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Abstract. In this paper we propose a generic framework for the optimi-
zation of image feature encoders for image retrieval. Our approach uses a
triplet-based objective that compares, for a given query image, the sim-
ilarity scores of an image with a matching and a non-matching image,
penalizing triplets that give a higher score to the non-matching image.
We use stochastic gradient descent to address the resulting problem and
provide the required gradient expressions for generic encoder parameters,
applying the resulting algorithm to learn the power normalization parame-
ters commonly used to condition image features. We also propose a mod-
ification to codebook-based feature encoders that consists of weighting
the local descriptors as a function of their distance to the assigned code-
word before aggregating them as part of the encoding process. Using the
VLAD feature encoder, we show experimentally that our proposed opti-
mized power normalization method and local descriptor weighting method
yield improvements on a standard dataset.

1 Introduction

Image search methods can be broadly split into two categories. In the first cat-
egory, semantic search, the aim is to retrieve images containing visual concepts.
For example, the user might want to find images containing cats. In the second
category, image retrieval, the search system is given an image of a scene, and
the aim is to find all images of the same scene modulo some task-related trans-
formation. Examples of simple transformations include changes in scene illu-
mination, image cropping or scaling. More challenging transformations include
drastic changes in background, wide changes in the perspective of the camera,
high compression ratios, or picture-of-video-screen artifacts.

Common to both semantic search and image retrieval methods is the need to
encode the image into a single, fixed-dimensional feature vector. Many successful
image feature encoders have been proposed, and these generally operate on the
fixed-dimensional local descriptor vectors extracted from densely [1] or sparsely
[2,3] sampled local regions of the image. The feature encoder aggregates these
local descriptors to produce a higher dimension image feature vector. Examples
of such feature encoders include the bag-of-words encoder [4], the Fisher encoder
[5] and the VLAD encoder [6]. All these encoding methods share common para-
metric post-processing steps where an element-wise power computation and sub-
sequent l2 normalization are applied. They also depend on specific models of the
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data distribution in the local-descriptor space. For bag-of-words and VLAD,
the model is a codebook obtained using K-means, while the Fisher encoding is
based on a Gaussian Mixture Model (GMM). In both cases, the model defining
the encoding scheme is built in an unsupervised manner using an optimization
objective unrelated to the image search task.

For the case of semantic search, recent work has focused on learning the fea-
ture encoder parameters to make it better suited to the task at hand. A natural
learning objective to use in this situation is the max-margin objective other-
wise used to learn support vector machines. Notably, [7] learned the components
of the GMM used in the Fisher encoding by optimizing, relative to the GMM
mean and variance parameters, the same objective that produces the linear clas-
sifier commonly used to carry out semantic search. Approaches based on deep
Convolutional Neural Networks (CNNs) [8,9] can also be interpreted as fea-
ture learning methods, and these now define the new state-of-the art baseline in
semantic search. Indeed Sydorov et al. discuss how the Fisher encoder can be
interpreted as a deep network, since both consist of alternating layers of linear
and non-linear operations.

For the image retrieval task, however, the feature learning literature is lack-
ing. One existing proxy approach is to also use the max-margin objective, and
hence features encoders that were learned for the semantic search task [10].
Although the search tasks are not the same, this approach indeed results in
improved image retrieval results, since both tasks are based on human visual
interpretations of similarity. A second approach instead focuses on learning the
local descriptor vectors at the input of the feature encoder. The objective used
in this is case engineered to enforce matching, based on the learned local descrip-
tors, of small image blocks centered on the same point in 3-D space, but from
images taken from different perspectives [11,12].

One reason why these two approaches circumvent the actual task of image
retrieval is the lack of objective functions that are good surrogates for the mean
Average Precision (mAP) measure commonly used to evaluate image retrieval
systems. Surrogate objectives are necessary because the mAP measure is non-
differentiable as it depends on a ranking of the images being searched. The main
contribution of this paper is hence to propose a new surrogate objective specifi-
cally for the image retrieval task. We show how this objective can be minimized
using stochastic gradient descent, and apply the resulting algorithm to select the
power-normalization parameters of the VLAD feature encoder. As a second con-
tribution, we also propose a novel method to weight local descriptors for codebook-
based image feature encoders that reduces the importance of descriptors too far
away from their assigned codeword. We test both contributions independently and
jointly and demonstrate improvements on a standard image retrieval performance.

The remainder of this paper is organized as follows: In the next section we
describe standard feature encoding methods, focusing on the VLAD encoding
that we use in our experiments. In Sect. 3 we described the proposed objec-
tive and the resulting learning algorithm, and in Sect. 4 we present the proposed
descriptor-weighting method. We present experimental results in Sect. 5 and con-
cluding remarks in Sect. 6.



154 A. Rana et al.

Notation: We denote scalars, vectors and matrices using, respectively standard,
bold, and upper-case bold typeface (e.g., scalar a, vector a and matrix A). We
use vk to denote a vector from a sequence v1,v2, . . . ,vN , and vk to denote the k-
th coefficient of vector v. We let [ak]k (respectively, [ak]k) denotes concatenation
of the vectors ak (scalars ak) to form a single column vector. Finally, we use ∂y

∂x

to denote the Jacobian matrix with (i, j)-th entry ∂yi

∂xj
.

2 Image Encoding Methods

Image encoders operate on the local descriptors x ∈ Rd extracted from each
image. Hence in this work we represent images as a set I = {xi ∈ Rd}i of local
SIFT descriptors extracted densely [1] or with the Hessian affine region detec-
tor [3].

One of the earliest image encoding methods proposed was the bag-of-features
encoder (BOF) [4]. The BOF encoder is based on a codebook {ck ∈ Rd}L

k=1

obtained by applying K-means to all the local descriptors T =
⋃

t It of a set of
training images. Letting Ck denote the Voronoi cell {x|x ∈ Rd, k = argminj |x−
cj |} associated to codeword ck, the resulting feature vector for image I is

rB = [# (Ck ∩ I)]k , (1)

where # yields the number of elements in the set. The Fisher encoder [5]
instead relies on a GMM model also trained on

⋃
t It. Letting βi, ci, Σi denote,

respectively, the i-th GMM component’s (i) prior weight, (ii) mean vector, and
(iii) covariance matrix (assumed diagonal), the first-order Fisher feature vector is

rF =

[
∑

x∈I

p(k|x)√
βi

Σ−1
k (x − ck)

]

k

. (2)

A hybrid combination between BOF and Fisher techniques called VLAD has
been proposed [13] that offers a good compromise between the Fisher encoders’s
performance and the BOF encoder’s processing complexity: Similarly to the
state-of-the art Fisher aggregator, it encodes residuals x − ck, but it hard-
assigns each local descriptor to a single cell Ck instead of using a costly soft-max
assignment as in (2). In a later work, [6] further proposed incorporating sev-
eral conditioning steps that improved the performance of the feature encoder.
The resulting complete encoding process begins by first aggregating, on a per-
cell basis, the l2 normalized difference of each local descriptor relative the cell’s
codeword, subsequently rotating the resulting descriptor using the matrix Φk

(obtained by PCA on the training descriptors Ck ∩ T ):

rV
k = Φk

∑

x∈I∩Ck

x − ck

|x − ck| ∈ Rd, (3)
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The L sub-vectors thus obtained are then stacked to form a large vector v that
is then power-normalized and l2 normalized:

v = [rV
k ]k ∈ RdL, (4)

p = [hαj
(vj)]j , (5)

n = g(p). (6)

The power normalization function hα(x) and the l2 normalization function
n(v) are

hα(x) = sign(x)|x|α, (7)

g(x) =
x

|x|2
. (8)

Fig. 1. Plot of hα(x) for various values of α.

The power normalization function (7) is widely used as a post-processing stage
for image features [1,6,14,15]. This post-processing stage is meant to mitigate
(respectively, enhance) the contribution of the larger (smaller) coefficients in
the vector (cf., Fig. 1). Combining power normalization with the PCA rotation
matrices Φk was shown in [6] to yield very good results. In all the approaches
using power normalization, the αj are kept constant for all entries in the vector,
αj = α,∀j. This restriction comes from the fact that α is chosen empricially
(often to α = 0.5 or α = 0.2), and choosing different values for each αj is
difficult. In Sect. 3 we remove this difficulty by applying our proposed feature
learning method to the optimization of the αj .

3 Feature Learning for Image Retrieval

Feature learning has been pursued in the context of image classification [7] or
for learning local descriptors akin to parametric variants of the SIFT descrip-
tor [11,12]. Learning features specifically for the image retrieval task, however,
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has not been pursued previously. In this section we propose an approach to do
so, and apply it to the optimization of the parameters of the VLAD feature
encoding method described in Sect. 2.

The main difficulty in learning for the image retrieval task lies in the non-
smoothness and non-differentiability of the standard performance measures used
in this context. These measures are all based on recall and precision computed
over a ground-truth dataset containing known groups of matching images [16,17]:
A given query image is used to obtain a ranking (ik ∈ {1, . . . , N})k of the N
images in the dataset (for example, by an ascending sort of their feature distances
relative to the query feature). Given the ground-truth matches M = {ikj

}j for
the query, the recall and precision at rank k are computed using the first k
ranked images Fk = {i1, . . . , ik} as follows (where # denotes set cardinality):

r(k) =
#(Fk ∩ M)

#M , (9)

p(k) =
#(Fk ∩ M)

k
. (10)

The average precision is then the area under the curve obtained by plotting p(k)
versus r(k) for a single query image. A common performance measure is the
mean, over all images in the dataset, of the average precision. This mean Aver-
age Precision (mAP) measure, and all measures based on recall and precision,
are non-differentiable, and it is hence difficult to use them in an optimization
framework, motivating the need for an adequate surrogate objective.

3.1 Proposed Objective

We assume that we are given a set of N training images and that for each image
i, we are also given labels Mi ⊂ {1, . . . , N} of images that are a match to image i
and labels Ni ⊂ {1, . . . , N} of images that do not match image i. We assume that
some feature encoding scheme has been chosen that is parametrized by a vector
θ and that produces feature vectors ni(θ). Our aim is to define a procedure to
select good values for the parameters θ by minimizing the following objective:

f(θ) =
1
M

∑

i,j∈Mi,k∈Ni

φ(ni(θ),nj(θ),nk(θ)), (11)

where M is the total number of terms in the triple summation and

φ(η,a,b) = max(0, ε −(ηT(a − b))). (12)

The parameter ε enforces some small, non-zero margin that can be held constant
(e.g., ε = 1e − 2) or increased gradually during the optimization (e.g., between
0 and 1e − 1).

An objective based on image triplets similarly to (11) has been previously
used in metric learning [18], where the aim is commonly to learn a matrix W
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used to compute distances between two given feature vectors ni and nj using
(ni −nj)TW(ni −nj). Our aim is instead to learn the parameters θ that define
the encoding process. In this work in particular we learn the power normalization
parameters αj in (5).

3.2 Optimization Strategy

Stochastic Gradient Descent (SGD) is a well-established, robust optimization
method offering advantages when computational time or memory space is the
bottleneck [19], and this is the approach we take to optimize (11). Given the para-
meter estimate θt at iteration t, SGD substitutes the gradient for the objective

∂f

∂θ

∣
∣
∣
∣
θt

=
1
M

∑

i,j∈Mi,k∈Ni

∂ φ(ni,nj ,nk)
∂θ

∣
∣
∣
∣
θt

(13)

by an estimate from a single (i, j, k)-triplet drawn at random at time t,

∇φitjtkt
(θt) � ∂ φ(nit ,njt ,nkt

)
∂θ

∣
∣
∣
∣
θt

. (14)

The resulting SGD update rule is

θt+1 = θt − γt · ∇φitjtkt
(θt) (15)

where γt is a learning rate that can be made to decay with t, e.g., γt = γ/t, and
the parameter γ can be set by cross-validation. SGD is guaranteed to converge
to a local minimum under mild decay conditions on γt [19].

When the power normalization and l2 normalization post-processing stages
in (5) and (6) are used, the gradient (14) required in (15) can be computed using
the chain rule as follows, where we use the notation ∂n

∂pi
= ∂n

∂p

∣
∣
∣
pi

:

∇φi,j,k(θ) � ∂ φ

∂ η

∣
∣
∣
∣
ni

· ∂n
∂pi

· ∂p(Ii)
∂θ

+
∂ φ

∂a

∣
∣
∣
∣
nj

· ∂n
∂pj

· ∂p(Ij)
∂θ

(16)

+
∂ φ

∂b

∣
∣
∣
∣
nk

· ∂n
∂pk

· ∂p(Ik)
∂θ

.

The partial Jacobians in the above expression are given below, where we use
sub-gradients for those expressions relying on the non-differentiable hinge loss:

∂ φ

∂ η
=

{
0, if (ηT(a − b)) ≥ ε

(b − a)T, otherwise
, (17)

∂ φ

∂b
= −∂ φ

∂a
=

{
0, if (ηT(a − b)) ≥ ε

ηT, otherwise
, (18)

∂n
∂p

= |p|−1
2

(
I − nnT

)
. (19)
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The above expressions are generic and can be used for any parameter θ of the
feature encoder that one wishes to specialize. In this work we learn the power nor-
malization coefficients αj in (5) and hence θ = α, and the required Jacobian is

∂p
∂α

= diag ([log(|vi|).|vi|αi ]i) . (20)

4 Local-Descriptor Pruning

In this section we propose a local-descriptor pruning method applicable to feature
encoding methods like BOF, VLAD and Fisher that are based on stacking sub-
vectors rk, where each sub-vector is computed from the local descriptors assigned
to a cell Ck. The proposed approach shares some similarities with [20,21].

Unlike the case for low-dimensional sub-spaces, the cells Ck in high-dimensional
local-descriptors spaces are almost always unbounded, meaning that they have
infinite volume.1 Yet only a part of this volume is informative visually. This sug-
gests removing those descriptors that are too far away from the cell center ck when
constructing the sub-vectors rk in (1), (2) and (3). This can be done by restricting
the summations in (1), (2) and (3) only to those vectors x that (i) are in the cell
Ck and (ii) satisfy the following distance-to-ck condition:

(x − ck)TM−1
k (x − ck) ≤ γσ2

k. (21)

Here γ is determined experimentally by cross-validation and the parameter σk

is the empirical variance of the distance in (21) computed over those descriptors
from the training set that are in the cell. The matrix Mk can be either

anisotropic: the empirical covariance matrix computed from T ∩ Ck;
axes-aligned: the same as the anisotropic Mk, but with all elements outside

the diagonal set to zero;
isotropic: a diagonal matrix σ2

kI with σ2
k equal to the mean diagonal value of

the axes-aligned Mk.

While the anisotropic variant offers the most geometrical modelling flexibility, it
also drastically increases the computational cost. The isotropic variant, on the
other hand, enjoys practically null computational overhead, but also the least
modelling flexibility. The axes-aligned variant offers a compromise between the
two approaches.

1 Although l2 normalization commonly applied to local descriptors limits the effective
volume of each cell, one should note that l2 normalization amounts to a reduction
of dimensionality by one dimension, and that l2-normalized data is still high-
dimensional. Yet the question still remains on whether pruning mechanisms other
than those proposed herein exist that better take into account the constraints on the
data layout.
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4.1 Soft-Weight Extension

The prunning carried out by (21) can be implemented by means of 1/0 weights

wk(x) = [[(x − ck)TM−1
k (x − ck) ≤ γσ2

k]] (22)

applied to the summation terms in (1), (2) and (3). For example, for (3) the
weights would be used as follows:

rV
k = ΦT

k

∑

x∈I∩Ck

wk(x)
x − ck

|x − ck| ∈ Rd. (23)

A simple extension of the hard-pruning approach corresponding to (22) consists
of instead using exponential weights

wk(x) = exp
(

− ω

σ2
k

(x − ck)TM−1
k (x − ck)

)

, (24)

where the parameter ω is set experimentally, or inverse weights

wk(x) =
σ2

k

(x − ck)TM−1
k (x − ck)

. (25)

5 Results

Setup: We use SIFT descriptors extracted from local regions computed with the
Hessian-affine detector [3] or from a dense-grid using three block sizes (16, 24, 32)
with a step size of 3 pixels [1]. When using the Hessian affine detector, we use the
RootSIFT variant following [14]. As a training set, we use the Flickr60K dataset
[16] composed of 60,000 images extracted randomly from Flickr. This data set
is used to learn the codebook, rotation matrices, per-cluster pruning thresholds

Fig. 2. Percentage of pruned descriptors by anisotropic axes aligned pruning, isotropic
pruning, and anisotropic pruning. Holidays dataset with Hessian-Affine SIFT.
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Fig. 3. Impact of Mahalanobis-metric based descriptor pruning on image retrieval per-
formance when using anisotropic axes-aligned pruning (blue), isotropic pruning (red),
and anisotropic pruning (green). Holidays dataset with Hessian-Affine SIFT (Color
figure online).

and covariance matrices for the computation of the Mahalanobis metrics used for
pruning of local descriptors. For testing, we use the INRIA Holidays dataset [16]
which contains 1491 high resolution personal photos of 500 locations or objects,
where common locations/objects define matching images. The search quality in
all the experiments is measured using mAP (mean average precision) using the
code provided by the authors [16]. All the experiments have been carried out
using the VLAD image encoder and a codebook of size 64 following [6].

Evaluation of pruning methods: In Table 1, we evaluate the pruning approaches
discussed in Sect. 4. Each variant is specified by a choice of weight type (hard,
exponential or inverse), metric type (isotropic, anisotropic or axes-aligned), and
local feature (dense or Hessian affine). The best result overall is obtained using
axes-aligned exponential weighting (74.28 % and 67.02 % for dense and Hessian
affine detections, respectively). The choice of the weighting parameter for expo-
nential pruning is empirically set to ω = 1.55. For completeness, we provide
plots, for the case of hard-pruning, depicting the percentage of local descriptors
removed (Fig. 2) and the resulting mAP score (Fig. 3) as a function of

√
γσk.

The values plotted in Fig. 2 are averaged over all cells Ck.

Evaluation of α learning: In Fig. 4, we provide a plot of the cost in (11) as a func-
tion of the number of SGD iterations (15) using a dataset of M = 8, 000 image
triplets. The cost drops from 0.0401 to less than 0.0385. The resulting mAP is
given in Table 2, where we present results both for the case where α is learned
with and without exponential weighting of the local descriptors. The combined
effect of exponential weighting and α learning is a gain of 1.86 mAP points.
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Fig. 4. Convergence plot for the αj learning procedure.

Table 1. Summary of feature pruning results for all combinations of detectors-dense
or Hessian-affine, metrics - isotropic (Iso), anisotropic (Aniso), and axes-alinged (Ax-
align) and weighting schemes - hard, exponential and inverse. Underlines indicate best-
in-row and bold best overall. The baseline results are for the system in [6].

Descriptors mAP (%)

Baseline Weights Iso Aniso Ax-align

Hessian Affine 65.60 hard 66.29 66.29 66.40

inverse 66.40 66.39 66.55

exponential 66.45 66.40 67.02

Dense 72.71 hard 73.34 73.37 73.56

inverse 73.45 73.45 73.60

exponential 73.69 73.61 74.28

In Figs. 5 and 6 we provide two examples of top-ten ranked results for two dif-
ferent query images using our proposed modifications. We also provide examples
of query images that resulted in improved (Fig. 7) and worsened (Fig. 8) ranking.

Table 2. Summary of best results (with dense detection) when using (i) only expo-
nential weighting, (ii) learned αj parameters without exponential weighting, and
(iii) combined exponential weighting and learning of the αj parameters. The base-
line results are for the system in [6].

Baseline Exp. weighting only Learned αj only Exp. weighting and learn αj

72.71 74.28 74.30 74.57
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Baseline results

Resuts when using exponential weighting and learned α j.

Fig. 5. Top-ten ranked results. Top: Baseline. Bottom: With exponential weighting/αj

learning.

Baseline results

Resuts when using exponential weighting and learned α j.

Fig. 6. Top-ten ranked results. Top: Baseline. Bottom: With exponential weighting/α
learning.
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Fig. 7. Query images that result in improved ranking when using αj learning with
exponential weighting.

Fig. 8. Query images that result in degraded ranking when using αj learning with
exponential weighting.

6 Conclusions

In this paper we proposed learning the power normalization parameters com-
monly applied to image feature encoders using an image-triplet-based objective
that penalizes erroneous ranking in the image retrieval task. The proposed fea-
ture learning approach is applicable to other parameters of the feature encoder.
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We also propose, for the case of codebook-based feature encoders, weighting
local descriptors based on their distance from the assigned codeword. We evalu-
ate both methods experimentally and show that they provide improved results
on a standard dataset.
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