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Abstract. Background modeling is one of the key steps in any visual
surveillance system. A good background modeling algorithm should be
able to detect objects/targets under any environmental condition. The
influence of illumination variance has been a major challenge in many
background modeling algorithms. These algorithms produce poor object
segmentation or consume substantial amount of computational time,
which makes them not implementable at real time. In this paper we
propose a novel background modeling method based on Gaussian Mix-
ture Method (GMM). The proposed method uses Phase Congruency
(PC) edge features to overcome the effect of illumination variance, while
preserving efficient background/foreground segmentation. Moreover, our
method uses a combination of pixel information of GMM and the Phase
texture information of PC, to construct a foreground invariant of the
illumination variance.

1 Introduction

Visual surveillance systems are essentially becoming the most attractive research
areas in the field of computer vision. Their importance with respect to security
and safety in public places is amongst the main reasons of growing attention in
this field [1]. The accessibility to inexpensive devices and processors is an addi-
tional motivation for the promotion on investigation about visual surveillance
systems. Considering that majority of visual surveillance, nevertheless, depends
upon human intervention to monitor through video clips [2,3], which is a tire-
some and tedious task; keeping track of interesting events that will rarely take
place. The large amount of data makes it humanly impossible to analyze and
requires computer vision based solutions to automate the process.

Computer aided behavioral understanding of moving objects in a video is
often quite challenging task. This requires extraction of related visual data,
appropriate representation of information, as well as an interpretation of this
visual information with respect to behavior learning and recognition [4]. In auto-
mated visual surveillance systems, one of the many key steps in video based
human-activity recognition is usually to model the background, which often
requires large expanse of processing time of the system.
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Background modeling is comprised of foreground/background segmentation
which yields information for various automated behavior understanding applica-
tions such as tracking, counting, direction estimation and velocity estimation of
objects. Nevertheless background modeling at dynamic environments is a great
challenge due to the variation in the nature of backgrounds. The motion of the
sun along with the clouds in the sky is the greatest variation on the nature of the
background which causes the influence of gradual and sudden illumination vari-
ance. The effect of illumination variance on the background often yields detec-
tion of false foreground mask due to shadows of the objects and false foreground
detection due to sudden illumination variance [5,6]. This provides misinterpreted
information regarding the actual scene which would provide poor interpretation
of the visual information for behavior learning and recognition applications.

The issue of background modeling for dynamic environments has been add-
ressed by researches, who have proposed many background modeling algorithms
based on statistical information [7,8], fuzzy running average, clustering meth-
ods [9] and using neural network [10,11]. However, most of these algorithms
are based on specific environmental conditions, such as a specific time, place,
or activity scenario and carries greater implementation complexity. Considering
the implementation simplicity, Gaussian Mixture Model (GMM) is used as the
background modeling algorithm in this paper. GMM is one of the most used and
implemented background modeling algorithms at present due to its good com-
promise between computational efficiency and accuracy. However, this algorithm
also suffers at above mentioned effects of illumination variance.

2 Related Work

Researches have extended the original GMM algorithm [12] to address the issue
by proposing various methods such as, using multiple Gaussians by variable K
Gaussian distribution [13,14]. The adaptive background model for compensating
sudden illumination variance uses variable assignment of K mean distribution or
online variation of K mean distribution of the GMM model. Here the value of
K varies between 3 to 5, the multiple Gaussian models, generated could distin-
guish between the illumination effected areas and eliminate false extraction of
foreground mask. This modification dose improve the accuracy of the model but
still the model has not been evaluated for different scenarios and is subjected
to computational time inefficiency under the effect of sudden illumination and
complex scenes.

Another method using phase texture information in place of pixel informa-
tion [15]. The main advantage is that phase texture of an image is invariant to
illumination. The phase texture was obtained using a Gabor filter and a phase
based background subtraction was proposed by modelling the phase features
independently using the MOG model and the foreground is extracted using dis-
tance transform applied at the binary image which is transformed in to a distance
map by segmenting and thresholding the distance map to obtain the foreground.
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The model proposed was able to compensate sudden illumination efficiently but
was evaluated only for static backgrounds.

Manuel et al. [16] proposed Mixture of Merged Gaussian Algorithm (MMGA)
using a combination of GMM and Real-Time Dynamic Ellipsoidal Neural Net-
works (RTDENN), as an updating mechanism. This model uses the conventional
GMM to perform the background modeling using different color spaces (i.e. RGB
or HSV). The modelled background pixels are stored for every frame, and is used
for the RTDENN updating mechanism. The Gaussians are managed based on
the comparison to the previous pixel information, where the existence of the
Gaussians are decided by merging or creating Gaussian distributions. Eventu-
ally the updating mechanism using RTDENN functions based on the excitement
of the neurons, which is the inverse of the square root of the Mahalanobis dis-
tance between the mean of the sample vectors which excite the neuron and each
neuron.

Zezhi, C. and Ellis, T. proposed an illumination compensation background
model by self-adaptive background modeling method [17]. This background mod-
eling method followed [18] the, recursive GMM using multidimensional Gaussian
kernel density transform. The author of this proposed method [17] used the
recursive GMM along with a spatial temporal filter, which suppressed noise and
compensated the illumination using median of quotient. This model was evalu-
ated for various surveillance application scenarios alongside with crowd related
datasets. However from the evaluated sequences it was observed that the model
wasn’t evaluated on more divers’ environmental conditions.

These proposed methods have been developed in the recent past to effectively
solve the issue of sudden illumination variance. However we would implement
these methods along with our proposed method in Sect. 4, and evaluate them
for various scenarios. In this paper we propose a method to address the issue of
illumination compensation for GMM with PC edge features to model the back-
ground. The motivation leading to formulate the background modeling method
utilizing GMM and Phase congruency edge detector is due to the fact that phase
texture of an image is invariant to illumination variance. Therefore, we developed
the model using GMM to determine the foreground of the scene using the pixel
intensity information while using phase congruency edge detector to extract the
phase edge and corner information of the scene. The method utilizes the pixel
intensity information and phase edge information of foreground/background to
achieve efficient object segmentation, shadow removal and sudden illumination
compensation.

3 Proposed Method

Our proposed method for dynamic background/foreground modeling uses a com-
bination of Gaussian Mixture Method (GMM) [12] and Phase Congruency (PC)
[19,20] edge features. These are widely used computational tool in detecting
background/foreground. However, we use a novel approach on using these meth-
ods as features/characteristics for accurate object detection and segregation
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under dynamic environmental conditions. For each pixel of a frame X at time t
in an image sequence, the pixel characteristic is determined based on the inten-
sity of the monochromatic color space. Then, the multidimensional background
is modeled based on weighted sum of the probability of observing current pixel
values for K Gaussian distributions is given by,

P (Xt) =
K=3∑

i=1

ωi,t.η (Xt, μi,t,Σi,t) (1)

where η is the probability density function, K is the number of Gaussian distri-
butions, ωi,t is a weight associated with ith Gaussian at the time t with a mean
μi,t and standard deviation Σi,t. The weighted sum of the probability distribu-
tion is initialized and at instance of time t the current pixel value Xt is verified
if it’s in range of the standard deviation of the Gaussian distribution. The pixel
in range would be classified as matching to one of the K Gaussian distributions.
In this case when a Gaussian distribution matches a pixel Xt , the parameters
of the pixels K distributions will be updated by two scenarios. Scenario 1: for
unmatched Gaussians distributions mean μi,t and standard deviation Σi,t will
be unchanged. Scenario 2: for matched Gaussians distributions μi,t and Σi,t will
be updated as shown in (Eqs. 2–4)

mui,t = (1 − ρ) μi,t−1 + ρ.Xt (2)

Σi,t = (1 − ρ) Σi,t−1 + ρ
∣∣(Xt − μi,t)T (Xt − μi,t)

∣∣
diag

(3)

ρ = α.η (Xt |μi,t−1,Σi,t−1|) (4)

Once the parameters are initialized, the first foreground detection is per-
formed and the above parameters are updated for time t + 1 using a criterion
ratio, ri = ωi

σi
and the order of Gaussians following the ratio. This ordering

depends upon the background pixels which corresponds to a high weight and
a weak variance and foreground which corresponds to a low weight and a high
variance. The foreground is considered for incoming new frame at instance t + 1 ,
a match test is performed, to match the incoming pixel to the Gaussian distrib-
ution based on the Mahalanobis distance.

sqrt

⎛

⎝(Xt+1 − μi,t)
T

.

−1∑

i,t

(Xt+1 − μi,t)

⎞

⎠ ≤ kσi,t (5)

where k is a constant established by experimentation whose value equals to 2.5.
At this step the binary mask of the foreground frame Fg (Xt+1) is extracted
based on two conditions as shown in Fig. 1;

Condition 1: Pixel Matches with one of the K Gaussians. In this case, if
the Gaussian distribution is identified as a background, the pixel is classified as
background or else classified as foreground.
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Condition 2: No match with any of the K Gaussians. In this case, the pixel is
classified as foreground. Furthermore the extracted binary mask is filtered using
a median filter for reducing noise.

Meanwhile the Phase texture features of the frame X at the time instance
t + 1 is extracted using Phase Congruency Edge detector [19,20] for every incom-
ing frame. The phase information is extracted via banks of Gabor wavelets tuned
to various spatial frequencies, instead of Fourier transform, as given by,

PC(Xt+1) =
∑

n W (Xt+1)
[
An(X(t + 1)α1 − |α2| − TPC

]
∑

n An(Xt+1) + ε
(6)

where α1 denotes, cos
(
φn (Xt+1) φ̄ (t + 1)

)
the term is a factor that weights for

frequency spread (congruency over many frequencies is more significant than
congruency over a few frequencies) and α2 denotes, sin

(
φn (Xt+1) φ̄ (t + 1)

)
.

A small constant ε is included to prevent division by zero. The energy values
which surpass TPC , the estimated noise effect, are included to the result. The
notations within ′[]′ highlights that this enclosed quantity remains the same
while its value is positive, and zero otherwise. For accurate foreground object
extraction, we take the intersection of each pixel for the binary mask of the
matrices, Fg (Xt+1) and PC(Xt+1).

F =
H∑

i=1

W∑

j=1

Fg (Xt+1)
⋂

PC(Xt+1) (7)

where H and W denotes the height and the width of the image frame

Fig. 1. Process of extracting the binary silhouette of the foreground objects. (a) rep-
resent the binary silhouette of the foreground for GMM. (b) the foreground after noise
suppression. (c), Phase Congruency edge texture image. (d) extracted foreground using
intersection of each pixel for the binary mask.

Finally, a set of morphological operations are performed on the extracted fore-
ground object silhouette. Here we use these operations to enhance the bound-
ary connectivity of the silhouette and to region fill the enclosed boundary of
the objects. The process is initiated with a morphological opening operation
which performs erosion followed by dilation using a 2 by 2 structured matrix as
derived in (Eq. 8). Following this step the edges of the silhouette gets connected,
this results on an accurate reconstruction of the boundaries of the silhouette.
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Then the object silhouettes is completed by performing region filling operation
as shown in (Eq. 9), where the results on each of these steps are illustrated on
Fig. 2.

γB (F ) =
⋃

f

{Bx|Bx ⊆ F} (8)

Fk = (Xk−1 ⊕ Bx)
⋂

Ack = 1, 2, 3 (9)

where Bx is the structured matrix and Ac is the matrix which contains the filled
set and its boundary.

Fig. 2. Steps of the morphological operations performed on the extracted foreground
object silhouette. (a) represent the original foreground silhouette extracted using the
proposed method; (b) is the zoomed view of the silhouette of the object; (c) represent
the boundary reconstruction of the 2 by 2 structure matrix; (d) is the full view of
the boundary reconstructed image; (e) the extracted foreground silhouette after region
filling.

4 Experiment Results

The experiments and analysis were carried out qualitatively and quantitatively,
where the proposed model along with 5 other model in literature (See Table. 1).
The binary silhouettes of the foreground extraction were taken as a final result to
determine the efficiency of the models. The results were evaluated using precision
recall criteria, this access the ability, to extract the true positive and eliminate
the true negative detection of the implemented models.

The developed models were implemented for five different sequences from
two most popular crowd surveillance databases for dynamic environments, i.e.
PETS2010 [21] and OTCBVS [22]. The description of these sequences are tabu-
lated in Table. 2. The significance of these data sets apart from testing the models
on different crowd behaviors, is to challenge the accuracy of segmentation, i.e.
detecting small objects from pixel range of 10 × 25 to 20 × 75, which challenges
the accuracy of segmentation. The non-synchronized nature of the data set adds
the effect of sudden and gradual illumination variances continuously after every
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Fig. 3. The sample results of the binary silhouettes of the extracted foreground, from
the different background modeling methods. The first row (a) shows the original image,
(b) shows the ground truth of the extracted binary silhouettes of the original image,
(c) shows the extracted binary silhouettes of GMM1, (d) shows the extracted binary sil-
houettes of GMM2, (e) shows the extracted binary silhouettes of GMM3 and (f) shows
the extracted binary silhouettes of GMM4 followed by (g) which shows the extracted
binary silhouettes of proposed method.

30 to 40 frames. To summarize, the selected sequences are to yield the challenges
such as, bootstrapping (BS), sudden illumination (SI), gradual illumination (GI),
camouflage (CF), waving trees (WT) and shadows (S).

The sample results of the binary silhouettes are shown in Fig. 3. Here the
results of each model is arranged in row wise manner with respect to each
sequence. The performance of each model was evaluated with respect to the
ground truth which is shown in the second row. Most of the models were able
to provide an accurate object detection and segregation. However GMM2 model
which was based on phase texture information and distance transform failed to
detect and segregate the silhouettes of the objects in each sequence. This was
due to the small object size in crowd surveillance data and the parameters used
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Table 1. Description of the implemented models in Fig. 3.

Model Methodology Related publication

GMM1 GMM using multiple Gaussians by
variable K Gaussian distribution

[13,14]

GMM2 GMM using phase texture
information and distance
transform

[15]

GMM3 GMM using RTDENN [16]

GMM4 Using recursive GMM along with a
spatial temporal filter

[17]

Proposed Method Using a combination of GMM and
PC edge features as temporal
filter for each pixel

Table 2. Description of the datasets.

Image Database No. of Size Challenges Description

sequence frames

Sequence 1 OTCBVS 1507 320 × 240 BS,SI,GI Dataset 03: OSU Color-
Thermal Database

Sequence 2 OTCBVS 1054 320 × 240 GI,BS,S Dataset 03: OSU Color-
Thermal Database

Sequence 3 PETS2010 841 768 × 576 BS,GI,CF Data set of S0, City
Center, view 4

Sequence 4 PETS2010 841 768 × 576 SI,GI, WT, S Data set of S0, City
Center, view 2

Sequence 5 PETS2010 841 768 × 576 SI,GI, WT, S Data set of S0, City
Center, view 1

in the distance transform measures. Meanwhile the other developed models were
able to eliminate challenges such as BS, WT, CF and GI.

The effect of shadows were compensated by GMM4 and proposed method,
while GMM1 and GMM3 suffered heavily by extracting false foreground in
sequence 4 and 5. The effect of SI was the greatest challenge to overcome, where
all the models apart from GMM2 and Proposed method, suffered heavily by
extracting false foreground mask due to the sudden intensity variation. The
GMM2 and Proposed method were clearly able to overcome this issue since
these models used phase texture features, which are invariant to illumination
changes. However our proposed method was clearly able to overcome all of the
above mention issues, and was able to accurately segment the foreground objects.
Furthermore, the Proposed model outclassed all the other developed models and
resulted in a higher precision recall criteria (See Figs. 4 and 5).
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Fig. 4. Quantified Precision results obtained for five different algorithms and five
sequences tested.

Fig. 5. Quantified Recall results obtained for five different algorithms and five
sequences tested.

5 Conclusion

This paper proposed a background modelisation incorporating GMM and PC
to adapt to unconstrained environment conditions. The main motivation of this
work was to develop a robust background modeling method to extract foreground
objects with accurate segregation while retaining the object silhouette. The pro-
posed method was evaluated with four other background modeling methods.
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The performance of the models was assessed qualitatively and quantitatively
using precision and recall criteria. The results presented demonstrate the superi-
ority of the proposed method in terms of accuracy for the background/foreground
extraction and was able to efficiently segregate the individual objects in crowds.
Moreover, the model efficiently compensated the challenging effect of sudden
illumination and presence of shadows by incorporating the phase texture infor-
mation along with the pixel gradient information. Future works will focus on
using foreground silhouette characteristic of the objects for improving behavior
learning crowd analytic algorithms such as Kalman filter and Optical flow.
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