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Abstract. Part-based visual tracking is attractive in recent years due
to its robustness to occlusion and non-rigid motion. However, how to
automatically generate the discriminative structural parts and consider
their interactions jointly to construct a more robust tracker still remains
unsolved. This paper proposes a discriminative structural part learning
method while integrating the structure information, to address the visual
tracking problem. Particulary, the state (e.g. position, width and height)
of each part is regarded as a hidden variable and inferred automatically
by considering the inner structure information of the target and the
appearance difference between the target and the background. The inner
structure information considering the relationship between neighboring
parts, is integrated using a graph model based on a dynamically con-
structed pair-wise Markov Random Field. Finally, we adopt Metropolis-
Hastings algorithm integrated with the online Support Vector Machine
to complete the hidden variable inference task. The experimental results
on various challenging sequences demonstrate the favorable performance
of the proposed tracker over the state-of-the-art ones.

1 Introduction

Visual tracking is one of the most important and challenging problems in com-
puter vision field. Traditionally, the majority of existing methods always focus
on modeling the holistic appearance of the target within a bounding box, and
they have achieved good performance in some conditions [1–8]. Intuitively how-
ever, they ignore the local information of the target, which greatly limits their
application in the scenario where the target is partially occluded or the global
appearance of the target changes a lot.

Recently, methods [9–18] with part-based appearance representation are pop-
ular in visual tracking task to deal with some situations that the holistic appear-
ance based methods fail. The part based tracker combines multiple parts with
local information to achieve stronger representation ability, and is able to explic-
itly model the target structure variations. However, the obvious shortcomings
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of these previous part based trackers are: (1) the number of parts are assigned
before empirically, which is hard to obtain better discriminative ability with
suitable parts; (2) no relationships between neighboring generated parts are
considered, which loses the structural information of the target. Therefore, their
methods lack strong discriminative ability and fail to combine the parts into a
whole to complete the tracking task.

In this paper, we propose a discriminative Hidden Structural Part Tracker
(HSPT), which tracks arbitrary objects without any assumptions on the scenar-
ios. The proposed method learns the discriminative parts automatically by inte-
grating the structure and discriminative information. In the learning step, both
the appearance of the parts and the relationships between them are considered.
Since the discriminative parts are not located in the fixed location to the target
center, we regard the state of them as hidden variables in the objective function.
Then, the objective is optimized by the Metropolis-Hastings (MH) algorithm [19]
integrated with the online Support Vector Machine (SVM) method [20] itera-
tively. In order to achieve more robust performance in complex environments,
the bounding box based appearance of the target is also incorporated in our
tracker. The contributions of this paper are concluded as follows:

– We propose a hidden discriminative structural parts learning based tracker,
which simultaneously learns multiple structural parts of the target to represent
the target better to enhance its robustness.

– The MH algorithm and the online SVM are interestingly combined to infer
the optimal state of the discriminative parts, and this optimization method
handles varying number of parts well.

– The structural supporting between parts are naturally integrated through the
dynamically constructed pair-wise MRF model.

– Extensive tracking experiments are various publicly available challenge sequen-
ces demonstrate the favorable performance against the state-of-the-artmethods.

2 Related Works

The part based model has been developed recently in visual tracking task. Shahed
et al. proposed a part-based tracker HABT [10], which generated the target parts
by manually labeling in the first frame. And the appearance model of the target
is assumed to be fixed in the tracker, which limits its performance in the complex
environment. Another tracker Frag [9] utilized the regularly partitioned parts to
model the appearance of the target, but the appearance model of each part is also
fixed. In [18], Yao et al. introduced an online part-based tracking with latent struc-
tured learning. However, the proposed method uses fix number of parts to rep-
resent the target object, which makes it insufficient to describe the appearance
variations when large deformation happens.

There also exist some other part based appearance representation methods.
Kwon et al. [11] proposed the BHMC tracker, which generates the parts based on
SURF-like key points without global structure constraints and the appearance
of the parts were updated roughly. Wang et al. [14] proposed a discriminative
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appearance model based on superpixels, called SPT, in which the probabilities of
superpixels belonging to the foreground were utilized to discriminate the target
from the background. However, the relation between superpixels was not incor-
porated, which makes the tracker easily affected by the similar backgrounds.
Godec et al. [12] extended the hough forest to the online domain and integrated
the voting method for tracking, regardless of the structure information. Cehovin
et al. [13] proposed a coupled-layer visual tracker, which combined the global
and local appearance of the target together in part generation. However, the
ignorance of the relationships between parts makes it unstable when clutter
backgrounds, occlusions or non-rigid motion happen. Cai et al. [17] designed a
dynamic graph based method which works well in non-rigid motion, but the
parts are generated only based on color feature and some background parts will
be easily misclassified as foreground.

3 Overview of Proposed Method

Generally, the tracking task is formulated as a Markovian state transition pro-
cess, where the current target state is determined by its previous state. Let
p(Ot|Zt) be the appearance model and p(Zt|Zt−1) be the motion model of the
target at time t. The state of the target is represented as Zt = (�t, st). �t is
the position of the target in the 2D image plane and st is the size of the tar-
get consisting of the width and height. The motion model p(Zt|Zt−1) and the
appearance model p(Ot|Zt) are described as follows.

Motion Model. Similar to [2], we assume the position and size of the target
varies independently in the motion model, that is:

p(Zt|Zt−1) = p(�t, st|�t−1, st−1) = p(�t|�t−1)p(st|st−1), (1)

where the target position transition probability p(�t|�t−1) = 1, if ‖�t − �t−1‖2 <
Rs; otherwise, it equals to zero. Rs is the predefined searching radius. The target
scale transition probability is similarly handled as [2].

Appearance Model. The appearance of our tracker consists of two parts, the
learned discriminative structural parts model A(0) and the bounding box based
appearance model A(1). The learned structural parts focus on the local varia-
tions and the bounding box based appearance focuses on the holistic variations
of the target. Intuitively, the combination of them can achieve more robust per-
formance. The appearance model of our tracker is formulated as follows:

p(Ot|Zt) =
(
p(0)(Ot|Zt)

)λb

·
(
p(1)(Ot|Zt)

)(1−λb)

, (2)

where λb is a predefined balance parameter, and p(0)(Ot|Zt) and p(1)(Ot|Zt) are
the probabilities of the target candidate given out by A(0) and A(1), respectively.
To model the appearance of the target, the online SVM [20] is adopted for
each part.
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For the discriminative structural parts model A(0), the probability of the
candidate, including the appearance likelihood and the deformation likelihood
of the parts, is calculated as

p(0)(Ot|Zt) =
∏

i,j∈N
φ(Zi,t,Zj,t) ·

n∏
i=1

p(Oi,t|Zi,t), (3)

where n is the number of parts, p(Oi,t|Zi,t) is the probability of the part i
applauding the candidate to be positive, Oi,t is the observation of part i, N is
the neighboring system of the parts and φ(Zi,t,Zj,t) is the pairwise interaction
potentials between the learned part i and part j.

In our model, the state of part i at time t is defined as Zi,t = (xi,t, yi,t,wi,t, hi,t,
Δx i,t,Δy i,t), where (xi,t, yi,t), wi,t and hi,t are the position, width and height
of part i at time t respectively. (Δx i,t,Δy i,t) is the spatial offset of the part
relative to the target center. The interaction potential term is expressed by
means of Gibbs distribution:

φ(Zi,t,Zj,t) ∝ exp
(

− λφ‖vt(i, j) − ṽ(i, j)‖2
)

, (4)

where λφ = 0.2 is the scaler parameter in the experiments and vt(i, j) = �t(i) −
�t(j) represents the vector pointing from the position �t(i) of part i to the location
�t(j) of part j at time t, which encodes the supporting between neighboring parts
(structural information of the target). ṽ(i, j) is the learnt relative position of the
part i and j. Here, we model the relationship between different parts, rather
than modeling the exclusions between close targets as in [21].

Let Φp(Oi,t) represent the HOG feature [22] of the part observation, and ωt
i,p

is the SVM parameter corresponding to part i at time t. The likelihood of its
appearance is calculated as

p(Oi,t|Zi,t) ∝ exp
(
ω
(t)
i,p · Φp(Oi,t)

)
, (5)

In order to reduce the influence of some badly learned parts, we only utilize
η percent high confident parts to score the candidates. Then the probability of
the candidate (3) can be rewritten as

p(0)(Ot|Zt) ∝
∏

i,j∈N
φ(Zi,t,Zj,t) · exp

( ∑
i∈I

ω
(t)
i,p · Φp(Oi,t)

)
, (6)

where I is the index set of the selected η high confident parts.
For the bounding box based appearance model A(1), the probability of the

candidate is presented as:

p(1)(Ot|Zt) ∝ exp(ω(t)
b · Φb(Ot)), (7)

where the SVM parameter ω
(t)
b and the HOG feature Φb(Ot) are determined

based on the whole target.
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4 Learning the Discriminative Parts

In the tracking task, the appearance of the target changes dramatically. In order
to adapt the part models to the target appearance variations, some of the target
parts should be added or deleted, and their state should be determined to rep-
resent the target optimally. Therefore, we design a reasonable objective function
to perform the parts learning, whose goal consists of three aspects: (1) maximize
the margin between the target and the background; (2) retain the structure
information of the target; (3) cover the most of the target foreground area. The
state of each part is treated as a hidden variable, which will be inferred based
on the acquired observation information.

As discussed above, our objective in terms of optimization is to find the opti-
mized SVM parameter ωi,p and parts state Zi,t. In this section, the MH algorithm
and the online SVM are integrated into an unified optimization framework to
complete the inference task. The details will be presented as follows.

4.1 Objective

For the local parts to be learned, we expect that they acquire better represen-
tation ability to ensure robust tracking performance. The objective for the i-th
part learning is formulated as

G(ωi,p,Zi;X ) = α · ρ · ωi,p · Φp(XZi
) + β · R(F ,Zi), (8)

where the first term is to separate the target parts from the background parts
by maximizing the margin between them, and the second term encourages the
learned part to cover more target foreground area. F is foreground area, ρ ∈
{−1, 1} is the binary label of the updating sample X indicating the foreground
and background, and XZi

represents the part observations of the updating sample
with the part state Zi. R(F ,Zi) means the overlap ratio between Zi and F . We
set the balancing parameters α = 0.7, β = 0.2 in all of our experiments.

Naturally, we infer the optimal state of each part jointly and integrate the
structure information in the inference process. The objective for the target is
proposed as

G(ωp, Z̃ ;X ) = α · ρ · ωp · Φp(XZ̃ ) + β · R(F , Z̃ ), (9)

where Z̃ = (Z1, · · · ,Zn) is the combination of the parts state and ωp = (ω(t)
1,p, · · · ,

ω
(t)
n,p) is the concatenated SVM weight of each part. R(F , Z̃ ) =

∑n
i=1 R(F ,Zi)

represents the coverage ratio of the true target area.

4.2 Optimal Parts Inference

The MH algorithm [19] has been applied in the multiple target tracking task
[21,23], where the authors use it for particle filter sampling to identify the state
of each target precisely. However, in our paper, we do not aim at identifying each
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part all the time. Instead, we utilize the MH algorithm to clean up useless parts
and discover new parts adaptively according to the target appearance variation.
Firstly, we need convert our objective (9) into the probability form:

p(Z̃ , ωp|X ) ∝ exp
(
ζ · G(ωp, Z̃ ;X )

)
, (10)

where ζ is the scale factor. Then maximizing the objective (9) is equivalent to
solve the maximum posterior probability problem:

{Z̃ , ωp} = arg max
Z̃ ,ωp

p(Z̃ , ωp|X ). (11)

Due to the dependance between the hidden variable Z̃ and ωp, it is difficult
to optimize them simultaneously. Hence, we decompose the inference task of the
two hidden variables in (10) into a two stage iterative optimization problem. In
each pass r, we solve the objective by dividing it into two steps to iteratively
update {Z̃ , ωp} using the following procedure.

Optimize ωp. Given the optimized parts state Z̃ (r), (11) is equivalent to the
following optimization problem:

ω(r)
p = arg max

ωp

p(Z̃ (r), ωp|X ) = arg max
ωp

{
α · ρ · ωp · Φp(XZ̃ (r))

}
. (12)

Then in analogy to classical SVM, we train the parameter ω
(r)
p by solving

the following optimization problem:

ω(r)
p = arg min

ωp

{1
2
‖ωp‖2 + γ

m∑
i=1

max
(
0, 1 − ρ(i) · fωp

(X i)
)}

, (13)

where {(X 1, ρ1), · · · , (X m, ρm)} is the collected sample pool, ρi ∈ {−1, 1} is
the label of the ith collected sample X i, m is the number of samples. We set
parameter γ = 5 in our experiments. The score of the sample is calculated as
fωp

(XZ̃ (r)) = ωp · Φp(XZ̃ (r)), where Φp(XZ̃ (r)) is the concatenated HOG feature
of parts.

Optimize Z̃ . With the determined ω
(r)
p , we sample a proposal part state Z̃ (r)′

according to the previous parts state Z̃ (r), and calculate the acceptance ratio
in the MH algorithm based on the optimized model parameter ω

(r)
p to get the

optimized parts state Z̃ (r+1). Therefore, the MAP solution of the parts state in
the constructed Markov Chain of MH algorithm is utilized to get the optimized
state Z̃ .

To that end, five moves are defined for states change of each part. Birth,
indicates the move of adding the candidate parts in the sampler; Death, indi-
cates the move of removing the newly added candidate parts in the sampler.
The reversible pair focuses on the newly added candidates generated by SLIC
sampling [24] (i.e. the external rectangle region of the generated superpixel is
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used as the candidate) and the deleted candidates, if the target is changing the
pose so that some old parts will disappear and some new parts will be generated.
Stay, indicates the move of adding the disappeared parts in previous iterations in
the sampler; Leave, indicates the move of removing the learned parts in previous
iterations in the sampler. The reversible pair determine the state of the learned
parts in previous sampling iterations when the target undergoes heavy occlusion
so that some old parts are missed temporarily and appear again then. Update,
indicates the move of updating the parts in the sampler, which deals with the
dynamically updated appearance of the target as a self-reversible pair.

For easy description, we omit the iteration mark r in the following. We define
two sets in the optimization process: (1) T � = {T �

1 , · · · ,T �
n} is the learned parts

set and its corresponding state set isZ � = {Z �
1 , · · · ,Z �

n}; (2)T+ = {T+
1 , · · · ,T+

m}
is the birth candidate set and its corresponding state set is Z+ = {Z+

1 , · · · ,Z+
m}.

The notation Z (·)
i (Z �

i or Z+
i ) is the current part state and Z (·)′

i is the proposal
state of the part.

Let Ni,t be the neighbors of part i at time t. LetC = {Cb,Cd,Cs,Cl,Cu} repre-
sent the prior probability of each move type and we setC = {0.3, 0.1, 0.1, 0.01, 3.0}
in the experiments empirically. The proposal distribution q = {qb, qd, qs, ql, qu}
and the acceptance ratio are calculated as follows.

Birth: Select the part T+
i from the birth candidate parts set T+ with the uniform

distribution. The birth proposal distribution can be calculated as qb(Z+′
i ;Z+

i ) =
Cb

m , if (T �′,Z �′) = (T � ∪ {T+
i },Z � ∪ {Z+

i }), and otherwise it equals to zero.
Then the acceptance ratio is presented as

αb = min
(

1, p(X|Z+′
i , ωp) · p(Z+′

i ) · qd(Z+
i ;Z+′

i )
qb(Z+′

i ;Z+
i )

)
, (14)

where p(Z+′
i ) represents the birth transition probability.

Death: Select the part T �
i as the death part with the uniform distribution from

the newly added candidate set T+ ∩ T �. The death proposal distribution is
defined as qd(Z �′

i ;Z �
i ) = Cd

|T�∩T+| , if (T �′,Z �′) = (T �\{T+
i },Z �\{Z+

i }), and
otherwise it equals to zero. Then the acceptance ratio is presented as

αd = min
(

1,
1

p(X|Z �′
i , ωp)

· 1
p(Z �′

i )
· qb(Z �

i ;Z �′
i )

qd(Z �′
i ;Z �

i )

)
, (15)

Stay: Select the part T �
i to be the stay part. We introduce a set T (d) = T �\T �

i ,
T � is the union set of the parts set in the previous iterations. Then the stay
proposal distribution is presented as qs(Z �′

i ;Z �
i ) = Cs

|T (d)| · J (Z �′
i ), if |T (d)| �= 0,

and otherwise it equals to zero. The function J (Z �′
i ) represents the probability of

part T �
i staying at the state Z �′

i , and it is modeled as a normal density centered
at the disappearing point. Z l

i is the state of the part T �
i at the disappearing

point in the previous iterations. Then the acceptance ratio is presented as

αs = min
(

1, p(X|Z �′
i , ωp) ·

∏
j∈Nt

φ(Z �′
i ,Zj,t) · p(Z �′

i |Z �
i ) · ql(Z �

i ;Z �′
i )

qs(Z �′
i ;Z �

i )

)
, (16)
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where Nt is the part neighboring system at t, p(Z �′
i |Z l

i ) is the state transition
probability.

Leave: Select the part T �
i to be the leave part. The leave proposal distribution is

defined as ql(Z �′
i ;Z �

i ) = Cl

|T�| , if (T �′,Z �′) = (T �\{T �
i },Z �\{Z �

i }). Otherwise,
it equals to zero. Then the acceptance ratio is presented as

αl = min
(

1,
1

p(X|Z �′
i , ωp)

· 1∏
j∈Nt

φ(Z �′
i ,Zj,t)

· 1
p(Z �′

i |Z �
i )

· qs(Z �
i ;Z �′

i )
ql(Z �′

i ;Z �
i )

)
, (17)

Update: Select the part T �
i to be the update part. The appearance of the part

will be updated if the move is accepted. The proposal distribution of this move
type is defined as qu(Z �′

i ;Z �
i ) = 1

|T�| , if T �
i ∈ T �. Otherwise it equals to zero.

Then the acceptance ratio is presented as

αu = min
(

1,
p(X|Z �′

i ,ωp)
p(X|Z �

i ,ωp)
·
∏

j∈Nt
φ(Z �′

i ,Zj,t)∏
j∈Nt

φ(Z �
i ,Zj,t)

)
, (18)

In the above acceptance ratio calculation Eqs. (14–18), the birth transition
probability p(Z (·)

i ) = exp (−λo · R(Z (·)
i ,Z �

i )). This term penalizes the overlap
ratio between the candidate part T+

i and the existing learned parts to avoid
adding redundant parts. We set λo = 2 in our experiments. The probability
p(X|Z (·)

i , ωp) ∝ exp(G(X ;ωp,Z
(·)
i )), where X is the current updating sample

and Z (·)
i (Z �

i , Z �′
i , Z+

i or Z+′
i ) is the part state.

In addition, the target parts interact with each other, especially for the neigh-
boring ones, so it is inappropriate to assume the independence between target
parts. We should integrate the relationships between parts in optimization pro-
cess rather than optimize the objective in (8) for each part individually. Moti-
vated by [21], we propose to utilize the dynamically constructed pairwise MRF
to model the supporting between different parts in the part learning process.
We set all pairs of parts as the neighbors in the graph. Thus, the part transition
probability in (16) and (17) is presented as follows:

p(Z̃ ′|Z̃ ) ∝
∏

i

p(Z ′
i |Zi)

∏
ij∈N

φ(Z ′
i ,Z

′
j), (19)

where Z̃ = (Z1, · · · ,Zn) is the combination state of multiple parts, φ(Z ′
i ,Z

′
j)

is the pairwise interaction potentials between parts similarly defined as (4),
p(Z ′

i |Zi) is the part transition model, and N is the neighbor system of the parts.
Z ′

i is the proposal state of part i and Zi is the state of part i currently. The part
transition is modeled as a normal density centered at the previous state, which
is presented as Z ′

i |Zi = Zi + ΔZi, where ΔZi ∼ [N (0, σ2
x ),N (0, σ2

y),N (0, σ2
w ),

N (0, σ2
h),N (0, σ2

Δx ),N (0, σ2
Δy)].

Figure 1 is an example to illustrate how the discriminative parts are automat-
ically learned over time in shirt sequence. The shirt is crinkled in frame �0026
and �0040, where the target bounding box contains considerable background in
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Fig. 1. The first row is the tracking results of our tracker in the sequence shirt and the
second row presents the learned discriminative parts and the corresponding structure.
The nodes in the graph represent each learned part and the lines represent the spatial
relationships between neighboring parts. The green cross represents the center of the
target (Colour figure online).

the right bottom corner. In contrast, the target bounding box in frame �0038
contains only foreground. In this case, the proposed part-based method adap-
tively generates a part 261 to cover the new foreground in frame �0038, and
deletes it in frame �0040. In this way, our part based model can adapt to the
variations of the target better than the bounding box based model. The final
optimization scheme is summarized in Algorithm 1.

5 Experimental Results

5.1 Parameters

The parameters in our experiment are detailed in the following. In the learning
phase, we run Pn = 400 iterations to complete the part state inference task and
Pn0 = 100 of them are burn-in in the MH algorithm. Generally, the algorithm
will converge after about 300 iterations. The motion model parameters we used
are σ2

x = 3, σ2
y = 3, σ2

w = 0.2, σ2
h = 0.2, σ2

Δx = 0.1 and σ2
Δy = 0.1. The cell size

of HOG is set as 8×8 pixels. A block consists of 4 cells and the strides of the cell
are set 4 in both x and y directions. The linear kernel is exploited in the online
learning SVM model. The target area is divided into about 15 or 20 superpixels
in the SLIC algorithm. Meanwhile, in the tracking phase, the searching radius
Rs ∈ [20, 60]. The balance parameter λb in (2) is set in the interval [0, 0.5].
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Algorithm 1. Discriminative Hidden Structural Part Tracker
1: Initialize the target state Ẑ1.
2: for t = 2 to N do
3: Get the foreground F and collect the birth candidate parts based on the opti-

mized target state Ẑt = Ẑt−1, and get the initial joint parts state Z̃ (1).
4: Set the sample set Γ = ∅ in the MH algorithm.
5: for r = 1 to Pn do
6: Get optimal ω

(r)
p based on the current state Z̃ (r).

7: Generate the proposal joint state Z̃ (r)′ based on Z̃ (r):

– Choose a move type according to the move prior probability C .
– Select a part i according to the move proposal distribution q and compute

the acceptance ratio α for Z̃ (r)′ in (14), (15), (16), (17), (18).
– Accept the proposal state, if α ≥ 1, and add it to Γ , Z̃ (r+1) = Z̃ (r)′;

otherwise generate a uniform random number u ∈ [0, 1]. If u < α, accept
the proposal state and add it to Γ , Z̃ (r+1) = Z̃ (r)′; otherwise reject the
proposal state and add the previous state to Γ , Z̃ (r+1) = Z̃ (r).

– Z̃ (r) = Z̃ (r+1).

8: end for
9: Discard the first Pn0 burn-in samples in Γ .

10: Get the optimized parts Z ∗ by the MAP solution of Γ in (11).
11: Update the SVM model and the MRF graph model of the parts with {Z ∗, ωp}

in A(0), and update the SVM model with {Ẑt, ωb} in A(1).
12: end for

5.2 Effectiveness of A(0) and A(1)

Firstly, we chose four representative sequences to demonstrate the behavior of
A(1) and A(0). The results shown in Table 1 demonstrate the performance of
HSPT is improved mainly due to the local discriminative parts learning rather
than the features or the classifiers adopted.

Table 1. Comparison results of A(1), A(0), and HSPT.

As presented in Table 1, the combined HSPT outperforms the individual A(1)

and A(0) in all tested sequences. A(1) focuses on holistic appearance and A(0)

focuses on inner structure of the target. A(0) is superior over A(1) because the
local discriminative structure model represents the target better than appearance
only model. Especially in the sequences shirt and pedestrian where nonrigid
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deformations and illumination variations frequently happen, the targets were
still well tracked by A(0) even when several parts undergo changes in location
and appearance. In contrast, A(1) was affected more seriously by these challenges.
A(1) focuses on the holistic appearance, which can enhance the stability of the
tracker in the complex situations. HSPT inherits the advantages both from A(1)

and A(0) and thus performed best against the other evaluated trackers on the
evaluated sequences.

5.3 Comparison with Other Trackers

Then, we compare our tracker with some state-of-the-art methods, including
bounding box based methods (MIL [2], VTD [7], �1 [4], TLD [5]), and part based
methods (Frag [9], HABT [10], BHMC [11], SPT [14]). All the codes are pro-
vided by the authors on their websites. Ten challenging sequences (nine of them
are publicly available [2,5,7,25,26] and the other one is collected by ourself) are
utilized in the experiment. These sequences cover most of the challenging situa-
tions in tracking task: non-rigid motion, in-plane and out-of-plane rotation, large
illumination changes, heavy occlusions and complex background (see Fig. 3).

Table 2. Comparison results based on the AECP metric.

Table 3. The successfully tracked frames based on the PASCAL VOC metric.
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The proposed tracker is implemented in C++ and it runs about 0.1 fps on the
Intel 3.0 GHz PC platform. We present the tracking results in this section and
more results as well as demos can be found in supplementary materials. Two met-
rics are utilized to quantify the performance, namely the Average Error Center
Location in Pixels (AECP) metric (↓) and the PASCAL VOC object detection
metric [27] (↑). The symbol ↑ means methods with higher scores perform bet-
ter, and ↓ indicate methods with lower scores perform better. The quantitative
comparison results are shown in Tables 2 and 3.

Heavy Occlusion. The target in sequences carchase, stone, car, tiger1 and
tiger2 undergoes heavy occlusion multiple times. As shown in Fig. 3, most of the
trackers drift away when heavy occlusion happens, and some of them can not
recapture the target after occlusion. In the sequence car, TLD with detection
module works relatively well. Some other trackers such as Frag and �1 who have
intuitive robustness to occlusion also track the car well. However, our tracker
still outperforms other methods due to the consideration of the relationships
between parts which alleviates the influence of some badly learned parts.

Large Illumination Variations. The frequent large illumination variations in
tiger1, tiger2 and pedestrian sequences challenge the performance of the trackers.
Since the appearance features are easily affected by illumination variations, most
of the previously proposed trackers fail to track the target in these sequences. For
example, when the light is shining in the sequence tiger1 and tiger2, Frag fails
to track the tiger, and when the woman is under the shadow in the pedestrian
sequence, VTD and SPT shrink to those parts that are not shadowed. In contrast,
our tracker optimally partitions the target into several parts, and the target can
be located with the help of those less affected parts. The combined appearance
features of different parts, the structure information between parts, and the
structure information between the part and the target center make our tracker
outperforms other trackers.

Pose Changes. The inner structure changes caused by pose changes usually
make the bounding box based trackers fail to track the target. Nevertheless,
part based trackers including Frag and BHMC work relatively well because they
focus on the parts instead of the holistic bounding box template, which can
be demonstrated in the sequence portman and shirt in Fig. 3, Tables 2 and 3.
Especially in the sequence shirt, the bounding box based trackers such as �1,
VTD and MIL fail because of the error accumulation when the non-rigid motion
happens. Since the combination of part appearance is less influenced than the
bounding box based appearance under pose changes and several correctly learned
parts are good enough to locate the target, our tracker still works very well in
these sequences.

ComplexBackground. In the football and stone sequences, many similar objects
confuse the trackers a lot. As shown in Figs. 2 and 3, TLD and HABT frequently
skip to other similar objects. The similar appearance between the target and the
background in the sequences football, stone, tiger1 and tiger2 makes it hard to
precisely track the target. Through combining the target holistic appearance, the
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Fig. 2. Tracking results of MIL [2], VTD [7], �1 [4], TLD [5], Frag [9], HABT [10],
BHMC [11], SPT [14] and the proposed HSPT tracker. The results of five trackers with
relatively better performance are displayed.

Fig. 3. Tracking results of different trackers. Only the trackers with relatively better
performance are displayed.

detailed appearance of parts and the structure information between different parts,
our tracker can discriminate the target from the complex background. While some
specific trackers outperform ours in some specific sequences, but comprehensively
speaking, our tracker performs the best.
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6 Conclusion

In this paper, a novel online learned discriminative part-based tracker is pro-
posed. The appearance of the target is described by the combination of multiple
learned discriminative structural parts. In the parts learning phase, we utilize the
MH algorithm based optimization framework integrated with the online SVM
to infer the optimal parts state. We introduce the dynamically constructed pair-
wise MRF to model the interaction between neighboring parts. The experiments
demonstrate the superiority of the proposed method. In the future, we will opti-
mize the codes to make the tracker run in real-time.
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