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Abstract. In this paper, we propose a novel approach to extract local
descriptors of a video, based on two ideas, one using motion boundary
between objects, and, second, the resulting motion boundary trajecto-
ries extracted from videos, together with other local descriptors in the
neighbourhood of the extracted motion boundary trajectories, histogram
of oriented gradients, histogram of optical flow, motion boundary his-
togram, can be used as local descriptors for video representations. The
motion boundary approach captures more information between moving
objects which might be caused by camera movements. We compare the
performance of the proposed motion boundary trajectory approach with
other state-of-the-art approaches, e.g., trajectory based approach, on a
number of human action benchmark datasets (YouTube, UCF sports,
Olympic Sports, HMDB51, Hollywood2 and UCF50), and found that
the proposed approach gives improved recognition results.

1 Introduction

Recognizing human action in a video is a commonly studied topic in computer
vision and machine learning [1-4]. Broadly speaking, a popular approach is to
first extract a set of local descriptors, and then use a bag-of-features model for
matching those local descriptors obtained in the set of labeled training video
clips, to those as yet unlabelled in the testing dataset [5-7].

Laptev [8] introduced space-time interest points (STIPs) using an extension
of the Harris corner detection method [9] from image to video. Other detectors
are also used to detect interest points in videos, e.g., Willems et al. [10] proposed
using the determinant of the spatiotemporal Hessian matrix for interest point
detection, Dollar et al. [11] proposed a 1D Gabor filter in the time dimension
with a 2D Gaussian in the spatial dimensions to detect the underlying periodic
frequency components for interest point detection.

Based on the detected interest points in a video, a descriptor is proposed
to describe the information of sub-regions of the video as local features. Sev-
eral descriptors have been proposed for describing these spatiotemporal local
features, e.g., higher order derivatives (local jets) [8], histogram of oriented gra-
dient (HOG) [12] for capturing object shape, these are called the appearance
descriptors; histogram of optical flow (HOF) [12] for capturing object motion
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information, a spatiotemporal version of HOG, called HOG3D [13] which extends
the idea of HOG to the 3D case, histogram of oriented flows (HOF), a way of rep-
resenting movements across time [12], and motion boundary histograms (MBH)
[14] to cope with the camera motion. This detector/descriptor approach can be
considered as a kind of bag-of-features video representation.

In contrast from detecting interest points in a 3D volume data, another app-
roach to obtaining local features from a video is the trajectory approach, so called
dense trajectory approach, as the patch is represented by a large number of inter-
est points, [4,15]. In this approach, a set of local interest points is first detected
using the 2D Harris condition [9] from video frames and an optical flow field is
then used to track these interest points temporally to form the patch trajectories
in the video [4]. The trajectory descriptor, together with the local descriptors, can
be used to represent the video under a bag-of-features framework.

However, it is difficult to detect the actual moving objects in a complex back-
ground scene with severe camera motion using the 2D Harris corner condition [9]
as the local patch detector. In this paper, we wish to show that the motion patterns
of objects are important and will help detect informative patch trajectories for
action recognition. In [16], the authors also introduced a motion boundary based
sampling for action recognition, though it is different from the one which we pro-
posed in this paper. The fact that motion provides important cue for grouping
objects is well known [17]. On the other hand, to cope with camera motion, Dalal
et al. introduced the motion boundary histogram (MBH) [14] as an effective local
descriptor. MBH encodes the gradients of optical flow, which are helpful for can-
celing constant camera motion. Despite the importance of MBH as clearly shown
in Dalal et al. [14], it appears that no one has yet explored the idea of a motion
boundary in the dense trajectory approach [4]. It is expected that if we can embed
the motion boundary concept in the dense trajectory approach [4], then it can
handle issues related to camera motion, and thus would result in improved recog-
nition rate, for datasets which may have taken while the camera might be moving.
In this paper, we propose to use the motion boundary between objects for detect-
ing local patches within the dense trajectory approach [4]. The motion boundary
can capture more informative information between moving objects which might
be caused because the camera was moving. With the motion boundary defined,
the motion boundary trajectory can be extracted and can be used for the video
representation. We compare the performances of various approaches on a num-
ber of standard benchmark datasets [18-22] and achieve better results using the
proposed approach.

The rest of this paper is organized as follows. Section2 discusses related
work; Sect. 3.3 briefly introduces the concept of local descriptor extractions from
videos, which include motion boundary trajectories (in Sect.3.2), appearance
based descriptors and motion descriptors; Sect. 4 provides approaches to classi-
fication; experimental results are shown in Sect. 5. Finally, some conclusions are
drawn in Sect. 6.

Contribution: This paper establishes the deployment of motion boundary detem-
ination in the dense-trajectory approach for action recognition. The motion
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boundary between objects is determined and then those points in this motion
boundary are tracked to form the motion boundary trajectories for video repre-
sentation. Experimental results show that this idea can improve the performance
of recognition significantly.

2 Relative Works

The most popular approach for action recognition is the well known bag-of-
feature model [19,23,24]. In this model, the selection of local features of a video
is important for the video representation. There are two broad approaches within
this tradition: the detector/descriptor approach [18] and the trajectory approach
[4]. In the detector/descriptor approach [18], the detector is used to detect inter-
esting sub-regions of a video, contained within such sub-regions are typically
the intensity values that have significant local variations in both space and time.
For these sub-regions, the descriptors are applied to describe the spatial-temporal
local features of the video [18]. The dense trajectory approach [4] tracks the
detected local patches in the video frames through time. Then patch trajectories
can be extracted from these sub-regions of the video. In the dense trajectory
approach, the extracted spatial-temporal local features are significant [4]. It can
be explained that the detected /extracted features are specifically based on object
appearances and, to some extent, on motions (as the motion boundary histogram
is used to represent the motion).

Some related work can be found in motion segmentation and video co-
segmentation [25]. Motion segmentation is the problem of decomposing a video
and to detect moving objects and background based on the idea of coherent
regions with respect to motion and appearance properties [25]. Motion informa-
tion provides an important cue for identifying the surfaces in a scene and for
differentiating image texture from physical structures. In [17], long term point
trajectories based on dense optical flow are used to spatial-temporal cluster the
feature points into temporally consistent segmentations of moving objects. The
quality of motion segmentation depends significantly on the pair of frames with
a clear motion difference between the objects [26]. The advantage of motion
segmentation derives from the fact that it combines motion estimation with seg-
mentation. For segmenting multiple objects in the scene, the layered model for
motion segmentation is proposed [27]. Typically, the scene consists of a number
of moving objects and representing each moving object by a layer that allows the
motion of each layer to be described [27]. Such a representation can model the
occlusion relationships among layers making the detection of occlusion bound-
aries possible [28,29]. Typically, the background/foreground segmentation is a
special case of binary object segmentation in this layered model [30].

In [25], multiple objects and multi-class video co-segmentation task is pro-
posed to segment objects in videos. Object co-segmentation [25] is to segment
a prominent object based on an image pair in which it appears in both images.
With this idea, video co-segmentation segments the objects that are shared
between videos, therefore co-segmentation can be encouraged. With this app-
roach, object boundaries can be detected [28,29].
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Based on the idea of motion segmentation, objects may be segmented from
the background in the action recognition. Inspired by the idea of motion bound-
ary histogram descriptor in the bag-of-feature framework, in this paper, we pro-
pose to use the boundary between objects as a descriptor in the dense-trajectory
approach. The motion boundary can then be tracked frame by frame and then
deployed as a descriptor, very much in the same manner as the patch trajec-
tories in the dense trajectory approach [4] and then used for action recogni-
tion. This has the advantage of not requiring to perform the segmentation or
co-segmentation task which are very time consuming tasks, where there is no
significant occlusion of the objects involved.

3 Motion Boundary Trajectories

In this section, we will describe the proposed motion boundary dense trajectory
approach. We will first describe the dense trajectory approach [4] briefly, and
then we will show how motion boundary trajectories can be extracted from the
video.

3.1 Dense Trajectories

The idea of a trajectory is based on interest points tracking [4]; the interest
points are tracked frame by frame and then the corresponding trajectory can be
extracted based on the tracked points [4]. For the motion boundary trajectories,
we first detect the motion boundary on video frames and then track the detected
motion boundary through time to form the motion boundary trajectories of a
video.

Consider a video which consists of I, ¢t =1,2,...,T and IV is a 2D pixel
intensity array with dimensions W x H. The optical flow field is computed over
a two-frame sequence I® and I+D w® = (4® 1) where, u®, v® are
respectively the optical flow in the horizontal and vertical directions. We apply
a median filtering on the optical flow field w® = (u), v(®)) within a 3 x 3 patch.
The resulting optical flow field is denoted by @®) = (a®,5(")) = w® « Ms, 3,
where My is the median filter kernel and @® is the filtered result of the optical
flow field and * is the convolution operator.

In the dense trajectory approach [4], the Harris corner condition [9]. With this
selection, a set of interest points, determined using a 2D Harris corner condition
[9] on the object appearance, is then tracked frame by frame to form the dense
trajectories.

In other to cope with the camera motion, a matching of feature points using
SURF descriptors and dense optical flow is applied to estimate a homography
between two subsequent frames by RANSAC algorithm as in [31]. Based on the
reason of human action is in general different from camera motion. A human
detector is employed to remove matches from human regions to improve the
camera motion estimation. Finally, the trajectories consistent with the camera
motion are then removed which are no longer useful for the tracking process [31].
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3.2 Motion Boundary Trajectories

Different from using object appearances, motion boundary trajectory approach is
based on the motion boundary between objects. To detect the motion boundary,
we extract its location using the optical flow. Assume each object will have
different flow directions and velocities, we detect their boundaries using the
derivative of the optical flow field which captures the discontinuity, e.g., edges, of
the optical flow field. For the point Pi(t) e I® | the measurement of its boundary
is given by
Hpi(t) = ||V’l_llpi(t)||2 + ‘|V17Pi(t)||2

where, (u Up) P(f)) is the flow vector of point P(t)

The determination of the motion boundary trajectories is very similar to
that proposed in [4] in the dense trajectory approach. Given a dense grid of
frame I®, we can densely sample points on a grid spaced by w pixels. In our
case, the dense grid is set to 5 x 5. Sampling is carried out on each spatial
scale separately. Different scales can be obtained by simply re-sizing the video
to different resolutions, with a scaling factor of \} In our setting, there are at
most 8 spatial scales in total [4]. To obtain the motion boundary trajectories,
we first select the points based on Harris corner condition

t 2
Tc(o)rner = Cl X max mln()‘ (t) ’ )‘P(t))
P er® i

where, (A;(t) , )\?)(t)) are the eigenvalues of the auto-correlation matrix of point

Pi(t) in frame I(*). We then threshold the motion boundary based on the threshold

(t)
Tcorner as

. t

o= HPi(t) mln()\})i(t),/\?jim) > T er
Pi 0 otherwise

We then use another threshold condition for which a point is of interest (i.e.,

significant enough for further consideration):

T(t)

motion

=(C5 X max HP“) + Cs3
P(t)el(t) i

The point P(t) will be selected, if its magnitude is greater than the threshold,
ie., H o > 7

Pi motion’
will not be considered further. In our setting, we set C; = 0.0001, Cy = 0.01
and C3 = 0.002. From the above process, we will know which sub-sampled

while those points which do not satisfy this condition

point Pi(t) will need to be considered for the trajectory tracking. We then track
the selected points using optical flow field @® = (a®, ). Consider a point
Pi(t) (x; ® y( )) in frame I®, the tracked point Pi(tﬂ) = (xgtﬂ), yEtH)) of Pl-(t)
in the next frame I+ i computed by:
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Pz‘(tH) _ ‘Pi(t) +wt,Pi(t)

t) (¢t o
= (" 5") + @) | o o)
The tracked points of subsequent frames are then concatenated temporally to
form a trajectory, Traj, = (Pi(t), Pi(t“), Pi(t+2), ...). For each frame, if no tracked

point is found in the neighborhood, a new point Pi(f ) s sampled and added
to the tracking process. If the length of a trajectory has reached a maximum
length L = 15, a post-processing stage is then performed to remove the static
trajectories [4].

In order to obtain a better motion boundary, we follow [31] and estimate
the homography of two subsequent frames, and then warp the second frame
with the estimated homography. Based on the warped frame, the Harris corner-
ness is computed by the warped second frame and the optical flow is computed
between, the first and the warped second frame. To obtain more interest points
surrounding the moving objects, we apply a Gaussian filter and then a median
filter on the motion boundary map, i.e., H. We then select and track the points
for extracting the motion boundary trajectories. For the optical flow, we use the
Farneback optical flow algorithm [32], which employs a polynomial expansion to
approximate the pixel intensities in the neighborhood to obtain a good quality
flow field as well as capturing some fine details [4]. Figure 1 shows the results of
the motion boundary as well as the motion boundary trajectory obtained from
some selected videos.

Fig. 1. The first row shows the original images; the second row shows the detected motion
boundaries; and the third row shows the corresponding motion boundary trajectories
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It is observed that the motion boundary trajectories can capture the motion
quite well.

3.3 Motion Boundary Descriptors

Local descriptors are features which describe the spatial temporal behaviours of
humans in the video. There are a number of such descriptors proposed by various
researchers: [4]. The essential idea is to find good descriptors which will describe
the spatial temporal behaviours of pixel values in a small neighborhood of a
volume consisting of two dimensional space and time [4]. Some of these methods
were extended from image processing techniques, while others were constructed
explicitly for spatial temporal behaviours [4].

Several descriptors can be obtained to encode either the shape of a trajectory
or the local motion [4] and appearance within a space-time volume [14] around
the trajectory. The trajectory shape descriptor encodes local motion patterns by
using the displacement vectors of a trajectory [4]. HOG (Histogram of oriented
gradient) along a trajectory focuses on the static part of the appearance of a
local patch of the video. For encoding the motion information, HOF (Histograms
of optical flow) captures the local motion information based on the optical flow
field; MBH (Motion boundary histogram) uses the gradient of the optical flow
to cancel out most of the effects of camera motion [14]. These descriptors give a
state-of-the-art performance for representing local information.

In this paper, we will add the motion boundary trajectories as the descriptors
for the motion in the time axis. The motion trajectory descriptor can be formed
by considering the shape of the trajectories, in a manner very similar to that pro-
posed in [4]. Given a trajectory of length L, a sequence (APi(t), e APi(HL_l))
of the displacement vectors APZ@ = Pi(tﬂ) — Pi(t) = (acl(»tﬂ) — xl(»t), yi(tﬂ) — ygt))
is used for describing the trajectory shape. The normalized concatenation of the
displacement vectors will become the feature vector of the trajectory shape:

(AP(t) AP(t+L_1))

Shape; =

With the motion boundary trajectory, Traj;, = (Pi(t), Pi(tﬂ), Pl.(HQ), ...), the
corresponding HOG, HOF and MBH descriptors can also be extracted based on
the motion boundary trajectory as the trajectory based HOG, HOF and MBH
descriptors (please see Fig.2 for an illustration of these concepts). We follow
[31], motion descriptors (HOF and MBH) are computed on the warped optical
flow. The trajectory shape descriptor and HOG descriptor remain unchanged.

4 Classification

We apply the standard bag-of-features approach to convert the local descriptors
from a video into a fixed-dimensional vector. We first construct a codebook for
the trajectory descriptor (Sect.3.3) using the k-mean clustering algorithm, and
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Fig. 2. Tllustration of motion boundary trajectory descriptor. The motion bound-
ary trajectory is represented by relative point coordinates, Traj, = (Pi(t)7Pi(t+1),
1—71-(t'~'2)7 ...); based on the motion boundary trajectories, the HOG, HOF and MBH
descriptors are computed along the trajectories.

then the clusters will serve as visual words. We fix the number of visual words
to V' = 4,000. To limit the complexity of the problem, we cluster a subset of
100,000 randomly selected from the training features in the k-mean clustering
algorithm. Descriptors are then assigned to their closest vocabulary word using
an Fuclidean norm. The resulting histograms of visual word occurrences are used
as video representations.

We apply the linear and non-linear SVM for action recognition. For the linear
SVM [33], we first scale the value of each visual word feature to [0, 1], and then
the feature vector of a video is normailzied by a norm-2 normalization. For the
nonlinear SVM [12], we normalize the histogram using the RootSIFT approach
[34], i.e., square root each dimension after L1 normalization, and then apply the
standard RBF (radial basis function)-x? kernel [4] as the baseline algorithm in
our experiments.

v
1 (hir — hj)?
Koo (Hy, Hy) = exp | —— $ Yk — k)™
X ! ( 214; hik + hjk

where H; = {h;}}_, and H; = {hjx}/_, are the frequency histograms of word
occurrences and V is the vocabulary size. A is the mean value of distances
between all training samples [18]. In the case of multi-class classification, the
one-against-all approach is applied, we select the class with the highest score.
Typically, the approach for integrating the contribution of different descriptors is
the multiple channel SVM [7,12], which is a special case of multiple kernel learn-
ing [35]. We simply average the kernels computed from different representations
to combine different channels using the idea of multiple channel SVM.

We also apply the Fisher vector [36] encoding for video representation. Fisher
vector encodes both first and second order statistics between the video descrip-
tors and a Gaussian Mixture Model (GMM). We follow [31], first reduce the
descriptor dimensionality by Principal Component Analysis (PCA), as in [31].
We set the number of Gaussians to K = 256 and randomly sample a subset of
256,000 features from the training set to estimate the GMM [31]. As a result, for
each type of descriptor, each video is represented by a 2D K dimensional Fisher
vector, where D is the dimension of the descriptor after performing PCA. Finally,
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we apply power and the RootSIFT approach normalization to the Fisher vec-
tor. For integrating different descriptor types, we concatenate their normalized
Fisher vectors, and a linear SVM is used for classification.

5 Experiments

This section evaluates the proposed motion boundary trajectories as a descriptor.
We run the experiments at least 3 times for descriptor-classifier pairs. We will
report the average accuracy of those experiments.

5.1 Datasets

We evaluate our proposed motion boundary descriptor on six standard bench-
mark datasets, viz., UCF-Sports [20], YouTube dataset [19], Olympic Sports
dataset [21], the HMDB51 dataset [22], the Hollywood2 datasets, and the UCF50
datasets.

The UCF-Sports dataset contains 150 videos from ten action classes, diving,
golf swinging, kicking, lifting, horse riding, walking, running, skating, swinging
(on the pommel horse and on the floor), and swinging (at the high bar). These
videos are taken from real sports broadcasts and the bounding boxes around the
subjects are provided for each frame. We follow the protocol proposed in [37,38]
using the same training/testing samples for our experiments; by taking one third
of the videos from each action category to form the test set, and the rest of the
videos are used for training. Average accuracy over all classes is reported as the
performance measure.

The YouTube dataset contains 11 action categories: basketball shooting, bik-
ing/cycling, diving, golf swinging, horse back riding, soccer juggling, swinging,
tennis swinging, trampoline jumping, volleyball spiking, and walking with a dog.
For each category, the videos are grouped into 25 groups with more than 4 action
clips in it. The dataset contains a total of 1,168 sequences. We follow the original
setup [19], using leave-one-out cross-validation for a pre-defined set of 25 groups.
Average accuracy over all classes is reported as the performance measure.

The Olympic Sports dataset [21] consists of athletes practising different sports,
which are collected from YouTube and annotated using the Amazon Mechanical
Turk technique. There are 16 sports actions: high jump, long jump, triple jump,
pole vault, discuss throw, hammer throw, javelin throw, shot put, basketball
layup, bowling, tennis serve, platform (diving), springboard (diving), snatch
(weight lifting), clean and jerk (weight lifting) and vault (gymnastics), represented
by a total of 783 video sequences. We adopt the train/test split from [21]. The
mean average precision (mAP) over all classes [12,39] is reported as the perfor-
mance measure.

The HMDB51 contains 51 distinct action categories, each containing at least
101 clips for a total of 6,766 video clips extracted from a wide range of sources. We
follow the original evaluation protocol using three train-test splits [22]. For every
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class and split, there are 70 videos for training and 30 videos for testing.
We report the average accuracy over three-splits as performance measure.

The Hollywood2 dataset [40] has been collected from 69 different Hollywood
movies and includes 12 action classes. It contains 1,707 videos split into a training
set (823 videos) and a test set (884 videos). Training and test videos come from
different movies. The performance is measured by mean average precision (mAP)
over all classes, as in [40].

The UCF50 dataset [41] has 50 action categories, consisting of real-world
videos taken from YouTube. There are 50 categories in UCF50 dataset, the videos
are split into 25 groups. For each group, there are at least 4 action clips. In total,
there are 6,618 video clips. We apply the leave-one-group-out cross-validation as
recommended by the authors and report average accuracy over all classes.

5.2 Experimental Results

The experimental results using bag-of-feature histogram are shown in Table 1.
We also list the results of improved dense trajectory approach [4] in our exper-
iments, under the name Dense Trajectory in Table 1. For the dense trajectory
approach, the 2D interest points are detected based on corner condition [4], and
then track the detected points frame by frame to form the dense trajectories.
From the results listed in Table 1, we note that the best performance is achieved
using our motion boundary trajectory descriptor.

Table 1. Experimental results of motion boundary trajectory on different datasets.

UCF Sport YouTube
Dense Trajectory | Motion Boundary | Dense Trajectory | Motion Boundary

Linear | x2 SVM | Linear | x2 SVM | Linear | x2 SVM | Linear | x2 SVM
Traj. Shape | 73.1 79.4 70.6 83.8 66.0 76.4 71.2 78.6
HOG 71.6 74.5 72.8 80.0 69.0 74.4 69.5 74.6
HOF 75.9 82.3 85.1 91.5 76.8 80.9 78.0 82.2
MBH 78.0 80.9 80.4 84.2 7.4 85.1 78.1 84.2
Combined | 82.3 85.1 90.2 90.6 86.6 87.1 87.9 |874
Olympic Sports HMDB51

Dense Trajectory | Motion Boundary | Dense Trajectory | Motion Boundary
Linear | x2 SVM | Linear | x2 SVM | Linear | x2 SVM | Linear | x2 SVM

Traj. Shape | 65.8 73.3 67.7 76.7 19.2 34.8 23.4 39.1
HOG 66.0 70.8 68.1 73.4 22.8 33.5 20.9 32.9
HOF 73.9 78.2 78.9 80.6 26.8 42.2 30.3 45.3
MBH 80.1 81.6 83.9 [83.2 28.9 46.6 30.8 50.0
Combined | 85.4 84.0 86.5 | 84.7 49.7 53.6 52.5 56.7

We found that on the UCF Sports dataset, the motion boundary trajectory
descriptor together with HOF as well as MBH obtain very good results. The
UCF Sports dataset contains videos which are typically featured on broadcast
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television channels, e.g., BBC and ESPN; these videos are recorded by profes-
sional cameramen and camera movement is relatively smooth. As a result, the
detected motion boundary is much more meaningful, which is shown in Fig. 3.
This observation is also true with the Olympic Sports dataset, in which the
motion boundary trajectory with MBH descriptor obtain good results.

The videos of YouTube dataset are collected from YouTube and are per-
sonal videos. This dataset is very challenging due to large variations in camera
motion. In this case, the motion boundary trajectories are not very accurate. As
a result, the performance of motion boundary trajectory only improve slightly
that compare with dense trajectory.

Fig. 3. Comparison between the dense trajectories and motion boundary trajectories
(the first row shows dense trajectory; the second shows motion boundary trajectory)

We also evaluated the performance of combining representations named Com-
bined as listed in Table 1. We evaluated two different classifiers, viz., the linear
SVM and the x? SVM. We simply average the kernel matrices computed from
different representations to obtain the aggregated results. The motion bound-
ary trajectory also improves the performance at least 1% on the UCF Sports
and HMDB51 datasets and slightly improves on YouTube and Olympic Sports
datasets.

Figure 3 show the motion boundary trajectories and the dense trajectories. In
Fig. 3, we note that the motion boundary detected in some videos is significant,
the motion boundary can capture the trajectories around the moving objects
when compare with those obtained from the dense trajectory approach.

Comparison to the state of the art. In [31], Wang introducted improved
dense trajectory feature for action recognition. Together with the Fisher vec-
tor encoding for video representation, Wang obtained state-of-the-art results.
We use the same setting as in [31] but instead of extracting dense trajectory, we
extract the motion boundary trajectory. We also use the human boundary boxes
provided by authors [31] for better eastimation of homography between two
subsequent frames. The experimental result in Table 2, we also listed the result
from [31], named as IDT (improved dense trajectory). In Table 2, we noted that
the Olympic Sports dataset, the motion boundary trajectory (MBT) approach
obtains at least 2% improvement. We obtain 93.5 % mAP. For the HMDB51
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dataset, we obtain at least 5% improvement and obtain 63.8 accuracy. For the
Hollywood2 dataset, the improvement is not too much, only 0.1 % improvement.
For the UCF50 dataset, we get 1% improvement and obtain 92.2 % accuracy.
Those results show that the motion boundary is useful for describing the motion
information and significantly improve the recognition accuracy in action recog-
nition.

Table 2. Experimental results of motion boundary trajectory on different datasets
using Fisher vector video representation; IDT means Improved Dense Trajectory, and
MBT means Motion Boundary Trajectory; The results listed in IDT here are from [31].

Olympic Sports | HMDB51 Hollywood2 UCF50

IDT [31] | MBT |IDT [31]| MBT |IDT [31] | MBT |IDT [31] | MBT
Traj. Shape | 77.2 81.5 324 35.9 |48.5 45.8 75.2 74.5
HOG 78.8 82.1 [40.2 43.2 (47.1 44.3 82.6 83.9
HOF 87.6 87.5 |48.9 53.2 |58.8 58.1 |85.1 87.1
MBH 89.1 92.2 |52.1 58.2 |60.5 60.7 | 88.9 90.5
Combined |91.1 93.5 |57.2 63.8 |64.3 64.4 |91.2 92.2

6 Conclusion

In this paper, we propose a novel approach based on two ideas, one using motion
boundary between objects, and, second, the resulting motion boundary trajec-
tories extracted from videos as the local descriptors. These resulted in a new
descriptor, the motion boundary descriptor. We compare the performance of the
proposed approach with other state-of-the-art approaches, e.g., trajectory based
approach, on six human action recognition benchmark datasets, and found that
the proposed approach gives better recognition results.
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