
Image Interpolation Based on Weighted
and Blended Rational Function

Yifang Liu1,2, Yunfeng Zhang1,2(B), Qiang Guo1,2, and Caiming Zhang1,2

1 School of Computer Science and Technology,
Shandong University of Finance and Economics, Jinan 250014, China

yfzhang@sdufe.edu.cn
2 Shandong Provincial Key Laboratory of Digital Media Technology,

Jinan 250014, China

Abstract. Conventional linear interpolation methods produce interpo-
lated images with blurred edges, while edge directed interpolation
methods make enlarged images with good quality edges but with details
distortion for some cases. An adaptive rational-based algorithm for the
interpolation of digital images with arbitrary scaling factors is proposed.
In order to remove artifacts, we construct a new interpolation model
with weight and blend, which are used for preserving the clear edge
and detail. The proposed model is blended by basic rational interpola-
tion model and three rotated rational models. The weight coefficients
are determined by the edge information from different scale based on
point sampling. Experimental results show that the proposed method
produces images with high objective quality assessment value and good
visual quality.

1 Introduction

Image interpolation has a wide range of applications which aims to reconstruct
a high resolution (HR) image from the low-resolution (LR) image. The most
common interpolation methods are bilinear, bicubic, cubic spline algorithm,
etc. [3,6]. These conventional methods are the approximation of sinc function
which corresponds to ideal filtering [14]. These methods have a relatively low
complexity, but suffer from several types of visual degradation around “edges”.

To solve these problems, many adaptive interpolation algorithms have been
developed [2,4,7–10,13,15–18]. These algorithms can be broadly divided into
two categories: discrete method and continuous method. In discrete method,
new edge-directed interpolation (NEDI) [8] estimates high resolution covariances
form low resolution image based on the geometric duality; In [17], for a pixel
to be interpolated two observation sets are defined in two orthogonal directions,
and then fuse the directional interpolation results by minimum mean square-
error estimate; Zhang and Wu [18] develop a soft-decision interpolation method
which is able to estimate missing pixels by groups instead of by pixels. These dis-
crete algorithms which consider more adaptive image information can improve
the visual effect. However, these methods deliver not a continuous function but
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a set of subpixel values which are not suitable for resampling after, for example,
rotation [10], and they have a much higher computational complexity than con-
ventional methods. Besides, these methods sometimes generate speckle noise or
distortion of edges [18].

Once a digital image is converted into an interpolating continuous function,
we can resample it to obtain resized and rotated images at a better precision [10].
In fact, the continuous methods create a HR image though constructing a inter-
polating patch. Hu and Tan [4] presents a method for preserving the contours
or edges based on adaptive osculatory rational interpolation kernel function.
Zhang et al. [16] constructs a fitting surface by using image data as constraints
to reverse sampling process for improving fitting precision. However, these con-
tinuous methods all suffer form blurred edge in some ways. Recently, a bivariate
rational interpolation with parameters based on the function values is studied
in [12,19]. The rational function has a simple and explicit expression, and com-
pared with other methods, it can keep the natural attributes of image better.
Because the rational model is suitable for resizing natural image, it performs the
details well and a relative clear edge. Unfortunately, the single bivariate rational
model(basic model (Fig. 2a)) is asymmetric and does not meet the structures of
natural image. So it can produce zigzagging artifacts around the edge regions.

In this paper, we construct an adaptive interpolation function with weight and
blend based on rational function model. To reduce the zigzagging edge generated
by the basic model, we rotate the basic rational model 3 times to get 4 interpolat-
ing functions. The proposed model is weighted and blended by them. The weight
coefficients which contain edge information are adaptively calculated by distance,
gradient and difference quotient based on point sampling, and can be used to keep
the edge attributions. Experiments show that the proposed approach performs
better than conventional and discrete methods in preserving edge.

This paper addresses the problem of constructing an adaptive weighted ratio-
nal function such that the resized image has better precision and visual quality.
We use blending model not only to maintain the image natural attribution but
also to preserve the structure of image, and the adaptive weight coefficients can
preserve edge information from different aspects. Furthermore, point sampling
can ensure that more information in a cell can be used to determined the weight
coefficients.

The paper is arranged as follows. In Sect. 2, the proposed interpolated model
based on basic rational model is introduced. Section 3 shows the performance of
the method.

2 Description of Proposed Method

In this section, the interpolation function with unknown weight coefficients is
proposed, and the key problem is to determine the weight coefficients. Then the
weight coefficients are determined by different scale edge information of local
image.
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Fig. 1. The interpolation model

Fig. 2. The rotation model: (a) Basic model; (b), (c) and (d) are 90, 180 and 270◦

counterclockwise rotation of (a) respectively.

2.1 The Interpolation Model

Thought rational function has good features to maintain details, it suffers from
some visual problems around edge region. The proposed model can preserve edge
region well as well as detail region. Let [i, i+1; j, j+1] be the interpolated region.
The proposed interpolation model based on rational spline function is showed
in Fig. 1. The rectangle region surrounded by 4 black points is the interpolated
region. All 16 points within the interpolation model are involved in the interpo-
lation. And Fig. 2 shows the decomposition of the proposed model. The proposed
model is weighted and blended by the 4 submodels. In Fig. 2, (a) means the basic
rational spline interpolation model; (b) represents the 90◦ counterclockwise rota-
tion of (a) in Fig. 1 model, and the rotation center is the interpolation region;
in the same way, (c) and (d) are 180◦ and 270◦ counterclockwise of (a). Figure 3
is another expression of Fig. 2, and (a), (b), (c) and (d) correspond respectively.
Let the basic rational spline interpolation model (a) denotes P1(x, y), then (b),
(c) and (d) are denoted P2(1 − y, x), P3(1 − x, 1 − y) and P4(y, 1 − x) respec-
tively. All these four submodels can produce the same patch [i, i + 1; j, j + 1].
The proposed weighted and blended rational function Pi,j(x, y) is expressed in
Eq. 1.

Pi,j(x, y) = aP1(x, y) + bP2(1 − y, x)
+cP3(1 − x, 1 − y) + dP4(y, 1 − x), (1)

where a, b, c and d are unknown weight coefficients.
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Fig. 3. The rotation model: (a) P1(x, y); (b) P2(1 − y, x); (c) P3(1 − x, 1 − y);
(d) P4(y, 1 − x).

Now the basic rational spline function (Fig. 2(a)) is given. A bivariate rational
interpolation with parameters based on the function values is constructed in [12,
19]. Let Pi,j(x, y) be a bivariate function defined in the region [i, i + 1; j, j + 1].
Denote the pixel value by Ii,j . For any point (x, y) ∈ [i, i+1; j, j+1], the bivariate
rational interpolating function Pi,j(x, y) can be expressed as

Pi,j(x, y) =
2∑

r=0

2∑

s=0

ωr(x, αi)ωs(y, βj)Ii+r,j+s, (2)

where

ω0(t, δ) =
(1 − t)2(δ + t)
(1 − t)δ + t

,

ω1(t, δ) =
t(1 − t)δ + 3t2 − 2t3

(1 − t)δ + t
,

ω2(t, δ) =
−t2(1 − t)
(1 − t)δ + t

.

Considering the basic model, 9 points Ii+r,j+s,(r, s = 0, 1, 2) are used to con-
struct the patch P1(x, y) which crosses the 4 black points, and these 9 points
have different basis functions. However, it would suffer from blurred edges. There
are two main reasons. On the one hand, for a nature image, it will result some
artifacts around edges because of its asymmetry; on the other hand, the func-
tion is constructed by x-direction first and then y-direction, which results the
advantage on x-direction [19]. The proposed weighted and blended interpolation
model can refrain from these two factors. Obviously, Fig. 1 contains 16 points
and the interpolated region is located in the center of the model. And it is easy
to know that the disadvantage of y-direction is eliminated through the rota-
tion. For example, there is a horizontal direction edge marked in red as shown
in Fig. 1. And Fig. 3 shows the changes of the direction of the red edge during
rotation. We can see that in (a) and (c), the red edge is still horizontal, while it
rotates to vertical direction in (b) and (d) models. It means that the proposed
interpolation model balances the effect of different edge directions.

Then the edge information is used as constraints to determine the weight
coefficients. It would not only be able to ensure good visual perception of detail
areas, but also make the edge regions avoid zigzagging.
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Fig. 4. Every cell can be regard as a point.

2.2 Adaptive Weights

From discussed above, we know that the weight coefficients are vital to the
interpolation effect. And the weight coefficients should reflect local structure
information and natural attributions of image. Following, the determination of
the unknown in Eq. 1 is discussed. Adaptive interpolation means that the way
the neighboring pixels influence the value of the interpolated pixel depends on
local properties [11]. Thus the weight coefficients should be different when the
construction of near pixels is different. In the proposed model, the 4 × 4 pixels
region is divided into 4 overlapping subregions, and the contribution of each
subregion to the intermediate patch determines the weight coefficients. The 1×1
rectangular region composed of four pixels can be seen as a basic cell. It can be
seen from Fig. 4 that every subregion can be regraded as four basic cells, then
the whole interpolation model contains 9 cells denoted as fs, (s = 1, · · · , 9). If we
know the relationship between the 8-connected neighbors cells and intermediate
cell f5, it is easy to determine the four weight coefficients in Eq. 1.

For all s = 1, 2, 3, 4, 6, 7, 8, 9, let ws represent the impact factors between the
patch fs and f5. In Fig. 4, intuitively, f5, f6, f8 and f9 constitute the subregion
P1, and f5 is the interpolated region. Thus we consider the relationship between
f6, f8, f9 and f5 determines the contribution of the subregion P1 to the inter-
mediate interpolated region. And other subregions are in similar way. Then the
a, b, c and d can be expressed as follows:

a =
w6 + w8 + w9

W
, b =

w2 + w3 + w6

W
,

c =
w1 + w2 + w4

W
,d =

w4 + w7 + w8

W
,

(3)

where W = w1+w2+w7+w9+2w2+2w4+2w6+2w8, which means normalization
of the weight coefficients.

Now we discuss how to determine ws. It is not easy to measure the rela-
tionship between two patches, while there are more approaches to measure the
relationship between two points. Therefore a cell is regarded as a point such that
the relationship between two cells can be approximately replaced by two points.
Usually the pixel value can be regarded as the sample value of a continuous
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patch [16]. The approximate point sampling value of a cell is expressed as
∫∫

Aij

Pi,j(x, y)dxdy = Pij × Sij ,

where Aij is a cell region, and Sij is the area of Aij , Pi,j(x, y) represents function
of a patch. Thus the point sampling value of patch can be approximately achieved
by Pij . And the point values of f1 to f9 can be calculated. It is converted to a
problem of computing the relationship between the intermediate point and the
8-connected neighbors points respectively.

In a natural image, distance, gradient and different quotient can measure the
relationship between different pixels fromdifferent attributions.The distance mea-
sures the pixel space relationship, and the local gradient shows the edge informa-
tion in a cell, and the difference quotient indicates the edge information among the
whole model region. Thus, the local gradient and difference quotient can describe
the edge from different scale. We focus on three factors distance, gradient, and
difference quotient to determine the ws, as shown in Eq. 4

ws = F (distance, gradient, difference quotient). (4)

Based on the weight expression of bilateral filter which contains distance and gray
value, we construct a trilateral weighted expression. For all s = 1, 2, 3, 4, 6, 7, 8, 9,
the Eq. 4 can be represented as

ws = e
−w1

s
h2
1 × e

−w2
s

h2
2 × e

−w3
s

h2
3 , (5)

where w1
s , w2

s and w3
s represent Distance, Gradient, and Difference Quotient

respectively, and h1,h2 and h3 are adjusting parameters. Then the unknown w1
s ,

w2
s and w3

s are calculated.
First, the weight coefficients depend on the distance between each point and

the intermediate point. If fs is closer to the intermediate point, the weight coef-
ficient will be greater. It is shown as

w1
s = (x5 − xs)2 + (y5 − ys)2, (6)

where x and y are the local coordinates of these points.
Second, the weight coefficients also depend on the local gradients. The local

gradient is expressed as

w2
s = |f ′

x|2 +
∣∣f ′

y

∣∣2 , (7)

where the f ′
x and f ′

y are the local gradient of a cell around the interpolation
patch. In essence the smaller the local gradient of a pixel is, the more influence
it should have on the intermediate pixel [11]. Obviously, the small scale edge
information is considered due to the gradients as one of the factors in a cell.

Third, the second difference quotient is taken into account. If there is an edge
along the vertical direction, f2 and f8 should have the closest connection to f5.
They are defined as

w3
2 = |2f5 − f2 − f8|2 , (8)
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w3
1, w3

3 and w3
4 are defined in the same way. And w3

6 = w3
4, w3

7 = w3
3, w3

8 = w3
2,

w3
9 = w3

1. This factor reflects the large scale edge information in the whole region
of 4 × 4, and the smaller the w3

s is, the more effect it should have on the f5.
All the unknown factors are calculated. Substituting Eq. 5 into Eq. 3 gets the

adaptive weights. Since the quality around the edges plays an important role in
the visual effect of an image, Pi,j(x, y) should reflect the characteristics around the
edges as well as possible. In Eq. 7, the local gradient which infers the local small
scale edge is involved, and in Eq. 8 all the pixels in the whole window are contained
to determine weight coefficients which means that the large scale edge is consid-
ered. Thus the final weight coefficients a, b, c and d are adaptive by edge.

3 Experiments

The proposed method is compared with recent interpolation algorithms: new edge-
directed interpolation (NEDI) [8], soft-decision interpolation (SAI) [18], sparse
mixing estimators (SME) [9] and robust soft-decision interpolation (RSAI) [5]. All
experiments are performed with softwares provided by the authors of these algo-
rithms1. We have used 7 images as our benchmark images (Fig. 5). We downsmaple
these HR images to get the corresponding LR images. Table 1 gives the PSNRs and
SSIMs generated by all algorithms for the images in Fig. 5. It can be seen that the
proposed method has a highest average PSNR and SSIM among all the algorithms.

Fig. 5. Benchmark images (Color figure online).

Table 1. PSNR and SSIM results of the reconstructed HR images.

Method NEDI SME SAI RSAI Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Barbara 22.36 0.8513 23.98 0.8731 23.55 0.8638 23.37 0.8618 24.51 0.8795

Fence 19.82 0.6853 21.47 0.7314 20.82 0.7182 21.556 0.7353 21.56 0.7355

Airplane 25.69 0.8556 25.80 0.8708 26.01 0.8769 26.01 0.8762 26.11 0.8770

Lake 25.58 0.8606 26.95 0.8820 26.78 0.8838 26.98 0.8844 27.17 0.8870

Milkdrop 28.85 0.9027 29.35 0.9092 29.72 0.9176 29.78 0.9170 30.61 0.9216

Girl 29.73 0.9668 30.58 0.9562 29.49 0.9676 29.60 0.9598 31.16 0.9609

Wall 23.94 0.8812 24.72 0.8903 24.63 0.8930 24.77 0.8947 25.10 0.8916

Average 25.14 0.8576 26.12 0.8733 25.86 0.8744 26.01 0.8756 26.60 0.8790

1 The source code of the proposed method is opened, please request the first author.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Comparison on Fence. (a) Original image, (b) NEDI, (c) SME, (d) SAI, (e) RSAI,
(f) Proposed method.

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Comparison on Wall. (a) Original image, (b) NEDI, (c) SME, (d) SAI, (e) RSAI,
(f) Proposed method.
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Figures 6, 7, 8 and 9 compare the interpolated images obtained by differ-
ent algorithms. These images are cropped by red rectangle in Fig. 5. Figure 8
shows the edge information, and the others show details. For Fig. 8, all the algo-
rithms perform similar results in edge region. We can see that NEDI suffers from
some noisy interpolation artifacts (Figs. 7, 9, 6(b) because of the fixed interpo-
lation window. And SAI method also suffers from noisy artifacts in Figs. 9(d)
and 6(d). RSAI performs better than SAI but produces some unconnected stripes
(Figs. 7(e) and 6(e)). Although SME has similar visual quality with the proposed
method, the objective quality assessment value is lower than the proposed algo-
rithm. Therefore, the proposed method can keep the edge region well, and it
can perform better detail areas than other algorithms. Moreover, we also com-
pared the proposed method with the methods in papers DFDF [17], KR [13],

(a) (b) (c) (d) (e) (f)

Fig. 8. Comparison on Girl. (a) Original image, (b) NEDI, (c) SME, (d) SAI, (e) RSAI,
(f) Proposed method.

(a) (b) (c)

(d) (e) (f)

Fig. 9. Comparison on Barbara. (a) Original image, (b) NEDI, (c) SME, (d) SAI,
(e) RSAI, (f) Proposed method.
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INEDI [1], the proposed method has better vision quality and objective quality
assessment value as well.

4 Conclusions

We propose an adaptive image interpolation method using rational function.
The rational function is weighted and blended to remove artifacts. The edge
information is used as constraints to determinate the weights adaptively. The new
method has the advantage in that it can easily zoom the image into multiples.
Our method can perform well on PSNRs and SSIMs. Furthermore, the proposed
method produces clean edges and fine details.
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