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Abstract This paper presents iris (Iterative Regional Inflation by Semidefinite pro-
gramming), a new method for quickly computing large polytopic and ellipsoidal
regions of obstacle-free space through a series of convex optimizations. These regions
can be used, for example, to efficiently optimize an objective over collision-free posi-
tions in space for a robot manipulator. The algorithm alternates between two convex
optimizations: (1) a quadratic program that generates a set of hyperplanes to separate
a convex region of space from the set of obstacles and (2) a semidefinite program that
finds a maximum-volume ellipsoid inside the polytope intersection of the obstacle-
free half-spaces defined by those hyperplanes. Both the hyperplanes and the ellip-
soid are refined over several iterations to monotonically increase the volume of the
inscribed ellipsoid, resulting in a large polytope and ellipsoid of obstacle-free space.
Practical applications of the algorithm are presented in 2D and 3D, and extensions
to N -dimensional configuration spaces are discussed. Experiments demonstrate that
the algorithm has a computation time which is linear in the number of obstacles,
and our matlab [18] implementation converges in seconds for environments with
millions of obstacles.

1 Introduction

Thisworkwas originallymotivated by the problemof planning footsteps for a bipedal
robot on rough terrain. We consider areas where the robot cannot safely step as
obstacles, and we plan whole-body walking motions of the robot by optimizing
over the space of safe foot positions. Planning around obstacles generally introduces
non-convex constraints,which typically can only be solvedwithweak or probabilistic
notions of optimality and completeness. In practice, we want a real-time footstep
planner that we can trust to find a locally-good path if it exists.
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One approach to combat the non-convexity of the constraints is to divide the
obstacle-free region of space into a minimal discrete set of (possibly overlapping)
convex regions, but this subdivision is nontrivial. For this work, we assume a con-
figuration space consisting of a bounded region in IRn which contains polyhedral
obstacles. When n = 2, we can think of the free space as a polygon with polygonal
holes. Even for this simple case, the problem of partitioning the free space into a
minimum number of convex parts is NP-hard [13]. Additionally, searching for the
minimum number of convex regions may not be the correct problem to solve; we
may be willing to give up having a complete cover of the space in order to reduce
the number of convex pieces.

In our bipedal robot application, we expect that a human operator or a higher-level
planning algorithm can provide helpful guidance about the general area into which
the robot should step. If, for example, the operator were to select one or more seed
points in space, indicating possible areas into which the robot could step, we would
like to find large, convex, obstacle-free regions near those selected points in space so
that we can perform an efficient convex optimization of the precise step locations.

A concrete example may be helpful here. Figure1a shows a simple rectangular
region with two rectangular obstacles. The obstacle-free region can be minimally
decomposed into two non-overlapping convex regions, as shown in Fig. 1b. However,
running our algorithm once using the green point as a seed results in a single larger
region around the point of interest while maintaining convexity, as shown in Fig. 1c.
Additional runs of the algorithm, seeded from the remaining obstacle-free space,
could fill the remaining space if desired. Figure2 shows the same approach applied
to real terrain map data captured from an Atlas humanoid robot, using the software
developed by Team MIT for the DARPA Robotics Challenge [5].

Our approach, as described in Sect. 3, begins with an initial guess, defined as a
point in IRn . We construct an initial ellipsoid, consisting of a unit ball centered on the
selected point. We then iterate through the obstacles, for each obstacle generating a
hyperplane which is tangent to the obstacle and separates it from the ellipsoid. These
hyperplanes then define a set of linear constraints, whose intersection is a polytope.

Starting point
Obstacles

(a) (b) (c)

Fig. 1 A simple 2D environment with two rectangular obstacles and a point of interest (left). The
minimal non-overlapping convex decomposition of the obstacle-free space produces two polygonal
regions (center), while our algorithm produces a larger convex region about the point of interest
and an inscribed ellipsoidal region (right)
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Fig. 2 A visualization of an Atlas humanoid standing in front of a set of tilted steps, as seen in the
DARPA Robotics Challenge 2014 trials [5], with two convex regions of safe terrain displayed (blue
ellipses and red polytopes). The green circles indicate two points chosen by a human operator for
possible locations of the next footstep. To compute the safe regions, we construct a grid of height
values from LIDAR scans, check the steepness of the terrain at every point on the grid, and convert
any cells with steepness above a threshold into obstacles. We then run the iris algorithm with these
obstacles starting from the user-selected points

We can then find a maximal ellipsoid in that polytope, then use this ellipsoid to
define a new set of separating hyperplanes, and thus a new polytope. We choose our
method of generating the separating hyperplanes so that the ellipsoid volume will
never decrease between iterations. We can repeat this procedure until the ellipsoid’s
rate of growth falls below some threshold, at which point we return the polytope and
inscribed ellipsoid. Examples of this procedure in 2D and 3D can be seen in Figs. 3
and 4, respectively.

The iris algorithm presented here assumes that the obstacles themselves are con-
vex, which is an important limitation. However, existing algorithms for approximate
or exact convex decomposition can be easily used to segment the obstacles into con-
vex pieces before running our algorithm [12, 17], and the favorable performance
of our algorithm for large numbers of obstacles means that the decomposition of
the obstacles need not be minimal. It is also important to note that the algorithm as
written here does not guarantee that the initial point in space provided by the user
will be contained in the final ellipsoid or polytope. In the experiments presented in
Fig. 5, the point was contained in the final hull 95% of the time. If this condition is
required by the application, then the algorithm can be terminated early should the
region found ever cease to include the start point.
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Fig. 3 A demonstration of the iris algorithm in a planar environment consisting of 20 uniformly
randomly placed convex obstacles and a square boundary. Each row above shows one complete
iteration of the algorithm: on the left, the hyperplanes are generated, and their polytope intersection
is computed. On the right, the ellipse is inflated inside the polytope. After three iterations, the ellipse
has ceased to grow, and the algorithm has converged
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Fig. 4 An example of generating a large convex region in configuration space. A 2D environment
containing 10 square obstacles was generated, and the configuration space obstacles for a rod-
shaped robot in that environment were built by dividing the orientations of the robot into 10 bins
and constructing a convex body for each range of orientations [15]. The top two rows show the
first two iterations of the algorithm, generating the separating planes on the left and generating
the ellipsoid on the right. The obstacles are shown in black, the polyhedral intersection of the
hyperplanes in red, and the ellipsoid in purple. At the bottom left are the final ellipsoid and polytope
after convergence, and at the bottom right is the original 2D environment with 50 configurations of
the robot uniformly sampled from the obstacle-free polytope
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Fig. 5 Timing results of 1200 runs of the iris algorithm implemented in matlab on an Intel
i7 processor at 2.5GHz with 8Gb of RAM. In each of the 2D and 3D cases, we generated 100
environments at 6 logarithmically spaced numbers of obstacles between 101 and 106. Obstacles
were uniformly randomly placed in each environment. Total time required to converge to a single
convex region is shown above, along with the breakdown of time spent computing the separating
hyperplanes and time spent finding the maximal ellipsoid. These plots demonstrate the empirically
linear scaling of computation time with number of obstacles: time spent computing planes increases
linearlywith obstacle count, approaching a slope of 1 on this log-logplot,while time spent finding the
ellipsoid is nearly constant. Below, we show the number of iterations of the algorithm (each iteration
consists of finding the entire set of hyperplanes and the maximal ellipsoid) before convergence to
a relative change in ellipsoid volume of less than 2%. Error bars are all one standard deviation

In the remainder of this paper, we discuss the precise formulation of the algorithm
and its relationship to existing approaches. We demonstrate the algorithm in 2D
and 3D cases and discuss its application in N -dimensional configuration spaces.
Finally, we show that the algorithm is practical for extremely cluttered environments,
demonstrating that we can compute a convex region in an environment containing
one million obstacles in just a few seconds, as shown in Fig. 5.
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2 Related Work

There are a variety of algorithms for approximate or approximately minimal convex
decompositions, most of which focus on creating a convex or nearly convex cover of
some space. Lien proposes an algorithm for segmenting non-convex polygons con-
taining polygonal holes into a small number of pieces, each of which is allowed some
small degree of concavity [12]. Similarly, Mamou’s approach converts a triangulated
3D mesh into a set of approximately convex pieces by iteratively clustering faces of
the mesh together according to heuristics based on convexity and aspect ratio [17].
Liu’s approach [14], on the other hand, is applicable in spaces of arbitrary dimension
and relies on an integer linear programming formulation to compute a set of cuts
which divide the obstacle into approximately convex pieces. These approaches are
not well suited to convex optimization over obstacle-free space: we require convex
regions, and taking the convex hull of the approximately convex pieces may result
in regions which intersect the obstacle set.

There also exist polynomial-time approximation algorithms for approximately
minimal convex covers. Eidenbenz describes an algorithm which computes a nearly-
minimal set of overlapping convex pieces for a polygon with holes [4]. Their method
achieves a number of pieceswithin an error boundwhich is logarithmic in the number
of vertices, but it requires running time of O(n29 log n), where n is the number of
vertices in the polygon. Feng also describes an approach that divides an input polygon
with holes into pieces, which can be convex if desired, and generates a tree structure
of adjacent pieces [6]. This is a promising approach, but their algorithm as presented
is not applicable beyond the 2D case.

Convex decompositions which do not attempt to find theminimumnumber of seg-
ments have also been used: Demyen’s approach involves triangulating the entire free
space by connecting all mutually visible vertices on the obstacles, then performing
path search among the triangulated regions [3]. Finally, Sarmiento produces convex
polytopic regions in N dimensions by sampling points in free space and checking
visibility from a set of “guard” positions [22]. This work produces results which
appear to be the most similar to ours, but requires as input a set of samples which
cover the workspace. Instead, we focus on creating a single, large, convex region
in some local area, allowing later optimizations to be run inside this region without
further consideration given to the positions of obstacles.

Fischer solves a similar problem of finding a single maximal convex polygon in
a discrete environment [7] in polynomial time. His problem formulation consists of
a set of points which are labeled as positive or negative, with the goal being to find
a convex polygon of maximal area which has vertices only on positive points and
which contains no negative points on its boundary or interior. This is a restricted
form of our task, but it is one which can be solved to optimality with effort which is
polynomial in the number of points in the set.
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The problem of finding obstacle-free regions is also relevant in structural biology,
in which a user might wish to find the void volumes enclosed by amolecular structure
represented as a collection of solid spheres. For example, Sastry performs a search
over the vertices of the Voronoi cells containing the spherical molecules to find the
connected cavities, but these cavities are not necessarily convex [23]. Luchnikov
extends this notion of searching for (non-convex) voids over the Vornoi network to
non-spherical objects [16].

3 Technical Approach

3.1 Proposed Algorithm

Our algorithm searches for both an ellipsoid and a set of hyperplanes which separate
it from the obstacles. We choose to represent the ellipsoid as an image of the unit
ball: E(C, d) = {x = Cx̃ + d | ‖x̃‖ ≤ 1} and we represent the set of hyperplanes as
linear constraints: P = {x | Ax ≤ b}. We have chosen this definition of the ellipsoid
because it makes maximization of the ellipsoid volume straightforward: volume of
the ellipsoid is proportional to the log of the determinant of C , which is a concave
function of C [2] and can therefore be efficiently maximized. In searching both for
the ellipsoidal region and the hyperplanes which separate it from the obstacles, we
are attempting to solve the following nonconvex optimization problem:

maximize
A,b,C,d

log det C

subject to a�
j vk ≥ b j for all points vk ∈ � j , for j = 1, . . . , N (1)

sup
‖x̃‖≤1

a�
i (Cx̃ + d) ≤ bi ∀i = [1, . . . , N ]

where a j are the rows of A, b j are the elements of b, � j is the set of points in the
convex obstacle j , and N is the number of obstacles. The constraint that a�

j vk ≥ b j

for all points vk ∈ � j forces all of the points in obstacle � j to lie on one side of the

plane defined by a�
j x = b j . The second constraint ensures that all x = Cx̃ + d

where ‖x̃‖ ≤ 1 fall on the other side of that plane. Satisfying these constraints for
every obstacle j ensures that the ellipsoid is completely separated from the obstacles.
Rather than solving this directly, we will alternate between searching for the planes
defining the linear constraints a j and b j and searching for the maximal ellipsoid
which satisfies those constraints. The general outline of the iris procedure is given
in Algorithm 1.
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Algorithm 1 Given an initial point q0 and list of obstacles O, find an obstacle-
free polytopic region P defined by Ax ≤ b and inscribed ellipsoid E =
{Cx̃ + d | ‖x̃‖ ≤ 1} such that E ⊆ P and P intersects O only on its boundary.
Subroutine SeparatingHyperplanes is expanded in Algorithm 2, and subroutine
InscribedEllipsoid is described in Sect. 3.4

C0 ← ε In×n
d0 ← q0
i ← 0
repeat

(Ai+1, bi+1) ← SeparatingHyperplanes(Ci , di , O)

(Ci+1, di+1) ← InscribedEllipsoid(Ai+1, bi+1)

i ← i + 1
until (det Ci − det Ci−1) / det Ci−1 < tolerance
return (Ai , bi , Ci , di )

3.2 Initializing the Algorithm

The iris algorithm begins with an initial point in space, which we will label as q0.
The formal algorithm described here requires q0 to be in the obstacle-free space, but
in practice we can sometimes recover from a seed point which is inside an obstacle by
reversing the orientation of one or more of the separating hyperplanes. We initialize
the algorithm with an arbitrarily small sphere around q0 by setting d0 ← q0 and
C0 ← ε In×n .

3.3 Finding Separating Hyperplanes

We attempt to find separating hyperplanes which will allow for further expansion
of the ellipsoid while still ensuring that the interior of the ellipsoid never intersects
the interior of any obstacle. Conceptually, the procedure for finding the separating
hyperplanes involves finding planes that intersect the boundaries of the obstacles and
that are tangent to uniform expansions of the ellipsoid. Given an ellipsoid E(C, d) =
{Cx̃ + d | ‖x̃‖ ≤ 1}, we define a uniform expansion of E as

Eα ≡ {Cx̃ + d | ‖x̃‖ ≤ α} for someα ≥ 1 (2)

To find the closest point on an obstacle � j to the ellipsoid, we can search over
values of α

α∗ = arg min
α

α

subject to Eα ∩ � j = ∅ (3)
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We label the point of intersection between Eα∗ and � j as x∗. We can then compute
a hyperplane, a�

j x = b, with a j ∈ IRn and b j ∈ IR which is tangent to Eα∗ and
which passes through x∗. This hyperplane separates Eα∗ and � j , and, since E ⊆ Eα

for α ≥ 1, it also separates E from � j . We choose the sign of a j and b j such that
a�

j x ≥ b j for every x ∈ � j .
Using this procedure, we can find for every obstacle a plane which separates it

from the ellipsoid at every iteration. In practice, we perform several optimizations
to allow for efficient computation with very large numbers of obstacles, and we are
generally able to avoid computing a new plane for every single obstacle.

Finding the Closest Point to the Ellipse. Rather than actually searching over values
of α as in (3), we can instead simplify the problem of finding a separating plane to a
single least-distance programming problem, which we can solve very efficiently.

Let E(C, d) be our ellipsoid and let v j,1, v j,2, . . . , v j,m be the vertices of the
convex obstacle � j . Our ellipsoid is defined as an image of the unit ball in IRn :
E = {Cx̃ + d | ‖x̃‖ ≤ 1}, so we construct the inverse of this image map:

Ellipse space Ball space

E = {Cx̃ + d | ‖x̃‖ ≤ 1}
� j = ConvexHull(v j,1, . . . , v j,m)

v j,k = C ṽ j,k + d

Ẽ = {x̃ ∈ IRn | ‖x̃‖ ≤ 1}
�̃ j = ConvexHull(ṽ j,1, . . . , ṽ j,m)

ṽ j,k = C−1(v j,k − d)

Wenowneed only to find the closest point to the origin on the transformed obstacle
�̃ j , then apply the Cx̃ + d map once more to find the closest point to the ellipse on
� j . We can construct the problem of finding this point as:

arg min
x̃∈IRn ,w∈IRm

‖x̃‖2

subject to
[
ṽ j,1 ṽ j,2 . . . ṽ j,m

]
w = x̃

m∑

i=1

wi = 1

wi ≥ 0

(4)

in which we search for the point x̃ which is a convex combination of the ṽ j,k and
which is closest to the origin. As written, this is a quadratic program, but it can be
transformed into a least-distance programming instance and solved very efficiently as
a least-squares problem with nonnegativity constraints [11]. In our implementation,
we achieved the best performance by solving the original quadratic program in (4)
using a task-specific solver generated by the CVXGEN tools [19]. The CVXGEN
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solver is able to compute the closest point for a typical obstacle with 8 vertices in 3
dimensions in under 20µs on an Intel i7. We have also had success with the standard
commercial QP solvers Mosek [21] and Gurobi [9], but both required upwards of 1
ms for similar problems.

This optimization yields a point x̃∗. Applying the original map gives x∗ = Cx̃∗ +
d, which is the point on obstacle � j closest to the ellipsoid.
Finding the Tangent Plane. The simplest way to find the tangent plane to the
ellipsoid is to consider the inverse representation of E as

E =
{

x | (x − d)�C−1C−�(x − d) ≤ 1
}

(5)

We can find a vector normal to the surface of the ellipse by computing the gradient
of the ellipsoid’s barrier function at x∗:

a j = ∇x

[
(x − d)�C−1C−�(x − d)

]∣∣∣
x∗

= 2C−1C−�(x∗ − d).

(6)

Once we have a j , we can trivially find b j , since the plane passes through x∗:

b j = a�
j x∗. (7)

Removing Redundant Planes. In an environment with very many obstacles, most
of the separating hyperplanes found using the above procedure turn out to be unnec-
essary for ensuring that the ellipsoid is obstacle-free. This can be seen in Fig. 3, in
which at every iteration just 4 or 5 planes are required to completely separate the
ellipse from all 20 obstacles. By eliminating redundant planes, we can dramatically
improve the efficiency of the ellipsoid maximization step.

For a given obstacle � j we compute a j and b j such that a�
j x ≥ b j for all x ∈ � j .We

can then search through all other obstacles �k, k = j and check whether a�
j v ≥ b j

also holds for every point v ∈ �k . Since the obstacles are required to be polyhedral, we
need only to check the inequality at the vertices of each �k . If it holds, then obstacle
�k is also separated from E by the hyperplane in question, so we can skip computing
a separating hyperplane for obstacle �k . To improve this further, we can start with the
obstacle containing the closest vertex to the ellipse, since a hyperplane separating
that obstacle from the ellipse will likely also separate many more distant obstacles,
and then work outward until all obstacles have been separated from E by some plane.
This procedure is detailed in Algorithm 2.
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Algorithm 2 Given matrix C and d defining an ellipse E , as in Algorithm 1, and
a set of convex obstacles O, find A and b defining a set of hyperplanes which are
tangent to the uniform expansion of E and with {x ∈ IRn | Ax ≤ b} ∩ O = ∅. Sub-
routinesClosestObstacle,ClosestPointOnObstacle, andTangentPlane are
described in Sect. 3.3

function SeparatingHyperplanes(C , d, O)
Oexcluded ← ∅

Oremaining ← O
i ← 1
while Oremaining = ∅ do

�∗ ← ClosestObstacle(C, d, Oremaining)

x∗ ← ClosestPointOnObstacle(C, d, �∗)
(ai , bi ) ← TangentPlane(C, d, x∗)
for all �i ∈ Oremaining do

if a�
i x j ≥ bi ∀x j ∈ �i then
Oremaining ← Oremaining \ �i
Oexcluded ← Oexcluded ∪ �i

end if
end for
i ← i + 1

end while

A ←
⎡

⎢
⎣

a�
1

a�
2
.
.
.

⎤

⎥
⎦, b ←

⎡

⎢
⎣

b1
b2
.
.
.

⎤

⎥
⎦

return (A, b)
end function

3.4 Computing the Inscribed Ellipsoid

The problem of computing an ellipsoid of maximum volume inscribed in a polytope
is well studied, and efficient practical algorithms for solving it can be easily found.
We represent the inscribed ellipsoid as an image of the unit ball:

E = {Cx̃ + d | ‖x̃‖ ≤ 1} (8)

with the volume of the ellipsoid proportional to the determinant of C [2]. The
problem of finding the maximum volume ellipse contained in the polytope P =
{x ∈ IRn | Ax ≤ b} can be expressed as

maximize
C,d

log det C

subject to sup(a�
i C x̃)

‖x̃‖≤1
+ a�

i d ≤ bi ∀i = [1, . . . , N ]

C � 0

(9)
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as stated by Boyd [2], where the ai and bi are the rows and elements, respectively,
of A and b and A ∈ IRN×n . The constraints can be rewritten without mention of x̃ ,
yielding:

maximize
C,d

log det C

subject to
∥∥∥a�

i C
∥∥∥ + a�

i ≤ bi∀i = [1, . . . , N ]

C � 0

(10)

which is a convex optimization [2]. Khachiyan and Todd describe an approxima-
tion algorithm to solve this problem through a sequence of convex optimizations
with linear constraints with a guaranteed convergence to within a given relative
error from the maximum possible ellipsoid volume [10]. Ben-Tal and Nemirovski,
meanwhile, present a method for computing the ellipsoid through a semidefinite
and conic quadratically constrained optimization [1], and we use this approach, as
implemented by Mosek [20], in our code. We have also successfully used CVX, a
tool for specifying and solving convex problems [8], to solve (10), but we found that
the Mosek implementation was at least an order of magnitude faster, primarily due
to the overhead of constructing the problem in CVX.

3.5 Convergence

The iris algorithm makes no guarantee of finding the largest possible ellipsoid in
the environment, but it still provides some assurance of convergence. Since our
separating hyperplanes are, by construction, tangent to an expanded ellipsoid Eα

for some α ≥ 1, the original ellipsoid E will always be contained in the feasible
set of Ax ≤ b. Additionally, because the ellipsoid maximization SDP is a convex
optimization which is solved to its global maximum, it must be true that the volume
of the ellipsoid produced no less than the volume of E . If this were not the case,
then E would be a feasible solution with larger volume, which contradicts global
optimality of the SDP. As long as the environment is bounded on all sides, there is
an upper limit on the volume of the ellipsoid, corresponding to the whole volume
of the environment. Since the ellipsoid volume is bounded above and monotonically
increasing, it will converge to a final value, although we do not currently make any
claims about how many iterations this will require.
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4 Results

We implemented the proposed algorithm in matlab [18], using CVXGEN [19] to
solve each least-distance QP and Mosek [20] to solve each maximal-ellipsoid SDP.
Given a list of convex obstacles, a boundary around the environment, and a starting
point, the implemented algorithm rapidly finds a large convex region and its inscribed
ellipsoid. A simple 2D example of the results can be seen in Fig. 3. The algorithm is
also equally applicable in 3D, or in the 3D representation of the configuration space
of a 3-degree of freedom robot. Such an application is shown in Fig. 4, in which a
convex region of configuration space for a rod-shaped robot in the plane is found
and sampled. The algorithm also extends without modification to higher dimensions.
Figure6 shows a 3D slice of the output of the iris procedure in 4 dimensions, and
the algorithm can also be run in higher-dimensional configuration spaces, assuming
that the N -dimensional configuration space obstacles can be generated.

A major advantage of this algorithm is the efficiency with which it can handle
extremely cluttered environments. Computing each separating hyperplane requires
work which is linear in the number of obstacles, since each obstacle must be checked
against the newly found hyperplane to determine if it is also excluded, as in Sect. 3.3.
The total number of planes required to exclude all the obstacles, however, turns out
to be nearly constant in practice. This means that the entire hyperplane computa-
tion step requires nearly linear time in the number of obstacles. Additionally, since
each hyperplane found creates one constraint for the ellipsoid maximization step,
the constant number of hyperplanes means that the ellipsoid maximization requires
approximately constant time as the number of obstacles increases. We demonstrate
this by running the algorithm in 2D and 3D for 10 to 1,000,000 obstacles and dis-
playing the linear increase in computation time in Fig. 5.

x1x2

x
3

Fig. 6 An example of the output of the algorithm in 4-dimensional space. We generated 4-
dimensional obstacles consisting of uniformly random points centered on uniformly randomly
chosen locations in [−1, 1]4. The figure shows the 3-dimensional intersection with the x4 = 0
plane of the obstacles and the polytope produced by the iris algorithm
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5 Conclusion

We have demonstrated a new algorithm for finding large regions of obstacle-free
space in a cluttered environment. These regions can be rapidly computed and then
used later to aid some future optimization problem, such as the problem of planning
robot footstep locations while avoiding obstacles.

Our immediate future plans are to apply this algorithm to footstep planning for
a real humanoid robot. We will allow the user to select a point in space on a terrain
map, compute an obstacle free region, and find a footstep position which optimizes
reachability and stability within that region. We are also interested in exploring other
applications of this algorithm to problems beyond footstep planning, in which one
or more convex regions are preferable to a large set of non-convex constraints.

6 Source Code and Animations

A development version of the iris implementation can be found on GitHub at https://
github.com/rdeits/iris-distro. It includes all of the algorithms presented in this paper,
as well as animations of iris running in 2D, 3D, and 4D.

Acknowledgments Thisworkwas supported by the Fannie and JohnHertz Foundation and byMIT
CSAIL. The authors also wish to thank the members of the Robot Locomotion Group at CSAIL for
their advice and help.

References

1. Ben-Tal, A., Nemirovski, A.: More examples of CQ-representable functions/sets. Lectures
on Modern Convex Optimization: Analysis. Algorithms and Engineering Applications, pp.
105–110. MPS-SIAM Series on Optimization, SIAM, Philadelphia, PA (2001)

2. Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cambridge
(2004)

3. Demyen, D., Buro, M.: Efficient triangulation-based pathfinding. AAAI 6, 942–947 (2006).
http://www.aaai.org/Papers/AAAI/2006/AAAI06-148.pdf

4. Eidenbenz, S.J., Widmayer, P.: An approximation algorithm for minimum convex cover with
logarithmic performance guarantee. SIAM J. Comput. 32(3), 654–670 (2003). http://epubs.
siam.org/doi/abs/10.1137/S0097539702405139

5. Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., Perez
D’Arpino, C., Deits, R., DiCicco, M., Fourie, D., Koolen, T., Marion, P., Posa, M., Valen-
zuela, A., Yu, K.T., Shah, J., Iagnemma, K., Tedrake, R., Teller, S.: An architecture for online
affordance-based perception and whole-body planning. J. Field Robot. (2014). http://dspace.
mit.edu/handle/1721.1/85690

6. Feng, H.Y.F., Pavlidis, T.: Decomposition of polygons into simpler components: feature gen-
eration for syntactic pattern recognition. IEEE Trans. Comput. 100(6), 636–650 (1975). http://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1672869

https://github.com/rdeits/iris-distro
https://github.com/rdeits/iris-distro
http://www.aaai.org/Papers/AAAI/2006/AAAI06-148.pdf
http://epubs.siam.org/doi/abs/10.1137/S0097539702405139
http://epubs.siam.org/doi/abs/10.1137/S0097539702405139
http://dspace.mit.edu/handle/1721.1/85690
http://dspace.mit.edu/handle/1721.1/85690
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1672869
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1672869


124 R. Deits and R. Tedrake

7. Fischer, P.: Finding maximum convex polygons. In: sik, Z. (ed.) Fundamentals of Computation
Theory. Lecture Notes in Computer Science, vol. 710, pp. 234–243. Springer, Berlin (1993).
http://link.springer.com/chapter/10.1007/3-540-57163-9_19

8. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1
(2014). http://cvxr.com/cvx

9. Gurobi Optimization Inc: Gurobi optimizer reference manual (2014). http://www.gurobi.com/
10. Khachiyan, L.G., Todd, M.J.: On the complexity of approximating the maximal inscribed

ellipsoid for a polytope. Math. Program. 61(1–3), 137–159 (1993). http://link.springer.com/
article/10.1007/BF01582144

11. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. SIAM, Philadelphia (1995)
12. Lien, J.M., Amato, N.M.: Approximate convex decomposition of polygons. In: Proceedings

of the Twentieth annual symposium on Computational Geometry, pp. 17–26 (2004). http://dl.
acm.org/citation.cfm?id=997823

13. Lingas, A.: The power of non-rectilinear holes. In: Nielsen,M., Schmidt, E.M. (eds.) Automata,
Languages and Programming. Lecture Notes in Computer Science, vol. 140, pp. 369–383.
Springer, Berlin (1982). http://link.springer.com/chapter/10.1007/BFb0012784

14. Liu, H., Liu, W., Latecki, L.: Convex shape decomposition. In: 2010 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 97–104 (2010)

15. Lozano-Perez, T.: Spatial planning: a configuration space approach. IEEE Trans. Comput (2),
108–120 (1983). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1676196

16. Luchnikov, V.A., Medvedev, N.N., Oger, L., Troadec, J.P.: Voronoi-delaunay analysis of voids
in systems of nonspherical particles. Phys. Rev. E 59(6), 7205 (1999). http://pre.aps.org/
abstract/PRE/v59/i6/p7205_1

17. Mamou, K., Ghorbel, F.: A simple and efficient approach for 3d mesh approximate convex
decomposition. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp.
3501–3504 (2009)

18. MATLAB: version 8.2.0.701 (R2013b). The MathWorks Inc., Natick, MA (2013)
19. Mattingley, J., Boyd, S.: CVXGEN: Code generation for convex optimization (2013). http://

cvxgen.com/docs/index.html
20. Mosek ApS: Inner and outer lowner-john ellipsoids (2014). http://docs.mosek.com/7.0/

matlabfusion/Inner_and_outer_L_wner-John_Ellipsoids.html
21. Mosek ApS: The MOSEK optimization software (2014). http://www.mosek.com/
22. Sarmiento, A.,Murrieta-Cid, R., Hutchinson, S.: A sample-based convex cover for rapidly find-

ing an object in a 3-d environment. In: Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, (ICRA 2005). pp. 3486–3491. IEEE (2005). http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=1570649

23. Sastry, S., Corti, D.S., Debenedetti, P.G., Stillinger, F.H.: Statistical geometry of particle pack-
ings.i.algorithm for exact determination of connectivity, volume, and surface areas of void
space in monodisperse and polydisperse sphere packings. Phys. Rev. E 56(5), 5524–5532
(1997). http://link.aps.org/doi/10.1103/PhysRevE.56.5524

http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/3-540-57163-9_19
http://cvxr.com/cvx
http://www.gurobi.com/
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/BF01582144
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/BF01582144
http://dl.acm.org/citation.cfm?id=997823
http://dl.acm.org/citation.cfm?id=997823
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/BFb0012784
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1676196
http://pre.aps.org/abstract/PRE/v59/i6/p7205_1
http://pre.aps.org/abstract/PRE/v59/i6/p7205_1
http://cvxgen.com/docs/index.html
http://cvxgen.com/docs/index.html
http://docs.mosek.com/7.0/matlabfusion/Inner_and_outer_L_wner-John_Ellipsoids.html
http://docs.mosek.com/7.0/matlabfusion/Inner_and_outer_L_wner-John_Ellipsoids.html
http://www.mosek.com/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1570649
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1570649
http://link.aps.org/doi/10.1103/PhysRevE.56.5524

	Computing Large Convex Regions  of Obstacle-Free Space Through  Semidefinite Programming
	1 Introduction
	2 Related Work
	3 Technical Approach
	3.1 Proposed Algorithm
	3.2 Initializing the Algorithm
	3.3 Finding Separating Hyperplanes
	3.4 Computing the Inscribed Ellipsoid
	3.5 Convergence

	4 Results
	5 Conclusion
	6 Source Code and Animations
	References


