
Finding a Needle in an Exponential Haystack:
Discrete RRT for Exploration of Implicit
Roadmaps in Multi-robot Motion Planning

Kiril Solovey, Oren Salzman and Dan Halperin

Abstract We present a sampling-based framework for multi-robot motion planning
which combines an implicit representation of a roadmap with a novel approach for
pathfinding in geometrically embedded graphs tailored for our setting. Our pathfind-
ing algorithm, discrete-RRT (dRRT), is an adaptation of the celebrated RRT algo-
rithm for the discrete case of a graph, and it enables a rapid exploration of the
high-dimensional configuration space by carefully walking through an implicit rep-
resentation of a tensor product of roadmaps for the individual robots.We demonstrate
our approach experimentally on scenarios of up to 60 degrees of freedom where our
algorithm is faster by a factor of at least ten when compared to existing algorithms
that we are aware of.

1 Introduction

Multi-robot motion planning is a fundamental problem in robotics and has been
extensively studied. In this work we are concerned with finding paths for a group
of robots, operating in the same workspace, moving from start to target positions
while avoiding collisions with obstacles as well as with each other. We consider the
continuous formulation of the problem, where the robots and obstacles are geometric
entities and the robots operate in a configuration space, e.g., Rd (as opposed to the
discrete variant, sometimes called the pebble motion problem [5, 12, 18, 23], where
the robots move on a graph). Moreover, we assume that each robot has its own start
and target positions, as opposed to the unlabeled case (see, e.g., [3, 17, 30, 32]).

This work has been supported in part by the 7th Framework Programme for Research of the
European Commission, under FET-Open grant number 255827 (CGL—Computational Geom-
etry Learning), by the Israel Science Foundation (grant no. 1102/11), by the German-Israeli
Foundation (grant no. 1150-82.6/2011), and by the Hermann Minkowski–Minerva Center for
Geometry at Tel Aviv University.

K. Solovey and O. Salzman contributed equally to this paper.

K. Solovey (B) · O. Salzman · D. Halperin
Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel
e-mail: kirilsol@post.tau.ac.il

© Springer International Publishing Switzerland 2015
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_34

591



592 K. Solovey et al.

1.1 Previous Work

We assume familiarity with the basic terminology of motion planning. For
background, see, e.g., [10, 21]. Initial work on motion planning aimed to develop
complete algorithms, which guarantee to find a solutionwhen one exists or report that
none exists otherwise. Such algorithms for the multi-robot case exist [28, 29, 36] yet
are exponential in the number of robots. The exponential running time, which may
be unavoidable [14, 31] can be attributed to the high number of degrees of freedom
(dof )—the sum of the dofs of the individual robots.

For two or three robots, the number of dofs may be slightly reduced [4], by con-
structing a path where the robots move while maintaining contact with each other. A
more general approach to reduce the number of dofs was suggested by van den Berg
et al. [7]. In their work, the motion-planning problem is decomposed into subprob-
lems, each consisting of a subset of robots, where every subproblem can be solved
separately and the results can be combined into a solution for the original problem.

Decoupled planners are an alternative to complete planners trading completeness
for efficiency. Typically, decoupled planners solve separate problems for individual
robots and combine the individual solutions into a global solution (see, e.g., [6, 22]).
Although efficient in some cases, the approach usually works only for a restricted
set of problems.

The introduction of sampling-based algorithms such as the probabilistic road-
map method (PRM) [16], the rapidly-exploring random trees (RRT) [19] and their
many variants, had a significant impact on the field of motion planning due to their
efficiency, simplicity and applicability to a wide range of problems. Sampling-based
algorithms attempt to capture the connectivity of the configuration space (C-space)
by sampling collision-free configurations and constructing a roadmap—a graph data
structure where the free configurations are vertices and the edges represent collision-
free paths between nearby configurations. Although these algorithms are not com-
plete, most of them are probabilistically complete, that is, they are guaranteed to
find a solution, if one exists, given a sufficient amount of time. Recently, Karaman
and Frazzoli [15] introduced several variants of these algorithms such that, with high
probability they produce paths that are asymptotically optimal with respect to some
quality measure.

Sampling-based algorithms can be easily extended to the multi-robot case by
considering the fleet of robots as one composite robot [27]. Such a naive approach
suffers from inefficiency as it overlooks aspects that are unique to the multi-robot
problem. More tailor-made sampling-based techniques have been proposed for the
multi-robot case [13, 26, 30]. Particularly relevant to our efforts is the work of
Švestka and Overmars [33] who suggested to construct a composite roadmap which
is a Cartesian product of roadmaps of the individual robots. Due to the exponential
nature of the resulting roadmap, this technique is only applicable to problems that
involve a modest number of robots. A recent work by Wagner et al. [35] suggests
that the composite roadmap does not necessarily have to be explicitly represented.
Instead, they maintain an implicitly represented composite roadmap, and apply their
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M* algorithm [34] to efficiently retrieve paths,whileminimizing the explored portion
of the roadmap. The resulting technique is able to cope with a large number of robots,
for certain types of scenarios. Additional information on these two approaches is
provided in Sect. 2.

1.2 Contribution

Wepresent a sampling-based algorithm for themulti-robotmotion-planning problem
called multi-robot discrete RRT (MRdRRT). Similar to the approach of Wagner et
al. [35], we maintain an implicit representation of the composite roadmap. We pro-
pose an alternative, highly efficient, technique for pathfinding in the roadmap, which
can cope with scenarios that involve tight coupling of the robots. Our new approach,
which we call dRRT, is an adaptation of the celebrated RRT algorithm [19] for the
discrete case of a graph, embedded in Euclidean space.1 dRRT traverses a com-
posite roadmap that may have exponentially many neighbors (exponential in the
number of robots that need to be coordinated). The efficient traversal is achieved
by retrieving only partial information of the explored roadmap. Specifically, it con-
siders a single neighbor of a visited vertex at each step. dRRT rapidly explores the
C-space represented by the implicit graph. Integrating the implicit representation of
the roadmap allows us to solve multi-robot problems while exploring only a small
portion of the C-space.

We demonstrate the capabilities of MRdRRT on the setting of polyhedral robots
translating and rotating in space amidst polyhedral obstacles.We provide experimen-
tal results on several challenging scenarios, where MRdRRT is faster by a factor of
at least ten when compared to existing algorithms that we are aware of. We show that
we manage to solve problems of up to 60 dofs for highly coupled scenarios (Fig. 1).

The organization of this paper is as follows. In Sect. 2 we elaborate on two
sampling-basedmulti-robotmotion planning algorithms, namely the composite road-
map approach by Švestka andOvermars [33] and thework on subdimensional expan-
sion and M* by Wagner et al. [34, 35]. In Sect. 3 we introduce the dRRT algorithm.
For clarity of exposition, we first describe it as a general pathfinding algorithm for
geometrically embedded graphs. In the following section (Sect. 4) we describe the
MRdRRTmethod where dRRT is used in the setting of multi-robot motion-planning
problem for the exploration of the implicitly represented composite roadmaps. We
show in Sect. 5 experimental results for the algorithm on different scenarios and
conclude the paper in Sect. 6 with possible future research directions.

1We mention that we are not the first to consider RRTs in discrete domains. Branicky et al. [9]
applied the RRT algorithm to a discrete graph. However, a key difference between the approaches is
that we assume that the graph is geometrically embedded, hence we use random points as samples
while they use nodes of the graph as samples. Additionally, their technique requires that all the
neighbors of a visited vertex will be considered—a costly operation in our setting, as mentioned
above.
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Fig. 1 3D environments with robots that are allowed to rotate and translate (6DOFs). In scenarios
a–c robots of the same color need to exchange positions. a Twisty scenario with 8 corkscrew-shaped
robots, in a room with a barrier. b Abstract scenario with 8 L-shaped robots. c Cubicles scenario
with 10 L-shaped robots. d Home scenario with 5 table-shaped robots that are placed in different
rooms. The goal is to change rooms in a clockwise order. The scenario were constructed using
meshes that are provided by the Open Motion Planning Library [11] (OMPL 0.10.2) distribution

2 Composite Roadmaps for Multi-robot Motion Planning

We describe the composite roadmap approach introduced by Švestka and
Overmars [33]. Here, a Cartesian product of PRM roadmaps of individual robots
is considered as a means of devising a roadmap for the entire fleet of robots. How-
ever, since they consider an explicit construction of this roadmap, their technique
is applicable to scenarios that involve only a small number of robots. To overcome
this, Wagner et al. suggest [34, 35] to represent the roadmap implicitly and describe
a novel algorithm to find paths on this implicit graph.

Let r1, . . . , rm be m robots operating in a workspace W with start and target
configurations si , ti . We wish to find paths for every robot from start to target, while
avoiding collision with obstacles as well as with the other robots. Let Gi = (Vi , Ei )

be a PRM roadmap for ri , |Vi | = n, and let k denote themaximal degree of a vertex in
anyGi . In addition, assume that si , ti ∈ Vi , and that si , ti reside in the same connected
component of Gi . Given such a collection of roadmaps G1, . . . , Gm a composite
roadmap can be defined in two different ways—one is the result of a Cartesian
product of the individual roadmaps while in the other a tensor product is used [2].
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The composite roadmap G = (V,E) is defined as follows. The vertices V

represent all combinations of collision-free placements of the m robots. Formally,
a set of m robot configurations C = (v1, . . . , vm) is a vertex of G if for every i ,
vi ∈ Vi , and in addition, when every robot ri is placed in vi the robots are pair-
wise collision-free. The Cartesian and tensor products differ in the type of edges in
the resulting roadmap. If the Cartesian product is used, then (C, C ′) ∈ E, where
C = (v1, . . . , vm), C ′ ∈ (v′

1, . . . , v
′
m), if there exists i such that (vi , v

′
i ) ∈ Ei , for

every j �= i it holds that v j = v′
j , and ri does not collide with the other robots

stationed at v j = v′
j while moving from vi to v′

i . A tensor product generates many
more edges. Specifically, (C, C ′) ∈ E if (vi , v

′
i ) ∈ Ei for every i , and the robots

remain collision-free while moving on the respective single-graph edges.2

Remark Throughout thiswork, unless stated otherwise,we refer to the tensor product
composite roadmap.

Note that by the definition of Gi and G it holds that S, T ∈ V, where S =
(s1, . . . , sm), T = (t1, . . . , tm). The following observation immediately follows (for
both product types).

Observation 1 Let C1, . . . , Ch be a sequence of h vertices of G such that S =
C1, T = Ch and for every two consecutive vertices (Ci , Ci+1) ∈ E. Then, there
exists a path for the robots from S to T .

Thus, given a composite roadmapG, it is left to find such a path between S and T .
Unfortunately, standard pathfinding techniques, which require the full representation
of the graph, cannot be used since the number of vertices ofG alonemay reach O(nm).
One may consider the A* algorithm [25] , or its variants, as appropriate for the task,
since it may not need to traverse all the vertices of graph. A central property of A*
is that it needs to consider all the neighbors of a visited vertex in order to guarantee
that it will find a path eventually. Alas, in our setting, this turns out to be a significant
drawback, since the number of neighbors of every vertex is O(km).

Wagner et al. propose an adaptation of A* to the case of a composite roadmap
calledM* [34]. Their approach exploits the observation that only the motion of some
robots has to be coupled in typical scenarios. Thus, planning in the joint C-space
is only required for robots that have to be coupled, while the motion of the rest of
the robots can be planned individually. Hence, their method dynamically explores
low-dimensional search spaces embedded in the full C-space, instead of the joint
high-dimensional C-space. This technique is highly effective for scenarios with a
low degree of coupling, and can cope with large fleets of robots in such settings.
However, when the degree of coupling increases, we observed sharp increase in the
running time of this algorithm, as it has to considermany neighbors of a visited vertex.

2There is wide consensus on the term tensor product as defined here, and less so on the term
Cartesian product. As the latter has already been used before in the context of motion planning, we
will keep using it here as well.
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3 Discrete RRT

We describe a technique which we call discrete RRT (dRRT) for pathfinding in
implicit graphs that are embedded in a Euclidean space. For clarity of exposition,
we first describe dRRT without the technicalities related to motion planning. We add
these details in the subsequent section. As the name suggests, dRRT is an adapta-
tion of the RRT algorithm [19] for the purpose of exploring discrete geometrically-
embedded graphs, instead of a continuous space.

Since the graph serves as an approximation of some relevant portion of the Euclid-
ean space, traversal of the graph can be viewed as a process of exploring the subspace.
The dRRTalgorithm rapidly explores the graph by biasing the search towards vertices
embedded in unexplored regions of the space.

LetG = (V, E) be a graphwhere every v ∈ V is embedded in a point in Euclidean
space Rd and every edge (v, v′) ∈ E is a line segment connecting the points. Given
two vertices s, t ∈ V , dRRT searches for a path in G from s to t . For simplicity,
assume that the graph is embedded in [0, 1]d .

Similarly to its continuous counterpart, dRRTgrows a tree rooted in s and attempts
to connect it to t to form a path from s to t . As in RRT, the growth of the tree is
achieved by extending it towards random samples in [0, 1]d . In our case though,
vertices and edges that are added to the trees are taken from G, and we do not
generate new vertices and edges along the way.

As G is represented implicitly, the algorithm uses an oracle to retrieve information
regarding neighbors of visited vertices.We first describe this oracle and then proceed
with a full description of the dRRT algorithm. Finally, we show that this technique
is probabilistically complete.

3.1 Oracle to Query the Implicit Graph

In order to retrieve partial information regarding the neighbors of visited vertices,
dRRT consults an oracle described below. We start with several basic definitions.

Given two points v, v′ ∈ [0, 1]d , denote by ρ(v, v′) the ray that starts in v and
goes through v′. Given three points v, v′, v′′ ∈ [0, 1]d , denote by ∠v(v

′, v′′) the
(smaller) angle between ρ(v, v′) and ρ(v, v′′).

Definition 1 (Direction Oracle) Given a vertex v ∈ V , and a point u ∈ [0, 1]d we
define

OD(v, u) := argmin
v′

{
∠v(u, v′)|(v, v′) ∈ E

}
.

In other words, the direction oracle returns the neighbor v′ of v such that the direction
from v to v′ is closest to the direction from v to u.
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3.2 Description of dRRT

At a high level, dRRT proceeds similar to the RRT algorithm, and we repeat it here
for completeness. The dRRT algorithm (Algorithm 1) grows a trees T which is a
subgraphs of G and is rooted in s (line 1). The growth of T (line 3) is achieved by an
expansion towards random samples. Additionally, an attempt to connect T with t is
made (line 4). The algorithm terminates when this operation succeeds and a solution
path is generated (line 6), otherwise the algorithm repeats line 2.

Expansion of T is performed by the EXPAND operation (Algorithm 2) which
performs N iterations that consist of the following steps: A point qrand is sampled
uniformly from [0, 1]d (line 2). Then, a node qnear that is the closest to the sample
(in Euclidean distance), is selected (line 3). qnear is extended towards the sample by
locating the vertex qnew ∈ V , that is the neighbor of qnear in G in the direction of
qrand (by the direction oracle OD). Once qnew is found (line 4), it is added to the
tree (line 6) with the edge (qnear, qnew) (line 7). See an illustration of this process
in Fig. 2. This is already different from the standard RRT as we cannot necessarily
proceed exactly in the direction of the random point.

After the expansion, dRRT attempts to connect the tree T with t using the CON-
NECT_TO_TARGET operation (Algorithm 3). For every vertex q of T , which one
of the K nearest neighbors of t in T (line 1), an attempt is made to connect q to
t using the method LOCAL_CONNECTOR (line 2) which is a crucial part of the
dRRT algorithm (see Sect. 3.3).

Finally, given a path from some node q of T to t the method RETRIEVE _PATH
(Algorithm 1, line 6) returns the concatenation of the path from s to q, with �.

3.3 Local Connector

We show in the following subsection that it is possible that T will eventually reach t
during the EXPAND stage, and therefore an application of LOCAL_CONNECTOR
will not be necessary. However, in practice this is unlikely to occur within a short
time frame, especially when G is large. Thus, we employ a heavy-duty technique,
which given two vertices q0, q1 of G tries to find a path between them. We mention
that it is common to assume in sampling-based algorithms that connecting nearby
samples will require less effort than solving the initial problem and here we make a

Algorithm 1 dRRT_PLANNER (s, t)
1: T .init(s)
2: loop
3: EXPAND(T )
4: � ← CONNECT_TO_TARGET(T , t)
5: if not_empty(�) then
6: return RETRIEVE_PATH(T ,�)
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Fig. 2 An illustration of the expansion step of dRRT. The tree T is drawn with black vertices
and edges, while the gray elements represent the unexplored portion of the graph G. a A random
point qrand (purple) is drawn uniformly from [0, 1]d . b The vertex qnear of T that is the Euclidean
nearest neighbor of qrand is extracted. c The neighbor qnew of qnear , such that its direction from
qnear is the closest to the direction of qrand from qnear , is identified. d The new vertex and edge
are added to T . Additional information for Theorem 2 : In b the Voronoi diagram of the vertices
of T is depicted in blue, and the Voronoi cell of qnear , Vor(qnear), is filled with light blue. In c
the Voronoi diagram of the rays that leave qnear and pass through its neighbors is depicted in red,
and the Voronoi cell of ρ(qnear, qnew), Vor′(qnear, qnew), is filled with pink. The purple region in d
represents Vor(qnear) ∩ Vor′(qnear, qnew)

similar assumption. We assume that a local connector is effective only on restricted
pathfinding problems, thus in the general case it cannot be applied directly on s, t , as
it may be highly costly (unless the problem is easy). A concrete example of a local
connector is provided in the next section.

3.4 Probabilistic Completeness of dRRT

Recall that an algorithm is probabilistically complete if the probability it finds a
solution tends to one as the run-time of the algorithm tends to infinity (when such
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a solution exists). For simplicity, we show that dRRT possesses a stronger property
and with high probability will reveal all the vertices of the traversed graph, assuming
this graph is connected.

The proof relies on the assumption that the vertices of the traversed graph G are in
general position, that is, every pair of distinct vertices are embedded in two distinct
points in R

d , and for every triplet of distinct vertices the points in which they are
embedded are non-collinear. This issue will be addressed in the following section,
where we consider the application of dRRT on a specific type of graphs. The proof
does not need to take into consideration the local connector.

Theorem 1 Let G = (V, E) be a connected graph embedded in [0, 1]d where the
vertices are in general position. Then, with high probability, every vertex of G will
be revealed by the dRRT algorithm, given sufficient amount of time.

Algorithm 2 EXPAND (T )
1: for i = 1 → N do
2: qrand ← RANDOM_SAMPLE()
3: qnear ← NEAREST_NEIGHBOR(T , qrand)
4: qnew ← OD(qnear, qrand)
5: if qnew �∈ T then
6: T .add_vertex(qnew)
7: T .add_edge(qnear, qnew)

Algorithm 3 CONNECT_TO_TARGET(T , t,)
1: for q ∈ NEAREST_NEIGHBORS(T , t, K ) do
2: � ← LOCAL_CONNECTOR(q, t)
3: if not_empty(�) then
4: return �

5: return ∅

Proof Denote byU the set of vertices of T after the completion of an iteration of the
algorithm. Let v∗ ∈ V \ U be an unvisited vertex such that there exists (v, v∗) ∈ E ,
where v ∈ U . We wish to show that the probability that T will be expanded on
the edge (v, v∗), and thus v∗ will be added to U , is bounded away from zero. For
simplicity we assume that there exists a single vertex v ∈ U that has an edge to v∗.

Denote by Vor(v) the Voronoi cell [8] of the site v, in the Euclidean (standard)
Voronoi diagram of point sites, where the sites are the vertices of U (Fig. 2b). In
addition, denote by Vor′(v, v∗) the Voronoi cell of ρ(v, v∗), in a Voronoi diagram of
the ray sites ρ(v, v∗), ρ(v, u1), . . . , ρ(v, u j ), where u1, . . . , u j are the neighbors of
v in T , not including v∗ (Fig. 2c).

Notice that in order to extend T from v to v∗ the random sample qrand in EXPAND
(Algorithm 2) has to fall inside Vor(v)∩Vor′(v, v∗). Thus, in order to guarantee that
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v∗ will be added to T , with non-zero probability, we show that the shared region
between these two cells has non-zero measure, namely |Vor(v) ∩ Vor′(v, v∗)| > 0,
where |�| denotes the volume of �.

By the general position assumption we can deduce that |Vor(v)| > 0 and
|Vor′(v, v∗)| > 0. In addition, the intersection between the two cells is clearly non-
empty: There is a ball with radius r > 0whose center is v and is completely contained
inVor(v); similarly, there is a cone of solid angle α > 0with apex at v fully contained
in Vor′(v, v∗). Hence, it holds that |Vor(v) ∩ Vor′(v, v∗)| > 0, otherwise v and v∗
are embedded in the same point. �

Wenote that amore careful analysis can yield an explicit boundon the convergence
rate of dRRT. Such a bound may be computed using the size of the smallest cell in
the Voronoi diagram of all nodes of G.

4 Multi-robot Motion Planning with dRRT

In this section we describe the MRdRRT algorithm. Specifically, we discuss the
adaptation of dRRT for pathfinding in a composite roadmap G, which is embedded
in the joint C-space of m robots. In particular, we show an implementation of the
oracleOD , which relies solely on the representation ofG1, . . . , Gm . Additionally,we
discuss an implementation of the local connector component that takes advantage
of the fact that G represents a set of valid positions and movements of multiple
robots. Finally, we discuss the probabilistic completeness of our entire approach to
multi-robot motion planning.

4.1 Oracle OD

Recall that given C ∈ V and a random sample q,OD(C, q) returns C ′ such that C ′ is
a neighbor of C inG, and for every other neighbor C ′′ of C , ρ(C, q) forms a smaller
angle with ρ(C, C ′) than with ρ(C, C ′′), where ρ is as defined in Sect. 3.4.

Denote by C(ri ) the C-space of ri . Let q = (q1, . . . , qm) where qi ∈ C(ri ), and
let C = (c1, . . . , cm) where ci ∈ Vi . To find a suitable neighbor for C we first find
the most suitable neighbor for every individual robot and combine the m single-
robot neighbors into a candidate neighbor for C . We denote by c′

i = OD(ci , qi ) the
neighbor of ci inGi that is in the direction of qi . Notice that the implementation of the
oracle for individual roadmaps is trivial—for example, by traversing all the neighbors
of ci in Gi . Let C ′ = (c′

1, . . . , c′
m) be a candidate for the result of OD(C, q). If

(C, C ′) represents a valid edge in G, i.e., no robot-robot collision occurs, we return
C ′. Otherwise, OD(C, q) returns ∅. In this case, the new sample is ignored and
another sample is drawn in the EXPAND phase (Algorithm 2).

The completeness proof of the dRRT (Theorem1) for this specific implementation
of OD , is straightforward. Notice that in order to extend C = (c1, . . . , cm) to C ′ =



Finding a Needle in an Exponential Haystack … 601

(c′
1, . . . , c′

m) the sample q = (q1, . . . , qm) must obey the following restriction: For
every robot ri , qi must lie in Vor(ci ) ∩ Vor′(ci , c′

i ) (where in the original proof we
required that q will lie in Vor(C) ∩ Vor′(C, C ′)). Also note that the points in C(ri )

are in general position, as required by Theorem 1, since theywere uniformly sampled
by PRM.

4.2 Local Connector Implementation

Recall that in the general dRRT algorithm the local connector is used for connect-
ing two given vertices of a graph. As our local connector we rely on a framework
described by van den Berg et al. [7]. Given two vertices V = (v1, . . . , vm),V′ =
(v′

1, . . . , v
′
m) ofGwe find for each robot i a path πi on Gi from vi to v′

i . The connec-
tor attempts to find an ordering of the robots such that robot i does not leave its start
position on πi until robots with higher priority reached their target positions on their
respective path, and of course that it also avoids collisions. When these robots reach
their destination robot i moves along πi from πi (0) to πi (1). During the movement
of this robot the other robots stay put.

The priorities are assigned according to the following rule: if moving robot i along
πi causes a collision with robot j that is placed in v j then robot i should move after
robot j . Similarly, if i collides with robot j that is placed in v′

j then robot i should
move before robot j . This prioritization induces a directed graph I. In case this
graph is acyclic we generate a solution according to the prioritization of the robots.
Otherwise, we report failure.

We decided to use this simple technique in our experiments due to its low cost,
in terms of running time, regardless of whether it succeeds finding a solution or not.
We wish to mention that we also experimented with M* with a bounded degree of
coupling (to avoid considering exponentially many neighbors) as the local connector
in our algorithm.However, the ordering algorithmof [7] turned out to be considerably
more efficient.

4.3 Probabilistic Completeness of MRdRRT

In order for the motion-planning framework to be probabilistically complete, we still
need to show that (i) as the number of samples used for each single-robot roadmap
tends to infinity, the composite roadmap will contain a path (if such a path exists) and
(ii) that the proof of Theorem 1 still holds when the size of the graph tends to infinity.
Indeed, Švestka and Overmars [33] show that the composite roadmap approach is
probabilistically complete when the graph-search algorithm is complete. However,
in our setting, the graph-search algorithm is only probabilistically complete and the
proof may need to be refined as the size of each Voronoi cell tends to zero.

We note that as the composite roadmap is finite, it is easy to modify the dRRT
algorithm such that it will be complete. This may be done by keeping a list of
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exposed nodes that still have unexposed edges. At the end of every iteration of the
main loop of dRRT (Algorithm 1, line 2) one node is picked from the list and one of
its unexposed edges is exposed (finding an unexposed edge is done in a brute force
manner). Although the above modification ensures completeness of dRRT and hence
probabilistic completeness of MRdRRT, we are currently looking for an alternative
proof that does not require altering the dRRT algorithm.

5 Experimental Results

We implemented MRdRRT for the case of polyhedral robots translating and rotating
among polyhedral obstacles (see Fig. 1). We compared the performance ofMRdRRT
with RRT and an improved (recursive) version of M* that appears in [34]. To make
the comparison as equitable as possible, as dRRT does not take into consideration the
quality of the solution, we use the inflated version ofM* [34] with relaxed optimality
guarantees.

Implementation details. The algorithmswere implemented inC++. The experiments
were conducted on a laptop with an Intel i5-3230M 2.60GHz processor with 16GB
of memory, running 64-bit Windows 7. We implemented a generic framework for
multi-robot motion planning based on composite roadmaps. The implementation
relies on PQP [1] for collision detection, and performs nearest-neighbor queries
using the Fast Library for Approximate Nearest Neighbors (FLANN) [24]. Metrics,
sampling and interpolation in the 3D environments followed the guidelines presented
by Kuffner [20]. To eliminate the dependence of dRRT on parameters we assigned
them according to the number of iterations the algorithm performed so far, i.e.,
the number of times that the main loop has been repeated. Specifically, in the i’th
iteration each EXPAND (Algorithm 2) call performs 2i iterations (N = 2i ), while
CONNECT_TO_TARGET uses K = i candidates that are connected with t .

Test scenarios. We report in Table1 the running times of M* and dRRT for the
scenarios. The first three scenarios are especially challenging as they consist of a
large number of robots, and require a substantial amount of coordination between
them. The fourth scenario (“Home”) is more relaxed and consists of only five robots
and requires little coordination.

We ran each of the three algorithms 10 times on each scenario. RRT proved
incapable of solving any of the test scenarios, running for several tens of minutes
until terminating due to exceeding the memory limits. We believe that RRT as-
is is not suitable for high-dimensional, coupled, multi-robot motion planning. M*
exhibited slightly better performance. For the first three scenarios, which involve
multiple robots and require a substantial amount of coordination, it never exceeded
a success rate of 40%. In particular, it often ran out of memory or ran for a very long
duration (we terminated it if its running time exceeded ten times the running time
of MRdRRT). On the other hand, MRdRRT was stable in its results and managed to
solve all the scenarios for each of the 10 attempts. When M* did manage to solve
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one of the first three scenarios, it explored between 2.5 and 10 times the number of
vertices that dRRT explored. For the fourth scenario the results of MRdRRT and M*
were comparable and in general we found M* more suitable for situations where
only a small number of robots have to interact at any given time. We mention that
MRdRRT was unable to solve scenarios that consist of a substantially larger number
of robot than we used in our experiments. We believe that it would be beneficial to
consider a stronger local connector in such cases.

6 Discussion

In this section we state the benefits of MRdRRT, which consists of an implicitly
represented roadmaps for multi-robot motion planning combined with an efficient
approach for pathfinding for such roadmaps.

Recall that the implicitly-represented composite roadmap G results from a ten-
sor product of m PRM roadmaps G1, . . . , Gm . The reliance on the precomputed
individual roadmaps eliminates the need to perform additional collision checking
between robots and obstacles while querying G. This has a substantial impact on
the performance of MRdRRT as it is often the case that checking whether m robots
collide with obstacles is much more costly than checking whether the m robots col-
lide between themselves. This is in contrast with more naive approaches, such as
RRT which consider the group of robots as one large robot. In such cases, checking
whether a configuration (or an edge) is collision free requires checking for the two
types of collisions simultaneously.

The M* algorithm, which also uses the underlying structure of G, performs very
well in situations where only a small subset of the robots need to coordinate. In
these situations it can cope, almost effortlessly, with several tens of robots while
outperforming our framework. However, in scenarios where a substantial amount of
coordination is required between the robots M* suffers from a disadvantage, since it
is forced to consider exponentially many neighbors when performing the search on
G. In contrast, dRRT performs a “minimalistic” search and advances in small steps,
little by little, regardless of the difficulty of the problem at hand. Moreover, dRRT
strives to reach unknown regions inGwhile avoiding spending too much time in the
exploration of regions that are in the vicinity of explored vertices. This is done via
the Voronoi bias, as shown in the proof of Theorem 1. This is extremely beneficial
when working on G since it contains vertices which represent essentially the same
conformation of the robots, and thus considering many vertices within a small region
would not lead to a better understanding of the problem at hand. To justify this claim,
consider the following example. Suppose that for every robot i , vi is a vertex of Vi

that has k neighbors in Gi at distance at most ε. Then the vertex (v1, . . . , vm) ∈ V

might have as much as km neighbors that are at distance at most ε
√

m in G.
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7 Future Work

Towards optimality. Currently, our algorithmic framework is concernedwithfinding
some solution. Our immediate future goal is to modify it to provide a solution with
quality guarantees, possibly by taking an approach similar to the continuous RRT*
algorithm [15], which is known to be asymptotically optimal. A fundamental differ-
ence between RRT* and the original formulation of RRT is in a rewiring step, where
the structure of the tree is revised to improve previously examined paths. Specifically,
when a new node is added to the tree, it is checked as to whether it will be more
beneficial for some of the existing nodes to point to the new vertex instead of their
current parent in the tree. This can be adapted, to some extent, to the discrete case,
although it is not clear whether this indeed will lead to optimal paths.

dRRT in other settings of motion planning. In this paper we combined the dRRT
algorithm with implicit composite roadmaps to provide an efficient algorithm for
multi-robot motion planning. One of the benefits of our framework comes from the
fact that it reuses some of the already computed information to avoid performing
costly operations. In particular, it refrains from checking collisions between robots
with obstacles by forcing the individual robots to move on precalculated individ-
ual roadmaps (i.e., Gi ). We believe that a similar approach can be used in other
settings of motion planning. In particular, we are currently working on a dRRT-based
approach for motion planning of a multi-linked robot. The new approach generates
an implicitly-represented roadmap, which encapsulates information on configura-
tions and paths between configuration that do not induce self-intersections of the
robot, while ignoring the existence of obstacles. Then, we overlay this roadmap on
the workspace, an operation which invalidates some of the nodes and edges of the
roadmap. Thus, we know only which configurations are self-collision free, but not
obstacles collision-free. Then we use dRRT for pathfinding on the new roadmap,
while avoiding self-collision tests and while exploring a small portion of the infinite
roadmap.

Acknowledgments We wish to thank Glenn Wagner for advising on the M* algorithm and Ariel
Felner for advice regarding pathfinding algorithms on graphs. We note that the title “Finding a
Needle in an Exponential Haystack” has been previously used in a talk by Joel Spencer in a different
context.
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