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Abstract This paper introduces a local motion planning method for robotic systems
withmanipulating limbs, moving bases (legged or wheeled), and stance stability con-
straints arising from the presence of gravity. We formulate the problem of selecting
local motions as a linearly constrained quadratic program (QP), that can be solved
efficiently. The solution to this QP is a tuple of locally optimal joint velocities. By
using these velocities to step towards a goal, both a path and an inverse-kinematic
solution to the goal are obtained. This formulation can be used directly for real-
time control, or as a local motion planner to connect waypoints. This method is
particularly useful for high-degree-of-freedom mobile robotic systems, as the QP
solution scales well with the number of joints. We also show how a number of practi-
cally important geometric constraints (collision avoidance, mechanism self-collision
avoidance, gaze direction, etc.) can be readily incorporated into either the constraint
or objective parts of the formulation. Additionally, motion of the base, a particular
joint, or a particular link can be encouraged/discouraged as desired. We summarize
the important kinematic variables of the formulation, including the stance Jacobian,
the reach Jacobian, and a center of mass Jacobian. The method is easily extended to
provide sparse solutions, where the fewest number of joints are moved, by iteration
using Tibshirani’s method to accommodate an l1 regularizer. The approach is vali-
dated and demonstrated on SURROGATE, a mobile robot with a TALON base, a 7
DOF serial-revolute torso, and two 7 DOF modular arms developed at JPL/Caltech.
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1 Introduction

Consider one or more (possibly redundant) serial chain manipulator arms mounted
on a mobile robot base. The base could be a wheeled or tracked vehicle, or it may
be a multi-legged walker (see Fig. 1a, b). The mechanism may also contain a neck
upon which visual and range sensors are mounted. We are particularly interested in
the cases where the arms have sufficient reach and mass such that the mobile vehicle
may tip over in the presence of gravity when they are extended too far during a
manipulation task.

Suppose the robot must manipulate an object, where the manipulation task can
be described by tool frame locations.

1. What arm configurations satisfy the manipulation constraints?
2. How do we apportion base and limb motion to achieve the goal?
3. How do we guard against vehicle tip-over—can we move the limbs in such a way

as to keep the system center of mass over a safe region of support?q Can we move
in a way to improve stability with respect to gravitational forces?

4. How dowe incorporate natural task constraints, such asmechanism self-collision,
obstacle avoidance, and preferred camera gaze direction?

These problems form a generalized inverse kinematic problem, where the distal
end of the manipulator(s) must be placed at specified locations, while incorporating
numerous constraints, as well as optimality criteria which resolve ambiguities in the
case of multiple possible solutions. The optimality criteria also endow the solution
with desirable properties. Since the analysis in this paper is limited to quasi-static
motions, the key kinematic variables governing arm motions and center of mass
stability can be formulated in terms of appropriate Jacobian matrices (see Sect. 2).

Because systems of the type seen in Fig. 1a, b are kinematically redundant, we pro-
pose a solution which is intellectually related to the classical methods of redundancy
resolution in fixed based redundant manipulator arms [1, 2]. However, instead of
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Fig. 1 Key reference frames for, a a legged-base robot, b a wheeled-base robot, c manipulator base
robot
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using a classical Jacobian pseudo-inverse type of solution, we formulate the problem
as a convex optimization problem, specifically a constrainedQuadratic Programming
problem. Like the task-priority method of redundancy resolution [2], the formulation
allows for multiple task priorities to be encoded as constraints or optimality criteria.
However, unlike Jacobian pseudo-inverse methods, our QP formulation readily inco-
porates hard constraints and multiple optimality criteria, has better performance near
singulariites, and in practice tends to avoid awkward solutions for large kinematic
chains [3]. Its real-time performance renders obsolete the need for heuristics [4] or
look-up tables [5] to circumvent the curse of dimensionality with highly articulated
systems.

The problem of mobile manipulation planning [6, 7] and whole body motion
planning for humanoids [8] or multi-legged systems has attracted researchers for
several decades. Theoretical advances in Convex Programming, and the associated
introduction of efficient numerical optimization codes, allow us to propose new
approaches which have not only serious computational speed advantages, but also
allow added flexibility and generality in specifying the task objectives.

We are not the first to propose the use of Convex Optimization or Quadratic Pro-
gramming techniques for solving inverse kinematics problems, for localmotion plan-
ing of highly articulated mechanisms, or whole body manipulation planning. Zhang
et al. [9, 10] used quadratic programming to solve kinematically redundant manipu-
lator redundancy resolution problems. Kanehiro et al. [11, 12] show the use of QPs
to incorporate fast collision avoidance calculations as part of humanoid whole body
motion planning. Our method incorporates many additional constraints and optimal-
ity criteria, and our explicit formulation of several key kinematic equations [13] gives
us significant advantages in terms of reported computation time (even adjusting for
Moore’s law). Very recently, MIT’s DARPA Robotics Challenge team [14] used a
sparse nonlinear optimization software that employs a sequential quadratic program-
ming approach, to find inverse kinematic solutions to pose the Atlas humanoid robot,
or to solve localmotion planningproblems involvingmanipulationwithAtlas.Weuse
a different objective function, which has several advantages, incorporate additional
task criteria, and our explicit kinematic formulae also give us a reported computa-
tional speed advantage. We also provide solution existence and uniqueness results,
and local feasibility certificates. Finally, or method can be readily adapted to pro-
vide sparse solutions, where only a minimum number of joints are moved in solving
the motion planning problem. For mechanisms configured with brakes on the joint
actuators, this option allows for energetically efficient mechanism motions, as much
of the gravitational load on the mechanism can be supported by the friction forces at
the brakes, instead of active joint torques.

We do not consider dynamic effects in this paper. However, many (e.g. [15] and
citations therein) have obtained controllers for full dynamic models of humanoids
with contact from simple convex QPs.

Structure of the Paper: Sect. 2 reviews the kinematics required to explicitly
describe all possible motions of any robot link as well as the center of mass as a
function of joint motions. In Sect. 3 we describe the optimization based approach
to finding paths in configuration space that reach a given task-frame goal, and pro-
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vide some analysis and describe extensions. In Sect. 4, we validate our ideas on the
SURROGATE platform, and provide details related to computation time.

2 Stance and Reach Kinematics for Mobile Robots

We are interested in developing a whole body local planning framework which can
be applied to

• multi-limbed robots, such as RoboSimian (see [13]), which can use its limbs either
for walking or manipulating (Fig. 1a).

• wheeled or tracked vehicles mounted with one or more manipulators, and possibly
articulated torsos (Fig. 1b and Sect. 4), such as the SURROGATE robot described
in Sect. 4.

• multi-limbed robots with a fixed base, but a possible articulated torso (Fig. 1c).
While such robots are not mobile in a conventional sense, their articulated torso
presents a similar problem of apportioning the task-solving motions between the
limb and the torso. Also, movements of the system’s center-of-mass far from the
base places very large strain on the torso motors.

For this class of problems, we are concerned with describing the motions of a
tool frame affixed to the manipulator(s), a frame describing the base’s location, and
the location of the center of mass (since its position affects quasi-static stability
of the vehicle), all with respect to a world frame, W . This section reviews and
derives the basic kinematic relationships between the movement of the frames and
the mechanism joint motions. We also need to incorporate knowledge of the contact
forces between feet and the terrain to ensure stability in the legged case. Let B
denote a right-handed orthogonal coordinate system fixed to the robot’s base, and
let reference frame Ei be affixed to the end-effector of the i th manipulating arm.
We will call the point at which the manipulator is attached to the base a shoulder,
and to it we associate the reference frame Si . We use conventions and notions from
[16], which describes rigid body transformations using homogeneous transforms and
velocities using twists. We will first develop some general relationships that govern
this problem, and then specialize them for the particular classes of robots in Fig. 1.

2.1 Reach Jacobian

The location of the end effector in the world frame is given by gWE ∈ SE(3),

gWE = gWBgBSgSE

where gM N describes the homogeneous transformation between references frames
M and N . The body velocity of the end effector, is a twist, defined by
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V b
WE = (g−1

WE ġWE)∨ =
(

(gWBgBSgSE)−1 d

dt
(gWBgBSgSE)

)∨
= AdgEB V b

WB+V b
SE

where the adjoint AdgM N transforms velocities from frame N to frame M . If we have
a kinematic model (a map between joint velocities and robot motion) of the base, we
can write

V E
WE = AdgEB JB(θB, x0)θ̇B + Jl(θl)θ̇l

where JB(θB, x0) is the Base Jacobian, x0 includes additional necessary configu-
ration and contact information (e.g. contact frame location and orientation) and the
mechanism joint variables are divided into base joint variables, θB, and manipulat-
ing limb joint variables, θl , i.e. θ � (θB, θl)

T . Transforming this result to the Base
Frame yields:

VB
WE =

[
JB(θB, x0) 0

0 AdgBE Jl(θl)

]
θ̇ � JR(θ, x0)θ̇

where JR(θ, x0) is the Reach Jacobian, which describes how base motions and limb
motions contribute to tool frame motion, as described to an observer in frame B.

2.2 The Center of Mass Jacobian

This section will derive the twist velocity of the center of mass for arbitrary motions
of the base, supporting legs and any number of free arms. Suppose that our robot
moves quasi-statically, and wewant to ensure that it does not fall over during motion.
We do this by ensuring that static equilibrium is satisfied at every instant. That is,
the sum of moments and forces on any point of the robot are always zero.

Given a description of the robot’s physical contacts with the world, the conditions
for static equilibrium define a support region of all possible center of mass locations.
For example, if the robot’s feet only support point contacts without friction, and we
assume that the robot can produce infinite torque at its joints, then the support region
is the convex hull of the contacts.

Recall that the center of mass for a system of particles is located at the mass
weighted average of the component particles’ position. We can attach reference
frames to each link whose origins coincide with the link center of mass. The trans-
formation from the world-fixed frame to the center of mass in frame C is then

gWC = mB
M

gWB + 1

M

N∑
i=1

ni∑
j=1

mi, jgW(i, j)

where mi, j is the mass of the j th link in the i th limb, and gW(i, j) is a transformation
from the world frame to the link frame. We can obtain the body velocity of the center



558 K. Shankar et al.

of mass by differentiating this expression:

V̂WC = g−1
WC ġWC = mB

M
gCBV̂ B

WBg
−1
CB + 1

M

N∑
i=1

ni∑
j=1

mi, jgC(i, j)V̂
(i, j)
W(i, j)g

−1
C(i, j)

Converting to twist coordinates, and transforming to the base frame yields:

VB
WC = AdgBC V C

WC = mB
M

V B
WB + 1

M

N∑
i=1

ni∑
j=1

mi, j

(
V B
WB + V B

B(i, j)

)

= mB
M

V B
WB + 1

M

N∑
i=1

ni∑
j=1

mi, j

(
V B
WB + AdgBSi

Ji, j (θi→ j )θ̇i→ j

)

= V B
WB + 1

M

N∑
i=1

ni∑
j=1

mi, jAdgBSi
Ji, j (θi→ j )θ̇i→ j (1)

where

Ji, j (θi,1, . . . , θi, j ) =
[(

∂gSi (i, j)

∂θi,1
g−1
Si (i, j)

)∧
. . .

(
∂gSi (i, j)

∂θi, j
g−1
Si (i, j)

)∧]

is the (i, j)th link’s Jacobian with respect to Si (it is analogous to the spatial Jacobian
of a manipulator with respect to its base). It maps the joint velocities of the first j
joints in the i th limb (θ̇i→ j ) to the velocity of the j th link frame in the base B frame.

Following [13], this expression can be reorganized by introducing the “mass-
weighted Jacobian”. The mass-weighted Jacobian is defined as

J̄k =
[(∑nk

j=1
mk, j

M

)
ξ1,k . . .

(∑nk
j=i

mk, j
M

)
ξ ′

i,k . . .

(
mk,nk

M

)
ξ ′

nk ,k

]
, (2)

where M is the total robot mass and ξi is the twist associated with the i th joint at
zero configuration, with

ξ ′
i = Ad

(eξ̂1θ1 ...eξ̂i−1θi−1 )
ξi .

We substitute it into Eq. (1) to get

V B
Wc = JB(θ)θ̇B +

N∑
i=1

AdgBSi
J̄i (θi )θ̇i = JC(θ, x0)

⎛
⎜⎜⎜⎝

θB
θ1
...

θn

⎞
⎟⎟⎟⎠

where JC (θ, x0) is the “center-of-mass Jacobian”:

JC(θ, x0) =
[

JB(θB, x0) AdgBs1
J̄1 . . . AdgBsn

J̄N

]
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These building blocks are all that are required to solve a very large class of local

constrained inverse kinematics and planning problems.

2.3 Kinematics for a Legged Base

The key specializations for the case of a legged base with arbitrarily many legs is
summarized here, details are available in [13]. The kinematics for a legged robot
arise from contact constraints—these prevent the feet from moving in directions that
frictional forces can be applied in. Applying these constraints, we find that

ST VB
WB = JB(θB, x0)θ̇B (3)

where S, given by

S = −
[
AdT

g−1
Ac1

Bc1 · · · AdT
g−1
Acn−1

Bcn−1

]

is the Stance Map—a map between end effector forces and forces on the base (its
transpose maps velocities at the contact frame to velocities at the base frame), and
Bi is the wrench basis at the i th contact.1 In the case of a legged robot, the θ ’s don’t
split cleanly into a body component and limb components, as the body’s motion is
due to three or more supporting limbs. Define θi to the joint angles in the i th limb,
an let ni be the number of joints in the i th limb. Suppose that the robot has N limbs,
and M < N limbs making contact with the terrain at contact frames ci , i = 1 . . . m.
Then, for an M-limbed quasi static-walking robot, the base Jacobian takes the form:

JB(x0, θ1, . . . , θM ) = −

⎡
⎢⎢⎣

BT
c1Ad

−1
gs1c1

J1(θ1) 0
. . .

0 BT
cM

Ad−1
gsM cM

JM (θM )

⎤
⎥⎥⎦ . (4)

The center of mass Jacobian is given by

JC(θ, x0) =⎡
⎢⎢⎢⎢⎣

BT
c1Adgc1s1

J̃1(θ1) BT
c1Adgc1s2

J̄2(θ2) . . . BT
c1Adgc1sM

J̄M (θM ) . . . BT
c1Adgc1sN

J̄N (θN )

BT
c2Adgc2s1

J̄1(θ1) BT
c2Adgc2s2

J̃2(θ2)
.
.
.

. . .
.
.
.

. . . BT
cM

AdgcM sM
J̃M (θM ) . . . BT

cM
AdgcM sN

J̄N (θN )

⎤
⎥⎥⎥⎥⎦ ,

where J̄i is the weighted Jacobian defined in (2) and

1Refer to [16], Chap.5 for background.
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J̃k =
[( ∑nk

j=1
mk, j +M

M

)
ξk,1 . . .

( ∑nk
j=i

mk, j +M
M

)
ξ ′

k,i . . .

(
mk,nk +M

M

)
ξ ′

k,nk

]
.

It is straightforward to show that [13]

ST VB
WC = JC(θ, x0)θ̇ . (5)

2.4 Kinematics for a Wheeled Base

Suppose that we have manipulator arms attached to a differential-drive base with
unit width. The base’s configuration is restricted to a plane, and consists of position
and heading, (x, y, φ). The motion of the base is described by2

⎛
⎝ẋ

ẏ
φ̇

⎞
⎠ = 1

2

⎡
⎣cosφ cosφ

sin φ sin φ

−1 1

⎤
⎦

(
θ̇L

θ̇R

)

where θL is the left wheel angle, and θR the right (see Fig. 1). We obtain the Base
Jacobian by rewriting the kinematics in the body frame, and lifting to twists in 3
dimensions. One finds that the base Jacobian is given by

JB =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

0 0
0 0
0 0
0 0
−1
2

1
2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

so that

V B
WB = JB

(
θ̇L

θ̇R

)

Suppose that the robot has N arms, and let the joint angles in the i th arm be
denoted by θi . Then the Center of Mass Jacobian is simply

JC(θ1, θ2, . . . θN ) = [
JB J̄1(θ1) . . . J̄N (θN )

]

2These kinematics are well known, and arise from writing the no-slip conditions for each wheel
with respect to the base frame.
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2.5 Kinematics for a Serial Chain Torso

In this case, the spatial and base frame can be coincident, and the Base Jacobian is
simply the Base’s spatial Jacobian:

JB(θB) =
[
ξ1 ξ

†
2 . . . ξ

†
nB

]

where ξi is the twist associated with the i th joint at zero configuration and

ξ
†
i = Ad−1

(eξ̂i θi ...eξ̂nB θnB )
ξi .

The center of mass Jacobian in this case is

JC(θ, x0) =
[

JB(θB, x0) AdgBS1
J̄1(θ1) . . . AdgBSn

J̄N (θN )
]

3 The Local Motion Planning Problem: A Quadratic
Program

This sectionmotivates and describes the formulation of the explicit QP that is the crux
of this paper. A basic problem is formulated ,and then extended for more general use.

Recall that our task is described as an end-effector pose. Suppose that at every
instant, we move optimally based only on knowledge of the current configuration,
and the system kinematics. Naively, we might try to ‘move towards the goal as much
as possible, without falling down’. This statement is very naturally translated into a
constrained minimization problem:

minimize ‖VB
WE − ṼB

WE‖2,PE + ‖VB
WC − ṼB

WC‖2,PC + ‖θ̇‖2,Pθ

subject to JR(θ, x0)θ̇ = VB
WE

JC (θ, x0)θ̇ = VB
WC

(6)

The objective indicates that we want to choose VB
WE to be close (with respect to a

weighted 2-norm defined by ‖x‖2,P = √
xT Px where the weighting matrices are

nominally diagonal, e.g. PE = diag[wE
1 . . . wE

6 ]) to a desired end-effector velocity
ṼB
WE and the true center of mass velocity should be close to a specified velocity

ṼB
WC . The desired center of mass velocity might be determined so that the resulting

motion of the robot’s center of mass remains fully within the support region (e.g.
towards the center of support—a more natural way to control center of mass motion,
using constraints, is given below). The desired end-effector velocity is specified as
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the tangent to the desired end-effector path in SE(3).3 The path can be any c2 curve.
The weights’ relative magnitude corresponds to the importance of each term and
component of motion in a given problem. Generally, weights in PE are chosen to be
significantly larger than the other weights, as the end effector goal is the highest pri-
ority. We have an exhaustive understanding of existence and uniqueness of solutions
to this problem, and we state it as a proposition:

Proposition 1 The constrained minimization (6) has a solution when PE , PC and Pθ

1. are positive definite, or
2. are positive semi-definite, and both JR and JC have full rank.

Moreover, (6) has a unique solution whenever there is no local motion that keeps the
center of mass and end effector stationary.

Theproof of this fact is straightforward, and follows from rank analysis of theKKT
matrix.4 For the reader interested in a more detailed argument, we provide and prove
this fact explicitly for legged robots in [13]. The argument is almost identical for any
robot. Practically, this means is that singularities do not have as large an impact as
they do for existing iterative IK (inverse kinematics) solvers. Intuitively, this makes
sense, since we are not enforcing velocities, but instead simply encouraging them.
Geometrically, the solution is a oblique projection of possible joint velocities onto
affine subspaces defined by the kinematics.

3.1 Fully Integrated Planning

We expand this framework and rewrite the problem in order to easily and extensibly
handle a broad variety of constraints and goals, and to make the problem size as com-
pact as possible in the interest of efficiency.5 We do this by substituting the equality
constraints into the objective directly, and by adding linear inequality constraints to
accommodate hard limits.

Let Fg
i be a frame (attached anywhere to the mechanism) with an associated

motion goal and let ṼB
BFg

i
be the corresponding desired instantaneous velocity of this

frame. In order to write the motion goals efficiently in the objective, we can square

3A desired velocity for the end-effector can be determined from the transformation between the
current pose and the desired pose; the velocity (twist) corresponding to the error is determined by
the matrix logarithm. See [16] Chap.2.
4This is the coefficient matrix one obtains when the KKT conditions for this problem posed as
a QP in standard form are written as a linear equation in primal and dual variables. See [17] for
background.
5The worst case complexity of solving a QP with linear constraints is shown to be O(n3L) where
n is the size of the decision variable, and L is the program input size [18].
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norms (without changing anything), and expand the residual between desired and
true motion as

‖VB
BFg

i
− ṼB

BFg
i
‖22,PF

g
i

= θ̇T J T
Fg

i
PFg

i
JFg

i
θ̇ − 2θ̇T J T

Fg
i

ṼB
BFg

i
+ (ṼB

BFg
i
)T ṼB

BFg
i

In order to efficiently represent hard constraints, we notice that we can restrict
the motion of a frame Fr

i in the ‘direction’ of Ṽ r
i by enforcing

(Ṽ r
i )T VB

BFr
i

= (Ṽ r
i )T JFr

i
θ̇ ≥ αi ,

where αi ≥ 0.
Suppose that we have n motion goals, and p hard constraints. Define

P =
n∑

i=1

J T
Fg

i
PFg

i
JFg

i
+ Pθ , β = −2

n∑
i=1

J T
Fg

i
ṼB
BFg

i
,

A =
⎡
⎢⎣

(Ṽ r
1 )T JFr

1
...

(Ṽ r
p )T JFr

p

⎤
⎥⎦ , α =

(
α1
...αp

)

We can now write a much more general constrained minimization problem:

minimize θ̇T P θ̇ + θ̇T β

subject to Aθ̇ ≤ α

(7)

where the inequality constraint holds element wise. With this more general formula-
tion, a vast number of manipulation goals, subgoals and constraints can be naturally
included. Some of these include:

Pointing The z-axis of a given link frame Fi can be pointed in particular direction
by adding the link’s velocity and the twist in the desired direction to the objective.
One neglects rotation in the pointing direction by letting

PFi = AdT
gFiB

diag[wFi
1 , w

Fi
2 , . . . w

Fi
5 , 0]AdgFiB

(the instantaneous rotation about the frame-fixed z-axis is ignored). This could be
used, for example, to encourage a gaze direction.

Tracking A link frame Fi can be moved along a desired trajectory by adding it to
the objective, along with the tangent to the trajectory at the current configuration.

Collision Repulsion If the robot is in a configuration at which it makes contact
with obstacles or itself, the links in contact can be forced tomove away by defining
a repulsive velocity as the normal to the collision plane [19], and adding a hard
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inequality constraint forcing the link to move in the repulsive direction by making
the corresponding αi a positive number. For self-collisions, one or both collision
links can be made to move away from collision.

Hard Static Equilibrium Constraints The center of mass can be kept within the
robot’s support region using linear inequality constraints. Let vi be the twist
corresponding to pure translation towards the i th side of the support region. Let
the distance to the i th side be di . If we enforce the constraint

vT
i VB

BC = vT
i JC (θ, x0)θ̇ ≤ di

for every side of the support region, and if the robot follows velocity for much
less than 1s, the center of mass will not leave the support region.

Frame Boundaries A frame (or the difference between frames) can be kept in any
polyhedral region in space using inequality constraints on frame velocity; these
are constructed in the same way as the hard static equilibrium constraints. This
could be used, for example, to keep the robot within some workspace boundaries,
or to enforce hard constraints on gaze.

Joint Limit and Singular Configuration Avoidance These are straightforward
to implement as inequality constraints on joint velocities.

Configuration Biasing The robot can be biased towards a known nominal con-
figuration by adding a body velocity bias to nominal pose, and a joint angle bias
that penalizes motions away from nominal joint angles.

Fewest Joints Moving We can look for solutions that move as few joints as pos-

sible by using a weighted 1-norm on θ̇ (defined by ‖x‖1,P =
n∑

i=1
|Px |i in the

objective of (6)). This problem tends to provide solutions that are sparse in joint
velocities. The solver will remain quite fast in this case, as the problem can be
solved by a few iterations (approximately the same number as the number of
joints) of the problem formed without θ̇ in the objective [20].

3.2 Feasibility Certificates and Optimal Constraints

The ability to certify feasibility or lack thereof is crucial for ensuring that partial plans
that end in unsafe configurations are not executed. The problem (7) is infeasible if
and only if the constraints cannot be met. We can check constraint feasibility very
rapidly by solving the following linear program (the parameters are the same as those
in (7)):

minimize −t
subject to Aθ̇ − α ≤ t

t ≤ 1 .

(8)

The optimal solution value is 1 if the constraints are feasible and 0 otherwise.
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In order to choose α in a clever way, one might ensure that feasibility is satisfied
using (8) for the minimum values of α, and thereafter select an ‘optimal’ α in the
sense of the following problem:

minimize 1T α

subject to Aθ̇ ≤ α

−1 ≤ α ≤ 1
(9)

Normalizing the resulting optimal α, we get the constraints that most aggressively
avoid the limits we put on the system.

3.3 Iterative Algorithm

This section describes a method that integrates the ideas presented in this paper so
far (this is the algorithm we use in the experiment of Sect. 4). We define a robot
configuration data structure C, that contains the transformations to every joint and
link frame as well as the center of mass frames, the instantaneous twists of every
joint in the robot as seen in the base frame. We assume there are n frames that
are following trajectories, and up to p inequality constraints; when there are fewer
than p constraints for an iteration, the unused rows and elements of A and α are
chosen to be trivially satisfied. In addition, for checking feasibility, α is set to the
minimum reasonable value (e.g. a very small positive number for collision avoidance,
or exactly the distance to a support region boundary). We also assume the existence
of the following functions.

GoalDist(C) Returns the distance to the goal (e.g. distance between end-effector
current and desired poses.

SupportRegionVector(C, i) Returns direction from the center of mass to the i th
face of the support region in the base frame, for i ∈ 1 . . . s where s is the number
of faces of the support region–the locus of center-of-mass locations at which the
robot is quasi-statically stable.

COMDist(C, i) Computes the distance from the center of mass to the i th face of
the support region.

CheckFeasibility(A, α) Returns the solution to the LP (8).
SetAlpha(C, A) Returns a sensible choice of α using (9) or otherwise.
SolveQP(P, β, A,α) Returns the solution to (7). A key part of any algorithm that

works using the ideas presented here is the QP solver. We used CVXGEN [21],
to generate a fast, custom, primal-dual interior point method solver (a small,
stand-alone C code).

ComputeStepSize(C, θ̇ ) Computes a step size Δt by searching [0, 1] and ensuring
that stepping by Δt × θ̇ does not result in violation of constraints. We found that
this function is unnecessary in most cases (the step size can be set to 1).

Update(C, θ̇ , Δt) Updates the configuration after moving by Δt × θ̇ .
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Initialize C;
while GoalDist(C) > ε do

for i = 1 . . . n do
Compute desired twists ṼB

BFi
. Select weighting matrices Pi ;

for i = 1 . . . s do
Ṽ r

i = SupportRegionVector(C,i)
αi = COMDist(c,i)

if In Collision then
for i = 1 . . . # of Collisions do

Set Ṽ r
B(i+s) to be collision normal

Construct P, β, A, α as given in (7) ;
if CheckFeasibility(A,α) then

SetAlpha(C,A) ;
θ̇ = SolveQP(P, β, A,α) ;
Δt = ComputeStepSize(C,θ̇ ) ;
Update(C, θ̇ , Δt))

else
Return Failure

Algorithm 1: QP-based path-planning and goal configuration search.

4 Implementation with Surrogate

Surrogate is a highly redundant 21 DOF robot torso mounted on differential drive
mobile base (Figs. 2, 3 and 4). The following experiments demonstrate the use of
iteratively solving the local quadratic program, and using the resulting velocities to
move the robot end effector closer to the desired goal while also moving the torso
and non-manipulating arm to maintain balance. At the end of each iteration, the
velocities are integrated (multiplied by the time constant used to compute velocity
constraints in the QP) to form small joint position displacements. Joint motions are
limited to 0.1 radians per iteration.

Collisions between robotic bodies are computed using Bullet Collision Detection
[22]. If collisions are detected after applying a joint position update, the previous QP
is run again with additional velocity constraints enforcing repulsive motion between
the bodies found in contact. Bullet provides a pairwise list of bodies in collision, and
approximate collision locations.

The average run time for a single iteration (computing all Jacobians, constraints,
and collisions, and solving the QP) was 348µs. On average just solving the QP took
267µs, or 78% of the computation time. All computations were restricted to a single
processing core of a 2.4GHz i7. In the reported cases (a–f) in Fig. 2 the maximum
average iteration time was for case (a), which ends in a near singular case, at 584µs,
while the minimum was case (b), at 274µs. The iterations were stopped when the
end effector displacement error was less than 0.001m and 0.001 rad. Figure2 case
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Fig. 2 Inverse Kinematics (IK) computed to specified end goals. The robot differential drive base
is fixed. The red sphere is the robot center of mass (COM), and the red rectangle is the support
polygon projected to the height of the COM. a Reaching to a point 1m in front of the robot, and
0.2 m below the drive plane. b Reaching to a torus 0.5m in front of the robot. c Reaching to a torus
1.25m to the side of the robot. d Starting pose for all IK searches. e IK computed to (a) without
using balance constraints. f IK computed to (b) stopping on detected collisions

(a) required 247 iterations to complete at a total time of 0.14s, and case (b) took 17
iterations at a total time of 0.004s.

The Surrogate robot has 7 degrees of freedom (DOF) in each limb and the torso.
The serial chain from the robot base to the primary end effector is 14 DOF, with an
extra 7 DOF on the free armwhich can be used for balancing. This leaves 8 redundant
DOF in the main serial chain, with an extra 7 DOF in the free limb.The limbs and
torso on the Surrogate robot do not have a kinematic wrist, which makes deriving
analytic inverse kinematics difficult.

As a comparison, IKfast (http://openrave.org/docs/latest_stable/openravepy/
ikfast/) was used to compute analytic IK for the limb and the torso. Each IKfast
call for the limb or torso requires fixing one joint, and solves for the IK of the
remaining 6 joints in the limb or torso (resulting in up to 8 configurations). Each
IKfast call for a Surrogate limb takes approximately 1000ms, in contrast to a Barrett
limb (with a wrist) which takes approximately 5ms [23]. As the redundant space
in the main serial chain is so high (8 DOF), searching over this space and using
analytic IK to solve for joint angles is intractable. Figure4 shows snapshots form a
SURROGATE effort to turn a valve 90◦.

http://openrave.org/docs/latest_stable/openravepy/ikfast/
http://openrave.org/docs/latest_stable/openravepy/ikfast/
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i i i i= 0 = 5 = 10 = 15

i = 20 i i i= 25 = 100 = 247

Fig. 3 Sequential iterations of solving the local QP to compute inverse kinematics for the left limb
to a point 1m in front and 0.2m below robot base. The desired end effector location is shown by the
highlighted hand at iteration i = 0. Subsequent iterations show the output robot state redisplayed.
Iterations 5 and 10 show the free right limb being constrained from contacting the robotic torso.
The robot center of mass (red ball) is within the support polygon (red rectangle) for all iterations

5 Conclusion and Future Work

This paper introduced a Quadratic Programming (QP) method to plan the local
motions of robots with (possibly redundant) manipulator arms mounted on mobile
bases (wheeled and legged bases, or highly articulated torsos) in the case where grav-
itational effects limit the possible stable locations of the system center of mass. We
posed a generalized redundancy resolution approachwhich incorporates several opti-
mality factors, while handling several types of constraints, such as self-collision, sta-
ble center of mass movement, local obstacle avoidance, and sensor gaze constraints.
The locally optimal joint velocities produced by the QP solver can be used in real-
time feedback control, or as a component of a global motion planning approach. Our
application of themethod to the 21DOF SURROGATE robot resulted in surprisingly
fast real-time solution performance. In part this is due to the efficiency of modern
QP codes, but in part we believe the speed arose from our explicit formulation of
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Fig. 4 Turning a valve using QP inverse kinematics: The robot’s motion is computed by iteratively
solving the QP, and then executed on the robot in real time. a Starting pose. b Pre-contact with the
valve. c Contact with the valve. d Half way through turning the valve. e The valve is fully open.
The robotic torso significantly extended to achieve required end effector goals, and the free limb
has contracted to maintain balance stability. Video available at http://krishna.caltech.edu/WBM

the key kinematic relationships. The QP formulation also leads to solution existence,
uniqueness and infeasibility results. We are currently investigating how this local
solution can be integrated into a receding horizon control and planning framework.
Based on prior work, this combination should have the excellent real-time local per-
formance demonstrated in this paper, coupled with completeness and correctness of
a global motion planner.
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