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Abstract. 3D gesture recognition and tracking are highly desired fea-
tures of interaction design in future mobile and smart environments.
Specifically, in virtual/augmented reality applications, intuitive interac-
tion with the physical space seems unavoidable and 3D gestural inter-
action might be the most effective alternative for the current input
facilities such as touchscreens. In this paper, we introduce a novel solu-
tion for real-time 3D gesture-based interaction by finding the best match
from an extremely large gesture database. This database includes the
images of various articulated hand gestures with the annotated 3D posi-
tion/orientation parameters of the hand joints. Our unique matching
algorithm is based on the hierarchical scoring of the low-level edge-
orientation features between the query frames and database and retriev-
ing the best match. Once the best match is found from the database in
each moment, the pre-recorded 3D motion parameters can instantly be
used for natural interaction. The proposed bare-hand interaction technol-
ogy performs in real-time with high accuracy using an ordinary camera.

1 Introduction

Currently, people interact with the digital devices through the track pads and
touchscreen displays. The latest technology offers single or multi-touch gestural
interaction on 2D touchscreens. Although this technology has solved many lim-
itations in human mobile device interaction, the recent trend reveals that peo-
ple always prefer to have intuitive experiences with their digital devices. For
instance, popularity of the Microsoft Kinect can demonstrate the idea that peo-
ple enjoy experiences that give them the freedom to act like they would in the
real world. However, when we discuss the next generation of digital devices such
as AR glasses and smart watches we should also consider the next generation
of interaction facilities. The important point is to select a suitable space and
develop a technology for effective and intuitive interaction. An effective solution
for natural interaction is to extend the interaction space from 2D surface to real
3D space [1,2]. For this reason, vision-based 3D gestural interaction might be
hired to facilitate a wide range of applications where using physical hand gestures
are unavoidable. Specifically, in future wearable devices such as Google Glass,
3D gestural interaction with augmented environments might be extremely use-
ful. Therefore, developing an efficient and robust interaction technology seems to
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Fig. 1. System overview of the real-time gesture retrieval system. For each query image,
the best corresponding match with the tagged motion information will be retrieved
through the gesture search engine.

be a need for the near future. From technical perspective, due to the complexity,
diversity and flexibility of the hand poses and movements, recognition, tracking
and 3D motion analysis are challenging tasks to perform on hand gestures. In
order to handle these difficulties, we decided to shift the complexity from classical
pattern recognition problem to large-scale gesture retrieval system. Due to the
possibility of forming a large-scale image database, the new problem is to find the
best match for the query among the whole database. In fact, for a query image or
video, representing a unique hand gesture with specific position and orientation
of the joints, the challenging task is to retrieve the most similar image from the
database that represent the same gesture with maximum similarity in position
and orientation. Our matching method is based on the scoring of the database
images with respect to the similarity of the low-level edge-orientation features
to the query frame. By forming an advanced indexing system in an extremely
large lookup table, the scoring system performs the search step and the best out-
put result will be retrieved efficiently. Since in the offline step we annotate the
database images with the corresponding global and local position/orientation of
the joints, after the retrieval step, the motion parameters might be immediately
used to facilitate the interaction between user and device in various applications
(see Fig. 1).

2 Related Work

Designing a robust gesture detection system, using a single camera, independent
of lighting conditions or camera quality is still a challenging issue in the field of
computer vision. A common method for gesture detection is marker-based app-
roach. Most of the augmented reality applications are based on marked gloves for
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accurate and reliable fingertip tracking, [3,4]. However, in marker-based meth-
ods users have to wear special inconvenient markers. Moreover, some strategies
rely on object segmentation by means of shape or temperature, [5–7]. Robust
finger detection and tracking could be gained by using a simple threshold on
the infrared images. Despite the robustness, thermal-based approaches require
expensive infrared cameras which are not provided to most devices. Many ges-
ture tracking systems are based on new depth sensors such as Kinect, but due to
the size and power limitations they are only available for stationary systems [8].
In addition, feature-based algorithms for gesture tracking have been employed
in various applications, [7,9]. Model-based approaches are also being used in this
area, [10,11].

Generally, all these techniques are computationally expensive, which is not
suitable for our purposes. Another set of methods for hand tracking are based
on color segmentation in appropriate color space, [5,12]. Color-based techniques
are always sensitive to lighting conditions that degrades the quality of recogni-
tion and tracking. Other approaches such as template matching and contour-
based methods often work for specific hand gestures, [13]. In new smartphones
and tablets, accelerometer-based approaches recognize hand gesture motions by
using the device’s acceleration sensor, [14,15]. Reference [16], use visual color
markers for detecting the fingertips to facilitate the gesture-based interaction in
augmented reality applications on mobile phones. References [17,18], perform
marker-less visual fingertip detection, based on the color analysis and computer
vision techniques for manipulating the applications in human device interac-
tion. Reference [19], perform HMM to recognize different dynamic hand gesture
motions. Reference [20], use visual marker or shape recognition to augment and
track the virtual objects and graphical models in augmented reality environ-
ments.

Unfortunately, most of the computer vision algorithms perform quite com-
plex computations for detection and recognition of objects or patterns. For this
reason we should find a totally innovative way to integrate the existing solu-
tions with the minimum level of complexity and maximum efficiency. Another
important point to mention is that the current technology is mostly limited to
gesture detection and global motion tracking not real 3D motion analysis, while
in many cases 3D parameters such as position and orientation of the hand joints
might be used for manipulation in different applications. Therefore, besides the
gesture recognition system we need to retrieve the 3D motion parameters of the
hand joints (27 degrees of freedom for one hand). In our innovative solution we
treat this issue as a large-scale retrieval problem. In fact, this is the main reason
behind choosing very low-level features for efficient detection and tracking sys-
tem. During the recent years, interesting works have been done on the large-scale
image search topic. References [21,22], perform the sketch-based image search
based on the indexed oriented chamfer matching and bag-of-features descrip-
tors, respectively. Reference [23], introduces the matching based on distribu-
tion of oriented patches. The major problem with image search systems is that
although you might receive interesting results in the first top matches but you
also might find irrelevant results. Since our plan is to use the retrieval system for
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designing a real-time interaction scenario, we expect to achieve around 100 %
correct detection and accurate 3D motion retrieval. In this work, we demon-
strate that how our contribution leads to the effective and efficient 3D gesture
recognition and tracking that can be applied to various applications.

3 System Description

As briefly explained before, our recognition and tracking system is based on the
low-level edge-orientation features that can be achieved by hierarchical scoring
of the similarity between the query and database images. Since hand gestures do
not provide complex textured patterns, they are not suitable enough for detecting
stable features such as SIFT or SURF. On the other hand, for robustness and
efficiency of the detection and tracking, we cannot rely on color-based or shape-
based approaches. These are the main reasons behind the selection of edge-based
scoring system. As a result, the proposed method works independent of lighting
conditions, variety of users, and different environments.

3.1 Pre-processing on the Database

Our database contains a large set of different hand gestures with all the poten-
tial variations in rotation, positioning, scaling, and deformations. Besides the
matching between the query input and database, one important feature that we
aim to achieve is to retrieve the 3D motion parameters from the query image.
Since query inputs do not contain any pose information, the best solution is
to associate the motion parameters of the query to the best retrieved match
from the database. For this reason, we need to annotate the database images
with their ground-truth motion parameters, PDi

, and ODi
. In the following we

explain how the pre-processing on the database is performed.

Annotation of Global Position/Orientation to the Database: During the
process of providing the database, one way to measure the corresponding motion
parameters of the hand gesture is to attach the motion sensor to the user’s hand
and synchronize the image frames with the measured parameters. Another app-
roach is to use computer vision techniques and estimate the parameters from the
database itself. Since we could capture extremely clear hand gestures with a uni-
form background in the database, we could apply the second approach to esti-
mate the global position of the gestures in each frame. As sample hand gestures
are shown in Fig. 3, by using the common methods such as computing the area,
bounding box, ellipse fitting, etc., we can estimate the position and scale of the
user’s gesture. On the other hand, to estimate the orientation of the user’s ges-
ture in x, y, and z directions, we apply Active Motion Capture technique [24,25].
In active motion capture, during the process of making database, we mount the
vision sensor on the user’s hand to accurately measure and report the motion para-
meters in each captured frame. The vision sensor captures and tracks the stable
SIFT features from the environment. Next, we find feature point correspondences
by matching feature points between consecutive frames. Then the fundamental
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matrix for each image pair is computed using robust iterative RANSAC algo-
rithm. Due to the fact that the matching part might be degraded by noise, the
RANSAC algorithm is used to detect and remove the wrong matches(outliers)
and improve the performance. Running RANSAC algorithm, the candidate fun-
damental matrix is computed based on the 8-point algorithm. The fundamental
matrix F is the 3 × 3 matrix that satisfies the epipolar constraint:

x
′T
i Fxi = 0 (1)

where xi and x
′
i are a set of image point correspondences. Each point correspon-

dence provides one linear equation in the entries of F . Since F is defined up to
a scale factor, it can be computed from 8 point correspondences. If the intrinsic
parameters of the cameras are known, as they are in our case, the cameras are
said to be calibrated. In this case a new matrix E can be introduced by equation:

E = K
′T FK (2)

where the matrix E is called the essential matrix, K
′
and K are 3× 3 upper tri-

angular calibration matrices holding intrinsic parameters of the cameras for two
views. Once the essential matrix is known, the relative translation and rotation
matrices, t and R can be recovered. Let the singular value decomposition of the
essential matrix be:

E ∼ Udiag(1, 1, 0)V T (3)

where U and V are chosen such that det (U) > 0 and det (V ) > 0 (∼ denotes
equality up to scale). If we define the matrix D as:

D ≡
⎡
⎣

0 1 0
−1 0 0

0 0 1

⎤
⎦ (4)

Then t ∼ tu ≡ [
u13 u23 u33

]T and R is equal to Ra ≡ UDV T or Rb ≡ UDT V T .
If we assume that the first camera matrix is [I | 0] and t ∈ [0, 1], there are then
4 possible configurations for second camera matrix: P1 ≡ [Ra | tu], P2 ≡ [Ra |
−tu], P3 ≡ [Rb | tu] and P4 ≡ [Rb | −tu]. One of these solutions corresponds
to the right configuration. In order to determine the true solution, one point is
reconstructed using one of four possible configurations. If the reconstructed point
is in front of both cameras, the solution corresponds to the right configuration.

Once the right configuration is obtained, the relative rotation between two
consecutive frames are computed and can be tagged to the corresponding cap-
tured database image (Fig. 2).

Annotation of Local Joint Motions to the Database: In order to annotate
the local motion of the hand joints to the database we have used a semi-automatic
system. In this system we manually mark the fingertips and all the hand joints
including the finger joints and wrist in each and every frame of the database.
Afterwards, our system automatically stores the exact position of the marked
points according to the image coordinates and generates the connection between
the joints in form of a skeletal model. The joints information and hand model
can be used after the retrieval step (see Fig. 3, right).
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Fig. 2. Active motion capture setup for tagging the rotation parameters to the data-
base images. The hand-mounted camera captures the global 3D rotation parameters
and the static camera records the database frames. Both cameras are synchronized to
automatically assign the real-time motion parameters to database frames.

Fig. 3. Left: real-time measurement of the global orientation of the hand gestures
in the database images using Active Motion Capture system. Rx, Ry, Rz represent
the rotation of the hand gesture around 3D axes in degrees. Right: semi-automatic
annotation of the joint positions and skeletal model to the database images.

Defining and Filling the Edge-Orientation Table: Suppose that all the
database images, D1−k, are normalized and resized to mxn pixels and their
corresponding edge images, ED1−k, are computed by common edge detection
methods such as Canny edge detection algorithm. Therefore, in each binary
edge image, any single edge pixel can be represented by its row and column
position. Moreover, it is possible to compute the orientation of the edge pixels,
αe, from the gradient of the image in x and y directions: αe = atan(dy/dx).
In order to simplify the problem, as it is demonstrated in Fig. 4(top left), we
divide the space to eight angular intervals, where the direction of each edge
pixel belongs to the one of these intervals. As a result, each single edge pixel
will be represented by its position and angle: (xe, ye, αe). In order to make a
global structure for edge-orientation features we need to form a large table to
represent all the possible cases that each edge-orientation pixel might happen. If
we consider the whole edge database with respect to the position and orientation
of the edges, (xe, ye, αe), a large vector with size mxnxnα, can define all the
possibilities, where m and n are number of rows and columns in normalized
database images and nα is the number of angle intervals. For instance, for 320×
240 images and 8 angle intervals we will have a vector with length, 614400. After
we formed this structure, each (xi, yj , αl) block should be filled with the indices
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Fig. 4. Top-left: associated angle intervals for edge pixels; Top-right: sample database
edge image. The corresponding positions-orientation block to each single edge pixel
will be marked with the index of the database image in the edge-orientation table.

of all database images that have edge at the same row, i, and column, j, with
similar orientation interval, l. Figure 4 shows how the edge-orientation table is
filled with database images.

3.2 Query Processing and Matching:

The first step in the retrieval and matching process is edge detection. This
process is the same as edge detection in the database processing but the result
will be totally different, because for the query gesture we expect to have large
number of edges from the background and other irrelevant objects. In the fol-
lowing we explain how the scoring system works.

Direct Scoring: Assume that each query edge image, QEi, contains a set of
edge points that can be represented by the row-column positions and specific
directions. Basically, during the first step of scoring process, for all single query
edge pixels, QEi |(xu,yv), similarity function to the database images at that
specific position is computed as:

Sim(QEi,DEj) |(xu,yv)=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if
{
QEi |(xu,yv) �= 0

}
∧{

DEj |(xu,yv) �= 0
}

∧{
(αi

∼= αj) |(xu,yv)

}

0 otherwise

(5)

If this condition is satisfied for the edge pixel in the query image and the cor-
responding database images, the first level of scoring starts and all the data-
base images that have an edge with similar direction at that specific coordinate
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Fig. 5. The scoring process for a single edge pixel is depicted. Red and green patterns
represent the database and query, respectively. Here, for the pixel marked with black,
the associated scores for the red pattern with respect to the neighbor scoring are shown.
The scores will be accumulated for the index of the corresponding database image. The
same process will be done for all the edge pixels in the query pattern in comparison
with all the database images (Colour figure online).

receive +3 points in the scoring table. Similarly, for all the edge pixels in the
query image the same process is performed and corresponding database images
receive their +3 points. Here, we need to clarify an important issue that might
be considered during the scoring system. The first step of scoring system satisfies
our need where two edge patterns from the query and database images exactly
cover each other, whereas in most real cases two similar patterns are extremely
close to each other in position but there is not a large overlap between them
(as demonstrated in Fig. 5). For these cases that regularly happen, we introduce
the first and second level neighbor scoring. A very probable case is when two
extremely similar patterns do not overlap but fall on the neighboring pixels of
each other. In order to consider these cases, besides the first step scoring, for
any single pixel we also check the first level 8 neighboring and second level 16
neighboring pixels in the database images. All the database images that have
edge with similar direction in the first level and second level neighbors receive
+2 and +1 points respectively. In short, scoring system is performed for all the
edge pixels in the query with respect to the similarity to the database images in
three levels with different weights. Finally, the accumulated scores of each data-
base image is calculated and normalized and the maximum scores are selected as
first level top matches. The process of scoring for a single edge pixel is depicted
in Fig. 5.

Reverse Scoring: In order to find the closest matches among the first level
top matches, the reverse comparison system is required. Reverse scoring means
that besides finding the similarity of the query gesture to the database images
(Sim(Qi,D)), the reverse similarity of the selected top database images to the
query gesture should be computed. In fact, direct scoring system only retrieves
the best matches based on the similarity of the query to them. This similarity
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Fig. 6. Gesture search engine blocks in detail.

might have happened due to the noisy parts of the query gestures. For instance,
edge-orientation features of the background of the query image might be similar
to a gesture database image. This similarity might cause the wrong detection.
Therefore, similarity of the selected top database images to the query should
be analyzed as well. Since database images are noise-free (plain background),
similarity of the selected top matches to the query is a more accurate criterion.

Combination of the direct and reverse similarity functions will result in a
much higher accuracy in finding the closest match from the database. The final
scoring function will be computed as: S = [Sim(Qi,D) × Sim(D,Qi)]0.5. The
highest values of this function returns the best top matches from the database
images for the given query gesture. In this work best top ten matches are selected
in direct similarity. In reverse similarity analysis, best four database images of the
previous step are selected. Afterwards, the smoothness process is performed to
estimate the closest motion parameters for the query gesture image (see Fig. 6).

Another additional step in a sequence of gestural interaction is the smooth-
ness of the gesture search. Smoothness means that the retrieved best matches
in a video sequence should represent a smooth motion. Basically, this process is
performed in the following steps.

Weighting the Second Level Top Matches: In order to increase the accu-
racy of the 3D motion estimation, after the reverse scoring, we retrieve the
tagged parameters from the four top matches and estimate the query motion
parameters based on the weighted sum of them as follows:

PQ = aPDm1 + bPDm2 + cPDm3 + dPDm4 (6)

OQ = aODm1 + bODm2 + cODm3 + dODm4 (7)

Note that P and O represent the x-y-z tagged position and orientation, respec-
tively. Q and Dmi represent the query and i − th best database match. Mostly,
in the experiments, a, b, c, and d are set to 0.4, 0.3, 0.2, and 0.1. At this step the
best motion parameters can be estimated for the first query in a video sequence.

Dimensionality Reduction for Motion Path Analysis: In order to perform
a smooth retrieval, we analyze the database images in high dimensional space to
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Fig. 7. Left: 3D motion estimation based on the top matches and neighborhood analy-
sis. Red square indicates the best match from the previous frame. Numbered circles
show the location of the top four matches for the current query frame. Based on the
proposed algorithm, number 3 from the left plot and number 2 from the right plot
should be ignored in the computations (Colour figure online).

detect the motion paths. Motion paths indicate that which gestures are closer to
each other and fall in the same neighborhood in high dimension. The algorithm
searches the motion paths to check which of these top matches is closer to the
best found match for the previous frame. Therefore, if some of the selected top
matches are not in the neighborhood area of the previous match, they should
not affect the final selection and consequently the estimated 3D motion. For this
reason, from the second query frame, the neighborhood analysis is performed
and the irrelevant matches will be out from weighting the motion parameters.

For dimensionality reduction and gesture mapping different algorithms have
been tested. The best achieved results that properly mapped the database images
to visually distinguishable patterns are performed by Laplacian method. As
demonstrated in Fig. 7, database images are automatically mapped to four
branches. The direction of each branch shows the position of the hand gestures
towards the four corners of the image frame. Clearly higher density of the points
in the central part is due to the availability of the database images around the
center area of the image frames. By using this pattern, from the second query
matching, we can remove the noisy results. For instance, if one of the top four
matches is out of the neighborhood of the previous match, it will be removed
and weighing will be applied on the rest of the selected matches (see Fig. 7-left).

Another important point to mention is that if for any reason, the final top
matches for the query frame are wrong (mainly due to the direct scoring), for
the next frame the neighborhood analysis should not be considered. Otherwise the
wrong detections significantly affect the estimated motion parameters. Therefore,
if majority of the top four matches of the current frame are not from the neigh-
borhood area of the previous match, they should be considered as a reference for
estimating the 3D motion parameters and minority should be ignored from the
computations (see Fig. 7-right).

Motion Averaging: Suppose that for the query images Qk−n-Qk (k > n),
best database matches are selected. In order to smooth the retrieved motion in
a sequence, the averaging method is considered. Thus, for the k + 1th query
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Fig. 8. Left: experimental results on a sample query video sequence of Grab gesture.
The retrieved top four matches are shown on the samples. Right: different hand gestures
and the corresponding best matches from the database.

Fig. 9. First row: sample query frames from real-time video. Second row: detected edge
from the query frames. Third row: corresponding best matches from the database with
the annotated joint information.

image, position and orientation can be computed based on the estimated posi-
tion/orientation of the n previous frames as follows:

PQk+1 =
1
n

k∑
i=k−n+1

PQi
(8)

OQk+1 =
1
n

k∑
i=k−n+1

OQi
(9)

Here, PQ and OQ represent the estimated position and orientation for the query
images, respectively. Position/orientation include all 3D information (translation
and rotation parameters with respect to x, y, and z axes). Therefore, motion para-
meters of each query image will be estimated by averaging the motion parameters
of the certain number of previous image frames. According to the experiments,
for 3 ≤ n ≤ 5, averaging can be performed properly. For instance, if n = 3,
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motion averaging starts from the 4th query frame. 3D position and orientation
of the 4th query frame will be estimated by the three previous frames and so on.

4 Experimental Results

The process of making database images and tagging the corresponding rota-
tion parameters are implemented in C++. We synchronized two web-cams, one
mounted on the user’s hand to capture the hand motion and a static one to record
the images for the database. Since the whole process is performed in real-time,
the 3D hand motion parameters will be immediately tagged, as a separate text
file, to each frame captured by the static camera. In order to provide extremely
clear images for database, we covered user’s arm and camera with similar paper
to the background color. With some adjustments in the color intensity we could
finally provide clear database images containing the user’s gesture with a plain
black or green background.

The matching experiments are conducted on different gesture databases.
First, we provided the database with the specific hand gesture from a single
user including all the variations in positioning, orientation and scaling (about
1500 images). During the second step, we extended the database to more than
3000 images of different dynamic hand gestures using one to five fingers and sim-
ilarly including all the position/orientation variations. Finally, we added extra
images to the database including the indoor and outdoor scenes, objects, etc.
to test the robustness of the algorithm (totally more than 6000 images) (Figs. 8
and 9).

Our early experiments were conducted on a 2.93 GHz Core2Due PC. During
the test step we used query gesture images from totally different environments
with different backgrounds and lighting conditions. All the database images were
organized in different scales for the experiments (320×240, 160×120, 80×60 and
few tests on 40 × 30). Obviously, the processing time is the feature that changes
over the tests on different scales. We could reach reasonable processing time on
the largest gesture database with size 320 × 240. The performance seems to sat-
isfy the image-based retrieval at this level. Other important criteria to consider
are the robustness in gesture recognition and accuracy in retrieving the 3D para-
meters. Our algorithm works with around 100 % accuracy rate in recognition of
the same gesture as the query even in the low-resolution case where we reduced
the size of the database images to 80 × 60. We could achieve quite promising
results in retrieving the 3D motion parameters up to the database images of size
160 × 120. In general the optimal point to achieve the best performance with
respect to accuracy and efficiency is the test on gesture database with about
3000 entries with the image size of 320×240. We implemented the latest version
of our system in Xcode environment on a Macbook Pro using the embedded
camera. With this system we could easily achieve the real-time processing. The
details about the performance of the system are depicted in Table 1.

As discussed before, direct scoring, reverse scoring, weighting the top matches,
and finally the motion averaging are the main four steps in estimation of the
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Table 1. Performance of the system with respect to the database size, image size,
efficiency and accuracy.

Database size Image size Proc. time sec. Reco. rate 3D accuracy 1–5

6000(ges. + oth.) 320 × 240 ≈0.064 ≈100 % 4

6000(ges. + oth.) 160 × 120 ≈0.049 ≈100 % 3

6000(ges. + oth.) 80 × 60 ≈0.029 ≈100 % 3

3000(ges.) 320 × 240 ≈0.048 ≈100 % 4

3000(ges.) 160 × 120 ≈0.036 ≈100 % 4

3000(ges.) 80 × 60 ≈0.027 ≈100 % 3

1500(grabges.) 320 × 240 ≈0.033 ≈100 % 4

1500(grabges.) 160 × 120 ≈0.025 ≈100 % 4

1500(grabges.) 80 × 60 ≈0.016 ≈100 % 3

best motion information for the query image. During the direct scoring step top
ten matches will be selected. Although many of these ten matches might be close
enough to the query frame, but for accuracy reasons the best matches should rep-
resent the closest entries of the database to the query frame. Therefore, reverse
scoring refines the top four from the previous step. Extending the reverse scoring
to more entries can improve the final results but due to the efficiency reasons
(reverse scoring substantially increases the processing time), this step is limited
to ten top matches. Afterwards, we retrieve the annotated parameters from the
first four top matches and estimate the query motion parameters based on the
weighted sum of them. In cases that some entries are ignored due to the neigh-
borhood analysis, weights will be allocated to the rest of the top matches. In
general, reverse scoring and weighting system significantly improve the smooth-
ness of the motion in a video sequence and remove the noisy results. In the final
step, motion averaging is applied to enhance the fluctuations in the sequence
of retrieved motion. Since the idea behind this work is to facilitate the future
human device interaction in various applications, we should concentrate on effec-
tive hand gestures that might be useful in a wide range of applications. Based
on the related works, the most effective hand gestures in 3D application scenar-
ios are the family of Grab gesture [1,2] (including all dynamic deformations and
variations) which is widely used in 3D manipulation, pick and place, and control-
ling in augmented/virtual reality environments. For this reason, these gestures
are considered in most of our experiments while other hand gestures show the
similar performance in the tests.

5 Conclusion and Future Work

In this work we proposed a novel solution for high degrees of freedom gesture recog-
nition, tracking and 3D motion retrieval based on the gesture search engine. The
proposed algorithm has successfully passed the inventive step and has been filed
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as a patent application (US Patent pending) in January 2014. This method might
be used in real-time gestural interaction with stationary or hand-held devices in a
wide range of applications where gesture tracking and 3D manipulation are useful.
Currently, we are implementing this technology on mobile devices to improve the
quality of interaction in future applications. Here, an important point to
mention is how to choose a reasonable size for the gesture database. Obviously,
diversity and spatial resolution of the hand gestures are two main factors that
directly affect the database size. In general, as discussed in [10], the hand motion
has 27 degrees of freedom. Due to the correlation of the joint angles the dimension
might significantly be reduced by applying dimensionality reduction techniques.
In the current implementation, the vocabulary table can represent all possible
indexable features that might occur (length of the search table is fixed). This indi-
cates that the complexity of the processing does not depend on the size of the data-
base and the current defined structures can handle substantially larger databases.
Another important point is how to store the database. In fact, we do not need
to store the database images. Instead, we only store the corresponding motion
parameters and the search table. Size of the search table for database images of
320 × 240 is 614,400. According to our estimation each word in the search table
will be marked with less than 100 entries of the database. Therefore, consider-
ing 2 bytes for storing each index of the database images in the search table we
need around 100 MB of memory to store the whole search table. Obviously this
amount of memory can be handled on any device. However, capturing, organizing
and annotation of an extremely large database require substantial efforts which
will be considered in the future work. Clearly, if we only target the gesture recog-
nition and tracking, several thousand images are enough, but if we seek for high
resolution 3D motion estimation we should increase the database size.
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