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Abstract We introduce a novel optimization-based motion planner, Stochastic
Extended LQR (SELQR), which computes a trajectory and associated linear control
policy with the objective of minimizing the expected value of a user-defined cost
function. SELQR applies to robotic systems that have stochastic non-linear dynam-
ics with motion uncertainty modeled by Gaussian distributions that can be state-
and control-dependent. In each iteration, SELQR uses a combination of forward and
backward value iteration to estimate the cost-to-come and the cost-to-go for each state
along a trajectory. SELQR then locally optimizes each state along the trajectory at
each iteration to minimize the expected total cost, which results in smoothed states
that are used for dynamics linearization and cost function quadratization. SELQR
progressively improves the approximation of the expected total cost, resulting in
higher quality plans. For applications with imperfect sensing, we extend SELQR to
plan in the robot’s belief space.We show that our iterative approach achieves fast and
reliable convergence to high-quality plans in multiple simulated scenarios involving
a car-like robot, a quadrotor, and amedical steerable needle performing a liver biopsy
procedure.

1 Introduction

When a robot performs a task, the robot’s motion may be affected by uncertainty
from a variety of sources, including unpredictable external forces or actuation errors.
Uncertainty arises in a variety of robotics applications, including aerial robots mov-
ing in turbulent conditions, mobile robots maneuvering on unfamiliar terrain, and
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robotic steerable needles being guided to clinical targets in soft tissue. A deliberative
approach that accounts for uncertainty during motion planning before task execution
can improve the quality of computed plans, increasing the chances that the robot will
complete the desired motion safely and reliably.

We introduce an optimization-based motion planner that explicitly considers the
impacts of motion uncertainty. Recent years have seen the introduction of multiple
successful optimization-based planners, although most have focused on robots with
deterministic dynamics (e.g., [1–3]). Compared to commonly used sampling-based
planners [4], optimization-based planners produce plans that are smoother (without
requiring a separate smoothing algorithm) and that are computed faster, albeit some-
times with a loss of completeness and global optimality. Prior optimization-based
planners that consider deterministic dynamics can only minimize deterministic cost
functions (e.g., minimizing path length while avoiding obstacles). In this paper we
focus on robots with stochastic dynamics, and consequently minimize the a pri-
ori expected value of a cost function when a plan and corresponding controller are
executed. The user-defined cost function can be based on path length, control effort,
and obstacle collision avoidance.

We first introduce the Stochastic Extended LQR (SELQR)motion planner, a novel
optimization-based motion planner with fast and reliable convergence for robotic
systems with non-linear dynamics, any cost function with positive (semi) definite
Hessians, and motion uncertainty modeled using Gaussian distributions that can be
state- and control-dependent. Our approach builds on the linear quadratic regulator
(LQR), a commonly used linear controller that does not explicitly consider obstacle
avoidance. As an optimization-based approach, SELQR starts motion planning from
a start state and returns a high-quality trajectory and an associated linear control pol-
icy that consider uncertainty and are optimizedwith respect to the given cost function.

To achieve fast performance, our approach in each iteration uses both the sto-
chastic forward and inverse dynamics in a manner inspired by an iterated Kalman
smoother [5]. In each iteration’s backward pass, SELQR uses the stochastic dynam-
ics to compute a control policy and estimate the cost-to-go of each state, which is the
minimum expected future cost assuming the robot starts from each state. In each it-
eration’s forward pass, SELQR estimates the cost-to-come to each state, which is the
minimum cost to reach each state from the initial state. SELQR then approximates
the expected total cost at each state by summing the cost-to-come and the cost-to-go.
SELQR progressively improves the approximation of the cost-to-come and cost-to-
go and hence improves its estimate of the expected total cost. A key insight in SELQR
is that we locally optimize each state along a trajectory at each iteration to minimize
the expected total cost, which results in smoothed states that are cost-informative and
used for dynamics linearization and cost function quadratization. These smoothed
states enable the fast and reliable convergence of SELQR.

We next extend SELQR to consider uncertainty in both motion and sensing.
Although the robot in such cases often cannot directly observe its current state, it can
estimate a distribution over the set of possible states (i.e., its belief state) based on
noisy and partial sensormeasurements.We introduce B-SELQR, a variant of SELQR
that plans in belief space rather than state space for robots with both motion and
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Fig. 1 We show plans computed by SELQR for needle steering for a liver biopsy with motion
uncertainty. The objective is to access the tumor (yellow) while avoiding the hepatic arteries (red),
hepatic veins (blue), portal veins (pink), and bile ducts (green). The smooth trajectories explicitly
consider uncertainty and minimize the a priori expected value of a cost function that considers
obstacle avoidance and path length. a The needle trajectory computed by SELQR when inserted
from the side. b The needle trajectory computed by SELQR when inserted from the front

sensing uncertainty, where belief states are modeled with Gaussian distributions. For
such robots, the motion planning problem can be modeled as a Partially Observable
Markov Decision Process (POMDP). Exact global optimal solutions to POMDPs are
prohibitive for most applications since the belief space (over which a control pol-
icy is to be computed) is, in the most general formulation, the infinite-dimensional
space of all possible probability distributions over the finite dimensional state space.
B-SELQR quickly computes a trajectory and locally-valid controller from scratch in
belief space.

We demonstrate the speed and effectiveness of SELQR in simulation for a car-
like robot, quadrotor, and medical steerable needle (see Fig. 1). We also demonstrate
B-SELQR for scenarios with imperfect sensing.

2 Related Work

Optimization-based motion planners have been studied for a variety of robotics
applications and typically consider robot dynamics, trajectory smoothness, andobsta-
cle avoidance. Optimization-based approaches have been developed that plan from
scratch as well as that locally optimize a feasible plan created by another motion
planner (such as a sampling-based motion planner), e.g. [1–3, 6–8]. These methods
work well for robots with deterministic dynamics, whereas SELQR is intended for
robots with stochastic dynamics.

Our approach builds on Extended LQR [9, 10], which extends the standard LQR
to handle non-linear dynamics and non-quadratic cost functions. Extended LQR
assumes deterministic dynamics, implicitly relying on the fact that the optimal
LQR solution is independent of the variance of the motion uncertainty. In contrast to
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Extended LQR, SELQR explicitly considers stochastic dynamics and incorporates
the stochastic dynamics into backward value iteration when computing a control
policy, enabling computation of higher quality plans. Approximate InferenceControl
[11] formulates the optimal control problem using Kullback-Leibler divergence min-
imization but focuses on cost functions that are quadratic in the control input. Our
approach also builds on Iterative Linear Quadratic Gaussian (iLQG) [12], which
uses a quadratic approximation to handle state- and control-dependent motion uncer-
tainty but, in its original form, did not implement obstacle avoidance. To ensure that
the dynamics linearization and cost function quadratization are locally valid, iLQG
requires special measures such as a line search. Our method does not require a line
search, enabling faster performance.

For problems with partial or noisy sensing, the planning and control problem can
bemodeled as aPOMDP [13]. Solving aPOMDP toglobal optimality has been shown
to be PSPACE complete. Point-based algorithms (e.g., [14–16]) have been developed
for problems with discrete state, action, or observation spaces. Another class of
methods [17–19] utilize sampling-based planners to compute candidate trajectories
in the state space, which can be evaluated based on metrics that consider stochastic
dynamics.Optimization-based approaches havebeendeveloped for planning in belief
space [20, 21] by approximating beliefs as Gaussian distributions and computing
a value function valid only in local regions of the belief space. Platt et al. [21]
achieve fast performance by defining deterministic belief system dynamics based on
the maximum likelihood observation assumption. Van den Berg et al. [20] require a
feasible plan for initialization and then use iLQG to optimize the plan in belief space.
We will show that B-SELQR, which considers stochastic dynamics, converges faster
and more reliably than using iLQG in belief space and can plan from scratch.

3 Problem Definition

Let X ⊂ R
n be the n-dimensional state space of the robot and let U ⊂ R

m be
the m-dimensional control input space of the robot. We consider robotic systems
with differentiable stochastic dynamics and state- and control-dependent uncertainty
modeled using Gaussian distributions. Let τ ∈ R

+ denote time, and let us be given
a continuous-time stochastic dynamics:

dx(τ ) = f(x(τ ), u(τ ), τ )dτ + N (x(τ ), u(τ ), τ )dw(τ ), (1)

with f : X × U × R
+ → Ẋ and N : X × U × R

+ → R
n×n , where x(τ ) ∈ X,

u(τ ) ∈ U, and w(τ ) is a Wiener process with dw(τ ) ∼ N (0, dτ I ).
We assume time is discretized into intervals of durationΔ, and the time step t ∈ N

starts at time τ = tΔ. As we will see in Sect. 4.5, by integrating the continuous time
dynamics both backward and forward in time,we can construct the stochastic discrete
dynamics and the deterministic inverse discrete dynamics:
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xt+1 = gt (xt , ut ) + Mt (xt , ut )ξt , (2)

xt = ḡt (xt+1, ut ), (3)

where ξt ∼ N (0, I ), with gt , ḡt ∈ X×U → X and Mt ∈ X×U → R
n×n as derived

in Sect. 4.5. Note that gt (ḡt (xt+1, ut ), ut ) = xt+1 and ḡt (gt (xt , ut ), ut ) = xt .
Let the control objective be defined by a cost function that can incorporate metrics

such as path length, control effort, and obstacle avoidance:

Ex

[
cl(xl) +

l−1∑
t=0

ct (xt , ut )

]
, (4)

where l ∈ N
+ is the given time horizon and cl : X → R and ct : X × U → R

are user-defined local cost functions. The expectation is taken because the dynamics
are stochastic. We assume the local cost functions are twice differentiable and have
positive (semi)definite Hessians: ∂2cl

∂x∂x ≥ 0, ∂2ct
∂u∂u > 0, ∂2ct

∂[ x
u ]∂[ x

u ] ≥ 0. The objective

is to compute a control policy π (defined by πt : X → U for all t ∈ [0, l)) such
that selecting the controls ut = πt (xt ) minimizes Eq. (4) subject to the stochastic
discrete-time dynamics. This problem is addressed in Sect. 4.

For robotic systems with imperfect (e.g., partial and noisy) sensing, it is often
beneficial during planning to explicitly consider the sensing uncertainty. We assume
sensors provide data according to a stochastic observation model:

zt = h(xt ) + nt , nt ∼ N (0, V (xt )), (5)

where zt is the sensor measurement at step t and the noise is state-dependent and
drawn from a given Gaussian distribution. We formulate this motion planning prob-
lem as a POMDP by defining the belief state bt ∈ B, which is the distribution of
the state xt given all past controls and sensor measurements. We approximate belief
states using Gaussian distributions. In belief space we define the cost function as

Ez

[
cl(bl) +

l−1∑
t=0

ct (bt , ut )

]
, (6)

where the local cost functions are defined analogously toEq. (4). Theobjective for this
problem is to compute a control policy π (defined by πt : B → U for all t ∈ [0, l))
in order to minimize Eq. (6) subject to the stochastic discrete-time dynamics. This
problem is addressed in Sect. 5.

4 Stochastic Extended LQR

SELQR explicitly considers a system’s stochastic nature in the planning phase and
computes a nominal trajectory and an associated linear control policy that consider the
impact of uncertainty. With the control policy from SELQR, the robot then executes
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the plan in a closed-loop fashion with sensor feedback. As in related methods such
as iLQG [12], SELQR approximates the value functions quadratically by linearizing
the dynamics and quadratizing the cost functions. But, as we will show, SELQR
uses a novel approach to compute promising candidate trajectories around which to
linearize the dynamics andquadratize the cost functions, enabling faster performance.

4.1 Method Overview

To consider non-linear dynamics and any cost function with positive (semi)definite
Hessians, SELQR uses an iterative approach that linearizes the (stochastic) dynamics
and locally quadratizes the cost functions in each iteration. As shown in Algorithm
1 and described below, each iteration includes both a forward pass and a backward
pass, where each pass performs value iteration.

As in LQR, SELQR uses backward value iteration to compute a control policy π
and, for all t , the cost-to-go vt (x), which is the minimum expected future cost that
will be accrued between time step t (including the cost at time step t) and time step
l if the robot starts at x at time step t . The backward value iteration, as described in
Sect. 4.2, considers stochastic dynamics. SELQR also uses forward value iteration
to compute the cost-to-come v̄t (x), which computes the minimum past cost that was
accrued from time step 0 to step t (excluding the cost at time step t) assuming the
robot’s dynamics is deterministic, as described in Sect. 4.3. The sum of vt (x) and
v̄t (x) provides an estimate of v̂t (x), the minimum expected total cost for the entire
task execution given that the robot passes through state x at step t . Selecting x to
minimize v̂t yields a sequence of smoothed states

x̂t = argminxv̂t (x) = argminx(v̄t (x) + vt (x)), 0 ≤ t ≤ l. (7)

At each iteration, SELQR linearizes the (stochastic) dynamics and quadratizes
the cost function around the smoothed states. With each iteration, SELQR progres-
sively improves the estimate of the cost-to-come and cost-to-go at each state along
a plan, and hence improves its estimate of the minimum expected total cost. With
this improved estimate comes a better control policy. The algorithm terminates when
the estimated total cost converges. The output of the motion planner is the control
policy πt for all t , where each πt is computed during the backward value itera-
tion, which considers the stochastic dynamics. During execution, a robot at state x
executes control ut = πt (x) at time step t .

SELQR accounts for non-linear dynamics and non-quadratic cost functions in
a manner inspired in part by the iterated Kalman Smoother [5], which iteratively
performs a forward pass (filtering) and a backward pass (smoothing) and at each
iteration linearizes the non-linear system around the states from the smoothing pass.
Likewise, SELQR consists of a backward pass (a backward value iteration) and a
forward pass (a forward value iteration). The combination of these two passes at
each iteration enables us to compute smoothed states around which we linearize the
(stochastic) dynamics and quadratize the cost functions.
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Algorithm 1: SELQR
Input: stochastic continuous-time dynamics (Eq.1); ct : local cost functions for 0 ≤ t ≤ l;

Δ: time step duration; l: number of time steps

Variables: x̂: smoothed states; π: control policy; π̄: inverse control policy; vt : cost-to-go
function; v̄t : cost-to-come function

1 πt = 0, St = 0, st = 0, st = 0
2 repeat
3 S̄0 := 0, s̄0 := 0, s̄0 := 0
4 for t := 0; t < l; t := t + 1 do
5 x̂t = −(St + S̄t )

−1(st + s̄t ) (smoothed states)
6 ût = πt (x̂t ), x̂t+1 = g(x̂t , ût )

7 Linearize inverse discrete dynamics around (x̂t+1, ût ) (Eq. (16))
8 Quadratize ct around (x̂t , ût ) (Eq. (12))
9 Compute S̄t+1, s̄t+1, s̄t+1, v̄t+1, π̄t (forward value iteration in Sec. 4.3)

10 end
11 Quadratize cl around x̂l in the form of Eq. (12) to compute Ql , ql , and ql
12 Sl := Ql , sl := ql , and sl := ql .
13 for t := l − 1; t ≥ 0; t := t − 1 do
14 x̂t+1 = −(St+1 + S̄t+1)

−1(st+1 + s̄t+1) (smoothed states)
15 ût = π̄t (x̂t+1), x̂t = ḡ(x̂t+1, ût )

16 Linearize stochastic discrete dynamics around (x̂t , ût ) (Eq. (11))
17 Quadratize ct around (x̂t , ût ) (Eq. (12))
18 Compute St , st , st , vt , πt (backward value iteration in Sec. 4.2)
19 end
20 until Converged (e.g., v0 stops changing significantly);
21 return πt for 0 ≤ t ≤ l

4.2 Backward Pass

We assume the cost-to-come functions v̄t (x), the inverse control policy π̄t , and the
smoothed state x̂l are available from the previous forward pass. The backward pass
computes cost-to-go functions vt (x) and control policy πt , using the approach of
backward value iteration [22] in a backward recursive manner:

v�(x) = c�(x), vt (x) = min
u

(
ct (x, u) + Eξt

[vt+1(gt (x, u) + Mt (x, u)ξt )]
)
, (8)

πt (x) = argmin
u

(
ct (x, u) + Eξt

[vt+1(gt (x, u) + Mt (x, u)ξt )]
)
.

To make the backward value iteration tractable, SELQR linearizes the stochastic
dynamics and quadratizes the local cost functions to maintain a quadratic form of
the cost-to-go function vt (x): vt (x) = 1

2xT St x+xT st + st . The backward pass starts
from step l by quadratizing cl(x) around x̂l (line 11) as

cl(x) = 1
2xT Qlx + xT ql + ql , (9)
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and constructing quadratic vl(x) by setting Sl = Ql , sl = ql , and sl = ql . Starting
from t = l − 1, vt+1(x) is available. To proceed to step t , SELQR first computes

v̂t+1(x) = 1
2xT (St+1 + S̄t+1)x + xT (st+1 + s̄t+1) + (st+1 + s̄t+1). (10)

Minimizing the quadratic v̂t+1(x) with respect to x gives the smoothed states x̂t+1
(line 14). With the inverse control policy π̄t from the last forward pass, SELQR
computes ût and x̂t (line 15), around which the stochastic discrete dynamics can be
linearized as

gt (x, u) = At x + Bt u + at , M (i)
t (x, u) = Fi

t x + Gi
t u + ei

t , 1 < i ≤ n, (11)

where M (i)
t denotes the i’th column of matrix Mt , and At , Bt , Fi

t , Gi
t , at , and ei

t are
given matrices and vectors of the appropriate dimension, and the cost function ct can
be quadratized as

ct (x, u) = 1

2

[
x
u

]T [
Qt PT

t
Pt Rt

] [
x
u

]
+

[
x
u

]T [
qt

rt

]
+ qt . (12)

By substituting the linear stochastic dynamics and quadratic local cost function
into Eq.8, expanding the expectation, and then collecting terms, we get a quadratic
expression of the value function vt (x),

vt (x) =min
u

(
1

2

[
x
u

]T [
Ct ET

t
Et Dt

] [
x
u

]
+

[
x
u

]T [
ct

dt

]
+ et

)
, (13)

where Ct , Dt , Et , ct , dt , et are parameterized by St+1, st+1, st+1, Qt , qt , qt , Pt , Rt ,
rt , At , Bt , at , Fi

t , Gi
t , and ei

t following the similar derivation in [12]. Minimizing
Eq. (13) with respect to u gives the linear control policy:

u = πt (x) = −D−1
t Et x − D−1

t dt . (14)

Filling u back into Eq. (13) gives vt (x) as a quadratic function of x with St =
Ct − ET

t D−1
t Et , st = ct − ET

t D−1
t dt , and st = et − 1

2dT
t D−1

t dt (line 18).

4.3 Forward Pass

The forward pass recursively computes the cost-to-come functions v̄t (x) and the
inverse control policy π̄t using forward value iteration [9]:

v̄0(x) = 0, v̄t+1(x) =min
u

(ct (ḡt (x, u), u) + v̄t (ḡt (x, u))), (15)

π̄t (x) = argmin
u

(ct (ḡt (x, u), u) + v̄t (ḡt (x, u))).



Stochastic Extended LQR: Optimization-Based Motion Planning Under Uncertainty 617

To make the forward value iteration tractable, we linearize the inverse dynamics and
quadratize the local cost functions so that we can maintain a quadratic form of the
cost-to-come function v̄t (x): v̄t (x) = 1

2xT S̄t x + xT s̄t + s̄t .
The forward pass starts from time step 0 (line 3) to construct the quadratic v̄0(x)

by setting S̄0 = 0, s̄0 = 0, and s̄0 = 0. At time step t , we assume v̄t (x) and vt (x)

are available. To proceed to step t + 1, SELQR first computes the smoothed state
x̂t by minimizing the sum of vt (x) and v̄t (x) (line 5) which are quadratic. Since πt

is available, SELQR then computes the ût and x̂t+1 as shown in line 7. Then, the
deterministic inverse discrete dynamics is linearized around (x̂t+1, ût ):

ḡt (x, u) = Āt x + B̄t u + āt , (16)

where Āt , B̄t , and āt are given matrices and vectors of the appropriate dimension,
and the local cost function ct is quadratized around (x̂t , ût ) to get the quadratic form
as in Eq. (12).

Substituting the linearized inverse dynamics and quadratic local cost function into
Eq. (15), expanding the expectation, and then collecting terms, we get a quadratic
expression for v̄t+1(x),

v̄t+1(x) = min
u

(
1

2

[
x
u

]T [
C̄t Ē T

t
Ēt D̄t

] [
x
u

]
+

[
x
u

]T [
c̄t

d̄t

]
+ ēt

)
, (17)

where C̄t , D̄t , Ēt , c̄t , d̄t , ēt are computed from S̄t , s̄t , s̄t , Āt , B̄t , āt , Qt , qt , qt , Pt ,
Rt , and rt following the derivation in [9]. The corresponding linear inverse control
policy that minimizes Eq. (17) has the form

ut = π̄t (xt+1) = −D̄−1
t Ēt xt+1 − D̄−1

t d̄t . (18)

Plugging ut into Eq. (17) gives v̄t+1(x) as a quadratic function of x with S̄t+1 =
C̄t − ĒT

t D̄−1
t Ēt , s̄t+1 = c̄t − ĒT

t D̄−1
t d̄t , and s̄t+1 = ēt − 1

2 d̄T
t D̄−1

t d̄t (line 9).

4.4 Iterative Forward and Backward Value Iteration

Without any a priori knowledge, SELQR initializes the cost-to-go functions and
the control policy to 0’s (line 1). As shown in Algorithm 1, SELQR starts with a
forward pass and then iteratively performs backward passes and forward passes until
convergence (e.g., v0 stops changing significantly). Similar to the iterated Kalman
Smoother and to Extended LQR [9], SELQR performs Gauss-Newton like updates
toward a local optimum.

Informed search methods often achieve speedups in practice by exploring from
states that minimize a heuristic cost function. Analogously, in SELQR, the cost-to-
go provides the minimum expected future cost, and the cost-to-come estimates the
minimum expected cost that has been already accrued. The forward value iteration
uses a deterministic inverse dynamics due to the intractability of computing a sto-
chastic discrete inverse dynamics. Hence, the function v̂t (x) estimates the minimum



618 W. Sun et al.

total cost assuming the robot passes through a given state x at time step t . Previous
methods such as iLQG choose states for linearization and quadratization by blindly
shooting the control policy from the last iteration without any information about the
cost functions. These methods usually need measures such as line search to maintain
stability. By computing smoothed states that are informed by cost for linearization
and quadratization, we show, experimentally, that our method provides faster con-
vergence.

4.5 Discrete-Time Dynamics Implementation

If f(x, u, τ ) in Eq. (1) is linear in x and N is not dependent on x, then the distribution
of the state at any time τ is given by x(τ ) ∼ N (x̂(τ ),Σ(τ )), where x̂(τ ) and Σ(τ )

are defined by the following system of differential equations:

˙̂x = f(x̂, u, τ ), Σ̇ = ∂f
∂x

(x̂, u, τ )Σ + Σ
∂f
∂x

(x̂, u, τ )T + N (x̂, u, τ )N (x̂, u, τ )T .

For non-linear f and state- and control-dependent N , the equations provide first-
order approximations. Instead of using an Euler integration [12], we use the Runge-
Kutta method (RK4) to integrate the differential equations for x̂ and Σ forward in
time simultaneously to compute gt and Mt in Eq. (2), and integrate the differential
equation for x̂ to compute the ḡt in Eq. (3).

5 Stochastic Extended LQR in Belief Space

We introduce B-SELQR, a belief-state variant of SELQR for robotic systems with
both motion and sensing uncertainty, where beliefs are modeled with Gaussian dis-
tributions. With an imperfect sensing model defined in the form of Eq. (5) and an
objective function in the form of Eq. (6), the motion planning problem is a POMDP.
B-SELQR needs a stochastic discrete forward belief dynamics and a deterministic
discrete inverse belief dynamics. While the stochastic belief dynamics (Sect. 5.1)
can be modeled by an Extended Kalman Filter (EKF) [23] as shown in [20], the key
challenge here is to develop the deterministic discrete inverse belief dynamics. We
will show in Sect. 5.2 that the inverse belief dynamics can be derived by inverting
the EKF.

5.1 Stochastic Discrete Belief Dynamics

Let us be given the belief of the robot’s state at time step t as xt ∼ N (x̂t ,Σt ) and a
control input ut that the robot will execute at time step t . The EKF is used to model
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the stochastic forward belief dynamics [20] by

x̂t+1 = g(x̂t , ut ) + wt , wt ∼ N (0, Kt HtΓt+1), (19)

Σt+1 = Γt+1 − Kt HtΓt+1,

where

Γt+1 = AtΣt AT
t + Mt (x̂t , ut )Mt (x̂t , ut )

T , At = ∂g
∂x

(x̂t , ut ),

Kt = Γt+1H T
t (HtΓt+1H T

t + V (x̂′
t+1))

−1, Ht = ∂h
∂x

(g(x̂t , ut )).

We refer readers to [20] for details of the derivation. Defining the belief bt =[
x̂T

t , vec[√Σt ]T
]T
, the stochastic belief dynamics is given by

bt+1 = Φ(bt , ut ) + W (bt , ut )ξt , ξt ∼ N (0, I ), (20)

where W (bt , ut ) =
[√

Kt HtΓt+1
T
, 0

]T
and vec[Z ] returns a vector consisting of

all the columns of matrix Z . The dynamics is stochastic since the observation is
treated as a random variable.

5.2 Deterministic Inverse Discrete Belief Dynamics

To derive a deterministic inverse belief dynamics, we use the maximum likelihood
observation assumption as introduced in [21].

Proposition 1 (Deterministic InverseDiscreteBeliefDynamics)We assume an EKF
with the maximum likelihood observation assumption is used to propagate the beliefs

forward in time. Given bt+1 = [
x̂T

t+1, vec[
√

Σt+1]T
]T

and the control input ut

applied at time step t, there exists a belief bt = [
x̂T

t , vec[√Σt ]T
]T

such that bt+1 =
Φ(bt , ut ) and bt is represented by

x̂t = ḡ(x̂t+1, ut ), (21)

Σt = Ā−1
t (Γ̄t − M̄t M̄T

t ) Ā−T
t , (22)

where

M̄t = Mt (ḡ(x̂t+1, ut ), ut ), Āt = ∂g
∂x

(ḡ(x̂t+1, ut ), ut ),

Γ̄t = (I − Σt+1 H̄ T
t V̄ −1

t H̄t )
−1Σt+1, H̄t = ∂h

∂x
(x̂t+1), V̄t = V (x̂t+1). (23)

Proof Let us assume xt+1 ∼ N (x̂′
t+1,Σ

′
t+1) is the prior belief obtained from the

process update of the EKF by evolving the system dynamics from time step t to t +1
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before any observation is received.With the prior belief, let us assume an observation
zt+1 is received, and then the EKF updates the belief as follows:

x̂t+1 = x̂′
t+1 + K̄t (zt+1 − h(x̂′

t+1)), Σt+1 = Σ ′
t+1 − K̄t H̃tΣ

′
t+1, (24)

where H̃t = ∂h
∂x (x̂′

t+1) and

K̄t = Σ ′
t+1 H̃ T

t (H̃tΣ
′
t+1 H̃ T

t + V (x̂′
t+1))

−1. (25)

The maximum likelihood observation assumption means zt+1 = h(x̂′
t+1). Hence

we see x̂t+1 = x̂′
t+1 from Eq. (24).Due to this equivalence we can see that H̄t = H̃t

and V̄t = V (x̄′
t+1) (H̄t and V̄t are defined in Eqs. (23)). Hence, Eq. (25) can be

re-written using H̄t and V̄t as

K̄t = Σ ′
t+1 H̄ T

t (H̄tΣ
′
t+1 H̄ T

t + V̄t )
−1. (26)

By right multiplying (H̄tΣ
′
t+1 H̄ T

t + V̄t ) on both sides of the above equation and
then subtracting the term K̄t H̄tΣ

′
t+1 H̄ T

t on both sides, we get

K̄t V̄t = (Σ ′
t+1 − K̄t H̄tΣ

′
t+1)H̄ T

t . (27)

By substitutingΣt+1 fromEq. (24) into the above equation and then rightmultiplying
V̄ −1

t on both sides, we get the expression for K̄t ,

K̄t = Σt+1 H̄ T
t V̄ −1

t . (28)

Then, we substitute Eq. (28) back into Eq. (24) and then solve for Σ ′
t+1,

Σ ′
t+1 = (I − Σt+1 H̄ T

t V̄ −1
t )−1Σt+1. (29)

The process update of EKF can be modeled as

x̂′
t+1 = g(x̂t , ut ), Σ ′

t+1 = ∂g
∂x

(x̂t , ut )Σt
∂g
∂x

(x̂t , ut )
T + Mt (x̂t , ut )Mt (x̂t , ut )

T .

(30)
Since x̂′

t+1 = g(x̂t , ut ) and x̂′
t+1 = x̂t+1, we see x̂t = ḡ(x̂′

t+1, ut ) = ḡ(x̂t+1, ut ).
Hence, we prove Eq. (21).

Substituting x̂t = ḡ(x̂t+1, ut ) into Eq. (30), we get Σ ′
t+1 = ĀtΣt ĀT

t + M̄t M̄T
t ,

where Āt and M̄t are defined in Eqs. (23). We then solve for Σt and get

Σt = Ā−1
t (Σ ′

t+1 − M̄t M̄T
t ) Ā−T

t . (31)

By substituting Eq. (29) into Eq. (31), we prove Eq. (22). �

Equations (21) and (22) model the deterministic discrete inverse belief dynamics,
which wewrite as bt = Φ̄(bt+1, ut ). One can show that bt+1 = Φ(Φ̄(bt+1, ut ), ut ).
With the stochastic discrete forward belief dynamics and deterministic inverse belief
dynamics, together with cost objective Eq. (6) defined over belief space, we can
directly apply SELQR to planning in belief space.



Stochastic Extended LQR: Optimization-Based Motion Planning Under Uncertainty 621

6 Experiments

We demonstrate SELQR in simulation for a car-like robot, a quadrotor, and amedical
steerable needle. Each robot must navigate in an environment with obstacles.We also
apply B-SELQR to a car-like robot. We implemented the methods in C++ and ran
scenarios on a PC with an Intel i3 2.4GHz processor.

In our experiments, we used the local cost functions

c0(x, u) = 1
2 (x − x∗

0)
T Q0(x − x∗

0) + 1
2 (u − u∗)T R(u − u∗),

ct (x, u) = 1
2 (u − u∗)T R(u − u∗) + f (x), cl(x, u) = 1

2 (x − x∗
l )T Ql(x − x∗

l ).

where Q0, Ql , and R are positive definite. We set x∗
0 to be a given initial state and

x∗
l to be a given goal state. Setting Q0 and Ql infinitely large equates to fixing the
initial state and goal state for planning. We set function f (x) to enforce obstacle
avoidance. For SELQR we used the same cost term as in [9]:

f (x) = q
∑

i

exp(−di (x)), (32)

where q ∈ R
+ and di (x) is the signed distance between the robot at state x and

the i’th obstacle. Since the Hessian of f (x) is not always positive semidefinite, we
regularize the Hessian by computing its eigendecomposition and setting the negative
eigenvalues to zeros [9]. We assume each obstacle is convex. For non-convex obsta-
cles, we apply convex decomposition. For B-SELQR, to approximately consider the
probability of collision we set f (b) = q

∑
i exp(−di (b)), where di (b) is the min-

imum number of standard deviations of the mean of the robot’s belief distribution
needed to move to the obstacle’s surface [20].

6.1 Car-Like Robot in a 2-D Environment

We first apply SELQR to a non-holonomic car-like robot that navigates in a
2-D environment and can perfectly sense its state. The robot’s state x = [x, y, θ, v]
consists of its position (x, y), orientation θ, and speed v. The control inputsu = [a,φ]
consist of acceleration a and steering wheel angle φ. The deterministic continuous
dynamics is given by

ẋ = vcos(θ), ẏ = vsin(θ), θ̇ = vtan(φ)/d, v̇ = a, (33)

where d is the length of the car-like robot. We assume the dynamics is corrupted
by noise from a Weiner process (Eq.1) and define N (x(τ ), u(τ ), τ ) = α‖u(τ )‖,
α ∈ R

+. For the cost function we set Q0 = Ql = 200I , R = 1.0I , and q = 0.2.
Figure2a shows the environment and the SELQR trajectory (illustrated by the

path that results from following the control policy computed by SELQR assuming
zero noise). Consideration of stochastic dynamics is important for good performance.
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Fig. 2 a The SELQR trajectory for a car-like robot moving to a green goal while avoiding red
obstacles. b Mean and standard deviations for the deviation from the goal over 1,000 simulations
for SELQR and related methods with different noise levels

Figure2b shows the deviation from the goal for varying levels of noiseα.We compare
with Extended LQR, which uses deterministic dynamics to compute the control
policy, andwith open-loop execution of SELQR’s nominal trajectory,which performs
poorly due to themotion uncertainty and need for feedback. The control policies from
SELQR result in a smaller deviation from the goal since SELQR explicitly considers
the control-dependent noise.

In Table1, we show SELQR’s fast convergence for different values of Δ. The
results are averages of 100 independent runs for random instances. In each instance,
the initial state x∗

0 was chosen by uniformly sampling in theworkspace, and the corre-
sponding goal state was x∗

l = −x∗
0 (where the origin is the center of the workspace).

Compared to iLQG, our method achieved approximately equal costs but required
substantially fewer iterations and less computation time.

Table 1 Quantitative Comparison of SELQR and iLQG

Scenario Δ (s) SELQR iLQG

Avg
cost

Avg
time (s)

Avg
#Iters

Avg
cost

Avg
time (s)

Avg
#Iters

Car-like robot 0.05 79.4 0.4 5.7 80.5 1.1 13.4

0.1 55.5 1.0 16.0 53.4 2.5 43.2

0.2 50.8 1.2 18.4 51.7 2.0 35.4

Quadrotor 0.025 552.1 30.3 7.7 798.0 52.7 23.4

0.05 272.7 50.1 14.4 292.1 113.7 51.6

0.1 191.1 66.3 20.0 197.1 163.9 76.4

Steerable needle 0.075 53.6 0.79 5.3 58.3 1.2 12.5

0.1 42.6 0.95 6.36 44.5 1.4 14.6

0.125 39.1 1.3 10.1 40.0 1.5 15.6
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Fig. 3 SELQR trajectories for a quadrotor in an 8 cylindirical obstacle environment. a SELQR
trajectory with q = 1.0. b SELQR trajectory with q = 0.3

6.2 Quadrotor in a 3-D Environment

To show that SELQRscales to higher dimensions,we apply it to a simulated quadrotor
with a 12-D state space. Its state x = [p, v, r, w] ∈ R

12 consists of position p,
velocity v, orientation r (angle-axis representation), and angular velocity w. Its con-
trol input u = [u1, u2, u3, u4] consists of the forces exerted by each of the four
rotors. We directly adopt the continuous dynamics ẋ = f(x, u) with physical pa-
rameters of the quadrotor and the environment from [9]. We add noise defined by
N (x(τ ), u(τ ), τ ) = α‖u(τ )‖, where α ∈ R

+.
Figure3 shows the SELQR trajectory for two different values of q, where we set

α = 2%, Q0 = Ql = 500I , and R = 20I . As expected, the trajectory with larger q
has larger clearance from obstacles. In Table1, we show SELQR’s fast convergence
for the quadrotor scenario for different values of Δ. We conducted randomized runs
in amanner analagous to Sect. 6.1. For the quadrotor, compared to iLQG, our method
achieved slightly better costs while requiring substantially fewer iterations and less
computation time.

6.3 Medical Needle Steering for Liver Biopsy

We also demonstrate SELQR for steering a flexible bevel-tip needle through liver
tissue while avoiding critical vasculature modeled by a trianglular mesh (Fig. 1). We
use the stochastic needle model introduced in [24], where the kinematics are defined
in SE(3). We represent the state x by the tip’s position p and orientation r (angle-
axis). The control input isu = [v,w,κ]T , where v is the insertion speed,w is the axial
rotation speed, and κ is the curvature, which can vary from 0 to amaximum curvature
of κ0 using duty-cycling. For the cost function, we set u∗ = [0, 0, 0.5κ0]T . Hence,
we penalize large insertion speed, which given l and Δ corresponds to penalizing
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Fig. 4 a B-SELQR trajectory for a car-like robot navigating to a goal (green) in a 2-D light-dark
domain (adapted from [21]). bB-SELQR trajectory for the environment with obstacles (red circles).
The blue ellipsoids show3 standard deviations of the belief distributions. B-SELQRconverges faster
than iLQG in belief space in both scenarios

path length. It also penalizes curvatures that are too large (close to the kinematic
limits of the device) or too small (requiring high-rate duty cycling, which may cause
tissue damage).

Figure3 shows the SELQR trajectories for two insertion locations withΔ = 0.1s,
l = 30, Q0 = Ql = 100I , R = I , and q = 0.5. Table1 shows SELQR’s fast
convergence for the steerable needle for varying Δ. The results are averages of
100 independent runs for random instances. In each instance, the goal state was
held constant, and we set the initial state x∗

0 such that the needle was inserted into
the tissue from a uniformly-sampled point on the left (corresponding to the skin
surface). Compared to iLQG, our method achieved approximately equal costs but
required substantially fewer iterations and less computation time.

6.4 Belief Space Planning for a Car-Like Robot

We apply B-SELQR to the car-like robot in Sect. 6.1 but now with added uncertainty
in sensing. We consider the light-dark domain scenario suggested in [21]. The robot
localizes itself using noisy measurements from sensors in the environment. The
reliability of the measurement varies as a function of the robot’s position. The robot
receives reliable measurements in the bright region and noisier measurements in the
darker regions. Formally, the observation model is

zt = xt + nt , nt ∼ N (0, ((x − x∗)2 + 1)β I ), (34)

where β ∈ R
+ is a given constant.

For belief space planning we use the cost functions

c0(b, u) = 1
2 (b − b∗

0)
T Q0(b − b∗

0) + 1
2 (u − u∗)T R(u − u∗),

ct (b, u) = 1
2 tr[

√
Σ Qt

√
Σ] + 1

2 (u − u∗)T R(u − u∗) + f (b),

cl(b, u) = 1
2 (x̂ − x∗

l )T Ql(x̂ − x∗
l ) + tr[√Σ Ql

√
Σ].

We set Q0 = 1000I , R = 2I , Qt = 10I , Ql = 500I , q = 0.1, and β = 0.1.
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Figure4 shows theB-SELQR trajectory and associated beliefs along the trajectory
for a scenario with and without obstacles. The computed control policies steer the
robot to the light region where the measurement noise is smallest in order to better
localize the robot before proceeding to the goal. We also show the convergence of
B-SELQR. We compare with iLQG executed for the same cost functions in belief
space using themethod in [20]. The statistics were computed by averaging the results
of 100 random instances. (For each random instance, we randomly sampled the initial
state x∗

0.) On average, B-SELQR requires fewer iterations to reach a desired solution
quality.

7 Conclusion

We presented Stochastic Extended LQR (SELQR), a novel optimization-based
motionplanner that computes a trajectory and associated linear control policywith the
objective of minimizing the expected value of a user-defined cost function. SELQR
applies to robotic systems that have stochastic non-linear dynamics and state- and
control-dependent motion uncertainty. We also extended SELQR to applications
with imperfect sensing, requiring motion planning in belief space. Our approach
converges faster and more reliably than related methods in both the robot’s state
space and belief space for multiple simulated scenarios, ranging from a mobile robot
to a steerable needle.

In futurework,we hope to broaden the applicability of the approach. The approach
currently assumesmotion and sensing uncertainty aremodeled usingGaussian distri-
butions.While this assumption is often appropriate, it is not valid for some problems.
Our approach also relies on first and second order information, so to improve stability
we plan to investigate the use of automatic differentiation. We also plan to apply the
methods to physical robots like steerable needles in order to efficiently account for
motion and sensing uncertainty.
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