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Abstract Sampling-based algorithms for path planning have achieved great success
during the last 15 years, thanks to their ability to efficiently solve complex high-
dimensional problems. However, standard versions of these algorithms cannot guar-
antee optimality or even high-quality for the produced paths. In recent years, variants
of these methods, taking cost criteria into account during the exploration process,
have been proposed to compute high-quality paths (such as T-RRT), some even
guaranteeing asymptotic optimality (such as RRT*). In this paper, we propose two
new sampling-based approaches that combine the underlying principles of RRT*
and T-RRT. These algorithms, called T-RRT* and AT-RRT, offer probabilistic com-
pleteness and asymptotic optimality guarantees. Results presented on several classes
of problems show that they converge faster than RRT* toward the optimal path,
especially when the topology of the search space is complex and/or when its dimen-
sionality is high.

Keywords Optimal path planning · Anytime path planning · Cost space path
planning · Sampling-based path planning

1 Introduction

Robot path-planning methods have traditionally focused on solving the feasible path
planning problem, i.e. on finding a collision-free path for a robot moving in a com-
plex environment. This relies on a classical framework abstracting the workspace
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of a robot system into a configuration space. In many application fields, however,
generating feasible solution pathsmight not be sufficient. It may be required to obtain
a high-quality solution path with respect to a given cost criterion, i.e. a low-cost path.
One might even be looking for the optimal solution path with respect to this cost
criterion, i.e. the path minimizing the cost. This amounts to solving an optimal path
planning problem.

The first cost criterion to be considered was path length [4, 10, 11, 14, 15]. More
interesting problems can be addressed with more sophisticated criteria, based on the
definition of a cost function over the configuration space, which is then referred to as
a cost space. Early work in cost-space path planning only involved discrete, coarse-
grained cost functions [5, 10]. Our work focuses on continuous cost functions, which
is more challenging. As an example, in outdoor navigation problems, the cost of a
configuration can be the elevation of the position of the robot within a 2-D terrain.
When high-clearance paths are desirable, the cost of a configuration can be the
inverse of the distance between the robot and the closest obstacle [2, 7]. Even more
complex cost functions can appear in robotic problems [1, 13] and structural-biology
problems [8].

When applied to the optimal path planning problem, classical grid-basedmethods,
such asA*orD*, can compute resolution-optimal solution paths [16].However, these
methods are limited to problems involving low-dimensional spaces that can be dis-
cretized without leading to a combinatorial explosion. On the other hand, sampling-
based algorithms, such as the Rapidly-exploring RandomTree (RRT) [12], have been
successful at solving complex path-planning problems in high-dimensional spaces.
Besides, they are conceptually simple and achieve probabilistic completeness. Nev-
ertheless, these algorithms originally targeted feasible path planning, and usually
produce sub-optimal solutions. Smoothing methods can be used to improve solution
paths in a post-processing phase [6], but they often provide only local improvement,
and offer no guarantee of convergence toward the global optimum. With the aim
of taking a configuration-cost function into account during the space exploration,
a variant of RRT called the Transition-based RRT (T-RRT) was proposed [7]. It
extends RRT by integrating a Metropolis-like transition test favoring the exploration
of low-cost regions of the space. It has been successfully applied to diverse robotic
problems [1, 2, 7] and structural-biology problems [8], but it offers no optimality
guarantee. Another variant of RRT, called RRT*, was devised to solve the optimal
path planning problem [10]. RRT* has been shown to guarantee asymptotic optimal-
ity, and has been applied to various robotic problems [9–11]. However, it has been
suggested that RRT* might converge slowly in high-dimensional spaces [2]. Finally,
more recent approaches focus on asymptotic near-optimality [4, 14].

In this paper,we combine two approaches, namelyRRT*andT-RRT, to devise new
algorithms inheriting their respective strengths. Thefirst algorithm, calledTransition-
based RRT* (T-RRT*), consists of integrating the transition test of T-RRT into
RRT*. The motivation is to favor the exploration of low-cost regions of the space,
while maintaining the asymptotic properties of RRT*. The second algorithm, called
Anytime T-RRT (AT-RRT), consists of enhancing T-RRT with an anytime behavior
enabled by the integration of a procedure adding useful cycles (based on the path-cost
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criterion) to the graph built over the space [15]. The motivation is to quickly obtain
a first high-quality solution-path and, then, carry on the exploration for the solution
to continually improve and converge toward the optimal path.

In what follows, we present a simple formulation of the feasible and optimal
path planning problems (Sect. 2). Then, we describe T-RRT* and AT-RRT in greater
details (Sect. 3); we prove that both algorithms are probabilistically complete and
asymptotically optimal (Sect. 4). Finally, we evaluate T-RRT* and AT-RRT on sev-
eral path planning problems, and show that they converge toward the optimal path
faster than RRT* (Sect. 5). Thanks to the filtering properties of the transition test
they include, T-RRT* and AT-RRT can efficiently solve difficult problems featuring
complex cost spaces, on which RRT* converges very slowly.We present several such
examples, illustrating various aspects that make a path planning problem difficult to
solve. (1) If the problem features a large-scale workspace, even in low dimension,
favoring low-cost regions avoids wasting time exploring the whole space. (2) If the
space features several homotopic classes between which it is difficult to jump, even
in low dimension, using the transition test can bias the search toward the class con-
taining the optimal path and avoid being trapped in a sub-optimal class. (3) If the
problem is high-dimensional, it is inherently complex because the search space is
intrinsically large and can potentially contain many homotopic classes.

2 Problem Formulation

2.1 Feasible Path Planning

The classical formulation of the path planning problem relies on abstracting the
workspace of a robotic system into a configuration space C, also called C-space. A
configurationq ∈ C describes the position andvolumeoccupiedby the robotic system
in the workspace. The subset of C containing the configurations inducing collisions
with some obstacles in theworkspace is denoted Cobst. Assuming that its complement
in C is an open set, we denote by Cfree the set cl(C \Cobst) of configurations producing
no collision, where cl() denotes the closure of a set. Given an initial configuration
qinit ∈ Cfree and a goal configuration qgoal ∈ Cfree, a path planning problem can be
defined as a triplet (C, qinit, qgoal). A path over the C-space is a continuous function
π : [0, 1] → C. It is said to be collision-free if for all t ∈ [0, 1], π(t) ∈ Cfree, i.e.
π : [0, 1] → Cfree. Let Π denote the set of all paths over C and Πfree the set of
collision-free paths in Π . The feasible path planning problem is classically defined
as follows:

Definition 1 (Feasible path planning) Given a path planning problem (C, qinit,
qgoal), find a path π ∈ Πfree such that π(0) = qinit and π(1) = qgoal, if one exists, or
report failure otherwise.
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Let Πfeas denote the set of paths in Πfree satisfying this feasibility condition.
Among the path planning problems having a solution, the analysiswepresent requires
to focus on problems satisfying the robust feasibility property [10]. Several algo-
rithms have been proposed in the robotics community to solve the feasible path
planning problem. Among them, sampling-based approaches are not complete, but
satisfy a property called probabilistic completeness, that can be interpreted as a notion
of “almost-sure” success.

Definition 2 (Probabilistic completeness) An algorithmA is probabilistically com-
plete if, for any robustly feasible path planning problem (C, qinit, qgoal), the proba-
bility that A fails to return a solution when one exists decays to zero as the running
time of A approaches infinity.

The analysis we present in Sect. 4 is based on the fact that T-RRT and RRT* have
been shown to be probabilistically complete [7, 10].

2.2 Optimal Path Planning

Let c : C → R+ denote a continuous cost function associating to each configuration
of the C-space a positive cost value. Being enriched with this function, C is referred
to as a cost space, and we talk about cost-space path planning. When exploring a
cost space, instead of only looking for a feasible solution path, one might search for
a high-quality path with respect to a given path-cost criterion. Let cp : Πfree → R+
denote this cost criterion, associating to each collision-free path a positive cost value.
It can be defined in several ways, the most common being to consider the integral
of the cost along a path. As a discrete approximation of the integral of the cost with
constant step size δ = 1

n (where n is the number of subdivisions of the path), the cost
of a path π can be defined as

cp (π) = length(π)

n
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As an alternative, the mechanical work of a path can be defined as the sum of the
positive cost variations along the path, which can be interpreted as summing the
“forces” acting against the motion. It has been shown that the mechanical work can
assess path quality better than the integral of the cost in many situations [7]. As a
discrete approximation of the mechanical work with constant step size δ = 1
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We could consider other criteria to evaluate path quality, such as the maximal cost
along the path, or the average cost. In the case of feasible planning, path length could
be considered. However, this is not a good choice when planning in a cost space
because this criterion ignores the costs of the configurations along the path. Which
criterion is themost suited depends on the planning problemandon the characteristics
of its expected optimal solution. Comparing cost criteria is out of the scope of this
paper. We use both IC and MW not to limit ourselves to a single criterion, which
could bias the interpretation of the results.

The optimal path planning problem can now be defined as follows:

Definition 3 (Optimal path planning)Given apathplanningproblem (C, qinit, qgoal),
a continuous configuration-cost function c : C → R+, and a monotonic, bounded
path-cost criterion cp : Πfree → R+, find a path π∗ ∈ Πfeas such that cp(π∗) =
min{cp(π) | π ∈ Πfeas} if one exists, or report failure otherwise.

With these notations, an optimal path planning problem is defined as a quintuplet
(C, qinit, qgoal, c, cp). If it admits a solution π∗, then π∗ is called the optimal path.
Note that the analysis we present requires to focus on optimal path planning problems
admitting a robustly optimal solution [10]. In the context of optimal path planning, the
evaluation of a sampling-based algorithm should be based not only on probabilistic
completeness, but also on the concept of asymptotic optimality. This property can be
interpreted as a notion of “almost-sure” convergence toward the optimal path, and
has been defined as follows [10]:

Definition 4 (Asymptotic optimality) An algorithm A is asymptotically optimal if,
for any optimal path planning problem (C, qinit, qgoal, c, cp) admitting a robustly
optimal solution path with finite cost c∗ ∈ R+, the cost of the solution path produced
by A (this cost being infinite if no solution is available yet) decreases toward c∗ as
the running time of A approaches infinity.

The analysis in Sect. 4 is based on the asymptotic optimality of RRT* [10].

3 Algorithms

The Rapidly-exploring Random Tree (RRT) [12] is a popular sampling-based algo-
rithm that can solve the feasible path planning problem. Starting from the initial
configuration qinit , RRT iteratively builds a tree T on the C-space. At each iteration,
a configuration qrand is randomly sampled in C, and an extension toward qrand is
attempted, starting from its nearest neighbor, qnear, in T . If the extension succeeds, a
new configuration qnew is added to T , and connected by an edge to qnear. The criteria
on when to stop the exploration can be reaching the goal configuration qgoal, a given
number of nodes in T , a given number of iterations, or a given running time.

Several algorithms have been devised as extensions of RRT to explore cost spaces.
Among them, the Transition-based RRT (T-RRT) consists of integrating in RRT a
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transition test that favors the exploration of low-cost regions of C [7]. This transition
test is used to accept or reject the move from qnear to qnew based on their respec-
tive costs. Even though it yields high-quality (i.e. low-cost) paths when solving the
feasible path planning problem on a cost space, T-RRT offers no guarantee to solve
the optimal path planning problem. The other variant of RRT we consider here,
named RRT*, has been specifically developed to solve the optimal path planning
problem [10]. In RRT*, instead of being linked to qnear, qnew is linked to the con-
figuration (among its neighbors in C) minimizing the cost of the path in T between
qinit and qnew. Furthermore, if, as a parent in T , qnew allows one of its neighbors
in C to be connected to qinit via a lower-cost path than the one currently available,
some rewiring is performed in T . By deciding how to create and remove edges of
T based on the costs of the paths between qinit and every node in T , RRT* enables
the cost of the solution extracted from T to decrease with time. However, despite its
asymptotic-optimality guarantees, RRT* may converge slowly in high-dimensional
spaces [2].

In this work, we combine the beneficial concepts underlying these extensions
of RRT: (1) the filtering properties of the transition test in T-RRT, favoring the
creation of new nodes in low-cost regions of C, and (2) the cost-based management
of edges in RRT*, allowing the cost of the solution path to decrease with time. We
do this in two different ways, by proposing an extension to RRT* named Transition-
based RRT* (T-RRT*) and an extension to T-RRT named Anytime T-RRT (AT-RRT).
Both algorithms can solve the optimal path planning problem and offer asymptotic-
optimality guarantees (cf. Sect. 4). They allow us to efficiently explore complex cost
spaces, yielding high-quality solution paths that improve with time in an anytime
fashion.

3.1 Transition-Based RRT* (T-RRT*)

The pseudo-code of T-RRT* is shown in Algorithm 1. T-RRT* extends RRT* by
integrating the transition test (line 6) originally developed for T-RRT [7]. This tran-
sition test is used to accept or reject the move from qnear to qnew based on their
respective costs. If the move is accepted, T-RRT* behaves exactly like RRT*. First,
a new node is created in G to store qnew (line 7). Then, a search in G is performed
to compute the set Qnear of configurations contained in a neighborhood of qnew of
radius γ (log(n) / n)1 / d (line 9). As defined for RRT*, this radius depends on the
dimension d of C, on a constant γ derived from the volume of Cfree, and on the num-
ber n of nodes in G [10]. This dependency on n ensures that the radius decreases as
G grows. The next step of the algorithm consists of finding the configuration qpar in
Qnear∪{qnear} to which qnew should be connected (line 10): the parent of qnew is cho-
sen as the configuration via which the path between qinit and qnew has minimal cost.
This is done by computing, for all qn ∈ Qnear ∪ {qnear}, the cost cp(πG

n ) + cp(πC
n ),

where πG
n is the path between qinit and qn in G, and πC

n is the path between qn and
qnew in C. Finally, since the addition of a new node in G potentially leads to the
appearance of new paths having lower costs than those currently in G, some rewiring
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Algorithm 1: Transition-based RRT* (T-RRT*)
input : the optimal path planning problem (C, qinit, qgoal, c, cp), the dimension d

of the C-space, and the γ constant derived from the volume of Cfree [10]
output: the graph G

1 G ← initGraph(qinit)
2 while not stoppingCriteria(G) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(G, qrand)
5 qnew ← extend(qnear , qrand)
6 if qnew �= null and transitionTest(G, c(qnear), c(qnew)) then
7 addNewNode(G, qnew)
8 n ← numberOfNodes(G)
9 Qnear ← nearestNeighbors(G, qnew , γ (log(n) / n)1 / d )

10 qpar ← parentMinimizingCostFromInit(qnew , qnear , Qnear , cp)
11 addNewEdge(G, qpar , qnew)
12 foreach qn ∈ Qnear do
13 π ← pathInSpace(qnew , qn)
14 if costFromInit(qnew) + cp(π) < costFromInit(qn) and

isCollisionFree(π) then
15 removeEdge(G, parent(qn), qn)
16 addNewEdge(G, qnew , qn)

17 return G

Algorithm 2: transitionTest (G, ci , cj)
input : the current temperature T and its increase rate Trate
output: true if the transition is accepted, false otherwise

1 if cj ≤ ci then return True
2 if exp(−(cj − ci) / T ) > 0.5 then
3 T ← T / 2(cj−ci) /costRange(G) ; return True

4 else
5 T ← T · 2Trate ; return False

might be performed (lines 12–16). For each qn ∈ Qnear, if the cost of the path going
from qinit to qn via qnew is lower than the cost of the current path between qinit and
qn in G, qnew becomes the new parent of qn in G.

The transitionTest involved in the T-RRT* algorithm is presented in Algo-
rithm 2. The transition between two configurations is evaluated on the basis of their
costs ci and cj, ci being the cost of the source configuration and cj the cost of the target
configuration. A downhill move (cj ≤ ci) in the cost landscape is always accepted.
An uphill move is accepted or rejected based on the probability exp(−(cj − ci) / T )

that decreases exponentially with the cost variation cj − ci. In that case, the level
of selectivity of the transition test is controlled by the temperature T , which is an
adaptive parameter of the algorithm. Low temperatures limit the expansion to gentle
slopes of the cost landscape, and high temperatures enable it to climb steep slopes.
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After each accepted uphill move, T is decreased to avoid over-exploring high-cost
regions: it is divided by 2(cj−ci) /costRange(G), where costRange(G) is the cost
difference between the highest-cost and the lowest-cost configurations stored in the
nodes ofG. After each rejected uphillmove, T is increased to facilitate the exploration
and avoid being trapped in a local minimum of the cost landscape: it is multiplied
by 2Trate , where Trate ∈ (0, 1] is the temperature increase rate.

3.2 Anytime Transition-Based RRT (AT-RRT)

AT-RRT, whose pseudo-code is presented in Algorithm 3, also features the
transitionTest (line 6), and extends T-RRT by offering an anytime behavior.
Before any feasible path is found between qinit and qgoal, AT-RRT behaves exactly
like T-RRT. As opposed to T-RRT, however, after a solution path is found, the explo-
ration is allowed to continue and a cycle-addition procedure is activated (lines 9–10).
This leads to the creation in G of new paths that can be of higher quality than the
one found so far. This procedure is based on the notion of useful cycles, as described
in [15].

The addUsefulCycles procedure is presented in Algorithm 4. When a new
configuration qnew is added to G, we consider all configurations in G, within a neigh-
borhood of qnew, as potential candidate targets for new edges. The radius of this
neighborhood depends on the dimension d of C and on a constant γ derived from
the volume of Cfree, as is done for RRT* [10]. This radius also decreases with the
number n of nodes in G. Within the candidate set Qnear, we are interested in the
configurations that are “close” to qnew in C, but “far” from qnew in G, not in terms of
distance but of path cost. For each candidate qn ∈ Qnear, if the cost of the local path
πs between qnew and qn in C is less than the cost of the lowest-cost path πg between
qnew and qn in G, and if πs is collision-free, we add an edge to G between qnew and
qn, thus creating a useful cycle.

4 Analysis

We now review the properties of T-RRT* and AT-RRT, in terms of probabilistic
completeness and asymptotic optimality (cf. Sect. 2). It has already been proven
that T-RRT and RRT* are probabilistically complete [7, 10]. In the case of T-RRT,
this property is directly derived from the probabilistic completeness of RRT, despite
the integration of the transition test. A similar reasoning allows us to state that
T-RRT* is probabilistically complete, thanks to the probabilistic completeness of
RRT*. Furthermore, as AT-RRT behaves like T-RRT before a solution path is found,
it satisfies the same properties.

Theorem 1 (Probabilistic completeness) The T-RRT* and AT-RRT algorithms are
probabilistically complete.
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Algorithm 3: Anytime Transition-based RRT (AT-RRT)
input : the optimal path planning problem (C, qinit, qgoal, c, cp)
output: the graph G

1 G ← initGraph(qinit)
2 while not stoppingCriteria(G) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(G, qrand)
5 qnew ← extend(qnear , qrand)
6 if qnew �= null and transitionTest(G, c(qnear), c(qnew)) then
7 addNewNode(G, qnew)
8 addNewEdge(G, qnear , qnew)
9 if solutionPathExists(G, qinit , qgoal) then

10 addUsefulCycles(G, qnew , cp)

11 return G

Algorithm 4: addUsefulCycles (G, qnew , cp)

input: the dimension d of the C-space
the γ constant derived from the volume of Cfree (as in RRT* [10])

1 n ← numberOfNodes(G)
2 Qnear ← nearestNeighbors(G, qnew , γ (log(n) / n)1 / d )
3 foreach qn ∈ Qnear do
4 πg ← pathInGraph(G, qnew , qn)
5 πs ← pathInSpace(qnew , qn)
6 if cp(πs) < cp(πg) and isCollisionFree(πs) then
7 addNewEdge(G, qnew , qn)

Let us assume in the sequel that the γ constant involved in T-RRT* and AT-RRT,
and originally introduced in RRT*, satisfies

γ > 2

(
1 + 1

d

) 1
d

(
μ(Cfree)

ζd

) 1
d

, (1)

where d is the dimension of C, ζd is the volume of the unit ball in the d-dimensional
Euclidean space, and μ() is an operator measuring volumes. Under this assumption,
RRT* has proven to be asymptotically optimal [10].

The only difference between T-RRT* and RRT* is the presence of a transition
test filtering configurations based on their costs. The consequence of applying such
rejection sampling is that the samples cannot be assumed to be drawn from a uniform
distribution on C. Even though the asymptotic optimality of RRT* was proven under
a “uniform distribution” assumption, this result can be extended to any continuous
probability distributionwith density bounded away from zero [10]. As the probability
of a sample to be accepted by the transition test is never zero, the samples drawn by
T-RRT* follow such distribution. Therefore, T-RRT* is also asymptotically optimal.
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Let us recall that the interesting properties of RRT* come from its ability to replace
existing edges in G by new edges enabling lower-cost paths to appear. This allows
the cost of the solution path produced by RRT* to decrease with time. Furthermore,
the “almost-sure” convergence toward the optimal solution path is ensured by the
fact that the cost-based decisions on connections are made for configurations within
neighborhoods of radii based on a value of γ satisfying (1). The lower bound on γ
expressed in (1) is the minimal value allowing RRT* to be asymptotically optimal.
Keeping in mind that increasing the value of γ raises the computational cost of
an iteration of RRT* (because of the increased number of neighbors to consider),
this lower bound represents the optimal tradeoff between efficiency and asymptotic
optimality.

Clearly, AT-RRT and T-RRT* use the same procedure to create and filter nodes,
based on the extension mechanism of RRT and on the transition test of T-RRT. The
difference between them lies in the management of edges. In AT-RRT, no edge is
removed, thus leading to the creation of cycles, but this has no impact on the current
analysis. The main point is that, in both algorithms, alternative paths are created
based on cost improvement. Where they differ is on the criterion that an edge has
to satisfy to be considered useful in terms of cost improvement. In T-RRT*, this
criterion is based on whether an edge allows a configuration to be connected to qinit
via a path in G having minimal cost. In AT-RRT, this criterion is based on whether an
edge allows two configurations to be connected via a path in C whose cost is lower
than the costs of the existing paths in G. It is clear that both criteria achieve the same
goal: they both allow the cost of the solution path to decrease with time. Finally, as
the cost-based decisions on the addition of useful cycles happen in neighborhoods
of radii based on a value of γ satisfying (1), AT-RRT is also asymptotically optimal.

Theorem 2 (Asymptotic optimality) The T-RRT* and AT-RRT algorithms are asy-
mptotically optimal.

5 Evaluation

5.1 Path Planning Problems

We have evaluated T-RRT* and AT-RRT on several optimal path-planning prob-
lems that differ in terms of C-space dimensionality, geometrical complexity and
configuration-cost function type. The Stones problem (illustrated in Fig. 1) is a
2-degrees-of-freedom (DoFs) example in which a disk has to go through a space
cluttered with rectangular-shaped obstacles. The objective is to maximize clearance,
so the cost function c associates to each position of the disk the inverse of the distance
between the disk and the closest obstacle.

The Inspection problem deals with industrial inspection in a dense environment,
and involves an aerial robot, as shown in Fig. 2. The featured quadrotor is modeled
as a 3-DoFs sphere (i.e. a free-flying sphere) representing the security zone around
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Fig. 1 Stones problem: 2-DoFs disk moving among rectangular obstacles, while maximizing its
clearance. Top row graphs built by AT-RRT (left) and T-RRT* (right) after a runtime of 0.5 s.Bottom
row solution paths produced by T-RRT* when minimizing IC (left) or MW (right) after a runtime
of 10s. Paths produced by AT-RRT are similar

Fig. 2 Inspection problem: quadrotor (whose close-up is shown in yellow) inspecting an oil-rig
(top left). The cost function is based on the clearance of the 3-DoFs safety sphere around the
quadrotor. Right column: paths produced by AT-RRT when minimizing IC (top) or MW (bottom),
after a running time of 10s. The cost profiles of the two paths are also shown (bottom left). Paths
produced by T-RRT* are similar

it. Assuming that motions are performed quasi-statically, we restrict the problem to
planning in position (controllability issues lie outside the scope of this paper). For
safety reasons, the quadrotor has to move in this environment trying to maximize
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clearance for the security sphere. The specificity of this problem is its large-scale
workspace.

The Transport problem features aerial robots, and deals with the collaborative
transport of objects, as shown in Fig. 3. Two quadrotors have to carry an H-looking
object and go through one of two holes in a wall. The robotic system comprises
the quadrotors themselves (and not safety spheres around them), the 3-R planar
manipulator arms attached below them, and the carried object. A configuration of
this system is defined by the position and orientation of the object in space, and
the relative positions of the quadrotors with respect to the object. This problem
is restricted to planning in position for the quadrotors because of the quasi-static
assumption made on their motions. We consider a planar version of the problem,
thus disregarding translations along the Y axis and rotations around the X and Z
axes. Besides, the revolute joints of the arms are passive DoFs in constraints related
to the closure of the kinematic chain. Therefore, the system can be described with 7
DoFs: 3 DoFs for the object (two translations along the X and Z axes, and a rotation
around the Y axis) and 2 DoFs for each quadrotor (two translations along the X
and Z axes). In this example, different cost functions can be defined. The notion of
clearance could be considered, but we will use a cost function based on the notion
of “balance” in our experiments. Assuming the initial configuration is stable, the
idea is to maintain it as much as possible, while allowing a complete freedom of
movement for the object with respect to the translations along the X and Z axes. To
achieve that, the cost of a configuration is defined as the sum of the differences to the
initial values for the rotation of the object and the translations of the quadrotors. The
specificity of the Transport problem lies in the fact that it features two very distinct
homotopic classes. The two holes in the wall constitute narrow passages of similar
difficulty in terms of purely geometrical planning: despite being wider, the lower
hole is partly obstructed by the second wall. However, when planning in the cost
space with the clearance-based cost function, paths going through the lower hole are
favored because it is larger than the other one. On the contrary, when planning in the
cost space with the balance-based cost function, paths going through the upper hole

Fig. 3 Transport problem: the two quadrotors have to transport an object and go through one of
the holes in the wall, while maintaining the balance of the whole system. Both images show an
intermediate and the final configurations along paths obtained after 50 s. Left: path produced by
T-RRT* when minimizing MW. Paths produced when minimizing IC, and paths produced by AT-
RRT are similar. Right: path produced by RRT* when minimizing IC. Paths produced when mini-
mizing MW are similar
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Fig. 4 Selected configurations along paths produced by AT-RRTwhenminimizing IC (left) orMW
(right), after a running time of 100s, on the Snake problem. A snake-like object has to move among
rectangular obstacles. The cost function favors straight configurations, and regular over irregular
coiling. T-RRT* provides similar results

are favored because going through the lower one requires the robotic system to tilt
sharply.

TheSnakeproblem (illustrated in Fig. 4) involves a snake-like object constituted of
10 identical cylinders between which 9 revolute joints are defined. We also consider
two translations and a rotation in the planar workspace, which adds up to 12 DoFs.
The cost function is defined as the sumof the absolute differences between the angular
values of consecutive revolute joints, added to the absolute value of the first revolute
joint. The objective is to favor a straight configuration of the robot, or configurations
inwhich all revolute joints have the same value, which correspond to a regular coiling
of the robot. This problem enables us to analyze the behavior of the algorithms in
higher dimension.

5.2 Settings

Before using T-RRT* and AT-RRT, their parameters have to be set. Following [2],
Trate is set to 0.1 and T is initialized to 10−6. Finding a good value for γ happens
to be a real issue. As already mentioned, the lower bound for γ expressed in (1)
is the optimal value with respect to the tradeoff between efficiency and asymptotic
optimality. However, computing this value requires to estimate the volume of Cfree.
This is possible in low-dimensional spaces when the robotic system and the obstacles
are represented with simple geometric models, but this is not realistic otherwise. To
ensure that γ satisfies (1), we set:

γ = 2

(
1 + 1

d

) 1
d

(
μ(C)

ζd

) 1
d

. (2)

On the Stones and Inspection problems, since C is an Euclidean space, its volume
can easily be computed using the validity interval of every DoF. However, this is not
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straightforward on the Transport and Snake problems because of the revolute joints.
For a DoF corresponding to such joint, its angular range is multiplied by the length
of the associated rigid body.

T-RRT* and AT-RRT have been implemented in the motion planning platform
Move3D. To fairly assess them, no smoothing is performed on the solution paths.
Values of IC and MW are averaged over 100 runs. Results have been obtained on an
Intel Core i5 processor at 2.6GHz with 8GB of memory.

5.3 Results

T-RRT* and AT-RRT build graphs over C in different ways because they involve
different strategies to create (and potentially remove) edges. This is illustrated in
Fig. 1 on the Stones problem. The upper left figure clearly shows the cycles created
by AT-RRT, and the redundancy in paths. As can been seen in the upper right figure,
the tree built by T-RRT* is much sparser, because high-cost edges are removed. The
numerical results we present show that these differences in behavior do not create
significant differences in performance. Also, the solution paths produced by the two
algorithms usually look very similar.

Differences in solution paths are mainly due to the choice of the cost criterion: IC
or MW. This is clearly visible in Figs. 1 and 2. Minimizing IC tends to favor shorter
paths along which the maximal cost can be quite high (as shown by Fig. 2, bottom
left), and minimizing MW sometimes produces strangely convoluted paths. Another
drawback of MW (not illustrated here) is that, if the cost of qinit is high, MW can
be low even for paths going through high-cost configurations. A better cost criterion
could probably be defined by combining IC and MW, but this goes beyond the scope
of this paper. Note that, on some problems, such as Transport, the choice of the cost
criterion has little impact on the results.

To evaluate the performance of T-RRT* and AT-RRT, we analyze the evolution
over time of the costs of the solution paths they produce. As a reference, we compare
both algorithms to RRT* [10]. To obtain the best results with RRT*, we use the
conditional activation and branch-and-bound heuristics when they are beneficial.
The conditional activation heuristic consists of planning with a regular RRT until the
first solution is found, and only then activating the procedures specific to RRT* [9].
The branch-and-bound heuristic consists of trimming the nodes in G that cannot
allow finding paths with costs lower than that of the current solution path, which
is assessed using a cost-to-go function [11]. Both heuristics are beneficial on the
Transport and Snake problems.

Numerical results obtained on the four path planning problems (each one being
tested with a given pair (qinit , qgoal) of configurations) are reported in Fig. 5 for IC,
and Fig. 6 for MW. They clearly show that T-RRT* and AT-RRT converge faster
than RRT* toward the optimum. Even on a problem as simple as Stones, if only little
time is available, T-RRT* andAT-RRT yield better-quality solutions than RRT*. But,
given enough time, all algorithms produce paths of similar quality. When the size
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Fig. 5 Evolution over time of the costs (IC) of the solution paths produced by RRT*, T-RRT* and
AT-RRT, on the four path planning problems
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of the workspace is larger, as in the Inspection problem, the dominance of T-RRT*
and AT-RRT is even clearer. It appears that the filtering properties of the transition
test help focus the search on the most relevant (i.e. low-cost) parts of the workspace:
graphs produced by RRT* contain numerous nodes in high-cost regions of the space,
contrary to graphs produced by T-RRT* or AT-RRT (not shown here due to space
limitations). When the problem is even more complex, as is the case of Transport,
the weaknesses of RRT* start to translate into a very low rate of convergence. Thanks
to the transition test, the search performed by T-RRT* or AT-RRT is usually guided
toward the homotopic class containing the optimal path (i.e. the upper hole, when
using the balance-based cost function, as shown by Fig. 3, left). On the contrary, the
first solution produced by RRT* can belong to any of the two homotopic classes;
if it is found in the sub-optimal one (i.e. the lower hole), RRT* gets stuck in this
class and into optimizing a low-quality solution (as shown by Fig. 3, right). Finally,
on high-dimensional problems, such as Snake, RRT* usually converges very slowly.
Looking at Figs. 5 and 6, one may think that this is also the case for T-RRT* and
AT-RRT. To check that, we have let all algorithms run for 12h while minimizing
MW. We have obtained solutions of costs 3.42, 2.41 and 2.24 for RRT*, T-RRT*
and AT-RRT respectively. Looking at Fig. 6, it means that, after 100s, T-RRT* and
AT-RRT are already close to the optimum, contrary to RRT*.

Finally, to assess whether what we observe is consistent across the domains cor-
responding to the four path planning problems, we have evaluated the algorithms on
instances of these problems involving different pairs (qinit , qgoal) of configurations.
The results we have obtained (not presented here due to space limitations) are similar
to what we report above.

6 Conclusion

In this paper, we have proposed two novel sampling-based algorithms to solve the
optimal path planning problem, by combining the underlying principles ofT-RRTand
RRT*, the goal being to benefit from their respective strengthswhile overcoming their
weaknesses. On the positive side, T-RRT can efficiently explore a cost space thanks
to the filtering properties of its transition test, and RRT* is asymptotically optimal.
On the negative side, T-RRT is not asymptotically optimal, and RRT* may converge
slowly on complex cost spaces. The two hybrid methods are: (1) the Transition-
based RRT* (T-RRT*), which is an extension of RRT* integrating the transition test
of T-RRT, and (2) the Anytime T-RRT (AT-RRT), which is an extension of T-RRT
integrating a useful-cycle addition procedure. We have proven that T-RRT* and
AT-RRT are both probabilistically complete and asymptotically optimal. We have
evaluated them on several optimal path-planning problems featuring complex cost
spaces, and compared them to RRT*. Results show that they converge faster than
RRT* toward the optimal path, sometimes orders of magnitude faster.

Results tend to show that AT-RRT performs slightly better than T-RRT*. As future
work, it would be interesting to analyze further how the two algorithms behave, to



Efficient Sampling-Based Approaches to Optimal Path Planning … 159

pinpoint which strategy works best at solving particular classes of optimal path
planning problems. Disregarding computational performance, a clear advantage of
AT-RRT over T-RRT* is that it can easily be extended into a multiple-tree algorithm,
similar to the Multi T-RRT [3]. Another interesting aspect of AT-RRT is that it builds
a graph containing cycles, therefore providing alternative paths over the space. This
could be leveraged when path replanning is required due to errors in the model or
moving obstacles.
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