
Orienting Parts with Shape Variation
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Abstract Industrial parts are manufactured to tolerances as no production process
is capable of delivering perfectly identical parts. It is unacceptable that a plan for a
manipulation task that was determined on the basis of a CADmodel of a part fails on
some manufactured instance of that part, and therefore it is crucial that the admitted
shape variations are systematically taken into account during the planning of the
task. We study the problem of orienting a part with given admitted shape variations
by means of pushing with a single frictionless jaw. We use a very general model
for admitted shape variations that only requires that any valid instance must contain
a given convex polygon PI while it must be contained in another convex polygon
PE . The problem that we solve is to determine, for a given h, the sequence of h
push actions that puts all valid instances of a part with given shape variation into
the smallest possible interval of final orientations. The resulting algorithm runs in
O(hn) time, where n = |PI | + |PE |.

Keywords Part feeding · Shape variation · Pushing

1 Introduction

Most of the existing solutions in algorithmic automation assume a severely idealized
world in which parts are perfectly identical to their CAD-model and manipulators
and sensors are infinitely accurate. In real life, however, parts are manufactured to
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tolerances [6, 7] and therefore vary in shape [1], and sensors [4] and actuators [5]
are inaccurate, causing the aforementioned algorithms to fail when employed in
practice. The challenge is therefore to design algorithms for planning manipulation
tasks that explicitly take into account manipulator (and sensor) inaccuracy and part
imperfection and report solutions that work despite their presence. In this paper, we
concentrate on part shape variation and study its impact on the problem of feeding
or orienting it by means of pushing with a frictionless jaw in the spirit of the work
by Goldberg [11]. We employ a very general model for shape variation and system-
atically explore its impact on the task of orienting by pushing. We use the resulting
properties to develop a robust algorithm that reduces the uncertainty in the pose of
an imperfect part, i.e., a part with shape variation, as much as possible.

Sensorless manipulation has received considerable attention over the past two
decades. It focuses on manipulation systems that use simple (and thus cheap and
reliable) hardware components that are only capable of performing simple physical
actions while using simple or no sensors. The goal in sensorless part feeding or
orienting is to reduce the set of possible orientations until the part is in a known final
orientation. Lozano-Perez et al. [8] and Erdmann and Mason [9] proposed designs
for feeding based on a finite set of actions to orient a part. Akella and Mason [10]
developed a complete open-loop plan for feeding bymeans of pushing.Goldberg [11]
showed that there always exists a plan for orienting a polygonal part by pushing or
squeezing using a frictionless parallel-jaw gripper and proposed a greedy algorithm
for computing the shortest such plan in O(n2 log n) time, where n is the number
of vertices of the part. He conjectured that the length of the shortest plan is linear
in n. Chen and Ierardi [12] proved Goldberg’s conjecture and also showed how
to compute the maximum uncertainty radius such that a plan still exists. Berretty
et al. [13] showed that 3D (polyhedral) parts can be oriented by a sequence of pushes
by a perpendicular pair of planar jaws and gave an O(n3 log n) time algorithm to
find such a plan.

There are also approaches that are based on constrained forms of pushing.Wiegley
et al. [14] considered a system consisting of a conveyor belt with fences mounted
to its sides, which reorient parts that slide along them while traveling on the belt.
The problem of designing the fences is equivalent to computing push actions with
constraints on successive push directions. Wiegley et al. presented an exponential
algorithm for finding the shortest sequence of fences that orients a given part. Berretty
et al. [15] presented an alternative graph-based algorithm that runs in O(n3 log n)

time. In addition, Goldberg [11] and Chen and Ierardi [12] also studied grasps in
which a jaw first pushes and then squeezes a part. Their time and complexity bounds
are similar to those for pure pushing.

Several authors consideredmodels and problems involving uncertainty in geomet-
ric data. Formodeling shapevariation, geometric approaches such as ε-geometry [16],
λ-geometry [17], toleranced and interval-geometry [18, 20] were proposed. In these
models, imprecise input data (e.g. vertices of a polygon) are constrained to vary in
a region such as a segment, disk, rectangle, or any convex polygon, and worst and
best cases of the output of certain problems are studied.
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There have been a few studies into part feeding in a context of imperfect parts.
Akella and Mason [22] studied the problem of orienting convex polygons whose
vertices and center of mass lie inside predefined disks centered at their nominal
locations. They required that any variation keeps the part convex. They proposed
graph-based approaches for fence and push-squeeze plans for parts that satisfy their
assumptions. The problem of orienting a part by fences has been studied by Chen
et al. [3]. They used a similar model for part shape variation by allowing the vertices
to vary inside disks and squares that are defined relative to the center of mass. Based
on their assumptions they proposed a method for computing the maximum allowable
disk or square for each vertex for feeding. In addition to these studies, other related
work [23, 24] considered location uncertainty and shape variation in a grasp planning
context.

In comparisonwith the aforementioned studies, we consider amore generalmodel
for shape variation that allows to characterize variation along the entire boundary
instead of only at the vertices. The model assumes that any valid instance of a part
contains a given convex shape while it is contained in another given convex shape.
Our goal is to solve the part feeding or orienting problem for the imperfect part, that
is, we want to find the sequence of pushes that puts all instances from the shape
family into the smallest possible interval of orientations. To this end we generalize
the notions of radius and push function [11] to families of shapes. In Sects. 3 and 4
we present several properties of the generalized push function along with its upper
and lower envelopes. These properties help us to develop a greedy algorithm for
reporting the smallest interval of possible orientations for the entire shape family
after a given number h of pushes. We also show that there exist imperfect parts for
which there always is a next push that shrinks the interval of possible orientations.

2 Preliminaries

In this section, we explain our assumptions and introduce the terminology and nota-
tion used throughout the paper. To do this, we first define the problem of orienting a
part with shape variation. Then, we will have a short review of the relevant concepts
from previous work and finally we define similar concepts for a part with shape vari-
ation. For brevity, we have omitted most proofs in this paper, but interested readers
can find those in our technical report [27].

2.1 Orienting Parts with Shape Variation

Manufactured parts always have slight imperfections; hence, they are designed
up to certain tolerances. We study the problem of orienting a part with shape
variations by means of pushing with a single frictionless jaw [11] under the gen-
eral shape variation model presented in [19]. In this model, for any manufac-
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Fig. 1 a A family of shapes specified by a subshape PI and a supershape PE of a model part PM
along with a valid instance P ∈ S(PI , PE ). b A polygon P and its supporting line in the vertical
downward direction; when the single jaw moves upward, P rotates in counterclockwise direction

tured planar model part of PM , the set of acceptable instances is a family of
shapes S(PI , PE ) = {P ⊂ R

2|PI ⊆ P ⊆ PE }where PI and PE are twogiven closed
objects satisfying PI ⊆ PM ⊆ PE . The closed region resulting from subtracting the
interior of PI from PE is referred to be tolerance zone and denoted by Q. See Fig. 1a.
We will often refer to a part with shape variation as an imperfect part. The objects PI

and PE in this paper are assumed to be convex and polygonal with a total of n edges.
The property of convexity helps us to compute a tight bound on the final orientation
of an imperfect part. Also, we assume that the boundaries of PI and PE are disjoint.

When there is variation in part shape there will also be variation in the location of
the center of mass of the part. In general, the problem of finding the exact locus of
the center of mass for a polygon with shape variation has been mentioned as an open
problem in [4, 22]. An algorithm for computing a polygonal approximation of the
locus has been presented in [19] under the aforementioned shape variation model.
However, for simplicity in this paper, we assume that all instances of an imperfect
part have their center of mass at the origin. As a result, an instance P belongs to
S(PI , PE ) if its boundary lies completely inside the tolerance zone Q when its center
of mass is placed at the origin.

The basic action of pushing a part at the direction of θ consists of placing a single
jaw in orientation θ and moving it in a direction perpendicular to itself. When a part
P is pushed, it will start a compliant motion (rotation), during which it decreases
the distance from its center of mass to the jaw. The motion stops when the normal to
the jaw passes through the center of mass of the part. We refer to the corresponding
direction of the contact normal as an equilibrium orientation. An equilibrium orien-
tation is a stable orientation if an edge of part’s convex hull is in contact with the
jaw [2].

We define the problem of orienting an imperfect part to be that of finding the
sequence of push actions that orients the part to the smallest possible orientation
set. This possible orientation set consists of disjoint intervals. However, we do not
exploit this fact and focus on finding the smallest single interval that contains all
possible orientations.
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2.2 Definitions for a Part

Throughout this paper, directions are relative to a fixed coordinate frame attached
to the origin, increasing in counterclockwise order. Let the set of orientations of P
be identified with points on the planar unit circle S1 : [0, 2π). For any orientation
θ, the supporting line at the direction θ is a supporting line whose normal vector
emanating from the origin has direction θ. See Fig. 1b. Pushing P at the direction θ
means aligning the jaw with the supporting line at the direction θ. For an interval Θ ,
we let L(Θ) and U (Θ) be the lower and upper bounds (left and right endpoints) of
Θ , respectively, and |Θ| be its length.

The radius function rP : S1 → R
+ of a part P maps an angle θ onto the distance

between the center of mass and the supporting line of P at the direction θ [2]. The
distance function δP : S1 → R

+ of P maps an angle θ onto the distance between
the center of mass and the intersection point of the boundary ∂P of P and the ray
emanating from the center of mass at the direction θ [13]. Figure2 depicts the radius
functions of PI and PE and the distance function of PE for the illustrated imperfect
part. The radius and distance functions are closely related; see Observation1.

Observation 1 The local minima and maxima of rP and δP coincide; rP is increas-
ing (decreasing) if and only if δP is increasing (decreasing).

The push function φP : S1 → S1 of P maps a push direction of the jaw relative
to P in its reference orientation onto the orientation of P after alignment with the

Fig. 2 An example of an imperfect part, the corresponding graphs of rI , rE are illustrated in black
and the red graph depicts δE . The illustrated angles θR , θL and θN are R-type, L-type and N-type,
respectively; θm is bothR-type andL-type. θcw is a clockwise and θcw is a counterclockwise unstable
angle. [θ′, θ) and (θ1, θ2) are N-type intervals
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jaw. It is well known [11] that the push function follows directly from the radius
function as it maps all orientations that are strictly between two consecutive local
maxima of the radius function onto the local minimum that is enclosed by these
local maxima; moreover, the push function maps each local maximum of the radius
function onto itself.

2.3 Definitions for a Part with Shape Variation

In this subsection, we define the relevant concepts related to imperfect parts. For
simplicity, we use the abbreviations rI = rPI , rE = rPE , and δE = δPE . Figure2
illustrates an example of an imperfect part and the graph of rI , rE and δE . The
following lemma shows that rI and rE bound the radius function of all instances of
an imperfect part.

Lemma 1 rI ≤ rP ≤ rE for all P ∈ S(PI , PE ).

Pushing an imperfect part means pushing an unknown instance from a shape
family S(PI , PE ). As a consequence, the outcome of such a push is the set of all
orientations that might result after pushing any shape P ∈ S(PI , PE ). To capture this
behavior we define the generalized push function Φ∗ : S1 → P(S1), where P(S1)

denotes the power set of S1. This function maps an angle θ onto the set of all possible
orientations after a single push action in the direction θ, so Φ∗(θ) = {φP(θ)|P ∈
S(PI , PE )}. As there are several ways to enclose the sets Φ∗(θ) by a single interval
(due to the cyclic nature of S1) we must be careful when defining these intervals to
avoid ambiguity. To this end we introduce the lower push function and the upper
push function in Definition1.

Definition 1 The lower push function Φ∗
L : S1 → S1 and upper push function

Φ∗
U : S1 → S1 are the functions that bound Φ∗ as follows. We consider three cases

based on the push direction θ.

(a) If all instances of S(PI , PE ) rotate clockwise when pushed at θ then let α and
β be tight upper and lower bounds on the magnitude of the clockwise rotations,
respectively. Then Φ∗

L(θ) = θ − α and Φ∗
U (θ) = θ − β.

(b) If all instances of S(PI , PE ) rotate counterclockwise when pushed at θ then letα
and β be tight lower and upper bounds on the magnitude of the counterclockwise
rotations, respectively. Then Φ∗

L(θ) = θ + α and Φ∗
U (θ) = θ + β.

(c) Otherwise let α and β be tight upper bounds on the magnitudes of the clock-
wise and counterclockwise rotations, respectively. Then Φ∗

L(θ) = θ − α and
Φ∗

U (θ) = θ + β.

Note that for each θ ∈ S1 the interval [Φ∗
L(θ),Φ∗

U (θ)] contains the set Φ∗(θ).
We will occasionally denote this interval by Φ(θ) and refer to it as the smallest
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interval containing the set Φ∗(θ). Moreover, for an interval Θ ⊆ S1 we let Φ(Θ) =
[Φ∗

L(L(Θ)),Φ∗
U (U (Θ))]

We also note that Φ∗
L and Φ∗

U are monotone (non-decreasing), which admits a
greedy approach to orient the imperfect part into the smallest possible range of angles.
We start with the initial set of possible orientations Θ0 = [0, 2π) and repeatedly
obtain Θi+1 by selecting it to be the shortest image of any translate of Θi under Φ.
The process continues as long as |Θi+1| < |Θi |. To this end, we need to compute the
functionsΦ∗

L andΦ∗
U . For different types of orientations, the values of these functions

are computed differently. These types of angles are defined in the next section.

Remark Since range anddomainofΦ∗
L andΦ∗

U are S1, it is possible thatΦ∗
L(L(Θ)) >

Φ∗
U (U (Θ)). In this case, |Φ(Θ)| = 2π + Φ∗

U (U (Θ)) − Φ∗
L(L(Θ)).

3 Types of Orientations

The set of all orientations can be divided into five types based on the computation of
their image under Φ∗

L and Φ∗
U . We distinguish two primary types which consist of

two and three subtypes respectively.

• An orientation θ is unstable if there is no P ∈ S(PI , PE ) for which rP has a
local minimum a θ. Such an orientation can never be the final orientation of the
imperfect part after pushing. Unstable orientations can be (i) clockwise unstable,
or (ii) counterclockwise unstable.

• An orientation θ is potentially stable or p-stable if there exists an instance P ∈
S(PI , PE ) for which rP has a local minimum at θ. Such an orientation can be a
final orientation of the imperfect part after pushing. Potentially-stable orientations
can be (i) right type (R-type), or (ii) left type (L-type), or (iii) neutral type (N-type).

In the following subsections we define the subtypes and properties of p-stable and
unstable orientations. The types of orientations divide S1 into intervals of orientation
of the same type. These intervals will be referred to as critical intervals. The type of
a critical interval equals the type of orientations it contains

3.1 Unstable Intervals

Unstable intervals help to reduce the uncertainty in the orientation of an imperfect
part as they can never appear in the set of possible orientations after a push action.
The following lemma describes how we can distinguish unstable angles.

Lemma 2 An orientation θ ∈ S1 is unstable if and only if δE (θ) < rI (θ).

Figure2 shows several unstable intervals, in which the (red) graph of δE lies below
the (lower black) graph of rI . Lemma2 shows that we can determine the subdivision
of S1 into unstable and p-stable intervals by computing the intersection of δE and rI .
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Note that the unstable intervals can be computed in O(n) time since the number of
intersection points cannot exceed O(n).

Observation 2 Let Θ ⊂ S1 be an unstable interval. All instances P ∈ S(PI , PE )

will rotate in the same direction, i.e., in either clockwise or counterclockwise direc-
tion, for all push directions θ ∈ Θ .

The above observation shows that there are clockwise and counterclockwise ori-
entations and intervals. For any instance P ∈ S(PI , PE ), rP is strictly increasing in
a clockwise unstable interval and strictly decreasing in a counterclockwise unstable
interval. In Fig. 2, θcw and its containing interval are clockwise unstable while θccw

and its containing interval are counterclockwise unstable.

3.2 Potentially-Stable Intervals

According to Lemma2 p-stable orientations are angles in which the graph of δE lies
above the graph of rI . Now consider the graph of δE . A p-stable angle θ is called
R-type if from the point (θ, δE (θ)) the graph of rI is horizontally visible to the right.
Similarly, it is called L-type if the graph of rI is horizontally visible to the left. If
there is no horizontal visibility of rI the p-stable angle is referred to as N-type. In
Fig. 2 the angle θR is R-type because the horizontal ray emanating from (θ, δE (θ))
to the right first hits rI ; θL is an L-type angle as the horizontal ray emanating from
(θ, δE (θ)) to the left hits rI .

The following definition describes the three types of angles more precisely.

Definition 2 Let θ ∈ S1 be a p-stable angle.

• θ isR-type if and only if there is no angle ξ such that θ < ξ < θ′ and rE (ξ) = δE (θ),
where θ′ > θ is the smallest angle such that rI (θ

′) = δE (θ). The angle θ′ is called
upper bound of θ denoted by BU (θ).

• θ isL-type if and only if there is no angle ξ such that θ′ < ξ < θ and rE (ξ) = δE (θ),
where θ′ < θ is the largest angle such that rI (θ

′) = δE (θ). The angle θ′ is called
lower bound of θ denoted by BL(θ).

• θ is N-type if it is neither R-type nor L-type.

Remark Throughout this paper, the term right refers to the counterclockwise direc-
tion and left refers to the clockwise direction. The following observation can bemade
about rI and rE . See Fig. 2.

Observation 3 Let θ ∈ S1 be R-type (L-type). Then rE is increasing (decreasing) in
a sufficiently small right (left) neighborhood of θ and rI is increasing (decreasing)
in a sufficiently small left (right) neighborhood of BU (θ) (BL(θ)).

It is possible that an angle is both L-type and R-type. Lemma3 shows that such
angles are local minima of rE .
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Lemma 3 If θ ∈ S1 is R-type and L-type, then θ is a local minimum of rE .

It is not difficult to see that each orientation is of one of the aforementioned types.
Lemma4bounds the resulting number of critical intervals and their computation time.

Lemma 4 There are O(n) critical intervals; they are computable in O(n) time.

4 Computing the Lower and Upper Push Functions

To compute Φ∗
L and Φ∗

U , we need to find the tight lower and upper bounds for
the amount of clockwise or counterclockwise rotation of an imperfect part. (See
Definition1.) Recall that when a part is pushed, it rotates in the direction in which
the radius function decreases. As a result, we are interested in as longest as possible
non-increasing curve (to the right as well as to the left) that lies completely between
rI and rE . We note that not every such a curve corresponds to a valid part. Therefore,
our strategy is to construct valid instances which create these bounds for clockwise
and counterclockwise rotations when it is being pushed at θ.

In this section, we show that if θ belongs to a counterclockwise unstable interval
then Φ∗

L(θ) is the right endpoint of that interval. Otherwise, Φ∗
L(θ) is the left bound

of some specific L-type angle. Similarly, if θ belongs to a clockwise unstable interval
then Φ∗

U (θ) is the left endpoint of that interval. Otherwise, Φ∗
U (θ) is the right bound

of some specific R-type angle. We will focus on computing upper bounds in this
section with the understanding that lower bounds can be computed similarly.

If θ is a clockwise unstable angle then there is no instance P ∈ S(PI , PE ) that
rotates counterclockwise. Therefore, the upper bound cannot exceed the left endpoint
of the unstable interval that contains θ. This upper bound is easy to compute.We now
assume that θ is not a clockwise unstable angle. In this case, Φ∗

U (θ) ≥ θ. We note
that if an instance P rotates counterclockwise, then rP has to be strictly decreasing
in a sufficiently small right neighborhood of θ. We define an instance whose radius
function is decreasing along the largest possible interval. We refer to this instance
as the upper critical instance at the direction θ. The critical instance suggests us
an approach to compute Φ∗

U (θ). We present an algorithm that constructs the upper
critical instance for every θ. Then, we prove a theorem that helps to compute Φ∗

U
from these critical instances.

By definition, if P is an upper critical instance, then rP has to be decreasing in
the interval [θ, Φ∗

U (θ)]. For angles in which rE is decreasing, it is not difficult to find
such instances. For the other angles we prove the following lemma.

Lemma 5 Let θ ∈ S1 be an angle such that rE is increasing in a right neighborhood
of θ and let P ∈ S(PI , PE ) be an instance that rotates counterclockwise after a single
push action at the direction θ. Then rP (θ) ≤ δE (θ).

The next corollary follows from Lemma5 and Observation1.
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Corollary 1 Let θ ∈ S1 be an R-type angle and P ∈ S(PI , PE ) be its upper critical
instance. Then rP (θ) ≤ δE (θ).

Corollary1 reveals that BU (θ) is an upper bound on Φ∗
U (θ). Note that by Obser-

vation3 for an R-type angle θ, rI is ascending in the left neighborhood of BU (θ). So,
no decreasing curve starting in the right neighborhood of θ cannot extend beyond
BU (θ). The following lemma shows that BU (θ) is tight.

Lemma 6 Let d > 0 be a constant and [θ1, θ2] ⊂ S1 be an interval such that for all
θ ∈ [θ1, θ2], rI (θ) ≤ d ≤ δE (θ). Then there is an instance P such that rP (θ) = d
for all θ ∈ [θ1, θ2].

So far, we discussed how to compute Φ∗
U (θ) if θ is clockwise unstable or R-type.

Otherwise, we claim that there is an instance P ∈ S(PI , PE ) such that rP is decreas-
ing in [θ, BU (θm)], where θm is the closest R-type angle to θ in counterclockwise
direction. If such an angle does not exist, then the upper bound is 2π. The following
lemma shows that θm is a local minimum of rE .

Lemma 7 If an angle θ is neither a clockwise unstable angle nor an R-type angle,
then the closest R-type angle to θ in counterclockwise direction is a local minimum
for rE .

Algorithm1 creates the upper critical instance for an angle θ0 that is not clockwise
unstable. The key idea is that for such an angle θ0, there is an instance P ∈ S(PI , PE )

such that rP is decreasing in [θ0, BU (θm)]where θm is the closestR-type angle to θ0 in
counterclockwise direction. If there is no such R-type angle, then there is an instance
that can rotate arbitrarily close to 2π. We explain how to construct a decreasing
function and then show that this function is a part of the radius function of the instance
reported by Algorithm1. Lemma6 shows that any horizontal ray that lies above the
graph of rI and below the graph of δE lies on the radius function of some instance.
Note that according to Lemma5 for any θ ∈ [θ0, BU (θm)] if rE is increasing in the
neighborhood of θ and P rotates in counterclockwise direction, then rP (θ) < δE (θ).
Therefore, we construct a function for P by starting from θ0 and follow the horizontal
ray emanating from (θ0, δE (θ0)) as long as it stays below δE and above rI . Here P
satisfies rP (θ) = δE (θ0). If the ray hits rI we are done. Alternatively, it hits δE

at some angle θ′ at which δE is decreasing in the right neighborhoods of θ′. We
continue by choosing rP (θ) = δE (θ′) cos(θ′ − θ) until we hit rE . Then we follow rE

until the closest local minimum and then again we use horizontal rays and continue
similarly. The blue graph in Fig. 3 is an example of a function that is created using this
procedure. Algorithm1 constructs the corresponding instance which is also shown in
Fig. 3. In Algorithm1, P(θ1, θ2) stands for the part of P between two rays emanating
from the center of mass in directions θ1 and θ2, EI and EE are the sets of edges of
PI and PE respectively, and Dd is the boundary of a disc of radius d centered at the
center of mass.
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Algorithm 1 Constructing the upper critical instance
1: procedure Construct Q(θ0) 
 θ0 is not a cw unstable angle
2: Q ← null 
 Initialization
3: Continue ← T rue
4: d ← δE (θ0)
5: if ∂Dd lies inside the tolerance zone then
6: Q ← Dd 
 Upper critical instance is a disc
7: else
8: while (Continue)
9: d ← δE (θ0)
10: θ1 ← The closest angle to θ0 in ccw direction such that ∂Dd intersects
11: the segment s ∈ EI ∪ EE at the direction θ1 and θ0 
= θ1
12: if s ∈ EI then 
 θ0 is an R-type angle
13: e ← the segment on the tangent line of Dd and PI between them.
14: α ← The direction of the normal vector of e.
15: Q ← Q ∪ Dd (θ0,α) ∪ e
16: Continue ← False
17: else
18: if Dd (θ0, θ1) is inside the tolerance zone then
19: Q ← Q ∪ Dd (θ0, θ1)
20: θ0 ← θ1
21: else
22: θm ← the closest local minimum of rE to θ0 in ccw direction.
23: Q ← Q ∪ PE (θ0, θm)

24: θ0 = θm
25: Construct the rest of P arbitrarily to make it a valid instance.
26: end procedure

θ

θ

θ

m

c

u

0

Fig. 3 Illustration of Algorithm1 for an imperfect part. The critical instance constructed for the
given angle θ0 is shown in blue. The diagram on the right shows that the corresponding radius
function is decreasing; θm is the closest R-type angle in counterclockwise direction from θ0 and
θu = BU (θm)
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The following lemmas provide the basis for the computation of the critical
instance.

Lemma 8 Let θ ∈ S1 be R-type and satisfying θ = BU (θ). There is no instance
P ∈ S(PI , PE ) that rotates counterclockwise when pushed at θ.

Lemma 9 Assume that an imperfect part is pushed at direction θ0. If there is no
θ 
= θ0 such that θ is an R-type angle, then there is an instance in S(PI , PE ) that
rotates arbitrarily close to 2π. Otherwise, we consider the following cases for the
upper bound of the final orientation considering all instances P ∈ S(PI , PE ).

(a) If θ0 is a clockwise unstable angle, then the left endpoint θu of the containing
unstable interval is a tight closed upper bound.

(b) If θ0 is not a clockwise unstable angle, then θu = BU (θm), with θm being the
closest R-type angle to θ0 in counterclockwise direction, is a tight open upper
bound.

We summarize the discussion of this section in the following theorem.

Theorem 4 Φ∗
L and Φ∗

U can be computed in O(n).

Proof Lemma4 shows that the critical intervals can be computed in O(n). For any
θ belonging to a critical interval Θ , the function Φ∗

U can be computed by applying
Lemma9.

• If Θ is clockwise unstable, then Φ∗
U (θ) = L(Θ).

• IfΘ isR-type, thenΦ∗
U (θ) = BU (θ). Note that for anR-type angle θ, rI (Φ

∗
U (θ)) =

δE (θ). Then, Φ∗
U (θ) = r−1

I (δE (θ)) for the corresponding range of δE and domain
of r−1

I .
• For all remaining intervals, i.e., counterclockwise unstable, L-type and N-type,

Φ∗
U (θ) = BU (θm)where θm is the closest R-type angle in counterclockwise direc-

tion. According to Lemma7, θm is a local minimum of rE ; therefore it is sufficient
to check only the local minima. Since the number of local minima is linear and they
occur in order, using a simple traversal of the graphs all of them can be computed
in a linear time.

The time complexity of computing Φ∗
U is O(n). The same bound applies to Φ∗

L . ��
Figure4a, b illustrate an imperfect part and the radius and distance functions.

The corresponding Φ∗
L and Φ∗

U are depicted by blue and black curves in Fig. 4c,
respectively. It can be observed that for unstable and N-type intervals, the graphs of
Φ∗

L and Φ∗
U are horizontal. For L-type intervals, the graph of Φ∗

L curves downward
and the graph of Φ∗

U is horizontal, while for R-type intervals the graph of Φ∗
U curves

upward and the graph of Φ∗
L is horizontal.
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(a)

(b) (c)

Fig. 4 a An example of an imperfect part. b rI , rE (black) and δE (red). c Φ∗
L (blue) and Φ∗

U
(black)

5 An Algorithm for Orienting an Imperfect Part

In the previous section we have shown how to computeΦ∗
L andΦ∗

U . The monotonic-
ity of these functions admits a greedy approach to find, for a given integer h ≥ 0, the
sequence of h push actions that orients an imperfect part into the smallest possible
interval of orientations. Let Θi be the smallest interval containing all possible orien-
tations after i pushes. Obviously, Θ0 = S1, and after the first push the part will be
in one of the p-stable orientations, so Θ1 = S1 − Πmax , where Πmax is the largest
unstable interval. The intervalΘi+1 can be obtained by computing the shortest image
of any translate of Θi under Φ. The process continues as long as |Θi+1| < |Θi | and
i < h. Lemma10 helps us to discretize the search for Θi+1 by showing that it suf-
fices to consider only translates of Θi in which one of its endpoints coincides with
an endpoint of some unstable interval. We first give an observation that is needed to
prove Lemma10. It says that any p-stable angle θ appears in its own image under
Φ∗ (and Φ), because, by definition, there is an instance in S(PI , PE ) that is stable
after pushing at θ.

Observation 5 Φ∗
L(θ) ≤ θ ≤ Φ∗

U (θ) if and only if θ is a p-stable angle, for any
θ ∈ S1.

Lemma 10 Let Θ ⊂ S1 be an interval with the smallest image under Φ among all
the intervals with the length of a given value. If |Φ(Θ)| < |Θ|, then there exists an
interval Θ ′ ⊂ S1 with |Φ(Θ)| = |Φ(Θ ′)| such that L(Θ ′) or U (Θ ′) coincides with
an endpoint of an unstable interval.

Algorithm2 computes the smallest possible interval of orientations for an imper-
fect part after (at most) h push actions. Lemma10 shows that it suffices to repeatedly
align the endpoints of the current smallest interval Θi with each of the endpoints
of the k unstable intervals Π j (1 ≤ j ≤ k) to determine Θi+1. Figure5 shows the
application of the algorithm to the imperfect part of Fig. 4.
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Algorithm 2 Compute the smallest possible orientation set
1: procedure Compute-the-Smallest-Interval(Φ∗

L , Φ∗
U ,Π = {Π1,Π2, . . . ,Πk}, h)

2: i ← 1, X1 ← 2π − max1≤ j≤k{|Π j |} 
 Initialization
3: Continue ← T rue
4: while (Continue) and i ≤ h
5: S ← ∅
6: for j = 1 to k 
 For all unstable intervals
7: S ← S ∪ {[L(Π j ), L(Π j ) + Xi ]} ∪ {[U (Π j ) − Xi , U (Π j )]}
8: Θi ← Θ ∈ S such that ∀Θ ′ ∈ S, |Φ(Θ)| ≤ |Φ(Θ ′)|
9: if (|Φ(Θi )| < Xi )
10: i ← i + 1
11: Xi ← |Φ(Θi )|
12: else
13: Continue ← False
14: return Θi , Xi for all 1 ≤ i ≤ h
15: end procedure

Theorem 6 Algorithm2 finds the sequence of h ≥ 0 push actions that puts the
imperfect part given by S(PI , PE ) in the smallest interval of possible orientations
in O(hn) time.

Instead of running Algorithm2 for a given maximum number h of pushes, we can
also remove that bound and run it as long as the intervals Θi continue to shrink, to
obtain the largest possible reduction of the uncertainty in the imperfect part’s pose.
A natural question that arises is whether the algorithm would terminate in that case
and thus whether the maximum reduction of pose uncertainty can be obtained after
a finite number of pushes. It turns out that it is not always the case.

Recall that Algorithm2 repeatedly aligns the left or right endpoint of an interval
Θi with one of the O(n) endpoints of an unstable interval Γ . The other endpoint of
Θi then ends up in one of the O(n) critical intervals, say Γ ′. In order to obtainΩ(n2)

iterations the endpoints of some interval Θ j with j > i should be able to return to
the same pair of intervals consisting of Γ and Γ ′.

We assume without loss of generality that the left endpoint of Θi (and the future
interval Θ j ) coincides with an endpoint of an unstable interval endpoint ΓL . It is
not hard to see that the interval ΓR containing the right endpoint(s) must have a
variable Φ∗

U .

Lemma 11 Assume that the left endpoints of two intervals Θi and Θ j in Algorithm2
for some j > i share the same endpoint of an unstable interval ΓL and their right
endpoints lie in the same critical interval ΓR. Then ΓR must be R-type.

Lemma12 helps us to determine the conditions for which the resulting intervals
of Algorithm2 can be shrunk endlessly.

Lemma 12 Let d > 0 be a constant value and f be a continuous and non-decreasing
function which has a derivative at every point in its domain A ∈ R. Consider the
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Fig. 5 Illustration of Algorithm2 applied to the imperfect part of Fig. 4a, showing the intervals Θi
for i = 0, . . . , 7. The length of the image of any translate of Θ7 will be at least as long as Θ7; as a
result, no further reduction of the interval of possible orientations is possible

recursive sequence with the general term xn+1 = f (xn) − d and the first element
x0 > 0. If this sequence is decreasing and converges to some limit a ∈ A then

• f (x) < x + d, d f/dx > 1 where x ∈ [a, x0]
• f (a) = a + d

Let Ψi (i > 0) be the i th interval that has its left endpoint in the unstable
interval ΓL and its right endpoint in the critical interval ΓR . Assume that i > 1
and |Φ(Ψi )| < |Ψi |. According to Observation5, an unstable interval does not
appear in its image while an R-type interval does appear in its image. See Fig. 6b.
Considering the identity function and the image of Ψi−1, it can be observed that
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d

f (x)

g(x) = x + d

a x1 x0

(a) (b)

Fig. 6 a The sequence of xn+1 = f (xn) − d where lim
n→∞ xn = a. b L(Ψi−1) lies on L(ΓL ) and

U (Ψi−1) lies in ΓR ; |Φ(Ψi−1)| = |Ψi−1| − |ΓL | + Φ∗
U (U (Ψi−1)) − U (Ψi−1)

|Ψi | ≤ |Φ(Ψi−1)| = Φ∗
U (U (Ψi−1))−Φ∗

L(L(Ψi−1)) = |Ψi−1|−|ΓL |+Ψ (U (Ψi−1))

where Ψ (θ) = Φ∗
U (θ) − θ. Therefore, |Ψi | ≤ Φ∗

U (U (Ψi−1)) − (|ΓL | − L(Ψi−1)).
Note that |ΓL | − L(Ψi−1) is a constant. According to Lemma12 the smallest possi-
ble final orientation set can be obtained after a finite number of iterations unless the
following conditions are met.

1. For θ ∈ ΓR the graph of f (θ) = θ + (|ΓL | − L(Ψi−1)) lies above the graph of
Φ∗

U and dΦ∗
U /dθ < 1.

2. The graph of f (θ) = θ + (|ΓL | − L(Ψi−1)) intersects Φ∗
U in ΓR .

According to Lemma12, if Ψi satisfies both conditions, then the right endpoint
of Ψi gets close to the intersection point of f (θ) = θ + (|ΓL | − L(Ψi−1)) and
Φ∗

U (θ). Therefore, lim
i→∞ |Ψi | = |θ − L(ΓL)| where θ is an angle such that Φ∗

U (θ) =
θ + (|ΓL | − L(Ψi−1)). So the final orientation set can get arbitrarily close to this
limit by increasing the number of push actions.

Recall that the symmetric case, where ΓL is L-type, is similar. There exist imper-
fect parts [27] that meet both of the above conditions for some Θi .

6 Conclusion

In order for automated planning algorithms for part handling tasks to be useful in
practice it is important that these algorithms are capable of dealingwith the inevitable
shape variations of real industrial parts. The few papers that do not assume perfect
parts generally assume a very restrictive model for shape variations, and often only
determine howbig these variationsmust be to invalidate a solution that was computed
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based on the perfect model part. In this paper, we have considered a more general
model for shape variations and studied its effects on orienting parts by pushing. We
have proposed an algorithm that takes into account these variations during planning
and as such outputs a plan that simultaneously orients all instances satisfying the
model into the smallest possible interval of orientations after a given number of push
actions. We have also investigated the conditions for which the part cannot obtain
the smallest final orientation set after finite number of push actions.

The set of possible orientations of an imperfect part can consists of several disjoint
intervals. In this paper, we have focused on finding the smallest interval that contains
all these subintervals. A different version of the problem would be to minimize the
total size of the subintervals. Another extension is to allow for independent variations
in the location of the center of mass. It is also interesting to explore which parameters
affect the length of the final orientation interval; examples of such parameters are
the width of the tolerance zone and the eccentricity of the part.

References

1. Donald, B.R.: Error Detection and Recovery in Robotics. Springer (1987)
2. Mason, M.T.: Manipulator Grasping and Pushing Operations. Ph.D. thesis, MIT, June 1982.

Robot Hands and the Mechanics of Manipulation MIT Press (1985)
3. Chen, J., Goldberg, K., Overmars, M.H., Halperin, D., Böhringer, K.-F., Zhuang, Y.: Shape
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