, transformation of the nuclear genome occurs
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by random insertion through non-homologous end joining (Tam and Lefebvre
1993) or by using linear DNA that promotes the insertion of multiple copies in one
locus (Cerutti et al. 1997b). Phenotypic and genetic screening of transformants can
minimise undesirable non-target effects of the random insertion of a transgene that
can lead to disrupted genes or regulatory elements. In return, this effect is used to
study genes of unknown function using high-throughput insertional mutagenesis
(Dent et al. 2005). In C. reinhardtii, targeted gene integration through homologous
recombination (HR) using single-stranded transforming DNA (Zorin et al. 2005,
2009) is possible, but only at low frequencies to date. However, high rates of
homologous recombination have been reported in another green algal species
Nannochloropsis (Kilian et al. 2011), showing promise for reverse genetics and
targeted gene knockouts.

Random and Insertional Mutagenesis The creation of mutants of an organism by
the use of irradiation or chemical mutagenesis is the classic approach pioneered by
Morgan in Drosophila and used for a century to study the effect of significant
alteration in the behaviour of a gene, typically by partial or total deletion. These
methods produce base pair changes leading to a range of disturbances including
altered amino acid sequence, small deletions, truncations, frameshifts and splicing
defects; the resultant mutants include temperature-sensitive and dominant mutants
as well as functional knockouts sometimes giving rise to complex phenotypes. In
the last 3 decades, the insertion of foreign transgenes (usually carrying a marker to
allow selection and identification) has also been well established, as described
above. Insertion mutants usually have knocked out or disabled genes, though
insertion into promoters can lead to alterations in expression levels and splicing.
Gene inactivation is largely on a random basis (Zhang et al. 2014) across the
genome (at least where the chromatin structure is sufficiently open) which allows
the unbiased identification of genes relevant to biological processes and has been
very useful for research into biological mechanisms and physiology in Chla-
mydomonas and other algae. The difficulty is usually that a specific phenotypic
screen is needed to identify relevant genes. Lethal mutations will not be identified,
nor will mutants in genes which are redundant or which show no overt phenotype
under the conditions of the screen. Of the estimated *15,000 genes in the Chla-
mydomonas genome, only a few hundred have been reported in the literature, and
many genes known to be important are not represented in collections of mutants. A
good example is the multigene family of LHC genes. An insertion mutant in a
single LHC gene will usually not produce any easily measurable phenotype, due to
compensation by other LHCs, while the highly specific physiological or genetic
tests needed to demonstrate the loss of a specific LHC gene are not suitable for
screening assays. Finally, each transformation produces only a few hundred colo-
nies, with very likely a biased set of genes being affected. This makes it a major
project to uniquely identify mutants of each gene in an alga. Fortunately, this is
being performed at Stanford University, and the resulting collection of mutants will
be an invaluable research resource for the Chlamydomonas community (Zhang
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et al. 2014). However, it is unlikely that this resource will be duplicated for every
species of algae of research or commercial interest.

Homologous Recombination (HR) in the Nucleus Homologous recombination,
the recombination between homologous DNA sequences, is essential for eukaryotes
to repair DNA double-strand breaks and introduce genetic diversity during cell
division, and two main pathways (‘double-strand break repair’ and ‘synthesis-
dependent strand annealing’) have been proposed (Sung and Klein 2006). In plants
and algae, nuclear located RecA homologues show high similarity to the prokary-
otic RecA genes which suggests an endosymbiotic transfer from mitochondria and
chloroplasts to the nucleus of ancestral eukaryotes (Lin et al. 2006). Although the
introduction of foreign DNA into the nucleus occurs predominantly via random
insertional mutagenesis, successful targeted homologous recombination has been
reported in several algal species such as C. reinhardtii (Gumpel et al. 1994;
Sodeinde and Kindle 1993; Zorin et al. 2009), Nannochloropsis sp. (Kilian et al.
2011) and Cyanidioschyzon merolae 10D (Minoda et al. 2004) with as little as 230-
bp DNA sequence homology in the haploid cell (Gumpel et al. 1994). It has been
demonstrated that the introduction of single-stranded repair DNA leads to a more
than 100-fold reduction of non-homologous DNA integration in comparison with
double-stranded DNA (Zorin et al. 2005). Attempts to increase the low frequency of
homologous recombination in plants by the over-expression of well-characterised
enzymes involved in homologous recombination such as the recA and ruvC pro-
teins have been reported to increase homologous recombination and double-strand
break repairs; however, these reports suggest that foreign gene targeting is not
improved (Reiss et al. 1996, 2000; Shalev et al. 1999).

RNA Interference (RNAi) In the absence of tools for precise genome manipula-
tion, RNAi-mediated knock-down of gene expression enables the creation of highly
specific research mutants without the need for phenotypic screening or selection.
RNAi techniques also enable the study of reduced levels of gene expression where
total ablation would be lethal. The phenomenon of RNA interference is produced
by the action of specific cellular machinery [Dicer and Argonaute (AGO) proteins
(Casas-Mollano et al. 2008; Cerutti and Casas-Mollano 2006)] on mRNAs, guided
by microRNAs which are naturally occurring small double-stranded RNAs (dsR-
NAs) in a process called mRNA cleavage (Bartel 2004). RNAi represents the use of
this natural process for experimental ends by the artificial provision of small RNA
molecules designed to interfere with the expression of a target gene. MicroRNAs
(miRNAs) have also been discovered in C. reinhardtii (Molnar et al. 2009; Zhao
et al. 2007) enabling a highly specific genetic tool (Moellering and Benning 2010;
Molnar et al. 2009; Schmollinger et al. 2010; Zhao et al. 2007). Difficulties in
achieving direct nuclear gene knockout via homologous recombination for C.
reinhardtii (Nelson and Lefebvre 1995) led to RNAi becoming a widely used
method to accomplish post-transcriptional gene silencing for gene function dis-
covery (knock-down approaches via reverse genetics) and metabolic engineering
(Fuhrmann et al. 2001; Molnar et al. 2009; Rohr et al. 2004; Schroda et al. 1999;
Zhao et al. 2009). Artificial microRNAs have also been engineered to create
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functional knock-downs of several nuclear genes in Dunaliella salina (Sun et al.
2008) and in the diatom Phaeodactylum tricornutum (De Riso et al. 2009). This
method could potentially be used for algal genetic engineering for biofuel pro-
duction (Cerutti et al. 2011; Grossman 2000; Wilson and Lefebvre 2004). The
weakness of RNAi is the need to maintain the expression of the RNAi construct,
typically requiring ongoing selective pressure, for example with antibiotics.

Genome Editing The ability to precisely edit the genome enables the specific
deletion or mutation of genes and regulatory regions, with the resultant ability to
create targeted mutations for study or industrial applications. As the resultant
mutations are permanent, the stability problems inherent in RNAi knock-down
constructs are eliminated. Genome editing also offers the prospect of precise
mutants lacking foreign DNA, which consequently are technically non-GMO
organisms. Several systems of genome editing have been developed in recent years,
including zinc finger nucleases (ZFN), transcription activator-like effector nucleases
(TALENs), meganuclease and the CRISPR/Cas system. Both ZFN (Sizova et al.
2013) and TALENS (Gao et al. 2014) have been used for genome editing in
Chlamydomonas. The drawback of these systems is the substantial investment of
time and effort required. In contrast, the CRISPR/Cas system promises a simpler,
more facile approach. CRISPR (clustered regularly interspaced short palindromic
repeats) sequences are found in prokaryotes and are short repetitive DNA
sequences, corresponding to part of the DNA of bacteriophage genomes. In con-
junction with a specific nuclease (Cas), they form the basis of a prokaryotic
‘immune system’ to recognise and eliminate viral genomes. The CRISPR RNA acts
as a guide for Cas-mediated cleavage of the viral DNA or provirus. For genome
editing, first described in 2013 (Cho et al. 2013; Mali et al. 2013), the addition of a
targeted ‘guide RNA’ with co-expression of the Cas9 nuclease enables precise and
specific genome editing and has been rapidly adopted in many organisms including
both animals (Hsu et al. 2014) and plants (Feng et al. 2013). Although first attempts
to use CRISPR/Cas in algae have encountered difficulties, it is anticipated that these
will be overcome in the near future, enabling rapid and flexible genome editing
in algae.

Chloroplast Transformation The chloroplast is the site of photosynthesis and
storage of the resultant starch and is also important for the production of fatty acids
and photosynthesis-related pigments especially carotenoids. Transformation of the
chloroplast requires transfer of the transforming DNA to the interior of the chlo-
roplast, and consequently, particle bombardment (biolistics) using DNA-coated
gold or tungsten particles is the most commonly used method for chloroplast
transformation. Some particles penetrate the cell wall, plasma and chloroplast
membrane and deposit the transforming DNA in the plastid, which can then inte-
grate into the local genome through homologous recombination (Boynton et al.
1988). Flanking endogenous sequences that are homologous to the targeted inser-
tion site can make chloroplast transformation events highly targeted to any region in
the genome (Rasala et al. 2013) which in C. reinhardtii is a great advantage over
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nuclear transformation where homologous recombination occurs only at low effi-
ciency (Sodeinde and Kindle 1993).

Homologous Recombination in the Chloroplast In the chloroplast, homologous
recombination is mediated by an efficient RecA-type system which, due to its
homology to the Eschericia coli RecA system, is suggested to be related to the
cyanobacterial ancestors of chloroplasts (Cerutti et al. 1992, 1995; Inouye et al.
2008; Nakazato et al. 2003). In cyanobacteria, the RecA system is essential for cell
viability especially under DNA damaging conditions (Jones 2014; Matsuoka et al.
2001). DNA repair is also believed to be the main function for homologous
recombination in the chloroplast (Cerutti et al. 1995; Rowan et al. 2010). Several
different models exist for the precise mechanism of homologous recombination and
are not presented in detail here; however, the main steps of prokaryotic homologous
recombination include initial strand breakage, formation of an enzyme complex to
unwind the double-stranded DNA to form a single strand, followed by a mechanism
called ‘strand invasion’ which searches for similar sequences on a homologous
DNA fragment for pairing. This is then followed by DNA synthesis in accordance
with the new template strand and resolution of the structure (Amundsen et al. 2007;
Smith 2012).

Genome Stability in the Chloroplast With 50–100 genome copies, the chloroplast
is highly polyploid, and apart from a few exceptions, each plastome shows a tet-
rapartite organisation containing two inverted repeat sequences that are mirror
images of one another, separated by a large and a small single-copy unit. Though
absent in present-day cyanobacteria and not essential for the general chloroplast
genome function, the inverted repeat sequences show properties which suggest their
involvement in gene maintenance and increased genome stability (Goulding et al.
1996). Chloroplast genomes can undergo homologous recombination between the
inverted repeat sequences as several studies have shown two populations of plast-
omes in the same organism differing only in the single-copy sequence orientation
(Aldrich et al. 1985; Palmer 1983; Stein et al. 1986). Furthermore, it has been
observed that the inverted repeat regions accumulate nucleotide substitution muta-
tions 2.3 times more slowly than the single-copy regions (Perry and Wolfe 2002;
Ravi et al. 2008; Shaw et al. 2007). It was also demonstrated that DNA rearrange-
ments occur more frequently when a large inverted repeat sequence is lost (Palmer
and Thompson 1982). This suggests that homologous recombination between
plastomes and inverted repeats contributes to this increased genome stability.

Manipulation of the chloroplast genome via homologous recombination offers
the potential for exact gene deletions and insertions. Generally, chloroplast trans-
formation vectors are E. coli plasmid derivatives carrying the foreign DNA flanked
by DNA sequences (>400 bp each) which are homologous to the target region of
the plastid DNA (Bock 2001; Hager and Bock 2000). Due to the high ploidy of the
plastid genome and the fact that initially only a single plastome copy is transformed,
the resulting phenotype may be weak in primary transformants and it is important to
establish an efficient and suitable selection system or strategy to identify and enrich
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cells containing transformed ptDNA copies, which may easily revert to wild type
(Hager and Bock 2000; Rasala et al. 2013). Once the genome is homoplastomic and
thus lacking template for further undesired homologous recombination events, the
selectable marker can be removed (Day and Goldschmidt-Clermont 2011), though
selective pressure against the transgene can still exist.

Mitochondrial Transformation Respiration and photosynthesis are coupled pro-
cesses, and mitochondrial mutations are known to affect photosynthesis (Schönfeld
et al. 2004) as well as many other aspects of cellular metabolism. Although in
Chlamydomonas homologous recombination in mitochondria DNA is only detected
after crosses between different mating types in mitotic zygotes (Remacle et al.
2012), it demonstrates that the cellular machinery is available for recombination-
based foreign gene integration. Although the first transformation of the mito-
chondrion was published in 1993 (Randolph-Anderson et al. 1993) using biolistic
bombardment, reports of mitochondrial transformation are rare and initially limited
to the restoration of the wild-type mitochondria genome in mutant strains. In 2006,
Remacle et al. reported the first and, to date, the only modification of the mito-
chondrial genome in vivo in a photosynthetically active organism. The work pre-
sented the introduction of a nucleotide substitution in the cob gene, conferring
resistance to myxothiazol, and an internal deletion in nd4 (Remacle et al. 2006).
Homologous recombination was facilitated with as little as 28-bp homology
between the introduced and endogenous DNA (Remacle et al. 2006).

Selection Techniques Following Transformation The identification of chloroplast
and nuclear transformants can be achieved through the rescue of mutants impaired
in endogenous cellular functions (non-photosynthetic, flagellar or auxotrophic
mutants) or the introduction of antibiotic and herbicide resistances by point
mutation of endogenous genes or the expression of heterologous resistance genes.
A range of auxotrophic mutants have been developed (including mutations in
arginine biosynthesis, nitrate reductase, nicotinamide biosynthesis and thiamine
biosynthesis (Debuchy et al. 1989; Ferris 1995; Kindle et al. 1989; Rochaix and
Vandillewijn 1982)) as well as mutants in photosynthetic capability or flagellar
motility (Diener et al. 1990; Mayfield and Kindle 1990; Mitchell and Kang 1991;
Smart and Selman 1993).

Classical antibiotic resistance markers include kanamycin [chloroplast: (Bateman
and Purton 2000); nuclear: (Hasnain et al. 1985; Sizova et al. 2001)], spectinomycin/
streptomycin [chloroplast: (Goldschmidt-Clermont 1991); nuclear: (Cerutti et al.
1997a)], neamine/kanamycin and erythromycin [chloroplast: (Harris et al. 1989)]
paromomycin and neomycin [nuclear: (Sizova et al. 2001)], cryptopleurine and
emetine [nuclear: (Nelson et al. 1994)], zeocin and phleomycin [nuclear: (Stevens
et al. 1996)] and hygromycin B [nuclear: (Berthold et al. 2002)]. Screening for
resistance to herbicides, such as atrazine, which inhibits the function of photosystem
II [chloroplast: (Erickson et al. 1984)], or Basta, leading to disruption of the
chloroplast structure [chloroplast: (Cui et al. 2014)], is also possible. The use of
antibiotic resistance markers is not problematic for research purposes, but is less
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desirable for industrial-scale production of vaccines or therapeutics, and for large-
scale outdoor or agricultural production, antibiotic-free media is usually required for
both sociopolitical and socio-economic reasons.

Recombinant Protein Expression Regardless of the energy return on investment
(EROI) of microalgal biocrude, the low net value poses a significant problem for
economic biocrude production from microalgae. One potential strategy to offset this
is to exploit the fact that high-value products such as recombinant proteins are
typically only a small fraction by weight of the biomass and could potentially be
extracted prior to thermochemical processing of remaining biomass to biocrude.
Consequently, an additional and lucrative revenue stream can arguably be obtained
to subsidise the process without sacrificing overall biofuel productivity. The
demand for recombinant proteins is growing with increasing population and bio-
technological applications, and ultimately, the expression systems with the greatest
cost-benefit are likely to dominate these markets. In this context, microalgal sys-
tems offer significant advantages over traditional microbial fermentation or mam-
malian cell culture systems. So-called molecular ‘pharming’ is the production of
pharmaceutical proteins, therapy peptides, vaccine subunits, industrial enzymes and
secondary metabolites or other compounds of interest in plants, and algae also offer
commodity-scale opportunities. Proteins with biopharmaceutical or biotechnologi-
cal relevance can be, e.g. monoclonal antibodies, vaccines, blood factors, hor-
mones, growth factors and cytokines.

Nucleus Although the chloroplast is the expression system of choice for high
protein expression levels, the nucleus as expression location has its advantages
which have to be carefully considered in the context of each product. Despite the
comparatively low expression rate of 1 % of TSP claimed by commercial vendors
and the risk of gene silencing, nuclear expression tools enable the fusion of the
desired product to a selection marker (to avoid silencing) with subsequent self-
cleavage, as well as secretion of the expressed compound into the media (Lauersen
et al. 2013; Rasala et al. 2012). So far, most proteins expressed from the nucleus
have been reporter genes used to quantitatively measure protein expression levels as
well as the localisation and accumulation (e.g. within the C. reinhardtii cell)
(Rasala et al. 2013). Six fluorescent proteins (blue mTagBFP, cyan mCerulean,
green CrGFP, yellow Venus, orange Tomato and red mCherry) were expressed
from the nuclear genome to allow protein detection in whole cells by fluorescence
microplate reader analysis, live-cell fluorescence microscopy and flow cytometry.

Chloroplast The production of recombinant proteins including reporters (e.g. GUS,
luciferase or GFP) (Franklin et al. 2002b; Mayfield and Schultz 2004; Minko et al.
1999; Sakamoto et al. 1993), protein therapeutics (antibodies, hormones, growth
factors or vaccines) (Franklin and Mayfield 2005; Manuell et al. 2007; Mayfield
and Franklin 2005; Mayfield et al. 2003; Rasala et al. 2010; Surzycki et al. 2009)
and industrial enzymes has established the chloroplast as a suitable production
platform for a broad range for protein candidates. The potential for high expression
levels [over 40 % of TSP (Surzycki et al. 2009)] and the ability to form complex
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proteins including disulphide bonds (Tran et al. 2009) allow for limited post-
translational modification without interference caused by ‘gene silencing’ making
the chloroplast the site of choice for protein expression. Furthermore, the pro-
karyotic characteristics of the chloroplast genome such as gene organisation into
operon-like structures (Holloway and Herrin 1998) potentially allow the expression
of multiple transgenes from a single operon (transgene stacking) and with this the
introduction of complete biochemical pathways. The additional development of a
Gateway-compatible transformation system (Oey et al. 2014) allows the rapid
production of multiple transformants. Success rates and costs for successfully
establishing expression of new proteins in C. reinhardtii are estimated to be similar
to those of yeast and mammalian cells (Rasala et al. 2013), but with potentially
much lower production and purification costs.

11.2.4 Transcriptional and Translational Control
of Transgenes

Nucleus A major mechanism of nuclear gene regulation is transcriptional control.
Strategies to enhance heterologous gene expression, which occurs at relatively low
levels compared to expression in the chloroplast, are the search for more effective
promoters (Rasala et al. 2013) and the enhancement of translation efficiency
through codon optimisation (Fuhrmann et al. 1999, 2004; Heitzer and Zschoernig
2007; Mayfield and Kindle 1990). The glycosylation patterns of nuclear expressed
and secreted proteins from C. reinhardtii remain to be resolved. Studies on the post-
translational machinery of this alga would be helpful to exploit this as an option of
algal protein production.

Chloroplast Ensuring high heterogeneous gene expression requires the identifica-
tion of endogenous transcriptional and translational regulatory elements (Harris
et al. 2009; Marin-Navarro et al. 2007; Purton 2007). Although chloroplast gene
expression is usually regulated at the translational level (Barnes et al. 2005; Eb-
erhard et al. 2002; Nickelsen 2003; Rasala et al. 2010, 2011; Zerges 2000), choice
of promoter and 5′ UTRs sequences is of importance due to potential feedback
regulations which can interfere with the heterologous protein expression and
mRNA stability (Gimpel and Mayfield 2013; Hauser et al. 1996; Manuell et al.
2007). The 5′ UTRs are believed to regulate ribosome association, transcript sta-
bility and the rate of translation (Barnes et al. 2005; Marin-Navarro et al. 2007;
Salvador et al. 1993; Zou et al. 2003) while 3′ UTRs influence mRNA stability
(Herrin and Nickelsen 2004; Lee et al. 1996; Monde et al. 2000; Stern et al. 1991)
or may interact with 5′ UTRs (Katz and Danon 2002).

Mitochondria In photosynthetic organisms, mitochondria are the organelle with
the greatest diversity in size and structure, ranging from 15 kb linear DNA mole-
cules in Chlamydomonas to 1.0 Mb in angiosperms. To date, Chlamydomonas is
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the only photosynthetically active organisms for which mitochondrial DNA has
been altered, which significantly limits insights into translational and transcriptional
control. Attempts have been made with plant mitochondria to utilise in vitro DNA
and RNA import, and electroporation of isolated mitochondria has been used to
gain further information about transcription and post-transcriptional processing
(Remacle et al. 2012).

11.2.5 Strategies to Improve Gene Expression Levels

Fusion Proteins Specific regions within the coding regions of chloroplast genes
enhance efficient expression of foreign genes in plants and algae (Anthonisen et al.
2002; Gray et al. 2009; Kuroda and Maliga 2001b). Genetic fusion of endogenous
regions to an exogenous protein of interest may represent another effective strategy
for high-level transgene expression (Gray et al. 2011; Kasai et al. 2003). A dis-
advantage of the fusion protein approach may be reduced industrial or clinical
values or increased cost of purifying the protein of interest from its fusion partner.

Codon Optimisation Codon optimisation has been shown to be an important factor
of heterologous gene expression in algae (Heitzer et al. 2007). It has been dem-
onstrated that protein expression levels can be improved in the chloroplast by up
to *80-fold (Franklin et al. 2002a) by adjusting the codon bias of the transgene to
the AT-rich chloroplast codon bias. Despite this, the effects of codon bias on
expression levels are largely heuristic and still not well understood at a theoretical
level.

Replacement of Highly Expressed Photosynthesis Genes The highest protein
expression levels in Chlamydomonas have so far been demonstrated in transfor-
mants carrying the psbA promoter and 5′ UTR for transcription and translation
initiation in a psbA knockout background, which leads to a non-photosynthetic
strain (Manuell et al. 2007; Surzycki et al. 2009). PsbA encodes for the D1 protein
in the photosystem II reaction centre and is the most rapidly synthesised protein at
high light intensity in higher plants and algal cells (Trebitsh et al. 2000). Although
photosynthesis was restored by introducing the psbA gene at a different location, the
presence of the psbA protein decreased the yield of foreign protein production
(Manuell et al. 2007). This may reflect competition between the two genes, but
could also be due to primary energetic or biosynthetic limitations.

Open Reading Frame Orientation In the chloroplast, 3′ UTR of the RNA often
shows the potential for stem-loop formation, which serves for transcript stabilisa-
tion rather than transcription termination (Rott et al. 1998). Therefore, a degree of
‘read through’ from the upstream gene is possible (Oey et al. 2009), which in
parallel can increase the amount of translatable RNA and thus potentially increase
the amount of protein (Stern and Gruissem 1987).
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Heterologous and Hybrid Regulatory Systems Rasala et al. (2011) have recently
shown that an increase in protein production can be achieved by the fusion of the
16S ribosomal promoter, which does not contain translation initiation signals such
as Shine–Dalgarno sequences, to the endogenous atpA 5′ UTR containing the
translation initiation signal. This, and the demonstration that heterologous regula-
tory elements can significantly induce the expression rate (Kuroda and Maliga
2001a; Oey et al. 2009; Ruhlman et al. 2010), suggests that designed regulatory
elements could serve to improve expression.

Inducible Systems Environmental changes or developmental factors naturally
influence the up- and down-regulation of genes. Understanding those regulatory
mechanisms provides a valuable genetic tool, for example to switch protein
expression automatically or under the control of specific circumstances. Examples
of inducible algal promoters include light responsive genes (Falciatore et al. 1999),
nitrogen starvation (Poulsen et al. 2006; Poulsen and Kroger 2005), a sulphur-
regulated arylsulfatase gene and an ISG glycoprotein. Tightly controlled expression
of toxic proteins (e.g. the growth factor DILP-2) is also often desirable (Surzycki
et al. 2007). The expression of psbD (D2 component of PSII) is dependent on the
Nac2 gene fused to the copper-sensitive cytochrome c6 promoter (cyc6) and
induced in copper deficiency and repressed in the presence of copper.

Riboswitches Riboswitches that can be used to regulate protein expression at the
translational level have been shown to be functional in C. reinhardtii and Volvox
carteri (Croft et al. 2007) suggesting that it may be a useful technique for other
algae species as well.

11.2.6 Genetic Engineering in Other Algae

Apart from C. reinhardtii, few algal species have been subjected to extensive
genomic manipulation. As it seems unlikely that C. reinhardtii will be used for
commercial biofuel applications, this needs to be remedied. Because of the phy-
logenetic and structural diversity of algae, methods established for C. reinhardtii
cannot necessarily be easily transferred to other species and may require major
adaptations. Therefore, recent efforts have been made to develop molecular toolkits
to increase the range of other more suitable algal species for commercial production
scenarios.

A number of algae species have been transformed successfully, and an overview
is given in Table 11.2. For example, Euglena gracilis was transformed with an
antibiotic resistance marker (Doetsch et al. 2001) and Porphyridium spp. using a
herbicide resistance cassette (Lapidot et al. 2002) RNAi has also been used to
engineer nuclear genes in the chlorophyte Dunaliella salina (Sun et al. 2008) and in
the diatom Phaeodactylum tricornutum (De Riso et al. 2009). Applicable genetic
modifications of green algae for industry are the transformation of Haematococcus
pluvialis (Steinbrenner and Sandmann 2006; Teng et al. 2002), an important
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Table 11.2 Amenable strains and transformation systems

Compartment Phylum Class Species Method References

Nuclear Chlorophyta Chlorophyceae Chlamydomonas
reinhardtii

A, B,
E, G, S

Debuchy et al. (1989)

Dunahay (1993) and
Kindle et al. (1989)

Kindle (1990), Kumar
et al. (2004) and Mayfield
and Kindle (1990)

Rochaix and Vandillewijn
(1982), Shimogawara et al.
(1998) and Fernandez et al.
(1989)

Molnar et al. (2009) and
Stevens et al. (1996)

Berthold et al. (2002) and
Sizova et al. (2001)

Cerutti et al. (1997a)

Goldschmidt-Clermont
(1991)

Schroda et al. (2000)

Dunaliella salina B, E, G Feng et al. (2009) and
Geng et al. (2004)

Sun et al. (2005) and Wang
et al. (2007),

Tan et al. (2005) and Li
et al. (2007)

Eudorina elegans B Lerche and Hallmann
(2013)

Gonium
pectorale

B Lerche and Hallmann
(2009)

Haematococcus
pluvialis

A, B Teng et al. (2002)

Kathiresan et al. (2009)
and Steinbrenner and
Sandmann (2006)

Volvox carteri Hallmann and Rappel
(1999) and Hallmann and
Sumper (1994)

Hallmann and Sumper
(1996) and Jakobiak et al.
(2004)

(Schiedlmeier et al. 1994)

Trebouxiophyceae Chlorella
ellipsoidea

PT-E Jarvis and Brown (1991)
and Kim et al. (2002)

Bai et al. (2013) and Liu
et al. (2013)

Chlorella
saccharophila

PT-E Maruyama et al. (1994)

Chlorella
sorokiniana

B Dawson et al. (1997) and
Hawkins and Nakamura
(1999)

Chlorella
vulgaris

B Hawkins and Nakamura
(1999)

Dinoflagellate Dinophyceae Amphidinium
spp.

S ten Lohuis and Miller
(1998)

Symbiodinium
microadriaticum

S ten Lohuis and Miller
(1998)

Heterokontophyta Bacillariophyceae
(diatoms)

Chaetoceros
salsugineum

B Miyagawa-Yamaguchi
et al. (2011)

(continued)
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Table 11.2 (continued)

Compartment Phylum Class Species Method References

Chaetoceros
debilis

B Miyagawa-Yamaguchi
et al. (2011)

Chaetoceros
setoensis

B Miyagawa-Yamaguchi
et al. (2011)

Chaetoceros
tenuissimus

B Miyagawa-Yamaguchi
et al. (2011)

Cyclotella
cryptica

B Dunahay et al. (1995)

Cylindrotheca
fusiformis

B Fischer et al. (1999) and
Poulsen and Kroger (2005)

Navicula
saprophila

B Dunahay et al. (1995)

Phaeodactylum
tricornutum

B Apt et al. (1996), De Riso
et al. (2009), Falciatore
et al. (1999) and
Zaslavskaia et al. (2000)

Miyagawa et al. (2009),
Sakaguchi et al. (2011) and
Zaslavskaia et al. (2001)

Thalassiosira
weissflogii

B Falciatore et al. (1999)

Thalassiosira
pseudonana

B Poulsen et al. (2006)

Eustigmatophyceae Nannochloropsis
sp.

A, E Cha et al. (2011) and
Kilian et al. (2011)

Nannochloropsis
gaditana

E Li et al. (2014) and
Radakovits et al. (2012)

Nannochloropsis
granulata

E Li et al. (2014)

Nannochloropsis
oculata

PT-E Chen et al. (2008), Li et al.
(2014) and Li and Tsai
(2009)

Nannochloropsis
oceanica

E Vieler et al. (2012) and Li
et al. (2014)

Nannochloropsis
salina

E Li et al. (2014)

Rhodophyta Cyanidiophyceae Cyanidioschyzon
merolae

E, PEG Fujiwara et al. (2013),
Minoda et al. (2004) and
Ohnuma et al. (2008),
(2009)

Chloroplast Chlorophyta Chlorophyceae Chlamydomonas
reinhardtii

B, G Boynton et al. (1988) and
O’Neill et al. (2012)

Haematococcus
pluvialis

B Gutierrez et al. (2012)

Dunaliella sp B Purton et al. (2013)

Scenedesmus sp B Purton et al. (2013)

Prasinophyceae Platymonas
subcordiformis

B Cui et al. (2014)

Euglenophyta Euglenoidea Euglena gracilis B Doetsch et al. (2001)

Porphyridiophyta Porphyridiophyceae Porphyridium sp B Lapidot et al. (2002)

Mitochondria Chlorophyta Chlorophyceae Chlamydomonas
reinhardtii

B Randolph-Anderson et al.
(1993), Remacle et al.
(2006) and Yamasaki et al.
(2005)

Methods A—Agrobacterium, B—biolistic bombardment, E—electroporation, G—glass bead agitation, S—silicon carbide whiskers, PT—
protoplast transformation, and PEG—with polyethylene glycol
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producer of astaxanthin, and Dunaliella salina (Feng et al. 2009; Geng et al. 2004;
Sun et al. 2005; Tan et al. 2005) used for β-carotene production. Diatoms are also
important commercial sources for aquaculture feedstock, specialty oils such as
omega-3 fatty acids, and are used in nanotechnology due to their unique silica
frustules. There has been one report of a nuclear transformation of dinoflagellates
(ten Lohuis and Miller 1998). Red algae have been used for both chloroplast
transformation (Lapidot et al. 2002) and nuclear transformation (Cheney et al.
2001; Minoda et al. 2004). A human growth hormone (hGH) has been successfully
expressed in the nucleus of Chlorella vulgaris (Hawkins and Nakamura 1999) and a
fish growth hormone (GH) in Nannochloropsis oculata (Chen et al. 2008).
Transformation techniques using a cellulolytic enzyme to weaken the cell walls and
make the cells more competent for the uptake of foreign DNA have been suc-
cessfully applied to the green algae Chlorella ellipsoidea (Liu et al. 2013) and may
be applicable for the transformation of other algal species with tough cell walls in
future. A synthetic biology approach to engineer complex photosynthetic traits from
diverse algae into a more controllable production strains has been shown using an
ex vivo genome assembly to transfer genes for core photosystem subunits from
Scenedesmus into multiple loci in the Chlamydomonas plastid genome (O’Neill
et al. 2012).

Given the recent expansion of interest in microalgae, a broader repertoire of
genome sequences and analytical and molecular engineering tools are being
reported and will provide the foundation for a broad range of biofuel applications,
some of which are covered in the following section.

11.3 Application of Genetic Engineering for Practical
Applications

11.3.1 Strategies for GM Microalgae Relevant to Biocrude
Production

The potential benefits of GM in microalgae mass cultivation systems for the pro-
duction of biocrude can be broadly divided into seven strategies:

1. To increase the net photosynthetic productivity of mass cultures
2. To increase nutrient assimilation capacity
3. To modify bulk energy and carbon flows (e.g. rerouting energy flows into lipids)
4. To enhance the alga’s capacity to remain dominant in contaminated cultures

(e.g. resistance to predators, pathogens)
5. To enhance the harvestability and processability of the algae biomass (biology

of flocculation)
6. To improve economic viability through the manufacture of high-value products

and services (HVP&S—e.g. recombinant vaccines or industrially useful prop-
erties such as the ability to digest cellulose)
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7. To develop enabling technologies for biotechnology (e.g. export systems for
proteins, lipids, or other products; internal signalling or reporter systems and
switchable effectors, for example to stop and start growth, trigger programmed
cell death or dissemble the cell wall upon demand).

11.3.2 Engineering Increases to the Net Photosynthetic
Productivity of Mass Cultures

The two key requirements for any commercial renewable fuel system are a
demonstrable positive energy balance and financial profitability. The optimisation
of photon conversion efficiency (PCE) towards the desired end fuel product is
central to this and requires optimisation of the following biological processes:

1. Solar energy capture
2. Storage of the captured energy as chemical energy
3. Minimising metabolic losses
4. Targeting the photosynthates into the chosen product stream

Solar Energy Capture While the theoretical PCE of microalgae may be as high as
*8–12 % of total incident solar energy (Melis 2009; Zhu et al. 2010), conventional
commercial systems fall far short of this (up to *2 % annual average for HRPs
and *5 % for PBRs). This, however, is already a significant advance on con-
ventional agriculture and also shows the potential for further improvement. Well-
operated high rate pond (HRP) systems cultivating suitable production strains in
favourable climatic locations can achieve up to *70 T ha−1 yr−1 which is equiv-
alent to approximately 20 g m−2 d−1 though many current systems are achieving
much less than this (Downes et al. 2013). The production of up to 70 T biomass dry
weight yr−1 makes such microalgae systems *5 times more productive than sugar
cane [global average 71 T fresh weight ha−1 yr−1 (FAO—Food and Agriculture
Organization of the United Nations 2014)], which as dry mass in comparison also
generally has a lower calorific value than dried microalgal biomass, especially
relative to oleaginous strains. At these levels (and assuming a nominal solar energy
level of *20 MJ m−2 d−1), HRPs are producing microalgae biomass at *2 % PCE
(average value with variance between 1 and 4 %) in comparison with the global
annual average of *0.4 % for sugar cane yields when fallowing and rattooning are
considered (Stephens et al. 2013a). Although microalgae can be produced at higher
productivities, the capital cost and operating cost of these algae farms result in a
higher relative cost of production. For example, more advanced PBR systems with
improved designs and a larger surface area to volume ratio can achieve PCE rates
of *5 % in similar outdoor conditions (equivalent to *175 T ha−1 yr−1), but
currently, the increase in capital cost is much higher than the returned benefit of the
higher productivity. Higher PCE rates have been achieved in the laboratory, but this
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is under artificial conditions. Consequently, biological methods of improving the
PCE rate of microalgae production without incurring additional capital expenditure
could play an important part in increasing the feasibility of a wide range of mic-
roalgal production systems. As the photosynthetic machinery comprises a number
of potential targets for GM approaches, it is useful first to examine the molecular
mechanisms of photosynthesis.

Photosynthesis and Electron transfer Photosynthesis drives the first step of all
biofuel production and as such is a major target for genetic optimisation. In par-
ticular, the light reactions of photosynthesis capture solar energy and convert it into
chemical energy in the form of ATP and NADPH. The ATP and NADPH generated
is subsequently used to drive CO2 fixation (dark reactions) and so ultimately the
formation of biomass (for biomethane and biomass-to-liquid (BTL)), oils (for
biodiesel and aviation fuel), sugars and starch (for bio-ethanol), and protons and
electrons (for bio-H2). Optimising the efficiency of light capture and its conversion
to chemical energy is thus of critical importance for the development of all high
efficiency/low-cost biofuel processes. Here, the complex processes of photosyn-
thesis are briefly summarised to highlight key areas of potential genetic
optimisation.

In higher plants and green algae, light is captured by the LHC proteins, which
are commonly referred to as LHCI and LHCII based on their predominant inter-
actions with photosystems I (PSI) or II (PSII). The LHC proteins belong to a large
gene family, which in the green alga C. reinhardtii consists of over 20 members
(Dittami et al. 2010). LHC proteins have a dual role:

1. To capture light and funnel the derived excitation energy to PSI and PSII.
2. To dissipate excess energy via the processes of non-photochemical quenching

(NPQ) to reduce photodamage to PSII. Under high-light operational conditions
such as in Australia, NPQ can result in energy losses of *90 % of the captured
solar energy (Mitra and Melis 2008; Polle et al. 2003). To achieve the highest
solar-to-chemical energy conversion efficiency, it is therefore imperative to
minimise these losses.

The excitation energy transferred to PSII by LHCII drives the photosynthetic
water splitting reaction, which converts H2O into H+, electrons and O2. Under light-
limited conditions, the photosynthetic electron transport chain is thought to be in
the ‘State 1 Transition’ in which almost all of the captured photons are used to drive
the transfer of electrons along the linear electron transport chain from the PSII–-
LHCII supercomplex, via plastoquinone, cytochrome b6f, the PSI–LHCI super-
complex and ferredoxin and on to NADPH.

Simultaneously, H+ ions are released into the thylakoid lumen by PSII and the
PQ/PQH2 cycle. This generates a proton gradient across the thylakoid membrane,
which drives ATP production via ATP synthase. The H+ and electrons are
recombined by ferredoxin–NADP+ oxidoreductase to produce NADPH. NADPH
and ATP are used in the Calvin–Benson cycle and other biochemical pathways to

11 Genetic Engineering for Microalgae Strain Improvement … 215



produce the sugars, starch, oils and other biomolecules that are feedstocks for
biofuel products (and which collectively form biomass). Alternatively, in some
photosynthetic micro-organisms such as C. reinhardtii, the H+ and electrons
extracted from water (or starch) can be fed to the hydrogenase HydA, via the
electron transport chain to drive the direct production of H2 from H2O. H2 is
potentially the most efficient form of biofuel production as, in contrast to the
production of oils and carbohydrates, it requires no additional ATP or NADPH.
Furthermore, far from only having a future use, H2 is already used for synthetic fuel
production and has significant industrial applications.

State Transitions The highest efficiency of ATP and NADPH production is
achieved under low NPQ/linear electron transport conditions. This is because
almost all of the captured energy is used to drive photochemistry and only two
photons (one to excite PSII and a second to excite PSI) are required to transfer one
electron from H2O to NADPH. Consequently, microalgae have evolved the state
transition process to maintain linear electron transport under changing light con-
ditions. The state transition process balances the absorbed light energy between the
two photosystems by relocating light-harvesting complex II proteins between the
two PS reaction centres thus optimising the corresponding antenna. In State 1,
CP29 and LHCII trimers are attached to PSII. Under high-light conditions, the PQ
pool can become over-reduced (PQH2) if the turnover rate of PSII exceeds that of
PSI. To prevent photodamage, C. reinhardtii undergoes a transition from State 1 to
State 2 in which CP29 and LHCII trimers are thought to detach from PSII, reducing
its antenna size, and couple to PSI–LHCI to yield a PSI–LHCI–LHCII super-
complex which is to capture more light (Drop et al. 2011; Kargul et al. 2005). If the
process of state transition is not sufficient and the PQ pool continues to be over-
reduced, or the cell has a greater requirement for ATP, NADPH-dependent cyclic
electron transport is induced.

Cyclic Electron Transport Cyclic electron transport transfers H+ from the stroma
and e− from the stromal side of PSI to the luminal surface of the thylakoid mem-
brane. H+ is then released into the lumen, and the electrons cycled back to PSI via
plastocyanin (PC). In this way, the over-reduced PQH2 pool is re-oxidised to PQ.
Converting PQH2 to PQ helps to protect PSII from photoinhibition as the latter is
available to accept electrons released by PSII. The H+ transported to the lumen by
cyclic electron transport is used for ATP synthesis via the ATP synthase. Although
cyclic electron transport is not as efficient as linear electron transport, some of the
energy is utilised for the production of ATP. Recently, Iwai et al. (2010) reported
the isolation of a 1 MDa ‘CEF–PSI supercomplex’ and suggested it as the site of
cyclic electron transport. This supercomplex is thought to consist of the PSI–LHCI
and Cytb6f complexes, ferredoxin–NADPH oxido-reductase (FNR) and the integral
membrane protein PGRL1. Independent studies revealed that PGRL1 is required for
efficient cyclic electron transfer in C. reinhardtii (Petroutsos et al. 2009; Tolleter
et al. 2011).
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Theoretical Areas for the Genetic Optimisation of Photosynthesis The involve-
ment of light-harvesting antenna proteins and the reaction centres in the dynamic
function of state transitions, cyclic electron transport and specific biofuel production
modes such as hydrogen remains an active area of structural biology (electron
tomography, crystallography and high-resolution single particle analysis), protein
biochemistry and genetic engineering research. Established and previously intro-
duced methods such as RNA interference, random insertional mutagenesis as well
as recent advantages in the development of gene-editing tools such as CRISPR/Cas
(Sander and Joung 2014) or TALEN (Gao et al. 2014; Sizova et al. 2013) systems
open up the ability to knock out/knock down specific genes or conduct precise gene
editing.

Knockout/Knock-down of Specific Genes Deletion and knockout of specific genes
such as LHC genes allow the establishment of stable mutants for structural and
phenotypic characterisation. This in turn will help to develop pseudo-atomic res-
olution blueprints of the photosynthetic machinery to enable structure-guided
design. Although quite unstable for commercial use, RNA interference to down-
regulate particular proteins has been quite successful at increasing our under-
standing of optimal configurations for the photosynthetic apparatus and is therefore
a useful tool to identify potential targets for further investigation and potential
engineering applications.

Minimising Energy Losses At low-light levels, the rate of photosynthesis is lim-
ited by light, while under high-light levels, it is primarily limited by the rate of CO2

fixation by rubisco. Increasing the atmospheric CO2 concentration can increase the
rate of CO2 fixation. However, even under these conditions, wild-type microalgae
are already supersaturated by irradiance levels in the *100–400 µE m−2 s−1 range,
which is considerably lower than maximum incident irradiance levels (up to*2500
µE m−2 s−1) as they generally possess large (dark green) chlorophyll-binding LHC
antenna systems designed to capture a large proportion of the light incident upon
them. Consequently, microalgae have evolved a range of photo-protective mech-
anisms to prevent oxidative damage under supersaturated illumination conditions.
In the wild type with large antenna, algae cells at the illuminated surface of the
bioreactor that are exposed to high-light levels capture the bulk of the light energy.
The energy required to drive photochemistry is used, and the remainder of this
captured energy is wasted via processes such as NPQ in which the excess is
dissipated as heat (Mussgnug et al. 2007; Polle et al. 2003; Tolleter et al. 2011). As
a result, light penetration into the culture is compromised and the cells located
deeper in the culture are exposed to decreasing levels which impairs these cells in
their photosynthetic efficiency. This in turn drastically reduces the efficiency of the
overall culture. Although this problem can be overcome by reducing culture density
or decreasing the light path, this reduces production levels or requires a larger
surface area, increasing the cost of the bioreactors. Increasing the mixing rate is also
of limited benefit as energy dissipation occurs on a shorter timescale (<1 × 10−6 s)
than transferring cells from high- to low-light zones in the bioreactor (*1 × 10−3 s)
and requires a considerable energy input, significantly reducing the energy yield of
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the process. Another mechanism of the cells to avoid photodamage is the ability to
partially down-regulate their antenna systems yielding a light green phenotype due
to their reduced chlorophyll content at the same cell density. Although this is an
effective way of reducing light capture, a remarkable amount of energy is still
wasted by NPQ. Reducing the amount of light captured per photosystem to the
optimum light capture needed for each cell can markedly improve photobioreactor
efficiencies (Beckmann et al. 2009; Mitra and Melis 2008; Polle et al. 2003).

Engineered small antenna cell lines with reduced LHC levels offer the potential
of improving the light penetration into the bioreactor and the ability to better match
solar energy input with the energy requirements of each photosynthesising cell.
Thus, ‘small antenna’ cells at the bioreactor surface absorb only the light that they
need, largely eliminating the need to dissipate excess energy through NPQ and to
switch into the cyclic electron transport mode. This in turn allows more light (i.e.
the light dissipated in the WT) to penetrate into the bioreactor so that cells deeper in
the culture have a near optimal exposure to light (Mussgnug et al. 2007; Oey et al.
2013). Although the maximum efficiency of individual cells remains unchanged
under saturating light levels, the overall efficiency of the small antenna culture, and
with this the bioreactor photosynthetic efficiency, increases.

Initially, studies were conducted to evaluate the effect of down-regulating LHC
levels more generally than specifically. Insertional mutagenesis was utilised to
generate C. reinhardtii tla1 mutant (Polle et al. 2003) with <50% of total chloro-
phyll per cell and a Chl a/Chl b ratio of almost triple, relative to parental strain
indicating a reduction in the chlorophyll a/b binding proteins of the LHCII antenna.
Tla1 was shown to have a similar light saturation curve to the C. reinhardtii cbs3
mutant (Polle et al. 2000, 2003). Crossing of the cell-wall-deficient tla1 with a cell
wall intact strain CC1068 (CW+) led to strain tla1–CW+ which had higher oxygen
evolution and cell densities relative to wild type at 1500 µE m−2 s−1. Berberoglu
et al. (2008) reported comprehensively upon the radiation characteristics of these
two strains as well as a new mutant C. reinhardtii tlaX which has significantly
lower total chlorophyll and substantially lower chlorophyll b. Similar such exam-
inations of strain-specific radiation characteristics (Berberoglu et al. 2008; Heng
et al. 2014; Kandilian et al. 2013; Lee et al. 2013) provide a good framework for
comparisons and further advancement.

Translational control was also studied when NAB1 was postulated to be an LHC
mRNA-specific repressor protein that, when disrupted through insertional muta-
genesis, led to the C. reinhardtii Stm3 mutant with high LHC and chlorophyll
levels (Mussgnug et al. 2005). Thus, the potential up-regulation of NAB1 and
similar regulatory proteins like it could assist in the art of engineering light capture.
Alternatively, it was found that replacement of 1 or 2 of the NAB1 cysteine residues
can perturb its deactivation mechanism, and this in vitro led to enhanced repression
of LHC translation, and consequently smaller LHCII antennae (Wobbe et al. 2008).
This was validated when a permanently active NAB1 variant was used to generate
the mutant C. reinhardtii Stm6Glc4T7 (Beckmann et al. 2009) although LHC
antennae reduction effect was not as pronounced as that achieved by other methods.
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RNA interference was used to facilitate targeted down-regulation of particular
proteins of interest. Using a common LHC protein target DNA sequence, Mussg-
nug et al. (2007) was able, in the C. reinhardtii Stm3LR3 strain, to down-regulate
LHCII proteins by *95 % and LHCI proteins by *80 %. As the LHC proteins
perform a complex set of roles, a more refined strategy was developed in which
specific sequences were chosen to target only LHCBM1, 2 and 3 in C. reinhardtii
Stm6Glc4L01 (Oey et al. 2013). Both of these strategies have been reported to be
successful at improving the growth rates of high cell density cultures under high-
light conditions. Perrine et al. (2012) also employed an RNAi strategy to down-
regulate CAO in C. reinhardtii and compared CAO-RNAi (CR) cell lines to the
previously developed C. reinhardtii cbs3. Collectively, these RNAi projects have
shown that although peripheral antennae can indeed be minimised, there are
advantages in having precisely engineered antennae systems (e.g. which enables
state transitions to function normally) for high efficiency biotechnology applica-
tions. More recently, Synthetic Genomics and ExxonMobil have reported on their
collaborative work identifying light acclimation regulator (LAR) genes Lar1 and
Lar2 (Bailey 2013) and developed Nannochloropsis mutants that are locked in a
high-light-acclimated state. In terms of future developments, in this area, the above
RNAi data can be used to identify particular targets for more permanent editing,
deletion and upregulation using the emerging CRISPR/Cas and TALEN
approaches.

Expanding the Available Solar Spectrum The currently accepted range for pho-
tosynthetically active radiation (PAR) absorbed by chlorophylls a and b only
comprises *43 % of the total solar spectrum, however, other chlorophylls include
c1, c2, d and f and utilising additional chlorophyll types could enable the capacity
for microalgae to exploit a wider range of wavelengths (Blankenship and Chen
2013; Chen and Blankenship 2011). In this context, it is of note that chlorophyll d
(Manning and Strain 1943; Miyashita et al. 1996) and chlorophyll f (Chen et al.
2010) are red shifted and reported to be in oxygenic organisms. This indicates that
these chlorophylls may therefore be able to capture light in the infrared range which
is usually excluded from conventional calculations on microalgal productivity for
most oxygenic algae which more commonly incorporate chlorophylls a and b into
the photosynthetic machinery.

The engineering of photosystems incorporating alternative chlorophyll mole-
cules requires the introduction of biosynthetic pathways for these specific pigments,
the accompanying mechanisms of their targeted incorporation into the photosys-
tems and the engineering of PSI, PSII and the light-harvesting proteins themselves
to enable the precise coordination of these new pigments. In this context, it is of
note that the disruption of the chlorophyll a oxygenase (CAO) gene which is
reported to be involved in the synthesis of chlorophyll b yielded the chlorophyll b-
depleted strain C. reinhardtii cbs3 (Tanaka et al. 1998). Subsequently, Polle et al.
(2000) showed that in the absence of chl b, some substitution by chl a occurred in
C. reinhardtii cbs3. All apoproteins of the LHC were reported to be present,
although trimeric LHCII did not appear to assemble and the total antennae size was

11 Genetic Engineering for Microalgae Strain Improvement … 219



truncated. Furthermore, cbs3 had a higher chlorophyll per cell relative to wild type
even though chl b is absent. Photon use efficiency was significantly decreased in
cbs3, but Pmax depended greatly on the carbon source. Also, there has been some
evidence that reduction in carotenoid levels can also have an effect in reducing PSII
antennae although results are less pronounced (Polle et al. 2001). While this sug-
gests that it is possible to engineer cell lines with tailored chlorophyll compositions,
much detailed work must be completed to achieve real increases in photon use
efficiency. In addition to potentially enhancing natural photosynthesis, such genetic
engineering studies coupled with advanced structural biology analysis could also
yield valuable insights for the design of artificial photosynthetic systems.

Precise Gene Editing Precise engineering of genes and the creation of stable cell
lines, e.g. via the replacement of individual codons for specific amino acids will
enable the fine-tuning of the photosynthetic process for biotechnological applica-
tions, for example using structure-guided design and gene-editing tools to modify
individual chlorophyll-binding sites to facilitate the binding of specific chlorophylls
or alter cyclic and linear electron transport controls and state transitions.

Photosystem Reaction Centres Aside from work on the optimisation of the LHC
antennae and chlorophyll density, there has recently been progress in the investi-
gation of variants of the D1 protein subunit of photosystem II (Vinyard et al. 2014)
in which it was reported that different naturally occurring isoforms are tuned to
either high- or low-light conditions and that through introducing point mutations,
photochemical design concepts could be elucidated to enable fine-tuning of pho-
tosystem reaction centres towards specific environmental conditions. This work is
still at early stages but has the potential to complement the work on optimisation of
antennae systems for synergistic effect.

Other Recent Developments Also, there are other more generalist strategies for
improving photosynthesis that are not specifically centred around light harvesting.
Zhu et al. (2010) and Evans (2013) have recently reviewed some of the most
promising advancements including the improvement of rubisco [or substitution of
rubisco from other biological sources, e.g. (Lin et al. 2014)], and enhanced carbon
concentrating and metabolic enzymes (e.g. sedoheptulose biphosphatase) that are
associated with photosynthesis. It is important however to remember the distinction
between modifications that enhance the productivity of a single cell and modifi-
cations that actually compromise the cell in some way but enhance the productivity
of the overall culture (this is further discussed in Sect. 11.4 in the context of
government regulation).

Challenges for Effective Deployment of These Technologies in Commercial
Systems While growth rates in the laboratory appear to be better for high-density
cultures and high-light conditions, as yet there have been no successful demon-
strations of pigment/antennae mutants proving this capacity in scale up systems.
Huesemann et al. (2009) did perform the first scale up cultivation of pigment
mutants of Cyclotella that had been developed for them by Jürgen Polle; however,
the mutant culture showed no significant growth benefit over the control culture.
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The complexity of the antenna systems and their dynamic interactions makes the
precise improvement of light capture and utilisation without the introduction of
detrimental effects challenging and underlines the consideration that random
mutagenesis approaches may be most useful where subsequent screening can verify
that no functional units other than the target genes have been affected. In the
absence of these checks, growth could actually be compromised rather than
improved. Precision strategies for genetic engineering of light harvesting address
this concern (as discussed above), but either system is acceptable. Furthermore,
despite strains that have been developed specifically for high-density mass culti-
vation and to have the highest photon to chemical energy conversion efficiency
show great promise, the state of being ‘locked in’ to a certain growth condition can
also present a challenge. For example, other strains that retain the photo-adaptive
capacity and can modulate their antennae size, pigment density and appropriate
reaction centres have the capacity to invade cultivations of industrial production
strains and grow more competitively in the photo-limited zone. Although they may
not grow fast, in long-term semi-continuous culture, they could over time alter the
population distribution and affect overall culture productivity (Perrine et al. 2012).

11.3.3 Engineering Improved Metabolism Systems

The downstream metabolic pathways which utilise the ATP and NADPH generated
by photosynthesis offer a second area of opportunity for genetic improvement.
Essentially, biocrude is reduced carbon dioxide and photosynthesis is a process of
reduction. Metabolic engineering based, for example, on flux analysis (Dal’Molin
et al. 2011) offers the opportunity to increase the capture of the energy derived from
solar irradiation into desired ‘chemical energy-rich’ product (e.g. triacylglycerides,
secondary metabolites or recombinant proteins) in production models utilising
extraction processes or for sale of raw biomass.

To achieve the maximum PCE for a particular product, it is important to achieve
four key things:

1. The optimised channelling of the captured solar energy into the biochemical
pathway producing the target product

2. The optimisation of the efficiency of the biochemical pathway producing the
product

3. To minimise energetic losses through cell division and metabolism
4. To export the product to avoid inhibitory feedback loops

It could be argued that while the engineering of pathways for production models
utilising extraction processes or for the sale of biomass is likely to benefit most
from genetic optimisation, the benefits of metabolic engineering are attenuated
when whole biomass processing strategies such as HTL to biocrude are intended.
However, even in this scenario, the elemental composition of microalgal biomass is
still relevant to the quality of biocrude output and biomass. For example, oil-rich
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biomass can be considered to be more reduced than its more oxygenated carbo-
hydrate-rich counterpart and as such tends to have a higher energy content or
calorific value in terms of MJ kg−1. Thus, for example, while TAG accumulation
has traditionally been examined as a feedstock for biodiesel production, for which it
is particularly suited, its accumulation can also be beneficial for the production of
biocrude. Similarly, protein accumulation results in high nitrogen and sulphur
levels which incurs additional nutrient requirements and poses a problem for bio-
crude quality. Generally, algae are considered to be*50 % carbon; however, this is
not an inflexible rule. The Redfield ratio purports that the stoichiometric ratio of
main elements is expected to be 106C:16N:1P; however, this is a molar ratio, and
when masses are calculated, the corresponding mass ratios would be approximately
41C:7N:1P. Thus, algae can vary significantly in their carbon content, and where
algae can accumulate large amounts of lipid stores, then a reasonable carbon range
could be anticipated from *40–60 % carbon. In this respect, where carbon
assimilation can be increased without compromising total productivity, metabolic
engineering can play an important role in strain development for whole biomass
processing.

Balancing Carbon Storage in Microalgae (Case Studies) Studies have shown that
the content and biochemical composition of microalgae can vary significantly as
their metabolic pathways shift in response to environmental stimuli and changes in
nutritional conditions—protein (6–52 %), carbohydrate (5–23 %) and lipid
(7–23 %) (Brown et al. 1997; Chen et al. 2011; Guschina and Harwood 2006;
Johnson and Alric 2013; Poerschmann et al. 2004; Roessler 1990). While some
algae use lipids as energy storage, e.g. diatoms, for many species cultivated under
nutrient replete normal growth conditions, carbon reserves are preferentially stored
as starch (as in higher plants) which are readily catabolised to glucose for ATP
(Johnson and Alric 2013). Though in nutrient deplete unfavourable growth con-
ditions where temperature, light, salinity, pH, etc., may be suboptimal, the carbon
can be stored in the form of triacylglycerols as a reserve for future use (Roessler
1990; Sheehan et al. 1998). By taking a nutritional and/or an environmental
approach, the regulatory processes involved in these carbon storage schemes can be
manipulated, although the effects may be species specific. While some of these
approaches may not be practical in a commercial context, it is interesting to
understand genetic activities related to such phenomena.

Nitrogen depletion was first demonstrated by Spoehr et al. in Chlorella pyre-
noidosa and has since been applied to a number of other strains as the standard for
lipid induction (Ben-Amotz et al. 1985; Spoehr and Milner 1949). Studies have
shown significant increases in lipid content (from 1 to 85 % of cellular mass) in
microalgal cultures at the expense of cellular growth (Rodolfi et al. 2009; Roessler
1990; Siaut et al. 2011). As the synthesis of proteins and nucleic acids rely on
nitrogen, these pathways inevitably cease to function and the flow of carbon diverts
to storage compounds (Berges et al. 1996; Roessler 1990). Similarly, silicon
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depletion in diatoms such as Cyclotella cryptica has been observed to induce a
multifold increase in ACCase activity leading to increased lipid accumulation,
while a reported 50 % reduction in carbohydrate storage was noted. Pulse chase
experiments suggested in the first 12 h after silicon depletion, *55–68 % of the
lipids produced via de novo synthesis (Roessler 1988a, b and 1990).

The effects of salinity on metabolism have been mainly studied in halotolerant
species such as Dunaliella which is found to draw upon starch reserves to physi-
ologically respond to osmotic stress (Craigie and McLachlan 1964). As salinity
within the medium is increased, Dunaliella cells contract rapidly, and the cells then
metabolise glucose and fructose into a glycerol pool within the cytoplasm in order
for the cell to regain its volume (Baird and DeLorenzo 2010). On the other hand,
when salinity in the medium is decreased, the available glycerol pool is metabolised
back into starch reserves (Ben-Amotz and Avron 1973; Borowitzka and Brown
1974). Other growth factors such as temperature stress, pH variation and light
intensity have also been reported to influence the lipid composition in a range of
species (Guckert and Cooksey 1990; Roessler 1990).

Knowledge in how different species respond to different nutrients and envi-
ronmental conditions will greatly aid researchers in developing a greater under-
standing of mass culture and biological response. The disadvantage of these simple
strategies for increasing lipid content is that they are fundamental responses to
stress, represent a loss of net productivity and can be subject to operational limi-
tations. However, elucidating the genomic changes elicited by these responses can
enable engineering strategies which offers the prospect of more rapid, direct and
controllable ways to siphon off the biological gains of photosynthesis into a
desirable form.

Engineering of Lipid Pathways While much is known about lipid metabolism in
higher plants from research models such as Arabidopsis (Beisson et al. 2003), lipid
metabolism in microalgae is substantially different relative to higher plants and also
between microalgal genera. The neutral and polar lipids, and the enzymes and
metabolic pathways involved in their biosynthesis and catabolism have been
recently described with the current focus being upon gene identification to enable
proper metabolic engineering (Dal’Molin et al. 2011; Guschina and Harwood 2013;
Khozin-Goldberg and Cohen 2011; Liu and Benning 2013; Rismani-Yazdi et al.
2011). C. reinhardtii remains the most extensively studied model for microalgal
lipid metabolism (Liu and Benning 2013; Merchant et al. 2012), but it does not
appear to use phosphatidylcholine as a substrate in TAG synthesis or to accumulate
TAG unless under stress conditions (unlike Nannochloropsis which can synthesise
TAG under normal cultivation conditions) or in starch accumulation (sta) mutants
(Li et al. 2010; Work et al. 2010; Zabawinski et al. 2001). Recently, the metabolic
pathways of Dunaliella tertiolecta (Rismani-Yazdi et al. 2011) andMonoraphidium
neglectum (Bogen et al. 2013) have been reported, and there is some knowledge of
other microalgae (Guschina and Harwood 2013), but knowledge of specific enzy-
matic processes and the genes involved requires further advancement before
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effective metabolic engineering strategies become commonplace and metabolic flux
models will also assist with this (Dal’Molin et al. 2011).

In early work on acetyl-CoA carboxylase (ACCase) in which Dunahay et al.
(1996) transformed the diatom Cyclotella cryptica with additional copies of the
ACCase gene within the TCA cycle to increase the flux of carbon towards lipid
biosynthesis, the resultant increase in enzyme activity did not increase lipid accu-
mulation. Similarly, the recent engineering of increased expression DGAT strains in
C. reinhardtii (La Russa et al. 2012) saw enhanced DGAT mRNA levels but failed
to increase intracellular TAG accumulation. Thus, claims that this field of engi-
neering lipid metabolism in microalgae is still in its infancy are valid (Merchant
et al. 2012), and much more work needs to be completed before we are likely to see
the potential gains in industrial production candidates that have been anticipated.
Possible reasons for this are that microalgae have some form of feedback regulation
and that they have multiple and divergent DGAT2 isoforms (Chen and Smith
2012), and while all algal species have at least one DGAT2 from the animal clade, it
currently appears that only green algae have DGAT2s similar to higher plants.
Thus, single gene engineering strategies may be of limited application when dealing
with a gene network which we do not currently comprehend sufficiently. Chen and
Smith (2012) call for further investigation of DGAT2 enzymatic characteristics as
functionality and substrate preferences are currently not fully understood. PDAT is
the other of the two enzymes involved in the final step of TAG production and it
has recently been examined (Boyle et al. 2012; Yoon et al. 2012). Yoon et al.
(2012) demonstrated that PDAT is indeed involved in TAG biosynthesis in C.
reinhardtii through RNAi-induced PDAT knock-down mutants. Thus, both DGAT
and PDAT represent valid targets for metabolic engineering, but more must be
understood about the other metabolic processes acting in the TAG ‘neighbour-
hood’. By simultaneously manipulating all of the critical genes that influence the
metabolic flux, success is far more likely. RNAi and new CRISPR/Cas and TALEN
technologies offer the potential to dissect these pathways and indeed optimise
individual catalytic steps through genetic editing and the amino acid level.

Another promising genetic approach has focused upon the engineering of lipid
catabolism rather than biosynthesis. Using this approach, Trentacoste et al. (2013)
incorporated antisense and RNAi into the diatom Thalassiosira pseudonana tar-
geting a newly identified gene Thaps3_264297, which was reported to be a mul-
tifunctional lipase–phospholipase–acyltransferase, which showed consistent
decrease in microarray transcript abundance throughout the lipid accumulation
phase of silicon withdrawal. Thaps3_264297 is homologous to human CGI-58
whose mutation in humans can lead to excessive accumulation of neutral lipid
droplets in various tissues. Trentacoste et al. (2013) found that these knock-down
mutants had increased accumulation of TAG droplets and total lipid production
without negatively affecting cell division and biomass growth. Examples of other
targetable enzymes may include malate dehydrogenase (mme gene), pyruvate for-
mate-lyase (pfl gene) or the fatty acid synthase complex (FAS) to drive carbon
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towards fatty acid synthesis (Perez-Garcia et al. 2011; Yu et al. 2011), and these
targets will be further refined with the improvement of metabolic flux models.

Metabolic engineering is not just about increasing the flux towards fatty acid
synthesis and TAG accumulation, but also qualitatively concerning the types of
lipids that are produced. For example, metabolic engineering has been successful in
altering the fatty acid profile of Phaeodactylum tricornutum (Radakovits et al.
2011) to yield shorter acyl chains. The capacity to manipulate both chain length and
the degree of saturation has significant potential for adjusting fuel properties.

Engineering of Carbohydrate Pathways Similar to the metabolic models for fatty
acid biosynthesis and catabolism, models for carbohydrate metabolism are also
under-development, for example, in Phaeodactylum (Kroth et al. 2008). For bio-
crude production, increasing the carbohydrate concentration in cells can also
increase the total carbon content although oxygen content increases and this
strategy seems secondary relative to strategies maximising lipid content. In the C.
reinhardtii Stm6 mutant, the deletion of the Moc1 gene via random gene insertion
resulted in modified respiration metabolism with the downstream effect of accu-
mulating large starch reserves within the chloroplast (Schönfeld et al. 2004). There
are also ambitions for microalgae, in particular cyanobacteria, to produce carbo-
hydrates at the industrial scale (Ducat et al. 2012; Wijffels et al. 2013), and the
company Algenol that utilises GM algae to produce and secrete ethanol is a good
example of this.

Challenges for Effective Deployment of these Technologies in Commercial Sys-
tems Where microalgae are accumulating energy storage compounds, they become
better candidates for production; however, within the ecology of mass cultivations,
they also become better candidates for predation, increasing the energy return for
micro-organisms grazing upon them.

11.3.4 Engineering Improvements to Process Streams
and Economics of Algal Biotechnology

While ultimately the hard physical metrics for microalgal biocrude are essentially
the energy returned on investment (EROI) and the economic viability, the maturing
and scaling of the technology still require further development. During this early
development phase, commercial viability requires a profitable path to technology
deployment. Several approaches are possible for dealing with this problem.

High Value Products and Services (HVP&S) Algal GM is in its infancy compared
to other systems. A challenge of generating GM strains for HVP&S production is to
provide useful products and services that cannot be easily generated in more mature
technologies. There is no rational point to replicating in algae a service that can be
easily and economically performed by yeast or E. coli aside from reasons such as
marketing appeal. The relative advantages of algae as GMO vehicles must therefore
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be carefully considered on a case by case basis. Recombinant products such as
peptides larger than those able to be chemically synthesised, but small enough to be
extracted with relatively harsh techniques, may be particularly suitable. Many
HVP&S GM strains will be designed to operate under heterotrophic conditions
which simplify reactor design.

The difference between these approaches is that modification of bulk mass and
energy flows is focussed on energy production and is strictly limited by the ther-
modynamics of light harvesting and carbon fixation, whereas HVP&S approaches
are less thermodynamically constrained (and indeed, may not even utilise photo-
autotrophic systems) but are focussed mainly on economic gains.

Enabling and Supportive Technologies Given the constraints outlined above, it is
clear that GM strains for HVP&S and those for biofuels applications will have little
in common and it is unlikely that a single strain (or industrial facility) will serve
both purposes, which argues against the ‘biorefinery’ concept if it is confined to a
single strain or process. Nonetheless, the common biology underpinning all algal
systems means that most of the enabling technologies invented in this space will
apply similarly to a multitude of different algal biotechnology systems, yielding
substantial cross-fertilisation. It is here that the biorefinery concept may be most
profitable.

Many supportive technologies will therefore need to be developed before the
industry matures, and GM can make major contributions to these. Protein and lipid
export systems, for example, may reduce internal product inhibition while reducing
harvest costs; modified photosynthetic systems may improve the efficiency of
utilisation of incident light; and fluorescent signals may be generated to monitor
internal biochemical processes. None of these technologies would intrinsically
compromise the ability to convert light to fuel, but might greatly simplify or reduce
costs for other biotechnological aspects. Clearly, there is a vast creative space for
innovative GM approaches in this area. To the extent that such technologies reduce
energy wastage during production, they can improve the EROI even without an
alteration of the fundamental light-harvesting efficiency.

Advantages of Algae as Heterologous Expression Systems Algae as heterologous
expression systems are comparable to plant systems primarily for their ability to
produce proteins with post-translational modifications. They may not replace the
established and commercialised bacterial and mammalian expression systems but
offer the potential for biological products which are difficult to produce in an active
form in prokaryotic systems and are expensive to make in eukaryotic systems (e.g.
antibodies). They also offer advantages over conventional systems to be chosen for
new products which cannot be produced in other systems [e.g. anti-cancer toxin
(Tran et al. 2013)] and therefore provide a valuable opportunity for the industry.

One advantage that can make transgenic microalgae systems competitive in the
field of pharmaceutical proteins is that many algae lack endotoxins or human
pathogens (Mayfield and Franklin 2005; Walker et al. 2005) and are therefore
‘Generally Recognized As Safe’ (GRAS). This could allow for a reduction of
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necessary purification steps during downstream processes as well as simplify
quality control and therewith allay production costs. Another advantage of algae
compared to higher plants is vegetative reproduction, leading to uniform clones
with comparable production rates. This relates to product quality, e.g. demonstrated
as certain beneficial post-translational modifications, product stability or biosafety.
Microalgae systems display high growth rates and need only a short time from
transformation to product formation so that scale up could be implemented within a
few weeks within commercial processes. The cultivation can be inexpensive due to
the relatively low costs of typical mineral media needed, therefore supplying a
large-scale robust growing system which can yield cheaply extractable high-volume
production. This provides possible cost savings during production processes, which
could play a role in special fields, where large quantities of products are required at
low costs such as recombinant antibodies or veterinary products.

Microalgae have already been established as biotechnological production sys-
tems and approved by the US Food and Drug Administration for a number of
secondary metabolites useful as food additives or cosmetics (Administration 2003,
2004, 2010a, b, 2011, 2012; Plaza et al. 2009) and for the production of carotene
using Dunaliella salina (Hosseini Tafreshi and Shariati 2009) and lutein as an
antioxidant and food colourant. Antiviral activities have been shown. Vaccination
concepts for a large number of diseases prevalent in developing nations based on
recombinant antigen expression in microalgae could result in inexpensive pro-
duction and distribution as well as long-term storage at room temperature (Dreesen
et al. 2010; Specht et al. 2010). Edible vaccines are a possible field of application
for algal expression systems, combining biosafety issues with inexpensive pro-
duction and storage and therefore opening up making products accessible for less
developed countries (Gregory et al. 2013). In the context of regulatory aspects in
the pharmaceutical sector, novel expression systems have to offer enormous
advantages over conventional systems to be chosen for new products. The possi-
bility to use a closed photobioreactor system contributes to reducing the risk of
contamination and prevents transgenes dispersing into the environment.

11.4 Regulatory Considerations in the Risk Assessment
of GM Microalgae

The responsible production of genetically modified (GM) microalgae and its
appropriate regulation in many ways parallels the previous emergence of GM crops
utilised in terrestrial crop-based systems. GM crops have been in field testing for
approximately three decades now and with their global scale now approaching
almost 200 million hectares, their benefits have been demonstrated, although they
have been beset by much controversy, and there are also some cautionary lessons
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learned. There are some important distinctions between the two forms of production
(i.e. aquatic versus terrestrial), and microalgae systems are generally capable of
much greater containment than conventional cropping systems. In order to preface
this discussion, it is important to first examine the current issues with wild (non-
GM) algae, both in the environment and in commercial production systems, and the
current state of regulatory oversight.

Wild Algae in Aquatic Ecosystems ‘Toxic algae blooms’ are a regular headline in
the mainstream media resulting in a public perception that algae are a menace. In
water treatment industries, this fear of algal toxins is also relatively well established.
In reality, the number of algae that produce any toxins is a tiny fraction of the
existing biodiversity. Almost all of the known toxins attributed to algae are actually
found in certain types of cyanobacteria and dinoflagellates, with a much smaller
representation from some bacillariophytes (diatoms), haptophytes, pelagophytes
and euglenoids. In some cases, there are groups who are cultivating specific species,
e.g. dinoflagellates, to utilise toxic compounds for applications such as biomedical
cytotoxins (generally under laboratory conditions), but this is the exception rather
than the rule, and the overwhelming majority of the industry is focused upon
avoiding toxic species. For example, the cultivation of the cyanobacteria Arthro-
spira (Spirulina) for human food consumption must be free from the cyanobacteria
Microcystis.

Environmental algal blooms, while an ongoing concern, are usually the result of
anthropogenic nutrient outflows or natural processes of nutrient cycling. They are
not generally the result of well-managed microalgae farming practices. Such
blooms can occur during periods of elevated nutrient levels due to either natural
processes (e.g. weather effected nutrient run-off from land or oceanic currents and
upwellings) or from anthropogenic nutrients (e.g. municipal, agricultural or
industrial waste waters), with the latter being more closely correlated with the
increase in the frequency and the intensity of environmental algal blooms.

Algal blooms can be broadly divided into classes as (1) blooms that are transient
and innocuous (2) both transient and persistent blooms that are generally considered
to be harmful, and (3) blooms that are clearly detrimental and disruptive to eco-
systems. As the algae themselves are by and large ubiquitously present, the primary
underlying issue is the management of nutrients and eutrophication processes.
While innocuous algae blooms are generally rapidly consumed by organisms higher
up the food web (e.g. plankton and filter feeders) and are therefore transient,
harmful algal blooms (HABs) (Anderson 2009; Anderson et al. 2002; Van Dolah
et al. 2001) and ecosystem disruptive algal blooms (EDABs) (Sunda et al. 2006)
can be comprised of algal species that are generally unpalatable to aquatic herbi-
vores or that contain toxins. This is important because it disrupts the food web and
the concordant transition of nutrition and chemical energy to higher trophic levels
which can result in a loss of ecosystem biodiversity (with ecosystem biodiversity
being closely correlated with ecosystem resilience). Historically, these problems are
largely caused by agricultural nutrient outflows, and there has been significant
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analysis of how outflows of nutrients and chemicals from agricultural production
can vary greatly in their ‘pollution footprint’, e.g. (Hill et al. 2006). The potential
for reducing the pollution footprint is one of the strong benefits of microalgal
production systems (Smith et al. 2010) in that they generally have no chemical
outflows, and due to greater containment relative to fields of crops in soil, they can
have much lower nutrient outflow, and in some cases a negative footprint where
they utilise anthropogenic nutrients from other systems, e.g. wastewater integration
and bioremediation systems. Nevertheless, forward thinking risk management
strategies are needed to ensure that microalgae production systems at very large
scale do not induce similar concerns to those experienced in traditional agriculture.

Proper Management of Microalgal Production Systems Proper management of
microalgal systems is an important aspect of any commercial operation. This will be
increasingly important as systems are scaled for large-scale production and the
varieties of engineered strains used increase. The establishment of production
models aiming to exploit the benefits of GM microalgae contributes additional
complexity to prudent regulatory frameworks. There is a duality to the responsible
management of GM microalgae production systems in that (1) from a product
perspective, farmed microalgae cultivations must be maintained at adequate purity
and free from contaminants that can compromise product quality (e.g. in the Ar-
throspira example given above), and (2) from an environmental perspective, the
release of nutrients or microalgal biomass must be properly managed in order to
mitigate any risk to local ecosystems. Given that for the production of biocrude,
biomass will be subjected to thermochemical processing, it is the latter point which
is central to this discussion.

Both the type of release (nutrients or biomass) and the scale of release are
important parameters in a proper risk assessment. Gressel et al. (2013) have added
to the discussion on mitigating spills and propose that spills from large-scale cul-
tivations will be inevitable—however, there is an important consideration here
regarding the terminology moving forward in this discussion. We expect that
implementation of proper standards in prudent farm management should be able to
mitigate the chances of large-scale spills into the environment; however, it is widely
agreed that microalgae have a relatively high capacity for dispersion (e.g. micro-
scopic size, and potential to form aerosols). Thus, if some aerosolised cells escape
to the environment, it is certainly a release, but is this considered a spill? In terms of
nutrients, the scale and/or persistence of release is generally the most important
variable in terms of subsequent eutrophication potential and the corresponding risk
assessment, but in terms of biomass, a single cell escaping as an aerosol particle has
the potential to establish itself outside of the farm boundary even if there is no
‘spill’. Thus, in this respect, species release is indeed inevitable, and it is in this
context that any discussion of GM strains must be conducted. Hence, if small-scale
release cannot ultimately be avoided, then the discussion is inexorably dependent
upon the biological character of what is released.

11 Genetic Engineering for Microalgae Strain Improvement … 229



GM Microalgae and Their Regulation Considering the inevitability of release,
risk assessments of GM microalgae must be conducted on a case-by-case basis,
with specific attention to the nature of the modification and whether it actually
conveys a competitive advantage of some kind to the strain in question when it is
relocated within a natural ecosystem or whether the modification can result in
disruption to ecosystems in some other way. Henley et al. (2013) have recently
published an excellent examination of GM algae risk assessment which should
serve well as a foundation study for this evolving discussion. They rightly stipulate
that for a GM-specific environmental risk assessment, primary considerations of
potential ecological impact include the following:

1. The potential of GM microalgae to be more highly competitive in natural
ecosystems.

2. The potential of GM microalgae to result in altered communities of aquatic
herbivores in terms of composition, dominance or biodiversity.

3. The potential of GM microalgae to be involved in horizontal gene transfer
(HGT) to other micro-organisms.

Given that it is anticipated that, for the most part, new algae producers will not
be cultivating microalgal species that are invasive or toxic—the primary consid-
erations will be the genetic modifications themselves rather than the host strains
(indeed popular host strains such as C. reinhardtii are quite easily outcompeted by
many wild-type species); however, it has previously been seen that some potential
production candidates have already been involved in bloom events that have
resulted in their classification as EDABs (Sunda et al. 2006). Thus, we encourage a
careful and iterative investigation of all aspects of microalgae production, but
emphasise that in this discussion it is the specific genetic modifications relevant to
high-density microalgae cultivations that is in need of far greater discussion in the
literature. Consequently, we discuss here the implications of the engineering
applications highlighted in section two, with respect to associated risk of species
establishment, dominance and ecosystem disruption. Much can be gleaned from the
parallels with GM crop species, especially pollen dispersal; however, there are
distinct differences between terrestrial crops and communities of aquatic micro-
organisms.

For microalgal strains engineered to have varied light-harvesting and photo-
synthetic efficiency, the general desire is to increase net biomass productivity. As
discussed above, this can be achieved through different methods. The down-regu-
lation of LHC proteins or pigmentation can provide an overall net benefit to high-
density cultures in high-light conditions (i.e. the artificial farming environment),
e.g. (Oey et al. 2013); however, this generally makes individual cells less com-
petitive in natural ecosystems where competing wild-type cells retain the capacity
to modulate their antennae size and pigmentation levels. In theory though, genetic
modifications that unilaterally increase total productivity (e.g. a higher efficiency
rubisco enzyme or strains that can utilise a wider range of the spectrum) could
potentially convey a competitive advantage irrespective of the growth environment.
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Where strains are photosynthetically superior irrespective of environment, they
could potentially affect ecosystem dominance and diversity, and while microalgae
composition might not be significantly changed, the increased availability of these
microalgae could result in additional effects like changes in plankton composition.
In contrast, LHC/pigment-reduced cells could lead to some immediate composi-
tional changes when consumed, but this would be insubstantial at the community
level, and as these strains are outcompeted by wild-type organisms, there would be
no net change to dominance or biodiversity. Again, the real concern for HGT would
be that microalgae with superior generic photosynthetic efficiency would be capable
of transferring this trait to other phototrophic organisms enabling them to also have
greater competitiveness in the natural ecosystem. The transfer of disabled antennae/
pigment modulation would not convey an advantage to other species.

GM strains that have a greater capacity for nutrient scavenging may have an
increased competitiveness if released, but there is already a diverse range of
strategies for nutrient uptake and usage among naturally occurring algae (Henley
et al. 2013). Thus, while the predicted risk for these modifications is considered to
be low, there has not yet been sufficient data from field trials to properly draw a
conclusion.

Metabolic engineering is intended to alter the composition of microalgal bio-
mass. While for biocrude producing systems, this will ideally result in strains that
have higher overall carbon content, and it is not producing strains outside of the
range of what occurs in nature. Nevertheless, if the available proportion of the
population containing high carbon (i.e. abundance of GM microalgae relative to
wild-type microalgae) is shifted, there is potential for an effect even if the conse-
quences are low. If the nutritional value of the microalgae is altered, then this could
also lead to changes in the nutritional value of plankton and filter feeders and
subsequently lead up the food web to higher trophic levels. By the ecological risk
assessment proposed by Henley et al. (2013), this risk is considered to be very low;
however, this should be monitored in the longer term to obtain confirmation. In
general, the accumulation of energy storage products in the form of reduced carbon
molecules does not convey a competitive advantage to GM microalgae and it is
likely that they will also be outcompeted by wild types within natural ecosystems.

GM traits that enhance the capacity of a microalga to remain dominant in the
presence of predators, pathogens and competitors are varied in their approach and
range from resistance to chemicals (e.g. herbicides and pesticides) to the use of
allelopathy and toxins to maintain dominance. The use of chemicals is unlikely to
become widespread for low-value commodity products such as biocrude due to the
economic pressure it places upon business models; however, the engineering of
endogenous chemicals into GM microalgae that prevent contamination is a
potential risk that must be properly examined. Henley et al. (2013) propose that the
risk of this approach is low to moderate depending upon whether the allelopathic
chemical is naturally occurring or novel; however, we suggest that the range of
potential risk assessment outcomes can be as variable as the potential allelopathic
chemicals that can be engineered and that even for relatively low-level allelopathy,
at the very large scales of production proposed for addressing fuel demand, even

11 Genetic Engineering for Microalgae Strain Improvement … 231



mild allelopathy could have ecosystem disruptive effects. Thus, we advise a strict
examination of these strategies; though to the best of our knowledge, these strat-
egies have not yet been employed. We do agree though that where traits are selected
for from large populations and then elucidated and reproduced through engineering
(rather than engineering of novel chemicals), the risk will be attenuated.

Other GM strategies to increase the harvestability and processability of micro-
algae are unlikely to affect their dominance in natural systems, and the risk for these
traits is considered very low. Similarly, where protein expression is used to create a
primary revenue stream from a high-value product before HTL of residual biomass,
these strains are unlikely to compete in natural systems due to diversion of much of
their energy flow towards a product that is not useful to the microalga.

The theoretical risk assessment discussed here and that presented by Henley
et al. (2013) can be quite informative, relying on an analysis of whether similar
traits are already part of the ecosystem. However, a physical risk assessment
strategy will be more convincing where laboratory-scale simulated ecosystems are
developed from natural water bodies and the long-term survivability of GMO algae
in mixed culture can be evaluated, e.g. by PCR.

11.5 Conclusion

The commercially profitable production of algal biocrude, at scale, will represent
the culmination of a long and parallel development of algal agronomy, biology,
GM, bioreactor engineering, harvesting and chemical conversion processes and the
development of suitable sensors and control systems, along with their associated
modelling and control software. No one innovation will suffice to overcome the
formidable challenges faced by this nascent industry, and no actor will have
ownership of all the important intellectual property. Since the most significant
competitive challenges are between algal technologies and other fuel systems and
secondary markets, the field of algal biotechnology stands to benefit greatly from
relative openness of sharing data, technology and experience. This suggests that the
modified algal strains used for biocrude production in the future will be heavily
modified fuel factories equipped with streamlined metabolism, externally control-
lable cellular programs, and both sensors and reporting systems for monitoring the
state of the system. Biocrude production appears, at this stage, to offer one of the
most promising production pathways for algal biofuel production, and genetic
manipulation offers a powerful tool for fine-tuning microalgal biofuel production all
the way along the development pathway.
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