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Abstract. This chapter presents a hybrid variant of self organizing migrating al-
gorithm (NMSOMA-M) for large scale function optimization, which combines the
features of Nelder Mead (NM) crossover operator and log-logistic mutation opera-
tor. Self organizing migrating algorithm (SOMA) is a population based stochastic
search algorithm which is based on the social behavior of group of individuals.
The main characteristics of SOMA are that it works with small population size
and no new solutions are generated during the search, only the positions of the
solutions are changed. Though it has good exploration and exploitation qualities
but as the dimension of the problem increases it trap to local optimal solution and
may suffer from premature convergence due to lack of diversity mechanism. This
chapter combines NM crossover operator and log-logistic mutation operator with
SOMA in order to maintain the diversity of population and to avoid the premature
convergence. The proposed algorithm has been tested on a set of 15 large scale
unconstrained test problems with problem size taken as up to 1000. In order to
see its efficiency over other population based algorithms, the results are compared
with SOMA and particle swarm optimization algorithm (PSO). The comparative
analysis shows the efficiancy of the proposed algorithm to solve large scale function
optimization with less function evaluations.

1 Introduction

Self Organizing Migrating Algorithm (SOMA) is a stochastic population based al-
gorithm based on the social behavior of a group of individuals presented by Zelinka
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and Lampinen in 2000 [1]. This algorithm is inspired by the competitive cooperative
behavior of intelligent creatures solving a common problem. Such a behavior can be
observed anywhere in the world. A group of animals such as wolves or other preda-
tors may be a good example. If they are looking for food, they usually cooperate
and compete so that if one member of this group is successful (it has found some
food or shelter) then the other animals of the group change their trajectories towards
the most successful member. If a member of this group is more successful than the
previous best one then again all members change their trajectories towards the new
successful member. It is repeated until all members meet around one food source.
Like other evolutionary algorithm it also works with a population of solutions. The
main feature of this algorithm which makes it distinguished as compared to other
algorithms is that no new solutions are created during the search. Instead, only
the positions of the solutions are changed during a generation, called a migration
loop. SOMA converges very fast for small scale problems but as the problem size
increases its convergence becomes very slow and it may trap to local optima. It
is because of poor balancing between exploration and exploitation. Exploration
and exploitation are considered as two major characteristics of population based
algorithms for maintaining the diversity of the population and to speed up the con-
vergence.

To overcome the difficulty of premature convergence and to avoid the loss of
diversity of population in search space one simple way is to combine population
based algorithms with the features of other population based algorithms or hy-
bridized them with local search algorithms. In this regard, many attempts have been
made in past. Domingo proposed a real coded crossover operator for evolutionary
algorithms based on the statistical theory of population distributions [2]. Chelouah
and Siarry proposed a hybrid method that combines the feature of continuous Tabu
search and Nelder-Mead Simplex algorithm for the global optimization of multi-
minima functions [3]. Deep and Dipti proposed a hybridized variant SOMGA for
function optimization which combines the features of binary coded GA and real
coded SOMA [4]. Fan et al. hybridized Nelder-Mead Simplex method with Genetic
algorithm and particle swarm optimization to locate the global optima of non-linear
continuous variable functions [5]. Premalatha and Nataranjan established a hybrid
variant of PSO that proposes the modification strategies in PSO using GA to solve
the optimization problems [6]. Khosravi et al. proposed a novel hybrid algorithm by
combining the abilities of evolutionary and conventional algorithm simultaneously
[7]. Ghatei et al. designed a new hybrid algorithm using PSO and GDA, in which
global search character of PSO and local search factor of Great Deluge Algorithm
are used based on series [8] . Ahmed et al. proposed a hybrid HPSOM algorithm, in
which PSO is integrated with genetic algorithm mutation method [9]. Millie et al.
presented a variant of quantum behaved particle swarm optimization (Q-QPSO) for
solving global optimization problems which is based on the characteristics of QPSO,
and uses interpolation based recombination operator for generating a new solution
vector in the search space [10]. Deep and Bansal developed a variant of PSO with
hybridization of quadratic approximation operator for economic dispatch problems
with valve-point effects [11]. Deep and Thakur proposed a new mutation operator
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for real coded genetic algorithm [12]. Xing et al. developed a novel mutation op-
erator based on the immunity operation [13]. Deep et al. proposed a new mutation
operator for real coded genetic algorithms and its performance is compared with real
coded power mutation operator [14]. Mohan and Shankar developed random search
technique for global optimization based on quadratic approximation [15]. Deep and
Das proposed a quadratic approximation based hybrid genetic algorithm for function
optimization, in this paper they hybridized four GAs (GA1-GA4) by incorporating
the quadratic approximation operator in to them [16]. Deep and Bansal presented the
hybridization of PSO with quadratic approximation operator (QA), the hybridization
is performed by splitting the whole swarm into two subswarms [17]. To improve
the performance of real coded genetic algorithm Deep and Das hybridized it with
quadratic approximation [18]. Millie et al. presented a new variant of particle swarm
optimization named QPSO for solving global optimization problems [19]. There has
not been done much work on hybridization of SOMA with other approaches except
[4]. Recently Singh Dipti et al. presented a variant (SOMAQI) of SOMA, in which
SOMA is combined with quadratic interpolation crossover in order to improve its
efficiency for finding the solution of global optimization problems of small scale
[20].

In this chapter, again a variant NMSOMA-M of SOMA has been proposed, in
which SOMA is hybridized with NM crossover operator and Log-logistic muta-
tion operator. The proposed algorithm, not only remove the difficulty of premature
convergence of large scale function optimization but also maintain the diversity
of the population. In this approach a new linear NM crossover operator has been
designed to create a new member in the search space and has been used along
with Log-logistic mutation operator to maintain the diversity of the populations
during the search. Its efficiency has been tested on 15 scalable unconstrained test
problems with problem size vary up to 1000 and a comparative analysis has been
made between PSO, SOMA and proposed algorithm. The information about PSO is
given in [21].

The chapter is organized as follows: In section 2, SOMA is described. In section
3, the methodology of proposed Algorithm NMSOMA-M has been discussed in
detail. Test problems used for testing of the proposed algorithm has been listed in
section 4. In section 5, numerical results of the present study have been discussed.
Finally, the chapter concludes with Section 6 drawing the conclusions of the present
study.

2 Self Organizing Migrating Algorithm

Self organizing migrating algorithm is relatively a new stochastic evolutionary algo-
rithm which is based on the social behavior of a group of individuals [22]. Inspired
by the competitive cooperative behavior of intelligent creatures, the working of this
algorithm is very simple. At each generation the individual with highest fitness value
is known as leader and the worst is known as active is taken into consieration. Rather
than competing with each other, the active individual proceeds in the direction of the
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leader. This algorithm moves in migration loops and in each migration loop, active
individual travels a certain distance towards the leader in n steps of defined length.
This path is perturbed randomly by a parameter known as PRT parameter. It is
defined in the range of < 0,1 >. A PRT vector is created using this PRT parameter
value before an individual proceeds towards leader, known as perturbation vector.
This randomly generated binary perturbation vector controls the allowed dimensions
for an individual of population. If an element of the perturbation vector is set to
zero, then the individual is not allowed to change its position in the corresponding
dimension. To create this perturbation vector, following expression is used:
if rnd; < PRT then
PRTVector; =1
else
PRTVectorj =0
The movement of an individual during the migration is given as follows:
atinew = Mt ot — M tPRT Vector (1)

i,jstart

Where t €< 0,bystepto, pathlength >, ML is actual migration loop, x%-""ew is the

new positions of an individual, xf"’ﬁm,, is the positions of active individual and xf”]L
is the positions of leader. The computational steps of SOMA are given as follows.
The flow chart of SOMA process is depicted in Figure 1:

Algorithm (SOMA)

Generate initial population

Evaluate all individuals in the population

Generate PRT vector for all individuals

Sort all of them

Select the best fitness individual as leader and worst as active

For active individual new positions are created using equation (1). Then the
best position is selected and replaces the active individual by the new one if it
is better than active individual

If termination criterion is satisfied stop else go to Step-2

8. Report the best individual as the optimal solution

SANAIE S S e

=

3 Proposed NMSOMA-M Algorithm

In this section a new hybrid variant of SOMA, NMSOMA-M has been presented
which uses NM crossover operator and log logistic mutation operator for creating
the new solution member in the search space. As discussed earlier, in the working of
SOMA, no new solutions are created during the search instead only the positions of
the solutions are changed. Due to which there is loss of diversity in the population
as we move on to solve large scale optimization problem. So, to avoid premature
convergence and for maintaining the diversity of the population, new points are
created in the search space using NM crossover operator and log logistic mutation
operator.
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Fig. 1 Flow chart of SOMA process

3.1 Nelder Mead (NM) Crossover Operator

The Nelder Mead simplex (NM) method is a computational algorithm and is based
upon the work of Spendley et al. [23]. It forms a simplex and uses this simplex to
search for a local minimum. A simplex is defined as a geometrical figure which
is formed by (N + 1) vertices, where N is the number of variables of a function.
Through a sequence of elementary geometric transformation (reflection, contrac-
tion, expansion), the initial simplex moves, expands or contracts. After each trans-
formation, the current worst vertex is replaced by a better one. In the proposed
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work, Nelder Mead simplex search method has been used as a linear NM crossover
operator which uses two out of three randomly chosen members from population
of individuals to create a new member. The computational steps of NM crossover
operator method are as follows:

Algorithm (NM Crossover Operator)

Choose parameters a, § and y
Select an initial simplex with randomly chosen three vertices
Calculate function values at chosen vertices
Find x;, (the worst point), x; (the best point), x, (next to the worst point) and
evaluate the value of objective functions f,, f; and f; at these points
Compute x. which is the centroid of x; and x,
6. The NM uses three operators; reflection, contraction and expansion to improve
the worst point. Compute the reection point x, by using the following expression
and then compute the value of objective function f;..

Xr = Xe+ 0(xe — xp) (Reflection)

if fr < fi

el N

e

Xnew = (14 Y)xc — yxp (Expansion)
elseif f > fi

Xnew = (1 — B)xc+ Bxy (Outside contraction) )

elseif fy < fr < fa
Xnew = (L+ B)xc.— Bxy (Inside contraction)
Calculate f.,, and replace xj, by X,e if frew < f
7. The method continues until reaching some stopping criteria

3.2 Log Logistic Mutation Operator

The mutation operator [14] has been taken into consideration and adopted in this
chapter. This randomly selects one solution x;; and sets its value according to the
following rule:
xn'ew,_{xij+l(u—xij) if r>T 3)
Y xij—l(xij—l) if r<T
where r € (0,1) is uniformly distributed random number,  and / are the upper and

lower bounds of the decision variable, T = (x;; —[)/(u —x;;) and A4 is a random
number following log logistic distribution and is given as equation 4.

poye
?L—b(l_h) )

Where i € (0,1) is a uniformly distributed random number, b > 0 is a scale param-
eter and ¢ is termed as mutation index as it controls the strength of mutation. More
information on this operator can be found in [14].



NMSOMA-M for Large Scale Optimization 149

3.3 Methodology of the Proposed Algorithm NMSOMA-M

First the individuals are generated randomly. At each generation the individual with
highest fitness value is selected as leader and the worst one as active individual.
Now the active individual moves towards leader in n steps of defined length. The
movement of this individual is given in equation (1). Again the best and worst
individual from the population is selected. Now a new point is created using Nelder
Mead crossover operator using equation (2). This new point is accepted only if it is
better than active individual and is replaced with active individual. Then again the
best and worst individual from the population is selected. Now a new point is created
using log logistic mutation operator using equation (3). This new point is accepted
only if it is better than active individual and is replaced with active individual.
The computational steps of NMSOMA-M are given below. The flowchart of the
proposed algorithm NMSOMA-M process is depicted in Figure 2.
Algorithm(NMSOMA-M)

Generate initial population
Evaluate all individuals in the population
Generate PRT vector for all individuals
Sort all of them
Select the best fitness individual as leader and worst as active
For active individual new positions are created by using equation (1). The best
position is selected and replaces the active individual by the new one
7. Create new point by crossover operator as defined in equation (2)
8. If new point is better than active, replace active with the new one
9. Create new point by mutation operator as defined in equation (3)
10. If new point is better than active, replace active with the new one
11. If termination criterion is satisfied then terminate the process; else go to step 2
12. Report the best individual as the optimal solution

AR ol e

4 Benchmark Functions

In this section the set of 15 scalable benchmark functions have been listed. These
problems vary in nature and their complexity. The performance of proposed algo-
rithm has been evaluated on the following functions which can be formulated as
follow:

1. Ackley function

1 & 1 &
minf(x) = —20exp <0.02\/n 2)6%) —exp (n ZCOS(ZﬂXi)> +20+e
i=1 i=1

forxi S [—30,30],)6* = (ana aO)af(X*) =0
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2. Cosine Mixture

n n
minf(x) =0.1ln+ Zx? — 0.1 cos(57mx;)
i=1 i=1
forx; € [-1,1],x* = (0,0,---,0), f(x*) =0
3. Exponential

minf(x) =1 —exp (—0.5 ix?)
i=1

forx; € [-1,1],x* = (0,0,---,0), f(x*) =0

4. Griewank
minf(x) =1+ : En:xz Inl cos(xi>
1 = “__
4000 57" Vi

for x; € [-600,600], x* = (0,0,---,0), f(x*) =0
5. Levy and Montalvo 1

n—1

minf () = (10sin2<ny1> £ 3 0n= 1714 108in2 (myi )]+ (0 — 1)

i=1

yi=1+}(x+1)
for x; € [—10,10], x* = (0,0,---,0), f(x*) =0
6. Levy and Montalvo 2

n—1
2 (x; — 1)?[1 +sin®(37x;41)]

i=1

minf(x)=0.1 (sinz(BTCx]) +

+(x, — D21+ sin2(27'cx,,)])
forx; € [-5,5], x* = (0,0,---,0), f(x*) =0
7. Rastrigin

minf(x) = 10n+ 2 [x? — 10cos(27x;)]
i=1

forx; € [-5.12,5.12], x* = (0,0,---,0), f(x*) =0
8. Rosenbrock

n—1

minf(x) = 3 [100(xiy1 —x7)* + (x;— 1)?]

i=1
for x; € [~30,30], x* = (0,0,---,0), f(x*) =0
9. Schwefel 3

n n
minf(x) =3 ||+ ]l
i=1 i=1

for x; € [—10, 10},x* =(0,0,---,0),f(x*) =0
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10. De-Jongs function with noise

n—1
minf(x) = Z(i—l— 1)x} + rand(0,1)
i=0
forx; € [—1.28,1.28],x* = (0,0,---,0), f(x*) =0
11. Step function
n 1\ 2
minf(x) =Y, (xi—I— 2)
i=1
forx; € [-100,100], x* = (0.5,0.5,---,0.5), f(x*) =0
12. Sphere function

n

minf(x) = lez

for x; € [-5.12,5.12], x* = (0,0,---,0), f(x*) =0
13. Axis parallel hyper ellipsoid

for x; € [-5.12,5.12], x* = (0,0,---,0), f(x*) =0
14. Ellipsoidal

forx; € [—n,n], x* = (1,2,---,n), f(x*) =0
15. Brown

5 Numerical Results on Benchmark Problems

In this section NMSOMA-M has been used to solve 15 benchmark problems in order
to estimate its efficiency. For this purpose the dimension of the problems varies from
30 to 1000. In almost all problems except Griewank function the complexity of the
problem increases as the dimension of the problem increases. So on the basis of the
level of complexity, problems with dimension 30 is considered as small scale and
1000 as large scale. The proposed algorithm is coded in C + + and run on a Presario
V2000 1.50 GHz computer. Since NMSOMA-M is probabilistic technique and re-
lies heavily on the generation of random numbers, therefore 30 trials of each are
carried out, each time using a different seed for the generation of random numbers.

A run is considered to be a success if the optimum solution obtained falls within
1% accuracy of the known global optimal solution. The stopping criterion is either a
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run of success or a fixed number of migrations 10,000. Maximum number of func-
tion evaluations allowed are taken as 1,50,000. For fair comparison all parameters
are kept same for all three algorithms. The comparative performance of these three
algorithms is measured in terms of three criteria, namely accuracy, efficiency and
reliability. They are described as follows:

1. Accuracy: It is based on average of mean objective function values of the suc-
cessful runs

2. Efficiency: It is based on average number of function evaluations and

3. Reliability: This is based on the success rate of the algorithms

In the beginning, trials for the 15 problems are performed for dimension n =
30, 50 and 100. The value of parameters after fine tuning related to NMSOMA-M,
namely population size, PRT, step size, path length and total number of migrations
allowed for one run are shown in Table 1.

Table 1 Parameters of NMSOMA-M

Parameters Values
Dimension 30, 50, 100
Population size 10

PRT 0.1,0.3,1
Step, Path length 0.31,3

Total number of migrations allowed 10,000

o, and y 1.8,0.8 and 1

The number of successful runs (out of a total of 30 runs) taken by NMSOMA-M,
PSO and SOMA for dimensions 30, 50 and 100 has been presented in Tables 2, 3
and 4 respectively. From table 2 it is clear that the performance of NMSOMA-M is
better than SOMA and PSO. PSO shows worst performance out of three. The main
reason behind the failure of PSO in many problems can be considered as population
size. PSO requires large population size to work in comparison with SOMA. But,
in the proposed method for solving 30, 50, 100, and 1000 dimension problem, only
10 population size is required. Similar kind of behavior can also be seen in table
5 and 8 respectively. The performance of SOMA and PSO start deteriorating as
the complexity of the problem increases with rise in problem size. PSO almost fail
to solve problems with dimension 100. On the basis of this analysis, these three
algorithms can be ranked as PSO < SOMA < NMSOMA-M. Hence NMSOMA-M
is most reliable.

In Tables 5, 6 and 7, the average number of function evaluations taken by
NMSOMA-M, PSO and SOMA for dimensions 30, 50 and 100 respectively has
been presented. From these three tables it is clear that NMSOMA-M attained
desirable success in much lesser function evaluations as compared to SOMA
and PSO. Since NMSOMA-M works with small population size, the function
evaluations required is also very less. The algorithms can be ranked as PSO <
SOMA < NMSOMA-M. Hence NMSOMA-M is most efficient.
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Table 2 Percentage of success for dimension 30

Problem number  Number of successful runs out of 30

PSO SOMA NMSOMA-M

1 11 24 30
2 16 29 30
3 30 30 30
4 12 09 30
5 05 30 30
6 23 29 19
7 0 0 30
8 0 0 0

9 01 30 30
10 01 23 30
11 17 29 30
12 30 30 30
13 22 30 30
14 0 30 30
15 22 30 30

Table 3 Percentage of success for dimension 50

Problem number  Number of successful runs out of 50

PSO SOMA NMSOMA-M

1 0 06 30
2 0 23 30
3 30 30 30
4 03 08 30
5 0 30 30
6 16 24 09
7 0 0 29
8 0 0 0

9 0 30 30
10 0 0 30
11 06 30 30
12 30 30 30
13 18 30 30
14 0 30 30
15 11 30 30
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Table 4 Percentage of success for dimension 100

Problem number ~ Number of successful runs out of 100

PSO SOMA NMSOMA-M

1 0 0 30
2 0 0 30
3 0 30 30
4 0 06 30
5 0 23 30
6 0 07 03
7 0 0 28
8 0 0 0

9 0 0 30
10 0 0 30
11 0 22 30
12 14 30 30
13 0 30 30
14 0 28 30
15 0 30 30

Table 5 Average number of function evaluations for dimension 30

Problem number Average number of function evaluations

PSO SOMA NMSOMA-M
1 106423 32915 422
2 105392 15594 339
3 97650 6993 382
4 107052 22829 595
5 82958 10530 5543
6 92192 13075 20479
7 150000 150000 1202
8 150000 150000 150000
9 96440 21623 700
10 131170 94878 5417
11 107075 17341 683
12 93328 14159 341
13 96291 15695 540
14 150000 16125 37049

15 96395 15612 848
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Table 6 Average number of function evaluations for dimension 50

D. Singh and S. Agrawal

Problem number Average number of function evaluations

PSO SOMA NMSOMA-M
1 150000 50638 603
2 150000 23735 645
3 150000 12823 445
4 126573 42164 568
5 150000 18808 9724
6 111745 20708 73269
7 150000 150000 1304
8 150000 150000 150000
9 150000 39881 699
10 150000 150000 2584
11 123406 45490 606
12 116734 27072 372
13 117857 33949 514
14 150000 35493 60161
15 120549 24748 758

Table 7 Average number of function evaluations for dimension 100

Problem number Average number of function evaluations

PSO SOMA NMSOMA-M
1 150000 150000 708
2 150000 150000 564
3 150000 44055 445
4 150000 114810 665
5 150000 58759 20874
6 150000 72029 113873
7 150000 150000 1197
8 150000 150000 150000
9 150000 150000 784
10 150000 150000 1780
11 150000 104382 600
12 150000 66735 774
13 150000 81890 482
14 150000 87777 135741
15 150000 67296 925

Tables 8, 9 and 10, present the mean objective function value corresponding
to NMSOMA-M, PSO and SOMA for dimensions 30, 50 and 100 respectively.
NMSOMA-M is not only achieving good success rate with lesser function evalu-
ations but also attained objective function value with good accuracy. Results show
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Table 8 Mean objective function value for dimension 30
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Problem number Mean objective function value

PSO SOMA NMSOMA-M
1 0.00971 0.000905 0.000816
2 0.00938 0.000817 0.000572
3 0.00966 0.000965 0.000854
4 0.00936 0.000760 0.000736
5 0.00941 0.00708 0.000968
6 0.00712 0.000697 0.00702
7 36.089 7.169 0.000670
8 55.38 327.498 25.719
9 0.00983 0.00841 0.000659
10 0.00894 0.00861 0.000562
11 0.00956 0.00872 0.000690
12 0.00943 0.000839 0.000428
13 0.00954 0.000807 0.000779
14 2618.8 0.00857 0.000736
15 0.00954 0.00742 0.000570

Table 9 Mean objective function value for dimension 50

Problem number Mean objective function value

PSO SOMA NMSOMA-M
1 16.3998 0.000971 0.000660
2 0.72846 0.000772 0.000441
3 0.00967 0.00926 0.000445
4 0.00990 0.000924 0.000630
5 3.50605 0.000897 0.000813
6 0.09137 0.000785 0.00936
7 95.1538 14.249 0.000737
8 135.189 193.262 45.619
9 59.0000 0.000858 0.000596
10 7.27434 0.03268 0.000574
11 0.00914 0.00848 0.000497
12 0.00968 0.000941 0.000648
13 0.00944 0.000785 0.000510
14 1904.80 0.00846 0.000803
15 0.00963 0.00789 0.000730

that the ranking of all the algorithms is PSO < SOMA < NMSOMA-M. Hence

NMSOMA-M is most accurate.

Table 11 has presented the results taken by only NMSOMA-M for dimension
1000. Since the performance of SOMA and PSO has not been found satisfactory
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Table 10 Mean objective function value for dimension 100

Problem number Mean objective function value

PSO SOMA NMSOMA-M

1 19.9251 3.03138 0.000859
2 36.1656 0.78662 0.000270
3 0.99999 0.00883 0.000762
4 669.999 0.00412 0.000755
5 5.69121 0.00230 0.000980
6 0.00958 0.000405 0.00944
7 329.632 55.263 0.000685
8 195.04 617.418 95.352

9 171.254 0.89232 0.000711
10 1912.25 0.14871 0.00769
11 * 0.00692 0.000240
12 0.00980 0.000816 0.000742
13 1534.60 0.000904 0.000134
14 * 0.00807 0.00101
15 * 0.00873 0.000730

rather disappointing as the dimension rises to 1000, results are not taken by these
algorithms for dimension 1000. Although NMSOMA-M has already proved its ro-
bustness by solving 100 dimensional problems using 10 population size, the main
purpose of using NMSOMA-M for solving 1000 dimensional problems is to show
its efficacy to solve large scale problems. In Table 11, success rate, average function
evaluations and mean objective function value of NMSOMA-M for dimension 1000
has been presented. Success rate obtained by NMSOMA-M is very good. Function
evaluations taken by this algorithms is also very less with desirable accuracy. There-
fore, NMSOMA-M can be considered as a good approach for solving large scale
function optimization problems.

The problems which could not be solved by the particular algorithm is given the
sym-bol (x) at the corresponding entries. After analyzing the performance of all
three algorithms in terms of three criterions, a compact view of results is reported in
Table 12. NMSOMA-M outperforms PSO and SOMA in all the factors considered.

In order to reconfirm our results and to show the results graphically, the relative
performance of all the algorithms has been analyzed by using a Performance Index
(PI) The relative performance of an algorithm using this PI is calculated by using
the following equation (5).

N
1 M 4 4 .

Pl = N 2 (ko + koot + k3 o) (5)
P izl

Where )
Srt

i_
aliTri
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Table 11 Performance of NMSOMA-M for dimension 1000

Problem number Success rate Average number of Mean objective
function calls function value

1 30 758 0.000645

2 30 581 0.000658

3 30 522 0.000479

4 30 718 0.000537

5 30 54373 0.000945

6 * * 3k

7 25 2123 0.000316

8 30 150000 994.667

9 30 1066 0.000760

10 30 3932 0.000763

11 30 749 0.000651

12 30 660 0.000449

13 30 698 0.000597

15 30 1751 0.000570

ol — Mol if Sri>0
0 if S7=0

aé-:{”jj{j if Sr'>0
if Sr'=0

Sri= Number of successful runs of i problem
Tr'= Total number of runs of i problem
Ao'= Mean objective function value obtained by an algorithm of i/ problem
Mo'= Minimum of mean objective function value obtained by all algorithms of i*"
problem
Af'= Average number of function evaluations of successful runs used by an algo-
rithm in obtaining the solution of i problem
M f= Minimum of average number of function evaluations of successful runs used
by all algorithms in obtaining the solution of i’ problem
Np=Total number of problems analyzed

The variables ky,k; and k3; k| + ko + k3 = 1 and 0 < k1, ko, k3 < 1 are the weights
assigned to percentage of success, mean objective function value and average num-
ber of function evaluations of successful runs, respectively. From the above defini-
tion it is clear that modified PI is a function of k;,k, and k3 since k| +ky + k3 =1,
one of k;,i = 1,2,3 could be eliminated to reduce the number of variables from the
expression of PI. But it is still difficult to analyze the behavior of this PI, because
the surface of PI for all the algorithms are overlapping and it is difficult to visualize
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Table 12 Comparison of NMSOMA-M, PSO, SOMA

D. Singh and S. Agrawal

Dimension Factors Performance of NMSOMA-M  NMSOMA-M  Overall
NMSOMA-M Vs PSO Vs SOMA performance
of NMSOMA-M,
PSO and SOMA
30 Success rate  Better 11 06 PSO: 02
Equal 03 08 SOMA: 09
Worse 01 01 NMSOMA-M: 13
Average Better 15 12 PSO: 0
function
calls
Equal 00 01 SOMA: 02
Worse 00 02 NMSOMA-M: 12
Mean Better 15 14 PSO: 0
function
value
Equal 00 00 MOMA 01
Worse 15 14 NMSOMA-M: 14
50 Success rate  Better 13 05 PSO: 01
Equal 01 09 SOMA: 10
Worse 01 01 NMSOMA-M: 13
Average Better 15 12 PSO: 0
function
calls
Equal 00 01 SOMA: 02
Worse 00 02 NMSOMA-M: 12
Mean Better 14 14 PSO: 0
function
value
Equal 01 00 MOMA 01
Worse 00 01 NMSOMA-M: 14
100 Success rate Better 14 09 PSO: 01
Equal 01 05 SOMA: 05
Worse 00 01 NMSOMA-M: 13
Average Better 15 12 PSO: 0
function
calls
Equal 00 01 SOMA: 02
Worse 00 02 NMSOMA-M: 12
Mean Better 15 14 PSO: 0
function
value
Equal 00 00 MOMA 01
Worse 00 01 NMSOMA-M: 14

them. Hence equal weights are assigned to two terms at a time in the PI expression.
This way PI becomes a function of one variable. The resultant cases are as follows:

O k=wkh=k='"0<w<l
(i) k=wk=k="'"0<w<l
(i) k=wki=k="',"0<w<l1
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The graph corresponding to each of case (i), (ii) and (iii) for dimension 30 is
shown in Figure 3, where the horizontal axis represents the weight w and the vertical
axis represents the performance index PI. The graph corresponding to each of case
(i), (i1) and (iii) for dimension 50 is shown in Figure 4 whereas Figure 5 dipcts the
graph corresponding to each of case (i), (ii) and (iii) for dimension 100.

—4—PS0 —W—-SOMA — NMSOMA-M —+— PS50 —a—S0MA a— NMSOMA-M
% 02 s !
- 0.8 ]
c __-m - 0.8
= 06 B i =
@ e —
g hid] pm-amerle g U6 g
E —, S 04 ,__—_'-.-_—1—_.__.____
c 0.2 i E —
o ki = 0.2 —
. 0 "E 0 T
& 0 02 04 06 08 1 &
0 02 04 06 08 1
Weights ‘Weights
(@) Casel (b) Case 2
—+— P50 —a—50MA A— NMSOMA-M
1 4
5
_'E 0.5
-]
E o6 -
£ 04 - S -__'_____'
S ——
.,S 0.2 _“——1231
£ o
) 0.2 04 06 08 1
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Fig. 3 Performance index of PSO, SOMA and NMSOMA-M for dimension 30

In case (i), the mean objective function value and average number of function
evaluations of successful runs are given equal weights. Performance index’s of
NMSOMA-M, PSO and SOMA are superimposed in the Figures 3(i), 4(i) and 5(i). It
is observed that the value of performance index for NMSOMA-M is more than PSO
and SOMA. In case (ii), equal weights are assigned to the numbers of successful
runs and mean objective function value of successful runs. Performance indexs of
NMSOMA-M, PSO and SOMA are superimposed in the Figures 3(ii), 4(ii) and
5(ii). It is observed that the value of PI for NMSOMA-M is more as compared to
PSO and SOMA. Similar case also observed in case (iii). This can be viewed from
the Figures 3(iii), 4(iii) and 5(iii).



162

D. Singh and S. Agrawal

—e—BPS0 —a—SOMA —a— NMSOMA-M ——BPS0 —a— SOMA —— NMSOMA-M
” 1 4% ik ek & 2 1 —r & & —h——2
Y 038 - 5 08
= £~
= 05 4 = 06
=l " |

Eon ¥ " E 02 —“H——«—__.____*__.'ﬂ
£ 0 g o .
& 0 02 04 06 08 1 & 0 02 04 06 08 1

weights Weights

(@) Case 1 [b) Case 2
—+—BP50 —&—50MA —— NMSOMA-M

= 1 * 3 i

§ 0.8

= 0.6 4

£ 0.2 —

S o

& ¢ 02 04 06 08 1

Weights
(&) Case 3

Fig. 4 Performance index of PSO, SOMA and NMSOMA-M for dimension 50
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Fig. 5 Performance index of PSO, SOMA and NMSOMA-M for dimension 100
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6 Conclusion

In this chapter a hybridized variant NMSOMA-M of SOMA with Nelder Mead
crossover operator and log logistic mutation has been presented. This algorithm has
been designed to improve the efficiency of SOMA and to overcome the difficulty of
premature convergence due to trapping in local optimal solution. Though SOMA
works well for solving small scale problems but its performance becomes poor
due to loss of diversity as the dimension of the solution space becomes large. In
the working of presented algorithm NMSOMA-M, NM crossover and log logistic
mutation operator are used to maintain the diversity in the solution space by creating
new points. NMSOMA-M has been tested on a set of 15 scalable test problems
and results are taken for dimension 30, 50, 100 and 1000 respectively. Since the
performance of PSO and SOMA was not found satisfactory, the results obtained by
NMSOMA-M have been compared with results obtained by SOMA and PSO only
for dimension 30, 50 and 100. NMSOMA-M not only attained good success rate, in
less function evaluations with desirable accuracy but also use very small population
size to work with. At last on the basis of the results presented it can be concluded
that the presented algorithm NMSOMA-M is an efficient, reliable and accurate to
solve large scale real life optimization problems.
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