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Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronments and is vigorously engaged in its new challenges. Interacting with,
assisting, serving, and exploring with humans, the emerging robots will increas-
ingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neurosci-
ences, virtual simulation, animation, surgery, and sensor networks among others. In
return, the challenges of the new emerging areas are proving an abundant source of
stimulation and insights into the field of robotics. It is indeed at the intersection of
disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical
research developments in robotics, our objective with this series is to promote more
exchanges and collaborations among the researchers in the community and con-
tribute to further advancements in this rapidly growing field.

Since its inception in 1994, the biennial Workshop Algorithmic Foundations of
Robotics (WAFR) has established some of the field’s most fundamental and lasting
contributions. The launching of STAR, WAFR, and several other thematic sym-
posia in robotics found an important platform for closer links and extended reach
within the robotics community.

This volume is the outcome of the WAFR eleventh edition hosted by Boğaziçi
University and is edited by Levent Akın, Nancy Amato, Volkan Isler, and Frank
van der Stappen. The book offers a valuable collection highlighting the cutting-edge
research in classical robotics problems (e.g., manipulation, motion, path, multi-
robot, and kinodynamic planning), geometric and topological computation in
robotics as well as novel applications such as informative path planning, active
sensing, and surgical planning.
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The contents of the 42 contributions represent a cross-section of the current state
of research from one particular aspect: algorithms, and how they are inspired by
classical disciplines, such as control theory, computational geometry and topology,
geometrical and physical modeling, reasoning under uncertainty, probabilistic
algorithms, game theory, and theoretical computer science. Validation of algo-
rithms, design concepts, or techniques is the common thread running through this
focused collection.

Rich in topics and authoritative contributors, WAFR culminates with this unique
reference on the current developments and new directions in the field of algorithmic
foundations. A very fine addition to the series!

Naples, Italy Bruno Siciliano
January 2015 STAR Editor
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Preface

This is an exciting time for robotics. Governments across the world have recently
announced major robotics programs such as the National Robotics Initiative, the
DARPA Robotics Challenge in the U.S., and the European Commission’s euRo-
botics initiative. The demand for industrial automation is more than ever. Com-
panies like Google and Amazon have made significant robotics investments. There
is considerable start-up activity around robotics. New, more capable platforms
ranging from legged robots to aerial vehicles are being developed at a rapid pace. In
this environment, developing algorithms for robots (and automation systems in
general) so that they can operate in complex and unstructured environments has
become crucial. These algorithms have applications beyond physical robotic and
sensing systems as they are used for scientific inquiry in other disciplines such as
biology and neurosciences.

The Workshop on Algorithmic Foundations of Robotics (WAFR) is the premier
venue which showcases cutting-edge research in algorithmic robotics. The eleventh
WAFR, which was held at Boğaziçi University in Istanbul, Turkey continued this
tradition. We received 83 very strong submissions. Each submission was assigned
to three members of the Program Committee (PC) which was composed of the
leading researchers in the field. Each PC member provided a review. After a dis-
cussion phase open to the entire PC, and the collection of additional reviews as
needed, 42 papers were selected for presentation at the workshop. WAFR took
place during August 3–5, 2014.

This volume of Springer Tracts in Advanced Robotics contains extended ver-
sions of these papers. These contributions highlight the cutting-edge research in
classical robotics problems (e.g., manipulation, motion, path, multi-robot, and
kinodynamic planning), geometric and topological computation in robotics as well
as novel applications such as informative path planning, active sensing, and surgical
planning. About half of the accepted papers have been forwarded for further review
for dedicated special issues of the International Journal of Robotics Research and
IEEE Transactions on Automation Science and Engineering.

In addition to paper presentations, WAFR 2014 featured three invited speakers:
Vijay Kumar gave a seminar on “Aerial Robot Swarms.” Cağatay Başdoğan’s topic
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was “Haptic Role Exchange and Negotiations for Human Robot Interaction.”
Oussama Khatib focused on “Working with the New Robots.”

We owe many thanks to all the authors for submitting such high quality work, all
the PC members and auxiliary reviewers for all of their hard work, and all WAFR
participants for making WAFR 2014 a success. We would like to express our
gratitude to Boğaziçi University’s Faculty of Engineering for the venue with
breathtaking views, and University of Minnesota’s Department of Computer Sci-
ence and Engineering for their support. Finally, we gratefully acknowledge travel
support by the United States National Science Foundation for student participants.

H. Levent Akin
Nancy M. Amato

Volkan Isler
A. Frank van der Stappen
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Efficient Multi-robot Motion Planning
for Unlabeled Discs in Simple Polygons

Aviv Adler, Mark de Berg, Dan Halperin and Kiril Solovey

Abstract We consider the following motion-planning problem: we are given m unit
discs in a simple polygon with n vertices, each at their own start position, and we
want to move the discs to a given set of m target positions. Contrary to the standard
(labeled) version of the problem, each disc is allowed to be moved to any target
position, as long as in the end every target position is occupied. We show that this
unlabeled version of the problem can be solved in O

(
n log n + mn + m2

)
time,

assuming that the start and target positions are at least some minimal distance from
each other. This is in sharp contrast to the standard (labeled) and more general multi-
robotmotion planning problem for discsmoving in a simple polygon,which is known
to be strongly np-hard.
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1 Introduction

The multi-robot motion-planning problem is to plan the motions of several robots
operating in a common workspace. In its most basic form, the goal is to move
each robot from its start position to some designated target position, while avoiding
collision with obstacles in the environment andwith other robots. Besides its obvious
relevance to robotics, the problem has various other applications, for example in the
design of computer games or crowd simulation. Multi-robot motion planning is a
natural extension of the single-robot motion planning problem, but it is much more
complex due to the high number of degrees of freedom that it entails, even when the
individual robots are as simple as discs.

Related work. One of the first occurrences of the multi-robot motion-planning prob-
lem in the computational-geometry literature can be found in the series of papers
on the Piano Movers’ Problem by Schwartz and Sharir. They first considered the
problem in a general setting [18] and then narrowed it down to the case of disc
robots moving amidst polygonal obstacles [19]. In the latter work an algorithm was
presented for the case of two and three robots, with running time of O(n3) and
O(n13), respectively, where n is the complexity of the workspace. Later Yap [29]
used the retraction method to develop a more efficient algorithm, which runs in
O(n2) and O(n3) time for the case of two and three robots, respectively. Several
years afterwards, Sharir and Sifrony [20] presented a general approach based on cell
decomposition, which is capable of dealing with various types of robot pairs and
which has a running time of O(n2). Moreover, several techniques that reduce the
effective number of degrees of freedom of the problem have been proposed [1, 26].

When the number of robots is no longer a fixed constant, the multi-robot motion-
planning problem becomes hard. Hopcroft et al. [8] showed that even in the relatively
simple setting ofn rectangular robotsmoving in a rectangularworkspace, the problem
is already pspace-hard. Moreover, Spirakis and Yap [23] showed that the problem
is strongly np-hard for disc robots in a simple polygon.

In recent years,multi-robot planning has attracted a great deal of attention from the
robotics community. This canbemainly attributed to two reasons. First, it is a problem
of practical importance. Second, the emergence of the sampling-based techniques,
which are relatively easy to implement, yet are highly effective. These techniques
attempt to capture the connectivity of the configuration space through random sam-
pling [9, 14]. Although sampling-based algorithms are usually incomplete—they
are not guaranteed to find a solution—they tend to be very efficient in practice.
Hence, they are considered the method-of-choice for motion-planning problems that
involve many degrees of freedom. While sampling-based tools for a single robot can
be applied directly to the multi-robot problem by considering the group of robots as
one large composite robot [17], there is a large body of work that attempts to exploit
the unique properties of the multi-robot problem [7, 16, 22, 24, 27, 28].

The aforementioned results deal exclusively with the classical formulation of the
multi-robot problem, where the robots are distinct and every robot is assigned a
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specific target position. The unlabeled variant of the problem, where all the robots
are assumed to be identical and thus interchangeable, was first considered by Kloder
and Hutchinson [11], who devised a sampling-based algorithm for the problem.
Recently a generalization of the unlabeled problem—the k-color motion-planning
problem—has been proposed, in which there are several groups of interchangeable
robots [21]. Turpin et al. [25] considered a special setting of the unlabeled problem
with disc robots, namely where the collection of free configurations surrounding
every start or target position is star-shaped. This condition allows them to devise an
efficient algorithm that computes a solution in which the maximum path length is
minimized. Unfortunately the star-shapedness condition is quite restrictive, and in
general it will not be satisfied.

Other related work includes papers that study the number of moves required to
move a set of discs between two sets of positions in an unboundedworkspace, when a
move consists of sliding a single disc—see for example the paper by Bereg et al. [2]
which provides upper and lower bounds for the unlabeled case, or the paper by
Dumitrescu and Jiang [3] who show that deciding whether a collection of labeled
or unlabeled discs can be moved between two sets of positions within k steps is np-
hard. Finally, we mention the problem of pebble motions on graphs, which can be
considered as a discrete variant of the multi-robot motion planning problem. In this
problem, pebbles need to be moved from one set of vertices of a graph to another,
while following a certain set of rules—see for example [4, 5, 12, 13, 15, 30].

Our contribution. Surprisingly, the unlabeled version of the multi-robot motion-
planning problem has hardly received any attention in the computational-geometry
literature. Indeed, we don’t know of any papers that solve the problem in an exact
and complete manner, except in a restricted setting studied by Turpin et al. [25] that
we mentioned above. We therefore study the following basic variant of the problem:
givenm unit discs in a simple polygonwith n vertices, each at their own start position,
and m target positions, find collision-free motions for the discs such that at the end of
the motions each disc occupies a target position. We make the additional assumption
that the given start and target positions are well-separated. More precisely, any two
of the given start and target positions should be at distance at least 4 from each other.
Notice that we only assume this extra separation between the robots in their static
initial and goal placements; we do not assume any extra separation (beyond non-
collision) between a robot and the obstacles, nor do we enforce any extra separation
between the robots during the motion. Even this basic version of the problem turns
out to have a rich structure and poses several difficulties and interesting questions.We
believe that some separation is essential for the existence of an efficient algorithm,
and without this requirement the problem will become intractable (see Sect. 7 for
further details).

By carefully examining the various properties of the problem we show how to
transform it into a discrete pebble-motion problem on graphs. A solution to the
pebble problem, which can be generated with rather straightforward techniques,
can then be transformed back into a solution to our continuous motion-planning
problem. We mention that a similar transformation was used in [21] in the context
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of a sampling-based method. Using this transformation we are able to devise an
efficient algorithm whose running time is O

(
n log n + mn + m2

)
, where m is the

number of robots and n is the complexity of the workspace. To be precise, we show
that our algorithm runs in O(n log n +m2) time, and the overall description length of
all the paths to be carried out by the robots has complexity O(mn + m2). As already
mentioned, this is in sharp contrast to the standard (labeled) and more general multi-
robotmotion planning problem for discsmoving in a simple polygon,which is known
to be strongly np-hard [23].

2 Preliminaries

We consider the problem of m indistinguishable unit-disc robots moving in a simple
polygonal workspace W ⊂ R

2 with n edges. We define O � R
2 \ W to be the

complement of the workspace, and we call O the obstacle space. Since our robots
are discs, a placement of a robot is uniquely specified by the location of its center.
Hence, we will sometimes refer to points x ∈ W as configurations, and we will say
that a robot is at configuration x when its center is placed at the point x ∈ W . For
given x ∈ R

2 and r ∈ R+, we define Dr (x) to be the open disc of radius r centered
at x .

We consider the unit-disc robots to be open sets. Thus a robot avoids collisionwith
the obstacle space if and only if its center is at distance at least 1 fromO, that is, when
it is at a configuration located in the free space F � {x ∈ R

2 : D1(x) ∩ O = ∅}. We
require the robots to avoid collisionswith each other, so if a robot is at configuration x
then no other robot can be at a configuration y ∈ Int(D2(x)); here Int(X) denotes
the interior of the set X . Furthermore, the notation ∂(X) will be used to refer the
boundary of X . We call D2(x) the collision disc of the configuration x .

Besides the simple polygonW forming the workspace, we are also given sets S =
{s1, s2, . . . , sm} and T = {t1, t2, . . . , tm} such that S, T ⊂ F . These are respectively
the sets of start and target configurations of our m identical disc robots. We assume
that the configurations in S and T are well-separated:

For any two distinct configurations x, y ∈ S ∪ T we have ‖x − y‖ ≥ 4.

The problem is now to plan a collision-free motion for our m unit-disc robots such
that each of them starts at a configuration in S and ends at a configuration in T . Since
the robots are indistinguishable (or: unlabeled), it does not matter which robot ends
up at which target configuration. Formally, we wish to find paths πi : [0, 1] → F ,
for 1 � i � m, such that πi (0) = si and

⋃m
i=1 πi (1) = T . Additionally, we require

that the robots do not collide with each other: for every 1 � i 
= j � m and every
ξ ∈ (0, 1), we require D1(πi (ξ)) ∩ D1(π j (ξ)) = ∅. Note that the requirement that
the robots do not collide with the obstacle space O is implied by the paths πi being
inside the free space F .
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3 Basic Properties of the Free Space

Recall that the free space F ⊂ W is the set of configurations at which a robot does
not collide with the obstacle space. The free space may consist of multiple connected
components.Wedenote these components by F1, . . . , Fq , whereq is the total number
of components. For any i ∈ {1, 2, . . . , q}, we let Si � S ∩ Fi and Ti � T ∩ Fi . We
assume from now on that |Si | = |Ti | for all 1 � i � q—if this is not the case, then
the problem instance obviously has no solution—and we define mi � |Si | = |Ti | to
be the number of robots in Fi .

Before we proceed, we need one more piece of notation. For any x ∈ W , we
define obs(x), the obstacle set of x , as obs(x) � {y ∈ O : ‖x − y‖ < 1}. In other
words, obs(x) contains the points in the obstacle space overlapping withD1(x). Note
that obs(x) = ∅ for x ∈ F .

In the remainder of this section we prove several crucial properties of the free
space, which will allow us to transform our problem to a discrete pebble problem.
We start with some properties of individual components Fi , and then consider the
interaction between robots in different components.

Properties of a single connected component of F . We start with a simple observation,
for which we provide a proof for completeness.

Lemma 1 Each component Fi is simply connected.

Proof Suppose for a contradiction that Fi contains a hole. ThenCompl(F) � R
2\F ,

the complement of the free space, has multiple connected components. One of these
is CO, the unbounded component containing O. Let C be another component of
Compl(F), and let x ∈ C . Since x 
∈ F , there is a point y ∈ O with ‖x − y‖ < 1. But
then ‖x ′−y‖ < 1 for any point x ′ on the segment xy, which implies xy ⊂ Compl(F)

and thus contradicts that C and CO are different components. �

Now consider any x in R2. Recall that D2(x) denotes the collision disc of x , that is,
D2(x) is the set of all configurations y for which another robot placed at y collides
with a robot at x . We now define D∗(x) to be the part of D2(x) that is in the same
free-space component as x , that is, D∗(x) � D2(x) ∩ Fi where Fi is the free-space
component such that x ∈ Fi .

The following three lemmas constitute the theoretical basis on which the correct-
ness and efficiency of our algorithm relies.

Lemma 2 For any x ∈ F , the set D∗(x) is connected.

Proof Assume for a contradiction that D∗(x) is not connected. Let Fi be the free-
space component containing x . Since by definition x ∈ D∗(x), we can find some
y ∈ D∗(x) that is in a different connected component of D∗(x) from x . Since
y ∈ D∗(x) ⊂ D2(x), the distance between x and y is at most 2. Hence, any point
on the line segment xy is within a distance of 1 of either x or y. Since x, y ∈ Fi , we
know that xy ⊂ W , otherwise either x or y would not be in F . We also know that
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Fig. 1 a An illustration of Lemma2. The discD2(x) is drawn in green. The closed curve λ, which
consists of the curve π′ and the straight-line x ′y′, is drawn in blue, and A represents the area that
is bounded by λ. The disc K of radius 1 that touches x ′, y′ is drawn in pink. Note that the area A∗,
which is drawn in red, is contained in A. The dashed black lines represent π \ π′. b An illustration
of Lemma3, and in particular, the case where A∗

1 ∩ A∗
2 
= ∅. For simplicity of presentation, we

assume that �1 = x1y1 and �2 = x2y2

xy 
⊂ Fi , since otherwise x and y would not be in different connected components
of D∗(x). Because x, y ∈ Fi , by definition there exists a simple path π ⊂ Fi from
x to y. Since the workspace is a polygon with finite description complexity, we may
assume that π has finite complexity as well, which implies that π ∩ xy is composed
of finitely many isolated points and closed segments. See Fig. 1a for an illustration.

We now define x ′, y′ as the points on π ∩ xy ⊂ D∗(x) such that x ′, y′ are in
different connected components of D∗(x) and ‖x ′ − y′‖ is minimized given the first
condition. Let π′ be the subpath of π joining x ′ to y′. Notice that π ∩ x ′y′ = {x ′, y′}.
Indeed, if there exists a point z ∈ π∩Int(x ′y′), then z must be in a different connected
component of D∗(x) than either x ′ or y′, and ‖x ′ − y′‖ would not be the minimum.
Since π is a simple path, this means that λ � π′ ∪ x ′y′ is a simple closed curve. The
area enclosed by λ (including λ) will be referred to as A. We note that λ ⊂ W since
π′ ⊂ F ⊂ W and x ′y′ ⊂ xy ⊂ W . This immediately implies that A ⊂ W , since W
is a simple polygon.

Let A∗ � A\F . We claim that A∗ ⊂ Int(D2(x)), which implies that there exists
a path in Fi from x ′ to y′ that goes along ∂(A∗) and is fully contained in D2(x).
But this contradicts that x ′ and y′ are in different components of D∗(x) and, hence,
proves the lemma. It thus remains to prove the claim that A∗ ⊂ Int(D2(x)).

We note that for any point z ∈ A∗ and any w ∈ obs(z) we have zw ∩ π′ = ∅,
since π′ ⊂ F . Furthermore, for any v ∈ π′ we have ‖w − v‖ ≥ 1, and as x ′, y′ ∈ π′
it follows that ‖w − x ′‖ ≥ 1 and ‖w − y′‖ ≥ 1. Assume without loss of generality
that x ′y′ is vertical and that locally A lies to the right of x ′y′, as in Fig. 1a. Let K be
the circle of radius 1 that passes through x ′ and y′, and whose center lies to the left of
x ′y′—such a circle always exists since ‖x ′ − y′‖ � ‖x − y‖ � 2. (If ‖x ′ − y′‖ = 2
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then the center of the circle lies on x ′y′.) We now let ζ be the arc of this circle lying
to the right of x ′y′; note that this is the shorter of the two arcs joining x ′ and y′ if they
are of different lengths. Then A∗ is a contained entirely within the area enclosed by
ζ and x ′y′. Furthermore, A∗ ⊂ Int(A) ∪ Int(x ′y′) since π′ ⊂ F . Therefore, since
x ′y′ is a subsegment of xy and ζ cannot cross ∂(D2(x)), it follows that

A∗ ⊂ (Int(A) ∪ Int(x ′y′)) ∩ Int(D2(x)) ⊂ Int(D2(x)),

which proves the claim and finishes the proof of the lemma. �

Interference between different connected components of F . Let Fi , Fj be two distinct
components of F , and let x ∈ Fi be such that D2(x) ∩ Fj 
= ∅. We then call x an
interference configuration from Fi to Fj , and define the interference set from Fi to
Fj as I(i, j) � {x ∈ Fi : D2(x) ∩ Fj 
= ∅}. We also define the mutual interference
set of Fi , Fj as I{i, j} � I(i, j) ∪ I( j,i). Intuitively, an interference configuration from
Fi to Fj is a configuration for a robot in Fi which could block a path in Fj , and the
interference set is the set of all such points. The mutual interference set of Fi , Fj is
the set of all single-robot configurations in either component which might block a
valid single-robot path in the other component.

Lemma 3 For any mutual interference set I{i, j} and any two configurations x1, x2 ∈
I{i, j} we have D2(x1) ∩ D2(x2) 
= ∅.

Proof The proof is similar in spirit to the proof of Lemma2 albeit slightly more
involved. Assume for a contradiction that x1, x2 ∈ I{i, j} and D2(x1) ∩ D2(x2) = ∅.
By definition there exist y1 ∈ D2(x1) and y2 ∈ D2(x2) such that each pair
{x1, y1}, {x2, y2} contains one point in Fi and one point in Fj . As shown in the
proof for Lemma2, the segments x1y1, x2y2 are entirely contained in W . We may
assume that x1y1 does not cross x2y2, since if it did the crossing point would be in
D2(x1)∩D2(x2) andwewould be done. Therefore, there exists a simple closed curve
λ ⊂ W composed of the union of two simple curves πi ,π j and two line segments
�1, �2 such that πi ⊂ Fi and π j ⊂ Fj , and �1 ⊂ x1y1, �2 ⊂ x2y2. Note that both
�1 and �2 have one endpoint in Fi and the other in Fj ; see Fig. 1b for an illustration.
The end points of �1 consist of x ′

1, y′
1, such that x1, x ′

1 and y1, y′
1 belong to the same

connected components, andminimize the distance ‖x ′
1−y′

1‖ (�2 is similarly defined).
We refer to the region enclosed by λ (including λ) as A. Because λ ⊂ W and W

is a simple polygon, we know that A ⊂ W . Furthermore, since πi ,π j ⊂ F , for any
x ∈ Int(A) and y ∈ obs(x) (by definition, y ∈ R

2\W so y 
∈ A; thus, xy ∩ λ 
= ∅),
we know that xy ∩ πi = xy ∩ π j = ∅. Thus, xy ∩ Int(�1) 
= ∅ or xy ∩ Int(�2) 
= ∅,
or both. Let A∗ � A\F and denote by A∗

1 the set of configurations x ∈ A∗ for which
there exists y ∈ obs(x) such that xy ∩ Int(�1) 
= ∅; the set A∗

2 is defined in a similar
manner, only that now xy ∩ Int(�2) 
= ∅. Note that A∗ = A∗

1 ∪ A∗
2.

We claim that A∗
1∩ A∗

2 
= ∅. Indeed, if A∗
1∩ A∗

2 = ∅ then there is a path from x1 to
y1 along ∂(A∗

1) that stays in A \ A∗ and, hence, stays in F , which would contradict
that x1 ∈ Fi and y1 ∈ Fj for i 
= j . Thus, there exists a point x∗ ∈ A∗

1 ∩ A∗
2.
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We define the unit circles K1, K2 whose boundaries lie on the endpoints of �1, �2
respectively, and whose centers are located outside A. Thus, we have A∗

1 ⊂ K1
and A∗

2 ⊂ K2. Hence, x∗ ∈ K1 ∩ K2. But this implies x∗ ∈ D2(x1) ∩ D2(x2), so
D2(x1) ∩ D2(x2) 
= ∅, contradicting our initial assumption. �

The next lemma is a generalization of the previous one. Intuitively, instead of
considering a cycle of length 2 among interacting free-space components, we now
consider larger cycles.

Lemma 4 Let {φ(1),φ(2), . . . ,φ(h)} ⊂ {1, 2, . . . , q}, and let x1, x2, . . . , xh be
points such that for all i , xi ∈ I{φ(i),φ(i+1)}, where φ(h + 1) ≡ φ(1). (Thus the
list is circular with respect to its index). Then there exists some i 
= j such that
D2(xi ) ∩ D2(x j ) 
= ∅.

Proof This can be proved in amanner completely analogous to the proof of Lemma3;
wewill outline the proof here.We assume for a contradiction thatD2(xi )∩D2(x j ) =
∅ for all i 
= j . We can argue that we can construct a simple closed curve λ ⊂ W
passing through Fφ(1), Fφ(2), . . . , Fφ(h) (in that order), which is composed of simple
closed curves πi ⊂ Fφ(i) and line segments �i ⊂ W with endpoints in Fφ(i) and
Fφ(i+1). We then consider the area A enclosed by λ and note that A ⊂ W . Let
A∗ � A \ F . If there exists some simple curve π∗ ⊂ A∗ connecting �i to � j for
some i 
= j , we can show that there exists some k such that D2(xi ) ∩ D2(xk) 
= ∅,
contradicting our assumption. Therefore no such π∗ exists for any i 
= j . But this
means that there exists some simple path π′ ⊂ A∩F which joins πi and π j for some
i 
= j , which contradicts the fact that πi and π j belong to different components
of F . �

4 Algorithm for a Single Component

In this section we consider a single component Fi ofF . We present an algorithm that
solves the problem within Fi , ignoring the possibility that robots in Fi might collide
with robots in other components Fj . In the next section we will show how to avoid
such collisions without changing the motion plans within the individual components.
As before we set Si � S ∩ Fi and Ti � T ∩ Fi , and assume |Si | = |Ti |.
The motion graph. The motion graph Gi of Fi is a graph whose vertices represent
start or target configurations, andwhose edges represent “adjacencies” between these
configurations, as defined more precisely below.

Recall that for any x ∈ Fi we defined D∗(x) � D2(x) ∩ Fi as the part of the
collision disc of x inside Fi , and recall from Lemma2 that D∗(x) is connected.
Moreover, for any two distinct configurations x1, x2 ∈ Si ∪ Ti we have D∗(x1) ∩
D∗(x2) = ∅, because D2(x1) ∩ D2(x2) = ∅ by the assumption that the start and
target positions are well-separated. The vertices of our motion graph Gi correspond
to the start and target configurations in Si ∪ Ti . From now on, and with a slight
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abuse of notation we will not distinguish between configurations in Si ∪ Ti and their
corresponding vertices in Gi .

Now consider F∗
i � Fi \ ⋃

x∈Si ∪Ti
D∗(x), the complement of the collision discs

of the given start and target configurations in Fi . This complement consists of several
connected components, which we denote by F1

i , F2
i , . . .. If the motion graph Gi

contains an edge (x1, x2) then there is a component F�
i that is adjacent to both D∗(x1)

and D∗(x2). In other words, two configurations x1 and x2 are connected in Gi if there
is a path from x1 to x2 that stays inside Fi and does not cross the collision disc of
any other configuration x3 ∈ Si ∪ Ti . Figure2 illustrates the definition of Gi . The
following observation summarizes the main property of the motion graph.

Observation 1 Suppose all robots in Fi are located at a start or target configuration
in Si ∪ Ti , and let (x1, x2) be any edge in Gi . Then a robot located at x1 can move
to x2 without colliding with any of the other robots.

Remark. We could also work with the dual graph of the partitioning of Fi into
cells induced by the collision discs. This dual graph would, in addition to vertices
representing start and target configurations, also have vertices for the regionss F�

i .
For the pebble-motion problem discussed below it is easier to work with the graph
as we defined it. This graph may have many more edges, but in the implementation
of our algorithm described in Sect. 6 we avoid computing it explicitly.

The unlabeled pebble-motion problem. Using the motion graph Gi we can view the
motion-planning problemwithin Fi as a pebble-motion problem. (A similar approach
was taken in [21], where a sampling-based algorithm formulti-robotmotion planning
produces multiple pebble problems by random sampling of the configuration space.)
To this end we represent a robot located at configuration x ∈ Si ∪ Ti by a pebble on

(a)

G

s3

s2

t4

t1

s4

t2

t3

s1

(b)

F 3
s1

s3

s2

s4

t1

t2

t3

t4

F 2

F 1

Fig. 2 a A partition of a maximal connected component F . The start and target positions consist
of the elements S′ = {s1, s2, s3, s4}, T ′ = {t1, t2, t3, t4}, respectively, where the areas D∗(s) for
s ∈ S′ are drawn in green and D∗(t) for t ∈ T ′ are drawn in purple. F∗ consists of the parts
F1, F2, F3. b A motion graph of F
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the corresponding vertex in Gi . The pebbles are indistinguishable, like the robots,
and they can move along the edges of the graph. At the start of the pebble-motion
problem for a graph with vertex set Si ∪ Ti , with |Si | = |Ti |, there is a pebble on
every vertex x ∈ Si . The goal is to move the pebbles such that each pebble ends up
in vertex in Ti , under the following conditions: (1) no two pebbles may occupy the
same vertex at the same time, and (2) pebbles can only halt at vertices, and (3) at
most one pebble may move (that is, be in transit along an edge) at any given time.
We call this problem the unlabeled pebble-motion problem. The following lemma
follows immediately from Observation 1.

Lemma 5 Any solution to the unlabeled pebble-motion problem on Gi can be trans-
lated into a valid collision-free motion plan for the robots in Fi .

Kornhauser [12, Sect. 3, first lemma] proved that the unlabeled pebble-motion prob-
lem is, in fact, always solvable, and he gave an algorithm to find a solution. Since
he did not analyze the running time of his algorithm, we sketch the solution in the
proof of the lemma below.

Lemma 6 [12] For any graph G with vertex set S ∪ T where |S| = |T |, there
exists a solution to the unlabeled pebble-motion problem. Moreover, a solution can
be found in O(|S|2) time.

Proof Let TG be a spanning tree of G. The algorithm performs O(|S|) phases. In
each phase, one or more pebbles may be moved and one leaf will be removed from
TG , possibly with a pebble on it. After the phase ends, the algorithm continues with
the next phase on the modified tree TG , until all pebbles have been removed and the
problem has been solved. A phase proceeds as follows.

If there are leaves v that are target vertices then we select such a leaf v. If v does
not yet contain a pebble, we find a pebble closest to v in TG—this can be done by a
simple breadth-first search—and move it to v along the shortest path in G. Note that
the vertices on the shortest path cannot contain other pebbles, since we took a closest
pebble. We now remove the leaf v, together with the pebble occupying it, and end
the phase. If all leaves in TG are start vertices, then let v be such a leaf. If v is not
occupied by a pebble it can be removed from TG , and the phase ends. Otherwise a
pebble resides in v, which we move away, as follows. We find the closest unoccupied
vertexw to v ofTG andmove all pebbles on this shortest path (including the pebble on
v) one step closer tow, in order of decreasing distance fromw. After we evacuated v

we remove it from TG to end the phase.
The algorithm produces paths of total length O(|S|2), and it can easily be imple-

mented to run in O(|S|2) time. Note that there are examples where Ω(|S|2) moves
are required, for example when G is a single path with all starting positions in the
first half of the path and all target positions in the second half. �

Lemma 7 Suppose we have an instance of our multi-robot path planning problem
where |Si | = |Ti | for every component Fi of the free space F . Then for each Fi there
exists a motion plan Πi that brings the robots in Fi from Si to Ti , such that they do
not collide with the obstacle space nor with the other robots in Fi .
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5 Combining Single-Component Plans

We now consider possible interactions between robots contained in different
components Fi and Fj of F . As before, we assume that |Si | = |Ti | for all i . We will
show that there exists a permutation σ : {1, 2, . . . , �} → {1, 2, . . . , �} such that we
can independently execute the single-component motion plans for each component
Fi as long as we do so in the order Fσ(1), Fσ(2), . . . , Fσ(�).

To obtain this order, we define a directed graph representing the structure of F ,
which we call the directed-interference forest G = (V, E), where the nodes in V
correspond to the components Fi . We add the directed edge (Fi , Fj ) to E if either
there exists a start position s ∈ S such that s ∈ I(i, j), or there exists a target position
t ∈ T such that t ∈ I( j,i). For any i ∈ {1, 2, . . . , �}, we additionally define N+(i) to
be the set of indices of the vertices in the out-neighborhood of vi ; similarly, N−(i)
is defined as the set of indices of the vertices in the in-neighborhood of vi .

Note that byLemma3 and since S, T arewell separated,we cannot havemore than
one start or target position in I{i, j}. This implies that E cannot contain both (vi , v j )

and (v j , vi ). Lemma4 and the well-separatedness condition additionally imply that
G cannot have an undirected cycle. Thus, G is a directed forest.

We now produce the desired ordering using G. Consider Fi ∈ V , and suppose
that for all j ∈ N+(i), every robot in Fj is at a start position, and for all j ∈
N−(i), every robot in Fj is at a target position. Additionally, suppose that for all
j 
∈ N+(i) ∪ N−(i), every robot in Fj is at a start or target position. Then, by
the definition of G, no robot is at a configuration in I{i, j} for any j 
= i ; thus any
motion plan for the robots in Fi , such as the one described in Sect. 4, can be carried
out without being blocked by the robots not in Fi . Hence, if we have an ordering
σ : {1, 2, . . . , �} → {1, 2, . . . , �} such that for all (directed) edges (vi , v j ) ∈ E ,
σ−1(i) < σ−1( j), where σ−1 is the inverse permutation of σ, then we can execute
the motion plans for the robots in Fσ(1), Fσ(2), . . . , Fσ(�) in that order. Since G is a
directed forest such an ordering can be produced using topological sorting on the
vertices of G. Thus, combining this result with Lemma7 we obtain.

Theorem 1 Let there be a collection of m unlabeled unit-disc robots in a simple
polygonal workspace W ⊂ R

2, with start and target configurations S, T that are
well-separated. Then if for every maximal connected component Fi of F (where F
is the free space for a single unit-disc robot in W) |S ∩ Fi | = |T ∩ Fi |, there exists a
collision-free motion plan for these robots starting at S which terminates with every
position of T occupied by a robot.

6 Algorithmic Details

In this section we fill in a few missing details in the description of our algo-
rithm. Specifically, we present an efficient method for generating motion graphs
and describe a technique for generating configuration-space paths that correspond to



12 A. Adler et al.

edges in the motion graphs. Additionally, we consider the complexity of the various
subsets of F used throughout the algorithm.

Partitioning F . We analyze the combinatorial complexity of F∗ � F \ ⋃
x∈S∪T D∗

(x) and D �
⋃

x∈S∪T D∗(x).

Lemma 8 The combinatorial complexity of F∗ is O(m + n).

Proof We decompose the complement of the workspace polygon into O(n)

trapezoids—this is doable by standard vertical decomposition. We define a set X ,
which consists of the trapezoids, and in addition a collection of O(m) unit discs that
are centered at the start and target positions.We now observe that the regions in X are
pairwise interior disjoint (and convex). Hence, it is known [10] that the complexity
of the union of the regions in X , each Minkowski-summed with a unit disc, is linear
in the number of regions plus the sum of the complexities of the original regions. As
the result of the Minkowski sum operation of X with a unit disc is the the area F∗,
we conclude that that the complexity of F∗ is O(m + n). �

Note that this upper bound still holds if we consider instead of F∗ the union of
F∗

i � Fi \ ⋃
x∈Si ∪Ti

D∗(x), for all 1 � i � q.

Lemma 9 The combinatorial complexity of D �
⋃

x∈S∪T D∗(x), is O(m + n).

Proof Denote by d � {d1, d2, . . .} the segments that define ∂(D). Additionally,
denote by f � { f1, f2, . . .} and f ∗ � { f ∗

1 , f ∗
2 , . . .} the segments that define

∂(F), ∂(F∗), respectively. Note that ∂(D) consists of segments that are elements of
f, f ∗ and in addition segments that are subsegments of the elements of f , denoted by
f ′ � { f ′

1, f ′
2, . . .}. Obviously the complexity of the segments of d, that are elements

of f or f ∗, is bounded by O(m + n). It might happen that the segments of f will
be split into many subsegments in f ′. However, notice that whenever a segment of
f is split the endpoints of each subsegment consist of vertices of ∂(F) or ∂(F∗).
Moreover, exactly two segments in ∂(D) share an endpoint. Thus, the complexity of
D is O(m + n). �

Generating the motion graphs. We consider a specific component F of F and con-
struct its motion graph G. Denote F∗ � F \ ⋃

x∈(S∪T )∩F D∗(x). Note that by the
analysis in Sect. 5 we can ignore the influence of D2(x) on connected components
in F that do not contain x . We assume that F∗ breaks into k maximal connected
components F1, . . . , Fk . The construction of G, along with the paths in F that cor-
respond to the edges of G, is carried out in two steps. First, for every Fi we generate
the portion of G, denoted by Gi , whose vertices represent start and target positions
that touch the boundary of Fi . Then, we connect between the various parts of G.

We consider a specific connected component Fi of F∗ and describe how the
respective portion of the motion graph, namely Gi , is generated. We split the start
and target positions that share a boundary with Fi into two subsets: Bi are those
positions for which the collision disc intersects the boundary of F and Hi are those
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Fig. 3 a An illustration of a component F3 of F∗ and the structures used for generating the relevant
portion of the motion graph. The boundary positions of F3 consist of B3 := {s2, t1, t2, t4}, while
the hole positions consist of H3 := {s3, s4}. For every x ∈ H3 its boundary representative β3(x) is
illustrated as a large black dot. A path between t1 and t2 is illustrated in red. b The motion graph G3

induced by F3

positions for which the collision disc floats inside F . See Fig. 3. We first handle the
positions in Bi . Consider the outer boundary Γ i of Fi \ ⋃

x∈S∪T D∗(x). We argue
that each x ∈ Bi can contribute exactly one piece to Γ i .

Lemma 10 If x ∈ Bi then ∂(D2(x)) ∩ ∂(Fi ) consists of a single component.

Proof By contradiction, assume that the intersection consists of two maximal con-
nected components. Denote by y, y′ two configurations on the two components. As
Fi consists of a single connected component of F there exists a path πyy′ ⊂ F from
y to y′. Additionally, as y, y′, x belong to the same connected component of F there
exist two paths—πxy from x to y and πxy′ from x to y′—that lie entirely in D∗(x).
Thus, the area that is bounded by the three paths πyy′,πxy,πxy′ contains a patch
of forbidden space, which contradicts the fact the our workspace is a simple
polygon. �

For every x ∈ Bi we arbitrarily select a representative point βi (x) ∈ ∂(D2(x)) ∩
Fi . We order the points βi (x) clockwise around Γ i , and store them in a circular list
Li . We now incorporate the remaining start and target positions Hi , namely those
positions x for which D2(x) ∩ ∂(F) = ∅. Each position in Hi will be connected
either to Γ i or to the boundary of a collision disc of another position in Hi as
follows. For each x ∈ Hi we shoot a vertical ray upwards until it hits ∂(Fi ). Denote
the point where the ray hits ∂(Fi ) by c. If c ∈ ∂(D2(x ′)) for some x ′ ∈ Hi , x ′ 
= x
then an edge between x and x ′ is added to Gi . Otherwise, we let βi (x) � c and
insert it into the circular list Li representing the points βi (x) along Γ i collected
so far. After all positions in Hi have been handled in this manner, for each pair of
consecutive points βi (x ′),βi (x ′′) in Li (along Γ i ) we add an edge in Gi between
the vertices x ′ and x ′′. (Notice that some of the positions x whose βi (x) appear in Li

belong to Hi ; for example s3 in Fig. 3.) Finally, the connection between portions of
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the motion graph that represent different parts of F∗ is achieved through positions
shared between two sets Bi , B j , for i 
= j .

Transforming graph edges into paths in the free space. There are three different types
of transformations depending on how the edge was created. Let (x, x ′) be an edge in
Gi . Consider Fig. 3 for an illustration. (i) If both x and x ′ belong to Hi (see (s4, s3)
in the figure) then the path simply consists of the two straight-line segments xc and
cx ′. For the remaining two cases we note that if either vertex, say x , is in Bi , then
part of the path is a simple curve connecting x to βi (x) within D∗(x) (see the red
curves from s1 and t2 in the figure).We denote this curve by δx . (ii) x, x ′ ∈ Bi and the
points βi (x) and βi (x ′) are consecutive along Γ i (see (t1, t2) in the figure). The path
corresponding to the edge (x, x ′) in this case is a concatenation of three sub-paths:
δx , the portion of Γ i between βi (x) and βi (x ′) (not passing though the boundary
of any other collision disc), and δx ′ . (iii) x ∈ Hi and x ′ ∈ Bi (see (s3, s2) in the
figure). The path is again a concatenation of three paths: the line segment xβi (x),
the portion of Γ i between βi (x) and βi (x ′) (not passing though the boundary of any
other collision disc), and δx ′ .

Notice that for all path types above if a robot r moves from x to x ′, x ′ is not
occupied, and all other robots occupy positions only at S ∪ T \ {x, x ′}, r will not
collide with any other robot during the motion.

Complexity analysis. We provide complexity analysis of our algorithm and show that
a solution to theproblemcanbeproducedwithin O ((m + n) log(m + n) + mn+ m2

)

operations, which can be rewritten as O
(
n log n + mn + m2

)
.

Recall that the pebble problem solver (Sect. 4) operates in O(m) phases, where
in each phase a leaf node is removed from the spanning tree of G. We show, using
Lemmas8 and 9, that each phase can be transformed into a set of movements for
the robots whose combinatorial complexity is O(m + n). The crucial observation is
that in one phase each edge of the motion graph is used at most once. Thus the set
of robot movements in one phase is bounded by the complexity of the movements
corresponding to all the edges in the graph together. These comprise O(m) line seg-
ments, portions of the boundaries Γ i (whose complexity is O(m + n) by Lemma8),
and the paths δx inside the D∗(x)′s (whose complexity is O(m + n) by Lemma9).
A path of the latter type, δx , might be traversed twice: once for reaching x and once
for leaving x . However asymptotically all the movements together have complexity
O(m + n).

We note that the cost of generating F , along with its partitions F∗ and D, is
bounded by O ((m + n) log(m + n)), due to [10].We also note that decidingwhether
a solution exists for a certain collection of start and target positions can be carried out
in O((m + n) log n) as follows. We first compute F in O(n log n) time, and within
the same time preprocess it for efficient point location. Then we query the resulting
structure with the m points in S ∪ T , in O(log n) time each, and verify that in every
component Fi of F it holds that |Si | 
= |Ti |. Thus, we have the following theorem.
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Theorem 2 LetW be a simple polygon with n vertices and let S = {s1, . . . , sm}, T =
{t1, . . . , tm} be two sets of m points in W . Additionally, assume that for every two
distinct element x, x ′ of S ∪ T it holds that ‖x − x ′‖ ≥ 4. Then, given m unlabeled
unit disc robots, our algorithm can determine whether a path moving the m robots
from S to T exists in O ((m + n) log n) time. If a path exists the algorithm finds it in
O

(
n log n + mn + m2

)
time.

7 Open Problems and Future Work

We have studied a basic variant of the multi-robot motion-planning problem, where
the goal is to find collision-freemotions that bring a given set of indistinguishable unit
discs in a simple polygon to a given set of target positions. Under the condition that
the start and target positions are sufficiently separated from each other, we developed
an algorithm that solves the problem in time polynomial in the complexity of the
polygon as well as in the number of discs: quadratic in the number of robots and
near-linear in the complexity of the polygon. In this paper we considered a separation
distance of 4, but it would also be interesting to study the problem assuming a smaller
separation distance.While a separation distance of 4 ensures that the problem always
has a solution (assuming that each connected component contains the same number
of start and target positions), this does not have to be the case when the separation
distance is smaller, as shown in Fig. 4. We would also like to mention that imposing
additional conditions on the input allows to devise an algorithm that also guarantees
optimality, in terms of path length, of the returned solution, as shown by Turpin
et al. [25] who also require that for every x ∈ S ∪ T , D∗(x) will be star-shaped.

Our result should be contrastedwith the labeled counterpart of the problem, which
is np-hard [23]. In the np-hardness proof the discs have different radii, however, and
there is no restriction on the separation of the start and target position. Thus one of
the main open questions resulting from our study is to settle the complexity of the

Fig. 4 It follows from our paper that when the start and goal positions are well separated, then
there is always a solution when each free-space component has the same number of start and goal
positions. However, it is not true when the separation condition is not met. In the given example,
which consists of two start positions (in green) and two target position (in purple), the two robots
cannot simulataneously reach the target positions as each robot blocks the other’s route
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unlabeled problemwithout this extra separation condition. It seems that in the general
unlabeled problem it is unavoidable to consider the coordination of robots in the joint
high-dimensional configuration space and thus we believe that the general unlabeled
problem is computationally intractable. We are investigating a possible connection
between the general unlabeled problem and a problem that was considered by Hearn
and Demaine [6], which is a variation of the unlabled pebble problem (Sect. 4) with
the additional requirement that for every edge of the graph, at most one of its end
vertices will accommodate a pebble. In other words, for every placement of the
pebbles the occupied vertices must form an independent set. Hearn and Demaine
show that this problem is pspace-complete.
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Navigation of Distinct Euclidean Particles
via Hierarchical Clustering

Omur Arslan, Dan P. Guralnik and Daniel E. Koditschek

Abstract We present a centralized online (completely reactive) hybrid navigation
algorithm for bringing a swarm of n perfectly sensed and actuated point particles
in Euclidean d space (for arbitrary n and d) to an arbitrary goal configuration with
the guarantee of no collisions along the way. Our construction entails a discrete
abstraction of configurations using cluster hierarchies, and relies upon two prior
recent constructions: (i) a family of hierarchy-preserving control policies and (ii)
an abstract discrete dynamical system for navigating through the space of cluster
hierarchies. Here, we relate the (combinatorial) topology of hierarchical clusters to
the (continuous) topology of configurations by constructing “portals”—open sets of
configurations supporting two adjacent hierarchies. The resulting online sequential
composition of hierarchy-invariant swarming followed by discrete selection of a
hierarchy “closer” to that of the destination alongwith its continuous instantiation via
an appropriate portal configuration yields a computationally effective construction
for the desired navigation policy.

Keywords Multi-agent coordination · Integrated planning and control · Swarm
robotics · Hierarchical formation

1 Introduction

This paper introduces the use of cluster hierarchies in vector field planners for coor-
dinated swarming. Hierarchical clustering offers an interesting means of ensemble
task encoding and control. It provides a formalism for precise yet flexible expres-
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sion, relaxing local proximity relations while allowing the imposition of more global
requirements–and at whatever level of resolution may be appropriate to a given set of
goals in a given problem setting. Here, we take a fresh and, as it turns out, completely
successful look at what may be considered the simplest instance of a longstanding,
familiar, hard problem: coordinated motion planning of a configuration of multiple
bodies. Specifically, we address the case of fully actuated, first order point parti-
cles constrained only by the requirement to avoid self-intersection in their otherwise
free ambient Euclidean space, controlled by a centralized vector field planner that
has instantaneous, exact information about the location of each individual. Given a
desired, labeled, free configuration of this swarm, along with a labeled target hierar-
chy that goal configuration instantiates, we construct a hybrid controller guaranteed
to bring almost every initial free configuration to that destination with no collisions
along the way via a sequence of continuous controllers. The construction is compu-
tationally effective: the number of discrete transitions grows in the worst case with
the square of the number of particles; each successive discrete transition can be com-
puted reactively (i.e., as a function of the present configuration) in time that grows
linearly with the number of particles; and the formulae that define each successive
smooth vector field are rational functions (i.e. defined by quotients of polynomials
over the ambient space) entailing terms whose number grows quadratically with the
number of particles.

1.1 Background

We do not imagine that the hierarchy abstraction (nor any other) can budge the
intrinsic complexity of the coordinated motion planning problem. Beyond this “sim-
plest” (but non-trivial) problem, we suspect that systematic recourse to hierarchy can
likely also afford computationally effective solutions to more “realistic” problem
settings1—so long as they do not step across the line of intractability. For exam-
ple, whereas motion planning for finite disks in a polygonal environment is strongly
NP-hard [32], more relaxed versions entailing (perhaps partially) unlabeled speci-
fications have yielded interesting planners in the recent literature [1, 31, 34], and
we suspect that the cluster hierarchy abstraction may be usefully applicable to such
partially labeled settings.

Within the domain of reactive or vector field motion planning, it has proven
deceptively hard to determine exactly this line of intractability. Since the problem of
reactively navigating swarms of disks was first introduced to robotics [35, 36], most
research into dynamical coordination planners has embraced the navigation function
paradigm [28]. A recent review of this two decade old literature is provided by [33]
where a combination of intuitive and analytical results yields centralized planners for
achieving goal configurations specified up to rigid transformation. But moving thick
bodies in a compact workspace yields hard problems: even determining when and

1We will mention in the conclusion a few such extensions presently in progress.



Navigation of Distinct Euclidean Particles via Hierarchical Clustering 21

how the configuration space is connected entails an encounter with the ancient sphere
packing problem [7]; past reactive solutions have produced controllers with terms
growing super-exponentially in the number of disks even when the workspace is not
compact [14]; and we suspect that the (hard won) conditions sufficient for guarantee-
ing the correctness of the traditional navigation function constructions applied to this
problem [19] will turn out to imply as hinted in [7] that the resulting free space has
the same homotopy type as the “simple” problem we solve here. In sum, we believe
there is plenty of useful and challenging work to be done in such tractable settings—
with few agents [27]; in low dimensions [10]; and so on—and it seems likely that
the ability to specify organizational structure in the precise but flexible terms that
hierarchy permits will add a useful tool to the robot motion planner’s toolkit.

That a hierarchy of proximities might play a key role in the coordinated motion
planning had already been hinted at in early work on this problem [22, 23]. A
cover over the neighborhood of the configuration space boundary by cluster hierar-
chies (closely related to what we term “strata” here—see [5] and below) plays an
important role in the analysis of navigation functions for thickened disks operat-
ing with centralized control in a compact workspace [19]. Formulae incorporating
“relation verification” functions (again expressing properties of cluster hierarchies
closely related to our “strata”) that grow super-exponentially with the number of
disks appear directly in the decentralized controllers for the thickened disks in an
unbounded workspace proposed by [14]. Partial hierarchies that limit the combina-
torial growth of complexity have been explicitly applied algorithmically to organize
and simplify the systematic enumeration of cluster adjacencies in the configuration
space [6]. Thus, while the utility of hierarchies and expressions for manipulating
them are by no means new to this problem domain, we believe that the explicit
formal connection we make between the topology of configuration space [15] and
the topology of tree space [16] through the hierarchical clustering relation [18] is
entirely new.

1.2 Organization and Contributions of the Paper

Section2 introduces some underlying technical concepts and suggests via abstractly
stated requirements that there are likely to be many alternative routes to the desired
result other than specific instances we recruit from some of our recent previous
work (Algorithm1, constructing a hierarchy-preserving navigation scheme in the
configuration space [5]; and Algorithm2, constructing a computationally effective
navigation scheme in the space of abstract clustering trees [4]). Section3 presents
the new results that enable the central contribution of this paper, the HNCAlgorithm
(Table1). Namely, we show how to define and compute a “portal map” (17)—a com-
putationally effective geometric realization in the configuration space of the edges
of a graph over the space of abstract hierarchies (Theorem1)—that will serve the
role of a dynamically computed “prepares graph” [9] for the sequentially composed
particle controllers whose correct recruitment solves the reactive motion planning
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problem (Theorem2). Section4 presents illustrative simulations of this new hybrid
dynamical system. We conclude with a brief discussion of future work in Sect. 5.

2 General Framework

2.1 Background and Notation

Configuration Space Given an index set, J = [n] := {1, . . . , n} ⊂ N, a configura-
tion, x = (xi )i∈J , is a labeled placement of |J | = n distinct Euclidean particles, Xi .
We find it convenient to identify the configuration space [15] with the set of distinct
labelings, i.e., the injective mappings of J into R

d ,

Conf
(
R

d , J
)
: =

{
x∈(Rd)

J
∣∣∣‖xi −x j‖ �=0,∀i �= j ∈ J

}
. (1)

Cluster Hierarchies A rooted semi-labelled tree τ over a fixed finite index set J ,
illustrated in Fig. 1, is a directed acyclic graph Gτ = (Vτ , Eτ ), whose leaves, vertices
of degree one, are bijectively labeled by J and interior vertices all have out-degree at
least two; and all of whose edges in Eτ are directed away from a vertex designated
to be the root [8]. A rooted tree with all interior vertices of out-degree two is said
to be binary or, equivalently, non-degenerate, and all other trees are said to be
degenerate. In this paper BT J denotes the set of rooted nondegenerate trees over
leaf set J .

A rooted semi-labelled tree τ uniquely determines (and henceforth will be inter-
changeably used with) a cluster hierarchy [25]. By definition, all vertices of τ can
be reached from the root through a directed path in τ . The cluster of a vertex v ∈ Vτ

is defined to be the set of leaves reachable from v by a directed path in τ . Let C (τ )

denote the set of all vertex clusters of τ .

I−τ

τ root

I

Pr (I, τ )

Ch (I, τ )

111 2 3 4 5 6 7 8 9 10 12 13

interior node
leaf node

A

AA

B

BB

C

CC

σ

τ

γ

(σ
,A
)(τ
, C
)

(σ, B)

(γ, C)

(τ, B
)

(γ, A)

Fig. 1 (Left) Hierarchical relations: parent—Pr (I, τ ), children—Ch (I, τ ), and local complement
(sibling)—I −τ of cluster I of a rooted binary tree, τ ∈ BT[13]. An interior node is referred by
its cluster, the list of leaves below it; for example, I = {4, 5, 6, 7}. (Right) An illustration of NNI
moves between binary trees: each arrow is labeled by a source tree and associated cluster defining
the move
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Fig. 2 An illustration of a a configuration in Conf
(
R
2, [6]

)
and b its iterative 2-mean clustering

[30] hierarchy in BT[6], where the dashed lines in (a) depict the separating hyperplanes between
clusters. c The quotient space Conf(C, [3]) / ∼, where for any x, y ∈ Conf(C, [3]), x ∼ y ⇐⇒
x3−x1
x2−x1

= y3−y1
y2−y1

. Here, configurations are quotient out by translation, scale and rotation, and so
x1 = 0 + 0i , x2 = 1 + 0i and x3 ∈ C \ {x1, x2}. Regions are colored according the associated
cluster hierarchies resulting from their iterative 2-mean clustering. For instance, any configuration
in the white region supports all hierarchies in BT[3]

For every cluster I ∈ C (τ ) we recall the standard notion of parent (cluster)
Pr (I, τ ) and lists of children Ch (I, τ ) of I in τ . Additionally, we find it useful to
define the local complement (sibling) of cluster I ∈ C (τ ) as I −τ : = Pr (I, τ ) \ I .

Configuration HierarchiesA hierarchical clustering2 HC ⊂ Conf
(
R

d , J
)×BT J is

a relation from the configuration space Conf
(
R

d , J
)
to the abstract space of binary

hierarchiesBT J [18], an example depicted in Fig. 2. Here, we will only be interested
in clustering methods that can classify all possible configurations (i.e. for which HC
assigns some tree to every configuration), and so we impose the condition:

Property 1 HC is a multi-function.

Most standard divisive and agglomerative hierarchical clusterings exhibit this prop-
erty, but generally fail to be functions because choices may be required between
different but equally valid cluster splitting or merging decisions [18].

Given such an HC, for any x ∈Conf(
R

d , J
)
and τ ∈BT J , we say X supports τ

if and only if (x, τ ) ∈ HC. The stratum associated with a binary hierarchy τ ∈ BT J

is the set of all configurations x ∈ Conf
(
R

d , J
)
supporting the same tree τ [5],

S (τ ) : =
{

x ∈ Conf
(
R

d , J
) ∣∣ (x, τ ) ∈ HC

}
, (2)

2Although clustering algorithms generating degenerate hierarchies are available, many standard
hierarchical clustering methods return binary clustering trees as a default, thereby avoiding com-
mitment to some “optimal” number of clusters [18, 37].
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and this yields a tree-indexed cover of the configuration space. For purposes of
illustration, we depict in Fig. 2c the strata of Conf(C, [3])—a space that represents
a swarm of three particles on the plane.

The restriction to binary trees precludes combinatorial tree degeneracy [8] and
we will avoid configuration degeneracy by imposing:

Property 2 Each stratum of HC includes an open subset of configurations, i.e. for
every τ ∈ BT J , S̊ (τ ) �= ∅.3

Once again, most standard hierarchical clusterings respect this requirement: they
generally all agree (i.e. return the same result) and are robust to small perturbations
of a configuration whenever all its clusters are well separated [37].

Graphs on TreesDefine the adjacency graph AJ = (BT J ,EA) to be the 1-skeleton
of the nerve [17] of the Conf

(
R

d , J
)
-cover induced by HC. That is to say, a pair of

hierarchies, σ, τ ∈ BT J , is connected with an edge in EA if and only if their strata
intersect, S (σ) ∩ S (τ ) �= ∅. The adjacency graph is a central object of interest
in this paper; however, as Fig. 2c anticipates, HC strata generally have complicated
shapes, making it usually hard to compute the complete adjacency graph.

Fortunately, the computational biology literature [16] offers an alternative notion
of adjacency that turns out to be both feasible and nicely compatible with our needs,
yielding a computationally effective, fully connected subgraph of the adjacency
graph, AJ , as follows.

The Nearest Neighbor Interchange (NNI) move at a cluster A ∈ C (σ) on a binary
hierarchy σ ∈ BT J , as illustrated in Fig. 1, swaps cluster A with its parent’s sibling
C = Pr (A,σ)−σ to yield another binary hierarchy τ ∈ BT J [26, 29]. Say that
σ, τ ∈ BT J are NNI-adjacent if and only if one can be obtained from the other by a
single NNI move. Moreover, define the NNI-graph NJ = (BT J ,EN) to have vertex
set BT J , with two trees connected by an edge in EN if and only if they are NNI-
adjacent. A central result of this paper will be to show how the NNI-graph yields a
computationally effective sub-graph of the adjacency graph (Theorem1).

2.2 Closely Related Prior Work

Hierarchy-Invariant Control Policies For ease of exposition we restrict attention
to first order (completely actuated single integrator) particle dynamics, and we will

3Here, Å denotes the interior of set A.
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be interested in smooth closed loop feedback laws (or hybrid controllers composed
from them) that result in complete flows,

ẋ = f (x) , (3)

where f : Conf(
R

d , J
) → (

R
d
)J

is a vector field over Conf
(
R

d , J
)
.4

Denote by ϕt the flow [2] on Conf
(
R

d , J
)
induced by the vector field, f . In [5]

we introduce the class of hierarchy-invariant vector fields,

FHC(τ ) : =
{

f : Conf
(
R

d , J
)

→
(
R

d
)J ∣∣∣ϕt (

S (τ )
) ⊂ S̊ (τ ) , t > 0

}
, (4)

and use them to construct a hybrid controller that invariantly retracts almost all of a
stratum onto any designated interior goal configuration. Namely, working with the
2-means divisive hierarchical clustering method [30], HC2-means, given a hierarchy
τ∈BT J and an interior goal, y∈S̊ (τ )we construct a pair of vector fields, fy, fs(y) ∈
FHC (τ ) with the following properties. The goal field, fy, has y as a point attractor
and includes in its basin a neighborhood of a suitably well separated and compactly
clustered “standard” exemplar, s (y) ∈ S (τ ). The global field, fs(y) has s (y) as
a point attractor and includes in its basin a set Sz (τ ) ⊂ S (τ ) that excludes at
most a zero measure subset of S (τ ). The formulae defining fs(y) and fy are both
rational functions (i.e. defined by quotients of polynomials over the ambient space)
entailing terms whose numbers, respectively, grow quadratically and linearly with
the number of particles. Using the standard “prepares” construction [9], wherein
initial application of control fs(y) is switched to fy upon reaching a suitably small
neighborhood of s (y), there results a deformation retraction [17], Rτ ,y, of (almost
all of) Sz (τ ) onto {y}.

Key for purposes of the present application is the observation that any hierarchy-
invariant field f ∈ FHC (τ ) must leave Conf

(
R

d , J
)
invariant as well, and thus

avoids any self-collisions of the particles along the way. There are likely to be many
alternative approaches to such results, but for purposes of this paper we will simply
assume the availability of exactly such a prior construction that we summarize as
follows.

Algorithm 1 ([5]) For any τ ∈ BT J and y ∈ S (τ ) associated with HC construct a
(possibly hybrid) quadratic, O

(|J |2), time computable control policy, fτ ,y, using the
hierarchy invariant vector fields of FHC (τ ) whose closed loop results in a retraction,
Rτ ,y, of Sz (τ ) onto {y}, where S (τ ) \ Sz (τ ) has zero measure.

Navigation in the Space of Binary TreesWhereas the controlled deformation retrac-
tion, Rτ ,y, above generates paths “through” the strata, we will also want to navigate
“across” them along the NNI-graph. In principle, this is a trivial matter since the

4A long prior robotics literature motivates the utility of this fully actuated “generalized damper”
dynamical model [24], and provides methods for “lifts” to controllers for second order plants [20,
21] as well.



26 O. Arslan et al.

number of trees over a finite set of leaves is finite. In practice, the cardinality grows
super exponentially [8],

|BT J | = (2 |J | − 3)!! = (2 |J | − 3)(2 |J | − 5) . . . 3, (5)

for |J | ≥ 2. Hence standard graph search algorithms, like the A* or Dijkstra’s
algorithm [11], become rapidly impracticable. In particular, computing the shortest
path (geodesic) in the NNI-graph is NP-complete [13].

Given a τ ∈ BT J , we have recently developed in [4] an efficient recursive proce-
dure for endowing the NNI-graph with a directed edge structure whose paths all lead
to τ , and whose longest path (from the furthest possible initial hierarchy, σ ∈ BT J )
is tightly bounded by 1

2 (|J | − 1) (|J | − 2) for |J | ≥ 2. We interpret that directed
NNI-graph as defining a deterministic discrete dynamical system inBT J that recur-
sively generates paths toward the specified destination tree τ ∈ BT J from all other
trees inBT J by reducing a “discrete Lyapunov function” relative to that destination.
Given such a goal we show in [4] that the cost of computing an appropriate NNImove
from any other σ ∈ BT J toward an adjacent tree at a lower value of the Lyapunov
function is O (|J |).

In this paper, such a provably correct, computationally efficient and recursively
generated choice of next NNI moves will play the role of a discrete feedback policy
used to define the reset map of our hybrid dynamical system. Thus, we further require
the availability of such a construction, summarized as:

Algorithm 2 ([4]) Given any τ ∈ BT J construct recursively a closed loop discrete
dynamical system in the NNI-graph, taking the form of a deterministic discrete
transition rule, gτ , with global attractor at τ and longest trajectory of length O

(|J |2)
endowed with a discrete Lyapunov function relative to which computing a descent
direction from any σ ∈ BT J requires a computation of time O (|J |).

3 Hierarchical Navigation

The central technical result of this paper endows the strata of HC2-means [30] with a
complete prepares graph [9] via a computationally effective geometric realization of
the NNI-graph on trees.

Definition 1 The portal, Portal (σ, τ ), of a pair of hierarchies, σ, τ ∈ BT J , is
the set of all configurations supporting interior strata of both trees,

Portal (σ, τ ) : = S̊ (σ) ∩ S̊ (τ ) . (6)

Theorem 1 The NNI-graph NJ = (BT J ,EN) is a sub-graph of the HC2-means adja-
cency graph AJ = (BT J ,EA), and given an edge, (σ, τ ) ∈ EN ⊂ EA, a geometric
realization via the map Port(σ,τ ) : S (σ) → Portal (σ, τ ) (17) can be computed
in linear, O (|J |), time with the number of leaves, |J |.
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Proof The relation between the tree graphs directly follows from Proposition1. Fur-
ther, Port(σ,τ ) is shown in Proposition2 to be a retraction of S (σ) into the set
of standard portal configurations in Portal (σ, τ ). Observe that by construction
Port(σ,τ ) (17) only requires centroids of clusters of σ, computable in linear time
by post-order traversal of σ, and some associated cluster radii in (11)–(13), also
computable in linear time given cluster centroids. Thus, the result follows. �

Before proceeding to the details of this construction, we summarize how it,
together with the constructions reviewed in Sect. 2, solve the centralized hierarchical
navigation problem.

3.1 Specification and Correctness of the Hierarchical
Navigation Control (HNC) Algorithm

Assume the selection of a goal configuration y ∈ S̊ (τ ) and a hierarchy τ ∈ BT J

that y supports. Now, given (almost) any initial configuration x ∈ S (σ) for some
hierarchy σ ∈ BT J that x supports, Table1 presents the HNC algorithm.

Theorem 2 The HNC Algorithm in Table1 defines a hybrid dynamical system whose
execution brings almost every initial configuration, x ∈ Conf

(
R

d , J
)
, in finite time

to an arbitrarily small neighborhood of y ∈ S̊ (τ ) with the guarantee of no collisions
along the way and with a computational cost no greater than O (|J |) at each discrete
transition.

Proof In the base case, (1) the conclusion follows from the construction of Algo-
rithm1: the flow fτ ,y keeps the state inS (τ ), approaches a neighborhood of y (which
is an asymptotically stable equilibrium state for that flow) in finite time.

In the inductive step, (a) The NNI transition rule gτ guarantees a decrement in the
Lyapunov function after a transition fromσ to γ (Algorithm2), and a new local policy
fσ,z is automatically deployed with a local goal configuration z ∈ Portal (σ, γ)

found in (b). Recall from Algorithm2 and Theorem1 that the transition from σ to γ

Table 1 The HNC algorithm

For (almost) any initial x ∈ S(σ) and σ ∈ BTJ , and desired y ∈ S̊(τ ) and τ ∈ BTJ

1. (Hybrid Base Case) if x ∈ S(τ ) then apply stratum-invariant dynamics, fτ ,y (Algorithm1)

2. (Hybrid Recursive Step) else

(a) invoke the NNI transition rule gτ (Algorithm2) to propose an adjacent tree, γ ∈ BTJ ,
with lowered discrete Lyapunov value

(b) Choose local configuration goal, z := Port(σ,γ) (x) (17)

(c) Apply the stratum-invariant continuous controller fσ,z (Algorithm1)

(d) If the trajectory enters S(τ ) then go to step 1; else, the trajectory must enter S(γ) in
finite time in which case terminate fσ,z, reassign σ ← γ, and go to step (2a)
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and the portal location z can be both computed in linear O (|J |) time. Next, the flow
fσ,z in (c) is guaranteed to keep the state inS (σ) and approach z ∈ Portal (σ, γ)

asymptotically from almost all initial configurations. If the base case is not triggered
in (d), then the state enters arbitrarily small neighborhoods of z and, hence, must
eventually reach Portal (σ, γ) ⊂ S (γ) in finite time, triggering a return to (2a).
Because the dynamical transitions gτ initiated from any hierarchy in BT J reaches τ
in finite steps (Algorithm2), it must eventually trigger the base case. �

3.2 Hierarchical Portals

We now turn attention to construction of the crucial portal map (17) that effects the
geometric realization of theNNI-graph as required forTheorem1, above. Throughout
the sequel, we confine our attention to 2-means divisive hierarchical clustering [30],
HC2-means. We first detail our construction of the realization function, Port (17),
that takes an NNI-edge and returns a target configuration, and then verify that this
image does indeed lie in the interior of Portal (σ, τ ).

Hierarchical Strata of HC2-means The open and closed strata of HC2-means can be
characterized respectively, by the intersection inverse images,5 [5]

So (τ ) =
⋂

I∈C(τ )\{J }

⋂

I∈I

η−1
i,I,τ (−∞, 0), S (τ ) =

⋂

I∈C(τ )\{J }

⋂

I∈I

η−1
i,I,τ (−∞, 0],

(7)

of the scalar valued “separation” function, ηi,I,τ : Conf(
R

d , J
) → R. This function

returns the distance of agent i in cluster I ∈ C (τ ) \ {J } to the separating hyperplane
that is perpendicular to the separation vector, sI,τ (x), between centroids of com-
plementary clusters I and I −τ and passes through the midpoint, mI,τ (x), of their
centroids,6

ηi,I,τ (x) : = (
xi − mI,τ (x)

)TsI,τ (x) , (8)

where

c (x|I ): = 1

|I |
∑

i∈I

xi , sI,τ(x): =c
(
x|I −τ

)−c (x|I ) , mI,τ(x): = c (x|I )+c
(
x|I −τ

)

2
.

(9)

Definition 2 Let x ∈ Conf
(
R

d , J
)
and τ ∈ BT J . Then cluster I of τ is said to be

admissible (valid) for x if ηi,I,τ (x) ≤ 0 for all i ∈ I .

5Note that for all τ ∈ BTJ , So (τ ) ⊆ S̊(τ ).
6Here, AT denotes the transpose of A.
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Using this terminology, we observe from (7) that S (τ ) comprises the set of all
configurations in Conf

(
R

d , J
)
for which every cluster of τ is admissible [5].

Portal Configurations A critical observation for the strata of HC2-means is:

Proposition 1 The NNI-graph is a sub-graph of the adjacency graph, i.e. for any
pair (σ, τ ) of NNI-adjacent trees in BT J , Portal (σ, τ ) �= ∅.

Proof The result directly follows from Corollary1. �

Throughout this section, the trees σ, τ ∈ BT J are NNI-adjacent and fixed, and
we therefore take the liberty of suppressing all mention of these trees wherever
convenient, for the sake of simplifying the presentation of our equations.

Since the trees σ, τ are NNI-adjacent, we may apply Lemma1 from [4] to find
common disjoint clusters A, B, C such that {A ∪ B} = C (σ)\C (τ ) and {B ∪ C} =
C (τ ) \ C (σ). Note that the triplet {A, B, C} of the pair (σ, τ ) is unique. We call
{A, B, C} the NNI-triplet of the pair (σ, τ ). Since σ and τ are fixed throughout this
section, so will be A, B, C and P := A ∪ B ∪ C .

We now introduce a set of useful notation and lemmas for characterizing a par-
ticular subset of Portal (σ, τ ). A relaxation on Definition2 is:

Definition 3 Let x ∈ (
R

d
)J
, τ ∈ BT J and K ⊆ J . Then cluster I of τ is said to be

partially admissible for x|K if ηi,I,τ (x) ≤ 0 for all i ∈ I ∩ K .7

For a partition {Iα} of cluster I ∈ C (τ ), observe that cluster I of τ is admissible for
x if and only if I is partially admissible for all x|Iα’s.
Definition 4 Let x ∈ (

R
d
)J
, Q ∈ {A, B, C}, and for any H ⊆ R

d define

YQ (x, H): =
{

y ∈
(
R

d
)J ∣∣∣∀R ∈{A, B, C} c (y|R) = c (x|R),∀i ∈ Q yi ∈ H

}
.

(10)

The consensus ball BQ (x) of partial configuration x|Q is defined to be the largest
open ball8 centered at c (x|Q) so that for any y ∈ YQ

(
x, BQ (x)

)
and γ ∈ {σ, τ }

every cluster D ∈ {Q,Pr (Q, γ)} \ {P} of γ are partially admissible for y|Q.

An explicit form of the radius rQ (x) of BQ (x) can be obtained as [3]9

rQ (x): = min

{

−(
c (x|Q)−mD,γ(x)

)T
(

sD,γ(x)
∥
∥sD,γ(x)

∥
∥
2

)∣∣
∣
∣γ ∈(σ, τ ), D ∈

{
Q,Pr (Q,γ)

}
\{P}

}

.

(11)

7Here, we use ηi,I,τ : (
R

d
)J → R (8).

8In a metric space (X, d), the open ball B (x, r) centered at x with radius r ∈ R≥0 is the set of
points in X whose distance to x is less than r , i.e. B (x, r) = {y ∈ X | d (x, y) < r}.
9Here, we set x

‖x‖2 = 0 for x = 0.
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Here, rQ (x) < 0 means BQ (x) is empty. We will abuse the notion of the consensus
ball for a single tree, σ, and its cluster, I ∈ C (σ) \ {J }, as the open ball centered at
c (x|I ) with radius

rI,σ (x): = min

{

−(
c (x|I )−mD,σ (x)

)T
(

sD,σ (x)
∥
∥sD,σ (x)

∥
∥
2

)∣
∣
∣
∣D ∈

{
K ∈C (σ)

∣∣
∣I ⊆ K � J

}
}

.

(12)

It is also convenient to have r (x) denote the centroidal radius of x ∈ (
R

d
)J
,

r (x) := max
i∈J

‖xi − c (x)‖2 . (13)

Looking ahead toward Lemma1, the sufficiency condition for the existence of
nontrivial consensus balls motivates:

Definition 5 We call x ∈ (
R

d
)J

a symmetric configuration associated with (σ, τ )

if centroids of partial configurations x|A, x|B and x|C form an equilateral triangle.
The set of all symmetric configurations with respect to (σ, τ ) is denoted Sym (σ, τ ).

Lemma 1 ([3]) For any symmetric configuration x ∈ Sym (σ, τ ), the consensus
ball BQ (x) of each partial configuration of cluster Q ∈ {A, B, C} always has a
nonempty interior, i.e. rQ (x) > 0—see Fig.3.

c (x|A)

c (x|B) c (x|C)

c (
x|

A
∪B

)

c (x|B∪C)

rA

rB rC

A

B

C

A

BC

A

B
C

c ( ABC)

Fig. 3 (Left) An illustration of a symmetric configuration x ∈ Sym (σ, τ ), where the consensus
ball BQ (x) of partial configuration of cluster Q ∈ {A, B, C} has a positive radius. (Right) Outer
Napoleon triangles �A′ B′C ′ and �A′′ B′′C ′′ of �ABC and �A′ B′C ′ , respectively, and �A′′ B′′C ′′ is
referred to as the double outer triangle of �ABC . Note that centroids of all triangles coincides, i.e.
c (�ABC ) = c (�A′ B′C ′ ) = c (�A′′ B′′C ′′ )
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In general, the geometric shape of Portal (σ, τ ) is very hard to characterize,as
suggested by Fig. 2. Fortunately, Lemma1 lets us point out an easily identifiable
open subset:

Definition 6 The standard portal StdPortal (σ, τ ) of the pair (σ, τ ) is the set of
all configurations x ∈ So (σ) ∩ Sym (σ, τ ) with the property that x|Q is contained
in the consensus ball BQ (x) for all Q ∈ {A, B, C}.

Accordingly, using Lemma1, one can conclude that:

Corollary 1 StdPortal (σ,τ ) �= ∅, and StdPortal (σ,τ )⊂Portal (σ,τ ).

Portal Transformations

Napoleon Triangles [12]We recall a theoremof geometry describing how to create an
equilateral triangle from an arbitrary triangle: construct, either all outer or all inner,
equilateral triangles at the sides of a triangle in the plane containing the triangle, and
so centroids of the constructed equilateral triangles form another equilateral triangle
in the same plane, known as the “Napoleon triangle” [12]—see Fig. 3. We will refer
to this construction as the Napoleon transformation, and we find it convenient to
define the double outer Napoleon triangle as the equilateral triangle resulting from
two concatenated outer Napoleon transformations of a triangle. LetNT : R

3d → R
3d

denote the double outer Napolean transformation, see [3] for an explicit form of NT.
The NNI-triplet {A, B, C} defines an associated triangle with distinct vertices for

each configuration, �A,B,C : S (τ ) → Conf
(
R

d , [3]
)
,

�A,B,C (x) : = [
c (x|A) ,c (x|B) ,c (x|C)

]T
. (14)

The double outer Napolean tranformation of �A,B,C (x) returns symmetric target
locations for c (x|A), c (x|B) and c (x|C), and the corresponding displacement of
c (x|P), denoted NoffA,B,C : Conf(

R
d , J

) → R
d , is given by the formula10

NoffA,B,C (x) : = c (x|P) − Γ · NT ◦ �A,B,C (x) , (15)

where Γ := 1
|P|

[|A| ,|B| ,|C |] ⊗ Id ∈ R
d×3d , and the vertices of the associated

equilateral triangle with compensated offset of c (x|P) are

[
cA,cB,cC

]T : = NT ◦ �A,B,C (x) + 13 ⊗ NoffA,B,C (x) . (16)

Portal Maps Define a continuous map,

Port : S (σ) → Sym (σ, τ ) : x →
{

x , if x ∈ StdPortal (σ, τ ) ,

(Mrg ◦ Scl ◦ Ctr) (x), otherwise,
(17)

10Here, Id is the d × d identity matrix, and 1k is the R
k column vector of all ones. Also, ⊗ and ·

denote the Kronecker product and the standard array product, respectively.
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where

Ctr : S (σ) → Sym (σ, τ ) : x →
{
xi , if i �∈ P,

xi −c (x|Q)+cQ , if i ∈ Q, Q ∈{A, B, C},
(18)

and cA, cB and cC are the new centroids of the corresponding partial configurations
(16). It is important to observe that Ctr keeps the barycenter of x|P fixed, and so
the rest of clusters ascending and disjoint with P are kept unchanged.

After obtaining a symmetric configuration in Sym (σ, τ ), based on Lemma1,
Scl : Sym (σ, τ ) → Sym (σ, τ ) scales each partial configuration, x|A, x|B and
x|C , to fit into the corresponding consensus ball, and then Mrg : Sym (σ, τ ) →
Sym (σ, τ ) scales x|P to merge with the rest of (unchanged) particles, x|J − P , to
simultaneously support both hierarchies σ and τ ,

Scl (x)i=ζ
rQ (x)

r (x|Q)

(
xi −c (x|Q)

)+c (x|Q), Mrg (x)i=ζ
rP,σ (x)

r (x|P)

(
xi−c (x|P)

)+c (x|P),

(19)

for all i ∈ Q and Q ∈ (A, B, C); otherwise (i �∈ P), Scl (x)i = Mrg (x)i = xi ,
where ζ ∈ (0, 1) is a parameter describing the scale of each configuration with
respect to the consensus ball.

Proposition 2 ([3]) Port : S (σ) → StdPortal (σ, τ ) is a retraction.

4 Numerical Simulations

For the sake of clarity, we first illustrate the behavior of the hybrid system defined in
Sect. 3.1 for the case of four particles moving in a two dimensional ambient space.

In order to visualize in this simple setting the most complicated instance of
collision-free navigation and observe maximal number of transitions between local
controllers, we pick the initial, xo ∈ S (τ1), and desired configurations, x∗ ∈ S̊ (τ4),
where particles are evenly placed on the horizontal axis and left-to-right ordering of
their labels are (1, 2, 3, 4) and (3∗, 1∗, 4∗, 2∗), respectively, and their corresponding
clustering trees are τ1 ∈ BT[4] and τ4 ∈ BT[4], see Fig. 4.

The resultant trajectory of each particle following the hybrid navigation planner
in Sect. 3.1, the relative distance between each pair of particles and the sequence
of trees associated with visited hierarchical strata are shown in Fig. 4. Here, notice
that when the swarm enters the domain of local controller associated with τ2 at
xg ∈ S (τ1) ∩ S (τ2)—shown by green dots in Fig. 4, it already finds itself in the
domain of the following controller associated with τ3, i.e. xg ∈ S (τ3), but not still
in S (τ4). After a finite time navigating in S (τ3), the swarm enters the domain
of the goal controller fτ4,x∗ (Algorithm1) at xr ∈ S (τ3) ∩ S (τ4)—shown by red
dots in Fig. 4, and fτ4,x∗ asymptotically steers particles to the desired configuration
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Fig. 4 An illustrative navigation trajectory of the hybrid dynamics generated by the HNC algo-
rithm for 4 particles. a The sequence of trees associated with deployed local controllers during the
execution of the hybrid navigation controller. Here, the hybrid planner instantaneously switches
from the second controller to the next controller. b Trajectory of each particle colored according
the active local controller, where xg ∈ S(τ1)∩S(τ2)∩S(τ3) and xr ∈ S(τ3)∩S(τ4) shown by
green and red dots, respectively, are portal configurations. (3) Pairwise distances between particles

x∗ ∈ S̊ (τ4). Finally, note that the total number of binary trees over four leaves is
15; however, our hybrid navigation planner reactively deploys only 4 of them.

We now consider a similar, but slightly more complicated setting: a swarm of six
particles in a plane where agents are initially placed evenly on the horizontal axes
and switch their positions at the destination as shown in Fig. 5a, which is also used
in [33] as an example of complicated multi-agent arrangements. While steering the
swarm towards the goal, the hybrid navigation planner automatically deploys only 8
local controllers out of the family of 945 local controllers. The time evolution of the
swarm is illustrated in Fig. 5a.

Finally, to demonstrate the efficiency of the deployment policy of our hybrid
planner, we separately consider swarms of 8 and 16 particles in an ambient plane,
illustrated in Fig. 5. The eight particles are initially located at the corner of two
squares whose centroids coincide and the perimeter of one is twice of the perimeter
of the other. At the destination, agents switch their locations as illustrated in Fig. 5b.
For sixteen particle case, agents are initially placed at the vertices of a 4 by 4 grid,
and their task is to switch their location as illustrated in Fig. 5c. Although there
are a large number of local controllers for the case of swarms of 8 and 16 particles
(
∣∣BT[8]

∣∣ > 105 and
∣∣BT[16]

∣∣ > 6×1015), our hybrid navigation planner only deploys
16 and 34 local controllers, respectively.

The number of potentially available local controllers for a swarm of n particles
(5) grows super exponentially with n. On the other hand, if agents have perfect
sensing and actuation modelled as in the present paper, the hybrid navigation planner
automatically deploys at most 1

2 (n − 1) (n − 2) local controllers [4], illustrating the
computational efficiency of our construction.
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Fig. 5 Example trajectories of the hybrid vector field planner for a 6, b 8 and c 16 particles in a
planar ambient space. (Top) trajectory and (bottom) state-time curve of each agent. Each colored
time interval demonstrates the execution duration of an excited local controller. Dots correspond to
the portal configurations where transitions between local controllers occur at

5 Conclusion

In this paper, we introduce an online centralized hybrid vector field planner for nav-
igation in the configuration space of n distinct points in R

d , using the hierarchy
invariant controllers of [5], the combinatorial tree navigation algorithm of [4], and
its “pullback” into the configuration space, Port (17). This last step comprises the
central contribution of the paper, revealing the relation between the combinatorial
NNI neighborhood of hierarchy trees and the intersection of their associated con-
figuration space strata. The new result, the HNC Algorithm, now affords provably
correct online reactive planing and execution of arbitrary reconfiguration in the space
of multiple, distinct, completely actuated first order particles in R

d .
Work now in progress targets more practical settings in the field of robotics

including navigating around obstacles and handling thickened disk agents in compact
spaces. Another focus of ongoing work addresses the realization of tree space topol-
ogy via online, “cluster-local” computation that might afford a distributed version of
the current centralized framework.
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Coalition Formation Games for Dynamic
Multirobot Tasks

Haluk Bayram and H. Is.ıl Bozma

Abstract This paper studies the problem of forming coalitions for dynamic tasks
in multirobot systems. As robots—either individually or in groups—encounter new
tasks for which individual or group resources do not suffice, robot coalitions that are
collectively capable of meeting these requirements need to be formed. We propose
an approach where such tasks are reported to a task coordinator that is responsible for
coalition formation. The novelty of this approach is that the process of determining
these coalitions is modeled as a coalition formation game where groups of robots
are evaluated with respect to resources and cost. As such, the resulting coalitions
are ensured so that no group of robots has a viable alternative to staying within
their assigned coalition. The newly determined coalitions are then conveyed to the
robots which then form the coalitions as instructed. As new tasks are encountered,
coalitions merge and split so that the resulting coalitions are capable of doing the
newly encountered tasks. Extensive simulations demonstrate the effectiveness of the
proposed approach in a wide range of tasks.

Keywords Dynamic tasks ·Multirobot systems ·Cooperative robots ·Game theory

1 Introduction

In this paper, we consider the problem of coalition formation for dynamic multirobot
tasks that require a multitude of different resources (sensory information [1, 2],
computation [3], power or physical labor [4]) in order to be successfully completed.
For example, a data collection task will require different types of sensors which the
encountering robot may not all have. It will need to seek assistance from the other
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robots. While the type of tasks and hence the required resources will vary depending
on the application, in all, assembling robot teams—commonly known as coalitions—
that are capable of doing these tasks needs to be addressed effectively. This is a
challenging problem. As tasks are dynamic, they are encountered at unpredictable
places or times which implies that the robot teams cannot be assigned a priori. If the
coalitions are formed with resources far surpassing the requirements, then it may not
be possible to accomplish other encountered tasks. Furthermore, robots’ locations
will need to be considered since choosing far away robots may lead to delays in the
tasks or unnecessary energy consumption. As this is known to be strongly NP-hard,
approximate solutions with an emphasis on computational feasibility and practical
applicability need to be developed [5].

In this paper, we consider this problem. The contribution of the paper is to propose
a novel approach—motivated by work in coalition formation games (CFGs) [6]. It
is assumed that each robot can participate in one task at a time and thus can be
a member of only one coalition. The proposed approach is an hybrid approach—
namely there is both decentralized and centralized decision-making. If a coalition
has sufficient resources for a newly encountered task, it proceeds with the task. In
case of excessive resources, some members are removed from the coalition in order
to make them available for other tasks while ensuring the coalition has still sufficient
resources. In case of insufficient resources, the task is reported to a task coordinator
that is responsible for assembling the capable coalitions. These coalitions are formed
via a CFG where groups of robots are evaluated together with respect to resource
requirements and cost of forming coalitions. This information is then conveyed to the
robots which then form the coalitions as instructed. As new tasks are encountered,
coalitions merge and split so that the resulting coalitions are capable of doing these
tasks. The advantage of this approach is that—differing fromprevious relatedwork—
coalitions are optimal in the sense that no group of robots has a viable alternative to
staying within their assigned coalition as the resulting coalitions are ensured to be
Dhp-stable.

The outline of this paper is as follows: First, related work is reviewed in Sect. 2.
Next, coalitions and tasks are formulated in Sect. 3. The task coordinator is explained
in Sect. 4 followed by a discussion of coalitional stability. Extensive simulations with
50 robots provide insight on performance in a range of multirobot tasks in Sect. 5.
The paper concludes with a brief summary along with future directions.

2 Related Literature

The robotics community has addressed coalition formation in multirobot task allo-
cation (MRTA) problems. In the taxonomy1 of MRTA problems [7] it is an instance
of the ST-MR-IA problems. Most approaches assume that all the tasks are known

1This taxonomy considers three orthogonal dimensions—namely single-task (ST) versus multi-
task robots (MT) depending on whether each robot is capable of executing single or multiple
tasks at the same time; single-robot tasks (SR) versusmulti-robot tasks (MR)depending onwhether a
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initially—in contrast to dynamic tasks. Due to the NP-hard nature of the problem,
many heuristic methods have been developed [7]. The ST-MR-IA problem is gen-
erally viewed as an instance of optimal assignment of a set of tasks to the robots
while taking their individual constraints into consideration. Optimality is defined
either with respect to an overall objective or a set of objective functions that encode
demands, resources and gains if possible [8, 9]. The decision-making varies from
being centralized to being distributed [10, 11]. For example, in [12], multi-agent task
allocation algorithm [13] is modified in order to accommodate the fact that resources
of a coalition are not collectively available to member robots and cannot be redistrib-
uted among them. An anytime algorithm is shown to have bounded solution with a
minimal search [14]. Improved solutions provide solutions in polynomial time in case
of robots of each type being indistinguishable with a fixed coalition population using
dynamic programming [15]. The problem is generalized by allowing coalitions to be
bounded by a fixed number via modifying the greedy iterative algorithm based on the
set partitioning problem. Two natural greedy heuristics are extended via a new greedy
heuristic that considers the expected loss of utility due to the assigned robots and
task as an offset and uses the offset utility for task assignment [16]. A greedy optimal
solution is proposed via a leader follower coalition method where coalition utility
is maximized for every assigned task [2]. In general, the efficiency of the resulting
solutions is easier to ensure and communication requirements are linear with respect
to the number of robots with no negotiation required. However, the computational
requirements become unpractical as the number of tasks and robots increases. Dis-
tributed approaches solve the constrained optimization problem in a decentralized
manner [17]. For example, in a class of problems known as distributed constraint
optimization problems, each robot or group controls one set of variables and together
they have the joint goal of maximizing a global objective function [9, 18]. One of the
most popular approaches that falls in this category is the market based strategy where
auctions can be conducted in a distributedmanner such as regional opportunistic cen-
tralization [19–21]. The auction process may be split into task and robot auctions
as is done in the Double Round Auction approach [22]. However, the locality of
decisions may block idle, but remote robots coming to assistance. As such, while
distributed approaches are advantageous with respect to scalability, the efficiency
of the resulting solutions are harder to ensure while communication requirements
increase quadratically with the number of robots and special negotiation schemes are
required so as to decide when to terminate decision-making [23]. In practice, systems
may not conform to a strict centralized/decentralized dichotomy and may contain
both elements [24]. For example, centralized market based task allocation combines
the efficiency of a centralization (the auctioneer decides with overview of the situa-
tion) with the advantages of distributed approaches (much of the calculation is done
by the individual robots preparing their bids) [25] where a centralized auctioner is
responsible for the optimization of a global objective using either combinatorial [26]

(Footnote 1 continued)
task can be completed by a single robot or several robots (a coalition) and instantaneous assignment
(IA) versus time-extended assignment (TE) depending of whether only current tasks or future tasks
are considered.
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or greedy [27] approaches. However, scalability issues (such as when to stop the
auction) arise as the number of robots increases [28, 29].

Coalition formation has also been addressed in multiagent systems where the goal
is to find a coalition structure that maximizes the sum of the values of the coalitions.
It is an instance of a set partition problem which is known to be a NP-Complete [30].
As the exorbitant number of coalition structures does not allow exhaustive search for
the optimal one, the focus has been on finding a coalition structure via a partial search
with guaranteed proximity to the optimum. It is shown that the number of coalition
structures that need to be searched for establishing a bound is required to be greater
than a calculated threshold [31] alongwith an algorithm that establishes a tight bound
within this minimal amount of search. In [13], a greedy heuristic is used to yield a
coalition structure that is provably within a bound—limiting the coalition sizes. This
approach is general as it can be applied in environments that are not necessarily
superadditive.2 Such problems have also been considered within game theory [32,
33] so that the grand coalition is no longer optimal [34]. Since the addition of more
robots to a coalition increases interference between the robots and computational
cost, the multirobot systems fall into the non-superadditive category [35]. In CFGs,
the focus is obtaining stable partitions of the players which implies that players have
no incentive to change their coalitions. As such, stability is related to the type of
membership changes allowed. In hedonistic games where only one individual player
is allowed to change its coalition at a time, stability definitions vary from contractual
individual stability to individual stability to Nash stability [36]. In more general
settings, groups of players are allowed to change their coalitions simultaneously.
In this case, stability is related to the set of split and merge rules [6]. In all, a
comparison operator that orders the sets of coalitions is defined. This comparison
operator is either based on the coalition value that quantifies the worth of a coalition
or the individual players’ payoff [37]. The proposed approach is motivated by these
ideas where the process of finding optimal robot coalitions is modeled as a coalition
formation game—considering task related preferences such as resource satisfaction,
resource excessiveness and site proximity.

3 Multirobot Coalitions and Tasks

Amultirobot system consists of a set ofP = {1, . . . , p} robots. We assume that each
robot i ∈ P is uniquely identifiable. It is associated with a time-varying position
vector bi ∈ R

2. The robots are assumed to be heterogeneous, which implies that
they vary in their resources. Assuming there are Nr different types of resources,
each robot i is also associated with a resource vector ri = [ri (1), . . . , ri (Nr )]T with
ri ( j) ≥ 0, j = 1, . . . , Nr where ri ( j) ∈ R

≥0 denotes the amount of j th resource
that robot i has. If robot i does not have any of resource j , then ri ( j) = 0.

2Superadditivity implies that any two disjoint coalitions, when acting together, can get at least as
much as they can when acting separately.
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3.1 Coalitions and Resources

AcoalitionCc is a non-empty subset ofP . A coalitionwith just one robot is referred to
as singleton coalition while the set P is known as the grand coalition. Each coalition
Cc is associated with a set of resources with possible types of the resources known.
The resource vector is denoted Rc = [Rc(1), . . . , Rc(Nr )]T with Rc( j) ≥ 0, j =
1, . . . , Nr . It is assumed that resources are additive—namely Rc( j) = ∑

k∈Cc
rk( j).

Furthermore, each coalition has a leader (head). The leader coordinates the coalition.
The leader may change over time as the coalitions evolve. The rules for selecting
leader are as follows: First, the leader does not change unless it leaves the coalition.
Secondly, if the leader leaves the coalition or the coalition does not have a leader,
the robot with the smallest robot ID value becomes the coalition leader.

3.2 Tasks and Resources

As a robot or a coalition of robots is moving around the workspace, it will come
across a number of tasks. As these tasks are dynamic, there is no a priori information
regarding their spatial locations or when they are likely to encounter one. Once a task
T is encountered, the coalition leader records these tasks including the following:

• Required resources: τ = [
τ1, . . . , τNr

]
where τi ∈ R

≥0, i = 1, . . . , Nr . If a
resource l is not required for the task T , then τl = 0.

• Location of the task: b ∈ R
2.

• Time of encounter: te ∈ R
≥0.

• Time-out duration: Δto ∈ R
>0. This indicates the maximum allowed waiting

period for getting the sufficient resources and starting with the task.
• Time when the task starts being handled: ts ∈ R

>0.
• Task duration: Δtd ∈ R

>0.
• Status of the task: s ∈ {−1, 0−, 0+, 1−, 1+, 1

}
-

s =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0− if task is waiting in the coalition
0+ if task is waiting in the coordinator
1+ if task is being handled
1− if a coalition is assigned, but task has not started yet
1 if task was completed
−1 if task could not be completed

When a task is initiated, s = 0−—which indicates the task has been just encountered.
When resources are found to be insufficient, s = 0+. The case s = 1− indicates that
a coalition has been assigned, but all the coalition members have not reached to the
task site.
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3.3 Coalition Value Function

The coalition value function v relates a given coalition Cc with a given task T via
encoding resource sufficiency, resource excessiveness and members’ proximity to
task site. It is defined as:

v(Cc, T ) = 1

1 + β(Cc, T )
(1)

where the term β(Cc, T ) is comprised of three terms:

β(Cc, T ) = w1

Nr∑

j=1

γ(τ j − Rc( j)) + w2

Nr∑

j=1

(
1 − Rc( j)

τ j

)2

+ w3

∑

i∈Cc

δi,T

2ρo

The first termmeasures whether the coalition has sufficient resources to complete the

task as γ(x) =
{

0 x <= 0
x2 x > 0

. The second term indicates preferences for robots that

utilize their resources to a greater extent. The third term considers the proximities of
coalitionmembers to the task site—as nearby free robots will be preferred where δi,T

is the distance between robot i and the location of task T and the parameter ρ0 is a
normalizing factor for distance—usually taken to be the radius of the workspace. The
parametersw1,w2 andw3 are relative weighting parameters of resource satisfaction,
resource excessiveness and site proximity, respectively with values set according to
particular preferences.

3.4 Handling Tasks

Each coalition has a task automaton for handling tasks that is coordinated by the
coalition leader. The task automaton is designed to have four states: ‘idle’, ‘han-
dling’, ‘succoring’ and ‘waiting’. These states are selected to reflect logical modes
of operation. Normally, the coalition is in idle state which indicates that the coalition
is not associated with or engaged in a task and thus is ready for new tasks. The
coalition goes into the handling state when it becomes engaged in a task and has the
sufficient resources for this task. The coalition goes into the waiting state if it has
encountered a task, but does not have the sufficient resources. Finally, the succoring
state indicates that a coalition has been assigned a task and is moving to the task site.
Given a certain state, the state transitions occur considering sufficiency of resources,
task site and time-out. The corresponding automaton is as shown in Fig. 1 with five
rules as follows:
Rule 1: If the coalition is idle, has enough resources for this task—namely ∀τ j , j =
1, . . . , Nr Rc( j) ≥ τ j and is at the task site, it goes into the handling state.
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Fig. 1 Task automaton of a
coalition

Rule 2: In the handling state, first, if the coalition has surplus of resources—namely
∃ j such that Rc( j) − τ j > 0, then it splits as much as possible in order to maximize
coalition value v(Cc, T ). If the leader is taken out, the coalition then chooses the next
leader. The result is reported to the task coordinator—where the robots that leave the
coalition go into the idle state. When the task is completed, it reports task completion
to the task coordinator and goes back to the idle state.
Rule 3: If the coalition is idle, but does not have enough resources, then it reports
the task to the task coordinator and goes into the waiting state where it remains until
it hears back or time-out occurs. In case it is given sufficient resources (additional
members), then it goes either into the succoring state or the handling state depending
on whether all the members at the task site or not.
Rule 4: If the coalition is idle and is assigned a task, but is not at the task site, it then
goes into the succoring state where it starts moving to the task site. Upon all reaching
the task site, the state changes to handling.
Rule 5: If the coalition is not idle when it encounters a task, the coalition leader
informs the coordinator of this task.

4 Task Coordinator

The task coordinator3 is responsible for forming the robot coalitions capable of
performing encountered tasks. The coordinator maintains a list of reported tasks
which are waiting (either in the coalition or in the coordinator). Let this list be

3This may be one of the robots with the additional task of being a coordinator. As its processing is
relatively simple, in case of failure, another robot may easily assume this role.
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denoted by T = [
T 1, . . . , T nT

]
where nT is their total number. This list expands as

new tasks are reported and shrinks as tasks get assigned or timed-out.
The set of coalitions is defined by a time-varying set C(t) = C+(t)∪C ′(t)where

C+(t) denotes the coalitions (consisting of either a single robot or multiple robots)
that are currently engaged in a task while C ′(t) denotes the coalitions that are idle
or waiting comprised of member robots P ′ ⊆ P . Periodically, the task coordinator
considers the current list of pending tasks T , updates the set of coalitions C ′(t) in
order to assign coalitions to these tasks and informs the robots accordingly. Any
family of C ′ = {

C1, . . . , CnC

}
of mutually disjoint coalitions is referred to as a

collection in P ′. If ∪nC
c=1Cc = P ′ where nC is the number of coalitions, then C ′ is

called a partition on P ′ [6]. As such, in each update, the task coordinator needs to
find a partition C ′ of P ′ and the assignment of tasks to member coalitions so that
the pending tasks can be completed in a maximal manner. Note that depending on
the tasks encountered and robots’ resources, the newly formed partition C ′ may vary
from being identical to being very different as compared to C ′(t). Of course, it may
not be possible to find a coalition for each task or any of the pending tasks given
the currently available robots. The simplest approach to this problem is exhaustive
search of all the possible partitions. However, this number (the Bell number) is
exorbitant—even with a modest robot population size [31].

4.1 Coalition Formation Game (CFG)

In the proposed approach, the process of finding such a partition ismodeled as a CFG.
The coordinator periodically starts a CFG—considering all the pending tasks T . A
CFG starts with the current coalition structure as defined by the partition C ′(t) on
P ′. There are two aspects in defining each game. First, two partitions are compared
using a predefined 	 comparison relation.

Definition 1 A comparison relation 	 is defined for comparing two collections A
and B that are partitions of the same setP ′. If A 	 B, then the partition A is preferred
to partition B.

Note that each comparison relation is used only to compare partitions of the same set
of players. Partitions of different sets of players are incomparable. As such, different
coalitions are allowed to interact—taking the decision to merge or split based on the
comparison relation 	. Various criteria can be used as comparison relation between
partitions [6]. An adequate individual value order that can be used is the Pareto order.
The Pareto order is defined as:

A 	 B ⇔ ϕi (A, T ) ≥ ϕi (B, T )∀i ∈ P ′
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with at least one strict inequality (>) for one robot k ∈ P ′ and where the robot payoff
ϕi (C, T ) describes the overall utility a robot i ∈ P ′ receives for being in coalition
Cc ∈ C(t) that is associated with task T . The robot payoff function is defined by the
coalition value function as:

ϕi (C, T ) = ϕi (Cc, T ) = v(Cc, T ) (2)

Secondly, the game evolution is based on two operations—called ‘merge’ and
‘split’—that allow to modify a partition C as follows [38]:

• Merge: If ∪k
j=1C j 	 {C1, . . . , Ck}, then merge {C1, . . . , Ck} as ∪k

j=1C j—namely

{C1, . . . , Ck} ∪ C → ∪k
j=1C j ∪ C .

• Split: If {C1, . . . , Ck} is a collection such that {C1, . . . , Ck} 	 ∪k
j=1C j , then split

∪k
j=1C j as {C1, . . . , Ck}—namely ∪k

j=1C j ∪ C → {C1, . . . , Ck} ∪ C

The coordinator uses merge and split operations on the existing coalitions. With the
Pareto order, the task coordinator decides to merge or split coalitions only if at least
one coalition is able to strictly improve its individual value through this process
without decreasing the other coalitions’ value. Therefore, the merge operation by
Pareto order is a binding agreement among the robots to operate together if it is
beneficial for the tasks.

The task coordinator algorithm is as given in Algorithm 1. The main loop of
the algorithm consists of two consecutive loops for merge and split operations in
which only the coalitions in idle or waiting state are considered. The merge phase is
described in lines 2–12 of Algorithm 1. Here, the coordinator checks if a task T k is
associated with a coalition or not by checking task status sk . If sk = 0−, the coalition
that reported it has insufficient resources. The coordinator starts merge operations—
using this coalition. If there is no coalition associated with this task (sk = 0+),
it determines the coalition Cc with the highest coalition value v(Cc, T k)—namely
Cc = argmaxCc∈C ′ v(Cc, T k). Then, it starts a merging phase so as to increase the
coalition value based on the Pareto order. The merge loop continues as long as there
is a change in the partition C ′. After passing the merge loop, in the split loop (lines
13–20 of Algorithm 1), the assigned coalitions with excessive resource for their tasks
are split. In the split operation, one of the robots in the coalition is selected based
on the Pareto order such that the coalition without this selected robot has higher
coalition value. This loop continues as long as there is a change in the partition C ′.
Merge-split operations are iteratively applied until all the coalitions associated with
all the tasks stabilize. Note that as a result, some tasks may be associated with empty
set—which implies that the coordinator cannot find a coalition capable of performing
that particular task.
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Algorithm 1 Task coordinator automaton.
1: while change in partition C ′, repeat do
2: while change in partition C ′, merge do
3: for all T k ∈ T | sk = 0− or sk = 0+ do
4: if sk = 0+ then
5: Assign Cc with the highest v(Cc, T k)

6: end if
7: Find a coalition Cd such that Cc ∪ Cd 	 Cc
8: if Cd /∈ ∅ then
9: C ′ = (C ′ − Cc) − Cd , Cc = Cc ∪ Cd , C ′ = C ′ ∪ Cc
10: end if
11: end for
12: end while
13: while change in partition C ′, split do
14: for all T k ∈ T | sk = 0− or sk = 0+ do
15: if a coalition Cc is assigned to T k then
16: Find i ∈ Cc such that Cc − {i} 	 Cc
17: Cc = Cc − {i}, C ′ = C ′ ∪ {i}
18: end if
19: end for
20: end while
21: end while

4.2 Convergence and Stability

There are two issues regarding the behavior of each CFG—namely whether the game
terminates and in case of convergence, the properties of the resulting partition. The
convergence of the CFG is ensured by the following theorem [6].

Theorem 1 Suppose that 	 is a comparison relation. Every iteration of the merge
and split operations terminates.

As each merge-split operation increases the values of the coalitions with an assigned
task, the process terminates.

The resulting partition C ′ = {
C1, . . . , CnC

}
is evaluated with respect to the

stability of the coalition structure. Stability captures the idea that no robot or group
of robots (as defined) has an incentive to change the existing coalition structure [38].
Thus, it depends on the type of coalition membership changes allowed. Allowable
membership changes are defined by a defection function D that associates with
each partition C ′ of P ′ a group of collections in P ′ such that robots can leave the
partition C ′ by forming new and separate group of robots ∪l

j=1Pl divided according
to one P = {P1, . . . , Pl} of these collections. As such, different stability notions are
obtained by considering different defection functions.

A partition C ′ = {C1, . . . , Cl} ofP ′ isD-stable if no group of robots is interested
in leaving C ′ when the robots who leave can only form the collections allowed by
D(C ′) [6]. Mathematically, it is defined using the partition comparison relation 	 as:
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Definition 2 D-stability: A partition C ′ is calledD-stable if ∀ P ∈ D(C ′) such that
P[C ′] 
= P , P[C ′] 	 P where P[C ′] denotes the collection P in the frame of C ′
defined as P[C ′] = {

C1 ∩ ⋃
P, . . . , CnC ∩ ⋃

P
} \ {∅}.

The most general case is with a defection functionDc that maps each partition C ′
to the family Dc(C ′) of all collections in P ′. As such, any group of robots can leave
C ′ and create an arbitrary collection in P ′. However, Dc-stability is hard to attain as
it requires the value functions to be superadditive—a condition that will not hold in
many applications. An alternative definition is based on C ′-homogeneity. A partition
Q = {Q1, . . . , Ql} is C ′-homogeneous if for each j ∈ {1, . . . , l}, there exists i ∈
{1, . . . , nC } such that either Q j ⊆ Ci or Ci ⊆ Q j . Any C ′-homogeneous partition
arises from C ′ by allowing each coalition either to split into smaller coalitions or
to merge with other coalitions. With this definition, the defection function Dhp is
defined such that for each partition C ′,Dhp(C ′) is the family of all C ′-homogeneous
partitions inP ′. Theorem 2 as presented in [38] admits the following characterization
of Dhp-stability:

Theorem 2 ([38]) A partition C ′ = {
C1, . . . , CnC

}
of P ′ is Dhp-stable if and only

if the following two conditions are satisfied:

1. No coalition has an incentive to split—namely ∀i ∈ {1, . . . , nC } and for each
partition {P1, . . . , Pl} of coalition Ci , C ′ 	 C̃ where C̃ = (C ′ − Ci ) ∪ {

Pj
}l

j=1

2. No set of coalitions has an incentive to merge—namely ∀L ⊆ {1, . . . , nC } C ′ 	 C̃
where C̃ = (

C ′ − {Ci }i∈L
) ∪ {∪i∈LCi }.

This result implies that robots are allowed to leave the partition C ′ only by means of
merges or splittings—albeit with multiple applications. With the value functions as
defined by Eqs. 2 and 1, the two conditions can equivalently be expressed as:

1. ∀i ∈ {1, . . . , k} and for each partition {P1, . . . , Pl} of coalition Ci ,v(Ci ) ≥∑l
i=1 v(Pi )

2. ∀L ⊆ {1, . . . , nC } ∑
i∈L v(Ci ) ≥ v(

⋃
i∈L Ci ).

An immediate consequence of Theorem 2 is that a partitionC ′ isDhp-stable if and
only if it is the outcome of the merge and split rules. As such, C ′ will beDhp-stable.

5 Simulations

Extensive simulations havebeen conductedwith p = 50 robots placed in aworkspace
of radius 100m. The robots or coalitions—if formed—are assumed to be in a
patrolling mission in this workspace. The robots are cylinder shaped with radii 15cm
and canmovewithmaximum speed of 0.3m/s. The simulation settings are as given in
Table1. There are Nr = 5 different resources.We assume that each robot is one of 10
types with either all low resources ri ( j) ∈ [1, 5] or all high ri ( j) ∈ [6, 10]. The task
locations are generated dynamically via a Poisson process with parameter λ tasks per



48 H. Bayram and H.I. Bozma

Table 1 Simulation settings

Parameter Value

Mission duration 60min

Number of robot types 10

Number of resource types Nr 5

Number of task types 10

Time-out duration Δto {1, 2} minutes

Task rate λ {5, 10, 20} tasks per hour
Task resource τi levels Low - [20, 25] and High - [45, 50] units

Robot resource ri ( j) levels Low - [1, 5] and High - [6, 10] units

Task duration Δtd {2, 4} minutes

Table 2 Sample mission scenario: Robots have low level of resources while tasks also require low
level resources

(a) Robots’ resources

Robot Resources

Type r(1) r(2) r(3) r(4) r(5)

1 1 1 3 5 3

2 4 5 4 4 2

3 3 3 2 3 3

4 5 4 3 2 5

5 2 4 4 1 1

6 2 3 4 4 4

7 4 1 4 3 5

8 3 4 3 2 4

9 5 1 1 3 1

10 3 4 2 1 4

(b)Tasks’ resources

Task Resources

Type τ1 τ2 τ3 τ4 τ5

1 20 21 21 21 25

2 20 24 21 22 23

3 22 20 21 21 21

4 25 21 20 21 25

5 24 23 24 23 20

6 24 23 24 25 25

7 24 23 20 23 23

8 23 25 23 20 24

9 22 25 20 23 21

10 24 22 21 25 23
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hour. The average number of tasks increases with increased λ value—thus making
the overall mission more challenging. There are 10 different type of tasks—where
all τi are either in the low [20, 25] range or high [45, 50]. A sample mission scenario
where robots have low resources while tasks encountered also require low resources
is shown in Table2a, b. As such, the coalition populations capable of accomplishing
the encountered tasks are expected to vary between 2 and 20 robots. The parameters
of the coalition value function are set as w1 = 1/3, w2 = 1/3, and w3 = 1/3 in
order to give equal importance to resource satisfaction, resource excessiveness and
site proximity. The coordinator starts a CFG every 10s. It is assumed that the CFG
durations are negligible compared to this.

The missions are repeated 20 times—all starting at random initial locations
for each λ ∈ {5, 10, 20}, time-out duration Δto ∈ {1, 2} and handling duration
Δtd ∈ {2, 4} minutes. Hence, there are all together 240 missions that are conducted.
Note that time-out periods with 1 or 2min imply relatively fast response times for
successful task completion. Statistical results are as shown in Table3. The results of
a mission are analyzed with respect to four performance measures:

• M1—The number of completed tasks.
• M2—The percentage of timed-out tasks:
• M3—Average number of coalitions.
• M4—The number of times the coordinator makes coalition assignments.

First, it is observed that the number of completed tasks M1 varies roughly between
47 and 268 depending on Δto, Δtd , λ and the level of resources as the percentage of
timed-out tasks M2 varies between 0.5 to 78.6%. With high Δto, low Δtd and low
λ values, the coalitions are able to complete many tasks they encounter. In contrast,
with lowΔto, highΔtd and high λ values, the tasks are likely to time out. Hence, with
the increase in time-out durations, the number of handled tasks increases. Average
number of coalitions decreases with the increase in λ. This is because with the low λ
values, there are less encountered tasks, so the need for coalition merging is lower. It
is interesting to observe that while the maximum of M4 is 360 with the coordinator
checking for waiting coalitions every 10s, in practice, M4 turns out to be much
lower. With lower λ, the coalitions are able to handle their tasks without informing
the coordinator. The computational complexity of the coordinator’s decision making
is studied by computing the average iteration numbers of the CFGs in Table4. It is

Table 4 Average number of iterations (sum of merge and split iterations)

λ 5 10 20

Δto 1 2 1 2 1 2

Δtd 2 4 2 4 2 4 2 4 2 4 2 4

TR-RR L-L 7 4 6 4 5 4 5 4 5 4 5 3

L-H 8 7 7 5 7 6 5 4 5 5 5 4

H-L 4 3 4 3 4 3 4 3 3 3 3 3

H-H 9 8 11 9 8 5 7 5 6 4 6 4

TR Task resource level, RR Robot resource level, L Low, H High



Coalition Formation Games for Dynamic Multirobot Tasks 51

Ta
bl

e
5

E
ff
ec
ts
of

w
ei
gh

tin
g
pa
ra
m
et
er
s

T
R
-R

R
L
-L

L
-H

H
-L

H
-H

M̄
1

M̄
2

M̄
3

M̄
4

M̄
1

M̄
2

M̄
3

M̄
4

M̄
1

M̄
2

M̄
3

M̄
4

M̄
1

M̄
2

M̄
3

M̄
4

w
1

10
2.
9

22
.0

9.
6

16
7.
8

20
8.
5

7.
4

17
.9

13
2.
2

91
.2

58
.5

9.
2

24
7.
2

13
0.
5

2.
9

9.
7

64
.0

w
2

10
0.
7

14
.6

9.
6

14
0.
8

20
4.
3

0.
4

17
.0

66
.8

95
.3

58
.5

9.
7

25
2.
9

13
1.
1

3.
2

9.
6

67
.3

w
3

11
7.
3

34
.6

8.
9

21
6.
7

21
9.
8

15
.3

17
.9

18
7.
7

91
.3

55
.4

8.
6

23
5.
0

13
5.
6

5.
6

9.
9

82
.2

w
4

11
1.
1

25
.9

9.
5

18
9.
3

21
2.
9

9.
0

17
.7

14
2.
8

91
.3

57
.9

8.
5

23
5.
5

13
2.
3

3.
6

9.
9

70
.5

T
R
Ta
sk

re
so
ur
ce

le
ve
l,

R
R
R
ob
ot

re
so
ur
ce

le
ve
l,

L
L
ow

,H
H
ig
h



52 H. Bayram and H.I. Bozma

observed that the games converge after a small number of iterations, which implies
that game durations are negligible—as assumed.

We also investigate the effects of the weighting parameters. We consider four
alternative sets w1, w2,w3 and w4 with parameter values set according to relative
preference of resource satisfaction, resource excessiveness and site proximity. The
set w1 weighs each equally with w1 = w2 = w3 = 1/3. In the set w2, resource
satisfaction is relatively more important with w1 = 2/3, w2 = w3 = 1/3. Resource
excessiveness has a higher weight in the set w3 with w2 = 2/3 and w1 = w3 = 1/3.
Finally, in the set w4, site proximity has more priority with w3 = 2/3 and w1 =
w2 = 1/3. In these simulations, λ, Δto, and Δtd are set to λ = 10, Δto = 1min
and Δtd = 2min respectively. Statistical results are as shown in Table5. The equal
weighting of the parameters gives the lowest value of time-out percentage M2 when
both the levels of the task resource and robot resources are high. When resource
satisfaction is of higher priority, the time-out percentages decrease considerably
when the level of the task resource is low. If resource excessiveness is of higher
consideration, the time-out percentage is the lowestwhen the level of the task resource
is low and the level of the robot resources is high. In summary, task performance
measures can be programmed according to the relative weighting preferences of
these three considerations.

6 Conclusion

This paper considers dynamic multirobot tasks requiring a set of resources. As the
formation of robot teams endowed with sufficient resources is essential, the focus is
on effective coalition formation. In the proposed approach, a task coordinator deter-
mines the coalitions capable of accomplishing the reported and pending tasks. The
novelty of this approach is that the process of finding optimal coalitions is mod-
eled as a coalition formation game where groups of robots are evaluated together in
regards to each task’s required resources and cost of forming a coalition. The evalu-
ation considers resource satisfaction, resource excessiveness and site proximity with
weighting parameters that encode relative preferences. As new tasks are encoun-
tered, coalitions merge and split so that the resulting coalitions are capable of doing
these tasks. As such, the resulting coalitions are Dhp-stable, which implies that no
group of robots has a viable alternative to staying within their assigned coalition.
Since the number of iterations for finding a suitable partition is considerably low, the
proposed approach can be applied on the real-time robotic applications. Currently,
we are working on implementing this approach on a heterogeneous team of mobile
robots for multirobot information gathering in patrolling missions.
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Active Control Strategies for Discovering
and Localizing Devices with Range-Only
Sensors

Benjamin Charrow, Nathan Michael and Vijay Kumar

Abstract This paper addresses the problem of actively controlling robotic teams
with range-only sensors to (a) discover and (b) localize an unknown number of
devices.We develop separate information based objectives to achieve both goals, and
examine ways of combining them into a unified approach. Despite the computational
complexity of calculating these policies for multiple robots over long time horizons,
a series of approximations enable all calculations to be performed in polynomial
time. We demonstrate the tangible benefits of our approaches through a series of
simulations in complex indoor environments.

1 Introduction

In the near future, automated buildings will use a large numbers of devices for
a variety of services including power and water monitoring, building security, and
indoor localization for smart phones [1]. Effectively using andmaintaining this many
devices will require knowing where each of them is located. A cost-effective way of
getting this information would be to equip each device with RF or audio based range-
only sensors [2, 3]. This approach could even work when sensors are embedded in a
building’s walls [4]. However, range-only sensors only provide limited information
about a device’s location and having humans localize all devices would be a time
consuming and error prone task. Motivated by these facts, we develop an automated
solution in which a team of mobile robots localizes a large and unknown number of
static (i.e., non-moving) devices.
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Fig. 1 Problem overview. A
robotic team must discover
and localize an unknown
number of devices (shown as
beacons) using range-only
sensors. The team must
consider multiple trajectories
(black arrows) and the finite
range of their sensors
(orange circles)

There are three major components to this problem: (1) estimating the location
of discovered devices (2) estimating where undiscovered devices might be, and (3)
controlling the team to reduce the uncertainty of both estimates until the team is
confident that every device has been discovered and localized. Figure1 illustrates
the complexity of these goals, and shows why the team must account for the lim-
ited information their sensors provide, as well as their limited mobility in office
environments.

Control policies that maximize mutual information to reduce the uncertainty of
estimates have been successfully applied in robotics when the variables of interest
are known a priori. Hollinger and Sukhatme [5] develop a sampling based strategy
for maximizing a variety of information metrics with strong asymptotic optimality
guarantees. Singh et al. [6] and Binney et al. [7] develop offline planning algorithms
that maximizemutual information for environmental monitoring. Hoffman and Tom-
lin [8] localize a single static device using a team of robots by maximizing mutual
information with a particle filter. Vander Hook et al. [9] develop a greedy algorithm
to localize a discovered device with a single bearing-only sensor, and provides a
lower bound on the time for any active control policy to localize it. In contrast to
these works, we develop online algorithms that reduce the uncertainty of position
estimates of devices and seek to discover all of them.

Research on multi-target tracking using binary measurement models also relates
to our approach. Dames andKumar [10] consider a similar scenario, but assumemea-
surements have an unknown association requiring their control law to only consider
whether or not any measurement to any target will be received. Carpin et al. [11] use
a variable resolution binary filter to discover targets throughout an environment and
maximize mutual information to control an individual robot. Pursuit-evasion games
where a team must find or maintain visibility to targets [12] are also quite relevant.
While we model range-only sensors as binary when trying to discover devices, the
team must consider the geometric information range-only sensors provide in order
to accurately localize them.

The primary contribution of this paper is an approach for controlling amulti-robot
team to concurrently discover and localize an unknown number of devices using
noisy range-only sensors. This approach is based on a unified objective function
that connects actions the team makes to how the uncertainty of their estimates will
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be reduced. To start, in Sect. 2 we present a generic algorithm for reducing the
uncertainty of an estimate by maximizing mutual information. We then separately
address the problems of actively localizing discovered devices (Sect. 3) and actively
discovering devices (Sect. 4). In Sect. 5 we discuss how the team can simultaneously
localize and discover devices by creating a unified objective function that can be used
in the algorithm in Sect. 2. We evaluate the performance of our approach in Sect. 6
through a series of simulations and demonstrate that it outperforms two baseline
strategies with teams of up to 8 robots.

2 Preliminaries

2.1 Assumptions

In the problem we are considering a robotic team must localize all devices within
one floor of a modern building. We assume the building has a wireless network that
allows high bandwidth communication throughout the team at all times. This enables
us to adopt centralized estimation and control strategies where all measurements are
aggregated at a single robot who sends commands to the rest of the team. In situations
where the building’s network is only available in certain places, we could use the
approach proposed by Dames and Kumar [10]. We also assume that robot’s are
equipped with a map of the environment and are capable of localizing themselves
which is reasonable for an indoor office environments. While planning, we do not
account for uncertainty in the team’s position. We expect that incorporating this
uncertainty would not significantly affect the selected control actions as range-only
sensors typically have errors of a fewmeters [13]whereas robot localization solutions
are substantially more accurate. We further assume that each measurement has a
unique identifier (e.g., MAC address), which is typically the case for range-only
sensors that are designed for localization [2–4, 14].

Because we use a probabilistic approach, we assume that devices’ individual
positions are independent of each other, that measurements arrive at discrete time
steps, and that multiple measurements to a device are conditionally independent
given the device’s location [15].

2.2 Adaptive Sequential Information Planning

We are interested in a general control policy for a team of robots which maximizes
mutual information over a finite time horizon. This is difficult for two reasons. First,
the number of potential trajectories the team can follow grows exponentially in the
team’s size. Second, it is unclear how to select an appropriate time horizon over
which to plan. To address these issues we develop “Adaptive Sequential Information
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Algorithm 1 Adaptive Sequential Information Planning (ASIP)
1: Iteration = 0 // Iteration counter
2: repeat
3: Iteration = Iteration + 1
4: τ = t + 1 : t + (T · Iteration) // Adapt end time of plan
5: C∗ = {} // Best team trajectory, C[r ] is trajectory of robot r
6: Info∗ = 0.0 // Information resulting from current C∗
7: for each robot r = 1 : R do
8: P = Plan trajectories robot i can follow over τ
9: C = C∗ × P // Trajectories for robots 1 : r ; trajectories of 1 : r − 1 are fixed
10: Info, cr∗

τ = maxcτ ∈C MI[Xτ ,Zτ (cτ )] // r ’s best action given previous actions
11: if Info − Info∗ > MinRobotInfo then
12: C∗[r ] = cr∗

τ , Info∗ = Info
13: else
14: C∗[r ] = ∅ // r should do nothing; it can’t further reduce uncertainty of Xτ

15: end if
16: end for
17: until Info∗ > MinTotalInfo or Iteration > MaxIteration

Planning” (ASIP,Algorithm1) an algorithm that efficiently selects actions and adapts
the time horizon over which it plans.

Before describingASIP in detail,we formalize a basic approach onwhich it builds.
Assume the team is trying to estimate some unknown quantityX . At time t , the team

plans how it will move over the time interval τ
�= t + 1 : t + T by considering a set

of trajectories C that they can follow. A trajectory for an individual robot is a discrete
sequence of poses cτ = [ct+1, . . . , ct+T ] where cr

k is the 2D pose of robot r at
time k. The team’s trajectories, C, is the Cartesian product of each robot’s individual
trajectories. As the team moves they will receive a random vector of measurements
Zτ (cτ ) = [Zt+1(ct+1), . . . ,Zt+T (ct+T )], that each depend on the team’s location
at that point in time. Our objective is to select the trajectory cτ ∈ C that maximizes
MI[X ,Zτ (cτ )], the mutual information between the device’s estimate and future
measurements the team makes.

A major computational challenge of the basic approach is that the number of
trajectories for the team, |C|, grows exponentially in the team’s size. To address
this issue, ASIP sequentially optimizes mutual information over individual robot’s
trajectories given the trajectories of preceding robots. This approach is similar to the
“Sequential Information Planning” algorithm of Singh et al. [6]. For each robot r ,
ASIP generates the trajectories it can follow (Algorithm1,Line 8) and combines them
with trajectories the preceding robots have already selected (Line 9). This gives a set
of trajectories for robots 1 to r , but only robot r ’s trajectory changes: all others are
fixed. ASIP then optimizes mutual information over this set of trajectories (Line 10),
and repeats until all robots have been considered. The advantage of this approach is
that robots still account for each others’ movements but mutual information is only
calculated O(RC) times, where R is the number of robots and C is the number of
trajectories per robot.
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Another shortcoming of the basic approach is that it is difficult to determine the
time horizon, τ , that the team plans over. If it is too short, the teammay get trapped in
low information regions, but making it too long will significantly affect computation
time. To balance these issues, ASIP adapts the horizon overwhich it plans. It does this
by requiring the team to decrease the uncertainty of their estimates by a sufficient
amount (MinTotalInfo on Line 17). If the team is unable to achieve this gain, it
increases the time horizon of the plan (Line 4). It is possible that there are no further
actions the team can take to reduce the uncertainty of their estimate. By including
a maximum time horizon over which the team can plan (MaxIteration on Line 17),
ASIP ensures the team will eventually terminate.

Finally, because the team may be spread out over the environment, only some
members of the team may be able to decrease the uncertainty of the estimates over
the given horizon. ASIP identifies these robots by examining the change in mutual
information given a robot’s action (MinRobotInfo on Line 11). Robots that do not
reduce the uncertainty are not commanded anywhere (Line 14) freeing them for other
tasks. We discuss strategies for what to do with these robots when we discuss how
to simultaneously localize and discover devices in Sect. 5.

3 Actively Localizing Discovered Devices

This section describes a strategy for actively localizing a known number of devices
with prior estimates using range-only sensors. In previous work, we presented a
similar approach for localizing individual devices [13, 16]. In comparison, here we
model the finite range of the sensors.

3.1 Estimating Devices’ Locations

Because devices are independent of each other and measurements have a known
data association, we estimate the position of D different devices using separate
particle filters. Each filter uses a measurement model that accounts for noisy range
measurements, as well as the probability of a measurement being received.

Formally, the distribution over device d’s 2D position at time t is approximated
as p(xd | z1:t ) = ∑N

i=1wiδ(xd − x̃d) where δ(·) is the Dirac delta function, x̃d
i is

the 2D position of the i th particle, wi is its weight, and z1:t are measurements the
team has made from time 1 to t [15]. Devices are static, so we omit a time subscript
for them, but we do use a zero mean 2D Gaussian with a small fixed covariance for
the process model of the filter to avoid particle degeneracy problems.

At time t the team receives a random vector of measurements zt , where zd,r
t is the

1-dimensional range measurement robot r makes to device d. If the distance from a
robot to a device is within the maximum range of the sensor, zmax, we assume that
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with probability γ the robot receives a measurement of the true distance perturbed
by Gaussian noise. With probability 1 − γ, the robot does not detect the device,
and gets a measurement of zmax. Defining the true distance as s = ‖xd − cr

t ‖, the
measurement model can be expressed as:

p(zd,r
t = z | xd) =

{
γN (z − s,σ2) + (1 − γ)N (z − zmax,σ

2
max) s < zmax

N (z − zmax,σ
2
max) otherwise

(1)

where σ2 is the variance of the sensor and N (x − μ,σ2) is the likelihood of x with
a Gaussian whose mean is μ with covariance σ2.

Real world sensors may return an error when they fail to measure the distance to
a device instead of zmax. To compensate for this behavior, a robot can incorporate
a “virtual” measurement of zmax for each measurement error. Additionally, when a
sensor fails to make a measurement, it will not be perturbed by noise; σ2

max should
be 0, resulting in Dirac-deltas in (1) that are centered on zmax. However, this mea-
surement model would be difficult to work with analytically (e.g., the entropy would
become −∞). We have also encountered difficulties using small values for σ2

max, as
this results in a rapid change in variance of particles that are close to zmax. Conse-
quently, we set σ2

max = σ2, which is a reasonable model: when a measurement of
zmax is incorporated into the filter, particles that are less than zmax away from the
robot will decrease become less likely, while those that are farther away will become
more likely.

3.2 Calculating Mutual Information

To evaluate mutual information between the expected future location of discovered
devices and measurements the team will make, we use the particle representation
of the device’s position, p(x | z1:t ) and the range-only measurement model (1), to
calculate the distribution over expected future measurements, p(zτ ). This approach,
which is covered in more detail in [8] or [16], results in a computationally intractable
problem that we address through a series of approximations.

The expression for mutual information between all devices and measurements for
a given team trajectory is:

MI[x, zτ (cτ )] =
D∑

d=1

MI
[
xd ; zd

τ

]
=

D∑

d=1

H
[
zd
τ

]
− H

[
zd
τ | xd

]
(2)

H[zd
τ ] is the differential entropy of the measurements to device d, which is a way of

quantifying their uncertainty, and H[zd
τ | xd ] is the conditional differential entropy,

which quantifies the uncertainty of measurements given the device’s true location.
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We drop the measurements dependence on the team’s trajectory, cτ for brevity. The
expression is a sum over devices because devices and their associated measurements
are pairwise independent, p(x, zτ (cτ )) = ∏

d p(xd , zd
τ ) [17].

Calculating the entropy, H[zd
τ ], is difficult because the distribution over future

measurements to device d is a Gaussian mixture model (GMM): p(zd
τ ) = ∑N

i=1wi∏t+T
j=t+1

∏R
r=1 p(zd,r

j | xd = x̃d
i ) wherewi is the weight of the i th particle in p(xd),

x̃d
i is its location, N is the number of particles, R is the number of robots, and T is

the time horizon of the plan (Sects. 2.2 and 3.1). Unfortunately, p(zd,r
j | xd) is also

a GMMwhen the robot is in range of the device (1). Consequently, p(zd
τ ) can be the

sum of products of GMMs, resulting in a GMM with a number of components that
is exponential in RT. We avoid this computational issue by approximating (1) with
the most likely component (i.e., the one with maximum weight) when calculating
entropy, making the number of components equal to RT. This is reasonable when the
probability of detection is high, which is typically the case for range-only sensors.
Despite this simplification, p(zd

τ ) is still a GMM, whose entropy cannot be evaluated
analytically. We approximate it using the 2nd order Taylor-series approximation
developed by Huber et al. [18]. This approach has a time complexity of O(N 2RT).

Using the conditional independence assumption, the conditional entropy is
H[zd

τ | xd ] = ∑N
i=1wi

∑t+T
j=t+1

∑R
r=1 H[zd,r

j | xd = x̃d
i ]. Re-applying the maxi-

mum likelihood estimate for detection, each term is the entropy of a 1-dimensional
Gaussian, which can be evaluated in constant time [17].

4 Discovering All Devices

In this section we present a method for actively controlling the team to discover all
devices. We achieve this by estimating the probability of an undiscovered device
being present at any point in the environment, and formulate another information
based control law to reduce the uncertainty of this estimate.

4.1 Estimating Locations of Undiscovered Devices

We form a probabilistic estimate of any undiscovered device existing at different
locations in the environment using a 2D occupancy grid. The grid, g, is made up of a
set of G different cells {g1, . . . , gG}, which are created by uniformly discretizing the
environment at a fixed resolution. Each cell is associated with a Bernoulli random
variable that represents the probability of any undiscovered device existing at that
point in the environment (i.e., g i = 1 means an undiscovered device is present at cell
g i ). Like occupancy grids that are used in mapping [15], because device’s locations
are independent of each other,we also assume the probability of undiscovered devices



62 B. Charrow et al.

being in different cells are independent of each other: p(g) = ∏
i p(g i ). When the

team starts, we initialize each cell in the environment with a uniform prior.
We update p(g) using the detection model for the sensors that the team carries.

We assume that each robot receives a binary measurement to each cell within the
maximum range of its sensor. A reading of 1 corresponds to an undiscovered device
being present, while a reading of 0 corresponds to no device being present. Letting
qi,r

t be the measurement robot r gets to cell g i at time t the measurement model is:

p(qi,r
t = 1 | gi = 1) = γ p(qi,r

t = 0 | gi = 1) = 1 − γ

p(qi,r
t = 1 | gi = 0) = 0 p(qi,r

t = 0 | gi = 0) = 1 (3)

We model the probability of a false positive (i.e., the robot detects a new device is
present in a cell when there is no new device at the cell) as 0 because range-only
sensors with known association will not return a measurement to a device that does
not exist.

Real world range-only sensors will return a set of range measurements to devices
that are actually detected. Consequently, if at time t robot r only receives measure-
ments to devices that have been previously observed, we treat that as a measurement
of qi,r

t = 0 for all cells within zmax. Alternatively, if robot r detects a new device,
we treat that as a measurement of qi,r

t = 1, and immediately initialize a new particle
filter to estimate its location.

Using thismodelwith the standard occupancy grid filtering equations it is straight-
forward to determine the posterior probability of the occupancy grid given all detec-
tion measurements the team has made: p(g | q1:t ).

4.2 Active Device Discovery

To discover all devices, we maximize mutual information between the estimate of
undiscovered devices, g, and the expected future binary measurements the team
will make, qτ . Similar to Sect. 3.2, we use a series of approximations to achieve
computational tractability.

For these quantities, mutual information can be expressed as:

MI[g, qτ ] =
G∑

i=1

MI
[
gi , qi

τ

]
=

G∑

i=1

H
[
qi
τ

]
− H

[
qi
τ | gi

]
(4)

where qi
τ is the set of measurements that the team makes of grid cell i at any point in

time along the trajectory. Note that here g and qτ are both discrete random variables,
meaning H[qi

τ ] is the discrete entropy and H[qi
τ | g] i , as opposed to the differential

entropy used to quantify the uncertainty of continuous random variables in Sect. 3.2.
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Equation (4) is a sum because cells and their associated measurements are indepen-
dent of other cells and measurements p(g, qτ ) = ∏

i p(g i , qi
τ ).

As before, calculating the entropy, H[qi
τ ] = −∑

q̃ p(qi
τ = q̃) log p(qi

τ = q̃) is

computationally difficult. While p(qi
τ = q̃) can be evaluated by marginalizing over

the state:

p(qi
τ = q̃) = p(gi = 0)p(qi

τ = q̃ | gi = 0) + p(gi = 1)p(qi
τ = q̃ | gi = 1) (5)

the sum in the entropy calculation is over all possible instantiations q̃ . An individual
measurement is binary, so the number of terms grows exponentially in the number
of measurements at a cell.

To address this issue, we again approximate entropy. Fortunately, for binary detec-
tionmeasurements, there is relatively little gain in planning tomakemultiple observa-
tions of the same cell. This is because when the probability of detection is reasonably
high, even a single observation will substantially reduce the cell’s uncertainty. Con-
sequently, we calculate the information gain between all measurements and a cell as
the gain from the most informative measurement:

MI [gi , qi
τ (cτ )] ≥ max

q∈qi
τ

MI[gi , q] = max
q∈qi

τ

H[q] − H
[
q | gi

]
(6)

where q is an individual measurement made by one robot at one point in time. The
inequality holds becausemutual information increasesmonotonicallywith additional
measurements [17]. Equation (6) can be evaluated in O(QRT)where Q is the number
of cells one robot observes at a single time step.

5 Actively Localizing and Discovering All Devices

We propose several different active control strategies for localizing and discovering
all devices by using ASIP (Sect. 2) with the objectives in Sects. 3 and 4. We also
describe two baseline approaches that serve as a useful benchmark for our strategies.
For each approach, we are interested in (1) whether all devices will be discovered, (2)
whether all devices will be localized, (3) how long it takes to compute plans, and (4)
how long it takes to discover and localize all devices. We describe some theoretical
properties of points 1–3 for each algorithm. However, analyzing the completion
time is difficult given that the number of devices is unknown and the beliefs of the
devices’ positions evolve in complexways as a function ofmany different parameters
of our model. Consequently, we evaluate this aspect through a series of simulations
described in Sect. 6.
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5.1 Proposed Approaches

5.1.1 Switching Between Localization and Discovery

One approach to localizing and discovering all devices is to adopt a policy where
robots make forward progress on either task: each robot either tries to localize known
devices, or discover newones.At each planning step, the teamusesASIP tomaximize
the information gained about localized devices using (2). As described in Sect. 2.2,
it is possible that only some members of the team will be able to reduce the devices’
uncertainty over a given horizon. For robots that cannot help, the team again uses
ASIP, but this time maximizes the information gained about undiscovered devices
using (4). Table1 compares the computational complexity of all approaches.

The team stops when information is 0 (MinTotalInfo in Algorithm 1), so this
approach will eventually discover all of the devices and localize them to the best of
their ability. This is because mutual information is 0 if and only if the two random
variables are independent. For the estimate of a device’s position, this would mean
p(x | zτ , z1:t ) = p(x | z1:t ) and for a grid cell this would mean p(g | qτ , q1:t ) =
p(g | q1:t ); in these cases expected futuremeasurementswill not change the estimate.
In practice, mutual information will not reach 0 due to the team’s noisy estimates.
However, we have found that small positive cutoff values (e.g., MinTotalInfo ≈ 0.1)
work well.

5.1.2 Combining Localization and Discovery

A general approach for devising a unified from control policy form multiple
information-theoretic objectives is to normalize them, and introduce a parameter
for trading off between the objectives [19]. Specifically, we propose using ASIP
with the objectives for localizing and discovering all devices:

I (x, zτ ) = α
MI[x, zτ ]

maxMI[x, zτ ] + (1 − α)
MI[g, qτ ]

maxMI[g, qτ ] (7)

Table 1 Computational complexity of selecting a trajectory for the team to follow

Approach Complexity

Switching O(|P|(DN 2RT + Q RT ))

Combined O(|P|(DN 2RT + Q RT ))

Coverage O(|P|Q RT )

Exhaustive O(max{R, W }4)
R is number of robots, D is number of devices, N is particles per device, |P| is number of trajectories
per robot, W is number of waypoints, T is length of horizon, and Q is number of grid cells within
the maximum range of the sensor
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where the maximums are taken with respect to all actions the team considers over
the current planning horizon and 0 ≤ α ≤ 1 is the parameter that weighs the
relative importance of the two objectives. The normalization is necessary because
the information gains are not directly comparable: the reduction in uncertainty of the
devices location (a set of continuous random variables) can be substantially different
the reduction in uncertainty of undiscovered devices (a much larger set of Bernoulli
variables).

We have encountered two problems combining objectives this way. One is that
when one of the terms is small, its impact is substantially elevated by the normaliza-
tion. To address this issue, we drop a term if the absolute information drops below a
small threshold (e.g., 0.1). The other issue is that robots that do not contribute to the
change in objective are not given a separate task. Consequently, we modify ASIP so
that whenever any member of the team does not improve the objective, the planning
horizon is extended. This means the teammay plan over longer horizons, but ensures
the whole team is used more efficiently.

We consider three different values of α. The first is α = 0.1, which we refer to
as “Discovery” because the team primarily seeks to discover unknown devices. The
opposite extreme is to heavily favor actions that reduce the uncertainty of discovered
device’s positions by settingα = 0.9,whichwe refer to as “Localization.” In between
these two extremes is α = 0.5, which we refer to as “Balanced.” Similar to task
switching, these approaches will continue making actions that reduce the uncertainty
of both estimates. Consequently, they will eventually discover all of the devices that
they can and localize them to the best of their ability.

5.2 Baseline Approaches

5.2.1 Coverage

A coverage based strategy is one that seeks to obtain at least one measurement
everywhere in the environment. We formulate this policy by setting α = 0 in (7).
While this approach will discover all devices, it will not necessarily localize all of
them given the limited information of range-only measurements.

5.2.2 Exhaustive

All of the previous approaches incorporated the uncertainty of discovered or undis-
covered devices in some way. A useful comparison is to ignore this uncertainty,
and have robots exhaustively gather measurements by visiting every location in the
environment. This approach may take longer, but should discover and localize all
devices.
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There are many different ways to formulate this approach. Here, we manually
define a set of W waypoints that any member of the team must visit at least once.
Planning paths that minimize the total distance traveled by the entire team is a
variant of the multiple traveling salesman problem, and it is unlikely that an exact
polynomial time algorithm exists [20]. Instead, we use the nearest neighbor heuristic,
and at each planning step assign robots to unvisitedwaypoints such that themaximum
distance any robot travels is minimized. Calculating each assignment can be done in
O(max{R, W }4) time by repeatedly solving linear assignment problems using the
Hungarian algorithm [21].

6 Evaluation

In this sectionwe evaluate the strategies inSect. 5 and examine their ability to discover
and localize devices. To evaluate an approach, we measure the wall clock time—
including planning time—that it takes to be confident that all devices are discovered
and localized.Wedefine discovery and localization as the bounding of the uncertainty
of each estimate. Formally, we define the discovery of all devices as an indicator
function that is 1 when the probability of an undiscovered device at any point in the
environment is below 0.05. Similarly, a device is localized when the variance of its
x and y position estimate both drop below 0.4 (i.e., σ2

x ≤ 0.4 and σ2
y ≤ 0.4). These

metrics enable reasonable comparisons between different strategies. If the team fails
to meet either of these requirements, we define the completion time as the point at
which the algorithm stops commanding the team.

We use a real time asynchronous simulator based on ROS. All code is written in
C++ and runs on an Intel Core i7 processor. To simulate the range sensors, we set a
maximum range of zmax = 7.0mwith a variance of σ2 = 5.0 m2 and a measurement
rate of 5hz. We use a constant probability of detection, γ = 0.9, though in general
it could change as a function of the team’s distance to a device or their line of sight
conditions. Each member of the team is considered to be a differential drive robot
with a maximum linear speed of 0.4 m/s. We use a resolution of 0.25 m for the
occupancy grid used to discover devices. To plan trajectories, we generate paths to
destinations that are within 10.0mof each robot and discard endpoints that are within
1.0 m of each other. We also stop commanding the team when no trajectory under
60 m is above the minimum information threshold.

6.1 Corridor Environment

In our first simulation, we examine the ability of the information based strategies
to discover devices and determine that they cannot fully localize all of them. To
do this, we consider an environment where a single robot is in a narrow corridor
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Fig. 2 A single robot (orange arrow) is present in a corridor environment with two devices (black
x’s). Using the information based strategies, the robot discovers both devices and obtains the best
estimate it can for both of them. a Initial estimates. b Final estimates

with two devices. Because the corridor is narrow and the variance of measurements
is high, there are two valid hypotheses for one of the devices. Figure2a shows the
initial setup; the orange circle indicates the robot’s maximum range and the black
x’s show the true locations of the devices. Each of the information based strategies
moves along the environment, and discovers both devices, with a final result similar
to Fig. 2. Particles are shown as teal dots, gray cells represent areas where the prob-
ability of an undiscovered device is 0.5, while clear cells indicate the probability is
close to 0. While the information gain never drops to exactly 0, in all our simulations
it eventually decreased below 0.1, resulting in every information based strategy suc-
cessfully terminating. This demonstrates the ability of these strategies to correctly
reason about the sensors they carry, and what effect their actions can have on the
position estimate of the devices.

6.2 Large Office Environment

To more completely evaluate the utility of information based strategies, we conduct
a larger scale simulation study in which teams of up to eight robots simultaneously
localize 40different devices spread throughout a complex indoor environment.Due to
its interesting structure and widespread use in the robotics community, we conduct
this simulation in the Intel Research Lab using an occupancy grid generated by
Stachniss [22]. For each strategy, we ran 5 trials with teams of 2, 4, and 8 robots.

Figure3 shows representative trajectories for each strategy with 2 robots and the
location of all 40 devices. The exhaustive strategy visits 71 distinctwaypoints in every
room of the environment. In contrast, the coverage based strategy has the robots stay
in the corridors which is sufficient to observe all of the grid cells. The other strategies
follow trajectories in between these two extremes, and generally only enter rooms
when devices are present. Note that for the information based approaches, robots
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Exhaustive
578 seconds, all devices localized

Coverage
184 seconds, 15 devices not localized

Switching
419 seconds, all devices localized

Discovery
393 seconds, all devices localized

Balanced
373 seconds, all devices localized

Localization
425 seconds, all devices localized

(a) (b)

(d)(c)

(e) (f)

Fig. 3 The proposed approaches (c–f) outperform the baselines (a–b) by localizing all devices
faster. Solid lines show the team’s path and black x’s show device locations. The dashed orange
line shows the maximum range of the sensors at the team’s starting location (red dot)
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naturally spread out, and did not repeatedly get stuck in an area, demonstrating they
did not get trapped in local minima and effectively extended their planning horizon
when necessary.

In every trial, each approach discovered all devices and obtained enough detection
measurements to determine that the probability of an undiscovered being present any-
where in the environment was below 0.05. Not surprisingly, the coverage approach
was the fastest to discover all devices. However, it often failed to localize all of
them, in many cases obtaining poor estimates for more than 8 devices. This failure
is caused by the coverage strategy not rewarding the team for reducing the uncer-
tainty of the devices position estimates. Localizing a device with range-only sensors
requires measurements that are either close to it or at multiple angles relative to it. If
these types of measurements are not rewarded, the team will not necessarily obtain
them, resulting in devices not being localized. All of the other approaches localized
all devices in every trial as they reward measurements that reduce the uncertainty of
devices’ positions.

Figure4 shows the completion times of all approaches except coverage. We omit
the coverage approach’s completion time as it routinely failed to localize all devices.
Across all team sizes, the information based approaches generally performed better,
and never performed substantially worse, than the exhaustive approach. Overall, the
balanced strategy discovered and localized all devices the fastest, with an average
improvement of 25%over exhaustive.We attribute balanced’s performance to its ten-
dency to gather every potentially useful measurement when it is in an area, meaning
it tends to not revisit areas. In contrast, the task switching and localization approaches
prioritize reducing the uncertainty of discovered devices. Consequently, they tend to
localize all devices quickly, but not fully reduce the uncertainty of grid cells, meaning
they must revisit parts of the environment (e.g., rooms without devices). The dis-
covery approach has the opposite issue: it quickly discovers all devices, but then has
to retraverse parts of the environment in order to localize them. For completeness,
the coverage approach took 184, 170 and 128s to complete for teams of 2, 4, and 8
robots respectively.

The performance gains in Fig. 4 are substantial given the density of devices
throughout the environment. Robots must move to many different areas, resulting
in actions closer to that of exhaustive sampling. In environments where the density

0 200 400 600

Exhaustive

Switching

Discovery

Localization

Balanced

Time (s)

(a)

0 100 200 300

Exhaustive

Switching

Discovery

Localization

Balanced

Time (s)

(b)

0 100 200 300

Exhaustive
Switching
Discovery

Localization
Balanced

Time (s)

(c)

Fig. 4 Time to localize all devices. In general, the balanced approach performed the best, outper-
forming the baseline exhaustive approach by ≈25%. a 2 robots, b 4 robots, c 8 robots
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Table 2 Average percent of time spent planning per trial

Robots Exhaustive
(%)

Switching
(%)

Localization
(%)

Balanced
(%)

Discovery
(%)

Coverage
(%)

2 3.5 3.2 3.8 4.7 4.4 5.2

4 6.7 4.7 6.5 5.8 7.2 14.2

8 17.8 12.4 18.5 22.6 39.0 14.0

Due to the series of approximations we use, the team’s performance is primarily dominated by
travel time

of devices was lower, we’d expect the information based strategies to outperform
exhaustive sampling even further, given that they reduce to the coverage strategy
when all discovered devices are localized.

Table2 shows the percentage of time that the team spent planning. Overall, the
trial time was dominated by traveling places, demonstrating the computational effec-
tiveness of the series of approximations we use.

Finally, the completion times show that adding robots increase performance for
all strategies. The information based strategies absolute performance increase over
the exhaustive strategy also decreases. This highlights the fact that given unlimited
resources, active control strategies offer fewer gains. However, the data in this section
shows that with even with moderately sized teams, there is a clear benefit to using
informed strategies such as mutual information to select control actions.

7 Conclusion

We presented a variety of information based approaches for actively discovering and
localizing an unknown number of devices using range-only sensors. Through a series
of approximations and a sequential optimization technique, our approaches can be
calculated in time that is polynomial in all relevant variables. We compared our
approaches to two baseline strategies in a complex indoor environment, and found
that their gain in performance was substantial.
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Aggressive Moving Obstacle Avoidance
Using a Stochastic Reachable Set Based
Potential Field
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and Lydia Tapia

Abstract Identifying collision-free trajectories in environmentswith dynamicobsta-
cles is a significant challenge. However, many pertinent problems occur in dynamic
environments, e.g., flight coordination, satellite navigation, autonomous driving, and
household robotics. Stochastic reachable (SR) sets assure collision-free trajectories
with a certain likelihood in dynamic environments, but are infeasible for multiple
moving obstacles as the computation scales exponentially in the number of Degrees
of Freedom (DoF) of the relative robot-obstacle state space. Other methods, such as
artificial potential fields (APF), roadmap-based methods, and tree-based techniques
can scale well with the number of obstacles. However, these methods usually have
low success rates in environments with a large number of obstacles. In this paper, we
propose a method to integrate formal SR sets with ad-hoc APFs for multiple moving
obstacles. The success rate of this method is 30% higher than two related methods
for moving obstacle avoidance, a roadmap-based technique that uses a SR bias and
an APF technique without a SR bias, reaching over 86% success in an enclosed
space with 100 moving obstacles that ricochet off the walls.
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1 Introduction

Motion planning consists of finding a collision-free path from some start position to
some goal position. In many applications, e.g., flight coordination, satellite naviga-
tion, and automated driving, themotion planning problem can be further complicated
bymoving obstacles, i.e. obstacles whose position changes over time during the plan-
ning process. Successful identification of valid, collision-free paths in environments
withmoving obstacles requiresmodification of the static planning problem to contin-
uously re-evaluate plans, thus dynamically identifying valid trajectories given current
and predicted obstacle positions.

Common approaches to solving the motion planning problem for dynamic obsta-
cles include APF methods [1–4], tree based planners [5, 6], Probabilistic Roadmap
Methods (PRMs) [7–10], and several variants which use heuristics [11, 12]. APF
methods create a potential landscape and use gradient descent for navigation, plan
locally, and can be dynamically reactive to unexpected obstacles. These methods
generate an artificial potential in the robot’s workspace, which repels the robot from
obstacles and attracts the robot to the goal [13]. APFmethods suffer from several well
known drawbacks, most notably local minima traps and difficulty with narrow pas-
sages. However, recent work has improved upon and even eliminated some of these
issues [1, 14]. Thework in [4] has extendedAPFs tomoving obstacles by considering
the trajectories of the obstacles while computing the APF in a heuristic manner. In
this paper, we present a method to generate potential fields that incorporates formal
methods.

Stochastic reachability analysis provides offline verification of dynamical sys-
tems, to assess whether the state of the system will, with a certain likelihood, remain
within a desired subset of the state-space for some finite time, or avoid an unde-
sired subset of the state-space [15]. To solve problems in collision avoidance, the
region in the relative state-space which constitutes collision is defined as the set of
states the system should avoid [16, 17]. Unfortunately, the computation time for
stochastic reachable sets (SR sets) is exponential in the dimension of the continuous
state, hence assessment of collision probabilities with many simultaneously mov-
ing obstacles is not feasible. However, expensive SR sets can be computed offline
and the result queried online. In prior work [7], we integrated SR sets into roadmap
methods for dynamic path queries (SR-Query). We demonstrated highly successful
path identification in environments with several moving obstacles, as compared to
a roadmap-based approach that simply pruned invalid edges during dynamic path
queries [10]. However, SR-Query was susceptible to ambushes by moving obstacles,
due to limited reactivity and required navigation on the roadmap edges.

The method we propose here uses multiple SR sets, computed pairwise between
the robot and each dynamic obstacle, to generate an APF for each obstacle. We
then use the likelihood of collision with a given obstacle, computed a priori via the
SR sets, to construct the repulsion field around obstacles. The repulsion fields are
pre-computed offline and queried during the path planning phase. SR sets provide
an accurate depiction of the collision probabilities between a robot and a moving
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obstacle. In an environment with multiple obstacles, the intersection of multiple
SR sets clearly cannot provide a strict assurance of safety, since the reachable set
is computed for one dynamic obstacle in isolation. Despite this limitation, the SR
sets provide a more formal foundation for relating the collision probability to the
repulsion field than other ad-hoc methods [4, 18, 19] because SR sets are computed
based on relative robot-obstacle dynamics.While it is possible to use ad-hocmethods
to generate a comparable repulsive potential field, the SR computation is a formal
tool that more closely ties the repulsive potential field with the relative motion of the
obstacles and robot.

Combining formal and ad-hoc methods provides several advantages over existing
APF methods. First, the formal SR set provides an accurate representation of the
collision probabilities, which is used to produce potential gradients which accurately
reflect the collision probability. Second, the computation cost in low dimensionality
problems is lower than the roadmap method in [7]. Thus, the robot is more reactive
and less prone to being ambushed by fast moving obstacles. Finally, our approach
easily accommodates multiple obstacle scenarios, by combining multiple SR sets to
generate approximate collision avoidance probabilities with many moving obstacles
(which is impossible to compute through a single SR set that accounts for all obstacles
simultaneously).

We demonstrate our method computationally on scenarios with up to three hun-
dred stochastic dynamic obstacles. The APFwith a SR bias can significantly improve
the ability of the potential field landscape to reflect the heading and motion of obsta-
cles. The success rate of our method is 30% higher than two related methods for
moving obstacle avoidance: (1) our roadmap-based technique that uses a SR bias [7],
and (2) an APF technique without a SR bias; with over 86% path success in an
environment with 300 moving obstacles that ricochet off the walls. In addition, the
common problem of local minima in APF is mitigated by a rapidly changing APF
landscape produced by rapidly moving obstacles. Videos of the APF with a SR bias
method can be viewed at https://www.cs.unm.edu/amprg/Research/DO/.

While our results demonstrate that the APF-SR method outperforms comparable
methods, we note two key limitations. First, the point-mass robot model is a simplifi-
cation of actual robot motion. However, methods such as [1, 14] exist, which extend
APF methods to non-point robots. A more realistic robot model can be easily incor-
porated into the SR set calculation, but with additional computational cost. Second,
we note that the SR set must be recalculated. One solution is to maintain a SR set
database and to then match obstacle motion to sets as [20] does with funnel libraries.
Neither of these limitations are insurmountable, and we maintain that the improved
performance of the APF-SR method as compared to other approaches merits its use
in many scenarios.

https://www.cs.unm.edu/amprg/Research/DO/
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2 Related Work

APFs are a common approach to solving the path planning problem due to their
simplicity, fast execution time, and applicability to several robotic problems, includ-
ing unmanned aerial vehicles [2, 3], robot soccer [21], and mobile robots [1, 14,
22, 23]. For example, a recent APF method assigns non uniform repulsive bubbles
around moving human obstacles to prevent robots frommoving in front of a walking
human [4]. Recent work has extended the APF method to account for cases in which
the goal is not reachable due to obstacle proximity [1], and navigation in narrow
passages is required [14]. Other recent work has focused on modification of the
computation of the potential field through Fuzzy [23] and evolutionary [22] APFs.
Another branch of work on APFs utilizes the repulsive and attractive concepts of
APFs but also integrates another path planning method [24, 25]. For example, [24]
uses a user defined costmap to influence node placement in a Rapidly exploring Ran-
dom Tree (RRT) algorithm. The costmap dictates a repulsiveness or attractiveness
factor for every region. Similarly, Navigation Fields [25] assign a gradient which
agents follow and is used for crowd modeling.

A Hamilton-Jacobi-Bellman (HJB) formulation [26] allows for both a control
input and a disturbance input to model collision-avoidance scenarios [27, 28] for
motion planning. The result of these reachability calculations is a maximal set of
states within which collision between two objects is guaranteed (in the worst-case
scenario), also known as the reachable set. The set which assures collision avoidance
is the complement of the reachable set. In [29], reachable sets are calculated to
assure a robot safely reaches a target while avoiding a single obstacle, whose motion
is chosen to maximize collision, and the robot cannot modify its movements based
on subsequent observations. In [30], a similar approach is taken, but reachable sets
are computed iteratively so that the robot can modify its actions. In [20], multiple
obstacles that act as bounded, worst-case disturbances are avoided online, based on
precomputed invariant sets.

An alternative approach is to calculate a SR set that allows for obstacles whose
dynamics include stochastic processes. Discrete-time SR generates probabilistic
reachable sets [15], based on stochastic system dynamics. In [16], the desired target
set is known, but the undesired sets that the robot should avoid are random and must
be propagated over time. In [17], a two-player stochastic dynamical game is applied
to a target tracking application in which the target acts in opposition to the tracker.

3 Preliminaries

3.1 Obstacle Dynamics

We consider dynamic obstacles with one of two classes of trajectories with stochastic
velocities. Each obstacle is represented as a two-dimensional point mass with state
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xo = (xo, yo), that follows a straight-line or approximately constant-arc trajectory
with stochastic velocity w, a discrete random variable that takes on values in W
with probability distribution p(w). However, more complex dynamics, e.g., ones that
switch between straight-line and constant arcmovements, can easily be incorporated.
The obstacle dynamics discretized via an Euler approximation with time step Δ are

xo
n+1 = xo

n + Δwn

yo
n+1 = αΔwn

(1)

for straight-line movement, with speed w ∈ W and line slope α ∈ R, and

xo
n+1 = xo

n + Δr (cos(wn(n + 1)) − cos(wnn))

yo
n+1 = yo

n + Δr (sin(wn(n + 1)) − sin(wnn))
(2)

for constant-arc movement, with angular speed w ∈ W , and radius r ∈ R
+. The

dynamics (2) approximate actual arc dynamics to maintain low dimensionality of
the relative coordinate frame used in the calculation of the SR set.

The dynamics of both types of obstacle can be generalized to the form xo
n+1 =

xo
n + Δ f o(wn, n) with f defined as appropriate by (1) or (2).

3.2 Relative Robot-Obstacle Dynamics

We consider two models for the robot: (1) a holonomic point-mass model with state
xr = (xr , yr ), and (2) a non-holonomic unicycle model with state xr = (xr , yr , θr ).
The holonomic model is defined as

ẋr = ux

ẏr = uy (3)

with two-dimensional velocity control input u = (ux , uy). The non-holonomic uni-
cycle model is defined as

ẋr = us cos(θ)
ẏr = us sin(θ)
θ̇r = uw

(4)

with two-dimensional control input u = (us, uw), such that us is the speed and uw

is the angular velocity of the unicycle. Discretizing the robot dynamics (3) and (4)
with time step Δ results in

xr
n+1 = xr

n + Δu. (5)
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for the holonomic model and

xr
n+1 = xr

n + Δus
n cos(θ

r
n)

yr
n+1 = yr

n + Δus
n sin(θ

r
n)

θr
n+1 = θr

n + Δuw
n

(6)

for the unicycle model. We can generalize the robot dynamics to xr
n+1 = xr

n +
Δ f r (un, θn) where θn = 0 for the holonomic case.

A collision between the robot and the obstacle occurs when |xr
n − xo

n| ≤ ε for
some n and small ε. We construct a relative coordinate space that is fixed to the
obstacle, with the relative state defined as x̃ = xr − xo, noting that for the unicycle
model, θ̃ = θ. Hence the dynamics of the robot relative to the obstacle are

x̃n+1 = x̃n + Δ f r (un, θn) − Δ f o(wn, n) (7)

with f r (·) as in (5) and (6), f o(·) as in (1) and (2), and a collision is defined as

|x̃n| ≤ ε. (8)

Equation (7) describes a dynamical systemwith state x̃ ∈ X , control input u ∈ U that
is bounded, and stochastic disturbance w. Because x̃n+1 is a function of a random
variable, it is also a random variable. Its transitions are governed by a stochastic
transition kernel, τ (x̃n+1 | x̃n, un, n), that represents the probability distribution of
x̃n+1 conditioned on the known values x̃n , un at time step n.

3.3 SR for Collision Avoidance

We generate collision avoidance probabilities by formulating a SR problem with the
avoid set, K , defined as the set of states in which a collision is said to occur (8). To
avoid collision with the obstacle, the robot should remain within K , the complement
of K . The probability that the robot remains within K over N time steps, with initial
relative position x̃0, can be calculated using dynamic programming [31], introduced
for the stochastic reachability problem in [15]. An abbreviated derivation for calcu-
lating the SR set follows, with details in [7]. As in [15], the SR set is generated via
dynamic programming, iterated backwards in time from time n = N to time n = 0.

VN (x̃) = 1K (x̃) (9)

Vn(x̃) = 1K (x̃)

∫

X
Vn+1(x̃ ′)τ (x̃ ′ | x̃, u, n) dx̃ ′ (10)

= 1K (x̃)
∑

w∈W
V ∗

n+1

(
x̃ + Δ f r (u, θ) − Δ f o(w, n)

)
p(w). (11)
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The value functions (9)–(11) make use of an indicator function 1K (x) that is equal
to 1 if x ∈ K and equal to 0 otherwise. The value function V ∗

0 (x̃0) at time n = 0
describes the probability of avoiding collision over N timesteps when starting in
some initial state x̃0. The optimal control input u to avoid collision is determined by
evaluating

V ∗
n (x̃) = max

u∈U

{

1K (x̃)
∑

w∈W
V ∗

n+1

(
x̃ + Δ f r (u, n) − Δ f o(w, n)

)
p(w)

}

. (12)

Figure1a shows the SR set for a straight-line obstaclewith a pointmass holonomic
robot. The peaks show a higher probability of collision when the robot is in line with
the obstacle’s trajectory. Intuitively, the closer the robot is to the obstacle, the higher
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Fig. 1 SR sets for the same straight-line obstacles at origin with width and height = 1. The color
represents probability of collision. a SR set with a holonomic robot. b Holonomic robot SR set after
convolution with a Gaussian (σ = 0.15). c SR set with the unicycle robot. d Unicycle robot SR set
after convolution with a Gaussian (σ = 0.15)
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the probability of collision. On a single core of an Intel 3.40GHzCORE i7-2600CPU
with 8GB of RAM, the SR set in Fig. 1a took 1727.25 s to compute, over a horizon
of N = 30 steps, with time step of length Δ = 1 and a point mass holonomic robot.
We observed convergence in the stochastic reachable sets for N > 5 since the robot
and obstacle traveled sufficiently far apart within this time frame.

With a single obstacle, V ∗
0 (x̃0) in (12) is the maximum probability of avoiding

a collision, and a tight upper bound. For two obstacles with separately calculated
avoidance probabilities V ∗,1

0 (x̃10), V ∗,2
0 (x̃20 ) (with relative position x̃ i

0 with respect to
obstacle i), the probability of avoiding collision with both obstacles is

P [B1 ∩ B2] ≤ min
{

V ∗,1
0 (x̃10), V ∗,2

0 (x̃20 )
}

(13)

where Bi corresponds to the event that the robot avoids collision with obstacle i . We
therefore examine each collision avoidance probability individually, and the mini-
mum over all obstacle robot pairs is the upper bound to the total collision avoidance
probability. While an upper bound provides no guarantee of safety, it can inform
which paths are more likely, relative to other paths, to avoid collision. Since our
focus is on finding paths with higher success rates, rather than theoretically guaran-
teed collision-free paths, the upper bound (13) is appropriate. Further discussion and
the derivation of (13) is in [7].

4 Methods

In this section, we present a novel method for integrating SR sets with APFmethods.
To generate the obstacle gradients and the gradient to the goal with SR sets we
must first modify the SR sets to accommodate APF, incorporate the SR sets into the
gradient calculation, and then update the robot’s control law.

One hurdle in using SR sets to inform the potential field is the possibility of non-
smoothness in the optimal value for (12). In general, no guarantees of smoothness are
possible. In fact,wefind amarkeddiscontinuity in the part of theSRset corresponding
to a robot located just behind the obstacle (Fig. 1). Since APFmethods use a gradient
as a warning that the robot is about to collide with an obstacle, we smooth the SR
set by convolving the set with a Gaussian with N (μ = 0,σ2). Figure1 shows the
original SR set (Fig. 1a) and the resulting set after convolution (Fig. 1b). As expected,
the discontinuity in Fig. 1a from0 to 1 at the obstacle boundary is smoothed in Fig. 1b.

The main APF-SR algorithm, Algorithm 1, first updates the obstacle positions
via the updateObstacle function (Line 3). Then Algorithm 1 calculates the APF
gradient by summing the obstacle gradients, calculated in getAPFGradient, and the
goal gradient (Lines 5–11), which is then used by calcControl to construct the control
input u (Line 12). Recall the APF gradient is the direction the robot shouldmove in to
avoid obstacles and reach the goal. Finally, the control law for the robot is updated
with the control input u (Line 13).
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Algorithm 1 APF-SR
Input: obstacles O with precomputed smoothed SR sets, robot r

1: for t = 0; t < maxT ime; t = t + Δ do
2: for Obstacle o ∈ O do
3: updateObstacle(t ,o,o.w,o.p(w))
4: end for
5: AP Fvector = (0, 0)
6: for Obstacle o ∈ O do
7: if dist( xo

n , xr
n) < dmin then

8: AP Fvector = AP Fvector + o.get AP FGradient (xr
n)

9: end if
10: end for
11: AP Fvector = AP Fvector + goal-gradient
12: u = calcControl(AP Fvector )

13: xr
n+1 = xr

n + Δ · f r (u, t)
14: end for

The updateObstacle function (Algorithm 2) uses the same dynamics used to cal-
culate the SR sets. This algorithm updates the obstacle locations. At every sampling
instant (time T apart), Algorithm 2 evaluates a speed w of the obstacle, based on the
distribution p(w) of possible speeds (Lines 2–9), and updates the obstacle dynamics
with this speed (Line 10).

The APF gradient is calculated for all obstacles nearby the robot in the getAPF-
Gradient(xr

n) function. For every obstacle o, if o is within distance dmin query the
potential field influence of o on the robot. This gradient is calculated by first finding
the smallest neighboring value, pi, j , in the SR set from the robot’s current relative
position. The gradient is then calculated by the 2nd order central finite difference
centered at pi, j . The gradient from each obstacle is then summed together to produce
a final gradient due to the obstacles. The goal-gradient is a small magnitude vector
that constantly points toward the goal. The goal-gradient and the gradient due to the
obstacles are summed together to get the final APF gradient, denoted APFvector .

After the APFvector is calculated, the control input u is calculated by the
calcControl(APFvector ) function. For the holonomic case u = APFvector . How-
ever, for the non-holonomic case a heading and speed must be extracted from the
APFvector to construct u = (us, uw). This is done by first setting uw to the maximum
turn rate in the direction of the APFvector , then setting us to the maximum speed in
the direction of the APFvector . The maximum speed of the unicycle is the same as the
maximum speed used in the SR calculation. Finally, u is used to update the control
law for the robot.
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Algorithm 2 updateObstacle
Input: Time step n, sample interval T . obstacle o, velocities w ∈ W = {

w1, w2, . . . , wnW

}
,

probabilities p(w)

1: if mod(n, T/Δ) == 0 then
2: s = rand(0, 1)
3: for index = 0; index < nW ; index++ do
4: if s ≤ p(w)[index] then
5: o.w = w[index]
6: break
7: end if
8: end for
9: end if
10: xo

n+1 = xo
n + Δ · f o(o.w, tn)

5 Experiments

Wepresent three experiments of increasing difficulty. The first experiment (Sect. 5.1),
evaluates the APF-SR method on 50 moving obstacles, with two different trajecto-
ries (straight-line and constant-arc) and a holonomic point robot. The second exper-
iment (Sect. 5.2), shows the relationship between the number of obstacles, 50–300,
and success rate for the proposed method, with a holonomic robot and ricocheting
straight-line obstacles.When the ricocheting obstacles reach the environment bound-
ary, they bounce off the wall with simple friction free reflective behavior (and do
not leave the planning area). Finally, Sect. 5.3 evaluates the APF-SR method with
a non-holonomic unicycle robot with 100 ricocheting straight-line obstacles. Note
that since the SR calculation is computed once for each type of obstacle and robot
dynamics, the offline computation time is not affected by the number of obstacles.

Our APF-SR method is compared to three methods: a simple Gaussian method
withN (0, 0.152) [32], the same Gaussian method withN (0, 0.452), and a roadmap
based method (SR-Query) which also uses SR sets [7]. The Gaussian methods wrap
a Gaussian potential field around the moving obstacle. The two Gaussian methods
demonstrate that increasing the standard deviation can increase the success of the
Gaussian method, but at the expense of making some paths infeasible due to the large
repulsion area. The final method, SR-Query, builds a roadmap in the workspace by
sampling valid configurations (nodes) and connecting these nodes with valid tran-
sitions (edges) thus constructing a graph. The SR-Query method updates the edge
weights by querying the SR set of each moving obstacle which overlap with the
roadmap. The edge is then assigned the worst probability of collision and a graph
search algorithm is used to find the path with the lowest probability of collision. The
robot travels along the edges and can only replan when it reaches a node. For the
comparisons shown, the SR-Query uses a roadmap created by a uniform cell decom-
position in the workspace, with 500 nodes and edges between all 8 cell neighbors.
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For the APF-SR experiments, the SR set was convolved with a Gaussian with
σ = 0.15. The σ of the smoothing Gaussian has the same value as the smaller
Gaussian comparison method (Gaussian σ = 0.15) to eliminate the smoothing done
to the SR set as possible bias for APF-SR’s success. The value σ = 0.15 worked
well since larger values destroyed the shape of the SR set and smaller values did
not provide enough smoothing. The value was chosen empirically by comparing
σ = 0.05, σ = 0.45 and σ = 0.15.

To generate the SR sets, the obstacles must have a known probabilistic veloc-
ity distribution. For all the experiments, the straight-line obstacles have stochas-
tic velocities, w = {0.1, 0.2, 0.5, 0.7}, with corresponding probabilities p(w) =
{0.3, 0.2, 0.3, 0.3}. Experiments with obstacles traveling along constant-arc trajec-
tories have w = { 0.4

20π , 0.6
20π , 0.9

20π , 1.2
20π } and p(w) = {0.2, 0.2, 0.3, 0.3} with radii 30,

40 and 50.
In Sects. 5.1 and 5.2, the robot is holonomicwith amaximumvelocity of 0.36 units

per second. In Sect. 5.3, the robot is a unicycle with a maximum velocity of 0.36m/s
and maximum turn rate of π

5 rad/s. The other critical parameters are dmin = 3m, the
goal-gradient is a vector with magnitude 0.1 in the direction of the goal, the robot
makes a decision and moves every Δ = 0.01s, and the obstacle sampling interval
is T = 1s.

5.1 Comparison of Holonomic Robot with Line
and Arc Obstacles

The environmental setup is constant between all three methods. However, because
the obstacles have stochastic velocity, multiple trials (100) are conducted and mean
results presented. Each method is run with the same random seed. In these experi-
ments, there are 25 constant-line obstacles and 25 constant-arc obstacles with sto-
chastic velocities. Figure2a shows the initial locations of the obstacles, as well as
the start location (S) and goal location (G) of the robot.

Figure2b shows the percentage of trials which reach the goal without collision.
The APF-SR method has the highest success rate (95%); much higher than the next
highest success rate (75%) via the Gaussian method with σ = 0.45. Hence, incorpo-
rating the formal SR set methods into the ad-hoc APF method provides a significant
advantage. This advantage originates from the fact that the APF-SRmethod provides
information about an obstacle’s dynamics, enabling the robot to avoid an obstacle’s
path while maneuvering around all obstacles.

Of further interest is that the SR-Query method only achieves a 74% success
rate in this experiment. This is because the robot using the SR-Query method is
ambushed by obstacles while traversing an edge in the roadmap [7]. Recall that the
SR-Query method only makes path planning decisions at nodes and is therefore
vulnerable while traversing edges. However, the proposed APF-SR method does not
suffer from this particular problem, making the proposed method more reactive to
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Fig. 2 50 Obstacle Comparison: a The environment at t = 0. The obstacles start outside the
environment boundaries and move towards the robot. b Percentage of trials which reach the goal
without collision. c Distance from the nearest obstacle over the coarse of the trial. d Example of
the paths for a single stochastic trial. The start is marked with a S and the goal with a G. Gaussian
methods do not reach to goal due to a collision

the moving obstacles. The APF-SR method makes path planning decisions at every
timestep, while the SR-Query method only replans at nodes in the roadmap [7].

Figure2c evaluates a second metric, clearance, which we define as the distance
from the robot to the nearest obstacle averaged over all trials. The paths are nor-
malized for comparison. The clearance of the APF-SR method is comparable to the
clearance of the other methods. However, the shape of the potential field provides a
more informed path through the obstacles. Figure2d shows the difference in example
paths for the four methods. The difference in the decisions can be seen in the yellow
circle where the two Gaussian methods collide and stop. The Gaussian σ = 0.15
method makes a slight turn to avoid the obstacle and is then hit. While the Gaussian
σ = 0.45 method makes a slightly more pronounced turn, it is still hit. However, the
APF-SR method makes a much steeper turn due to the shape of the potential field,
successfully avoids the moving obstacle, and reaches the goal.
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5.2 Holonomic Robot with Ricocheting Line Obstacles

We compare the Gaussian method and the APF-SR method in challenging envi-
ronments with 100 straight-line obstacles. Unlike in the previous experiment, the
straight-line obstacles may ricochet off the walls defined in the 50 by 50 environ-
ment. This increases the difficulty of the problem as all obstacles are always present
in the planning region. Figures2a and 3a show the difference between the 50 obstacle
and 100 obstacle experimental environments.

Figure3b shows that the APF-SR method has a success rate of 86%, while the
Gaussians have a success rate of at most 56%, for 100 obstacles. As expected, the
success rate is lower than in the 50 obstacle experiment.

Since the clearances shown inFig. 3c for eachof the threemethods are comparable,
the shape of the APF allows the robot to take more informed paths through the
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Fig. 3 50–300 Ricocheting Obstacles: a The 100 Obstacle environment at time t = 0. b Success
rate with increasing number of obstacles. c Distance from the nearest obstacle normalized over the
path (100 Obstacles). d Example of the paths for a single stochastic obstacle run. The start is marked
with ‘S’ and the goal with ‘G’. Gaussian-method paths do not reach to goal due to a collision
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Fig. 4 100 Obstacles with Unicycle Robot: a Percentage of trials which reach the goal without
collision. b Distance from the nearest obstacle normalized over the path. c Paths example. The start
is marked with a S and the goal with a G. The paths for the Gaussian methods do not reach to goal
due to a collision

obstacles. Figure3d shows the path differences, particularly evident inside the yellow
circle, where the three methods follow very different paths. The APF-SR method
takes the most evasive action and successfully avoids collision, whereas the other
two methods fail.

As the number of obstacles increases from 50 to 300 (Fig. 3b), the success rate
decreases, as expected. However, the APF-SR method decreases at a slower rate and
still has approximately 75% success rate with 200 obstacles, whereas the Gaussian
methods have less than 25% success rate. By incorporating the SR sets, the APF-SR
method can better avoid large numbers of obstacles. Further, the online execution
of the APF-SR method is fast, scaling linearly with the number of obstacles. On a
single core of an Intel 3.40GHz CORE i7-2600 CPU with 8GB of RAM, execution
time is 0.0168ms per step for the 50 obstacle environment, and 0.0247ms per step
for the 100 obstacle environment.



Aggressive Moving Obstacle Avoidance … 87

5.3 Non-holonomic Unicycle

In this experiment, the robot is modeled as a non-holonomic unicycle (4) and the
obstacles follow straight-line trajectories. The robot can only turn at a rate of π

5 rad/s,
which makes the problem more difficult than the holonomic case. We also note that
this problem cannot be solved with the SR-Query method presented in [7] without
path modification for the non-holonomic constraints.

Figure4a compares the APF-SR method and the Gaussian methods. The APF-SR
method performs approximately 50% better than the next highest Gaussian method.
Thus, theSR set allows theAPF-SRmethod tomake significantly better path planning
decisions.

Figure4b shows that clearance is comparable across all methods, indicating that
theAPF-SRmethod’s repulsion fields producemore informed paths. Figure4c shows
an example of these paths for a single run. These paths differmore than the paths in the
previous experiments. This is due to the limited ability of the robot to turn, and thus
early differences in decisions result in large path differences later. For example, in
the yellow circle in Fig. 4c, the APF-SR method diverges from the Gaussian method
early on due to the shape of the potential field constructed with the SR sets. These
paths are more erratic than the holonomic robot’s paths because the robot’s turning
ability is limited and hence the robot must take more dramatic evasive motions to
avoid the obstacles. The sharp direction changes are due to the unicycle changing
velocity from positive to negative (or vice versa), which creates a sharp reversal.

6 Conclusion

The incorporation of the formal SR sets into the ad-hoc APF method provides the
APF with a more accurate representation of the relative robot-obstacle dynamics,
which leads to an increased success rate during path planning. The APF-SR method
has a success rate at least 30% higher than other methods used for comparison. We
also showed that this gain was due not to increased clearance from the obstacles, but
rather to more informed path planning. The SR set informs the APF-SR algorithm
of the direction and velocity of the obstacle, which is used to generate a repulsive
potential that reflects the probability of collision. Hence the APF-SR algorithm can
make informed planning decisions in the presence of multiple moving obstacles.

Acknowledgments Chiang, Lesser, and Oishi are supported in part by National Science Founda-
tion (NSF) Career Award CMMI-1254990 and NSF Award CPS-1329878. Tapia and Malone are
supported in part by the National Institutes of Health (NIH) Grant P20GM110907 to the Center for
Evolutionary and Theoretical Immunology.



88 H.-T. Chiang et al.

References

1. Ge, S.S., Cui, Y.J.: New potential functions for mobile robot path planning. IEEE Trans. Robot.
Autom. 16(5), 615–620 (2000)

2. Cetin, O., Kurnaz, S., Kaynak, O., Temeltas, H.: Potential field-based navigation task for
autonomous flight control of unmanned aerial vehicles. Int. J. Autom. Control 5(1), 1–21
(2011)

3. Khuswendi, T., Hindersah, H., Adiprawita, W.: UAV path planning using potential field and
modified receding horizon a* 3d algorithm. In: International Conference on Electrical Engi-
neering and Informatics (ICEEI), pp. 1–6 (2011)

4. Lam, C.P., Chou, C.T., Chiang, K.H., Fu, L.C.: Human-centered robot navigation towards a
harmoniously human-robot coexisting environment. IEEE Trans. Robot. 27(1), 99–112 (2011)

5. Lee, H.C., Yaniss, T., Lee, B.H.: Grafting: a path replanning technique for rapidly-exploring
random trees in dynamic environments. Adv. Robot. 26(18), 2145–2168 (2012)

6. Narayanan, V., Phillips, M., Likhachev, M.: Anytime safe interval path planning for dynamic
environments. In: Proceedings of IEEE International Conference on Intelligent Robots and
Systems (IROS), pp. 4708–4715 (2012)

7. Malone, N., Lesser, K., Oishi, M., Tapia, L.: Stochastic reachability based motion planning for
multiple moving obstacle avoidance. In: Hybrid Systems: Computation and Control, HSCC,
pp. 51–60 (2014)

8. Van Den Berg, J., Ferguson, D., Kuffner, J.: Anytime path planning and replanning in dynamic
environments. In: Proceedings IEEE International Conference on Robotics and Automation
(ICRA), pp. 2366–2371 (2006)

9. Rodriguez, S., Lien, J.M., Amato, N.M.: A framework for planning motion in environments
with moving obstacles. In: Proceedings IEEE International Conference on Intelligent Robots
and Systems (IROS) (2007)

10. Jaillet, L., Simeon, T.: A PRM-based motion planner for dynamically changing environments.
In: Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS)
(2004)

11. Al-Hmouz, R., Gulrez, T., Al-Jumaily, A.: Probabilistic road maps with obstacle avoidance in
cluttered dynamic environment. In: IEEE Intelligent Sensors, SensorNetworks and Information
Processing Conference, pp. 241–245 (2004)

12. Bohlin,R.,Kavraki, L.E.: Path planningusingLazyPRM. In: Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), pp. 521–528 (2000)

13. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot.
Res. 5(1), 90–98 (1986)

14. Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Path planning for autonomous vehicles in
unknown semi-structured environments. Int. J. Robot. Res. 29(5), 485–501 (2010)

15. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and safety for con-
trolled discrete time stochastic hybrid systems. Automatica 44, 2724–2734 (2008)

16. Summers, S., Kamgarpour, M., Lygeros, J., Tomlin, C.: A stochastic reach-avoid problem with
random obstacles. In: Proceedings of International Conference Hybrid Systems: Computation
and Control (HSCC), pp. 251–260 (2011)

17. Kamgarpour, M., Ding, J., Summers, S., Abate, A., Lygeros, J., Tomlin, C.: Discrete time
stochastic hybrid dynamical games: verification and controller synthesis. In: IEEE Conference
on Decision and Control, pp. 6122–6127 (2011)

18. Valavanis, K.P., Hebert, T., Kolluru, R., Tsourveloudis, N.: Mobile robot navigation in 2-d
dynamic environments using an electrostatic potential field. IEEE Trans. Sys., Man, Cybern.
30(2), 187–196 (2000)

19. Ge, S.S., Cui, Y.J.: Dynamic motion planning for mobile robots using potential field method.
Autom. Robots 13(3), 207–222 (2002)

20. Majumdar, A., Tedrake, R.: Robust online motion planning with regions of finite time invari-
ance. In: Algorithmic Foundations of Robotics, pp. 543–558. Springer (2013)



Aggressive Moving Obstacle Avoidance … 89

21. Weijun, S., Rui,M., Chongchong, Y.: A study on soccer robot path planningwith fuzzy artificial
potential field. In: International Conference on Computing, Control and Industrial Engineering,
vol. 1, June 2010, pp. 386–390

22. Vadakkepat, P., Tan, K.C., Ming-Liang, W.: Evolutionary artificial potential fields and their
application in real time robot path planning. In: IEEE Congress on Evolutionary Computation,
vol. 1, pp. 256–263 (2000)

23. Song, Q., Liu, L.: Mobile robot path planning based on dynamic fuzzy artificial potential field
method. Int. J. Hybrid Inf. Technol. 5(4), 85–94 (2012)

24. Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space
costmaps. IEEE Trans. Robot. 26(4), 635–646 (2010)

25. Patil, S., Van Den Berg, J., Curtis, S., Lin, M.C., Manocha, D.: Directing crowd simulations
using navigation fields. Trans. Vis. Comput. Graph. 17(2), 244–254 (2011)

26. Mitchell, I., Bayen, A., Tomlin, C.: A time-dependent Hamilton-Jacobi formulation of reach-
able sets for continuous dynamic games. Trans. Autom. Control 50(7), 947–957 (2005)

27. Margellos, K., Lygeros, J.: Hamilton-Jacobi formulation for reach-avoid problems with an
application to air traffic management. American Control Conference, pp. 3045–3050 (2010)

28. Gillula, J.H., Hoffmann, G.M., Haomiao, H., Vitus, M.P., Tomlin, C.J.: Applications of hybrid
reachability analysis to robotic aerial vehicles. Int. J. Robot. Res. (2011) 335–354

29. Takei, R., Huang, H., Ding, J., Tomlin, C.: Time-optimal multi-stage motion planning with
guaranteed collision avoidance via an open-loop game formulation. In: Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), pp. 323–329 (2012)

30. Ding, J., Li, E., Huang, H., Tomlin, C.: Reachability-based synthesis of feedback policies for
motion planning under bounded disturbances. In: Proceedings of IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 2160–2165 (2011)

31. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Sci. 1 (2005)
32. Massari, M., Giardini, G., Bernelli-Zazzera, F.: Autonomous navigation system for planetary

exploration rover based on artificial potential fields. In: Dynamics and Control of Systems and
Structures in Space (DCSSS), pp. 153–162 (2004)



Distributed Range-Based Relative
Localization of Robot Swarms

Alejandro Cornejo and Radhika Nagpal

Abstract This paper studies the problem of having mobile robots in a multi-robot
system maintain an estimate of the relative position and relative orientation of near-
by robots in the environment. This problem is studied in the context of large swarms
of simple robots which are capable of measuring only the distance to near-by robots.
We compare two distributed localization algorithmswith different trade-offs between
their computational complexity and their coordination requirements. The first algo-
rithm does not require the robots to coordinate their motion. It relies on a non-linear
least squares based strategy to allow robots to compute the relative pose of near-
by robots. The second algorithm borrows tools from distributed computing theory
to coordinate which robots must remain stationary and which robots are allowed to
move. This coordination allows the robots to use standard trilateration techniques to
compute the relative pose of near-by robots. Both algorithms are analyzed theoreti-
cally and validated through simulations.

1 Introduction

Most tasks which can be performed effectively by a group of robots require the
robots to have some information about the relative positions and orientations of
other nearby robots. For example in flocking [1] robots use the relative orientation of
its neighbors to control their own heading and the relative position of its neighbors to
ensure collision avoidance andgroup cohesion, in formation control [2] robots control
their own position as a function of the relative position of their neighbors to reach a
desired configuration, and in mapping [3] robots use the relative position and relative
orientation of their neighbors to interpret and fuse the information collected by other
robots. However, most of the existing work on localization requires landmarks with
known positions on the environment, addresses localization of a single robot, requires
complex computations, or relies on expensive sensors.Many environments of interest
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prevent the use of landmarks, and in swarm platforms, computation is limited and
large or costly sensors are not available.

We study the problem of having each robot in a multi-robot system compute the
relative pose (position and orientation) of close-by robots relying only on distance
estimates to close-by robots. This paper studies and compares algorithms which
are appropriate for large populations of cheap and simple robots. The algorithms
described in this paper are fully distributed, and the computations performed at each
robot rely only on information available in its local neighborhood. This problem is
ongoing, since for any mobile robot, the set of close-by robots and their relative pose
changes throughout the execution.

We consider a general problem formulationwhich does not require explicit control
over themotions performed by the robots. Specifically, the first algorithmwe consider
places no restrictions on the motion whatsoever. The second algorithm coordinates
which robots are stationary and which robots are mobile, rotating robots between
these roles in a fair and distributed fashion. This allows composing solutions to
this problem with motion-control algorithms and implement different higher-level
behaviors. Furthermore, we study this problem in a robot swarm setting, which
imposes stringent sensor and computational restrictions on the solutions.

In a typical swarm platform, the communication, computation and sensing capa-
bilities of individual robots are fairly limited. The communication limitations of the
individual robots in a swarm platform rule out any strategy that requires collecting
large amounts of data at hub locations, and yet, the simplicity of the individual robots
demand some form of cooperation. Moreover, the computational constraints of indi-
vidual robots exclude the possibility of storing and updating complex models of the
world or other robots.

Therefore, to fully exploit the potential of a robot swarm platform, it is paramount
to use decentralized strategies that allow individual robots to coordinate locally to
complete global tasks. This is akin to the behavior observed in swarms of insects,
which collectively perform a number of complex tasks which are unsurmountable by
a single individual, allwhile relying on fairly primitive formsof local communication.

1.1 Related Work

For the most part, existing work onmulti-robot localization requires either stationary
landmarks in the environment or the ability for the robots to measure something
other than just the distance to their neighbors. More importantly, most of the existing
localization algorithms are tailored for small groups of capable robots, and place an
emphasis on detailed error models to prevent drift over time. We briefly describe
some of the more relevant works in the paragraphs below. In contrast, this paper
addresses the problem of providing relative localization service for large groups of
very simple robots which can only sense the distance of close-by robots. In this
setting drift of the estimates is less of a concern, since the information is meant to
be used for simple position control, and not to perform path integration over longer
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time intervals. Concretely our goal is to allow robots to approximate the relative pose
of their neighbors using only a couple of communication rounds and performing as
little computation as possible.

The problem of localization using distance-only sensors has received a lot of
attention, most of it focusing on landmark- or anchor-based localization. Using only
connectivity information to stationary landmarks with known positions [4], it is
possible to approximate the position of mobile nodes. When distance measurements
to the landmarks with known positions are available (for example, via ultrasound) the
Cricket Location-Support System is able to localize mobile nodes within predefined
regions, and extending a similar setup it has been show how to obtain finer grained
position information [5]. The more general case of fixed stationary landmarks with
unknown initial positions has also been considered in the literature [6, 7].

The robust quadrilaterals algorithm [8], which is based on rigidity theory, is one
of the few landmark-free localization methods that relies only on distance sensing
between robots, and is the closest in spirit to the present work. However, the robust
quadrilaterals algorithm was designed primarily for static sensor networks and can-
not recover the relative orientation of the robots. More recently, global optimal solu-
tions to this problem have also been proposed [9] which formulate localization as a
weighted least squares estimation problem, and present algorithms in the same spirit
to the first algorithm described in this paper.

There is also a large body of work on the problem of cooperative localization.
One of the earliest works on cooperative localization [10] required bearing and
(optionally) range-sensors and advocated for an approach where robots are divided
into a group that is allowed tomove and use odometry, and another groupwhich plays
the role of stationary landmarks. The work in [11] described a similar approach using
range-sensors but requiring global all-to-all communication and sensing towards the
landmarks. Both of these approaches neglect the distributed coordination problem
of selecting which robots play the role of stationary beacons and which robots are
allowed to move.

In the context of simultaneous localization andmapping, aMonte-Carlo Localiza-
tion (MCL) approach shown to boost the accuracy of localization through cooperation
of two ormore robots [12]. ExtendedKalman-Filters (EKF) have also been usedwith
a similar effect [13]. Both of these works considered robots that have sensors capable
of measuring the angle and distance to other robots, as well as sensors to sense the
environment.

TheMCL and EKF approaches have been subsequently extended and improved in
recent works. For example [14] extended the EKF approach described in [13] to con-
sider weaker forms of sensors, including distance-only sensing, and [15] described
how to reduce the amount of state and communication required. The computational
complexity of the EKFwas further reduced in [16], and a communication-bandwidth
aware solutionwas described in [17]. Similarly novel techniques to reduce the compu-
tational costs of the MCL approach have been proposed, for example [18] described
a clustering technique to minimize the amount of state and communication required.
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2 System Model

Let V be a collection of robots deployed in a planar environment. The pose (aka
kinematic state) of robot u ∈ V at time t ∈ R

+ is described by a tuple poseut =〈
put ,φut

〉
where put ∈ R

2 represents the position of robot u at time t , and φvt ∈
[0, 2π) represents the orientation of robot u at time t . Robots do not know their
position or orientation.

Each robot has its own local coordinate system which changes as a function of
its pose. Specifically, at time t the local coordinate system of robot u has the origin
at its own position put and has the x-axis aligned with its own orientation φut . All
sensing at a robot is recorded in its local coordinate system (cf. Fig. 1).

For θ ∈ [0, 2π) let Rθ and ψ(θ) denote rotation matrix of θ and a unit vector of
angle θ. The position of robot w at time t ′ in the local coordinate system of robot
u at time t is defined as pwt ′ |ut = R−φut

(pwt ′ − put ) = ∥∥pwt ′ − put

∥∥ψ(θwt ′ |ut ),
and the orientation of robot w at time t ′ in the local coordinate system of robot u at
time t is defined as φwt ′ |ut = φwt ′ − φut . Hence the pose of robot w at time t ′ in the
local coordinate system of robot u at time t is described by the tuple posewt ′ |ut =〈
pwt ′ |ut ,φwt ′ |ut

〉
.

The communication graph at time t is a directed graph Gt = (V, Et ), where
Et ⊆ V × V as a set of directed edges such that (u, v) ∈ Et if and only if a message
sent by robot u at time t is received by robot v. The neighbors of robot u at time
t are the set of robots from which u can receive a message at time t , denoted by
Nut = {v | (v, u) ∈ Et }.

For simplicity and ease of exposition, it is assumed that computation, commu-
nication and sensing proceeds in synchronous lock-step rounds {1, 2, . . .}. In prac-
tice synchronizers [19] can be used to simulate perfect synchrony in any partially
synchronous system. If robot u receives a message from robot w at round i then
robot u can identify the message originated from w, and estimate the distance∥∥pvi − pwi

∥∥ = di (u, w).1

Robots are capable of using odometry to estimate their pose change between
rounds in their own local coordinate system. Specifically at round j a robot u ∈ V can
estimate its translation change pui |u j with respect to round i < j and its orientation
change φui |u j with respect to round i < j . It is assumed that odometry estimates are
reliable over intervals of two or three rounds (i.e. i >= j − 3), but suffer from drift
over longer time intervals.

2.1 Problem Formulation

Formally, the problem statement requires that at every round i , each robot u computes
the relative pose posewi |ui of every neighboring robot w ∈ Nui . Robots can only

1 Many swarm of platforms, including the Kilobots [20], use the same hardware (i.e., infrared
transceivers) as a cost-effective way to implement both communication and sensing.
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Fig. 1 In a global
coordinate system u is
pointing right and w is
pointing down. In robot u’s
local coordinate system
robot pwt is in front of robot
put , and in robot w’s local
coordinate system robot put

is to the right of robot pwt

perceive each other through distance sensing. For a robot u to compute the pose of a
neighboring robot w at a particular round, it must rely on the distance measurements
and communication graph in the previous rounds, as well as the odometry estimates
of u and w in previous rounds.

The algorithms considered do not require controlling the motion performed by
each robot; the first algorithm imposes no constraints, and the second algorithm
requires only to coordinate when robots can move, but not the motion they execute.
This allows these algorithms to be run concurrently with any motion control algo-
rithm. Moreover, the algorithms are tailored for large swarms of simple robots, and
as such the size of the messages or the computation requirements do not depend on
global parameters such as the size or diameter of the network.

3 Localization Without Coordination

This section describes a distributed localization algorithm that requires no motion
coordination between robots and uses minimal communication. Each robot localizes
its neighbors by finding the solution to a system of non-linear equations. For sim-
plicity, this section assumes that distance sensing and odometry estimation is perfect
(e.g. noiseless); a similar treatment is possible if considering zero-mean Gaussian
noise. Section5 describes how the results presented here can be easily extended to
handle noisy measurements.

Consider any pair of robots a and b for a contiguous interval of rounds I ⊂ N. To
simplify notation let pa j →bk = pbk − pa j denote the vector, in the global coordinate
system, that starts at pa j and ends at pbk .

Observing Fig. 2 it is easy to see that starting at pai (and in general starting at any
pa j for some j < k) there are at least two ways to arrive to pbk . For instance, by first
traversing a dotted line and then a solid line or vice versa. Indeed, this holds since
by definition for all j ≤ k we have:

pa j →ak + pak→bk = pa j →bk = pa j →b j + pb j →bk . (1)
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Fig. 2 Robot a and b in rounds I = {i, . . . , k}

For j = k equation (1) is vacuously true and for j < k it represents a constraint
on the relative pose of robots a and b in terms of quantities that individual robots
can either sense or compute. Next, we massage the previous equation to represent a
constraint on the relative pose in terms of known quantities.

pa j →ak − pb j →bk + pak→bk = pa j →b j

−Rφak
pa j |ak + Rφbk

pb j |bk + Rφak
pbk |ak = Rφa j

pb j |a j

pa j |ak + Rφbk |ak
pb j |bk + pbk |ak = Rφa j −φak

pb j |a j
∥∥∥pa j |ak + Rφbk |ak

pb j |bk + pbk |ak

∥∥∥ = ∥∥pb j |a j

∥∥
∥∥∥−pa j |ak + Rφbk |ak

pb j |bk + dk(a, b)ψ(θbk |ak )

∥∥∥ = d j (a, b) (2)

Dissecting equation (2); d j (a, b) and dk(a, b) are known and correspond to the
estimated distance between robot a and b at round j and k respectively; pa j |ak and
pb j |bk , are also known, and correspond to the odometry estimates from round j
to round k taken by robot a and b respectively; finally φbk |ak and θbk |ak are both
unknown and correspond to the relative position and orientation of robot b at round
k in the local coordinate system of robot a at round k.

Considering equation (2) over a series of rounds yields a non-linear system that,
if well-behaved, allows a robot to estimate the relative pose of another. To avoid an
undetermined systemwe require at least two equations, since there are twounknowns.
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In practice we observed that even when the measurements are noisy, the additional
information provided by the overconstrained system does not provide improvements
to merit the additional computational cost, even when the measurements are noisy.

The following distributed algorithm leverages the constraints captured by a system
of δ ≥ 2 equations to allow every robot to compute the relative pose of its neighbors.

Algorithm 1 Localization without Coordination
1: for each robot u ∈ V and every round k ∈ {1, . . .} do
2: broadcast

〈
puk−1 |uk ,φuk−1 |uk

〉

3: receive
〈
pwk−1 |wk ,φwk−1 |wk

〉
for w ∈ Nuk

4: I = {k − δ, k}
5: for each w ∈ ⋂

j∈I Nu j do
6: integrate odometry pu j |uk ,φu j |uk for j ∈ I

7: find θ̂wk |uk , φ̂wk |uk such that (2) holds ∀ j ∈ I

8: posewk |uk ←
〈
dk(u, w)ψ(θ̂wk |uk ), φ̂wk |uk

〉

At each round of Algorithm 1 every robot sends a constant amount of information
(its odometry measurements for that round) and therefore its message complexity
is O(1). The computational complexity of Algorithm 1 is dominated by solving the
systemof non-linear equations (line 7), which can be done by numericalmethods [21]
in O(ε−2) where ε is the desired accuracy.

Regardless of the choice of δ there are motion patterns for which any algorithm
that does not enforce a very strict motion coordination (which includes Algorithm 1,
which enforces nomotion coordination) cannot recover the relative pose of neighbor-
ing robots. These motions are referred to as degenerate, and are described next (see
Fig. 3). First, if during δ rounds two robots follow a linear trajectory, then the relative

(a)

(b)

Fig. 3 Due to generate motions yellow (light gray) robot cannot fully resolve the relative position
of green (dark gray) robot. a Flip ambiguity. b Rotation ambiguity
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pose between these robots can only be recovered up to a flip ambiguity. Second,
if during δ rounds one robot follows a displaced version of the trajectory followed
by another robot, then it is possible to infer the relative orientation of the robots,
but a rotation ambiguity prevents the recovery of the relative position. A degenerate
motion can be a flip ambiguity, a rotation ambiguity, or a combination of both (cf.
Fig. 3).

Fortunately degenerate motions are rare. More precisely degenerate motions are
a set of measure zero (for example, this implies that if the motions are random, then
with probability 1 they are not degenerate). This can be shown to be a consequence of
the generic rigidity of a triangular prism in Euclidean 2-space, see [22] for a thorough
treatment of rigidity. The next theorem formalizes the properties of the algorithm
(all proofs were omitted due to lack of space).

Theorem 1 If at round i , robots u and w have been neighbors for a contiguous
interval of δ or more rounds, and perform non-degenerate motions, then at round i
Algorithm 1 computes posewi |ui at u and poseui |wi at w.

4 Localization with Coordination

This section describes a distributed localization algorithm that uses a simple
stop/move motion coordinate scheme, and requires communication proportional to
the number of neighbors. Using the aforementioned motion coordination scheme
allows robots to compute the relative pose of neighboring robots through trilateration.

By collecting multiple distance estimates a moving robot can use trilateration to
compute the relative position of a stationary robot; as before standard techniques can
be used to extend this to the case of zero-mean noise, briefly detailed in Sect. 5. Two
such distance estimates already suffice to allow the moving robot to compute the
relative position of a stationary robot up to a flip ambiguity (i.e., a reflection along
the line that passes through the coordinates at which the measurements were taken).

Consider two neighboring robots u and w where from round k − 1 to round k
robot u moves while robot w remains stationary (see Fig. 4). Robot u can compute
the relative position pwk |uk of robot w at round k up to a flip ambiguity, relying only
on the distance measurements to robot w at round k − 1 and round k, and its own
odometry for round k. Specifically the cosine law yields the following.

�uk = ∥∥puk−1 |uk

∥∥ αuk = �(puk−1 |uk )

βwk |uk = cos−1

(
�2uk

+ d2
k (u, w) − d2

k−1(u, w)

2�uk dk(u, w)

)

(3)

γwk |uk = cos−1

(
d2

k (u, w) + d2
k−1(u, w) − �2uk

2dk(u, w)dk−1(u, w)

)

(4)

θwk |uk = αuk ∓ βwk |uk (5)
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Fig. 4 Moving robot (green/dark gray) uses trilateration to compute the relative position of sta-
tionary robot (yellow/light gray) up to a flip ambiguity

θuk |wk = θuk−1 |wk ± γwk |uk (6)

In order for robot u to fully determine the relative pose of robot w at round
k (ignoring the flip ambiguity) it remains only to compute φwk |uk . Observe that
given knowledge of θuk−1 |wk , robot u can leverage Eq.6 to compute θuk |wk using the
correction term γwk |uk computed through the cosine law. The following identity can
be leveraged to easily recover φwk |uk using θuk |wk and θwk |uk .

φuk |wk = θwk |uk − θuk |wk + π (mod 2π) (7)

Summing up, if robot u moves from round k −1 to round k while robotw remains
stationary, then using dk−1(u, w), dk(u, w) and puk−1 |uk robot u can compute the
relative position of robot w at time k. If knowledge of θuk−1 |wk is available robot u
can also compute the relative orientation of robot w at time k. Both the position and
orientation are correct up to a flip ambiguity.

A robot can resolve the flip ambiguity in position and orientation by repeating
the above procedure and checking for consistency of the predicted position and
orientation. We refer to motions which preserve symmetry and therefore prevent the
flip ambiguity from being resolved (for instance, collinear motions) as degenerate
(cf. Fig. 5).

Observe that the distance measurements between a stationary robot and a moving
robot are invariant to rotations of the moving robot around the stationary robot (cf.
Fig. 6). This prevents a stationary robot from recovering the relative position of a
moving neighbor using any number of distance estimates.
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(a) (b)

Fig. 5 Moving robot (yellow/light gray) localizing a stationary robot (green/dark gray) using dis-
tance measurements (dashed lines) and odometry (solid arrows). a Flip ambiguity. b Unambiguous

Fig. 6 Stationary robot (yellow) cannot compute the relative position of the moving robot (green),
since all distance measurements (dashed lines) are invariant to rotations around the stationary robot

However, in order for robotu to recover the orientationof robotw, robotw—which
remains stationary from round k−1 to round k—must compute θuk−1 |wk−1 = θuk−1 |wk

and communicate it to robot u by round k.
Therefore, in order to leverage the previous trilateration procedure requires coor-

dinating the motion of the robots in a manner that gives every robot a chance to move
and ensures that when a robot is moving its neighbors remain stationary. Formally,
a motion-schedule is an algorithm that at each round classifies every robots as being
either mobile or stationary. A motion-schedule is well-formed if at every round i the
set of robots classified as mobile define an independent set of the communication
graph Gi (i.e. no two mobile robots are neighbors). The length of a motion-schedule
is the maximum number of rounds that any robot must wait before it is classified as
mobile. A motion-schedule is valid if it is well-formed and has finite length.

The validity of a motion-schedule ensures that mobile robots can use trilateration
to compute the relative positions of all its neighbors, and having amotion-schedule of
finite length guarantees every robot gets a chance to move. The next subsection pro-
vides a description of a distributed algorithm that produces a valid motion-schedule.
Algorithm 2 describes a distributed localization algorithm that leverages a valid
motion-schedule and trilateration.
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At each round of Algorithm 2 every robot sends a message containing its own
odometry estimates and Θuk−1 , which is the set of previous position estimates (one
for each of its neighbor), and therefore its message complexity is O(Δ). Mobile
robots use trilateration to compute the relative position and relative orientation of
its neighbors, and when possible stationary robots update the relative position and
orientation of mobile robots using the received odometry estimates. In either case,
the amount of computation spent by Algorithm 2 to localize each robot is constant.

Theorem 2 (Assuming a valid motion-schedule) If at round i , robots u and w have
been neighbors for a contiguous set of rounds during which robot u performed a
non-degenerate motion, then at round i Algorithm 2 computes posewi |ui at u.

Algorithm 2 Localization with Coordination
[h]
1: Θu0 ← ∅ ∀u ∈ V
2: for each robot u ∈ V and every round k ∈ {1, . . .} do
3: broadcast

〈
puk−1 |uk ,φuk−1 |uk ,Θuk−1

〉

4: receive
〈
pwk−1 |wk ,φwk−1 |wk ,Θuk−1

〉
for w ∈ Nuk

5: if state = mobile then
6: Θuk ←

{
θ̂wk |uk through Eq. (4-5)

}

7: φ̂wk |uk ← use Eq. (6-7) ∀w ∈ Nuk

8: use previous state resolve flip in Θuk

9: else
10: update Θuk through φwk−1|wk , pwk−1 |wk

11: ˆposewk
|uk ←

〈
dk(u, w)ψ(θ̂wk |uk ), φ̂wk |uk

〉
∀w ∈ Nuk

12: state ← motion-scheduler
13: if state = mobile then
14: move according to motion-controller
15: else
16: remain stationary

4.1 Motion Scheduling

As a straw-man distributed algorithm that requires no communication and outputs
a valid motion-schedule, consider an algorithm that assigns a single mobile robot
to each round, in a round robin fashion (i.e. at round i let robot k = i mod n be
mobile and let the remaining n − 1 robots be stationary). Although the motion-
schedule produced by such an algorithm is valid, it is not suited for a swarm setting,
since it exhibits no parallelism and the time required for a robot to move is linear on
the number of robots.
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Finding a motion-schedule that maximizes the number of mobile robots at any
particular round is tantamount to finding a maximum independent set (akaMaxIS) of
the communication graph, which is NP-hard. Similarly, finding a motion-schedule
with minimal length implies finding a vertex-coloring with fewest colors of the
communication graph, which is also NP-hard.

Algorithm3describes amotion-schedulewith themoremodest property of having
the set of moving robots at each round define a maximal independent set (aka MIS)
of the communication graph. Once a robot is classified as being mobile, it does not
participate on subsequent MIS computations, until each of its neighbors has also
been classified as mobile. Given these properties, it is not hard to show that for any
robot u and a round k, the number of rounds until robot u is classified as mobile is
bounded by the number of neighbors of robot u at round k.

Theorem 3 Algorithm 3 defines a valid motion-schedule with length Δ + 1.

The description ofAlgorithm3utilizes a distributedMIS algorithmas a subroutine
(line 4 in the pseudo-code). However, it should be noted that the problem of finding
an MIS with a distributed algorithm is a fundamental symmetry breaking problem
and is far from trivial. Fortunately, the MIS problem has been studied extensively by
the distributed computing community, and extremely efficient solutions have been
proposed under a variety of communicationmodels [23–25]. The classic solution [23]
requires O(log n) communication rounds and every node uses a total of O(log n) [26]
bits of communication. For a wireless network settings, it is known [24] how to find
an MIS exchanging at most O(log∗ n)2 bits. Due to lack of space, for the purposes
of this paper it should suffice to know that it is possible to implement a distributed
MIS protocol in the lower communication layers without significant overhead.

Algorithm 3 Motion-Scheduler
[h]
1: if ∀w ∈ Nu statew = inactive then
2: stateu ← compete
3: if stateu = compete then
4: if u is selected in distributed MIS then
5: stateu ← inactive
6: output mobile
7: output stationary

2The iterated logarithm function counts the number of times the logarithm is applied to the argument
before the result is less or equal to 1. It is an extremely slowly growing function, for instance the
iterated logarithm of the number of atoms in the universe is less than 5.
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5 Algorithm Evaluation

This section evaluates the performance of the proposed localization algorithms con-
sidering that both the distance measurements and the odometry estimates are subject
to noise. We use a simulator environment tailored to closely resemble the physical
characteristics of the Kilobot swarm platform.

Specifically we assume the distance measurements of each robot are subject to
independent zero-mean Gaussian noise with variance σd and the odometry estimates
is subject to two independent sources of noise; the orientation component is subject to
zero-mean Gaussian noise with variance σφ, and the translation component is subject
to a two-dimensional symmetric zero-mean Gaussian noise with variance σxy . We do
not use the standard noise assumptions on the odometry model, since our odometry
model is modeling the noise present in the external overhead computer vision system
used to provide odometry on the Kilobot swarm platform (the stick-slip locomotion
used by the Kilobot swarm produces movements that depend on the imperfections
of the surface underneath each robot, so they cannot have odometry built-in).

Algorithm 1 relied on finding a zero in a non-linear system of equations con-
structed using the distance estimates and odometry estimates pertinent to that robot.
When these estimates are subject to noise, the corresponding non-linear system is
no longer guaranteed to have a zero. To cope with noisy measurements it suffices
to instead look for the point that minimizes the mean-squared error. This incurs in
no additional computational overhead, since it can be accomplished using the same
numerical methods used in the noiseless case.

The length of each simulation trial is 20 rounds of 6 s (2min). A total of 50 trials
were carried out for each different combination of noise parameters. In each trial, 20
robots are deployed randomly in a region of 10m × 10m, and at each round each
robot is allowed to perform a motion with a random orientation change between
[−π/4,π/4] and a translation change which is normally distributed with a mean of
3m and a variance of 0.5m. The length of each trial is 20 rounds of 6 s (2min). The
plots below (cf. Figs. 7 and 8) show the mean squared error (MSE) in the computed
position (blue) and orientation (red) over 50 random trials for various different noise
parameters. Since to initialize the position and orientation estimates Algorithm 2
requires at least three rounds, the first three rounds of every trial were discarded.

Not surprisingly the results produced by Algorithm 1 are sensitive to errors in all
axis, although it is slightly more robust to errors in the translation odometry than in
the distance sensing. Furthermore, the relative orientation estimate was consistently
more tolerant to noise than the position estimate. As it would be expected, for all
the different noise settings, increasing the parameter δ from 2 to 3 consistently
reduced theMSE in both position and orientation produced byAlgorithm1.However,
increasing δ also increases the computational costs of the algorithm and only gives
diminishing returns.

Algorithm 2 is evaluated with the same parameters as Algorithm 1 with one
exception; to keep the number of motions per trial for Algorithm 1 and Algorithm 2
roughly the same, the length of the trial was doubled to 40 rounds, since at each
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Fig. 7 Each plot shows MSE of the position (blue) and orientation (red) as a function of one
component of the variance Σ . The vertical axis goes from 0 to π. From left to right, each column
shows the MSE as a function of σd , σo and σx,y . The top row shows the results with δ = 2 and the
bottom row for δ = 3

Fig. 8 Plots showMSE of the position (blue) and orientation (red) as a function of one component
of the variance Σ . The vertical axis goes from 0 to π. From left to right, each column shows the
MSE as a function of σd , σo and σx,y

round, for every pair of nodes, only one of them will be mobile and the other will
remain stationary.

The pose estimates produced byAlgorithm 2 are for themost part equally affected
by noise in either of the dimension. As it was the case with Algorithm 1, the relative
orientation estimatewas consistentlymore tolerant to noise than theposition estimate.
Overall compared to Algorithm 1, the results show that Algorithm 2 is in all respects
less sensitive to noise. This, together with its computational simplicity, make it more
suitable for implementation on the Kilobot platform.
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5.1 Motion Control and Localization

Herewe explore the feasibility of composing existingmotion control algorithmswith
the proposed localization algorithms. For its simplicity we consider the canonical
problem of flocking [1]. Informally, flocking describes an emergent behavior of a
collection of agents with no central coordination that move cohesively despite having
no common a priori sense of direction.

Flocking behavior has received a lot of attention in the scientific community.
Vicsek et al. [27] studied flocking from a physics perspective through simulations
and focused on the emergence of alignment in self-driven particle systems. Flocking
has also been studied from a control theoretic perspective, for example in [28, 29],
where the emphasis is on the robustness of the eventual alignment process despite
the local and unpredictable nature of the communication.

We study aflockingbehaviorwhere each robot aligns its headingwith its neighbors
and avoids colliding with close by neighbors. Namely, at each round every robot
steers its own orientation to the average orientation of its neighbors, adjusting its
speed to avoid getting to close to any of its neighbors. It has been shown [28, 29]
that under very mild assumptions this converges to a state where all robots share the
same orientation.

Figure9 shows the results of the described average-based flocking algorithmwhen
combinedwithAlgorithm 1 to provide relative orientation estimates. Initially the first
rounds the robots move erratically while the position and orientation estimates are
initialized, and soon after the orientations of all the robots converge. Increasing the
error in the distance sensing and odometry measurements is translated in greater
inaccuracy in the resulting relative orientation estimates, which affects the resulting
flocking state.

Before the swarm reaches the steady state the distance measurements can be used
to localize, and localization becomes impossible onlywhen adjustments are no longer
needed and the swarm is in steady state.

Fig. 9 Final configuration of 6 robots after four 40 round runs of a flocking algorithm composed
with Algorithm 1. From left to right the variance of all noise parameters was increased with same
starting configuration
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6 Conclusions and Future Work

We considered two distributed algorithms to solve the relative localization problem
tailored for swarms of simple robots. The algorithms have different communication
and computational requirements, as well as different robustness to sensing errors.
Specifically, having greater communication and coordination allows us to reduce the
required computational complexity and increase the robustness to sensing errors. In
future work, we hope to further studywhether this trade-off is inherent to the problem
or not.

We are currently implementing the described algorithms on the Kilobot swarm
platform. The Kilobot platform has no floating point unit and limited program mem-
ory (30k), as well as very limited bandwidth (24 bytes per second). Thus, even
simple algorithms require careful tuning and optimization of all parameters in order
to be implemented on the Kilobots. We are also investigating algorithms with fewer
communication requirements.
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Computing Large Convex Regions
of Obstacle-Free Space Through
Semidefinite Programming

Robin Deits and Russ Tedrake

Abstract This paper presents iris (Iterative Regional Inflation by Semidefinite pro-
gramming), a new method for quickly computing large polytopic and ellipsoidal
regions of obstacle-free space through a series of convex optimizations. These regions
can be used, for example, to efficiently optimize an objective over collision-free posi-
tions in space for a robot manipulator. The algorithm alternates between two convex
optimizations: (1) a quadratic program that generates a set of hyperplanes to separate
a convex region of space from the set of obstacles and (2) a semidefinite program that
finds a maximum-volume ellipsoid inside the polytope intersection of the obstacle-
free half-spaces defined by those hyperplanes. Both the hyperplanes and the ellip-
soid are refined over several iterations to monotonically increase the volume of the
inscribed ellipsoid, resulting in a large polytope and ellipsoid of obstacle-free space.
Practical applications of the algorithm are presented in 2D and 3D, and extensions
to N -dimensional configuration spaces are discussed. Experiments demonstrate that
the algorithm has a computation time which is linear in the number of obstacles,
and our matlab [18] implementation converges in seconds for environments with
millions of obstacles.

1 Introduction

Thisworkwas originallymotivated by the problemof planning footsteps for a bipedal
robot on rough terrain. We consider areas where the robot cannot safely step as
obstacles, and we plan whole-body walking motions of the robot by optimizing
over the space of safe foot positions. Planning around obstacles generally introduces
non-convex constraints,which typically can only be solvedwithweak or probabilistic
notions of optimality and completeness. In practice, we want a real-time footstep
planner that we can trust to find a locally-good path if it exists.
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One approach to combat the non-convexity of the constraints is to divide the
obstacle-free region of space into a minimal discrete set of (possibly overlapping)
convex regions, but this subdivision is nontrivial. For this work, we assume a con-
figuration space consisting of a bounded region in IRn which contains polyhedral
obstacles. When n = 2, we can think of the free space as a polygon with polygonal
holes. Even for this simple case, the problem of partitioning the free space into a
minimum number of convex parts is NP-hard [13]. Additionally, searching for the
minimum number of convex regions may not be the correct problem to solve; we
may be willing to give up having a complete cover of the space in order to reduce
the number of convex pieces.

In our bipedal robot application, we expect that a human operator or a higher-level
planning algorithm can provide helpful guidance about the general area into which
the robot should step. If, for example, the operator were to select one or more seed
points in space, indicating possible areas into which the robot could step, we would
like to find large, convex, obstacle-free regions near those selected points in space so
that we can perform an efficient convex optimization of the precise step locations.

A concrete example may be helpful here. Figure1a shows a simple rectangular
region with two rectangular obstacles. The obstacle-free region can be minimally
decomposed into two non-overlapping convex regions, as shown in Fig. 1b. However,
running our algorithm once using the green point as a seed results in a single larger
region around the point of interest while maintaining convexity, as shown in Fig. 1c.
Additional runs of the algorithm, seeded from the remaining obstacle-free space,
could fill the remaining space if desired. Figure2 shows the same approach applied
to real terrain map data captured from an Atlas humanoid robot, using the software
developed by Team MIT for the DARPA Robotics Challenge [5].

Our approach, as described in Sect. 3, begins with an initial guess, defined as a
point in IRn . We construct an initial ellipsoid, consisting of a unit ball centered on the
selected point. We then iterate through the obstacles, for each obstacle generating a
hyperplane which is tangent to the obstacle and separates it from the ellipsoid. These
hyperplanes then define a set of linear constraints, whose intersection is a polytope.

Starting point
Obstacles

(a) (b) (c)

Fig. 1 A simple 2D environment with two rectangular obstacles and a point of interest (left). The
minimal non-overlapping convex decomposition of the obstacle-free space produces two polygonal
regions (center), while our algorithm produces a larger convex region about the point of interest
and an inscribed ellipsoidal region (right)
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Fig. 2 A visualization of an Atlas humanoid standing in front of a set of tilted steps, as seen in the
DARPA Robotics Challenge 2014 trials [5], with two convex regions of safe terrain displayed (blue
ellipses and red polytopes). The green circles indicate two points chosen by a human operator for
possible locations of the next footstep. To compute the safe regions, we construct a grid of height
values from LIDAR scans, check the steepness of the terrain at every point on the grid, and convert
any cells with steepness above a threshold into obstacles. We then run the iris algorithm with these
obstacles starting from the user-selected points

We can then find a maximal ellipsoid in that polytope, then use this ellipsoid to
define a new set of separating hyperplanes, and thus a new polytope. We choose our
method of generating the separating hyperplanes so that the ellipsoid volume will
never decrease between iterations. We can repeat this procedure until the ellipsoid’s
rate of growth falls below some threshold, at which point we return the polytope and
inscribed ellipsoid. Examples of this procedure in 2D and 3D can be seen in Figs. 3
and 4, respectively.

The iris algorithm presented here assumes that the obstacles themselves are con-
vex, which is an important limitation. However, existing algorithms for approximate
or exact convex decomposition can be easily used to segment the obstacles into con-
vex pieces before running our algorithm [12, 17], and the favorable performance
of our algorithm for large numbers of obstacles means that the decomposition of
the obstacles need not be minimal. It is also important to note that the algorithm as
written here does not guarantee that the initial point in space provided by the user
will be contained in the final ellipsoid or polytope. In the experiments presented in
Fig. 5, the point was contained in the final hull 95% of the time. If this condition is
required by the application, then the algorithm can be terminated early should the
region found ever cease to include the start point.
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Fig. 3 A demonstration of the iris algorithm in a planar environment consisting of 20 uniformly
randomly placed convex obstacles and a square boundary. Each row above shows one complete
iteration of the algorithm: on the left, the hyperplanes are generated, and their polytope intersection
is computed. On the right, the ellipse is inflated inside the polytope. After three iterations, the ellipse
has ceased to grow, and the algorithm has converged
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Fig. 4 An example of generating a large convex region in configuration space. A 2D environment
containing 10 square obstacles was generated, and the configuration space obstacles for a rod-
shaped robot in that environment were built by dividing the orientations of the robot into 10 bins
and constructing a convex body for each range of orientations [15]. The top two rows show the
first two iterations of the algorithm, generating the separating planes on the left and generating
the ellipsoid on the right. The obstacles are shown in black, the polyhedral intersection of the
hyperplanes in red, and the ellipsoid in purple. At the bottom left are the final ellipsoid and polytope
after convergence, and at the bottom right is the original 2D environment with 50 configurations of
the robot uniformly sampled from the obstacle-free polytope



114 R. Deits and R. Tedrake

Total time Time computing ellipses
Time computing planes Slope = 1 reference

101 102 103 104 105 106
10−4

10−3

10−2

10−1

100

101

102

Number of Obstacles

C
P

U
 T

im
e 

(s
)

Timing Analysis (2D)

101 102 103 104 105 106
10−4

10−3

10−2

10−1

100

101

102

Number of Obstacles

Timing Analysis (3D)

101 102 103 104 105 106
0

4

8

12

Number of Obstacles

M
aj

or
 I

te
ra

ti
on

s

101 102 103 104 105 106
0

4

8

12

Number of Obstacles

Fig. 5 Timing results of 1200 runs of the iris algorithm implemented in matlab on an Intel
i7 processor at 2.5GHz with 8Gb of RAM. In each of the 2D and 3D cases, we generated 100
environments at 6 logarithmically spaced numbers of obstacles between 101 and 106. Obstacles
were uniformly randomly placed in each environment. Total time required to converge to a single
convex region is shown above, along with the breakdown of time spent computing the separating
hyperplanes and time spent finding the maximal ellipsoid. These plots demonstrate the empirically
linear scaling of computation time with number of obstacles: time spent computing planes increases
linearlywith obstacle count, approaching a slope of 1 on this log-logplot,while time spent finding the
ellipsoid is nearly constant. Below, we show the number of iterations of the algorithm (each iteration
consists of finding the entire set of hyperplanes and the maximal ellipsoid) before convergence to
a relative change in ellipsoid volume of less than 2%. Error bars are all one standard deviation

In the remainder of this paper, we discuss the precise formulation of the algorithm
and its relationship to existing approaches. We demonstrate the algorithm in 2D
and 3D cases and discuss its application in N -dimensional configuration spaces.
Finally, we show that the algorithm is practical for extremely cluttered environments,
demonstrating that we can compute a convex region in an environment containing
one million obstacles in just a few seconds, as shown in Fig. 5.
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2 Related Work

There are a variety of algorithms for approximate or approximately minimal convex
decompositions, most of which focus on creating a convex or nearly convex cover of
some space. Lien proposes an algorithm for segmenting non-convex polygons con-
taining polygonal holes into a small number of pieces, each of which is allowed some
small degree of concavity [12]. Similarly, Mamou’s approach converts a triangulated
3D mesh into a set of approximately convex pieces by iteratively clustering faces of
the mesh together according to heuristics based on convexity and aspect ratio [17].
Liu’s approach [14], on the other hand, is applicable in spaces of arbitrary dimension
and relies on an integer linear programming formulation to compute a set of cuts
which divide the obstacle into approximately convex pieces. These approaches are
not well suited to convex optimization over obstacle-free space: we require convex
regions, and taking the convex hull of the approximately convex pieces may result
in regions which intersect the obstacle set.

There also exist polynomial-time approximation algorithms for approximately
minimal convex covers. Eidenbenz describes an algorithm which computes a nearly-
minimal set of overlapping convex pieces for a polygon with holes [4]. Their method
achieves a number of pieceswithin an error boundwhich is logarithmic in the number
of vertices, but it requires running time of O(n29 log n), where n is the number of
vertices in the polygon. Feng also describes an approach that divides an input polygon
with holes into pieces, which can be convex if desired, and generates a tree structure
of adjacent pieces [6]. This is a promising approach, but their algorithm as presented
is not applicable beyond the 2D case.

Convex decompositions which do not attempt to find theminimumnumber of seg-
ments have also been used: Demyen’s approach involves triangulating the entire free
space by connecting all mutually visible vertices on the obstacles, then performing
path search among the triangulated regions [3]. Finally, Sarmiento produces convex
polytopic regions in N dimensions by sampling points in free space and checking
visibility from a set of “guard” positions [22]. This work produces results which
appear to be the most similar to ours, but requires as input a set of samples which
cover the workspace. Instead, we focus on creating a single, large, convex region
in some local area, allowing later optimizations to be run inside this region without
further consideration given to the positions of obstacles.

Fischer solves a similar problem of finding a single maximal convex polygon in
a discrete environment [7] in polynomial time. His problem formulation consists of
a set of points which are labeled as positive or negative, with the goal being to find
a convex polygon of maximal area which has vertices only on positive points and
which contains no negative points on its boundary or interior. This is a restricted
form of our task, but it is one which can be solved to optimality with effort which is
polynomial in the number of points in the set.
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The problem of finding obstacle-free regions is also relevant in structural biology,
in which a user might wish to find the void volumes enclosed by amolecular structure
represented as a collection of solid spheres. For example, Sastry performs a search
over the vertices of the Voronoi cells containing the spherical molecules to find the
connected cavities, but these cavities are not necessarily convex [23]. Luchnikov
extends this notion of searching for (non-convex) voids over the Vornoi network to
non-spherical objects [16].

3 Technical Approach

3.1 Proposed Algorithm

Our algorithm searches for both an ellipsoid and a set of hyperplanes which separate
it from the obstacles. We choose to represent the ellipsoid as an image of the unit
ball: E(C, d) = {x = Cx̃ + d | ‖x̃‖ ≤ 1} and we represent the set of hyperplanes as
linear constraints: P = {x | Ax ≤ b}. We have chosen this definition of the ellipsoid
because it makes maximization of the ellipsoid volume straightforward: volume of
the ellipsoid is proportional to the log of the determinant of C , which is a concave
function of C [2] and can therefore be efficiently maximized. In searching both for
the ellipsoidal region and the hyperplanes which separate it from the obstacles, we
are attempting to solve the following nonconvex optimization problem:

maximize
A,b,C,d

log det C

subject to a�
j vk ≥ b j for all points vk ∈ � j , for j = 1, . . . , N (1)

sup
‖x̃‖≤1

a�
i (Cx̃ + d) ≤ bi ∀i = [1, . . . , N ]

where a j are the rows of A, b j are the elements of b, � j is the set of points in the
convex obstacle j , and N is the number of obstacles. The constraint that a�

j vk ≥ b j

for all points vk ∈ � j forces all of the points in obstacle � j to lie on one side of the

plane defined by a�
j x = b j . The second constraint ensures that all x = Cx̃ + d

where ‖x̃‖ ≤ 1 fall on the other side of that plane. Satisfying these constraints for
every obstacle j ensures that the ellipsoid is completely separated from the obstacles.
Rather than solving this directly, we will alternate between searching for the planes
defining the linear constraints a j and b j and searching for the maximal ellipsoid
which satisfies those constraints. The general outline of the iris procedure is given
in Algorithm 1.
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Algorithm 1 Given an initial point q0 and list of obstacles O, find an obstacle-
free polytopic region P defined by Ax ≤ b and inscribed ellipsoid E =
{Cx̃ + d | ‖x̃‖ ≤ 1} such that E ⊆ P and P intersects O only on its boundary.
Subroutine SeparatingHyperplanes is expanded in Algorithm 2, and subroutine
InscribedEllipsoid is described in Sect. 3.4

C0 ← ε In×n
d0 ← q0
i ← 0
repeat

(Ai+1, bi+1) ← SeparatingHyperplanes(Ci , di , O)

(Ci+1, di+1) ← InscribedEllipsoid(Ai+1, bi+1)

i ← i + 1
until (det Ci − det Ci−1) / det Ci−1 < tolerance
return (Ai , bi , Ci , di )

3.2 Initializing the Algorithm

The iris algorithm begins with an initial point in space, which we will label as q0.
The formal algorithm described here requires q0 to be in the obstacle-free space, but
in practice we can sometimes recover from a seed point which is inside an obstacle by
reversing the orientation of one or more of the separating hyperplanes. We initialize
the algorithm with an arbitrarily small sphere around q0 by setting d0 ← q0 and
C0 ← ε In×n .

3.3 Finding Separating Hyperplanes

We attempt to find separating hyperplanes which will allow for further expansion
of the ellipsoid while still ensuring that the interior of the ellipsoid never intersects
the interior of any obstacle. Conceptually, the procedure for finding the separating
hyperplanes involves finding planes that intersect the boundaries of the obstacles and
that are tangent to uniform expansions of the ellipsoid. Given an ellipsoid E(C, d) =
{Cx̃ + d | ‖x̃‖ ≤ 1}, we define a uniform expansion of E as

Eα ≡ {Cx̃ + d | ‖x̃‖ ≤ α} for someα ≥ 1 (2)

To find the closest point on an obstacle � j to the ellipsoid, we can search over
values of α

α∗ = arg min
α

α

subject to Eα ∩ � j 
= ∅ (3)
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We label the point of intersection between Eα∗ and � j as x∗. We can then compute
a hyperplane, a�

j x = b, with a j ∈ IRn and b j ∈ IR which is tangent to Eα∗ and
which passes through x∗. This hyperplane separates Eα∗ and � j , and, since E ⊆ Eα

for α ≥ 1, it also separates E from � j . We choose the sign of a j and b j such that
a�

j x ≥ b j for every x ∈ � j .
Using this procedure, we can find for every obstacle a plane which separates it

from the ellipsoid at every iteration. In practice, we perform several optimizations
to allow for efficient computation with very large numbers of obstacles, and we are
generally able to avoid computing a new plane for every single obstacle.

Finding the Closest Point to the Ellipse. Rather than actually searching over values
of α as in (3), we can instead simplify the problem of finding a separating plane to a
single least-distance programming problem, which we can solve very efficiently.

Let E(C, d) be our ellipsoid and let v j,1, v j,2, . . . , v j,m be the vertices of the
convex obstacle � j . Our ellipsoid is defined as an image of the unit ball in IRn :
E = {Cx̃ + d | ‖x̃‖ ≤ 1}, so we construct the inverse of this image map:

Ellipse space Ball space

E = {Cx̃ + d | ‖x̃‖ ≤ 1}
� j = ConvexHull(v j,1, . . . , v j,m)

v j,k = C ṽ j,k + d

Ẽ = {x̃ ∈ IRn | ‖x̃‖ ≤ 1}
�̃ j = ConvexHull(ṽ j,1, . . . , ṽ j,m)

ṽ j,k = C−1(v j,k − d)

Wenowneed only to find the closest point to the origin on the transformed obstacle
�̃ j , then apply the Cx̃ + d map once more to find the closest point to the ellipse on
� j . We can construct the problem of finding this point as:

arg min
x̃∈IRn ,w∈IRm

‖x̃‖2

subject to
[
ṽ j,1 ṽ j,2 . . . ṽ j,m

]
w = x̃

m∑

i=1

wi = 1

wi ≥ 0

(4)

in which we search for the point x̃ which is a convex combination of the ṽ j,k and
which is closest to the origin. As written, this is a quadratic program, but it can be
transformed into a least-distance programming instance and solved very efficiently as
a least-squares problem with nonnegativity constraints [11]. In our implementation,
we achieved the best performance by solving the original quadratic program in (4)
using a task-specific solver generated by the CVXGEN tools [19]. The CVXGEN
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solver is able to compute the closest point for a typical obstacle with 8 vertices in 3
dimensions in under 20µs on an Intel i7. We have also had success with the standard
commercial QP solvers Mosek [21] and Gurobi [9], but both required upwards of 1
ms for similar problems.

This optimization yields a point x̃∗. Applying the original map gives x∗ = Cx̃∗ +
d, which is the point on obstacle � j closest to the ellipsoid.
Finding the Tangent Plane. The simplest way to find the tangent plane to the
ellipsoid is to consider the inverse representation of E as

E =
{

x | (x − d)�C−1C−�(x − d) ≤ 1
}

(5)

We can find a vector normal to the surface of the ellipse by computing the gradient
of the ellipsoid’s barrier function at x∗:

a j = ∇x

[
(x − d)�C−1C−�(x − d)

]∣∣∣
x∗

= 2C−1C−�(x∗ − d).

(6)

Once we have a j , we can trivially find b j , since the plane passes through x∗:

b j = a�
j x∗. (7)

Removing Redundant Planes. In an environment with very many obstacles, most
of the separating hyperplanes found using the above procedure turn out to be unnec-
essary for ensuring that the ellipsoid is obstacle-free. This can be seen in Fig. 3, in
which at every iteration just 4 or 5 planes are required to completely separate the
ellipse from all 20 obstacles. By eliminating redundant planes, we can dramatically
improve the efficiency of the ellipsoid maximization step.

For a given obstacle � j we compute a j and b j such that a�
j x ≥ b j for all x ∈ � j .We

can then search through all other obstacles �k, k 
= j and check whether a�
j v ≥ b j

also holds for every point v ∈ �k . Since the obstacles are required to be polyhedral, we
need only to check the inequality at the vertices of each �k . If it holds, then obstacle
�k is also separated from E by the hyperplane in question, so we can skip computing
a separating hyperplane for obstacle �k . To improve this further, we can start with the
obstacle containing the closest vertex to the ellipse, since a hyperplane separating
that obstacle from the ellipse will likely also separate many more distant obstacles,
and then work outward until all obstacles have been separated from E by some plane.
This procedure is detailed in Algorithm 2.
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Algorithm 2 Given matrix C and d defining an ellipse E , as in Algorithm 1, and
a set of convex obstacles O, find A and b defining a set of hyperplanes which are
tangent to the uniform expansion of E and with {x ∈ IRn | Ax ≤ b} ∩ O = ∅. Sub-
routinesClosestObstacle,ClosestPointOnObstacle, andTangentPlane are
described in Sect. 3.3

function SeparatingHyperplanes(C , d, O)
Oexcluded ← ∅

Oremaining ← O
i ← 1
while Oremaining 
= ∅ do

�∗ ← ClosestObstacle(C, d, Oremaining)

x∗ ← ClosestPointOnObstacle(C, d, �∗)
(ai , bi ) ← TangentPlane(C, d, x∗)
for all �i ∈ Oremaining do

if a�
i x j ≥ bi ∀x j ∈ �i then
Oremaining ← Oremaining \ �i
Oexcluded ← Oexcluded ∪ �i

end if
end for
i ← i + 1

end while

A ←
⎡

⎢
⎣

a�
1

a�
2
.
.
.

⎤

⎥
⎦, b ←

⎡

⎢
⎣

b1
b2
.
.
.

⎤

⎥
⎦

return (A, b)
end function

3.4 Computing the Inscribed Ellipsoid

The problem of computing an ellipsoid of maximum volume inscribed in a polytope
is well studied, and efficient practical algorithms for solving it can be easily found.
We represent the inscribed ellipsoid as an image of the unit ball:

E = {Cx̃ + d | ‖x̃‖ ≤ 1} (8)

with the volume of the ellipsoid proportional to the determinant of C [2]. The
problem of finding the maximum volume ellipse contained in the polytope P =
{x ∈ IRn | Ax ≤ b} can be expressed as

maximize
C,d

log det C

subject to sup(a�
i C x̃)

‖x̃‖≤1
+ a�

i d ≤ bi ∀i = [1, . . . , N ]

C � 0

(9)
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as stated by Boyd [2], where the ai and bi are the rows and elements, respectively,
of A and b and A ∈ IRN×n . The constraints can be rewritten without mention of x̃ ,
yielding:

maximize
C,d

log det C

subject to
∥∥∥a�

i C
∥∥∥ + a�

i ≤ bi∀i = [1, . . . , N ]

C � 0

(10)

which is a convex optimization [2]. Khachiyan and Todd describe an approxima-
tion algorithm to solve this problem through a sequence of convex optimizations
with linear constraints with a guaranteed convergence to within a given relative
error from the maximum possible ellipsoid volume [10]. Ben-Tal and Nemirovski,
meanwhile, present a method for computing the ellipsoid through a semidefinite
and conic quadratically constrained optimization [1], and we use this approach, as
implemented by Mosek [20], in our code. We have also successfully used CVX, a
tool for specifying and solving convex problems [8], to solve (10), but we found that
the Mosek implementation was at least an order of magnitude faster, primarily due
to the overhead of constructing the problem in CVX.

3.5 Convergence

The iris algorithm makes no guarantee of finding the largest possible ellipsoid in
the environment, but it still provides some assurance of convergence. Since our
separating hyperplanes are, by construction, tangent to an expanded ellipsoid Eα

for some α ≥ 1, the original ellipsoid E will always be contained in the feasible
set of Ax ≤ b. Additionally, because the ellipsoid maximization SDP is a convex
optimization which is solved to its global maximum, it must be true that the volume
of the ellipsoid produced no less than the volume of E . If this were not the case,
then E would be a feasible solution with larger volume, which contradicts global
optimality of the SDP. As long as the environment is bounded on all sides, there is
an upper limit on the volume of the ellipsoid, corresponding to the whole volume
of the environment. Since the ellipsoid volume is bounded above and monotonically
increasing, it will converge to a final value, although we do not currently make any
claims about how many iterations this will require.
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4 Results

We implemented the proposed algorithm in matlab [18], using CVXGEN [19] to
solve each least-distance QP and Mosek [20] to solve each maximal-ellipsoid SDP.
Given a list of convex obstacles, a boundary around the environment, and a starting
point, the implemented algorithm rapidly finds a large convex region and its inscribed
ellipsoid. A simple 2D example of the results can be seen in Fig. 3. The algorithm is
also equally applicable in 3D, or in the 3D representation of the configuration space
of a 3-degree of freedom robot. Such an application is shown in Fig. 4, in which a
convex region of configuration space for a rod-shaped robot in the plane is found
and sampled. The algorithm also extends without modification to higher dimensions.
Figure6 shows a 3D slice of the output of the iris procedure in 4 dimensions, and
the algorithm can also be run in higher-dimensional configuration spaces, assuming
that the N -dimensional configuration space obstacles can be generated.

A major advantage of this algorithm is the efficiency with which it can handle
extremely cluttered environments. Computing each separating hyperplane requires
work which is linear in the number of obstacles, since each obstacle must be checked
against the newly found hyperplane to determine if it is also excluded, as in Sect. 3.3.
The total number of planes required to exclude all the obstacles, however, turns out
to be nearly constant in practice. This means that the entire hyperplane computa-
tion step requires nearly linear time in the number of obstacles. Additionally, since
each hyperplane found creates one constraint for the ellipsoid maximization step,
the constant number of hyperplanes means that the ellipsoid maximization requires
approximately constant time as the number of obstacles increases. We demonstrate
this by running the algorithm in 2D and 3D for 10 to 1,000,000 obstacles and dis-
playing the linear increase in computation time in Fig. 5.

x1x2

x
3

Fig. 6 An example of the output of the algorithm in 4-dimensional space. We generated 4-
dimensional obstacles consisting of uniformly random points centered on uniformly randomly
chosen locations in [−1, 1]4. The figure shows the 3-dimensional intersection with the x4 = 0
plane of the obstacles and the polytope produced by the iris algorithm
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5 Conclusion

We have demonstrated a new algorithm for finding large regions of obstacle-free
space in a cluttered environment. These regions can be rapidly computed and then
used later to aid some future optimization problem, such as the problem of planning
robot footstep locations while avoiding obstacles.

Our immediate future plans are to apply this algorithm to footstep planning for
a real humanoid robot. We will allow the user to select a point in space on a terrain
map, compute an obstacle free region, and find a footstep position which optimizes
reachability and stability within that region. We are also interested in exploring other
applications of this algorithm to problems beyond footstep planning, in which one
or more convex regions are preferable to a large set of non-convex constraints.

6 Source Code and Animations

A development version of the iris implementation can be found on GitHub at https://
github.com/rdeits/iris-distro. It includes all of the algorithms presented in this paper,
as well as animations of iris running in 2D, 3D, and 4D.
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A Region-Based Strategy for Collaborative
Roadmap Construction

Jory Denny, Read Sandström, Nicole Julian and Nancy M. Amato

Abstract Motion planning has seen much attention over the past two decades. A
great deal of progress has been made in sampling-based planning, whereby a plan-
ner builds an approximate representation of the planning space.While these planners
have demonstrated success in many scenarios, there are still difficult problems where
they lack robustness or efficiency, e.g., certain types of narrow spaces. Conversely,
human intuition can often determine an approximate solution to these problems quite
effectively, but humans lack the speed and precision necessary to perform the cor-
responding low-level tasks (such as collision checking) in a timely manner. In this
work, we introduce a novel strategy called Region Steering in which the user and
a PRM planner work cooperatively to map the space while maintaining the proba-
bilistic completeness property of the PRM planner. Region Steering utilizes two-way
communication to integrate the strengths of both the user and the planner, thereby
overcoming the weaknesses inherent to relying on either one alone. In one commu-
nication direction, a user can input regions, or bounding volumes in the workspace,
to bias sampling towards or away from these areas. In the other direction, the plan-
ner displays its progress to the user and colors the regions based on their perceived
usefulness. We demonstrate that Region Steering provides roadmap customizability,
reduced mapping time, and smaller roadmap sizes compared with fully automated
PRMs, e.g., Gaussian PRM.
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1 Introduction

Planning valid (e.g., collision-free) motions for movable objects (robots) is a difficult
problem with broad applications to robotics, bioinformatics [1], gaming/virtual real-
ity [2], automated assembly [3], and other areas. Despite the importance of motion
planning, it is computationally intractable to design complete planners for high
(often >5) dimensional systems [4].

Much attention has turned to sampling-based planners [5, 6] which address this
complexity by building an approximate model of the planning space through, often
randomized, sampling of robotic configurations. Despite advances in the develop-
ment of fully automated planners, certain scenarios such as narrow passages remain
problematic or even unsolvable with these approaches [7]. Human-assisted planners
could help to remedy this, as approximate solutions to some problems are easily dis-
covered by human intuition [8]. In situations where a fully automatic planner might
not efficiently and/or reliably find a solution, a user can guide the planner by pro-
viding a nearly valid trajectory or other such hints [3]. In these systems, the human
often performs a global scene analysis of the workspace, while the machine handles
high-precision tasks such as collision detection and low level path-finding [9–11].

However, most human-assisted planners either limit the user’s interaction with
the planner (e.g., through one-time subgoal specifications) or limit the planner’s
automation (e.g., through only localized collision avoidance) with one-way interac-
tion. More recent work, I-RRT (Interactive-Rapidly-exploring Random Tree) [12],
attempts to bridge this gap. In I-RRT, the user controls a virtual avatar (represent-
ing the robot) which biases the growth direction of the planner. However, I-RRT is
designed for single-query scenarios, requires continuous user action, and constrains
the interface to one which can fully control the avatar.

We introduce a collaborative roadmap construction strategy, called Region Steer-
ing, that allows the user to steer a Probabilistic RoadMap (PRM) [5] planner
towards/away from designated regions of the workspace. Region Steering allows
the user to direct the planner by defining regions of the workspace on which to focus
or ignore. These regions are then used to bias the configuration space sampling of
the PRM. Region Steering maintains the probabilistic completeness of the under-
lying planner. Additionally, Region Steering provides live feedback to the user: it
displays not only the roadmap, but also the perceived usefulness of each region. The
user can modify, add, or delete regions dynamically to effectively steer the roadmap
toward environment coverage faster than was possible by the automated planner
alone. Region Steering also identifies regions where connecting the roadmap is dif-
ficult so that the user can provide better assistance by specifying attraction regions
in these areas. The specific contributions of our work are as follows:

• Acollaborative strategy,Region Steering, inwhich a user specifies andmanipulates
workspace regions to steer a PRM towards/away from vital areas.

• Experimental analysis of our method in a variety of environments showing both
improved mapping efficiency and roadmap customizability compared with fully
automatic planners.
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Region Steering offers a novel interactive system for multi-query planning that
requires only intermittent user action on a standard computer interface, e.g., a mouse.
Finally, we note that the goal of this work is to verify the feasibility of our scheme and
to understand how these hints and cooperation affect the planner. We have therefore
left the analysis and optimization of the user interface to future work.

2 Preliminaries and Related Work

In this section, we outline preliminaries and present a selection of related work that
is most relevant to our proposed collaborative planner.

Preliminaries. A robot is a movable object whose position and orientation can
be described by n parameters, or degrees of freedom (dofs), each corresponding to
an object component (e.g., object positions, object orientations, link angles, and/or
link displacements). Hence, a robot’s placement, or configuration, can be uniquely
described by a point 〈x1, x2, . . . , xn〉 (where xi is the i th dof) in an n-dimensional
space called the configuration space (Cspace) [13]. The subset of all feasible config-
urations is the free space (Cfree), while the union of all infeasible configurations is
the obstacle space (Cobst). Thus, the motion planning problem is that of finding a
continuous trajectory in Cfree from a given start configuration to a goal configura-
tion. In general, it is infeasible to compute explicit Cobst boundaries [4], but we can
often determine the validity of a configuration quite efficiently, e.g., by performing
a collision detection (CD) test in the workspace, the robot’s natural space.

Sampling-based Motion Planning. One methodology of addressing the com-
plexity of motion planning is sampling-based methods [5, 6] which solve motion
planningproblemsby creating an approximatemappingofCfree. They can typically be
categorized into graph-based approaches such as ProbabilisticRoadMaps (PRMs) [5]
or tree-based approaches such asRapidly-exploringRandomTrees (RRTs) [6].While
they improve over deterministic techniques, sampling-based approaches struggle
with discovering narrow passages [7].

Probabilistic RoadMaps (PRMs). PRMs construct amap of Cfree by first randomly
sampling valid configurations. Nearby samples are then connected by validating
simple paths between them, which form the edges of the map. Finally, start and goal
configurations are connected to the roadmap and a graph search, e.g., A∗, is used to
extract a solution path.

To improve the mapping of narrow passages, some PRM variants attempt to map
Cobst surfaces [14–17], by intelligently biasing or filtering sampling toward the Cobst

boundary. Though this and the previous PRM variants have shown success, there are
many problems where they perform inefficiently or simply fail to generate a solution.

Region-informed Sampling-based Motion Planners. Some improvements toPRMs
use information gain or learning techniques to guide sampling to specific regions of
the environment. Feature Sensitive Motion Planning [18, 19] subdivides the space
into regions, individually plans in each region, and merges them together. It was
designed to help map heterogeneous environments. However, these methods do not
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easily accommodate roadmap customization as the user has no way to control the
regions.

Human-assisted Planning. Although human-assisted motion planning has been
studied for the last two decades, there is still relatively little work in this area, and no
cooperative planner has achieved widespread use. In many approaches, the human
performs global scene analysis of the workspace, while the machine handles high-
precision tasks such as collision detection. In [3, 8] the user can specify configurations
which are critical to finding a collision-free path, while the planner performs collision
checking and path-finding between sub-goals. In [20], the user is responsible for
controlling an arm’s linkage while the machine takes care of the wrist. The user sets
a number of sub-goals and finds a path between any two adjacent sub-goals using
a best-first search, while the machine examines the neighbors and chooses the first
collision free path found. In [10], when the operator uses a haptic probe to designate
the desired speed and the rate of turn for the robot, the machine performs close range
obstacle avoidance and provides force feedback to the operator. Another approach
investigates the idea of convertingworkspace into Cspace [9, 21]. In this way, the robot
can be represented as a point, which is easier for humans to visualize and control.
Since Cspace is typically of higher dimension, the strategy explores interfaces that
show the user various slices of Cspace. Human-assisted motion planning has also been
explored for dynamic environments. For example, in [11], the human can intervene
and handle events such as unexpected obstacles; afterward, the machine can resume
control without any re-planning.

A truly two-way planning approach, Interactive-RRT (I-RRT) [12] allows the user
to control an avatar representing the robot in a virtual representation of theworkspace.
The algorithm biases tree growth by the avatar’s position and provides online feed-
back to the user through a haptic device and/or node coloring. This approach, how-
ever, is limited to single-query scenarios, requires the user to continuously provide
input throughout the planning process, and is constrained to interfaces which can
fully control the robot avatar. Another interactive approach using RRTs [22] intro-
duces relaxation of collision constraints to overcome difficulties in virtual assem-
bly/disassembly problems. Rough paths are retracted by a randomized method and
then connected via a bidirectional RRT.

Teleoperation. A related but distinct field is teleoperation. The primary goal of
teleoperation is to create a stable, closed-loop interaction between an operator and a
robot that provides the userwith a sense of presence-at-a-distance [23]. Teleoperation
focuses on capturing a user’s mechanical skills directly, which differs from the high-
level, detached nature of human-assisted planning. Nonetheless, both seek to provide
a form of two-way communication, referred to as bilateral control in teleoperation
literature. A recent work in teleoperation [24] notes that this form of interaction can
be burdensome on the user, e.g., in situations with cyclic or repetitive motions, and
takes steps to provide the robot with greater autonomy so that the user need only
provide global guidance rather than direct control.
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3 Collaborative Roadmap Construction: Region Steering

In this work, we propose a simple collaborative strategy for PRM construction
in which a user specifies and manipulates workspace regions to steer a planner
towards/away from important areas. During the mapping process, the user can
observe the current state of the roadmap and see where the planner is having trouble
connecting nodes. To guide the map construction, the user can then create attract
regions in difficult areas. Attract regions bias node sampling in the workspace area
they define, which focuses node creation where it is most needed. The user can also
specify avoid regions, which conversely prevent node creation within the specified
area. These can be employed to customize the resulting roadmap by steering nodes
around undesirable or dangerous areas. We reiterate that our goal in this work is
to understand what information is useful to the planner in our strategy, and not to
evaluate the user experience.

Example. Figure1 shows a simple example to illustrate the general progression of
our algorithm in a 2D environment with large obstacles and a few narrow passages. In
this example,we create amap-construction query to represent our desired coverage of
the space with start and goal configurations. The user begins by specifying particular
regions to influence the sampler, as shown in Fig. 1a. The user specifies two attract
regions (green) in areas that will be difficult for the planner (e.g., a long, narrow
passage), as well as one avoid region (striped). The avoid region exemplifies the
customizability aspect of our strategy. Though the planner would be likely to sample
successfully in that wider passage, the user indicates a desire to avoid that area,
perhaps due to environmental considerations not available to the planner.

Over time, the planner identifies one of the attract regions as unproductive and
changes its color to red, as shown in Fig. 1b. In contrast, the other attract region,
within the narrow passage, has proven to be useful and remains green. The avoid
region behaves as a virtual obstacle and remains devoid of samples. The usermodifies
the unproductive region (Fig. 1c) by moving it into the narrow passage containing
the goal and then resizing it accordingly.

Fig. 1 Example scenario. a User pre-specifies one avoid and two attract regions. bAn attract region
is shaded red to indicate declining usefulness. c User responds by moving the region to a more
productive location. d The resulting roadmap
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Fig. 2 Parameterization of AABB and BS regions. AABB regions (a) are specified by two points,
while BS regions (b) are specified by a point and a radius

By exchanging cooperative feedback, the planner and user have discovered the
difficult regions of the environment in which to focus node creation. The roadmap
can thus be completed and connected efficiently (Fig. 1d).

Definitions. We define a region as a bounding volume in the workspace. In our
system, we currently implement bounding spheres (BS) and axis-aligned bounding
boxes (AABB) as shown in Fig. 2; however, our planner is not restricted to these
forms of boundaries.

Regions are allowed to overlap and are classified as attract, avoid, or proposed.
Attract regions are used to bias the planner toward a region, whereas avoid regions act
as virtual obstacles that the planner must avoid. If avoid and attract regions overlap,
the avoid regions take precedence meaning that no samples will lie there. Proposed
regions are those that have been recommended by the planner but have not yet been
handled by the user. Attract regions are initially colored green but gradually change
to red as the planner deems them ineffective, avoid regions are colored dark gray,
and proposed regions are colored blue.

3.1 Collaboration Strategy

In this section, we describe a strategy for enabling a user to collaborate with an
automated planner, as shown in Algorithm 1. Given an environment and a sampling
technique, e.g., OBPRM [14], our strategy begins by allowing the user to input
regions prior to planning. After this, the planner begins mapping the space. Until
the sampler is done, e.g., samples n nodes or has c% of coverage, we randomly
determine an attract region in which to focus sampling, generate a sample q within
that region, and connect q to the roadmap. After this, we provide feedback to the
user: first, if that node likely lies in a narrow or difficult space, we recommend a
new region based upon q to the user. Second, we update the region’s usefulness and
alter the color of the region to show the estimated density of samples in the region’s
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free space. Lastly, we update the display of the roadmap so that the user can view
the roadmap and connected components in real-time. If q lies within an avoidance
region, we do not add q to the roadmap.We provide further algorithmic details below.

Algorithm 1 Region Steering
Input: Environment e, Sampler s
Output: Roadmap g
1: while ¬done do
2: r ← SelectRegion(e.regions)
3: q ← s.Sample(r)
4: if q �∈ a,∀a ∈ e.avoid Regions then
5: g.AddAndConnect(q)
6: if IsDifficultNode(q) then
7: e.RecommendRegion(q)
8: g.UpdateMap()
9: e.UpdateRegions()
10: return g

We adopt a simple strategy for selecting regions. First, we consider the entire
workspace as an attract region so that we can retain the probabilistic completeness
of the underlying PRM approach we use. Then, we uniformly at random select a
region from the attract regions e.regions. We limit sampling of positional degrees
of freedom to this workspace region, and require the robot located at the sampled
configuration to lie entirely inside the workspace region selected. If the sampler
is unable to generate a configuration, we continue on with the next iteration of the
main loop of the planner. If samples repeatedly cannot be foundwithin the region, we
gradually change the region’s color from green to red to indicate its ineffectiveness.

Assuming a sample gets added to the roadmap, IsDifficultNode will return
true if the number of successful connections is less than some threshold, i.e., one
successful connection. In this case, we insert a proposed region as a boundary around
the difficult node into the scene. If the user does not handle this regionwithin a certain
amount of time, we remove it from the scene as the user likely thinks this region is
unimportant. Note the user can add these regions back at any time they desire.

To guide the user’s manipulation of the regions, we color the regions based upon
their perceived usefulness u to the planner by setting the region’s RGB value to be
〈1− u, u, 0〉. In this manner, the region is green when it is most useful and red when
it is least productive. We base the usefulness on the approximated density d of the
successful samples within the region in Cfree:

d = n

µ
(
Cfree ∩ r

) ≈ n

µ(r) n
n+ f

= n + f

µ(r)
,

where n is the number of successful samples, f is the number of failed sampling
attempts, and µ(r) is the volume of the region r . Essentially, we are loosely approxi-
mating the ratio of successful samples to the volume of Cfree covered by r . We define
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usefulness by: u = exp−d2
, which allows us to have a smooth transition from useful

to unproductive region coloring. Our choice in metric is a monotonically decreasing
function over time motivated by the fact that too many samples in Cobst do not add
anything to the roadmap and too many samples in Cfree create oversampling and
again do not greatly help the planning process. In UpdateMap, we simply update
the display of the roadmap to the user. Nodes in the same connected component are
displayed with the same color so that the user can easily determine whether two
nodes are connected.

Region Steering also allows the user to customize the roadmap by specifying
avoid regions. Avoid regions act like virtual obstacles and block the sampler from
generating nodes within them. By blocking out unwanted workspace areas, the user
can easily and intuitively steer the planner toward producing a desirable roadmap. For
example, suppose our system is used to plan motions for a robot surveying an area.
The user can alter the roadmap by specifying dangerous areas as avoid regions that
the robot must evade. This flexibility offers an efficient means for handling transient
or previously unknown hazards as the roadmap can be modified without needing to
conduct further sampling.

3.2 User Input

In our collaborative system,we allowvarious forms of input tomanipulate the regions
in an online and interactive fashion. First, the user can pre-provide regions to the plan-
ner before planning begins. Second, the user can add, delete, move, and resize regions
during the planning process. Finally, the user can optionally handle the regions which
are recommended by the system. All of these options are constructed to avoid the
need for continuous interaction: the user can provide as much or as little input as
desired.

We use simple mouse input to accommodate the various forms of interaction.
Based upon where the user clicks, we can project the 2D window coordinate
w = 〈wx ,wy〉 to a 3D plane defined by a point p = 〈px , py, pz〉 and a normal
n = 〈nx , ny, nz〉. We use this operation to allow intuitive region definition and
manipulation. We outline all of the operations on regions below:

Addition. When adding a region, the user can click in the scene to define a
vertex of the bounding volume and drag the mouse to size appropriately. In planar
environments, the mouse position is projected directly onto the environment plane.
For volumetric environments, the mouse position is projected onto the plane defined
by a point p = −−−−→cam pos + d ∗ −−−−→camdir and a direction n = −−−−−→camdir , where

−−−−→cam pos

is the position of the camera, −−−−→camdir is the direction the camera is facing in the
scene, and d is a displacement distance (typically 1/3 of the environment’s bounding
radius). For example, to add anAABB region, the user clicks the scene, which defines
a single vertex, and then drags themouse to size the box and define a second, opposite
vertex to complete the AABB (shown in Fig. 2).
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Deletion. The user can select any region at any given point in time. If the user
selects a region, it can be ordered for deletion. Selection is based upon projecting
the mouse position into the scene to identify the object it hits first.

Manipulation. Manipulation is a bit more difficult. All regions can be translated
and resized in the scene. When translating, we allow for two motions. If the user
left-clicks the selected region, we translate on the plane defined by p = c and
n = −−−−−→camdir , where c is the center of the region. If the user right-clicks the selected
region, then we translate in and out along −−−−→camdir . To resize a given region, the user
highlights the edge of the region and resizes via click-and-drag. For example, with
AABB regions, selecting an edge allows manipulation for two of three dimensions
at any given time, or for BS regions, the radius can be manipulated by selecting the
boundary of the projected sphere. When a region is manipulated, the numbers of
successful and failed sampling attempts are reset so that the region’s effectiveness
and coloring can be recomputed.

Recommendation processing.When the user sees a recommended region, which
is initially proposed, the user can ignore the region completely, delete it, ormanipulate
it and commit it as either an attract or an avoid region. Thus, these regions do not
affect the planner until they are handled by the user.

3.3 Probabilistic Completeness

Region Steering is probabilistically complete because we retain the entire workspace
as an attract region, assuming that the underlying sampler is probabilistically com-
plete. As this region has a probability of being selected, if the underlying sampler
guarantees asymptotically complete coverage of the space, then our planner main-
tains the same property. We note that if the user creates avoid regions that prevent
solving the query, we cannot detect that through sampling-based planning alone.
This does not change the probabilistic completeness of the planner as the underlying
planning problem becomes unsolvable.

4 Experimental Analysis

In this section, we compare Region Steering with other common PRM techniques
and I-RRT [12]. We show how our strategy leverages the information provided by
the user to improve roadmap construction time and provide customized output in a
variety of scenarios. We do not claim that the user interface is optimal or intuitive:
it is merely sufficient for the user to communicate with the planner and allows us
to study the usefulness of two-way collaboration with PRMs. We leave analysis and
development of an improved interface to future work.
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4.1 Setup

In our experiments, we study the impact of Region Steering on PRM sampling
techniques by comparing its performance with Basic PRM (referred to as Uni-
form) [5], OBPRM [14], and Gaussian PRM [15] (referred to as Gaussian), and
I-RRT [12]. These methods were all implemented in a C++motion planning library
developed in the Parasol Lab at Texas A&M University. It uses a distributed graph
data structure from the Standard Template Adaptive Parallel Library (STAPL) [25],
a C++ library designed for parallel computing. Our strategy is not restricted to any
underlying sampling technique: we use Uniform in these experiments, but any sam-
pler can be used. As such, we believe it is fair to compare against other samplers
which bias sampling for narrow and cluttered environments, such as OBPRM and
Gaussian PRM. For Gaussian PRM, we configure the d value of the Gaussian dis-
tribution to twice the robot radius for the environment, which provided consistent
results. Though there may be better d values, we believe that this maintains a fair
basis of comparison. I-RRT’s parameters were selected based on recommendations
in [12]. We test Region Steering with both AABB regions, referred to RS-AABB,
and BS regions, referred to as RS-BS. Additionally, we test Region Steering using
both one-way and two-way interaction to demonstrate the benefit of two-way col-
laboration. In the one-way tests, all regions are input prior to the PRM execution:
the user is not allowed to alter any regions during mapping. In the two-way tests,
the user is allowed to add, alter, and delete regions during roadmap construction as
they see fit. All methods use Euclidean distance, straight-line local planning, and a
k = 10-closest neighbor connection strategy.

All experiments were run onDell Optiplex 780 computers running Fedora 17with
Intel Core 2 Quad CPU 2.83GHz processors with the GNU gcc compiler version
4.7. Each planner is run until either an example query is solved or a roadmap size of
10,000 nodes is reached. The user-guided executions were performed by graduate
students studying motion planning. In order to minimize the impact of user variance,
the users were allowed to practice with the system until they developed consistent
performance. Consequently, one- and two-way strategies did not vary significantly
across trials and in many cases differed primarily in greater care taken in region
creation for one-way tests and ability to delete unproductive regions in two-way tests.
However, it should be noted that in practicing with the system the users were able
to receive feedback from the planner on their one-way strategies; no such feedback
would be available in a true one-way system. The one-way tests thus represent the
idealized performance of a user who knows an effective strategy a priori.

The example construction query is designed to verify complete coverage of the
environment such that if the query can be solved using the roadmap, then the roadmap
sufficiently covers Cfree. Failing to solve the query indicates that there are areas that
are disconnected or not covered in the roadmap. Thus, the roadmaps constructed by
Region Steering are reusable for multi-query use: after the initial query, subsequent
queries can be solved with minimal or no further sampling. We report the number
of successful completions, the number of nodes in the final roadmap produced, the
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time required for initial user input (for our collaborative region strategy), and the
time needed to build the map. All experiments are run with 10 trials, and the metrics
reported are averages of the successful runs.

Environments are shown in Fig. 3. Construction queries are shown in start con-
figuration (red) and goal configuration (blue) pairs.

• In Heterogeneous (Fig. 3a), a simple 2dof robot must traverse a series of clut-
tered regions and narrow passages from the bottom to the top of the environment.

• In FloorPlan (Fig. 3b), a 3dof mobile robot must traverse through a cluttered
apartment from a living room to a bedroom. This environment is representative
of a possible robotic assisted-living platform for retirement communities, upon
which the floor plan is based.

• In Hook (Fig. 3c), an 8dof free-flying robot with three articulated links must
maneuver through a wall with a small hole.

• In LTunnel [26] (Fig. 3d), an L-shaped, free-flying robot must traverse two dif-
ficult narrow passages to get from the left side of the environment to the right.

• In Walls [26] (Fig. 3e), a simple stick-like robot must traverse a series of narrow
passages (walls with holes) from one end of the environment to the other.

We only compare against I-RRT in the Heterogeneous environment because this
is the only robot fully controllable by our interface, a mouse with 2dof.

Fig. 3 Various environments for experimental analysis. All queries require traversal through narrow
passages between the start (red) and goal (blue) configurations. a Heterogeneous. b FloorPlan. c
Hook. d LTunnel. e Walls
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4.2 Roadmap Construction Comparison

In our first experiment, we compare the mapping efficiency of Region Steering with
other PRMs: Table1 shows the success rates of the various methods in the environ-
ments, Fig. 4a displays the number of nodes in the final roadmap produced in each
environment, and Fig. 4b presents the time required by each method. In FloorPlan,
Uniform and Gaussian had normalized times of 6.786 and 1.755, respectively, and
were cut-off to better show the data.

Table 1 Success rates for the various PRMs in the test environments

Planner Heterogeneous (%) FloorPlan (%) Hook (%) LTunnel (%) Walls (%)

Uniform 30 50 80 0 0

OBPRM 70 100 100 30 100

Gaussian 90 80 90 0 100

I-RRT 100 – – – –

RS-AABB-1way 100 100 100 100 100

RS-BS-1way 100 100 100 20 100

RS-AABB-2way 100 100 100 100 100

RS-BS-2way 100 100 100 100 100
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Fig. 4 a Number of nodes and b time required by each method to solve the construction query,
normalized to OBPRM. For the Region Steering methods in (b), the upper portion of the bar
represents the user’s pre-specification time, while the lower portion represents the time taken by
the automated planner after pre-specification
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Performance. Our experiments demonstrate that Region Steering offers more
reliable and efficient roadmap creation compared to the tested automatic methods.
The user’s input improves the number of successful construction attempts to 100%
across all environments (in the intended two-way case). By examining the planner
feedback, the user can identify workspace areas where the planner is unable to sam-
ple or connect nodes to the map, and then intervene by creating an attract region
to bias sampling in those areas. This allows the collaborative strategy to focus sys-
tem resources on difficult regions and provides greater robustness to sampling-based
randomness compared to the automatic methods. Additionally, Region Steering typ-
ically improves construction efficiency in terms of both the number of nodes and
the total time required to build the map (even with the overhead of collecting initial
user input): Region Steering’s running time improved on the fastest automatic plan-
ners by a minimum of 46% in Walls and a maximum of 91% in Hook. I-RRT’s
performance is comparable to Region Steering, which performed slightly better in
Heterogeneous. We also note that if the number of queries to solve were greater,
the difference between the methods would be more pronounced as Region Steering
can reuse the computed roadmap. By taking advantage of the user’s intuitive global
analysis of the scene, Region Steering can focus sampling in difficult areas between
the connected components of a roadmap and, thus, achieve higher connectivity and
reduced planning time. In turn, the reciprocal feedback given to the user—including
showing the roadmap and connected components, visualizing a region’s usefulness,
and recommending specific regions—can guide the user toward achieving these ends.

One- versus Two-Way Communication. In three of the environments (Floor-
Plan, Hook, and Walls), the user strategies for one-way communication were very
similar to their two-way counterparts. While the ability to correct input errors and
delete unproductive regions contributed to performance, it was not the dominating
factor in these cases. Conversely, the user strategies differed significantly in the
other two environments (Heterogeneous and LTunnel). In these environments, the
two-way strategies relied on the ability to modify the regions in order to map the
space efficiently. For example, in Heterogeneous the user would typically begin with
a large region in the center and modify it as the system provided feedback to make
it smaller and more focused on areas that were not yet connected. This approach
is not possible in one-way planning, and performance in that environment suffered
from the inability to re-target the PRM’s focus. In LTunnel, the two-way strategy for
boxes achieved better performance than its one-way counterpart by simply deleting
attract regions once a single CC had broken through. The one-way spheres case for
this environment was far more dramatic because it was too difficult for the user to
precisely specify spherical regions that conservatively estimated the box-like tunnel.
In the two-way case, the user could roughly estimate the regions required and then
modify those that failed to contribute to the roadmap. The inability to make such
adjustments prevented the user from building this map consistently with spherical
regions. This implies that two-way interaction provides significant benefits when the
workspace area of interest is shaped differently than the planning region.

Region Shape. Our data shows that the user specification time for BS regions
is generally less than that of AABB regions, but the planning time for BS regions
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is generally greater than for AABB regions. This suggests a trade-off between the
ease of a region’s manipulability and its effectiveness. However, the total mapping
time does not seem to differ significantly. Furthermore, from our experience, differ-
ent users prefer different region types depending on the environment and situation.
While the one-way/two-way comparison hints that some of this disparity is related
to how well a planning region fits the workspace area of interest, we leave the full
investigation of these choices to a future user study.

4.3 Roadmap Customization

In this experiment, we illustrate roadmap customization through Region Steering.
The user is tasked with requiring creation of a roadmap which avoids a specific area.
We test this in the two environments shown in Fig. 5.Building is an office building
in which several homotopically equivalent paths exist for a 2D omni-directional
robot. The avoidance region shown in dark gray represents some area of danger
(such as a fire or collapsed portion of the building) that the robot should avoid.
Helicopter is a 3D cityscape that is traversed by a flying robot with 3 dofs. In
this environment, we require the robot to avoid flying through an open architecture of
a building (again shown as a dark gray region). The construction query is designed so
that there are at least two homotopically distinct paths from start to goal and at least
one of them passes through the avoid region. We show the percentage of roadmaps
who’s shortest path successfully avoids the region for our Region Steering compared
to Uniform. Ten trials were completed, and the successful percentages of ‘safe’ maps
are shown in Table2.

As we can see, our strategy is successfully able to avoid the regions that might be
traversed by an automatically planned path. Additionally, the roadmaps created by

Fig. 5 aBuilding andbHelicopter environments used to illustrate roadmap customizability.
Avoidance regions are shown in dark gray and queries are shown as red/blue pairs
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Table 2 Percentage of maps with shortest paths correctly steering away from the avoidance regions

Environment Uniform (%) Region steering (%)

Building 20 100

Helicopter 50 100

Region Steering contain no nodes in the avoid region, while the successful roadmaps
created by Uniform simply did not use their nodes in the avoid region for their
shortest path. We would like to emphasize that although it is possible to design these
constraints into the problem specification, our strategy allows online customization
during roadmap construction. This as-needed specification makes Region Steering
well suited to handling newly discovered or temporary constraints without needing
to alter the environment description. These simple tools enable a user to customize
solutions for a variety of scenarios with minimal operational burden.

5 Conclusion

In this paper, we introduce Region Steering, a collaborative planning approach
for PRM techniques. In one direction of interaction, the planner displays mapping
progress, colors regions basedon their perceivedusefulness, and recommends regions
based on difficult nodes. In the other direction, a user can manipulate, add, and delete
regions to guide sampling. Our experiments show that Region Steering provides
increased robustness and customizability compared to fully automated methods.

In the future, we plan to perform a user study to evaluate the effectiveness of the
interface. We are specifically interested in discerning what type of interactions lead
to effective cooperation between the user and the underlying planner. In addition, we
plan to extend our technique to fixed-base manipulators, which will likely provide an
opportunity to develop additional collaboration strategies for a variety of applications.
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Efficient Sampling-Based Approaches
to Optimal Path Planning in Complex
Cost Spaces

Didier Devaurs, Thierry Siméon and Juan Cortés

Abstract Sampling-based algorithms for path planning have achieved great success
during the last 15 years, thanks to their ability to efficiently solve complex high-
dimensional problems. However, standard versions of these algorithms cannot guar-
antee optimality or even high-quality for the produced paths. In recent years, variants
of these methods, taking cost criteria into account during the exploration process,
have been proposed to compute high-quality paths (such as T-RRT), some even
guaranteeing asymptotic optimality (such as RRT*). In this paper, we propose two
new sampling-based approaches that combine the underlying principles of RRT*
and T-RRT. These algorithms, called T-RRT* and AT-RRT, offer probabilistic com-
pleteness and asymptotic optimality guarantees. Results presented on several classes
of problems show that they converge faster than RRT* toward the optimal path,
especially when the topology of the search space is complex and/or when its dimen-
sionality is high.

Keywords Optimal path planning · Anytime path planning · Cost space path
planning · Sampling-based path planning

1 Introduction

Robot path-planning methods have traditionally focused on solving the feasible path
planning problem, i.e. on finding a collision-free path for a robot moving in a com-
plex environment. This relies on a classical framework abstracting the workspace
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of a robot system into a configuration space. In many application fields, however,
generating feasible solution pathsmight not be sufficient. It may be required to obtain
a high-quality solution path with respect to a given cost criterion, i.e. a low-cost path.
One might even be looking for the optimal solution path with respect to this cost
criterion, i.e. the path minimizing the cost. This amounts to solving an optimal path
planning problem.

The first cost criterion to be considered was path length [4, 10, 11, 14, 15]. More
interesting problems can be addressed with more sophisticated criteria, based on the
definition of a cost function over the configuration space, which is then referred to as
a cost space. Early work in cost-space path planning only involved discrete, coarse-
grained cost functions [5, 10]. Our work focuses on continuous cost functions, which
is more challenging. As an example, in outdoor navigation problems, the cost of a
configuration can be the elevation of the position of the robot within a 2-D terrain.
When high-clearance paths are desirable, the cost of a configuration can be the
inverse of the distance between the robot and the closest obstacle [2, 7]. Even more
complex cost functions can appear in robotic problems [1, 13] and structural-biology
problems [8].

When applied to the optimal path planning problem, classical grid-basedmethods,
such asA*orD*, can compute resolution-optimal solution paths [16].However, these
methods are limited to problems involving low-dimensional spaces that can be dis-
cretized without leading to a combinatorial explosion. On the other hand, sampling-
based algorithms, such as the Rapidly-exploring RandomTree (RRT) [12], have been
successful at solving complex path-planning problems in high-dimensional spaces.
Besides, they are conceptually simple and achieve probabilistic completeness. Nev-
ertheless, these algorithms originally targeted feasible path planning, and usually
produce sub-optimal solutions. Smoothing methods can be used to improve solution
paths in a post-processing phase [6], but they often provide only local improvement,
and offer no guarantee of convergence toward the global optimum. With the aim
of taking a configuration-cost function into account during the space exploration,
a variant of RRT called the Transition-based RRT (T-RRT) was proposed [7]. It
extends RRT by integrating a Metropolis-like transition test favoring the exploration
of low-cost regions of the space. It has been successfully applied to diverse robotic
problems [1, 2, 7] and structural-biology problems [8], but it offers no optimality
guarantee. Another variant of RRT, called RRT*, was devised to solve the optimal
path planning problem [10]. RRT* has been shown to guarantee asymptotic optimal-
ity, and has been applied to various robotic problems [9–11]. However, it has been
suggested that RRT* might converge slowly in high-dimensional spaces [2]. Finally,
more recent approaches focus on asymptotic near-optimality [4, 14].

In this paper,we combine two approaches, namelyRRT*andT-RRT, to devise new
algorithms inheriting their respective strengths. Thefirst algorithm, calledTransition-
based RRT* (T-RRT*), consists of integrating the transition test of T-RRT into
RRT*. The motivation is to favor the exploration of low-cost regions of the space,
while maintaining the asymptotic properties of RRT*. The second algorithm, called
Anytime T-RRT (AT-RRT), consists of enhancing T-RRT with an anytime behavior
enabled by the integration of a procedure adding useful cycles (based on the path-cost
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criterion) to the graph built over the space [15]. The motivation is to quickly obtain
a first high-quality solution-path and, then, carry on the exploration for the solution
to continually improve and converge toward the optimal path.

In what follows, we present a simple formulation of the feasible and optimal
path planning problems (Sect. 2). Then, we describe T-RRT* and AT-RRT in greater
details (Sect. 3); we prove that both algorithms are probabilistically complete and
asymptotically optimal (Sect. 4). Finally, we evaluate T-RRT* and AT-RRT on sev-
eral path planning problems, and show that they converge toward the optimal path
faster than RRT* (Sect. 5). Thanks to the filtering properties of the transition test
they include, T-RRT* and AT-RRT can efficiently solve difficult problems featuring
complex cost spaces, on which RRT* converges very slowly.We present several such
examples, illustrating various aspects that make a path planning problem difficult to
solve. (1) If the problem features a large-scale workspace, even in low dimension,
favoring low-cost regions avoids wasting time exploring the whole space. (2) If the
space features several homotopic classes between which it is difficult to jump, even
in low dimension, using the transition test can bias the search toward the class con-
taining the optimal path and avoid being trapped in a sub-optimal class. (3) If the
problem is high-dimensional, it is inherently complex because the search space is
intrinsically large and can potentially contain many homotopic classes.

2 Problem Formulation

2.1 Feasible Path Planning

The classical formulation of the path planning problem relies on abstracting the
workspace of a robotic system into a configuration space C, also called C-space. A
configurationq ∈ C describes the position andvolumeoccupiedby the robotic system
in the workspace. The subset of C containing the configurations inducing collisions
with some obstacles in theworkspace is denoted Cobst. Assuming that its complement
in C is an open set, we denote by Cfree the set cl(C \Cobst) of configurations producing
no collision, where cl() denotes the closure of a set. Given an initial configuration
qinit ∈ Cfree and a goal configuration qgoal ∈ Cfree, a path planning problem can be
defined as a triplet (C, qinit, qgoal). A path over the C-space is a continuous function
π : [0, 1] → C. It is said to be collision-free if for all t ∈ [0, 1], π(t) ∈ Cfree, i.e.
π : [0, 1] → Cfree. Let Π denote the set of all paths over C and Πfree the set of
collision-free paths in Π . The feasible path planning problem is classically defined
as follows:

Definition 1 (Feasible path planning) Given a path planning problem (C, qinit,
qgoal), find a path π ∈ Πfree such that π(0) = qinit and π(1) = qgoal, if one exists, or
report failure otherwise.
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Let Πfeas denote the set of paths in Πfree satisfying this feasibility condition.
Among the path planning problems having a solution, the analysiswepresent requires
to focus on problems satisfying the robust feasibility property [10]. Several algo-
rithms have been proposed in the robotics community to solve the feasible path
planning problem. Among them, sampling-based approaches are not complete, but
satisfy a property called probabilistic completeness, that can be interpreted as a notion
of “almost-sure” success.

Definition 2 (Probabilistic completeness) An algorithmA is probabilistically com-
plete if, for any robustly feasible path planning problem (C, qinit, qgoal), the proba-
bility that A fails to return a solution when one exists decays to zero as the running
time of A approaches infinity.

The analysis we present in Sect. 4 is based on the fact that T-RRT and RRT* have
been shown to be probabilistically complete [7, 10].

2.2 Optimal Path Planning

Let c : C → R+ denote a continuous cost function associating to each configuration
of the C-space a positive cost value. Being enriched with this function, C is referred
to as a cost space, and we talk about cost-space path planning. When exploring a
cost space, instead of only looking for a feasible solution path, one might search for
a high-quality path with respect to a given path-cost criterion. Let cp : Πfree → R+
denote this cost criterion, associating to each collision-free path a positive cost value.
It can be defined in several ways, the most common being to consider the integral
of the cost along a path. As a discrete approximation of the integral of the cost with
constant step size δ = 1

n (where n is the number of subdivisions of the path), the cost
of a path π can be defined as

cp (π) = length(π)

n

n∑

k=1

c

(
π

(
k

n

))
. (IC)

As an alternative, the mechanical work of a path can be defined as the sum of the
positive cost variations along the path, which can be interpreted as summing the
“forces” acting against the motion. It has been shown that the mechanical work can
assess path quality better than the integral of the cost in many situations [7]. As a
discrete approximation of the mechanical work with constant step size δ = 1

n , the
cost of a path π can be defined as
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We could consider other criteria to evaluate path quality, such as the maximal cost
along the path, or the average cost. In the case of feasible planning, path length could
be considered. However, this is not a good choice when planning in a cost space
because this criterion ignores the costs of the configurations along the path. Which
criterion is themost suited depends on the planning problemandon the characteristics
of its expected optimal solution. Comparing cost criteria is out of the scope of this
paper. We use both IC and MW not to limit ourselves to a single criterion, which
could bias the interpretation of the results.

The optimal path planning problem can now be defined as follows:

Definition 3 (Optimal path planning)Given apathplanningproblem (C, qinit, qgoal),
a continuous configuration-cost function c : C → R+, and a monotonic, bounded
path-cost criterion cp : Πfree → R+, find a path π∗ ∈ Πfeas such that cp(π∗) =
min{cp(π) | π ∈ Πfeas} if one exists, or report failure otherwise.

With these notations, an optimal path planning problem is defined as a quintuplet
(C, qinit, qgoal, c, cp). If it admits a solution π∗, then π∗ is called the optimal path.
Note that the analysis we present requires to focus on optimal path planning problems
admitting a robustly optimal solution [10]. In the context of optimal path planning, the
evaluation of a sampling-based algorithm should be based not only on probabilistic
completeness, but also on the concept of asymptotic optimality. This property can be
interpreted as a notion of “almost-sure” convergence toward the optimal path, and
has been defined as follows [10]:

Definition 4 (Asymptotic optimality) An algorithm A is asymptotically optimal if,
for any optimal path planning problem (C, qinit, qgoal, c, cp) admitting a robustly
optimal solution path with finite cost c∗ ∈ R+, the cost of the solution path produced
by A (this cost being infinite if no solution is available yet) decreases toward c∗ as
the running time of A approaches infinity.

The analysis in Sect. 4 is based on the asymptotic optimality of RRT* [10].

3 Algorithms

The Rapidly-exploring Random Tree (RRT) [12] is a popular sampling-based algo-
rithm that can solve the feasible path planning problem. Starting from the initial
configuration qinit , RRT iteratively builds a tree T on the C-space. At each iteration,
a configuration qrand is randomly sampled in C, and an extension toward qrand is
attempted, starting from its nearest neighbor, qnear, in T . If the extension succeeds, a
new configuration qnew is added to T , and connected by an edge to qnear. The criteria
on when to stop the exploration can be reaching the goal configuration qgoal, a given
number of nodes in T , a given number of iterations, or a given running time.

Several algorithms have been devised as extensions of RRT to explore cost spaces.
Among them, the Transition-based RRT (T-RRT) consists of integrating in RRT a
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transition test that favors the exploration of low-cost regions of C [7]. This transition
test is used to accept or reject the move from qnear to qnew based on their respec-
tive costs. Even though it yields high-quality (i.e. low-cost) paths when solving the
feasible path planning problem on a cost space, T-RRT offers no guarantee to solve
the optimal path planning problem. The other variant of RRT we consider here,
named RRT*, has been specifically developed to solve the optimal path planning
problem [10]. In RRT*, instead of being linked to qnear, qnew is linked to the con-
figuration (among its neighbors in C) minimizing the cost of the path in T between
qinit and qnew. Furthermore, if, as a parent in T , qnew allows one of its neighbors
in C to be connected to qinit via a lower-cost path than the one currently available,
some rewiring is performed in T . By deciding how to create and remove edges of
T based on the costs of the paths between qinit and every node in T , RRT* enables
the cost of the solution extracted from T to decrease with time. However, despite its
asymptotic-optimality guarantees, RRT* may converge slowly in high-dimensional
spaces [2].

In this work, we combine the beneficial concepts underlying these extensions
of RRT: (1) the filtering properties of the transition test in T-RRT, favoring the
creation of new nodes in low-cost regions of C, and (2) the cost-based management
of edges in RRT*, allowing the cost of the solution path to decrease with time. We
do this in two different ways, by proposing an extension to RRT* named Transition-
based RRT* (T-RRT*) and an extension to T-RRT named Anytime T-RRT (AT-RRT).
Both algorithms can solve the optimal path planning problem and offer asymptotic-
optimality guarantees (cf. Sect. 4). They allow us to efficiently explore complex cost
spaces, yielding high-quality solution paths that improve with time in an anytime
fashion.

3.1 Transition-Based RRT* (T-RRT*)

The pseudo-code of T-RRT* is shown in Algorithm 1. T-RRT* extends RRT* by
integrating the transition test (line 6) originally developed for T-RRT [7]. This tran-
sition test is used to accept or reject the move from qnear to qnew based on their
respective costs. If the move is accepted, T-RRT* behaves exactly like RRT*. First,
a new node is created in G to store qnew (line 7). Then, a search in G is performed
to compute the set Qnear of configurations contained in a neighborhood of qnew of
radius γ (log(n) / n)1 / d (line 9). As defined for RRT*, this radius depends on the
dimension d of C, on a constant γ derived from the volume of Cfree, and on the num-
ber n of nodes in G [10]. This dependency on n ensures that the radius decreases as
G grows. The next step of the algorithm consists of finding the configuration qpar in
Qnear∪{qnear} to which qnew should be connected (line 10): the parent of qnew is cho-
sen as the configuration via which the path between qinit and qnew has minimal cost.
This is done by computing, for all qn ∈ Qnear ∪ {qnear}, the cost cp(πG

n ) + cp(πC
n ),

where πG
n is the path between qinit and qn in G, and πC

n is the path between qn and
qnew in C. Finally, since the addition of a new node in G potentially leads to the
appearance of new paths having lower costs than those currently in G, some rewiring
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Algorithm 1: Transition-based RRT* (T-RRT*)
input : the optimal path planning problem (C, qinit, qgoal, c, cp), the dimension d

of the C-space, and the γ constant derived from the volume of Cfree [10]
output: the graph G

1 G ← initGraph(qinit)
2 while not stoppingCriteria(G) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(G, qrand)
5 qnew ← extend(qnear , qrand)
6 if qnew �= null and transitionTest(G, c(qnear), c(qnew)) then
7 addNewNode(G, qnew)
8 n ← numberOfNodes(G)
9 Qnear ← nearestNeighbors(G, qnew , γ (log(n) / n)1 / d )

10 qpar ← parentMinimizingCostFromInit(qnew , qnear , Qnear , cp)
11 addNewEdge(G, qpar , qnew)
12 foreach qn ∈ Qnear do
13 π ← pathInSpace(qnew , qn)
14 if costFromInit(qnew) + cp(π) < costFromInit(qn) and

isCollisionFree(π) then
15 removeEdge(G, parent(qn), qn)
16 addNewEdge(G, qnew , qn)

17 return G

Algorithm 2: transitionTest (G, ci , cj)
input : the current temperature T and its increase rate Trate
output: true if the transition is accepted, false otherwise

1 if cj ≤ ci then return True
2 if exp(−(cj − ci) / T ) > 0.5 then
3 T ← T / 2(cj−ci) /costRange(G) ; return True

4 else
5 T ← T · 2Trate ; return False

might be performed (lines 12–16). For each qn ∈ Qnear, if the cost of the path going
from qinit to qn via qnew is lower than the cost of the current path between qinit and
qn in G, qnew becomes the new parent of qn in G.

The transitionTest involved in the T-RRT* algorithm is presented in Algo-
rithm 2. The transition between two configurations is evaluated on the basis of their
costs ci and cj, ci being the cost of the source configuration and cj the cost of the target
configuration. A downhill move (cj ≤ ci) in the cost landscape is always accepted.
An uphill move is accepted or rejected based on the probability exp(−(cj − ci) / T )

that decreases exponentially with the cost variation cj − ci. In that case, the level
of selectivity of the transition test is controlled by the temperature T , which is an
adaptive parameter of the algorithm. Low temperatures limit the expansion to gentle
slopes of the cost landscape, and high temperatures enable it to climb steep slopes.
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After each accepted uphill move, T is decreased to avoid over-exploring high-cost
regions: it is divided by 2(cj−ci) /costRange(G), where costRange(G) is the cost
difference between the highest-cost and the lowest-cost configurations stored in the
nodes ofG. After each rejected uphillmove, T is increased to facilitate the exploration
and avoid being trapped in a local minimum of the cost landscape: it is multiplied
by 2Trate , where Trate ∈ (0, 1] is the temperature increase rate.

3.2 Anytime Transition-Based RRT (AT-RRT)

AT-RRT, whose pseudo-code is presented in Algorithm 3, also features the
transitionTest (line 6), and extends T-RRT by offering an anytime behavior.
Before any feasible path is found between qinit and qgoal, AT-RRT behaves exactly
like T-RRT. As opposed to T-RRT, however, after a solution path is found, the explo-
ration is allowed to continue and a cycle-addition procedure is activated (lines 9–10).
This leads to the creation in G of new paths that can be of higher quality than the
one found so far. This procedure is based on the notion of useful cycles, as described
in [15].

The addUsefulCycles procedure is presented in Algorithm 4. When a new
configuration qnew is added to G, we consider all configurations in G, within a neigh-
borhood of qnew, as potential candidate targets for new edges. The radius of this
neighborhood depends on the dimension d of C and on a constant γ derived from
the volume of Cfree, as is done for RRT* [10]. This radius also decreases with the
number n of nodes in G. Within the candidate set Qnear, we are interested in the
configurations that are “close” to qnew in C, but “far” from qnew in G, not in terms of
distance but of path cost. For each candidate qn ∈ Qnear, if the cost of the local path
πs between qnew and qn in C is less than the cost of the lowest-cost path πg between
qnew and qn in G, and if πs is collision-free, we add an edge to G between qnew and
qn, thus creating a useful cycle.

4 Analysis

We now review the properties of T-RRT* and AT-RRT, in terms of probabilistic
completeness and asymptotic optimality (cf. Sect. 2). It has already been proven
that T-RRT and RRT* are probabilistically complete [7, 10]. In the case of T-RRT,
this property is directly derived from the probabilistic completeness of RRT, despite
the integration of the transition test. A similar reasoning allows us to state that
T-RRT* is probabilistically complete, thanks to the probabilistic completeness of
RRT*. Furthermore, as AT-RRT behaves like T-RRT before a solution path is found,
it satisfies the same properties.

Theorem 1 (Probabilistic completeness) The T-RRT* and AT-RRT algorithms are
probabilistically complete.
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Algorithm 3: Anytime Transition-based RRT (AT-RRT)
input : the optimal path planning problem (C, qinit, qgoal, c, cp)
output: the graph G

1 G ← initGraph(qinit)
2 while not stoppingCriteria(G) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(G, qrand)
5 qnew ← extend(qnear , qrand)
6 if qnew �= null and transitionTest(G, c(qnear), c(qnew)) then
7 addNewNode(G, qnew)
8 addNewEdge(G, qnear , qnew)
9 if solutionPathExists(G, qinit , qgoal) then

10 addUsefulCycles(G, qnew , cp)

11 return G

Algorithm 4: addUsefulCycles (G, qnew , cp)

input: the dimension d of the C-space
the γ constant derived from the volume of Cfree (as in RRT* [10])

1 n ← numberOfNodes(G)
2 Qnear ← nearestNeighbors(G, qnew , γ (log(n) / n)1 / d )
3 foreach qn ∈ Qnear do
4 πg ← pathInGraph(G, qnew , qn)
5 πs ← pathInSpace(qnew , qn)
6 if cp(πs) < cp(πg) and isCollisionFree(πs) then
7 addNewEdge(G, qnew , qn)

Let us assume in the sequel that the γ constant involved in T-RRT* and AT-RRT,
and originally introduced in RRT*, satisfies

γ > 2

(
1 + 1

d

) 1
d

(
μ(Cfree)

ζd

) 1
d

, (1)

where d is the dimension of C, ζd is the volume of the unit ball in the d-dimensional
Euclidean space, and μ() is an operator measuring volumes. Under this assumption,
RRT* has proven to be asymptotically optimal [10].

The only difference between T-RRT* and RRT* is the presence of a transition
test filtering configurations based on their costs. The consequence of applying such
rejection sampling is that the samples cannot be assumed to be drawn from a uniform
distribution on C. Even though the asymptotic optimality of RRT* was proven under
a “uniform distribution” assumption, this result can be extended to any continuous
probability distributionwith density bounded away from zero [10]. As the probability
of a sample to be accepted by the transition test is never zero, the samples drawn by
T-RRT* follow such distribution. Therefore, T-RRT* is also asymptotically optimal.
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Let us recall that the interesting properties of RRT* come from its ability to replace
existing edges in G by new edges enabling lower-cost paths to appear. This allows
the cost of the solution path produced by RRT* to decrease with time. Furthermore,
the “almost-sure” convergence toward the optimal solution path is ensured by the
fact that the cost-based decisions on connections are made for configurations within
neighborhoods of radii based on a value of γ satisfying (1). The lower bound on γ
expressed in (1) is the minimal value allowing RRT* to be asymptotically optimal.
Keeping in mind that increasing the value of γ raises the computational cost of
an iteration of RRT* (because of the increased number of neighbors to consider),
this lower bound represents the optimal tradeoff between efficiency and asymptotic
optimality.

Clearly, AT-RRT and T-RRT* use the same procedure to create and filter nodes,
based on the extension mechanism of RRT and on the transition test of T-RRT. The
difference between them lies in the management of edges. In AT-RRT, no edge is
removed, thus leading to the creation of cycles, but this has no impact on the current
analysis. The main point is that, in both algorithms, alternative paths are created
based on cost improvement. Where they differ is on the criterion that an edge has
to satisfy to be considered useful in terms of cost improvement. In T-RRT*, this
criterion is based on whether an edge allows a configuration to be connected to qinit
via a path in G having minimal cost. In AT-RRT, this criterion is based on whether an
edge allows two configurations to be connected via a path in C whose cost is lower
than the costs of the existing paths in G. It is clear that both criteria achieve the same
goal: they both allow the cost of the solution path to decrease with time. Finally, as
the cost-based decisions on the addition of useful cycles happen in neighborhoods
of radii based on a value of γ satisfying (1), AT-RRT is also asymptotically optimal.

Theorem 2 (Asymptotic optimality) The T-RRT* and AT-RRT algorithms are asy-
mptotically optimal.

5 Evaluation

5.1 Path Planning Problems

We have evaluated T-RRT* and AT-RRT on several optimal path-planning prob-
lems that differ in terms of C-space dimensionality, geometrical complexity and
configuration-cost function type. The Stones problem (illustrated in Fig. 1) is a
2-degrees-of-freedom (DoFs) example in which a disk has to go through a space
cluttered with rectangular-shaped obstacles. The objective is to maximize clearance,
so the cost function c associates to each position of the disk the inverse of the distance
between the disk and the closest obstacle.

The Inspection problem deals with industrial inspection in a dense environment,
and involves an aerial robot, as shown in Fig. 2. The featured quadrotor is modeled
as a 3-DoFs sphere (i.e. a free-flying sphere) representing the security zone around
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Fig. 1 Stones problem: 2-DoFs disk moving among rectangular obstacles, while maximizing its
clearance. Top row graphs built by AT-RRT (left) and T-RRT* (right) after a runtime of 0.5 s.Bottom
row solution paths produced by T-RRT* when minimizing IC (left) or MW (right) after a runtime
of 10s. Paths produced by AT-RRT are similar

Fig. 2 Inspection problem: quadrotor (whose close-up is shown in yellow) inspecting an oil-rig
(top left). The cost function is based on the clearance of the 3-DoFs safety sphere around the
quadrotor. Right column: paths produced by AT-RRT when minimizing IC (top) or MW (bottom),
after a running time of 10s. The cost profiles of the two paths are also shown (bottom left). Paths
produced by T-RRT* are similar

it. Assuming that motions are performed quasi-statically, we restrict the problem to
planning in position (controllability issues lie outside the scope of this paper). For
safety reasons, the quadrotor has to move in this environment trying to maximize
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clearance for the security sphere. The specificity of this problem is its large-scale
workspace.

The Transport problem features aerial robots, and deals with the collaborative
transport of objects, as shown in Fig. 3. Two quadrotors have to carry an H-looking
object and go through one of two holes in a wall. The robotic system comprises
the quadrotors themselves (and not safety spheres around them), the 3-R planar
manipulator arms attached below them, and the carried object. A configuration of
this system is defined by the position and orientation of the object in space, and
the relative positions of the quadrotors with respect to the object. This problem
is restricted to planning in position for the quadrotors because of the quasi-static
assumption made on their motions. We consider a planar version of the problem,
thus disregarding translations along the Y axis and rotations around the X and Z
axes. Besides, the revolute joints of the arms are passive DoFs in constraints related
to the closure of the kinematic chain. Therefore, the system can be described with 7
DoFs: 3 DoFs for the object (two translations along the X and Z axes, and a rotation
around the Y axis) and 2 DoFs for each quadrotor (two translations along the X
and Z axes). In this example, different cost functions can be defined. The notion of
clearance could be considered, but we will use a cost function based on the notion
of “balance” in our experiments. Assuming the initial configuration is stable, the
idea is to maintain it as much as possible, while allowing a complete freedom of
movement for the object with respect to the translations along the X and Z axes. To
achieve that, the cost of a configuration is defined as the sum of the differences to the
initial values for the rotation of the object and the translations of the quadrotors. The
specificity of the Transport problem lies in the fact that it features two very distinct
homotopic classes. The two holes in the wall constitute narrow passages of similar
difficulty in terms of purely geometrical planning: despite being wider, the lower
hole is partly obstructed by the second wall. However, when planning in the cost
space with the clearance-based cost function, paths going through the lower hole are
favored because it is larger than the other one. On the contrary, when planning in the
cost space with the balance-based cost function, paths going through the upper hole

Fig. 3 Transport problem: the two quadrotors have to transport an object and go through one of
the holes in the wall, while maintaining the balance of the whole system. Both images show an
intermediate and the final configurations along paths obtained after 50 s. Left: path produced by
T-RRT* when minimizing MW. Paths produced when minimizing IC, and paths produced by AT-
RRT are similar. Right: path produced by RRT* when minimizing IC. Paths produced when mini-
mizing MW are similar
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Fig. 4 Selected configurations along paths produced by AT-RRTwhenminimizing IC (left) orMW
(right), after a running time of 100s, on the Snake problem. A snake-like object has to move among
rectangular obstacles. The cost function favors straight configurations, and regular over irregular
coiling. T-RRT* provides similar results

are favored because going through the lower one requires the robotic system to tilt
sharply.

TheSnakeproblem (illustrated in Fig. 4) involves a snake-like object constituted of
10 identical cylinders between which 9 revolute joints are defined. We also consider
two translations and a rotation in the planar workspace, which adds up to 12 DoFs.
The cost function is defined as the sumof the absolute differences between the angular
values of consecutive revolute joints, added to the absolute value of the first revolute
joint. The objective is to favor a straight configuration of the robot, or configurations
inwhich all revolute joints have the same value, which correspond to a regular coiling
of the robot. This problem enables us to analyze the behavior of the algorithms in
higher dimension.

5.2 Settings

Before using T-RRT* and AT-RRT, their parameters have to be set. Following [2],
Trate is set to 0.1 and T is initialized to 10−6. Finding a good value for γ happens
to be a real issue. As already mentioned, the lower bound for γ expressed in (1)
is the optimal value with respect to the tradeoff between efficiency and asymptotic
optimality. However, computing this value requires to estimate the volume of Cfree.
This is possible in low-dimensional spaces when the robotic system and the obstacles
are represented with simple geometric models, but this is not realistic otherwise. To
ensure that γ satisfies (1), we set:

γ = 2

(
1 + 1

d

) 1
d

(
μ(C)

ζd

) 1
d

. (2)

On the Stones and Inspection problems, since C is an Euclidean space, its volume
can easily be computed using the validity interval of every DoF. However, this is not
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straightforward on the Transport and Snake problems because of the revolute joints.
For a DoF corresponding to such joint, its angular range is multiplied by the length
of the associated rigid body.

T-RRT* and AT-RRT have been implemented in the motion planning platform
Move3D. To fairly assess them, no smoothing is performed on the solution paths.
Values of IC and MW are averaged over 100 runs. Results have been obtained on an
Intel Core i5 processor at 2.6GHz with 8GB of memory.

5.3 Results

T-RRT* and AT-RRT build graphs over C in different ways because they involve
different strategies to create (and potentially remove) edges. This is illustrated in
Fig. 1 on the Stones problem. The upper left figure clearly shows the cycles created
by AT-RRT, and the redundancy in paths. As can been seen in the upper right figure,
the tree built by T-RRT* is much sparser, because high-cost edges are removed. The
numerical results we present show that these differences in behavior do not create
significant differences in performance. Also, the solution paths produced by the two
algorithms usually look very similar.

Differences in solution paths are mainly due to the choice of the cost criterion: IC
or MW. This is clearly visible in Figs. 1 and 2. Minimizing IC tends to favor shorter
paths along which the maximal cost can be quite high (as shown by Fig. 2, bottom
left), and minimizing MW sometimes produces strangely convoluted paths. Another
drawback of MW (not illustrated here) is that, if the cost of qinit is high, MW can
be low even for paths going through high-cost configurations. A better cost criterion
could probably be defined by combining IC and MW, but this goes beyond the scope
of this paper. Note that, on some problems, such as Transport, the choice of the cost
criterion has little impact on the results.

To evaluate the performance of T-RRT* and AT-RRT, we analyze the evolution
over time of the costs of the solution paths they produce. As a reference, we compare
both algorithms to RRT* [10]. To obtain the best results with RRT*, we use the
conditional activation and branch-and-bound heuristics when they are beneficial.
The conditional activation heuristic consists of planning with a regular RRT until the
first solution is found, and only then activating the procedures specific to RRT* [9].
The branch-and-bound heuristic consists of trimming the nodes in G that cannot
allow finding paths with costs lower than that of the current solution path, which
is assessed using a cost-to-go function [11]. Both heuristics are beneficial on the
Transport and Snake problems.

Numerical results obtained on the four path planning problems (each one being
tested with a given pair (qinit , qgoal) of configurations) are reported in Fig. 5 for IC,
and Fig. 6 for MW. They clearly show that T-RRT* and AT-RRT converge faster
than RRT* toward the optimum. Even on a problem as simple as Stones, if only little
time is available, T-RRT* andAT-RRT yield better-quality solutions than RRT*. But,
given enough time, all algorithms produce paths of similar quality. When the size
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of the workspace is larger, as in the Inspection problem, the dominance of T-RRT*
and AT-RRT is even clearer. It appears that the filtering properties of the transition
test help focus the search on the most relevant (i.e. low-cost) parts of the workspace:
graphs produced by RRT* contain numerous nodes in high-cost regions of the space,
contrary to graphs produced by T-RRT* or AT-RRT (not shown here due to space
limitations). When the problem is even more complex, as is the case of Transport,
the weaknesses of RRT* start to translate into a very low rate of convergence. Thanks
to the transition test, the search performed by T-RRT* or AT-RRT is usually guided
toward the homotopic class containing the optimal path (i.e. the upper hole, when
using the balance-based cost function, as shown by Fig. 3, left). On the contrary, the
first solution produced by RRT* can belong to any of the two homotopic classes;
if it is found in the sub-optimal one (i.e. the lower hole), RRT* gets stuck in this
class and into optimizing a low-quality solution (as shown by Fig. 3, right). Finally,
on high-dimensional problems, such as Snake, RRT* usually converges very slowly.
Looking at Figs. 5 and 6, one may think that this is also the case for T-RRT* and
AT-RRT. To check that, we have let all algorithms run for 12h while minimizing
MW. We have obtained solutions of costs 3.42, 2.41 and 2.24 for RRT*, T-RRT*
and AT-RRT respectively. Looking at Fig. 6, it means that, after 100s, T-RRT* and
AT-RRT are already close to the optimum, contrary to RRT*.

Finally, to assess whether what we observe is consistent across the domains cor-
responding to the four path planning problems, we have evaluated the algorithms on
instances of these problems involving different pairs (qinit , qgoal) of configurations.
The results we have obtained (not presented here due to space limitations) are similar
to what we report above.

6 Conclusion

In this paper, we have proposed two novel sampling-based algorithms to solve the
optimal path planning problem, by combining the underlying principles ofT-RRTand
RRT*, the goal being to benefit from their respective strengthswhile overcoming their
weaknesses. On the positive side, T-RRT can efficiently explore a cost space thanks
to the filtering properties of its transition test, and RRT* is asymptotically optimal.
On the negative side, T-RRT is not asymptotically optimal, and RRT* may converge
slowly on complex cost spaces. The two hybrid methods are: (1) the Transition-
based RRT* (T-RRT*), which is an extension of RRT* integrating the transition test
of T-RRT, and (2) the Anytime T-RRT (AT-RRT), which is an extension of T-RRT
integrating a useful-cycle addition procedure. We have proven that T-RRT* and
AT-RRT are both probabilistically complete and asymptotically optimal. We have
evaluated them on several optimal path-planning problems featuring complex cost
spaces, and compared them to RRT*. Results show that they converge faster than
RRT* toward the optimal path, sometimes orders of magnitude faster.

Results tend to show that AT-RRT performs slightly better than T-RRT*. As future
work, it would be interesting to analyze further how the two algorithms behave, to
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pinpoint which strategy works best at solving particular classes of optimal path
planning problems. Disregarding computational performance, a clear advantage of
AT-RRT over T-RRT* is that it can easily be extended into a multiple-tree algorithm,
similar to the Multi T-RRT [3]. Another interesting aspect of AT-RRT is that it builds
a graph containing cycles, therefore providing alternative paths over the space. This
could be leveraged when path replanning is required due to errors in the model or
moving obstacles.
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Real-Time Predictive Modeling and Robust
Avoidance of Pedestrians with Uncertain,
Changing Intentions

Sarah Ferguson, Brandon Luders, Robert C. Grande
and Jonathan P. How

Abstract Toplan safe trajectories in urban environments, autonomous vehiclesmust
be able to quickly assess the future intentions of dynamic agents. Pedestrians are par-
ticularly challenging to model, as their motion patterns are often uncertain and/or
unknown a priori. This paper presents a novel changepoint detection and cluster-
ing algorithm that, when coupled with offline unsupervised learning of a Gaussian
process mixture model (DPGP), enables quick detection of changes in intent and
online learning of motion patterns not seen in prior training data. The resulting
long-term movement predictions demonstrate improved accuracy relative to offline
learning alone, in terms of both intent and trajectory prediction. By embedding these
predictions within a chance-constrained motion planner, trajectories which are prob-
abilistically safe to pedestrianmotions can be identified in real-time.Hardware exper-
iments demonstrate that this approach can accurately predict motion patterns from
onboard sensor/perception data and facilitate robust navigation within a dynamic
environment.

Keywords Pedestrian modeling · Intent prediction · Gaussian processes · Proba-
bilistic path planning · Autonomous vehicles

1 Introduction

Autonomous vehicles operating in urban environmentsmust be able to quickly assess
the future behavior of nearby agents in order to plan safe trajectories. A major chal-
lenge in navigating such environments is the limited ability to accurately anticipate
the intents of dynamic agents, as their internal state is not directly observable. Due to
the inherent structure of urban environments, drivers and pedestrians tend to exhibit
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a common set of mobility patterns, which are constrained by the environment and
directly observable via state estimates.

The objective of this work is to learn these motion patterns such that they can
be used to predict future trajectories, and use them to plan safe paths that avoid
future collisions in such structured environments. While existing probabilistic plan-
ning frameworks can readily admit dynamic agents with uncertain future trajectory
distributions [1], these agents typically demonstrate complex motion patterns that
make modeling future motion and quantifying uncertainty difficult.

Dynamic agents exhibit uncertainty in both their intent and the trajectory motion
pattern associated with each intent. Pedestrians present particular technical chal-
lenges in the generation of long-term predictions due to their agility and relatively
unrestricted dynamic and inertial constraints. Specifically, pedestrians may demon-
stratemany unique behaviors, some ofwhichmay not have been previously observed,
and can perform instantaneous changes in motion behavior following changes in
intent.

This paper addresses these challenges by proposing a modeling framework that
accurately predicts the future behavior of agile agents, such that an autonomous vehi-
cle can identify safe trajectories that avoid collision at current and future time steps.
Such a framework must be able to learn new behaviors online, update predictions
in the presence of changes in intent, and converge to the correct intent prediction
as more observations are gathered—capabilities not currently present in existing
algorithms.

1.1 Related Work

The preferred approach in the literature, also used here, assumes that factors influ-
encing pedestrian motion (such as internal state and intent) are reflected in their tra-
jectories. These data-driven approaches learn typical motion patterns from observed
training trajectories to enable predictions of future state.

Themost common approaches are based on theMarkov property, including hidden
Markov models, in which the hidden state is pedestrian intent [4, 14, 22]; growing
hidden Markov models to allow for online learning [21]; and partially observable
Markov decision processes to choose actions based on a distribution over pedestrian
intents [2]. Because the future state prediction depends only on the current state, these
approaches are quick to react to changes in intent. However, for relatively infrequent
changes in intent, the Markov assumption can be overly restrictive as it prevents
these algorithms from becoming more certain of pedestrian intent with additional
observations.

Gaussian process (GP) approaches have been demonstrated to be well-suited for
modeling pedestrian motion patterns, as they perform well with noisy observations
and have closed-form predictive uncertainty [6, 7, 13, 19]. Additionally, recent work
using GP mixture models enables predictions that account for both intent and tra-
jectory uncertainty [1]. Both sets of approaches use the entire observed trajectory
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in the prediction of future state, such that certainty in demonstrated intent tends
to converge over time. Therefore, when changes in intent occur, these approaches
are much slower to detect a change than Markov-based approaches. Additionally,
existing GP classification approaches are too slow for online learning of previously
unobserved behavior patterns.

The weakness of most of these approaches is that uncertainty in intent is not typ-
ically considered; instead, the maximum likelihood trajectory prediction is used for
motion planning. Bandyopadhyay et al. [2] model a distribution over possible pedes-
trian intents using a variant of the Partially Observable Markov Decision Process
(POMDP), but use a simple model for trajectory prediction that assumes pedestri-
ans approximately follow the shortest path to their goals. Aoude et al. [1] consider
uncertainty in both intent and trajectory, with a GP model for trajectory prediction;
however, predictions are slow to recognize changes in intent, and online learning of
new behaviors is not possible.

This paper proposes a novel changepoint detection and clustering algorithmwhich
retains the trajectory prediction accuracy of existing GP approaches while expanding
their capabilities. Coupled with offline unsupervised learning of a Gaussian process
mixture model (DPGP) [13], this approach enables quick detection of changes in
intent and online learning of motion patterns not seen in prior training data. The
resulting long-term movement predictions demonstrate improved accuracy relative
to offline learning alone in both intent and trajectory prediction. These predictions can
also be used within a chance-constrained motion planner [16] to identify probabilis-
tically safe trajectories in real-time. In experimental results, the proposed algorithm
is used to predict the motion of pedestrians and other dynamic agents detected from
a variety of onboard and external sensors, enabling an autonomous rover to safely
navigate the environment.

2 Preliminaries

2.1 Motion Patterns and Modeling

GP mixture models are used in this work to model motion patterns. Although GPs
have a significant mathematical and computational cost, they generalize well to
regions of sparse data while avoiding the problem of over fitting in regions of dense
data. This section introduces the motion model, which has been previously presented
by Aoude et al. [1].

A trajectory is represented as a set of observed locations (xi
1, yi

1), (xi
n, yi

n), . . . ,

(xi
Li , yi

Li ), where Li is the total length of the trajectory t i of agent i . Amotion pattern

is defined as a mapping from each location (xi , yi ) to a distribution over trajectory

derivatives
(

Δxi

Δt ,
Δyi

Δt

)
, resulting in a velocity flow-field in x–y space.

Here the GP serves as a non-parametric form of interpolation between discrete
trajectory measurements. Given an observed (x, y) location, the GP predicts the
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trajectory derivatives at that location. The standard squared exponential covariance
function describes the correlation between trajectory derivatives at two points (x, y)

and (x ′, y′). The mean trajectory derivative functions E[Δxi

Δt ,
Δyi

Δt ] = μx (x, y) and

E[Δyi

Δt ,
Δyi

Δt ] = μy(x, y) are implicitly initialized to zero for all xy locations.
Themotionmodel is defined as a finitemixture of GPmotion patterns weighted by

their probabilities. The finite mixturemodel probability of the i th observed trajectory
t i is

p(t i ) =
M∑

j=1

p(b j )p(t i |b j ), (1)

where b j is the j th motion pattern and p(b j ) is its prior probability. The number of
motion patterns M can be learned offline [13] or can be incremented as new behavior
patterns are identified online, as in this work.

Future pedestrian trajectories are predicted for each motion pattern using the
approaches of Deisenroth et al. [5] and Girard et al. [8]. These provide a fast, analytic
GP approximation specifying possible future pedestrian locations, while incorporat-
ing uncertainty in previous predictions at each time step.

2.2 Batch Learning of Motion Patterns

It is expected that observed pedestrian trajectories will demonstrate a variety of
qualitatively different behaviors. These behavior motion patterns are learned from
an input set of unlabeled trajectories by DPGP, a Bayesian nonparametric clustering
algorithm that automatically determines themost likely number of clusters [13]. This
section reviews the DPGP algorithm, which is used in this work to cluster observed
pedestrian trajectories into representative motion patterns in batch.

The DPGP algorithm models motion patterns as Gaussian processes weighted by
Dirichlet process (DP) mixture weights. The DP mixture model allows for a poten-
tially unbounded number of motion patterns, where the concentration parameter α
controls the probability of new cluster formation. A smaller α enforces the expecta-
tion that there are a few motion patterns that pedestrians tend to exhibit; therefore,
trajectories are more likely to fit existing clusters than to form new ones.

The prior probability that trajectory t i has an assignment zi to an existing motion
pattern b j is

p(zi = j |z−i ,α) = n j

N − 1 + α
, (2)

where z−i refers to the motion pattern assignments for the remaining trajectories,
n j is the number of trajectories currently assigned to b j , and N is the total number
of trajectories. The probability that trajectory t i will be assigned to a new motion
pattern is
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p(zi = M + 1|z−i ,α) = α

N − 1 + α
, (3)

where M is the total number of motion patterns.
The probability of cluster assignment for trajectory t i is obtained from the DP

prior and probability of motion pattern b j given t i . Specifically, the probability that
trajectory t i will be assigned to an existing motion pattern is

p(zi = j |t i ,α, θGP
x, j , θ

GP
y, j ) ∝ p(t i |b j )

(
n j

N − 1 + α

)
, (4)

and the probability that trajectory t i will be assigned to a new motion pattern is

p(zi = M + 1|t i ,α) ∝
∫

p(t i |b j )dθGP
x, j dθGP

y, j

(
α

N − 1 + α

)
, (5)

Because exact inference over the space of GPs and DPs is intractable, samples
are drawn from this posterior distribution using Gibbs sampling. At each iteration,
the DP hyperparameter α is resampled and the GP hyperparameters for the j behav-
ior patterns θGP

x, j , θ
GP
y, j are set to their maximum likelihood values given the current

trajectory clustering. For each trajectory, the assignment zi is drawn from (4)–(5).

2.3 Motion Planning

Motionplanning for autonomousvehicles is executedvia chance-constrained rapidly-
exploring random trees (CC-RRT), which can efficiently identify trajectories with
guaranteed minimum bounds on constraint satisfaction probability under internal
and/or external uncertainty [16]. The primary objective is to plan and execute a
motion plan directing the vehicle to reach some goal region, while ensuring non-
convex state constraints xt ∈ Xt are probabilistically satisfied. This is represented
via path-wise and time-step-wise chance constraints

P

(
∧

t

xt ∈ Xt

)

≥ δp, P (xt ∈ Xt ) ≥ δs, ∀ t, (6)

respectively, where P(·) denotes probability,
∧

represents a conjunction over the
indexed constraints, and δs, δp ∈ [0.5, 1] are chosen by the user. The feasible state
space Xt consists of a convex environment containing multiple convex, polytopic
obstacles to be avoided. It is assumed that the shape and orientation of these obstacles
is known, but their placement may be uncertain and/or dynamic.

The CC-RRT algorithm samples a tree of dynamically and probabilistically
feasible trajectories through the environment, rooted at the vehicle’s current state. All
trajectories added to the treemust satisfy (6), which CC-RRT evaluates by leveraging



166 S. Ferguson et al.

the trajectory-wise constraint checking of sampling-based algorithms to efficiently
compute risk bounds [16].

In this work, detected pedestrians are modeled as dynamic obstacles, with both
intent and trajectory uncertainty as represented by (1). This model provides a like-
lihood and time-parameterized uncertainty distribution for each behavior of each
pedestrian obstacle. The CC-RRT formulation can also guarantee probabilistically
robust avoidance of dynamic obstacles with uncertain intentions [1], making it suit-
able for robust avoidance of pedestrian models.

3 Changepoint Detection

To effectively anticipate the motion of pedestrians, this paper proposes a framework
which can perform online classification of observed trajectories, in addition to learn-
ing common pedestrian trajectories from batch data. Because agile dynamic agents
such as pedestrians may exhibit new behaviors or mid-trajectory changes in intent,
this problem is framed in the context of changepoint detection.

Algorithm 1 Changepoint Detection [9]
1: Input: Set of points S, Working model GPw

2: l1 = log p(S | GPw)

3: Create new GP GPS from S
4: l2 = log p(S | GPS)

5: Calculate LRT Li (y) = 1
mS

(l2 − l1)
6: Calculate average of last m LRT:

Lm = 1
m

∑i
j=i−m L j (y)

7: Calculate average of LRT after changepoint:
Lss = 1

i−m−1

∑i−m−1
j=1 L j (y)

8: i = i + 1
9: return Lm − Lss ≥ η

This work utilizes a variation of the generalized likelihood test (GLR) [3] to per-
form changepoint detection. The basic GLR algorithm detects changes by comparing
a windowed subset of data to a null hypothesis. If the maximum likelihood statistics
of the windowed subset differ from the null hypothesis significantly, the algorithm
returns that a changepoint has occurred [9].

The proposed changepoint detection algorithm is given in Algorithm 1. At each
time step, given Gaussian process GPw, the algorithm creates a new GP (GPS) with
the same hyperparameters, but using a windowed data subset S of size mS (lines
2–4). Although mS is domain specific, the algorithm is fairly robust to its selection;
mS ≈ 10 − 20 has been found to work well for most applications. The algorithm
returns true if S is determined to fit the working model GPw, and false (indicating a
changepoint) otherwise.
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The algorithm then calculates the joint likelihood of the set having been generated
from the current GP model (the null hypothesis H0) and the new GPS (H1). At each
step, the normalized log-likelihood ratio test (LRT) is computed as

L(y) = 1

ms
(log P(S | H1) − log P(S | H0)). (7)

For a GP, the log likelihood of a subset of points can be evaluated in closed form as

log P(y | x,�) = −1

2
(y − μ(x))T �−1

xx (y − μ(x)) − log |�xx |1/2 + C, (8)

where μ(x) is the mean prediction of the GP and

�xx = K (x, x) + ω2
n I − K (X, x)T (K (X, X) + ω2

n I )−1K (X, x) (9)

is the predictive variance of the GP plus the measurement noise. The first term of the
log-likelihood accounts for the deviation of points from the mean, while the second
accounts for the relative certainty (variance) in the prediction.

Algorithm 1 uses the LRT to determine if themaximum likelihood statistics (mean
and variance) of GPS differ significantly from the null hypothesis. In particular, the
average over the last m LRT values (line 6) is compared to the nominal LRT values
seen up until this point (line 7). If the difference of these two values exceeds some
value η, the algorithm returns false, indicating that this generating model does not
fit the data.

In practice, the LRTmay have some offset value due to modeling error. To handle
this, rather than making a decision on a single LRT, the last m LRT’s are averaged
and compared to the average LRT values seen since the last changepoint. Looking
at the difference between the last m values and the average LRT values makes the
algorithm robust to this problem.

The LRT algorithm is quite robust in practice, based on the following intuition.
If the points in S are anomalous simply because of output noise, then the new GP
model created from these points will on average be similar to the current model.
Additionally, the joint likelihood given the new model will not be substantially dif-
ferent from that of the current model. However, if the points are anomalous because
they are drawn from a new process, then the resulting GP model will on average be
substantially different from the current model, yielding a higher joint likelihood of
these points.

4 Changepoint-DPGP

The previous section discussed changepoint detection, which must be distinguished
from changes in intent. A changepoint occurs when observed data better fits a new
behavior model than the current model to which it is being compared; a change in
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intent refers to an actual change in agent behavior. TheChangepoint-DPGP algorithm
seeks to identify new behaviors online and detect changes in intent given typical
pedestrian behaviors learned from batch data. The key idea behind this algorithm
is to perform online classification of a sliding window of trajectory segments, and
detect changepoints or new behavior models according to changes in the current
behavior classification.

The Changepoint-DPGP algorithm is detailed in Algorithm 2. The algorithm
begins with an initial set of learned behavior motion models GP , obtained from
running the DPGP algorithm on batch training data. As new data points are received,
they are added to a sliding window S of length ms . After creating a new model GPS

from the points in S, the LRT is computed for GPS and for each model GP j in the
current model set GP . This process determines if the points in S are statistically
similar to those in the model GP j , subject to the predetermined threshold η.

In order to detect changepoints, the algorithmmaintains the set of modelsMt that
the points of S fit into at each time step, representative of the current classification
of those points. Because the behavior patterns may overlap, a single classification
cannot be guaranteed, necessitating the model set. Changepoints occur when the
classification changes, i.e. when the current classification Mt and previous classi-
fication Mt−1 share no common models. The current classification is reset at each
timestep to be the intersection of the current and previous classification sets, provided
the current classification is not empty.

Algorithm 2 Changepoint-DPGP
1: Input: Set of previous behavior models GP = {GP1, . . . , GPN }
2: while Input/Output 〈xt , yt 〉 available do
3: Add 〈xt , yt 〉 to S
4: Call Algorithm 3
5: if Mt−1 ∩ Mt = ∅ then # Change in intent detected
6: Reinitialize priors
7: end if
8: if Mt = ∅ then # New behavior detected
9: Initialize new model GPn
10: else
11: Predict according to Sect. 2.1
12: end if
13: if Mt �= ∅ then
14: Mt = Mt−1 ∩ Mt
15: end if
16: end while
17: if GPn is initialized then
18: Add 〈x0:T , y0:T 〉 to GPn
19: Add GPn to set of current models GP
20: end if
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Algorithm 3 Compare to Current Models
1: Input: Set of current behavior models GP = {GP1, . . . , GPN }
2: Initialize representative model set Mt
3: for Each GP j ∈ GP do
4: Call Algorithm 1 with inputs S, GP j
5: if Algorithm 1 returns true then
6: Add GP j to Mt
7: end if
8: end for

To illustrate this method, consider the set of four behavior patterns in Fig. 1b: blue
(B), green (G), red (R), and teal (T). A pedestrian following pattern G would initially
yield Mt = {B, G}. Once the pedestrian enters the center area, their classification
becomes Mt = {G}. An intent change should not be detected at this stage, as
the pedestrian is committing to pattern G rather than exhibiting a new behavior.
However, if the pedestrian then switched to pattern T, thiswould represent a change in
intent. The classification for three successive timesteps would becomeMt−2 = {G},
Mt−1 = {G, T },Mt = {T }; no changepoint would be detected if Tt was not reset.

The predictive component of this algorithm is decoupled from classification. In
general, the future state distribution is computed as described in Sect. 2. However,
if at any point Mt is empty, this indicates that the current model set GP is not
representative for the points in S, so a new behavior must be created. The algorithm
waits until the entire new trajectory has been observed to create the new behavior
pattern, generating predictions according to a simple velocity propagation model
(i.e. propagating mean predicted position along current velocity vector with linearly-
increasing covariance) until the model set becomes representative. In practice, any
reasonable predictive model can be used at this stage.

If the training data contains trajectories with changes in intent, DPGP will learn
unique behavior patterns for each trajectory containing such changes, as the entire
trajectory is considered for classification. To obtain a representative set of behavior

(a) (b)

Fig. 1 Environment setup and pedestrian data for crosswalk experiments. a Environment for cross-
walk experiments. Rover starts in foreground, while pedestrian follows one of four possible behav-
iors (red).Velodyne location ismarkedwithgreen arrow.bTraining pedestrian trajectories collected
by Velodyne lidar and resulting DPGP velocity flow fields for each behavior (separated by color)
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patterns, the Changepoint-DPGP algorithm can be used offline to reclassify these
trajectories by segmenting them at the location of the change in intent. Algorithm 2
is first called with GP containing those behavior patterns with more than kmin trajec-
tories and data 〈xt , yt 〉 from trajectories in the behavior patterns not inGP . At the end
of Algorithm 2, the trajectory segment seen since the last changepoint is classified
into themost likely behavior pattern. Likewise, if the online data contains trajectories
with changes in intent, the predictive distribution will be slow to recognize it, as the
prior p(b j ) relies on the entire observed trajectory. Therefore, if a change in intent
is detected, the prior probabilities are reinitialized.

Because the predictive distribution for each obstacle is dependent only on the
current position and learned behavior models, the predictions can be efficiently par-
allelized, though computational resources may be a limiting factor. (In this work, the
motion planning complexity scales linearly in both the number of dynamic agents
and behaviors [1].)

5 Results

This section presents experimental results which evaluate Changepoint-DPGP on
real-world problem domains of varying complexity. The prediction results demon-
strate that prior observations of pedestrian motion can be used to learn representa-
tive behavior models. These models are applied to real-time observations to make
accurate, long-term predictions of complex motion behavior, beyond what could be
predicted from the observations themselves. The planner is then demonstrated to
select safe paths which are risk-aware with respect to possible pedestrian intentions,
their likelihood, and their risk of interaction with the host vehicle.

5.1 Pedestrian Crosswalk

Consider the scenario in Fig. 1, in which an autonomous rover travels along a street
flanked by two sidewalks andmust safely pass through a pedestrian crosswalk. Pedes-
trians have four possible behaviors (red) corresponding to which sidewalk they are
traversing, and whether they choose to use the crosswalk.

A Pioneer 3-AT rover is used as the autonomous vehicle in all experiments. Its
payload includes a SICKLMS-291 lidar for onboard pedestrian detection and an Intel
Core i5 laptop with 6GB RAM for computation. The online perception, planning,
and control algorithms described in this paper are executed on this laptop via the
RoboticOperatingSystem (ROS) [18].Dynamic obstacle detections and autonomous
vehicle state are fed to a real-time, multi-threaded Java application, which executes
CC-RRT to generate safe paths. A pure pursuit controller [15] generates acceleration
commands to follow these path waypoints. High-fidelity localization is provided via
motion-capture cameras [11].
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Three trajectory prediction algorithms are evaluated in this experiment:
Changepoint-DPGP,DPGP, and a goal-directed approach using hiddenMarkovmod-
els (HMM). The hidden states of theHMMare pedestrian goals, learned via Bayesian
nonparametric inverse reinforcement learning with an approximation to the action
likelihood specifying that pedestrians head directly towards goal locations [17]. This
motion model assumes that each pedestrians head directly toward their intended goal
at some preferred speed with an uncertainty distribution over heading and velocity,
as used by [2, 10, 12] among others.

Unless otherwise noted, all three algorithms were trained on five trajectories from
each of the four behavior patterns in Fig. 1a. Each trajectory was collected from a
Velodyne HDL-32E lidar at the location marked in green in Fig. 1a as a pedestrian
moved through the environment. Pedestrians are identified from the raw Velodyne
returns both offline and online using Euclidean clustering [20]. Figure1b shows the
training trajectories used in this experiment.

Figure2 considers the baseline case in which no mid-trajectory changes in intent
or previously unobserved behavior patterns are present. Each algorithm is tested on
five trajectories from the four behavior patterns. Figure2a displays the probability
each algorithm has assigned to the correct motion pattern given the observation
trajectory, averaged across all 20 trials as a function of time elapsed. The likelihoods
of each motion pattern serve as the intent prediction for the GP-based approaches,
with the prior probability initialized to the fraction of training trajectories for each
motion pattern. Figure2b displays the root mean square (RMS) error between the
true pedestrian position and themean predicted position, averaged across all 20 trials.

TheMarkov property prevents the HMM approach from converging to the correct
motion pattern, as the observations of current state alone are not sufficient in the case
of noisy observations (Fig. 2a). As a result, its RMS error tends to increase over
time. On the other hand, both GP approaches exhibit convergence in the probability
of the correct motion pattern as new observations are made, which improves RMS
predictive error as well. The performance of Changepoint-DPGP and DPGP is very
similar, as is expected in the absence of changepoints and new behaviors.

Fig. 2 Prediction accuracy of each algorithm for the baseline case of the pedestrian crosswalk
scenario. All results are averaged over 20 trials as a function of time elapsed, with error bars
representing standard deviation. a Probability of correct motion pattern. b RMS predictive error
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Fig. 3 Prediction accuracy of each algorithm for pedestrian crosswalk scenario, subject to pedes-
trian change in intentions at time = 18s. a Probability of correct motion pattern. b RMS predictive
error

Next, each algorithm is tested on five trajectories which demonstrate a change
in pedestrian intentions. In these trajectories, the pedestrian begins to traverse the
crosswalk, but reverses direction after 18 s. Figure3 shows the evolution of the correct
likelihood and RMS error for each algorithm in this scenario, averaged across the
trajectories. Both DPGP and Changepoint-DPGP converge on the correct behavior
prior to the intent change (Fig. 3a), while HMM performance is relatively unchanged
compared to Fig. 2b due to only considering the current state. As the change in
pedestrian intention takes place, both GP-based algorithms initially drop to zero
probability. Because DPGP relies on the entire observation history, its predictions
are slow to recognize the change, leading to worse performance. On the other hand,
Changepoint-DPGP is able to selectively update the observation history considered
in the likelihood computation given changes in intent, enabling it to achieve better
accuracy than DPGP (Fig. 3a). As a result, Changepoint-DPGP yields the lowest
average trajectory-wide RMS error of all algorithms tested (Fig. 3b).

Changepoint-DPGP also demonstrates the best relative prediction accuracy when
considering anomalous/newbehavior patterns. In this scenario, algorithms are trained
on only three of the four possible behaviors (red, blue, green in Fig. 1b), then tested
on five trajectories from the fourth behavior (teal in Fig. 1b). The teal behavior devi-
ates from the previously-observed red behavior approximately 9 s into the trajectory.
When the new pedestrian behavior is demonstrated, the RMS error of both HMM
and DPGP begins to steadily increase (Fig. 4). Conversely, Changepoint-DPGP suc-
cessfully identifies the new behavior and reclassifies subsequent trajectories. Thus it
exhibits behavior similar to the baseline case, in which predictive error decreases as
the probability of the correct motion pattern converges.

Finally, experiments have demonstrated that predictive results from the proposed
Changepoint-DPGP algorithm enable the autonomous rover (Fig. 5) to safely avoid
collision in closed-loop. For dynamic obstacles in this and subsequent experiments,
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Fig. 4 RMS error for
pedestrian crosswalk
scenario, subject to
trajectories not observed in
training data

Changepoint-DPGP provides a likelihood and time-parameterized uncertainty dis-
tribution for each possible behavior, which are used by CC-RRT (Sect. 2.3) for robust
motion planning. Figure6 gives snapshots of a representative interaction between a
pedestrian and the autonomous rover. Initially, the planner generates a path directly
to the goal, as the pedestrian is projected to remain on the sidewalk (Fig. 6, left). Once
the predictions indicate that the pedestrian is likely to cross, the planner adjusts its
plan to terminate prior to the crosswalk (Fig. 6, center). As the pedestrian begins to
cross (Fig. 6, right), the rover comes to a stop, waiting for the crosswalk to clear
before safely proceeding to the goal.

Fig. 5 Rover used in closed-loop motion planning experiments
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Fig. 6 Moving rover (brown) planning a path (orange) to avoid predicted future behavior (blue
darker shades indicate higher likelihoods) of pedestrian (magenta) traversing crosswalk

5.2 Dynamic Vehicles

In these experiments, the autonomous rover must safely navigate around one or more
small iRobot Create vehicles with multiple and/or previously-unobserved behavior
patterns. The planner provides the rover with a fixed sequence of goal waypoints
to reach, one goal at a time, located at the four corners of the testing environment.
The robots exhibit one of four cyclical, counter-clockwise motion patterns within
the testbed (Fig. 7, first snapshot).

First, consider Fig. 7, an online learning scenario for a single dynamic robot in
which only behavior 1 has been previously observed. After 8 s, Changepoint-DPGP
recognizes that the robot is executing a new behavior (here, behavior 3), and predic-
tions are generated assuming that the robot will continue at its current velocity with
increased, linearly-scaling uncertainty. The planner modifies its path to reflect this
shift at 25 and 36s.

After 92 s, the algorithm has learned the entire observed trajectory as a new behav-
ior. As the robot begins its second cycle, it still assigns the highest likelihood to the
known behavior (behavior 1), based on the prior distribution of observed training
and test trajectories still favoring this behavior. However, the new behavior is now
included as an additional behavior prediction. By 97s, the algorithm is confident that
the robot is executing the newly-learned behavior, and shifts its likelihoods accord-
ingly. Using this updated prediction, the planner knows expects the robot to turn
before intersecting with the autonomous rover’s planned path, and thus continues to
execute the current path unimpeded. A video of a similar online-learning experiment
is located at http://acl.mit.edu/videos/ferguson-sm/video6.mov.

Figure8 demonstrates an interaction between the rover and two robots executing
behaviors 1–3. Initially, the planner identifies a direct route to the goal (Fig. 8a).
However, as the far robot approaches, its predicted behavior distribution begins to
intersect the rover’s path, causing the portion near the goal to be pruned as too risky
(Fig. 8b). The planner identifies a new path which maintains a larger standoff from

http://acl.mit.edu/videos/ferguson-sm/video6.mov
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Fig. 7 Moving rover (brown) planning a path (orange) to avoid predicted future behavior (blue
darker shades indicate higher likelihoods) of single dynamic robot (magenta) and reach a sequence
of goal regions (green)

the far robot (Fig. 8c), becoming more conservative once that robot is predicted to
follow behavior 2 (Fig. 8d). A video of the entire experiment is located at http://acl.
mit.edu/videos/ferguson-sm/video5.mov.

http://acl.mit.edu/videos/ferguson-sm/video5.mov
http://acl.mit.edu/videos/ferguson-sm/video5.mov
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Fig. 8 Moving rover planning paths around 2 dynamic robots; here the planning environment is
being partially projected onto the floor (path = green, goal = yellow)

6 Conclusions

This paper has developed a real-time framework for long-term trajectory prediction
and robust collision avoidance for pedestrians, evenwhenexhibitingpreviously unob-
served behaviors or changes in intent. A key contribution is the Changepoint-DPGP
algorithm, which uses a non-Bayesian likelihood ratio test to learn new GP behavior
patterns online and quickly detect and react to changepoints. As demonstrated in real-
time simulation results, these capabilities significantly improve prediction accuracy
relative to existing methods. Hardware results show that the framework can accu-
rately predict motion patterns of dynamic agents and perform robust navigation using
this method. Future work will investigate these algorithms in more complex envi-
ronments with additional pedestrians, including modeling of interactions between
autonomous vehicles and the environment/pedestrians.
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FFRob: An Efficient Heuristic for Task
and Motion Planning

Caelan Reed Garrett, Tomás Lozano-Pérez and Leslie Pack Kaelbling

Abstract Manipulation problems involving many objects present substantial
challenges for motion planning algorithms due to the high dimensionality and multi-
modality of the search space. Symbolic task planners can efficiently construct plans
involving many entities but cannot incorporate the constraints from geometry and
kinematics. In this paper, we show how to extend the heuristic ideas from one of the
most successful symbolic planners in recent years, the FastForward (FF) planner, to
motion planning, and to compute it efficiently. We use a multi-query roadmap struc-
ture that can be conditionalized to model different placements of movable objects.
The resulting tightly integrated planner is simple and performs efficiently in a col-
lection of tasks involving manipulation of many objects.

1 Introduction

Mobile manipulation robots are physically capable of solving complex problems
involving moving many objects to achieve an ultimate goal. Mobile bases with one
or more arms are becoming available and increasingly affordable while RGBD sen-
sors are providing unprecedented sensory bandwidth and accuracy. However, these
new capabilities are placing an increasing strain on existing methods for program-
ming robots. Traditional motion-planning algorithms that find paths between fully
specified configurations cannot address problems in which the configuration space
of interest is not just that of the robot but the configuration space of a kitchen, for
example, and the goal is to make dinner and clean the kitchen. We almost certainly
do not want to choose whether to get the frying pan or the steak next by sampling
configurations of the robot and kitchen and testing for paths between them.
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Researchers in artificial intelligence planning have been tackling problems that
require long sequences of actions and large discrete state spaces and have had some
notable success in recent years. However, these symbolic “task-level” planners do not
naturally encompass the detailed geometric and kinematic considerations thatmotion
planning requires. The original Shakey/strips robot system [1, 2], fromwhich many
of these symbolic planners evolved, managed to plan for an actual robot by working
in a domain where all legal symbolic plans were effectively executable. This required
the ability to represent symbolically a sufficient set of conditions to guarantee the
success of the steps in the plan. This is not generally possible in realisticmanipulation
domains because the geometrical and kinematic constraints are significant.

Consider a simple table-top manipulation domain where a variety of objects are
placed on a table and the robot’s task is to collect some subset of the objects and pack
them in a box, or use them to make a meal, or put them away in their storage bins.
The basic robot operations are to pick up an object and place it somewhere else; in
addition, the robot can move its base in order to reach a distant object. Note that, in
general, to reach some object, we will have to move other objects out of the way.
Which objects needmoving depends on their shapes, the shape of the robot, where the
robot’s base is placed andwhat path it follows to the object.When an object is moved,
the choice of where to place it requires similar considerations. The key observation
is that constructing a valid symbolic plan requires access to a characterization of
the connectivity of the underlying free configuration space (for the robot and all
the movable objects). We cannot efficiently maintain this connectivity with a set of
static assertions updated by strips operators; determining how the connectivity of
the underlying free space changes requires geometric computation.

A natural extension to the classic symbolic planning paradigm is to introduce
“computed predicates” (also know as “semantic attachments”); that is, predicates
whose truth value is established not via assertion but by calling an external program
that operates on a geometric representation of the state. A motion planner can serve
to implement such a predicate, determining the reachability of one configuration
from another. This approach is currently being pursued, for example, by Dornhege
et al. [3, 4], as a way of combining symbolic task-level planners withmotion planners
to get a planner that can exploit the abstraction strengths of the first and the geometric
strengths of the second. A difficulty with this approach, however, is that calling a
motion planner is generally expensive. This leads to a desire to minimize the set
of object placements considered, and, very importantly, to avoid calling the motion
planner during heuristic evaluation. Considering only a sparse set of placements may
limit the generality of the planner, while avoiding calling the motion planner in the
heuristic leads to a heuristic that is uninformed about geometric considerations and
may result in considerable inefficiency due to backtracking during the search for a
plan.

An alternative approach to integrating task and motion planning has been to start
with a motion planner and use a symbolic planner to provide heuristic guidance to
the motion planner, for example in the work of Cambon et al. [5]. However, since
the task-level planner is ignoring geometry, its value as a heuristic is quite limited.
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In this paper we show how to obtain a fully integrated task and motion planner
using a search in which the heuristic takes geometric information into account. We
show an extension of the heuristic used in the FastForward (FF) [6] planning system
to the FFRob heuristic, which integrates reachability in the robot configuration space
with reachability in the symbolic state space. Both the search and the computation
of the FFRob heuristic exploit a roadmap [7] data structure that allows multiple
motion-planning queries on the closely related problems that arise during the search
to be solved efficiently.

2 Related Work

There have been a number of approaches to integrated task and motion planning
in recent years. The pioneering Asymov system of Cambon et al. [5] conducts an
interleaved search at the symbolic and geometric levels. They carefully consider
the consequences of using non-terminating probabilistic algorithms for the geomet-
ric planning, allocating computation time among the multiple geometric planning
problems that are generated by the symbolic planner. The process can be viewed as
using the task planner to guide the motion planning search. The work of Plaku and
Hager [8] is similar in approach.

The work of Erdem et al. [9], is similar in approach to Dornhege et al. [3], aug-
menting a task planner that is based on explicit causal reasoning with the ability to
check for the existence of paths for the robot.

Pandey et al. [10] and de Silva et al. [11] use HTNs instead of generative task
planning. Their system can backtrack over choices made by the geometric module,
allowing more freedom to the geometric planning than in the approach of Dornhege
et al. [3]. In addition, they use a cascaded approach to computing difficult applica-
bility conditions: they first test quick-to-evaluate approximations of accessibility
predicates, so that the planning is only attempted in situations in which it might
plausibly succeed.

Lagriffoul et al. [12] also integrate the symbolic and geometric search. They
generate a set of approximate linear constraints imposed by the program under con-
sideration, e.g., from grasp and placement choices, and use linear programming to
compute a valid assignment or determine one does not exist. This method is particu-
larly successful in domains such as stacking objects in which constraints from many
steps of the plan affect geometric choices.

In the hpn approach of Kaelbling and Lozano-Pérez [13], a regression-based
symbolic planner uses generators, which perform fast approximate motion planning,
to select geometric parameters, such as configurations and paths, for the actions.
Reasoning backward using regression allows the goal to significantly bias the actions
that are considered. This type of backward chaining to identify relevant actions is
also present in work on navigation among movable obstacles. The work of Stilman
and Kuffner, and Stilman et al. [14, 15] also plans backwards from the final goal
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and uses swept volumes to determine, recursively, which additional objects must be
moved and to constrain the system from placing other objects into those volumes.

Srivastava et al. [16, 17] offer a novel control structure that avoids comput-
ing expensive precondition values in many cases by assuming a favorable default
valuation of the precondition elements; if those default valuations prove to be
erroneous, then it is discovered in the process of performing geometric planning
to instantiate the associated geometric operator. In that case, symbolic planning is
repeated. This approach requires the ability to diagnose why a motion plan is not
possible in a given state, which can be challenging, in general. Empirically, their
approach is the only one of which we are aware whose performance is competitive
with our FFRob method.

All of these approaches, although they have varying degrees of integration of
the symbolic and geometric planning, generally lack a true integrated heuristic that
allows the geometric details to affect the focus of the symbolic planning. In this
paper, we develop such a heuristic, provide methods for computing it efficiently, and
show that it results in a significant computational savings.

3 Problem Formulation

When we seek to apply the techniques of symbolic planning to domains that involve
robot motions, object poses and grasps, we are confronted with a series of technical
problems. In this section, we begin by discussing those problems and our solutions
to them, and end with a formal problem specification.

Wemight naturally wish to encode robot operations that pick up and place objects
in the style of traditional AI planning operator descriptions such as:

Pick(C1, O, G, P, C2):

pre: HandEmpty, Pose(O, P), RobotConf(C1), CanGrasp(O, P, G, C2), Reachable(C1, C2)

add: Holding(O, G), RobotConf(C2)

delete: HandEmpty, RobotConf(C1)

Place(C1, O, G, P, C2):

pre: Holding(O, G), RobotConf(C1), CanGrasp(O, P, G, C2), Reachable(C1, C2)

add: HandEmpty, Pose(O, P), RobotConf(C2)

delete: Holding(O, G), RobotConf(C1)

In these operations, theC , P , and G variables range over robot configurations, object
poses, and grasps, respectively. These are high-dimensional continuous quantities,
which means that there are infinitely many possible instantiations of each of these
operators.We address this problemby sampling finitelymany values for each of these
variable domains during a pre-processing phase. The sampling is problem-driven,
but may turn out to be inadequate to support a solution. If this happens, it is possible
to add samples and re-attempt planning, although that was not done in the empirical
results reported in this paper.
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Even with finite domains for all the variables, there is a difficulty with explicitly
listing all of the positive and negative effects of each operation. The operations of
picking up or placing an object may affect a large number of Reachable literals: pick-
ing up an object changes the “shape” of the robot and therefore what configurations
it may move between; placing an object changes the free configuration space of the
robot. Even more significant, which Reachable literals are affected can depend on
the poses of all the other objects (for example, removing any one or two of three
obstacles may not render a configuration beyond the obstacles reachable). Encoding
this conditional effect structure in typical form in the preconditions of the opera-
tors would essentially require us to write one operator description for each possible
configuration of movable objects.

We address this problem bymaintaining a state representation that consists of both
a list of true literals and a data structure, called details, that captures the geometric
state in a way that allows the truth value of any of those literals to be computed on
demand. This is a version of the semantic attachments strategy [3].

The last difficulty is in computing the answers to queries in the details, especially
about reachability, which requires finding free paths between robot configurations in
the context of many different configurations of the objects. We address this problem
byusing a conditional roadmap data structure called a conditional reachability graph,
related to a PRM [7], for answering all reachability queries, and lazily computing
answers on demand and caching results to speed future queries.

More formally, a state is a tuple 〈L , D〉, where L is a set of literals and D is a
domain-dependent detailed representation. A literal is a predicate applied to argu-
ments, which may optionally have an attached test, which maps the arguments and
state into a Boolean value. A literal holds in a state if it is explicitly represented in
the state’s literal set, or its test evaluates to true in the state:

holds(l, s) ≡ l ∈ s.L or l.test(s) .

A goal is a set of literals; a state satisfies a goal if all of the literals in the goal hold
in the state:

satisfies(s, Γ ) ≡ ∀l ∈ Γ. holds(l, s) .

An operator is a tuple 〈φ, epos, eneg, f 〉 where φ is a set of literals representing
a conjunctive precondition, epos is a set of literals to be added to the resulting state,
eneg is a set of literals to be deleted from the resulting state, and f is a function
that maps the detailed state from before the operator is executed to the detailed state
afterwards. Thus, the successor of state s under operator a is defined

successor(s, a) ≡ 〈s.L ∪ a.epos \ a.eneg, a. f (s)〉 .

An operator is applicable in a state if all of its preconditions hold in that state:

applicable(a, s) ≡ ∀l ∈ a.φ. holds(l, φ) .
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An operator schema is an operator with typed variables, standing for the set of
operators arising from all instantiations of the variables over the appropriate type
domains.

Our general formulation has broader applicability, but in this paper we restrict
our attention to a concrete domain in which a mobile-manipulation robot can move,
grasp rigid objects, and place them on a surface. To formalize this domain, we use
literals of the following forms:

• RobotConf(C): the robot is in configuration C , where C is a specification of the
pose of the base as well as joint angles of the arm;

• Pose(O, P): object O is at pose P , where P is a four-dimensional pose (x, y, z, θ),
assuming that the object is resting on a stable face on a horizontal surface;

• Holding(O, G): the robot is holding object O with grasp G, where G specifies a
transform between the robot’s hand and the object;

• HandEmpty: the robot is not holding any object;
• In(O, R): the object O is placed in such a way that it is completely contained in
a region of space R; and

• Reachable(C1, C2): there is a collision-free path between robot configurations C1
and C2, considering the positions of all fixed and movable objects as well as any
object the robot might be holding and the grasp in which it is held.

The details of a state consist of the configuration of the robot, the poses of all the
objects, and what object is being held in what grasp.

Two of these literals have tests. The first, In, has a simple geometric test, to see
if object O , at the pose specified in this state, is completely contained in region R.
The test for Reachable is more difficult to compute; it will be the subject of the next
section.

4 Conditional Reachability Graph

In the mobile manipulation domain, the details contain a conditional reachability
graph (crg), which is a partial representation of the connectivity of the space of
sampled configurations, conditioned on the placements of movable objects as well
as on what is in the robot’s hand. It is similar in spirit to the roadmaps of Leven and
Hutchinson [18] in that it is designed to support solving multiple motion-planning
queries in closely related environments. The crg has three components:

• Poses: For each object o, a set of possible stable poses.
• Nodes: A set of robot configurations, ci , each annotated with a (possibly empty)
set {〈g, o, p〉} where g is a grasp, o an object, and p a pose, meaning that if the
robot is at the configuration ci , and object o is at pose p, then the robot’s hand will
be related to the object by the transform associated with grasp g.

• Edges: A set of pairs of nodes, with configurations c1 and c2, annotated with an
initially empty set of validation conditions of the form 〈h, g, o, p, b〉, where b is a
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Boolean value that is True if the robot moving from c1 to c2 along a simple path
(using linear interpolation or some other fixed interpolator) while holding object
h in grasp g will not collide with object o if it is placed at pose p, and False
otherwise.

The validation conditions on the edges are not pre-computed; they will be computed
lazily, on demand, and cached in this data structure. Note that some of the collision-
checking to compute the annotations can be shared, e.g. the same robot base location
may be used for multiple configurations and grasps.

Constructing the crg The crg is initialized in a pre-processing phase, which con-
centrates on obtaining a useful set of sampled object poses and robot configurations.
Object poses are useful if they are initial poses, or satisfy a goal condition, or pro-
vide places to put objects out of the way. Robot configurations are useful if they
allow objects, when placed in useful poses, to be grasped (and thus either picked
from or placed at those poses) or if they enable connections to other useful poses via
direct paths. We assume that the following components are specified: a workspace
W , which is a volume of space that the robot must remain inside; a placement region
T , which is a set of static planar surfaces upon which objects may be placed (such
as tables and floor, but not (for now) the tops of other objects); a set O f of fixed
(immovable) objects; a setOm of movable objects; and a vector of parameters θ that
specify the size of the crg. It depends, in addition, on the start state s and goal Γ .
We assume that each object o ∈ Om has been annotated with a set of feasible grasps.
The parameter vector consists of a number n p of desired sample poses per object
(type); a number nik of grasp configurations per grasp; a number nn of configura-
tions near each grasp configuration; a number nc of RRT iterations for connecting
configurations, and a number k specifying a desired degree of connectivity.

The ConstructCRG procedure is outlined below.

ConstructCRG(W, T, s, Γ,O f ,Om, θ) :
1 N = {s.details.robotConf} ∪ {robot configuration in Γ }
2 for o ∈ Om :
3 Po = {s.details.pose(o)} ∪ {pose of o in Γ }
4 for i ∈ {1, . . . , θ.n p}:
5 Po.add(sampleObjPose(o.shape, T ))

6 for g ∈ o.grasps:
7 for j ∈ {1, . . . , θ.nik}: N .add(sampleIK(g, o, p), (g, o, p))

8 for j ∈ {1, . . . , θ.nn}: N .add(sampleConfNear(g, ( )))

9 E = { }
10 for n1 ∈ N :
11 for n2 ∈ NearestNeighbors(n1, k, N ):
12 if CFreePath(n1.c, n2.c,O f ): E .add(n1, n2)

13 N , E = connectTrees(N , E, W, θ.nc)

14 return 〈P, N , E〉
We begin by initializing the set of nodes N to contain the initial robot configuration
and the configuration specified in the goal, if any. Then, for each object, we generate
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a set of sample poses, including its initial pose and goal pose, if any, as well as
poses sampled on the object placement surfaces. For each object pose and possible
grasp of the object, we use the sampleIK procedure to sample one or more robot
configurations that satisfy the kinematic constraints that the object be grasped. We
sample additional configurations with the hand near the grasp configuration to aid
maneuvering among the objects. We then add edges between the k nearest neighbors
of each configuration, if a path generated by linear interpolation or another simple
fixed interpolator is free of collisions with fixed objects. At this point we generally
have a forest of trees of configurations. Finally, we attempt to connect the trees using
an RRT algorithm as in the sampling-based roadmap of trees [19].

To test whether this set of poses and configurations is plausible, we use it to
compute a heuristic value of the starting state, as described in Sect. 5. If it is infinite,
meaning that the goal is unreachable even under extremely optimistic assumptions,
then we return to this procedure and draw a new set of samples.

Querying the crg Now that we have a crg we can use it to compute the test for the
Reachable literal, as shown in ReachableTest below.

ReachableTest(c1, c2, D, crg) :
1 for (o, p) ∈ D.objects:
2 for e ∈ crg.E :
3 if not 〈D.heldObj, D.grasp, o, p, ∗〉 ∈ e.valid:
4 p = CFreePath(e.n1.c, e.n2.c, o@p, D.heldObj, D.grasp)

5 e.valid.add(〈D.heldObj, D.grasp, o, p, (p ! = None)〉)
6 G = {e ∈ crg.E | ∀(o, p) ∈ D.objects. 〈D.heldObj, D.grasp, o, p, True〉 ∈ e.valid}
7 return ReachableInGraph(c1, c2, G)

The main part of the test is in lines 6–7: we construct a subgraph of the crg that
consists only of the edges that are valid given the object that the robot is holding
and the current placements of the movable objects and search in that graph to see if
configuration c2 is reachable from c1. Lines 1–5 check to be sure that the relevant
validity conditions have been computed and computes them if they have not. The
procedure CFreePath(c1, c2, obst, o, g) performs collision checking on a straight-
line, or other simply interpolated path, between configurations c1 and c2, with a
single obstacle obst and object o held in grasp g.

In addition, the crg is used to implement applicableOps(s,Ω, crg), which
efficiently determines which operator schema instances in Ω are applicable in a
given state s. For each schema, we begin by binding variables that have preconditions
specifying the robot configuration, object poses, the currently grasped object and/or
the grasp to their values in state s. We consider all bindings of variables referring to
objects that are not being grasped. For a pick operation, P is specified in the current
state, so we consider all bindings of G and C2 such that (C2, (G, O, P)) ∈ crg.N .
For a place operation, G is specified in the current state, so we consider all bindings
of P and C2 such that (C2, (G, O, P)) ∈ crg.N .
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5 Planning Algorithms

A planning problem, Π , is specified by 〈s, Γ,O, T, W,Ω〉, where s is the initial
state, including literals and details, Γ is the goal, O is a set of objects, T is a set of
placement surfaces, W is the workspace volume, and Ω is a set of operator schemas.

Plan, shown below, is a generic heuristic search procedure. Depending on the
behavior of the extract procedure, it can implement any standard search control
structure, including depth-first, breadth-first, uniform cost, best-first, A∗, and hill-
climbing. Critical to many of these strategies is a heuristic function, which maps a
state in the search to an estimate of the cost to reach a goal state from that state.
Many modern domain-independent search heuristics are based on a relaxed plan
graph (rpg). In the following section, we show how to use the crg to compute the
relaxed plan graph efficiently.

Plan(Π, extract,heuristic, θ)

1 〈s, Γ,O, T, W,Ω〉 = Π

2 crg = ConstructCRG(W, T, s, Γ,O, θ)

3 def H(s): heuristic(RPG(s, Γ, crg,Ω))

4 q = Queue(SearchNode(s, 0,H(s), None))
5 while not q.empty():
6 n = extract(q)

7 if satisfies(n.s, Γ ): return n.path
8 for a ∈ applicableOps(n.s,Ω, crg):
9 s′ = successor(n.s, a)

10 q.push(SearchNode(s′, n.cost + 1,H(s′), n))

Computing the relaxed plan graph In classical symbolic planning, a plan graph is a
sequence of alternating layers of literals and actions. The first layer consists of all
literals that are true in the starting state. Action layer i contains all operators whose
preconditions are present and simultaneously achievable in literal layer i . Literal
layer i + 1 contains all literals that are possibly achievable after i actions, together
with a network of mutual exclusion relations that indicates in which combinations
those literals might possibly be true. This graph is the basis for GraphPlan [20] and
related planning algorithms.

The relaxed plan graph is a simplified plan graph, without mutual exclusion
conditions; it is constructed by ignoring the negative effects of the actions. From
the rpg, many heuristics can be computed. For example, the HAdd heuristic [21]
returns the sum of the levels at which each of the literals in the goal appears. It
is optimistic, in the sense that if the mutual exclusion conditions were taken into
account, it might take more steps to achieve each individual goal from the starting
state; it is also pessimistic, in the sense that the actions necessary to achieve multiple
goal fluents might be “shared”. An admissible heuristic, HMax [21], is obtained by
taking the maximum of the levels of the goal literals, rather than the sum; but it is
found in practice to offer weaker guidance. An alternative is the FF heuristic [6],
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which performs an efficient backward-chaining pass in the plan graph to determine
how many actions, if they could be performed in parallel without deletions, would
be necessary to achieve the goal and uses that as the heuristic value. An important
advantage of the FF heuristic is that it does not over-count actions if one action
achieves multiple effects, and it enables additional heuristic strategies that are based
on helpful actions. We use a version of the helpful-action strategy that reduces the
choice of the next action to those that are in the first level of the relaxed plan, and
find that it improves search performance.

In order to use heuristics derived from the rpg we have to show how it can be
efficiently computed when the add lists of the operators are incomplete and the
truth values of some literals are computed from the crg in the details. We present a
method for computing the rpg that is specialized for mobile manipulation problems.
It constitutes a further relaxation of the rpg which allows literals to appear earlier
in the structure than they would in an rpg for a traditional symbolic domain. This
is necessary, because the highly conditional effects of actions on Reachable literals
makes them intractable to compute exactly. The consequence of the further relaxation
is that the HAdd and HMax heuristics computed from this structure have less heuristic
force. However, in Sect. 5 we describe a method for computing a version of HFF that
recovers the effectiveness of the original.

The intuition behind this computation is that, as we move forward in computing
the plan graph, we consider the positive results of all possible actions to be available.
In terms of reachability, we are removing geometric constraints from the details; we
do so by removing an object from the universe when it is first picked up and never
putting it back, and by assuming the hand remains empty (if it was not already) after
the first place action. Recall that, in applicable and satisfies, the holds procedure
is used to see if a literal is true in a state. It first tests to see if it is contained in the
literal set of the state; this set becomes increasingly larger as the rpg is computed.
If the literal is not there, then it is tested with respect to the crg in the details, which
becomes increasingly less constrained as objects are removed.

Importantly, since the geometric tests on the crg are cached, the worst-case
number of geometric tests for planning with and without the heuristic is the same. In
practice, computing the rpg for the heuristic is quite fast, and using it substantially
reduces the number of states that need to be explored.

RelaxedPlanGraph, shown below, outlines the algorithm in more detail. In the
second part of line 1, in a standard implementation we would generate all possible
instantiations of all actions. However, because of the special properties of reachabil-
ity, we are able to abstract away from the particular configuration the robot is in when
an action occurs; thus, we consider all possible bindings of the non-configuration
variables in each operator, but we only consider binding the starting configuration
variable to the actual current starting configuration and leave the resulting configu-
ration variable free. In line 2, we initialize hState, which is a pseudo-state containing
all literals that are possibly true at the layer we are operating on, and a set of details
that specifies which objects remain as constraints on the robot’s motion at this layer.
In line 6, we ask whether a operator schema with all but the resulting configuration
variable bound is applicable in the heuristic state. We only seek a single resulting
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configuration that satisfies the preconditions of op in hState; even though many such
configurations might exist, each of them will ultimately affect the resulting hState
in the same way. Lines 7–9 constitute the standard computation of the rpg. In lines
10–11 we perform domain-specific updates to the detailed world model: if there is
any way to pick up an object, then we assume it is completely removed from the
domain for the rest of the computation of the rpg; if there is any way to put down the
currently held object, then we assume that there is no object in the hand, when doing
any further computations of reachability in the crg. Line 14 creates a new hState,
which consists of all literals possibly achievable up to this level and the details with
possibly more objects removed.

RelaxedPlanGraph(s, Γ, crg,Ω) :
1 D = s.D; ops = allNonConfBindings(Ω)

2 literals = [ ] ; actions = [ ] ; hState = s
3 while True
4 layerActions = { } ; layerLiterals = { }
5 for op ∈ ops:
6 if applicable(op, hState):
7 layerActions.add(op)

8 layerLiterals.union(op.epos)

9 ops.remove(op)

10 if op.type = pick: D.objects.remove(op.obj)
11 if op.type = place: D.heldObj = None
12 literals.append(layerLiterals)
13 actions.append(layerActions)
14 hState = 〈⋃i literalsi , D〉
15 if satisfies(hState, Γ ): return (literals, actions)
16 if layerActions = { }: return None

There is one last consideration: the strategy shown above does not make the depen-
dencies of Reachable literals at level i on actions from level i − 1 explicit; the truth
of those literals is encoded implicitly in the details of the hState. We employ a simple
bookkeeping strategy to maintain a causal connection between actions and literals,
which will enable a modified version of the FF heuristic to perform the backward
pass to find a parallel plan. We observe that, in the relaxed plan, once an object is
picked, it is effectively removed from the domain. So, we add an extra positive effect
literal, Picked(o) to the positive effects set of the pick action, just when it is used in
the heuristic computation.

The FFRob heuristic The FF heuristic operates by extracting a relaxed plan from the
rpg and returning the number of actions it contains. A relaxed plan P constructed
for starting state s and set of goal literals G consists of a set of actions that has the
following properties: (1) For each literal l ∈ G there is an action a ∈ P such that
l ∈ a.epos and (2) For each action a ∈ P and each literal l ∈ a.φ, either l ∈ s or
there exists an action a′ ∈ P such that l ∈ a.epos.



190 C.R. Garrett et al.

That is, the set of actions in the relaxed plan collectively achieve the goal as
well as all of the preconditions of the actions in the set that are not satisfied in
the initial state. It would be ideal to find the shortest linear plan that satisfied these
conditions, however that is NP-hard [6]. Instead, the plan extraction procedure works
backwards, starting with the set of literals in the goal G. For each literal l ∈ G, it
seeks the “cheapest” action a∗ that can achieve it; that is,

a∗ = arg min{a|l∈a.epos}
∑

l∈a.φ

L(l) ,

where L(l) is the index of the lowest layer containing l (which is itself a quick
estimate of the difficulty of achieving l.)

The minimizing a∗ is added to the relaxed plan, l and any other literals achieved
by a∗ are removed from the goal set, and the preconditions a∗.φ are added to the
goal set unless they are contained in s. This process continues until the goal set is
empty.

The rpg computed as in Sect. 5 does not immediately support this computation,
because the Picked fluents that are positive results of Pick actions do not match the
Reachable fluents that appear in preconditions. In general, there may be many ways
to render a robot configuration reachable, by removing different combinations of
obstacles. Determining the smallest such set is known as the minimum constraint
removal problem [22]. Hauser shows it is NP-Hard in the discrete case and provides
a greedy algorithm that is optimal if obstacles must not be entered more than once.
We have extended this method to handle the case in which objects are weighted; in
our case, by the level in the rpg at which they can be picked. The weighted MCR
algorithm attempts to find a set of obstacles with a minimal sum of weights that
makes a configuration reachable.

So, any action precondition of the form Reachable(c) is replaced by the set of
preconditionsPicked(o) for all objects o in the solution to theweightedMCRproblem
for configuration c. This represents the (approximately) least cost way to make c
accessible. Having carried out this step, we can use the standard FF method for
extracting a relaxed plan. The FFRob heuristic returns the number of actions in this
relaxed plan.

Geometric biases It frequently happens that multiple states have the same heuristic
value; in such cases, we break ties using geometric biases. These three biases do not
affect the overall correctness or completeness of the algorithm. Intuitively, the idea
is to select actions that maximize the reachability of configurations in the domain
from the current state.

• Choose actions that leave the largest number of configurations corresponding to
placements of objects in their goal poses or regions available. This captures the
idea that blocking goal regions should be avoided if possible. This is useful because
although a heuristic will report when a placement is immediately bad, i.e., already
blocking future goals, it will not convey information that the placement may pre-
vent two necessary placements later in the search because it was out in the open.
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This is because the relaxed plan assumed that a free placement exists, despite
objects being placed there, because it does not model negative effects of actions.

• Choose actions that leave the largest total number of configurations corresponding
to placements reachable; this ensures that all placements are as tight as possible
against the edge of the reachable space.

• If neither of the previous biases breaks the tie, then select actions that maximize
the total number of reachable configurations.

These biases experimentally prove to be helpful in giving the search additional
guidance in this domain, especially in combination with enforced hill climbing
search, which lacks backtracking to undo bad decisions.

6 Results

We have experimented with various versions of this algorithm, differing in the defi-
nition of the heuristic, on a variety of tasks; we report the results in this section.

The search strategy in all of our experiments is enforced hill-climbing [6], inwhich
a single path through the state space is explored, always moving to the unvisited
successor state with the smallest heuristic value, with ties broken using geometric
biases. This search strategy is known not to be complete, but we have found it to be
very effective in our domains. If the hill-climbing search were to reach a dead end,
one could restart the search (as is done in FastForward), using the best-first strategy
or weighted A∗, which are complete. However, even with a complete search and no
helpful-action heuristic, the overall planner is not probabilistically complete, since
it is limited to the initial set of sample poses and configurations.

The parameters governing the creation of the crg are: n p ∈ [25 − 50] (the
number of placements for each object); this varies with the size of the placement
regions; nik = 1 (number of robot configurations for each grasp); nn = 1 (number
of additional robot configurations near each grasp); nc = 250 (number of RRT
iterations); k = 4 (number of nearest neighbors).

In our experiments, we generate an initial crg using these parameters during
pre-processing and then test whether the value of the heuristic at the initial state is
finite. If it is not, we discard it and try again, with the same parameters. Very few
retries were necessary to find a crg with finite heuristic value. This condition was
effective: in every case in our experiments, the crg contained a valid plan.

The following versions of the planner are compared in the experiments:

1. No H : The heuristic always returns 0.
2. HFF: This is the original heuristic in FF, based only on the symbolic literals,

completely ignoring the reachability conditions when computing the heuristic.
Helpful actions are not used.

3. HAddR: This is a version of the original HAdd heuristic that returns the sum of the
levels of the rpg at which the goal literals are first found. This makes use of the
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crg to reason about reachability. It does not build a relaxed plan and, therefore,
does not have helpful actions.

4. HFFR,HA: This computes the rpg, does a backward scan to find a relaxed plan
and computes helpful actions based on that plan.

5. HFFRB: Like HFFR but using geometric biases to break ties and without using
helpful actions.

6. HFFRB,HA: Like HFFR but using geometric biases to break ties and using helpful
actions.

We tested our algorithm on 6 different tasks, in which the goals were conjunctions
of In(Oi , R j ) for some subset of the objects (the ones not colored red). Other objects
were moved as necessary to achieve these goals. The last three tasks are shown in
Fig. 1; the first three are tasks are simpler variations on task 3 (Fig. 1a). The table
below shows the results of running the algorithms in each of the tasks.

T Pre No H HFF HAddR HFFR, H A HFFRB HFFRB, H A
t m s t m s t m s t m s t m s t m s

0 21 265 35 48719 102 72 6123 41 19 536 6 5 78 7 5 87 2 0 23
1 25 300 0 63407 283 17 14300 162 55 2042 3 0 8 16 11 153 4 1 49
2 29 300 0 50903 300 0 8947 300 0 3052 5 1 12 17 13 114 7 2 32
3 23 300 0 39509 300 0 4849 300 0 1767 83 19 464 99 43 523 13 1 69
4 30 300 0 23920 300 0 1574 300 0 1028 300 0 1274 18 3 20 16 3 20
5 51 300 0 9422 300 0 1533 300 0 592 300 1 272 106 17 32 99 14 32

Each entry in the table reportsmedian time (t) (in gray),median absolute deviation,
MAD, of the times (m), and states (s) expanded. Each task also incurs a pre-processing
time for building the roadmap; this is reported (in seconds) in the Pre column of the
table. The median-based robust statistics are used instead of the usual mean and
standard deviation since the data has outliers. Entries with a median time of 300
and MAD of 0 did not successfully complete any of the simulations. There were 20
simulations per task for the first two heuristics and 120 simulations per task for the
others. Running times are from a Python implementation running on a 2.6GHz Intel
Core i7.

As can be clearly seen, especially in the number of expanded states, exploiting
geometric information in the heuristic produces substantial improvements. Introduc-
ing geometric biases to settle ties helps in the most cluttered of the examples.

Conclusion We have shown how to combine data structures for multi-query motion
planning algorithms with the search and heuristic ideas from the FF planning system
to produce a deeply integrated task and motion planning system. The integrated
heuristic in this system is quite effective in focusing the search based on geometric
information at relatively low cost.
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Fig. 1 The initial and final state in three of the tasks (3, 4, 5) in the experiments. a Median 18
actions. b Median 20 actions. c Median 32 actions
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Fast Nearest Neighbor Search in SE(3)
for Sampling-Based Motion Planning

Jeffrey Ichnowski and Ron Alterovitz

Abstract Nearest neighbor searching is a fundamental building block of most
sampling-based motion planners. We present a novel method for fast exact near-
est neighbor searching in SE(3)—the 6 dimensional space that represents rotations
and translations in 3 dimensions. SE(3) is commonly used when planning the mo-
tions of rigid body robots. Our approach starts by projecting a 4-dimensional cube
onto the 3-sphere that is created by the unit quaternion representation of rotations
in the rotational group SO(3). We then use 4 kd-trees to efficiently partition the
projected faces (and their negatives). We propose efficient methods to handle the
recursion pruning checks that arise with this kd-tree splitting approach, discuss split-
ting strategies that support dynamic data sets, and extend this approach to SE(3)
by incorporating translations. We integrate our approach into RRT and RRT* and
demonstrate the fast performance and efficient scaling of our nearest neighbor search
as the tree size increases.

1 Introduction

Nearest neighbor searching is a critical component of commonly used motion
planners. Sampling-based methods, such as probabilistic roadmaps (PRM), rapidly
exploring random trees (RRT), and RRT* [1, 2], create a motion plan by building a
graph in which vertices represent collision-free robot configurations and edges rep-
resent motions between configurations. To build the graph, these motion planners
repeatedly sample robot configurations and search for nearest neighbor configura-
tions already in the graph to identify promising collision-free motions.

Because nearest neighbor search is a fundamental building block of most sampling-
based motion planners, speeding up nearest neighbor searching will accelerate many
commonly used planners. This is especially true for asymptotically optimal motion
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planners, which typically require a large number of samples to compute high-quality
plans. As the number of samples in the motion planning graph rises, nearest neigh-
bor search time grows logarithmically (or at worst linearly). As the samples fill the
space, the expected distance between samples shrinks, and correspondingly reduces
the time required for collision detection. Collision detection typically dominates
computation time in early iterations, but as the number of iterations rises, nearest
neighbor search will dominate the overall computation—increasing the importance
of fast nearest neighbor searches.

We introduce a fast, scalable exact nearest neighbor search method for robots
modeled as rigid bodies. Many motion planning problems involve rigid bodies, from
the classic piano mover problem to planning for aerial vehicles. A planner can rep-
resent the configuration of a rigid body in 3D by its 6 degrees of freedom: three
translational (e.g., x , y, z) and three rotational (e.g., yaw, pitch, roll). The group
of all rotations in 3D Euclidean space is the special orthogonal group SO(3). The
combination of SO(3) with Euclidean translation in space is the special Euclidean
group SE(3).

Our approach uses a set of kd-trees specialized for nearest neighbor searches in
SO(3) and SE(3) for dynamic data sets. A kd-tree is a binary space partitioning tree
data structure that successively splits space by axis-aligned planes. It is particularly
well suited for nearest neighbor searches in Minkowski distance (e.g., Euclidean)
real-vector spaces. However, standard axis-aligned partitioning approaches that apply
to real-vector spaces do not directly apply to rotational spaces due to their curved
and wrap-around nature.

In this paper, we describe a novel way of partitioning SO(3) space to create a kd-
tree search structure for SO(3) and by extension SE(3). Our approach can be viewed
as projecting the surface of a 4-dimensional cube onto a 3-sphere (the surface of
a 4-dimensional sphere), and subsequently partitioning the projected faces of the
cube. The 3-sphere arises from representing rotations as 4-dimensional vectors of
unit quaternions. The projection and partitioning we describe has two important
benefits: (1) the dimensionality of the rotation space is reduced from its 4-dimensional
quaternion representation to 3 (its actual degrees of freedom), and (2) the splitting
hyperplanes efficiently partition space allowing the kd-tree search to check fewer
kd-tree nodes. We propose efficient methods to handle the recursion pruning checks
that arise with this kd-tree splitting approach, and also discuss splitting strategies that
support dynamic data sets. Our approach for creating rotational splits enables our
kd-tree implementation to achieve fast nearest neighbor search times for dynamic
data sets.

We demonstrate the speed of our nearest neighbor search approach on scenarios
in OMPL [3] and demonstrate a significant speedup compared to state-of-the-art
nearest neighbor search methods for SO(3) and SE(3).
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2 Related Work

Nearest neighbor searching is a critical component in sampling-based motion
planners [1]. These planners use nearest neighbor search data structures to find and
connect configurations in order to compute a motion plan.

Spatial partitioning trees such as the kd-tree [4–6], quadtrees and higher dimen-
sional variants [7], and vp-trees [8] can efficiently handle exact nearest neighbor
searching in lower dimensions. These structures generally perform well on data in
a Euclidean metric space, but because of their partitioning mechanism (e.g., axis-
aligned splits), they do not readily adapt to the rotational group SO(3). Kd-trees have
a static construction that can guarantee a perfectly balanced tree for a fixed (non-
dynamic) data set. Bentley showed how to do a static-to-dynamic conversion [9]
that maintains the benefits of the balanced structure produced by static construction,
while adding the ability to dynamically update the structure without significant loss
of asymptotic performance.

Yershova and LaValle [10] showed how to extend kd-trees to handle R
1, S1,

SO(3), and the Cartesian product of any number of these spaces. Similar to kd-
trees built for R

m , they split SO(3) using rectilinear axis-aligned planes created by a
quaternion representation of the rotations [11]. Although performing well in many
cases, rectilinear splits produce inefficient partitions of SO(3) near the corners of the
partitions. Our method eschews rectilinear splits in favor of splits along rotational
axes, resulting in splits that more uniformly partition SO(3).

Non-Euclidean spaces, including SO(3), can be searched by general metric space
nearest neighbor search data structures such as GNAT [12], cover-trees [13], and
M-trees [14]. These data structures generally perform better than linear searching.
However, except for rare pathological cases, these methods are usually outperformed
by kd-trees in practice [10].

Nearest neighbor searching is often a performance bottleneck of sampling-
based motion planning, particularly when the dimensionality of the space increases
[15, 16]. It is sometimes desirable in such cases to sacrifice accuracy for speed by
using approximate methods [15–19]. These methods can dramatically reduce com-
putation time for nearest neighbor searches, but it is unclear if the proofs of optimality
for asymptotically optimal motion planners hold when using approximate searches.
Our focus is on exact searches, though we believe that some approximate kd-tree
speedups can be applied to our method.

3 Problem Definition

Let C be the configuration space of the robot. For a rigid-body robot, the configuration
space is C = R

m if the robot can translate in m dimensions, C = SO(3) = P3 if the
robot can freely rotate in 3 dimensions, and C = SE(3) = R

3 P3 if the robot can
freely translate and rotate in 3 dimensions. Let q ∈ C denote a configuration of the



200 J. Ichnowski and R. Alterovitz

robot. When C = R
m , q is an m-dimensional real vector. When C = P3, we define q

as a 4-dimensional real vector in the form (a, b, c, d) representing the components
of a unit quaternion q = a + bi + cj + dk. We use the notation q [x] to represent
the x component of a configuration q.

Computation of nearest neighbors depends on the chosen distance metric. Let
DIST (q1,q2) be the distance between two configurations. For brevity, we will focus
on a few commonly used distance functions, which are included in OMPL [3]. We
only consider exact functions, and approximate versions are left to future work. In
R

m we use the Euclidean (L2) distance:

DISTRm (q1,q2) =
( m∑

i=1

(q1[i] − q2[i])2
)1/2

In P3 we use a distance of the shorter of the two angles subtended along the great
arc between the rotations [3, 10, 11]. This metric is akin to a straight-line distance
in Euclidean space mapped on a 3-sphere:

DISTP3(q1,q2) = cos−1 |q1 · q2| = cos−1
∣∣∣∣

∑

i∈{a,b,c,d}
q1[i]q2[i]

∣∣∣∣.

In R
3 P3, we use the weighted sum of the R

3 and P3 distances [3]:

DIST
Rm P3(q1,q2) = αDISTRm (q1,q2) + DISTP3(q1,q2).

where α > 0 is a user-specified weighting factor. We assume the distance function
is symmetric, i.e., DIST (q1,q2) = DIST (q2,q1), and define DIST (q,∅) = ∞.

We apply our approach to solve three variants of the nearest neighbor search
problem commonly used in sampling-based motion planning. Let q denote a set of
n configurations {q1 . . . qn} ⊂ C. Given a configuration qsearch, the nearest neighbor
search problem is to find the qi ∈ Q with the minimum DIST (qsearch,qi). In the
k-nearest neighbors variant, where k is a positive integer, the objective is to find a
set of k configurations in Q nearest to qsearch. In the nearest neighbors in radius r
search, where r is a positive real number, the objective is to find all configurations
in Q with DIST (qsearch,qi) ≤ r .

Sampling-based motion planners make many calls to the above functions when
computing a motion plan. Depending on the planner, the set of nodes Q is either a
static data set that is constant for each query or Q is a dynamic data set that changes
between queries. Our objective is to achieve efficiency and scalability for all the
above variants of the nearest neighbor search problem for static and dynamic data
sets in SO(3) and SE(3).
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4 Method

A kd-tree is a binary tree in which each branch node splits space by an axis-aligned
hyperplane, and each child’s subtree contains only configurations from one side of
the hyperplane. In a real vector metric space, such as Euclidean space, it is common
for each split to be defined by an axis-aligned hyperplane, though other formulations
are possible [6]. For performance reasons it is often desirable for the splits to evenly
partition the space, making median or mean splits good choices [20]. We will describe
these methods and how to apply our SO(3) partition scheme to them.

In our method, we eschew rectilinear axis-aligned splits in favor of partitions that
curve with the manifold of SO(3) space. The set of all unit quaternion representations
of rotations in SO(3) forms the surface of a 4-dimensional sphere (a 3-sphere). We
partition this space by projecting the surface of a 4-dimensional cube onto the surface
of the 3-sphere. Because of the double-coverage property in which a quaternion and
its negative represent the same rotation [11], half of the projected surface volumes are
redundant, and we build kd-trees by subdividing 4 of the projected surface volumes.
Similar projections are used in [21] to generate deterministic samples in SO(3), and in
[22] to create a minimum spanning tree on a recursive octree subdivision of SO(3).
When subdividing the surface volumes into kd-trees, we apply a novel approach
in which the partitioning hyperplanes pass through the center of the 3-sphere, and
thus radially divide space. These partitions are curved, and thus standard kd-tree
approaches that apply to real-vector spaces must be adapted to maintain consistency
with the great arc distance metric we use for SO(3). In Fig. 1, we depict a lower
dimensional analog consisting of a 3-dimensional cube projected onto a 2-sphere,
with only one of the projected cube surfaces subdivided into a kd-tree.

Fig. 1 A kd-tree projected
onto the surface of a
2-sphere. An axis-orthogonal
cube is projected into a
sphere. Each face of the cube
is a separately computed
kd-tree; however, for
illustrative purposes, we
show the kd-tree of only one
of the faces. In our method
we extend the analogy to
4-dimensional space for use
with quaternions
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4.1 Projected Volume Partitioning of SO(3)

In the projection of the surface of a 4D cube onto the surface of a 3-sphere we label
each of the projected 3D surface volumes by the axis on which they are aligned, thus
a, b, c, and d. Any configuration whose quaternion is in a negative volume (e.g., −a,
−b, −c, or −d) is inverted.

The advantage of using this projection is two-fold: (1) we reduce the dimensional-
ity of the rotation representation from a 4-dimensional quaternion to a 3-dimensional
position on the projected volume, and (2) it allows radially aligned splitting hyper-
planes that more uniformly divide the curved manifold. There is, however, a small
cost for these benefits. The projection leads to building 4 kd-trees, although asymp-
totically the cost is at worst a constant factor.

To determine in which projected volume a quaternion q lies, we find its component
of greatest magnitude. Thus:

proj_volume (q) = argmax
i∈a,b,c,d

|q[i]|

If θ is the angle between the unit quaternions q and n, then q · n = cos θ. We use
this property and represent bounding and splitting hyperplanes by their normals n.
Determining on which side a quaternion q lies is a matter of evaluating the sign of
the dot product—positive values are on one side, negative values are on the other,
and a dot product of 0 lies on the hyperplane.

We will focus our discussion on the projected a-volume, with the other volumes
(b, c, and d) being permutations on it. The normals bounding the 6 sides of the
projected a-volume are the unit quaternions normalized from:

(1, 1, 0, 0) (−1, 1, 0, 0) b-axis bounds
(1, 0, 1, 0) (−1, 0, 1, 0) c-axis bounds
(1, 0, 0, 1) (−1, 0, 0, 1) d-axis bounds

We observe that within the projected a-volume, the a component of the hyperplane
normals varies between

√
0.5 and −√

0.5 (after normalizing), the axis component
varies between

√
0.5 at the boundaries to 1 at a = 0, and the other components are

always zero. The bounds for the b, c, and d projected volumes follow similarly.
Solving for n in q · n = 0, we can determine the normal of the axis-aligned

hyperplane that passes through the quaternion q. We define axisnormvol,axis(q) as
the axis-aligned normal within a projected volume for quaternion q. The a-volume
definitions are:

axisnorma-vol,b-axis(q) = normalize(−q[b],q[a], 0, 0)

axisnorma-vol,c-axis(q) = normalize(−q[c], 0,q[a], 0)

axisnorma-vol,d-axis(q) = normalize(−q[d], 0, 0,q[a]),
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where normalize(q) normalizes its input vector to a unit quaternion. From the
axisnorm we define an angle of rotation about the axis. The angle is computed as
the arctangent of the normal’s volume component over the normal’s axis component,
thus for example, q’s angle about the b-axis in the a-volume is tan−1(−q[a]/q[b]).
This angle forms the basis for a relative ordering around an axis, and can be
shortcut by comparing the volume component alone, as q1[a] < q2[a] ⇐⇒
tan−1(−q1[a]/q1[b]) > tan−1(−q2[a]/q2[b]).

4.2 Static KD-Tree

In a static nearest neighbor problem, in which Q does not change, we can use an effi-
cient one-time kd-tree construction that allows for well balanced trees. Algorithm 1
outlines a static construction method for kd-trees on real-vector spaces.

The algorithm works as follows. First it checks if there is only one configuration,
and if so it returns a leaf node with the single configuration (lines 1–2). Other-
wise the set of configurations is partitioned into two subsets to create a branch.
CHOOSE_PARTITION_AXIS (Q) in line 4 chooses the axis of the partition. A
number of policies for choosing the axis are possible, e.g., splitting along the axis
of greatest extent. Then, PARTITION (Q,axis) (line 5) splits Q along the axis
into the partially ordered set Q′ such that ∀qi ∈ Q′

1..m−1 : qi[axis] ≤ split and
∀qj ∈ Q′

m..n : qj[axis] ≥ split. Thus a median split chooses m = n/2.

Algorithm 1 BuildKDTree (Q)

Require: Q is a set of configurations of size n > 0
1: if Q has 1 configuration then
2: return leaf node with Q1
3: else
4: axis ← CHOOSE_PARTITION_AXIS (Q)

5: (Q′
,split,m) ← PARTITION (Q,axis)

6: left ← BuildKDTree
(
Q′

1..m−1
)

7: right ← BuildKDTree
(
Q′

m..n
)

8: return branch node with split on (axis,split) and children (left,right)

The PARTITION function is implemented efficiently either by using a partial-
sort algorithm, or sorting along each axis before building the tree. Assuming median
splits, BuildKDTree builds a kd-tree in O(n log n) time using a partial-sort algo-
rithm.

In our SO(3) projection, we define an axis comparison that allows us to find the
minimum and maximum along each projected axis, and to perform the partial sort
required for a median partition. The axis comparison is the relative ordering of each
quaternion’s axisnorm angle for that volume and projection.

The minimum and maximum extent along each axis is the quaternion for which all
others are not-less-than or not-greater-than, respectively, any other quaternion in the
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set. The angle of the arc subtending the minimum and maximum axisnorm values
is the axis’s extent. Thus, if we define N as the set of allaxisnorm values for Q in the
a-volume and along the b-axis therein: Na,b = {

axisnorma-vol,b-axis(q) : q ∈ Q
}
,

then the minimum and maximum axisnorm along the b-axis is:

nmin = argmin
ni∈Na,b

ni[a] nmax = argmax
nj∈Na,b

nj[a]

and the angle of extent is cos−1 |nmin · nmax|. After computing the angle of extent
for all axes in the volume, we select the greatest of them and that becomes our axis
of greatest extent.

4.3 Dynamic KD-Tree

Sampling-based motion planners, such as RRT and RRT*, generate and potentially
add a random configuration to the dataset at every iteration. For these algorithms, the
nearest neighbor searching structure must be dynamic—that is, it must support fast
insertions and removals interleaved with searches. In [9], Bentley and Saxe show that
one approach is to perform a “static-to-dynamic conversion”. Their method builds
multiple static kd-trees of varying sizes in a manner in which the amortized insertion
time is O(log2 n) and the expected query time is O(log2 n). In the text that follows,
we describe our implementation for modifying the kd-tree to a dynamic structure,
and we compare the approaches in Sect. 5.

Algorithm 2 DynamicKDInsert (q)
1: n ← &kdroot
2: (Cmin,Cmax) ← volume bounds
3: for depth = 0 → ∞ do
4: (axis,split) ← KD_SPLIT (Cmin,Cmax,depth)
5: if n = ∅ then
6: ∗n ← new node with (axis,split,q)
7: return
8: if q[axis] < split then
9: n ← & (∗nleft)

10: Cmax[axis] ← split
11: else
12: n ← &

(∗nright
)

13: Cmin[axis] ← split

The kd-tree may also be easily modified into a dynamic structure by allowing
children to be added to the leaves of the structure, and embedding a configuration
in each tree node. When building such a dynamic kd-tree, the algorithm does not
have the complete dataset, and thus cannot perform a balanced construction like the
median partitioning in Sect. 4.2. Instead, it chooses splits based upon an estimate of
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what is likely to be the nature of the dataset. When values are inserted in random
order into a binary tree, Knuth [23, pp. 430–431] shows that well-balanced trees
are common, with insertions requiring about 2 ln n comparisons, and the worst-case
O(n) is rare. In our experiments, we observe results suggesting that the generated
trees are indeed well-balanced across a variety of scenarios. In the results section,
we split at the midpoint of the bounding box. A few possible choices that empirically
work well with sampling-based motion planners are: (1) split at the midpoint of the
bounding box implied by the configuration space and the prior splits, (2) split at the
hyperplane defined by the point being added, or (3) an interpolated combination of
the two.
DynamicKDInsert (Algorithm 2) adds a configuration into a dynamic kd-tree.

In this formulation, each node in the kd-tree contains a configuration, an axis and split
value, and two (possibly empty) child nodes. Given the bounding box of the volume
and a depth in the tree, the KD_SPLIT function (line 4) generates a splitting axis and
value. In Euclidean space, KD_SPLIT can generate a midpoint split along the axis of
greatest extent by choosing the axis that maximizes Cmax[axis] − Cmin[axis],
and the split value of (Cmin[axis] + Cmax[axis])/2.

In our SO(3) projection, the axis of greatest extent is computed from the angle
between cmin and cmax, where cmin and cmax are an axis’s bounding hyperplane
normals from Cmin and Cmax. An interpolated split is computed using a spherical
linear interpolation [11] between the bounds:

csplit = cmin
sin tθ

sin θ
+ cmax

sin(1 − t)θ

sin θ
where θ = cos−1 |cmin · cmax|

A split at the midpoint (t = 0.5) simplifies to cmid = (cmin + cmax)/(2 cos θ
2 ).

Algorithm 3 DynamicKDSearch
(
q,n,depth,Cmin,Cmax,qnearest, s, a

)

1: if n = ∅ then
2: return qnearest
3: if DIST

(
q,qn

)
< DIST

(
q,qnearest

)
then

4: qnearest ← qn // qn is the configuration associated with n
5: (axis,split) ← KD_SPLIT (Cmin,Cmax,depth)
6:

(
C′

min,C′
max

) ← (Cmin,Cmax)

7: C′
min[axis] ← C′

max[axis] ← split
8: if q[axis] < split then
9: qnearest ← DynamicKDSearch

(
q,nleft,depth+ 1,Cmin,C′

max,qnearest, s, a
)

10: else
11: qnearest ← DynamicKDSearch

(
q,nright,depth+ 1,C′

min,Cmax,qnearest, s, a
)

12: s[axis] ← split
13: a[axis] ← 1
14: if PARTIAL_DIST (q, s, a) ≤ DIST (q,qnearest) then
15: if q[axis] < split then
16: qnearest ← DynamicKDSearch

(
q,nright,depth+ 1,C′

min,Cmax,qnearest, s, a
)

17: else
18: qnearest ← DynamicKDSearch

(
q,nleft,depth+ 1,Cmin,C′

max,qnearest, s, a
)

19: return qnearest
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If instead we wish to split at the hyperplane that intersects the point being inserted,
we use the axisnorm to define the hyperplane’s normal. Furthermore, we may
combine variations by interpolating between several options.

4.4 Kd-Tree Search

In Algorithm 3, we present an algorithm of searching for a nearest neighbor config-
uration q in the dynamic kd-tree defined in Sect. 4.3. The search begins with n as
the root of the kd-tree, a depth of 0, Cmin and Cmax as the root volume bounds, an
empty qnearest, and the split vectors s = a = 0.

The search proceeds recursively, following the child node on the side of the
splitting hyperplane on which q resides (lines 8–11). Upon return from recursion,
the search algorithm checks if it is possible that the other child tree could contain a
configuration closer to q than the nearest one. This check is performed against the
bounding box created by the splitting hyperplanes of the ancestor nodes traversed to
reach the current one. It is essentially the bounding box defined by C′

min and C′
max.

However, a full bounding box distance check is unnecessary—only the distance
between the point and the bounds closest to the point are necessary. This distance is
computed by the PARTIAL_DIST function, and is depicted in Fig. 2.
PARTIAL_DIST (q, s, a) (line 14) computes the distance between a config-

uration q and the corner of a volume defined by s and a. The components of
s are the split axis values between the current region and the region in which
q resides. The components of a are 1 for each axis which is defined in s and 0
otherwise. This results in the PARTIAL_DIST definition for the L2 distance metric:

PARTIAL_DISTL2 (q, s, a) =
(∑d

i=1(qi − si)
2ai

)1/2
.

The partial distance metric must return a distance less than or equal to the closest
possible configuration in the node’s region. A poorly bound partial distance (e.g.
PARTIAL_DIST = 0) is valid, however search performance will suffer, dropping

A B

C D C D
q

A B

q

(a) single axis (b) double axis

Fig. 2 A kd-tree search for q determining if it should traverse the second node. The search checks
if it is possible for any configuration in the region contained within the node to have a point closer
than the one already found. In a, the search computes the distance between q and region A—this
is a 1-dimensional L2 distance between q and the hyperplane that splits regions A and C. In b,
the search computes the distance between q and region B—and it computes a 2-dimensional L2

distance. Our method extends this computation to the curved projection on a 3-sphere
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to O(n) in the worst case. Thus a tightly bound PARTIAL_DIST is critical to
performance.

The PARTIAL_DIST function in our projected volume mapping of SO(3) is the
distance between a configuration q and a volume defined by hyperplanes partitioning
a unit 3-sphere, and is complicated by the curvature of the space. For this function to
be tightly bounded, it must take into account that the volume defined by the bounds
on our projected manifold are curved (see Fig. 1). When only 1 hyperplane is defined
(i.e., the first split in SO(3)), the distance is the angle between a configuration and a
great circle defined by a splitting hyperplane’s normal nsplit and its intersection with
the unit 3-sphere. This distance is:

PARTIAL_DISTP3|nsplit
= sin−1(q · nsplit)

When 2 of the 3 axes are split, the distance is the angle between the configuration
and an ellipse. The ellipse results from projecting the line defined by the two splitting
hyperplanes onto a unit 3-sphere. If the split axis values are the normals nb and nc
in the projected a volume, and thus the d-axis is not yet split, the partial distance is:

PARTIAL_DISTP3|nb,nc
= min

ω
cos−1 |q · ell(nb,nc,ω)|

whereell is an ellipsoid parameterized by the normals nb and nc, and varied over ω:

ell(nb, nc,ω) =
⎛

⎝ω,−ω
nb[a]
nb[b] ,−ω

nc[a]
nc[c] ,±

√

1 − ω2 −
(

ω
nb[a]
nb[b]

)2

−
(

ω
nc[a]
nc[c]

)2
⎞

⎠

The distance is minimized at ω = γ/
√

η(γ2 − ηq[a]) where

γ = q[a] − q[b]nb[a]
nb[b] − q[c]nc[a]

nc[c] , η = 1 +
(

nb[a]
nb[b]

)2

+
(

nb[a]
nc[c]

)2

.

When all three axes are split (e.g., the b, c, and d axes in the a projected volume),
the distance is the angle between the configuration and the corner of the hyperplane
bounded volume defined by the 3 axes. If the split axis values are the normals nb,
nc, and nd (in the projected a volume), the partial distance is:

PARTIAL_DISTP3|nb,nc,nd
= cos−1 |q · qcorner|

where: qcorner = normalize

(
1,−nb[a]

nb[b] ,−
nc[a]
nc[c] ,−

nd[a]
nd[d]

)

Each of these PARTIAL_DIST functions for P3 successively provide a tighter
bound, and thus prunes recursion better.
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Each query in the SO(3) subspace must search up to 4 kd-trees of the projected
volumes on the 3-sphere. The projected volume in which the query configuration
lies we call the primary volume, and the remaining 3 volumes are the secondary
volumes. The search begins by finding the nearest configuration in the kd-tree in the
primary volume. The search continues in each of the remaining secondary volumes
only if it is possible for a point within its associated volume to be closer than the
nearest point found so far. For this check, the partial distance is computed between
the query configuration and the two hyperplanes that separate the primary and each
of the secondary volumes. There are two hyperplanes due to the curved nature of the
manifold and the double-coverage property of quaternions. Since a closer point could
lie near either boundary between the volumes, we must compare to the minimum of
the two partial distances, thus:

min
(
PARTIAL_DISTP3|nab

(q), PARTIAL_DISTP3|nba
(q)

)

where nab and nba are the normals of the two hyperplanes separating the volumes a
and b.

4.5 Nearest, k-Nearest, and Nearest in Radius r Searches

Algorithm 3 implements the nearest neighbor search. We extend it to k-nearest neigh-
bor search by replacing qnearest with a priority queue. The priority queue contains
up to k configurations and is ordered based upon distance from q, with the top being
the farthest of the contained configurations from q. The queue starts empty, and until
the queue contains k configurations, the algorithm adds all visited configurations to
the queue. From then on, DIST(q,qnearest) (lines 3 and 14) is the distance between
q and the top of the priority queue. When the search finds a configuration closer than
the top of the queue, it removes the top and adds the closer configuration to the queue
(line 4). Thus the priority queue always contains the k nearest configurations visited.

To search for nearest neighbors in radius r , qnearest in Algorithm 3 is a result
set. Distance comparisons on lines 3 and 14 treat DIST(q,qnearest) = r . When the
algorithm finds a configuration closer than r , it adds it to the result set in line 4.

5 Results

We evaluate our method for nearest neighbor searches in four scenarios: (1) uniform
random rotations in SO(3), (2) uniform random rotations and translations in SE(3),
(3) configurations generated by RRT [24] solving the “Twistycool” motion planning
scenario in OMPL [3], and (4) configurations generated by RRT* [2] solving the
“Home” motion planning scenario in OMPL [3]. We compare four methods for
nearest neighbor searching: (1) “dynamic” is a dynamic kd-tree using our method
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and midpoint splits, (2) “static” is a static-to-dynamic conversion [9] of a median-
split kd-tree using our method, (3) “rectilinear” is a static-to-dynamic conversion of
a median-split kd-tree using rectangular splits [10] on SO(3), and (4) “GNAT” is a
Geometric Near-neighbor Access Tree [12]. All runs are computed on a computer
with two Intel X5670 2.93 GHz 6-core Westmere processors, though multi-core
capabilities are not used.

5.1 Random SO(3) Scenario

In the Random SO(3) scenario, we generated uniformly distributed random con-
figurations in SO(3) and compute nearest neighbors for random configurations. We
compute the average search time and the average number of distance computations
performed to search a nearest neighbor data structure of size n. We vary n from 100 to
1 000 000 configurations, and plot the result in Fig. 3. The average nearest neighbor
search time in Fig. 3a shows an order of magnitude performance benefit when using
our method. The number of distance computations in Fig. 3b is a rough metric for
how much of the data structure each method is able to prune from the search. The
performance gain in Fig. 3b gives insight into the reasons for the performance gains
shown in Fig. 3a.
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Fig. 3 Comparison of nearest neighbor search time and distance checks plotted with increasing
configuration count in the searched dataset. In a we plot the average time to compute a single nearest
neighbor for a random point. In b we track the average number of distance computations performed
by a search
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5.2 Random SE(3) Scenario

In this scenario, we build nearest neighbor search structures with random configu-
rations generated in SE(3). Using DIST

Rm P3 , we evaluate performance for α = 1
and 10 in Fig. 4. For small α, the SO(3) component of a configuration is given more
weight, and thus provides for greater differentiation of our method. In Fig. 4a, we
observe a 2 to 5× improvement in performance between our method and the recti-
linear method, and an order of magnitude performance improvement over GNAT. As
α increases, more weight is given to the translation component, so our SO(3) splits
have less impact on performance. Hence, our improvement drops, but is still 2 to 3×
faster than rectilinear, and 8× faster than GNAT.

5.3 RRT on the Twistycool Scenario

We evaluate the impact of our method in the “Twistycool” motion planning scenario,
using OMPL for both the scenario and the RRT planner. The Twistycool puzzle,
shown in Fig. 5a, is a motion planning problem in which a rigid-body object (the
robot) must move through a narrow passage in a wall that separates the start and
goal configurations. At each iteration, the RRT motion planner computes a nearest
neighbor for a random sample against all samples it has already added to its motion
planning tree. We have adjusted the relative weighting α for translation and rotation
from its default, such that each component has approximately the same impact on
the weighted distance metric.
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Fig. 4 Comparison of nearest neighbor search time for random configurations in SE(3). In a and
b the translation space is bounded to a unit cube, and the translation distance is weighted 1 and 10
respectively. In a the SO(3) component of a configuration is given more weigh, and thus has more
impact on each search
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Fig. 5 Twistycool scenario and RRT nearest neighbor search times. The scenario in a requires the
red robot to move from its starting configuration on the left, through a narrow passage in the wall,
to its goal configuration on the right. The average time per nearest neighbor search is plotted in (b)

As we see in Fig. 5b, the performance of our method with the dynamic kd-tree
is more than 5× faster than GNAT and rectilinear split kd-trees. This matches our
expectations formed by the uniform random scenario results, and shows little degra-
dation with the non-uniform dataset created by this motion planning problem.

5.4 RRT* on the Home Scenario

We ran the “Home” scenario using the RRT* motion planner included in OMPL. As
shown in Fig. 6a, the motion planner computes a plan that moves a table from one
room to another while avoiding obstacles. The RRT* planner incrementally expands
a motion planning tree, while “rewiring” it towards optimality as it goes. In each
iteration RRT* finds an extension point using a nearest neighbor search, and then
rewires a small neighborhood after a k-nearest neighbor search. Unlike RRT, we
can allow RRT* to continue for as many iterations as desired, and get incrementally
better results. As with the RRT scenario, we proportionally scale α so that the SO(3)
and translation components have approximately equivalent impact on the distance
metric. As shown in Fig. 6b, our method in both variants outperforms GNAT and
rectilinear splits by roughly a factor of 3. In these results we observe also that the
median split of “static” and the midpoint split of “dynamic” perform equally well,
and the main differentiating factor between the kd-tree methods is thus the SO(3)
partitioning.
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Fig. 6 Home scenario and RRT* nearest neighbor search times. In the scenario in a, the motion
planner must find a path that moves the red table “robot” from its starting configuration in the lower
right room to the goal configuration in the upper right. The average time for nearest neighbor search
is plotted in (b)

6 Conclusion

We presented a method for efficient nearest neighbor searching in SO(3) space and
by extension SE(3), using a kd-tree with a novel approach to creating hyperplanes
that divide rotational space. Our partitioning approach provides two key benefits:
(1) it reduces the dimensionality of the rotation representation from 4-dimensional
quaternion vector to match its 3 degrees of freedom, and (2) creates an efficient par-
titioning of the curved manifold of the rotational group. We integrated our approach
into RRT and RRT* and demonstrated the fast performance and efficient scaling of
our nearest neighbor search as the tree size increases.

In future and ongoing work, we view our approach as something that should
augment or work well in tandem with existing nearest neighbor search algorithms and
implementations. We are looking to adapt our approach to include the approximate
nearest neighbor kd-trees of the Fast Library for Approximate Nearest Neighbors
(FLANN) [19] and contribute an implementation to OMPL.
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Trackability with Imprecise Localization

Kyle Klein and Subhash Suri

Abstract Imagine a tracking agent P who wants to follow a moving target Q in
d-dimensional Euclidean space. The tracker has access to a noisy location sensor
that reports an estimate Q̃(t) of the target’s true location Q(t) at time t , where
||Q(t) − Q̃(t)|| represents the sensor’s localization error. We study the limits of
tracking performance under this kind of sensing imprecision. In particular, (1) what
is P’s best strategy to follow Q if both P and Q can move with equal speed, (2) at
what rate does the distance ||Q(t)− P(t)|| grow under worst-case localization noise,
(3) if P wants to keep Q within a prescribed distance L , how much faster does it
need to move, and (4) what is the effect of obstacles on the tracking performance, etc.
Under a relative error model of noise, we are able to prove upper and lower bounds
for the worst-case tracking performance, both with or without obstacles. We also
provide simulation results on real and synthetic data to illustrate trackability under
imprecise localization.

1 Introduction

The problem of tracking a single known target is a classical one with a long
history in artificial intelligence, robotics, computational geometry, graph theory
and control systems. The underlying motivation is that many robotic applications
including search-and-rescue, surveillance, reconnaissance and environmental mon-
itoring have components that are best modeled as a tracking problem. The prob-
lem is often formulated as a pursuit-evasion game, with colorful names such as
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Man-and-the-Lion, Cops-and-Robbers, Hunter-and-Rabbit, Homicidal Chauffeur,
and Princess-and-Monster [1, 2, 4, 8]. Visibility-based pursuit evasion [7, 20], in
particular, has been a topic of great interest, in part due to its simple but realistic
model: a team of pursuers is tasked with locating a single adversarial evader in an
geometric environment with polygonal obstacles where pursuers learn the evader’s
position only when the latter is in their line-of-sight. After two decades of research,
tight bounds are known for detection or capture of the evader for many basic formu-
lations of the problem [3, 7, 11], although the topic remains a rich subject of ongoing
research [12, 15].

Most theoretical analyses of tracking, however, assume an idealized sensing
model, ignoring the fact that all location sensing is noisy and imprecise in prac-
tice: the target’s position is rarely known with complete and error-free precision.
Although some papers have explored models to incorporate practical limitations of
idealized visibility including angular visibility [10], beam sensing [17], field-of-view
sensors [6], and range-bounded visibility [5], the topic of sensing noise or impreci-
sion has largely been handled heuristically or through probabilistic techniques such
as Kalman filters [9, 14, 19, 21]. One exception is [18], where Rote investigates a
tracking problem under the absolute error model: in this model, the target’s position
is always known to lie within distance 1 of its true location, regardless of its distance
from the tracker. The analysis in [18] shows that, under this noise model, the distance
between the tracker and the target can grow at the rate ofΘ(t1/3), where t is the time
parameter. Our model, by comparison, deals with a more severe form of noise, with
imprecision proportional to the distance from the tracker. Kuntsevich et al. [13] also
have considered this relative error model but with important differences: (1) they
approach the problem from a control-theory perspective with the goal of bounding
the time needed by the tracker to capture the target, and (2) only consider trackabil-
ity in unobstructed plane. Our approach is combinatorial, we analyze the worst-case
tracking performance as a function of the localization precision parameter λ, and
consider environments with and without obstacles.

Motivation and the Problem Statement. This paper takes a small step towards
bridging the gap between theory and practice of trackability, and analyzes the effect
of noisy sensing. In particular, we consider a tracking agent P who wants to follow a
moving target Q in d-dimensional Euclidean space using a noisy location sensor. For
simplicity, we analyze the problem in two dimensions, but the results easily extend to
d dimensions, as discussed in Sect. 5.We use the notation Q(t) and P(t) to denote the
(true) positions of the target and the tracker at time t . We adopt a simple but realistic
model of relative error in sensing noise: the localization error is proportional to the
true distance between the tracker and the target. More precisely, the localization error
is upper bounded as ||Q(t)− Q̃(t)|| ≤ 1

λ ||P(t)− Q(t)|| at all times t , where λ ≥ 1
is the quality measure of localization precision. Thus, the closer the target, smaller
the error, and a larger λ means better localization accuracy, while λ = 1 represents
the completely noisy case when the target can be anywhere within a disk of radius
||P(t)− Q(t)|| around Q(t). It is important to note that the parameter λ is used only
for the analysis, and is not part of information revealed to the tracker. In other words,
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the tracker only observes the approximate location Q̃(t), and not the uncertainty disk
containing the target. The relative errormodel is intuitively simple (farther the object,
larger the measurement error) and captures the realism of many sensors: for instance,
the resolution error in camera-based tracking systems is proportional to the target’s
distance, and in network-based tracking, latency causes a proportionate localization
uncertainty because of target’s movement before the signal is received by the tracker.

We study the tracking problem as a game between two players, the tracker P and
the target Q, which is played in continuous time and space: that is, each player is
able to instantaneously observe and react to other’s position, and the environment is
the two-dimensional plane, with or without polygonal obstacles. Both the target and
the tracker can move with equal speed, which we normalize to one, without loss of
generality. With the unit-speed assumption, the following holds, for all times t1 ≤ t2:

||Q(t2) − Q(t1)|| ≤ |t2 − t1|, ||P(t2) − P(t1)|| ≤ |t2 − t1|

Under the relative localization error model, the reported location of the target
Q̃(t) always satisfies the following bound, where λ is the accuracy parameter:

||Q(t) − Q̃(t)|| ≤ ||P(t) − Q(t)||
λ

Wemeasure the tracking performance by analyzing the distance function between
the target and the tracker, namely, D(t) = d(P(t), Q(t)), over time, with D(0) being
the distance at the beginning of the game. Under error-free localization, the distance
remains bounded as D(t) ≤ D(0). We analyze how ||D(t) − D(0)|| grows under
the relative error model, as a function of λ. Our main results are as follows.

Our Results. We first consider trackability in the unobstructed plane, and prove that
the obvious simple-minded strategy “always move towards the observed location of
the target” not only achieves a bounded error rate, but in fact that rate is the best
possible in the worst-case. More specifically, the greedy strategy achieves D(t) ≤
D(0)+ t/λ2, meaning that the target’s distance from the tracker can growmaximally
at the rate of O(λ−2), the inverse quadratic function of the localization parameter.
We also prove this rate to be worst-case optimal by presenting a strategy for the
target that ensures that, under the relative error model, it can increase its distance as
D(t) ≥ D(0) + Ω(t/λ2).

We then extend this analysis to environments with polygonal obstacles, and show
that the tracker can increase its distance by Ω(t) in time t for any finite λ. This is
unsurprising because two points within a small margin of sensing error can be far
apart in free-space, thereby fooling the tracker into “blind alleys.”More surprisingly,
however, if we adopt a localization error that is proportional to the geodesic distance
(and not the Euclidean distance) between the target and the tracker, then the distance
increases at a rate of Θ(λ−1). This bound is also tight within a constant factor: the
tracker can maintain a distance of D(t) ≤ D(0) + O(t/λ) by the greedy strategy,
while the target has a strategy to ensure that the distance function grows as at least
D(t) ≥ D(0) + Ω(t/λ).
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Our analysis also helps answer some other questions related to tracking
performance. For instance, a natural way to achieve good tracking performance in
the presence of noisy sensing is to let the tracker move at a faster speed than the
target. Then, what is the minimum speedup necessary for the tracker to reach the
target (or, keep within a certain distance of it)? We derive upper and lower bounds
for this speedup function, which are within a constant factor of each other as long as
λ ≥ 2. All of our results extend easily to d dimensions, for d ≥ 2.

2 Tracking in the Unobstructed Plane

We begin with the simple setting in which a tracking agent P wants to follow a
moving target Q in the two-dimensional plane without any obstacles. We show
that the trivial “aim for the target’s observed location” achieves essentially the best
possible worst-case performance. We first prove the upper bound on the derivative
D′(t) of the distance function D(t), and then describe an adversary’s strategy that
matches this upper bound.

2.1 Tracker’s Strategy and the Upper Bound

Our tracker uses the following obvious algorithm, whose performance is analyzed
in Theorem1 below.

GreedyTrack. At time t , the tracker P moves directly towards the target’s observed
location Q̃(t).

Theorem 1 By using GreedyTrack, the tracker can ensure that D(t) ≤ D(0) +
O(t/λ2), for all t ≥ 0.

Proof Consider the true and the observed positions of the target, namely Q(t) and
Q̃(t), respectively, at time t , and let γ be the angle formed by them at P(t). See
Fig. 1. Consider an arbitrarily small time period Δt during which P moves towards

Fig. 1 Proof of Theorem1

Q

D(t)
λ

Q̃

P Δt

ΔtD(t)
γ
a

b
c
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Q̃(t) and Q(t) moves away from P(t). We want to compute the derivative of the
distance function, given as Eq. (1).

D′(t) = lim
Δt→0

D(t + Δt) − D(t)

Δt
(1)

The new distance between the target and the tracker is given by bc in Fig. 1. In the
triangle abc, we have ab = Δt sin γ and ac = D(t)+Δt −Δt cos γ. We, therefore,
can bound D(t + Δt) as follows (elementary algebraic details are omitted from this
extended abstract):

D(t + Δt) =
√

(Δt sin γ)2 + (D(t) + Δt − Δt cos γ)2

≤ D(t) + (Δt)(1 + Δt/D(t))(1 − cos γ)
(2)

Returning to Eq. (1), we get

D′(t) = lim
Δt→0

D(t + Δt) − D(t)

Δt
≤ lim

Δt→0
(1+Δt/D(t))(1− cos γ) = 1− cos γ

Finally, since sin γ ≤ 1
λ , we get D′(t) ≤ 1 −

√
1 − 1

λ2 , which simplifies by the
Taylor series expansion:

D′(t) ≤ 1 −
(
1 − 1

2λ2 − 1

8λ4 − · · ·
)

= 1

2λ2 + 1

8λ4 + · · · ≤ 1

λ2

This completes the proof that D(t) ≤ D(0) + t/λ2. �

2.2 Target’s Strategy and the Lower Bound

We now show that this bound is asymptotically tight, by demonstrating a strategy
for the target to grow its distance from the tracker at the rate of D(t) ≥ D(0) +
Ω(t/λ2), for all t ≥ 0. We think of the target as an adversary who can choose its
observed location at any time subject only to the constraints of the error bound:
||Q(t) − Q̃(t)|| ≤ 1

λ (||P(t) − Q(t)||). (Recall that the tracker only observes the
location Q̃(t), and has no direct knowledge of either the parameter λ or the distance
||P(t) − Q(t)||. Those quantities are only used in the analysis. However, the lower
bound holds even if the tracker knows the uncertainty disk, namely, the localization
error 1

λ (||P(t) − Q(t)||).)
In order to analyze the lower bound, we divide the time into phases, and show

that the distance from the tracker increases by a multiplicative factor in each phase,
resulting in a growth rate of Ω(1 + λ−2). If the i th phase begins at time ti , then we
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let di = ||Q(ti ) − P(ti )|| denote the distance between the target and the tracker at
ti . During the i th phase, the target maintains the following invariant for a constant
0 < α < 1 to be chosen later.

Gap Invariant. Throughout the i th phase, the target moves along a path Q(t) such
that ||Q(t)− P(t)|| ≥ αdi , for all times t , and all reported locations satisfy ||Q(t)−
Q̃(t)|| ≤ αdi/λ.

See Fig. 2(i) for an illustration. Consider the isosceles triangle with vertices at
Q(ti ), qa and qb, whose base qaqb is perpendicular to the line P(ti )Q(ti ). The equal
sides of the triangle have length 2di , the base has length 2αdi/λ, and let qc be the
midpoint of the base. The target’s strategy is to move from Q(ti ) to either qa or qb,
and report its location Q̃(t) at the closest point on the line Q(ti )qc; i.e. at all times,
Q̃(t) is the perpendicular projection of Q(t) onto the line Q(ti )qc. By the symmetric
construction, and the choice of the points qa and qb, the tracker cannot tell whether
the target is moving to qa or qb. Thus, any deterministic tracker makes an incorrect
choice in one of the two possible scenarios. For the worst-case performance bound,
we can equivalently assume that the target non-deterministically guesses the tracker’s
intention, and moves to the better of the two possible locations, qa or qb. The tracker
makes this choice based on whether the tracker is on or below the line Q(ti )qc, or
not. In the former case, the target moves to qa , and to to qb otherwise. The i th phase
terminates when the target reaches either qa or qb, and the next phase begins. (We
note that, after i phases, there are 2i possible choices made by the tracker, reflected
in whether it is above or below the line Q(ti )qc at the conclusion of each phases. For
each of these possible “worlds” there is a corresponding deterministic strategy of
the target that “fools” the tracker in every phase, resulting in the maximum distance
increase.) There is one subtle point worth mentioning here. It is possible that during
the phase, the distance between the players may shrink if the tracker temporarily
moves towards the same final location as the target—however, our Gap Invariant
ensures that that the target’s noisy location remains within the permissible error
bound throughout the phase. The following lemma shows that this simple strategy of
the target can maintain the Gap Invariant for any choice of α ≤ 0.927. Due to space
constraints, the proof of the following lemma is omitted from this extended abstract.

P (ti) Q(ti)
qa

qb

qc
di

2di

2di

αdi

λ
αdi

λ

(i)

P (ti) Q(ti)

qa

qc
di

2di αdi

λ

di P (ti+1)

(ii)

Fig. 2 Target’s strategy during the i th phase (i), and proofs of Lemmas1 and 2 (ii)
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Lemma 1 The target can maintain the Gap Invariant for any α ≤ 0.927.

The preceding lemma shows that our construction satisfies the Gap Invariant, and
so we can now lower bound the distance growth during a single phase. Due to space
constraints, the proof of the following lemma is omitted from this extended abstract.

Lemma 2 At the start of phase i +1, we have di+1 ≥ di

√
1 + α2

2λ2 , where α = 0.927
is an absolute constant.

We can now prove the main result of this section.

Theorem 2 Under the relative error localization model, a target can increase its
distance from an equally fast tracker at the rate of Ω(λ−2). In other words, the target
can ensure that D(t) ≥ D(0) + Ω(t/λ2) after any phase ending at time t.

Proof The target follows the phase strategy, where that after the i th phase that lasts

2di time units, the distance between the tracker and the target is at least di

√
1 + α2

2λ2 .
Therefore, the distance increases during the i th phase by at least the following mul-
tiplicative factor (using a Taylor series expansion):

di

√
1 + α2

2λ2 − di

2di
=

√
1 + α2

2λ2 − 1

2
≥ α2

4λ2 − α4

16λ4 = Ω(
1

λ2 )

�

3 Trackability with a Faster Tracker

The results of the previous section establish bounds on the relative advantage avail-
able to the target by the localization imprecision. Its distance from the tracker can
grow at the rate of Θ(λ−2) with time. A tracking system can employ a number of
different strategies to compensate for this disadvantage. In this section, we explore
one such natural mechanism: allow the tracker to move at a faster speed than the
target. A natural question then is: what is the minimum speedup necessary to cancel
out the localization noise as a function of λ? We give bounds on the necessary and
sufficient speedups, which match up to small constant factors as long as λ ≥ 2. The
general form of the speedup function is (1− 1

λ2 )
−1/2. The following theorem proves

the sufficiency condition.

Theorem 3 Suppose the target moves with speed one, and the tracker has speed

σ =
√

1
1−1/λ2 , where λ is the localization precision parameter. Then, the tracker can

maintain D(t) ≤ D(0), for all times t ≥ 0.
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Proof Our analysis closely follows the proof of Theorem1, and calculates the
increase in the distance during time Δt . During this time, the tracker is able to
move σΔt , while the target can move at most Δt . We can then calculate dis-
tance at time t + Δt from the triangle abc (Fig. 1), where ab = σΔt sin γ and
ac = D(t) + Δt − σΔt cos γ, as follows (due to space constraints we omit the full
algebraic simplification):

D(t + Δt) =
√

(σΔt sin γ)2 + (D(t) + Δt − σΔt cos γ)2

≤ D(t) + σ2Δt2/2D(t) − Δt2/2D(t) + Δt (1 + Δt/D(t))(1 − σ cos γ)

(3)

This allows us to bound D′(t) ≤ 1−σ cos γ, fromwhich it follows that D′(t) ≤ 0

as long as σ ≥
√

1
1−1/λ2 . �

We now show that if λ ≥ 2, this is the minimum speedup necessary as a function
of λ, up to a small constant factor. We use the phase-based strategy of Theorem2,
however, the value of α determined by Lemma1 is not sufficient to maintain the
Gap Invariant in this case because of the higher speed of the tracker. Instead, the
following lemma gives the sufficient choice of α. Due to space constraints the proof
of the following lemma is omitted from this extended abstract.

Lemma 3 Let λ ≥ 2 and let α ≤ 0.68 be a constant. Then, the Gap Invariant can
be maintained in any phase as long as σ ≤ 1√

1−1/λ2
.

We can now prove a lower bound on the increase in the distance during the i th
phase. Due to space constraints the proof of the following lemma is omitted from
this extended abstract.

Lemma 4 If λ ≥ 2, α ≤ 0.68, and σ ≤ (1 − 1/λ2)−1/2, then at the start of the
i + 1 phase, we have di+1 ≥ di

√
(2σ − 3)2 + α2(σ − 1/2)/λ2, where α = 0.68 is

an absolute constant.

Remark The preceding lemma can be used to calculate the maximum tracker speed
for which the target can still force a non-negative distance for a specific λ (algebraic
derivation is omitted due to space constraints):

σ =
−

√
−8 + α2

2λ2 + (
12−α2/λ2

4 )2 + 12−α2/λ2

4

2
(4)

As λ gets large, the upper and lower bound are within a constant factor of each
other. Indeed, with a more careful choice of α, we can show that the upper and lower
bounds are within a factor of 5.32 (as opposed to 10.23 for the above simple analysis)
of each other for λ ≥ 2, but we omit those details from this extended abstract.
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4 Tracking in the Presence of Obstacles

The presence of obstacles makes the tracking problem considerably harder under the
localization noise. The following simple example (Fig. 3) shows that the target can
grow its distance from the tracker as D(t) ≥ D(0)+ t , for any finite value of λ. The
obstacle consists of a single U -shaped non-convex polygon. Initially, the target is at
distance D(0) from the tracker, and the “width” of the obstacle is less than D(0)/2λ,
so that the localization error is unable to distinguish between a target moving inside
the U channel, or around its outer boundary. One can show that no matter how the
tracker pursues, its distance from the target can grow linearly with time.

Path Proportionate Error. In order to get around this impossibility of tracking, we
propose a path proportionate error measure, where the localization error is pro-
portional to the shortest path distance between the target and the tracker, and not
the Euclidean distance as used before. That is, the tracking signal and the physical
movement of the agents follow the same path metric. Formally, the localization error
at time t always obeys the following bound:

d(Q(t), Q̃(t)) ≤ d(P(t), Q(t))

λ

We show that the best tracking performance in this model is D(t) = D(0) +
Θ(t/λ); that is the distance grows linearly with 1/λ, as opposed to the inverse
quadratic function for the unobstructed case.

4.1 Tracking Upper Bound

The tracker’s strategy in this case is also greedy, except now the tracker makes short-
term commitments in phases, instead of continuously changing its path towards the
new observed location. In particular, for each phase, the tracker fixes its goal as the
observed position of the target at the start of the phase, moves along the shortest
path to this goal, and then begins the next phase.

Algorithm 1 (ModifiedGreedy) The initial phase begins at time t = 0. During
the i th phase, which begins at time ti , the tracker moves along the shortest path to
the observed location of the target at ti , namely, Q̃(ti ). When tracker reaches Q̃(ti ),
the i th phase ends, and the next phase begins.

The upper bound on the tracking performance is given by the following theorem.

Fig. 3 Impossibility of
tracking among obstacles D(0)/2λ

QP

Q(t)

Q̃(t)
D(0)
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Theorem 4 Using ModifiedGreedy, the tracker can ensure that D(t) ≤ D(0) +
O(t/λ).

Proof First note that because d(Q̃(ti ), Q(ti )) ≤ D(ti )/λ, it follows that ti+1 − ti =
D(ti )+ x D(ti ), where −1

λ ≤ x ≤ 1
λ . Thus, the target’s progress during the i th phase

is upper bounded as d(Q(ti ), Q(ti+1)) ≤ D(ti ) + x D(ti ). Next, by applying the
triangle inequality, the distance between P and Q at the beginning of phase ti+1 is
upper bounded as

d(P(ti+1), Q(ti+1)) = d(Q̃(ti ), Q(ti+1))

≤ d(Q̃(ti ), Q(ti )) + d(Q(ti ), Q(ti+1))

≤ D(ti )

λ
+ D(ti ) + x D(ti )

Finally, the upper bound on the rate of distance increase is

d(P(ti+1), Q(ti+1)) − d(P(ti ), Q(ti ))

ti+1 − ti
≤ D(ti ) + D(ti )/λ + x D(ti ) − D(ti )

D(ti ) + x D(ti )

= 1/λ + x

1 + x
≤ 2

λ + 1

where the final inequality uses the fact that theminimumvalue occurs when x = 1/λ.
Thus, during each phase the distance between the tracker and the target increases by
at most a factor of 2

λ+1 , giving the bound D(t) ≤ D(0) + O( t
λ ). �

4.2 Tracking Lower Bound

Our final result is to prove that the trackability achieved by ModifiedGreedy is
essentially optimal. In particular, we construct an environment with polygonal obsta-
cles and amovement strategy for the target that ensures D(t) ≥ D(0)+Ω(t/λ). The
construction of the polygonal environment is somewhat complicated and requires a
carefully designed set of obstacles. The main schema of the construction is shown
in Fig. 4, where each edge of the “tree-like” diagram corresponds to a “channel”
bounded by obstacles, and each face corresponds to a “gadget” consisting of a group
of carefully constructed obstacles, with the outer face occupied entire by a single
large obstacle.

As in the proof of Theorem2, the target moves either to top or the bottom point of
the gadget during a phase, depending on the tracker’s location. The gadget construc-
tion is such that the movement of the target along either path is indistinguishable to
the tracker because both paths are satisfied by a common set of observed locations
throughout the path. Thus, by invoking the earlier equivalence principle, we may as
well assume that the target knows the tracker’s choices. If the target moves to the
top, then the next phase occurs in the top gadget, otherwise the bottom, and so on.
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Fig. 4 A high level schema for the lower bound construction. The numbers next to the edges denote
the “path length” in the corresponding channels
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Fig. 5 The channel construction in (i). In ii the shortest paths between nodes on the center path
have length di

4λ , and the remaining all have length di
2λ

To realize the geometric scheme of Fig. 4, we replace each edge of the graph with
a channel as shown in Fig. 5i. The desired edge length can be realized by adding any
number of arbitrarily skinny bends such that the length of the shortest path through
each channel equals the edge length. Each face is replaced with a set of obstacles,
called a gadget, see Fig. 5ii for an abstract illustration. The jagged line between
each pair of nodes corresponds to a channel such that shortest path through that
channel has the given length. The target will move along the shortest path through
either the top or bottom channel while reporting its location in the center channel.
Meanwhile, the channels connecting the top and bottom to the center will guarantee
that d(Q(t), Q̃(t)) ≤ 1

λd(Q(t), P(t)) at all times t during a phase.

Gadget Construction and its Properties. We now describe the construction of our
gadgets and establish the geometric properties needed for the correctness of our lower
bound. Each gadget is constructed out of two building blocks, the bent channels seen
in Fig. 5i, and intersections depicted in Fig. 6i. Each intersection has the property
that the shortest path between any two of the points among a, b and c has length
2δ, where δ can be made arbitrarily close to 0. Thus we can construct a channel that
branches into two channels such that the path length through the intersection is the
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Fig. 6 In i an example intersection such that the shortest path between any pair of a b and c has
length 2δ. In ii an example gadget construction, where each triangle corresponds to an intersection
with corners representing the points a b and c. The horizontal channels have length di

4λ between
each pair of vertical dashed lines, except for the initial distance before the first line (which can be
made arbitrarily small), and the remaining spillover distance after the last dashed line

same regardless of the branch chosen. In Fig. 6ii, we depict the construction of a
gadget using only intersections (triangles) and channels (jagged lines).

As in the lower bound for the unobstructed case, the target starts the phase at Q(ti ),
and moves to qa or qb while the observed location of the targets moves along the
shortest path from Q(ti ) to qc. In particular, let Πa , Πc, and Πb denote the shortest
paths from Q(ti ) to qa , qc and qb respectively. The following lemma establishes
several properties needed for the feasibility of the target’s strategy.

Lemma 5 We can construct a gadget for each phase i such that (1) Πa, Πc and
Πb have length (1 + 1

λ )di and (2) for any point xc at distance � along Πc, the
corresponding points xa and xb distance � along Πa and Πb, respectively, satisfy
d(xc, xa) ≤ di

λ and d(xc, xb) ≤ di
λ .

Proof By construction, the shortest path in each channel between the dashed lines in
Fig. 6ii has length di

4λ , and therefore this construction can be extended until Πa , Πc

and Πb have length exactly (1 + 1
λ )di . Next, by the symmetry of the construction,

we need only show that d(xc, xa) ≤ di/λ. We ignore the case where xc lies in the
channels before the first dashed lines, as the length of such channels can be made
arbitrarily small to guarantee that d(xa, xc) ≤ di/λ. Themaximum distance between
xa and xc then occurs when xa lies at the midpoint between two intersections in the
top channel. However, in this case one can easily verify that the following holds:

d(xc, xa) = δ + di

4λ
− 2δ + 2δ + di

2λ
− 2δ + 2δ + di

4λ
− δ = di

λ

�

Gap Invariant and the Proof of the Lower Bound. We now formulate the invariant
maintained by the target so that its motion is valid under our (path proportionate)
localization error and achieves the desired lower bound.
SP-Gap Invariant. Throughout the i th phase, the target moves along a path Q(t) such
that D(t) ≥ di for all times t , and all reported locations satisfy d(Q(t), Q̃(t)) ≤ di

λ .
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Lemma 6 For the duration of phase i , SP-Gap Invariant is maintained.

Proof Whether Q moves along Πa or Πb, they are both shortest paths (and this
cannot be shortcut by P), implying that D(t) ≥ di for the duration of the phase.
Without loss of generality, suppose Q chooses Πa . Then, after time t , both the target
and its observed position have moved a distance of t along Πa and Πc, respectively.
Therefore, by Lemma5, we have d(Q(t), Q̃(t)) ≤ di

λ . �

We can prove our lower bound.

Theorem 5 The target’s strategy guarantees that after each phase ending at time t,
the distance function satisfies D(t) ≥ D(0) + Ω( t

λ ).

Proof The proof is by induction on the phase i . The basis of the induction is i = 0.
Since the localization error makes target’s top and bottom paths indistinguishable
to the tracker, the target can ensure that at the end of phase 0 the target is on the
side of Πc that is opposite P . Without loss of generality, suppose that that target has
reached qa . Then the best case for P is if it moved d0

λ along Πc, which achieves

D(t1) ≥ D(0) + D(0)
2λ .

Now assume by induction that after phase i − 1 ends at time ti , we have
D(ti ) ≥ D(ti−1) + D(ti−1)/2λ = di . Suppose now that P has yet to reach the
gadget corresponding to phase i when Q has finished phase i at time ti+1. Then
necessarily D(ti+1) ≥ di + di/λ, as that is the length Πa and Πb. Otherwise if P
has moved into the gadget, then the inequality D(ti ) ≥ di ensures that the clos-
est the target can be to the tracker is if P has moved di

λ along Πc, which implies

D(ti+1) ≥ D(ti ) + D(ti )
2λ .

Thus, in a round with duration (1+ 1
λ )di , the distance increases by at least di/2λ.

Thus, in the i th phase, the distance increases by a factor of at least

di/2λ

(1 + 1
λ )di

= 1

2λ(1 + 1
λ )

= 1

2 + 2λ

Thus, at the end of any phase, we have the inequality D(t) ≥ D(0) + Ω(t/λ),
which completes the lower bound. �

5 Extension to Higher Dimensions

Our analysis of trackability was carried out for 2-dimensional Euclidean plane, but
the results generalize easily to d dimensions. Indeed, in the unobstructed case, our
analysis of the upper bound only makes use of the triangle inequality: the region
of interest is the triangle formed by P(t), Q(t), and Q̃(t), and the target Q moves
directly away from P . Thus, within an arbitrarily small time intervalΔt , P and Q are
moving within the two-dimensional plane of the triangle P(t)Q(t)Q̃(t). The upper
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bound analysis therefore extend to any dimension d ≥ 2. The same reasoning also
holds in the presence of obstacles. Finally, the lower bound construction of d = 2
immediately implies that the trackability lower bound holds in all dimensions d ≥ 2.

6 Simulation Results

In our first simulation, we use a GPS trace of a hike available from [16]. Using the
scale of the GPS coordinate system, the total length of the trace is 0.51, and we place
the tracker at an initial distance of 0.014 away from the target (Fig. 7), so that their
initial separation is about 2.5% of the entire trajectory length. During the simulation,
the target follows theGPS trace, the trackermoves directly toward the current reported
location of the target, and they both have the same speed. The localization error for
this simulation is set to λ = 3, a fairly high level of imprecision. At each instant, the
revealed location Q̃ of the target makes the largest allowable angle (deviation) from
the P(Q()) line. In our simulation, we consistently chose Q̃ to be the rightward point
of tangency. However, results were similar or better if Q̃ is chosen using some other
rule such as, leftward point, or randomly chosen between left and right. In Fig. 7 we
depict the paths followed by the players and observe that despite the initial distance
between P and Q, and the large localization error, the tracker P quickly reduces its
distance to Q. In fact, the gap continues to shrink, becoming almost zero, after only
about 1/4 of the trace. The right hand figure zooms into the initial portion of the
trajectory to more clearly show the tracking path.

Our second simulation uses a synthetic trajectory to force a worst-case (adver-
sarial) tracking behavior: instead of moving along a fixed path, the target Q always
moves directly away from P . The tracker moves directly toward the observed loca-
tion Q̃, which as in the previous simulation is chosen as the rightward point of
tangency at maximum distance from Q. The error parameter is again set to λ = 3
and the simulation begins with P positioned at the origin and Q at the point (10, 10).

Q̃
Q
P

(i)

Q̃
Q
P

(ii)

Fig. 7 i shows the trajectories of P , Q, and Q̃. ii shows a zoomed-in view to illustrate the quick
tracking convergence
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Fig. 8 Paths taken by P , Q,
and Q̃ take in a worst case
simulation

Q̃
Q
P

The result is shown in Fig. 8. Essentially, P always moves to the right of Q’s true
location, and as a result Q moves further to the left at each step. This results in a
spiralling trajectory in which the distance between P and Q is increasing by approx-
imately 0.05 per time unit.

In another variation of this simulation, the initial conditions are the same, except
that Q̃ is chosen uniformly at random among all possible locations of Q̃. In this case,
we found that the distance between tracker and target grows only by about 0.005 per
time unit, namely, an order of magnitude better than the adversarial target of the first
simulation.

Finally, Fig. 9 graphs the increase in distance over time for this simulation setup.
The curves labeled upper and lower bounds show the theoretical limits established in
Sect. 2. Sim Worst and Sim Random show the results for the spiralling simulation,
bothwith theworst-case target trajectory and the random target trajectory.Weobserve
that in the worst case where Q̃ is always chosen at the maximum possible distance

Fig. 9 Growth in distance
over time for simulations and
proved bounds
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from Q, the distance growth is very close to our upper bound, but if Q̃ is chosen
randomly, the distance increase is about half of the theoretical (adversarial) lower
bound.

7 Conclusion

Our paper is an attempt to formally study the worst-case impact of noisy localization
on the performance of tracking systems. We analyzed a simple, but fundamental,
problem where a tracker wants to pursue a target but the tracker’s location sensor can
measure the target’s position only approximately, with a relative error parameterized
by quantity λ. We prove upper and lower bound on the tracking performance as
a function of this localization parameter λ. A few surprising consequences of our
results are (1) that the naive strategy of “always move to the observed location”
is asymptotically optimal, (2) the tracking error has a nice analytic form, showing
an inverse quadratic dependence on λ, and (3) under the natural “path proportional
error”for environments with obstacles, the trackability has qualitatively a different
dependence of the form Ω(1/λ).

Compared to often-used heuristics such as Kalman filters, our work offers a more
theoretical perspective for analyzing motion and localization errors in the presence
of inevitable noise, which may be especially useful in situations where worst-case
bounds are important, such as adversarial tracking or surveillance. In addition to
improving the constant factors in our bounds, it will also be interesting to study the
noisy sensing model for other more complex settings.
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Kinodynamic RRTs with Fixed Time Step
and Best-Input Extension Are Not
Probabilistically Complete

Tobias Kunz and Mike Stilman

Abstract RRTs are a popular method for kinodynamic planning that many consider
to be probabilistically complete. However, different variations of the RRT algorithm
exist and not all of them are probabilistically complete. The tree can be extended
using a fixed or variable time step. The input can be chosen randomly or the best
input can be chosen such that the new child node is as close as possible to the sampled
state according to the used distance metric. It has been shown that for finite input
sets an RRT using a fixed step size with a randomly selected input is probabilistically
complete. However, this variant is uncommon since it is less efficient. We prove that
the most common variant of choosing the best input in combination with a fixed time
step is not probabilistically complete.

1 Introduction

Rapidly-Exploring Random Trees (RRTs) as introduced by LaValle and Kuffner
[11, 13, 15–17] are a popular method for geometric and kinodynamic planning.
Many, e.g. [4, 5, 7], consider RRTs to be a synonym for probabilistic completeness.
However, this is not necessarily the case. Kinodynamic RRTs [13, 15–17] only have
the property of probabilistic completeness under a set of assumptions, which depend
on implementation details that are left open by the RRT algorithm. These details
govern how the time step and the input are chosen to extend the tree from the selected
node. While it has been shown that the RRT algorithm for kinodynamic planning
is probabilistically complete with a fixed time step and a random control input [16,
17], we now describe that the most commonly used variant is not probabilistically
complete in the general case. This variant uses a fixed time step and chooses the best
control input for the extension of the tree from the selected node. This variant is for
example used in [1, 2, 4, 6, 8, 18].

Even though we prove this variant to not be probabilistically complete in general,
it could potentially be made probabilistically complete by introducing additional
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requirements on the system dynamics and/or the used distance metric. In fact, one
of the goals of this paper is to spur further research on the exact conditions under
which RRTs are probabilistically complete.

1.1 Problem Formulation

In this analysis, consider a system with differential constraints given as

ẋ = f (x, u) (1)

with state x ∈ X and input u ∈ U .
The set of all collision-free states is given as Xfree ⊆ X . An initial state xinit ∈

Xfree and a goal set Xgoal ⊆ Xfree are given. We want to find a duration T and an
input trajectory u(t) such that the differential constraints of Eq.1 are satisfied for
all 0 ≤ t ≤ T , the trajectory is collision free with x(t) ∈ Xfree for all 0 < t < T ,
x(0) = xinit and x(T ) ∈ Xgoal.

1.2 Kinodynamic RRT Algorithm

A distance function ρ : X × X → [0,∞) is given, which establishes a concept of
closeness between states and is used by the RRT algorithm to extend the tree. Most
commonly the Euclidean distance is used.

Algorithm 1 shows the construction of an RRT. Lavalle and Kuffner introduced
different variants of the RRT algorithm. All RRT variants grow a tree from xinit by
sampling the state space (line 4) and then selecting the node in the tree closest to the
sampled state according to the provided distance function (line 5). This is visualized
in Fig. 1a. The NewState function (line 6) extends the tree from the selected node by
applying some input u ∈ U for some time step Δt . Variants of the RRT algorithm
differ in how Δt and u are chosen.

Algorithm 1: BuildRRT(xinit,Xgoal)

1 V ← {xinit};
2 E ← ∅;
3 while V ∩ Xgoal = ∅ do
4 xrand ← SampleState();
5 xnear ← NearestNeighbor(V, xrand);
6 (xnew, unew,Δt) ← NewState(xnear, xrand);
7 if CollisionFree(xnear, xnew, unew,Δt) then
8 V ← V ∪ {xnew};
9 E ← E ∪ {(xnear, xnew, unew,Δt)};

10 return (V, E);
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xinit
xrand

xnear

(a)

xinit
xrand

xnew

(b)

Fig. 1 Visualization of best-input RRT variant. The shown system is a double integrator with
ẋ1 = x2, ẋ2 = u and finite input set U . a Select nearest node. b Select best input

Early work on RRTs [13, 15] used a fixed time step Δt and chose the best input
u. Each input u is associated with a successor state, in which the system will end up
when applying the input for a fixed timeΔt from the current node. “Best input” refers
to the input whose successor state is closest to the sampled state. This is visualized
in Fig. 1b and formalized in Algorithm 2.

Algorithm 2: NewState(xnear, xrand)
(using fixed time step and best-input extension)

1 unew ← argminu∈U {ρ(Simulate(xnear, u,Δt), xrand)};
2 xnew ← Simulate(xnear, unew,Δt) ;
3 return (xnew, unew,Δt);

The Simulate function used in Algorithm 2 returns a successor state by simulating
the system forward by a given time step Δt using a given constant input u. I.e. it
returns x(Δt), such that the differential equation ẋ = f (x(t), u) with the initial
condition x(0) = xnear is satisfied.

If U is finite, the best input in line 1 of Algorithm 2 can be chosen by forward
simulating all inputs and evaluating all resulting successor states. If U is continuous,
this is not possible. Instead an analytical method must be used for an exact solution.
However, often the best input is approximated instead by choosing the best one out
of a finite number of sampled inputs.

Later, [16, 17] generalized the RRT algorithm and gave choices for the imple-
mentation of the NewState function. The time step Δt can either be fixed or variable
and either the best or a random input u can be chosen. Algorithm 1 is general enough
to allow all these variations. However, when the time step is fixed, the algorithm and
data structures can be simplified by leaving out Δt .
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Table 1 Probabilistic
completeness of different
kinodynamic RRT variants

Fixed Δt Variable Δt

Random u Probabilistically
complete (if U
finite) [16, 17]

?

Best u Not
probabilistically
complete [this
paper]

?

1.3 Probabilistic Completeness of Kinodynamic RRTs

An algorithm is probabilistically complete if the probability that an existing solution
is found converges to 1 as the number of iterations grows to infinity [14].

It has been shown in [16, 17] that if U is finite, Δt is fixed and u is chosen
at random, the RRT algorithm is probabilistically complete. However, choosing u
randomly may not result in the RRT exploring the state space rapidly.

In contrast, the preliminary RRT variant introduced in [13, 15] also uses a fixed
time stepΔt but chooses the best input u. The very first paper on RRTs [13] but none
of the later papers [15–17] claimed this variant to be “probabilistically complete
under very general conditions”. We show that this variant is not probabilistically
complete.

Restricting the RRT to a fixed time step renders the algorithm unable to find
solutions that do not consist of Δt long segments of constant input. However, even
if a solution with Δt long segments of constant input exists, the RRT with best-input
extension might never find it.

This section up until here is summarized in Table1.
As mentioned in Sect. 1.2 the best input out of a continuous input set is often

approximated in practice by sampling a finite set of inputs and choosing the best
input out of the finite set. This approximation may render the RRT algorithm proba-
bilistically complete because of the added randomness. However, an algorithm that
is probabilistically complete only thanks to approximation errors is likely to not be
very efficient.

1.4 RRTs Using Steering Methods

A steering method is able to exactly connect any two states x1, x2 ∈ X with ‖x1 −
x2‖ < ε for some ε > 0 while ignoring obstacles. Computationally efficient steering
methods are not available for general dynamical systems. They are only available for
a few simple systems, e.g. Dubin’s car [3, 14] and a set of double integrators [12]. A
steering method in combination with a collision checker yields what is called a local
planner in the probabilistic roadmap literature [10].
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To be generally applicable, kinodynamic RRTs as introduced in [13, 15–17] do
not require a steering method. Instead, they only rely on an incremental simulator
that can simulate the system forward for a given input and time step. However,
there are RRT algorithms that make use of a steering method. These are not the
topic of this paper. However, we want to briefly mention them in this section to
make the differences clear and to emphasize that the negative result on probabilistic
completeness presented in this paper does not apply to those.

A steering method usually returns a trajectory that minimizes some cost, e.g.
time. When using a steering method, the distance function used by the RRT is also
based on this steering method by defining the distance as the optimal cost to move
between two states ignoring obstacles. Karaman and Frazzoli [9] proved that an
RRT* using an optimal steering method in combination with a distance function
based on that steering method is probabilistically complete. Since an RRT* uses the
same vertices as an RRT, the RRT algorithm is also probabilistically complete under
these assumptions.

Geometric RRT planners [11] that use a Euclidean distance function and connect
configurations with a straight line in configuration space can also be viewed as using
a steering method and fit into the framework assumed in [9]. The straight line is
the trajectory that minimizes path length and the distance function returns that path
length.

Whereas RRT planners using steering methods have been most successful in
practice and come with guarantees on probabilistic completeness, not requiring a
steering method was one of the selling points when the RRTwas initially introduced.

2 Proof

We demonstrate that a kinodynamic RRT with fixed time steps and best-input exten-
sion is not generally probabilistically complete. The proof uses a counter example.

The RRT variant we are considering here selects both the node and the input by
evaluating closeness to the sampled state according to the provided distancemetric ρ.
In order for a node to get selected it must be the closest one to the sample. The same
goes for the input: In order to be selected, the successor state resulting from the input
must be the closest one to the sample among all the successor states resulting from
applying inputs from the current node. Even though for every node and for every
input there exist states such that the considered node or the considered successor state
is closest, in order for a specific input to be selected for extension from a specific
node, more is required: (1) The specific node must be the closest to the sample and
(2) among all the successor states resulting from applying inputs from the specific
node, the state resulting from the specific input must be the closest. We provide an
example case in which there is no state that could be sampled that satisfies both
requirements.

The system used as counter example is described in Sect. 2.1. In Sect. 2.2
we present a possible intermediate tree and in Sect. 2.4 we demonstrate that the
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considered RRT variant cannot explore the full reachable state space from that
intermediate tree because there exists a node and an input such that no sampled
state results in selecting both of them. Section2.3 provides some background of
Voronoi regions, which are used in the proof in Sect. 2.4.

2.1 Counter Example

Consider the following system with a 2-dimensional state vector [x1, x2], a scalar
input u and no obstacles.

ẋ1 = u (2)

ẋ2 = u2 − 3 (3)

with |u| ≤ 1 (4)

xinit

t = 0

t = Δt

t = 2Δt

t = 3Δt

x1

x2

Fig. 2 States reachable from xinit
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Note that −4 ≤ ẋ2 ≤ −2 and thus the system is always moving in negative
direction along the x2 axis. The set of possible successor states after a time step of
Δt from the current state is a segment of a parabola. Figure2 shows the set of states
reachable within 3Δt from some initial state xinit assuming constant input during a
fixed time step Δt .

Observe that the system being restricted to always move in the negative direction
of the x2 axis makes it impossible to revisit an earlier state. Also, all states at t = Δt
and t = 2Δt are only reachable at one specific point in time.

Our counter example uses a Euclidean distance for the RRT algorithm.

2.2 Intermediate Tree

A probabilistically complete algorithm must be able to explore the whole reachable
space from any intermediate tree that the algorithm might produce. Figure3 shows
what the RRT could look like after two extensions from the initial state. The new

xinit

xa xb

t = 0

t = Δt

t = 2Δt

t = 3Δt

x1

x2

Fig. 3 RRT after two extensions. Gray areas of the state space are never explored
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nodes xa and xb sit at the ends of the parabola segment that represents the reachable
space at time Δt .

If the algorithm was probabilistically complete, it would still be able to explore
the whole reachable space. However, we show that given this tree configuration, the
RRT is never going to explore the state space areas shown in gray, even though they
are reachable by the system. The parabola segment at t = Δt is never explored
except its endpoints. The unexplored space at t = 2Δt and t = 3Δt is just the result
of the unexplored parabola segment at t = Δt , since getting there requires moving
through a state in the interior of the parabola segment. Also, note that the unexplored
space at t = 2Δt and t = 3Δt does not play a role for our proof, since the inability
of the RRT to explore the interior of the parabola segment is enough for it to not be
probabilistically complete. Part of the unexplored space at t = 3Δt could potentially
still be explored at t = 4Δt , since it overlaps with the reachable space at t = 4Δt ,
which is not shown in the figure.

2.3 Background: Voronoi Regions

Even though Voronoi regions are a well-known concept, we are going to review them
in this section since our proof in the next section uses the less common concept of a
Voronoi region of an infinite set of points instead of only Voronoi regions of single
points.

Consider k subsets Si ⊂ X with i = 1 . . . k such that ∀i �= j : Si ∩ S j = ∅.
The sets Si are called sites. The Voronoi region of site Si is the set of all points that
is closer to Si according to our distance metric ρ than to any other site. Or more
formally

Vor(Si ) = {
x ∈ X | ∃ p ∈ Si ∀ j = 1 . . . k ∀q ∈ S j : ρ(x, p) ≤ ρ(x, q)

}
(5)

Note that in the common case all sites Si only contain a single point, but we are
also going to make use of a site Si containing infinitely many points. Also note that
Vor(Si ) does not only depend on Si but on all S j with j = 1 . . . k. A Voronoi diagram
is a tuple (Vor(Si ))i∈{1...k} of all the k Voronoi regions.

2.4 Non-exploration of Parabola Segment

Wenow look closer at t = Δt to determinewhy the interior of the parabola segment is
not explored by the RRT algorithm. As mentioned in Sect. 2.1, because the example
system is constrained to always move in negative x2 direction, the states on the
parabola segment can only be reached at time t = Δt . Thus, the parabola segment
can only be explored by extending the tree from the root node.
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Fig. 4 Voronoi diagram of
the three tree nodes, i.e. of
the three Voronoi sites
S1 = {xinit}, S2 = {xa} and
S3 = {xb}. The root node’s
Voronoi region is shaded
with lines

xinit

xa xb

Vor({xa}) Vor({xb})

Vor({xinit})

To extend the tree to the parabola segment, the random sample of the RRT algo-
rithm must fall in the Voronoi region of the root node. The Voronoi regions of the
three tree nodes (which are the Voronoi sites here) are shown in Fig. 4. The root
node’s Voronoi region is shaded with lines.

Now assume the RRT samples somewhere in the root node’s Voronoi region and
thus selects the root node as the nearest neighbor for extension. The next step is to
choose the input to use to extend the tree from the root node. The RRT variant we
are considering chooses the input such that the distance of the new child node to the
sampled state is minimized. Similar to the way the closest node to the sample gets
picked by the RRT algorithm, now the closest successor state of the selected node
gets picked. We will now look at Voronoi regions of different successor states of the
root node. We consider three sites and their Voronoi regions. Two sites are defined
to be the two end points of the parabola segment and the third site is the entire rest,
the interior, of the parabola segment. Note that the latter Voronoi site consists of
infinitely many states. The three Voronoi regions of those sites are shown in Fig. 5.
The Voronoi region of the interior of the parabola segment is shaded with dots.

For the RRT to explore the interior of the parabola segment, the sampled state
must lie in both, the Voronoi region of the root node and the Voronoi region of the
interior of the parabola segment. However, as Fig. 6 shows, the two Voronoi regions
don’t overlap. Thus, the RRT cannot explore the interior of the parabola segment and
the algorithm is not probabilistically complete.

Fig. 5 Voronoi diagram of
the successor states of the
root node. Three Voronoi
sites are considered: the two
endpoints of the parabola
segment, S1 = {xa} and
S2 = {xb}, and its interior
S3 = I . The Voronoi region
of the interior I of the
parabola segment is shaded
with dots

xa xb

I

Vor({xa}) Vor({xb})

Vor(I)
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Fig. 6 Combining the two
Voronoi diagrams from
Figs. 4 and 5: Voronoi
regions of the root node
(lines) and the interior of the
parabola segment (dots).
They do not overlap

xinit

xa xb

Fig. 7 Points within the root
node’s Voronoi region are
closer to either one of the
endpoints of the parabola
segment than to its interior

xinit

xa xb

Figure7 provides a slightly different illustration of the same fact that every sample
in the root node’s Voronoi region is closer to one of the endpoints of the parabola
segment than to its interior. The figure shows three exemplary points within the root
node’s Voronoi region. The dashed circles around them show that the closest point
on the parabola segment is always one of the endpoints.

2.5 Discrete Inputs

Above proof can easily be extended to the discrete case. For example we can replace
the entire interior of the parabola by a single input that leads to a state in the cen-
ter of the parabola segment. This means Eq.4 is replaced by u ∈ {−1, 0, 1}. The
voronoi regions for this discrete counter example are shown in Fig. 8. Similarly to
the continuous case, the zero-input state shown in gray will never be explored.

However, in the discrete-input case the RRT algorithm can be easily adapted to be
probabilistically complete by making sure that no input is applied to the same node
twice [14]. This forces the RRT to eventually try to expand all inputs of a node. This
adaption is not possible in the continuous-input case.
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Fig. 8 Discrete case:
Voronoi regions of the root
node (lines) and the
zero-input state (dots)

xinit

xa xb

3 Conclusion

We showed that a common variant of kinodynamic RRTs is not probabilistically
complete. This contradicts general perception that RRTs are inherently probabilisti-
cally complete. Instead, probabilistic completeness depends on the implementation
details of the RRT, the specific problem and/or the chosen distance metric. Whether
the RRT variant considered here can be made probabilistically complete by introduc-
ing constraints on the problem or distancemetric is left open for further research. The
question whether kinodynamic RRTs with a variable time step are probabilistically
complete is also left open.

Even though RRTs were initially designed for not requiring a steering method,
the finding in this paper provides an argument for using RRTs with a steering method
as we do in [12].
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Featureless Motion Vector-Based
Simultaneous Localization, Planar Surface
Extraction, and Moving Obstacle Tracking

Wen Li and Dezhen Song

Abstract Motion vectors (MVs) characterize the movement of pixel blocks in video
streams and are readily available. MVs not only allow us to avoid expensive feature
transform and correspondence computations but also provide the motion information
for both the environment and moving obstacles. This enables us to develop a new
framework that is capable of simultaneous localization, scene mapping, and moving
obstacle tracking. This method first extracts planes from MVs and their correspond-
ing pixel macro blocks (MBs) using properties of plane-induced homographies. We
then classify MBs as stationary or moving using geometric constraints on MVs.
Planes are labeled as part of the stationary scene or moving obstacles using MB vot-
ing. Therefore, we can establish planes as observations for extended Kalman filters
(EKFs) for both the stationary scene and moving objects. We have implemented the
proposed method. The results show that the proposed method can establish plane-
based rectilinear scene structure and detect moving objects while achieving similar
localization accuracy of 1-Point EKF. More specifically, the system detects moving
obstacles at a true positive rate of 96.6 % with a relative absolution trajectory error
of no more than 2.53 %.

1 Introduction

For most mobile robots in GPS-challenged environments, simultaneous localization
and mapping (SLAM) and obstacle avoidance are two critical navigation function-
alities. They are often handled separately because SLAM usually views moving
obstacles as noises in the environment whereas obstacle avoidance only concerns
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the relative motion between the robot and obstacles. This artificial separation was
mostly due to the limitation of existing methods. Both SLAM results and obstacle
motion information should be considered together when planning robot trajectories
in real applications. In fact, the artificial separation can lead to problems such as
synchronization or redundant processing of information, which are not desirable for
time, power, and computation constrained mobile robots.

Motion vectors (MVs) characterize the movement of pixel blocks in video streams,
which are readily available. With a monocular camera as the only sensor, we have
employed MVs from video streams to create a new featureless SLAM method
for visual navigation [14]. However, the method assumes a stationary environment
despite that MVs encode motion information for both the environment and moving
objects.

Here we show that MVs allow us to develop a new algorithm that is capable of
performing the SLAM task and obstacle tracking in a single framework by simultane-
ous localization, planar surface extraction, and tracking of moving objects. Assuming
a quasi-rectilinear urban environment, this method first extracts planes from MVs
and their corresponding pixel macro blocks (MBs). We classify MBs as station-
ary or moving. These steps are based on geometric constraints and properties of
plane-induced homographies under random sample consensus (RANSAC) frame-
work. Planes are labeled as part of the stationary scene or moving obstacles using an
MB voting process. This allows us to establish planes as observations for extended
Kalman filters (EKFs) for both the stationary scene and moving objects. We have
implemented the proposed method and compared it with the state-of-the-art 1-Point
EKF [4]. The results show that the proposed method achieves similar localization
accuracy. The relative absolute error is less than 2.53 %. At the same time, our method
can directly provide plane-based rectilinear scene structure, which is a higher level of
scene understanding, and is capable of detecting moving obstacles at a true positive
rate of 96.6 %.

2 Related Work

Our work relates to vision-based SLAM (vSLAM) with a monocular camera. The
general goal of vSLAM is to estimate the robot pose and reconstruct the 3D envi-
ronment, while the robot travels in the environment. In a regular vSLAM approach,
the environment is represented by a collection of landmarks, and cameras are used
as the only sensors to provide observations for landmarks.

Depending upon landmarks/features, existing works for monocular vSLAM can
be classified into different categories. Feature points have been well studied and are
the most commonly used landmarks. A comprehensive study of different point detec-
tors is provided in [11], where features like Harris corner, smallest univalue segment
assimilating nucleus (SUSAN), scale invariant feature transform (SIFT), and speeded
up robust features (SURF) are compared in aspects of stability and discover rates.
Low level features like edgelets [6] and lines [13] are also studied, and combined
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for better performance. Recently, high-level features like 3D lines and planes [9, 10,
15–17, 20, 25] are introduced to vSLAM works to construct hierarchical environ-
ment representations, and semantic features such as vertical and horizontal lines [8]
also attract attentions. All of these works require feature transform, which is often
computationally expensive.

For many vSLAM works, a common assumption is that the environment is station-
ary. This assumption becomes invalid when a robot navigates in an urban environment
with moving vehicles and pedestrians. In recent years, vSLAM in dynamic environ-
ments receives increasing research attention. In existing methods, this problem is
separated as a vSLAM in a stationary environment and a 3D visual tracking problem
for each moving object [22, 23]. Our work is similar to these works in that we use
multiple filters to track stationary and moving objects separately. However, exist-
ing methods do not perform motion separation and only work when the stationary
landmarks are fixed or the moving objects’ templates are given. To integrate motion
separation with vSLAM, Zhou et al. [26] propose a multi-camera based approach
using multiple views to triangulate points and compare the reprojection error between
frames to differentiate stationary and moving points. For a monocular camera, the
triangulation approach is not applicable within a single frame. Therefore, our work
relies on an MV-based motion segmentation method using adjacent frames.

The motion separation in our work relates to motion-based object detection in
monocular vision. Many existing MV-based object detection approaches require a
stationary background [1, 7, 19, 24]. Assuming that MBs on an object have the same
motion, different clustering methods, such as expectation-maximization (EM) [1] and
mean-shift [19], are used to classify foreground MVs into different regions. With the
given object regions, the tracking can be performed by searching along all MVs in the
object region [7]. However, these methods do not apply to our problem because the
background is not stationary in our videos, and the object motion on images cannot
be approximated by affine motion. Similar to MVs, optical flows (OFs) enable many
motion-based object-detection work [3, 5, 18]. When a camera moves, OFs are used
to detect a single dominant plane with the homography constraint [18]. When the
dominating plane is the ground plane in [3], an OF model for the ground plane
movement is estimated according to the camera motion where all mis-matchings to
the model are detected as obstacles. Considering the low accuracy of MVs, we also
use planes as landmarks in our work. However, the camera motion is unknown in
our model.

3 Problem Formulation

3.1 System Overview and Introduction to Motion Vectors

Figure 1 shows that the proposed system consists of three parts: the plane extrac-
tion and camera motion estimation (top), the stationary scene filter (middle), and the
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Fig. 1 System diagram. The ∗ represents the output of plane labeling, which is also the input to
three sub-blocks below

moving object filter (bottom). The plane extraction and camera motion estimation
takes MVs as input and outputs labeled stationary/moving planes and the estimated
camera motion between the adjacent frames. The extracted stationary planes and
camera motion information are fed into the stationary scene filter to perform local-
ization and mapping tasks. The extracted moving planes are entered to the moving
object filter for tracking. Since moving and stationary planes are not permanent in
applications (e.g. a moving car may come to a stop), a plane management module
is introduced to allow us to add, remove, verify, and/or re-label them according to
EKF outputs.

Filtered MVs are the input to the entire system. Let us briefly introduce MVs here.
Detailed description and the filtering process can be found in [14]. Moving Picture
Experts Group (MPEG) stands for a class of video compression algorithms that are
the most popular in use today. To achieve compression, each frame is partitioned
into MBs in MPEG-1/2/4 standards (e.g. MPEG-2 codec uses 16 × 16-pixel MB).
During encoding, block matching is performed to find similar MBs in reference
frames. An MV is then established to represent a 2D shift of an MB with respect
to (w.r.t) the reference frame. Depending on group of picture structure in different
MPEG protocols, raw MVs may point to multiple future or past reference frames.
It is worth noting that MVs are often noisy or missing due to the fact that MVs are
computed purely based on the similarity of MBs. The similarity could be corrupted
by occlusion, lighting, and large perspective changes or tricked by repetitive patterns.

Comparing with optical flows, MVs are readily available. However, MVs are
sparser in spatial resolution but denser in temporal dimension. In [14], we have
showed how to exploit this characteristic to reduce noise in MVs, which results in
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the filtered MVs. Actually, filtered MVs represent the set of corresponding MBs
between key frames k and k − 1, and are denoted by

Ck→k−1 := {xk−1 ↔ xc
k}, (1)

where xc
k indicates the center of the MB in reference frame k and xk−1 shows its

corresponding position in reference frame k − 1.

3.2 Problem Definition

To formulate the problem, we assume the urban scene can be approximated using
planes: stationary or moving. A set of stationary planes is a good representation of
quasi-rectilinear urban environments and always exists in sight. Moving planes can
approximate vehicle exteriors. We assume that there are more stationary planes than
moving objects. We also assume that moving planes follow pure translation in the
short duration of observation. The intrinsic camera matrix K is constant and known
through pre-calibration. All 3D coordinate systems are right-handed coordinates, and
common notations are defined as follows:

• Coordinate systems: {Φk} is a camera coordinate system (CCS) at frame k. For
each CCS, its origin locates at the camera optical center, z-axis coincides with the
optical axis and points to the forward direction of the camera, its x-axis and y-
axis are parallel to the horizontal and vertical directions of the CCD sensor plane,
respectively. The world coordinate system (WCS) {W } coincides with {Φ0}. To
differentiate variables in CCS and WCS, a superscription k means the variable
is in {Φk} or its corresponding image coordinate system, while no superscription
is default for {W }. In addition, a superscription k → k − 1 means from {Φk} to
{Φk−1}

• Image coordinate system: x ∈ P
2 is the homogeneous representation of an image

coordinate where P
2 is 2D projective space.

• 3D planes: π = [nT, d]T represents a 3D plane, where n ∈ R
3 is the plane normal

vector and d is the plane depth. π̃ = n/d is the inhomogeneous form.
• Subscripts: k is the time/frame index. To distinguish stationary scene and moving

objects, a subscript s stands for stationary and d represents dynamically moving.
For example, πs,k is a stationary plane at frame k.

• εF (xk−1, xk, F) denotes the Sampson’s error (p. 287 in [12]) for fundamental
matrix F , where xT

k F xk−1 = 0. εH (xk−1, xk, H) denotes the Sampson’s error
(p. 99 in [12]) for homography matrix H , where xk−1 = H xk .

With the notations defined, we formulate the problem as below:

Problem 1 Given the set of MVs, Ck→k−1, up to time/frame k, estimate camera
rotation Rk from {W } to {Φk} and camera location tk in {W } for each frame k,
identify/label MBs for each plane, and reconstruct stationary and moving planes.
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To solve this problem, we begin with planar surface extraction and camera motion
estimation (top box in Fig. 1).

4 Planar Surface Extraction and Camera Motion Estimation

Since MVs are often too noisy to be used directly, we exploit the coplanar property
of MBs in each adjacent key frame pair to filter MVs. We estimate camera motion
first and then use the motion information to label MBs by identifying whether they
belong to stationary scene or moving objects. This allows us to establish planes as
observations for the later EKF-based approach.

4.1 Initial Estimation of Camera Motion

With the input MVs Ck→k−1 defined in (1), let us estimate camera motion between
two adjacent frames. The correct MV for the stationary scene across adjacent frames
should conform the relation

(xc
k)

T Fk→k−1xk−1 = 0, (2)

where Fk→k−1 is the fundamental matrix between the two frames. We first obtain
an initial Fk→k−1 using normalized 8-point algorithm under RANSAC framework
(p. 281 in [12]). This gives the inlier correspondence set for Fk→k−1:

Ck→k−1
F := {xk−1 ↔ xc

k : ‖(xc
k)

T Fk→k−1xk−1‖ < ε f , xk−1 ↔ xc
k ∈ Ck→k−1},

(3)

where ε f is an error threshold and ‖·‖ represents the l2 norm. This verification filters
out many non-static MBs and noisy MVs that do not move along the epipolar line,
such as the black arrows in Fig. 2a.

The fundamental matrix can be parameterized by camera rotation and translation
as follows:

Fk→k−1 = K −T[tk→k−1]× Rk→k−1 K −1 (4)

where Rk→k−1 is the camera rotation matrix from {Φk} to {Φk−1}, tk→k−1 is the
camera translation from {Φk} to {Φk−1} measured in {Φk}, and [·]× stands for the
skew-symmetric matrix representation of the cross product.

Therefore, by minimizing Sampson’s error on set Ck→k−1
F using Levenberg-

Marquardt algorithm:

min
Rk→k−1,tk→k−1

∑

xk−1↔xc
k∈Ck→k−1

F

εF (xk−1, xc
k, Fk→k−1), (5)

we obtain an initial estimation of camera motion between adjacent frames.



Featureless Motion Vector-Based Simultaneous Localization … 251

0

(b)(a)

e

xc
k

x’k-1

Fig. 2 Illustration of the MB labeling process (best viewed in color). The white dot and lines are
the epipole and epipolar lines, respectively. Arrows indicate the movement of MBs between two
adjacent frames. a MV direction constraint illustration: The camera motion is voted to be “forward”,
and red MBs are labeled stationary MBs, green and black MBs are moving MBs, and blue MBs
are detected to be on the plane at infinity. b MV magnitude constraint illustration. Red arrows
are labeled stationary, and the green arrows are moving. The red dashed line illustrates the fitted
relationship between ‖x′

k−1xc
k‖ and ‖exc

k‖ along the white epipolar line

4.2 MB Labeling for Stationary and Moving Objects

Before estimating planes, we need to properly classify MBs that belong to moving
objects or the stationary scene. The simple verification in (3) cannot filter out all
MBs on moving objects from the stationary background. If a vehicle moves along the
epipolar line, then the corresponding MBs also satisfy (3). This happens frequently
when a vehicle is in front of the camera and moves in the same direction with the
camera on a straight road. The green arrows on the vehicle in Fig. 2a show a sample
case. Since there are two cases: passing vehicles from the same direction of camera
motion and approaching vehicles in the opposite direction, we verify the direction
and magnitude of the MVs to identify them, respectively.

MV direction constraint: For a passing vehicle on a straight road, the MVs of the
vehicle move along the epipolar line in an opposite direction with the background
(e.g. the green arrows in Fig. 2a). If we know the camera moving direction, these
MVs can be detected by checking direction consistency. Therefore, we start with
detecting the camera moving direction. Since we know camera rotation from (5) and
are only interested in camera translation, we can remove the effect of camera rotation
first. This is done by projecting xk−1 to x′

k−1

x′
k−1 = sK Rk→k−1 K −1xk−1 (6)

where s is a scalar. After the projection, the displacement between x′
k−1 and xc

k
is caused by pure camera translation for stationary MBs. According to epipolar
geometry (p. 247 in [12]), when the camera performs a pure translation, the epipole
e should be a fixed point, and all stationary MBs should appear to move along lines
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radiating from the epipole (see Fig. 2a). The colored dots in the figure are x′
k−1 and

the arrows point to xc
k , an illustration of MVs.

If the camera moves forward along its optical axis, vectors
−−−→
ex′

k−1 and
−−−−→
x′

k−1xc
k

should be in the same direction, as the red arrows in the highlighted circle shown in

Fig. 2a. If the camera moves backward,
−−−→
ex′

k−1 and
−−−−→
x′

k−1xc
k should be in the opposite

direction. Denote the absolute angle between
−−−→
ex′

k−1 and
−−−−→
x′

k−1xc
k as α. Of course, the

perfect collinear relationship may not hold due to noises in the system. α is always
somewhere between 0 and 180◦. We examine each MV xk−1 ↔ xc

k ∈ Ck→k−1
F . If

its α is less than 90◦, a vote of “forward” is assigned, otherwise a “backward” vote
is assigned. Then the camera moving direction is obtained as the majority direction
from all inlier correspondences. Figure 2a shows the camera moving direction is
voted as “forward" because most of the MBs move away from the epipole. With the
detected camera moving direction, we can identify MBs belonging to passing vehicles
easily. However, this would not work for vehicles approaching the camera along the
direction parallel to camera motion vector. The MVs on the approaching vehicles
also move along the epipolar line and share the same direction as the background
motion. For such cases, we need to verify the magnitude of MVs.

MV magnitude constraint: The additional motion introduced by the object results
in sudden changes of MV magnitude along the epipolar line. To detect this type
of moving objects, we start with computing the magnitude of MVs after remov-

ing camera rotation. Denote the MV magnitude of xk−1 ↔ xc
k as ‖−−−−→

x′
k−1xc

k‖, and

the Euclidean distance between the MB and the epipole as ‖−→exc
k‖. From projective

geometry we know that closer objects have larger displacements under the same cam-

era motion. Therefore, along one epipolar line, ‖−−−−→
x′

k−1xc
k‖ should gradually increase

as ‖−→exc
k‖ increases. For each epipolar line, we approximate the 2D relationship

between ‖−−−−→
x′

k−1xc
k‖ and ‖−→exc

k‖ using RANSAC-based line fitting. An example of the
fitted relationship is shown by the dashed line at the bottom of Fig. 2b. Therefore,

for a given ‖−→exc
k‖ on the epipolar line, a predicted MV magnitude ‖−̃−−−→

x′
k−1xc

k‖ can
be obtained from the fitted relationship (dashed circles in Fig. 2b). If the difference

between ‖−̃−−−→
x′

k−1xc
k‖ and ‖−−−−→

x′
k−1xc

k‖ is greater than a threshold εe, we consider the
corresponding MB is potentially moving. In the example shown in Fig. 2b, the green
MBs have magnitudes much greater than the expected red dashed line, and are thus
labeled as moving MBs.

With the above constraints, we can label every MB and partition the set Ck→k−1

into a stationary correspondence set Ck→k−1
s and a moving correspondence set

Ck→k−1
d , where Ck→k−1

s
⋃

Ck→k−1
d = Ck→k−1:

Definition 1 (MB Labeling) An MV xk−1 ↔ xc
k ∈ Ck→k−1 and its correspond-

ing MBs are labeled as stationary xk−1 ↔ xc
k ∈ Ck→k−1

s , if the following three
conditions are all satisfied:
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(1) xk−1 ↔ xc
k ∈ Ck→k−1

F ,

(2) α < 90◦ if camera moves forward or α ≥ 90◦ if camera moves backward,

(3) |‖−̃−−−→
x′

k−1xc
k‖ − ‖−−−−→

x′
k−1xc

k‖| < εe.

Otherwise, the MB belongs to moving objects: xk−1 ↔ xc
k ∈ Ck→k−1

d .

In Fig. 2a, the MBs on building facades are labeled as stationary with red arrows
whereas the MBs on the vehicle are labeled as moving.

4.3 Initial Plane Extraction and Labeling

With the labeled MB correspondences, we are able to extract planar regions. Since
MBs in the plane at infinity π∞ have very low signal-to-noise ratio for camera
translation estimation, they should be removed before plane extraction for better
accuracy. Denote the set of correspondences in π∞ as C∞,

Ck→k−1∞ := {xk−1 ↔ xc
k : ‖x′

k−1 − xc
k‖ < εm, xk−1 ↔ xc

k ∈ Ck→k−1
s } (7)

where εm is the motion threshold. Figure 2a shows the detected π∞ in blue arrows.
On the rest of correspondences Ck→k−1 \Ck→k−1∞ , RANSAC is applied iteratively

to extract all possible planes. To extract one plane, four correspondences are sam-
pled, and a homography H is obtained using normalized direct linear transformation
(p. 109 in [12]). Then, all correspondence resulting in an error below a given thresh-
old: ‖xk−1−λH xc

k‖ < εh, is labeled as an inlier to the plane. In each RANSAC itera-
tion, one largest plane is extracted, and its inliers are removed before next RANSAC
iteration. This iterative RANSAC procedure can be replaced by J-linkage [21] if
needed.

Then a set of planes,Πk→k−1 = {π̃k
i , i ∈ I} is initially constructed from {Φk}. We

use I to denote the index set for planes, and i ∈ I is the i th plane. For each extracted
plane π̃k

i , we denote its corresponding MV set as Ck→k−1
π,i . Thus,

⋃

i∈I
Ck→k−1

π,i ⊆
Ck→k−1\Ck→k−1∞ . To perform tracking and improve plane estimation, all planes need
to be labeled as either stationary or moving. With the MB labeling result Ck→k−1

s

and Ck→k−1
d , the plane labeling is determined by the result of a majority voting of

labeled MBs.

Definition 2 (Plane Labeling) A plane π̃k
i ∈ Πk→k−1 and its corresponding MV set

Ck→k−1
π,i are labeled as stationary π̃k

i,s andCk→k−1
π,i,s , respectively, if |Ck→k−1

π,i

⋂
Ck→k−1

s

| > |Ck→k−1
π,i

⋂
Ck→k−1

d |. Otherwise, they are labeled as moving objects, π̃k
i,d and

Ck→k−1
π,i,d , respectively.
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After the labeling step, the set of all planes Πk→k−1 is partitioned into

Πk→k−1 = Πk→k−1
s

⋃
Πk→k−1

d , (8)

where Πk→k−1
s = {π̃k

i,s} is the set of stationary planes and Πk→k−1
d = {π̃k

i,d}
denotes the set of moving planes.

4.4 Plane Re-Estimation and Observation Extraction

With the labeled planes, we can refine all estimations and prepare observations for
EKFs. We start with the stationary scene and the camera motion. For a stationary
plane π̃k

i,s , the correspondences xk−1 ↔ xc
k ∈ Ck→k−1

π,i,s conform to homography
relation:

xk−1 = Hk→k−1
i xc

k = K (Rk→k−1)−1[I3×3 + tk→k−1(π̃k
i,s)

T]K −1xc
k, (9)

where Hk→k−1
i is the homography matrix introduced by the plane, I3×3 is a

3-dimensional identity matrix. Therefore, for the stationary scene, the observations
of relative camera motion and stationary plane equations can be estimated by mini-
mizing the total errors of fundamental relationship in all stationary correspondences
and homography relationship in all planar correspondences:

min
Rk→k−1,tk→k−1,π̃k

i,s∈Πk→k−1
s

∑

xk−1↔xc
k∈Ck→k−1

s

εF (xk−1, xc
k, Fk→k−1)

+
∑

i

∑

xk−1↔xc
k∈Ck→k−1

π,i,s

εH (xk−1, xc
k, Hk→k−1

i ) (10)

where Fk→k−1 and Hk→k−1
i are from (4) and (9), respectively. The resulting optimal

Rk→k−1, tk→k−1 and π̃k
i,s’s are inputs to the stationary EKF in the next section.

For a moving plane π̃k
i,d , denote its translation as td . If we back shift the plane by

−td , then a homography relationship can be established for xk−1 ↔ xc
k ∈ Ck→k−1

π,i,d ,

Hk→k−1
i = K (Rk→k−1)−1[I3×3 + (tk→k−1 − tk→k−1

i,d )(π̃k
i,d)T]K −1, (11)

Therefore, a moving plane is estimated by minimizing the following,

min
π̃k

i,d ,tk→k−1
i,d

∑

xk−1↔xc
k∈Ck→k−1

π,i,d

εH (xk−1, xc
k, Hk→k−1

i ) (12)
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where Hk→k−1
i is from (11) with the estimated camera motion from (10). The

resulting optimal plane equations and translations are inputs to the individual moving
object filters later.

5 EKF-Based Localization and Tracking

With the planes and camera motions extracted for adjacent key frame pairs, we can
feed them as observations to EKFs for global robot localization, stationary plane
mapping, and moving object tracking. As Fig. 1 shows, the robot localization and
stationary plane mapping are handled by one single EKF below.

Camera Localization and Static Scene Mapping: Based on stationary planes,
this part is similar to the traditional visual SLAM problem. Following an EKF frame-
work, we define the state vector μk for the EKF filter as follows:

μs,k = [. . . , π̃T
i,s,k, . . . , rT

k , tT
k , ṙT

k , ṫT
k ]T, (13)

which includes the plane equations in {W }, the y-x-z Euler angles rk for camera
rotation from {W } to {Φk}, the camera location tk in {W }, camera motion velocity
ṫk in {W }, and the angular velocity of the camera ṙk in {Φk}. Since stationary planes
are segmented as observations, the problem is reduced to the same problem in [14].
We can employ the same EKF design in [14].

Moving Object Tracking: Similarly, this step is also handled using EKF (the
bottom part of Fig. 1). Moving objects are considered to move independently w.r.t
to the camera and each other. We employ one EKF to track each moving object
individually. In each EKF, one global plane equation and one velocity vector are
tracked. Here, we assume the motion of moving plane follows a constant linear
velocity in {W } without rotation, which is usually true for pedestrians or vehicles
appearing in the camera view for a short period of time. The state vector for a single
moving plane filter becomes

μi,d,k = [π̃T
i,d,k, v

T
i,d,k]T, (14)

where vi,d,k is the velocity of the i th object in {W }. The state transition for the moving
object i is straightforward:

{
π̃i,d,k = π̃i,d,k−1/(1 − π̃T

i,d,k−1vi,d,k−1τ )

vi,d,k = vi,d,k−1
, (15)

where τ is the time interval. The observations for the moving object filters are the
estimated plane equations in {Φk}, and the observation function is the transform
between coordinate systems given the camera rotation and translation:

zi,d,k = [(π̃k
i,d)T, (tk→k−1

i,d )T]T =
[

R(rk)
−1π̃i,d,k/(1 + π̃T

i,d,k tk)

−τ R(rk)
−1vi,d,k

]
. (16)
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Plane Management: Apart from removal of planes that are no longer in the sight
from the corresponding EKFs, plane labels are not permanent as a moving object
may come to a stop or a parked vehicle may start moving. Since each plane has a
stationary/moving label, plane label exchange happens when the label of an existing
plane is not consistent with the outcome of the EKF. A moving plane’s label will
also be changed to stationary if its velocity is close to zero. When a plane changes
its label, the corresponding state variables are moved from previous EKF filter to the
EKF corresponding to the new label, with an initialized velocity if necessary. For
each newly discovered plane, its parameters are added into the corresponding EKF
according to its label.

6 Experiments

We have implemented the proposed system using C/C++ in Cygwin environment
under Microsoft Windows 7. To test the performance of the method, evaluation is
conducted in the following three aspects: the localization error, the stationary plane
estimation error, and the detection of moving planes.

6.1 Localization Evaluation

Dataset: We perform the evaluation using the Màlaga urban dataset [2] which pro-
vides stereo videos from vehicle driving in a dense urban area. The video frame
rate is 20 fps. Images with a resolution of 1024 × 768 are rectified and the intrinsic
camera matrix after rectification is provided. Ground truth data are collected using
multiple sensors including GPS, IMU, and laser range finder. Since we assume the
scene is quasi-rectilinear with many static planes, two typical urban scenes from the
data set are used in the experiment. Since our method is monocular, we only use
the images from the left camera in the dataset. Sample thumbnails of frames in the
experiment are shown in Fig. 3. The lengths (i.e. travel distance) of the two sequences
are provided in Table 1.

Metric: The localization result is compared with GPS data. The GPS data is
sampled once per second, and the image time stamps are aligned according to the
GPS clock. The errors are measured using the absolute trajectory error (ATE) [4].

We define the GPS coordinate system by {G} and the camera position in {G} as t̂
G
k .

For the estimated camera position tk in {W }, a similarity transformation (rotation
RW→G , translation tW→G and scale s) is applied to transform the position to the
GPS coordinate tG

k = s RW→G tk + tW→G . The rotation, translation and scale are
obtained via a non-linear optimization that minimizes the total error between the GPS

data t̂
G
k and the transformed estimation result tG

k . Therefore, the ATE for a frame k

is defined as ek = ‖tG
k − t̂

G
k ‖.
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Fig. 3 Trajectories and sample frame thumbnails. a and c are the camera trajectories in the two
sequences, measured in meters. Black lines are the GPS ground truth, red solid lines are the estimated
trajectories using our method and the blue dashed lines are trajectories estimated using [4]. b and
d are the sample image frames in the two sequences

Table 1 Localization results using the Màlaga dataset

Length (m) # frames Method Mean ATE
(m)

Max ATE (m) % over
distance

Seq 1

201.08 497 Our method 2.87 6.33 1.43

1-Point EKF 1.99 3.67 0.99

Seq 2

133.76 318 Our method 3.38 4.99 2.53

1-Point EKF 9.08 12.30 6.80

Comparison: We compare our result with the popular 1-Point EKF [4] since
both methods are EKF-based. The 1-point EKF [4] approach uses feature points
as landmarks. Their system is tested under long distance trajectories with robust
performance. The code for 1-Point EKF is acquired from the authors’ website and is
directly run in Matlab on our testing dataset. Table 1 shows the mean and maximum
ATE for each sequence for both methods. The results show that the mean ATEs of our
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method are below 3.5 m for both sequences and are below 3 % of the overall trajectory
length, which is comparable to [4]. In the first sequence, the vehicle travels on a mostly
straight road, with occasional lane changes. In this case, our method and [4] perform
similar, with [4] slightly better. In the second sequence, the vehicle starts from straight
driving and experiences curved road later. In this case, our method outperforms [4]
over 5 m in average. This experiment confirms that MV-based featureless navigation
method is feasible.

6.2 Stationary Plane Estimation

To evaluate plane mapping accuracy, we compare our method with our previous
work [14] which is referred as SLAPSE method since it only performs localization
and plane mapping without ability of tracking moving objects. We use the dataset
from [14] for comparison where ground truth is computed by points measured using
a laser distance measurer with ±1 mm accuracy. The reason that we do not use the
Màlaga urban dataset here is because there is no ground truth data for planes. Similar
to [14], we only consider the planes that appear in more than 3 continuous frames.
The same error functions in [14] for plane depth and angles are used:

εd = 1
∑

i Ni

∑

i

∑

k

|dk
i,k − d̂k

i,k |, and εn = 1
∑

i Ni

∑

i

∑

k

| arccos((nk
i,k)

T · n̂k
i,k)|,
(17)

where Ni is the number of frames plane i appears, andˆstands for the ground truth.
The number of planes extracted in the site and the estimation errors are shown in
Table 2. The comparison results show our method improves the estimation of scene
planes in both depth and orientation accuracy.

6.3 Moving Object Detection

To evaluate the performance of moving object detection, the test is focused on the
plane labeling algorithm as the EKF-based tracking performance is determined by
the labeling correctness. A dataset of 64 video clips are manually collected from
the Internet, such as YouTube. All video clips are recorded by cameras mounted on
vehicles driving in urban environments. The frame rates vary between 23 and 30 fps,

Table 2 Static plane
estimation results

Method # planes εd (m) εn (degs.)

Our method 5 0.55 6.80

SLAPSE 5 0.61 7.07
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Fig. 4 Detected moving objects are highlighted with red rectangles

and the image resolution is between 640×360 and 1024×768. From all videos, there
are a total of 88 moving vehicles that are manually identified, and their bounding
box in each frame in annotated as ground truth. Note that the vehicles parking at red
light or curbside are not labeled as moving objects, and the vehicles that are very far
are not labeled because they are not objects of interest for collision avoidance.

Then the plane extraction and labeling method in Sect. 4 is applied to extract
stationary and moving planes. Among 88 labeled moving objects, 85 are detected and
labeled as moving planes, and the detection rate is 96.6 %. Among the 3 failure cases,
2 cases are caused by lack of correct MVs on the vehicles. This situation happens
when the vehicle is too texture-less and has a color either similar to the ground or with
large saturation. Another 1 case happens because the vehicle is relatively stationary
to the camera, thus the MVs on it are not distinguishable from those on the infinite
plane. The right most vehicle in Fig. 2b shows an example of this situation. Actually,
due to the zero relative speed, that vehicle is not a concern for collision avoidance
purpose.

Figure 4 shows some examples of the detected moving planes in a bounding box.
The detection of moving object helps to separate outliers and wrong MVs that influ-
ence the static localization and mapping results.

7 Conclusion and Future Work

We presented a new algorithm that is capable of performing SLAM task and obsta-
cle tracking using MVs as inputs. This algorithm simultaneously localizes the robot,
establishes scene understanding through planar surface extraction, and tracks moving
objects. To achieve this, we first extracted planes from MVs and their correspond-
ing pixel MBs. We labeled MBs as either stationary or moving using geometric
constraints and properties of plane-induced homographies. Similarly, planes were
also labeled as either stationary or moving using an MB voting process. This allows
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us to establish planes as observations for extended Kalman filters (EKFs) for both
stationary scene mapping and moving object tracking. We implemented the pro-
posed method and compared it with the state-of-the-art 1-point EKF. The results
showed that the proposed method achieved similar localization accuracy. However,
our method can directly provide plane-based rectilinear scene structure, which is a
higher level of scene understanding, and is capable of detection moving obstacles at
a true positive rate of 96.6 %.

In the future, we plan to adopt a local bundle adjustment approach to further
improve localization accuracy. We will combine MVs with appearance data to estab-
lish higher level scene mapping. Fusing with other sensors such as depth or inertial
sensors is also under consideration.
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Sparse Methods for Efficient Asymptotically
Optimal Kinodynamic Planning

Yanbo Li, Zakary Littlefield and Kostas E. Bekris

Abstract This work describes STABLE SPARSE RRT (SST), an algorithm that
(a) provably provides asymptotic (near-)optimality for kinodynamic planning with-
out access to a steering function, (b) maintains only a sparse set of samples, (c)
converges fast to high-quality paths and (d) achieves competitive running time to
RRT, which provides only probabilistic completeness. SST addresses the limitation
of RRT∗, which requires a steering function for asymptotic optimality. This issue has
motivated recent variations of RRT∗, which either work for a limiting set of systems
or exhibit increased computational cost. This paper provides formal arguments for
the properties of the proposed algorithm. To the best of the authors’ knowledge, this
is the first sparse data structure that provides such desirable guarantees for a wide
set of systems under a reasonable set of assumptions. Simulations for a variety of
benchmarks, including physically simulated ones, confirm the argued properties of
the approach.

1 Introduction and Background

Sampling-based motion planners can quickly provide feasible motions for many
system types. Tree-based methods, such as RRT [16], EST [9] and variants [5, 24–
26, 29, 30] exhibit good performance in terms of feasibility and have been used
to optimize paths over costmaps [11]. Nevertheless, RRT converges to suboptimal
solutions almost surely [14, 22]. This motivated the development of RRT∗, which
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achieves asymptotic optimality, given access to a steering function [14]. A steering
function optimally connects two states ignoring obstacles while satisfying motion
constraints. Due to RRT∗’s desirable properties, many efforts focused on applying
it in the kinodynamic domain by developing steering functions for specific systems
[12] or linearizing the dynamics [8, 32]. Developing a steering function is not always
easy and linearization is valid only locally. This motivates methods that rely little on
the system dynamics and work even for complex physically simulated systems [7].

The computational cost of tree sampling-based planners methods is asymptoti-
cally dominated by the nearest neighbor queries, which depend on the number of
vertices. In practice, the cost also depends on the number of propagations per itera-
tion, which may correspond to numerical integration or a physics engine call. These
operations are expensive and algorithms need tominimize them. Such considerations
have led in methods that aim to speed up the performance of asymptotically optimal
solutions [1, 2, 10, 23, 27].

A promising approach tomake sampling-based planners more efficient is to main-
tain a sparse data structure. Many of the existing approaches along this direction
focus on sparse roadmaps [6, 20, 28, 31] and provide near-optimality guarantees.
Near-optimality has been shown in the context of heuristic search to provide signifi-
cant computational benefits [18]. Tree data structures can also benefit from sparsity.
By maintaining a small set of nodes, the nearest neighbor queries can be performed
more efficiently. The authors have recently proposed an RRT variant, called SPARSE
RRT, which maintained a sparse tree representation. It was shown empirically—but
not formally—that it provides good running time, good quality paths and has low
space requirements [19]. Most importantly, it does not require a steering function,
but instead relies only on forward propagation. SPARSE RRT provides sparsity by
creating regions of a certain radius around high path quality nodes, where only the
high-quality node is stored.

This work extends SPARSE RRT [19] so that it is possible to argue formal prop-
erties for kinodynamic planning, since this was difficult for the original method.
Specifically, nodes are eventually removed almost surely within a region of an opti-
mum path, which makes it difficult to reason about asymptotic properties. A new,
modified version of the algorithm is proposed in this work, which is referred to as
STABLE SPARSE RRT, orSST.Afinite set ofwitness samples,which corresponds
to a “hard-core” point process [21], is built in the state space so as to guarantee that
a node of the tree will always exist in the vicinity of every witness and the path cost
over time of such nodes improves. The method provides the following properties
without access to a steering function:

• Probabilistic δ-robust completeness and asymptotic near-optimality.
• Fast convergence to good quality solutions.
• Low space overhead by building a sparse data structure.
• Lower asymptotic time complexity than RRT.



Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning 265

Table 1 Comparison of RRT, RRT∗and SST (SST∗)
RRT RRT∗ SST/SST∗

Provably suboptimal Asymp. optimal Asymp. near-opt./asym. opt.

Forward propagation Steering function Forward propagation

Single propagation Many steering calls Single propagation

1 NN Query (O(log N )) 1 NN + 1 K-Query (O(log N )) 1 NN + 1 K-Query (Bounded
time complexity/(O(log N )) )

Asymp. all samples Asymp. all samples Sparse/Asymp. all samples

Minimal Minimal Desired clearance / Minimal

The proposed SST and SST* methods minimize computation cost and space requirements while
providing asymptotic near-optimality. From top to bottom each row compares the following prop-
erties: optimality guarantees, propagation method, number of propagations per iteration, type of
nearest neighbor query, number of nodes (sparsity), and number of input parameters

SST extends to an asymptotically optimal variant, SST∗, which gradually relaxes the
sparsification to eventually include all samples as nodes in the tree. Table1 compares
the proposed methods relative to RRT and RRT∗.

Due to the space limitations, many of the formal arguments regarding the prop-
erties of SST are available in an extended version of this work [17].

2 Problem Formulation and Notation

This paper considers time invariant dynamical systems of the form:

ẋ(t) = f (x(t), u(t)), where x(t) ∈ X, and u(t) ∈ U (1)

Let X f ∈ X denote the obstacle-free space and assume that X ⊂ R
n . It should

be sufficient if X is only diffeomorphic to a Euclidean space so that distances can
be easily defined locally. Next, define a δ-robust trajectory to be a trajectory π with
minimum clearance from obstacles, i.e., ∀ xobs ∈ X\X f : min(||π(t)−xobs ||) ≥ δ.
This work focuses on the following problem:

Definition 1 (δ -Robustly Feasible Motion Planning)Given that a δ-robust trajectory
exists that connects an initial state x0 ∈ X f to a goal regionXG ∈ X f for a dynamical
system that follows Eq.1, find a solution trajectory π : [0, tπ] → X f , for which
π(0) = x0 and π(tπ) ∈ XG .

Finding a trajectory π corresponds to computing controls u(t) that generate π. Tra-
jectory π does not have to be δ-robust. The authors reason first about a variation of
the traditional probabilistic completeness property, which explicitly incorporates the
clearance value δ.
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Definition 2 (Probabilistic δ-Robust Completeness) Let Π ALG
n denote the set of

trajectories discovered by an algorithm ALG at iteration n. Algorithm ALG is prob-
abilistically δ-robustly complete, if, for any δ-robustly feasible motion planning
problem ( f , X f , x0, XG , δ) the following holds:

lim inf
n→∞ P( ∃ π ∈ Π ALG

n : π solution to ( f,X f , x0,XG , δ)) = 1

In the above definition, P(Z) corresponds to the probability of event Z . This paper
also argues about the following property relating to path quality:

Definition 3 (Asymptotic δ-Robust Near-Optimality) Let c∗ denote the minimum
cost over all solution trajectories for a δ-robust feasible motion planning problem
( f ,X f , x0,XG , δ). Let Y ALG

n denote a random variable that represents the minimum
cost value among all solutions returned by algorithm ALG at iteration n. ALG is
asymptotically δ-robustly near-optimal if:

P

({
lim sup

n→∞
Y ALG

n ≤ (1 + α · δ) · c∗})
= 1

for some known parameter α > 0.

Definitions 2 and 3 correspond to weaker versions of probabilistic completeness
and asymptotic near-optimality. This work will first describe a method that provides
these weaker properties and then leverage the approach so as to achieve the original,
more desirable properties. In addition, Definitions 2 and 3 make intuitive sense in
real-world applications where clearance from obstacles is desirable.

3 Algorithmic Description

Algorithm 1 details STABLE SPARSE RRT (SST), an adaptation of the previously
proposed SPARSE RRT so as to achieve formal guarantees [19]. The main idea is
that within a neighborhood region only the node with the best path cost from the
root is considered in nearest neighbor queries and for expansion. This allows for the
removal of nodes that do not contribute to good quality paths.
SST receives as input the typical parameters of kinodynamic planners (state space

X, control space U, initial state x0, propagation time Tprop, and number of iterations
N ). Furthermore, two new parameters are required, δv and δs , which correspond to
radii that are used in different distancemetric queries. The authors found that δv > δs

worked well in practice. For analysis purposes, these two parameters need to satisfy
the constraint δ > δv + 2δs where δ is the clearance of a δ-robust trajectory that
exists in the space.
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Algorithm 1: SST( X, U, x0, Tprop, N , δv , δs )

1 i ← 0 ; // Iteration counter
2 Vactive ← {x0},Vinactive ← ∅, V ← Vactive ∪ Vinactive ; // Node sets
3 E ← ∅, G = {V,E} ; // Initialize graph
4 s0 ← x0, s0.rep = x0, S ← {s0} ; // Initialize witness set
5 while i + + < N do
6 ssample ←Sample(X) ; // Uniform sampling in state space
7 xnearest ←BestNear(Vactive, ssample, δv) ; // Return the BestNear node
8 xnew ← MonteCarlo-Prop(xnearest , U, Tprop) ; // Propagate forward
9 if CollisionFree(xnearest → xnew) then

10 snew ← Nearest( S, xnew ) ; // Get the nearest witness to xnew
11 if dist (xnew, snew) > δs then
12 S ← S ∪ {xnew} ; // Add a new witness that is xnew
13 snew ← xnew;
14 snew.rep ← NU L L;

15 x peer ← snew.rep ; // Get current represented node
16 if x peer == NU L L or cost(xnew) < cost(x peer ) then
17 Vactive ← Vactive \ {x peer } ; // Removing old rep
18 Vinactive ← Vinactive ∪ {x peer } ; // Making old rep inactive
19 snew.rep ← xnew ; // Assign the new rep
20 Vactive ← Vactive ∪ {xnew}, E ← E ∪ {xnearest → xnew} ; // Grow G
21 while IsLeaf (x peer ) and x peer ∈ Vinactive do
22 x parent ←Parent(x peer );
23 E ← E \ {x parent → x peer } ; // Remove from G
24 Vinactive ← Vinactive \ {x peer } ; // Remove from inactive set
25 x peer ← x parent ; // Recurse to parent if inactive

26 return G;

SST begins by initializing two vertex sets Vactive and Vinactive (Line 2). The
union of these sets corresponds to the set of tree nodes. The two subsets are treated
differently by nearest neighbors queries, whichwill be discussed shortly. Next, the set
of witness nodes S is initialized to contain the start node x0 (Line 4). The algorithm
maintains the invariant that within the neighborhood of radius δs around any s ∈ S,
there is always one state in Vactive. This state in Vactive is called the representative
of the witness s. Representatives can change over time but only as long as their cost
from the root decreases. To add new nodes to the tree, an approach similar to the
framework of sampling-based kinodynamic planning [9, 16] is used, but with some
modifications inspired from analysis.

First, a state is sampled in the state space (Line 6). Then an operation called
BestNear [19, 30] determines which existing node in Vactive will be selected for
propagation (Line 7). To achieve this, a neighborhood of size δv is explored around
the randomly sampled point ssample. For every node that exists in that neighborhood,
path cost values from the root are compared and the best path cost node xnearest is
returned. If no nodes exist within the neighborhood, the nearest node is returned. This
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has been shown to have good properties for path quality, and will be more formally
explored in the analysis section.

After selecting xnearest , the method calls MonteCarlo-Prop to generate xnew

(Line 8), which forward simulates the system using a random piecewise-constant
control for a random duration. It can be shown that this random propagation has good
asymptotic properties, argued in the analysis section. Given the newly propagated
trajectory is collision-free, the method determines the closest witness snew to node
xnew (Lines 9–10). If the closest witness is outside the δs radius, a new witness in the
set S is created that corresponds to xnew (Lines 11–14). This computation requires
access to a distance function dist (·, ·) in the state space. In practice, this distance
can be computed in a lower-dimensional task space T.

Finally, after the closest witness snew has been found, the representative x peer of
snew and the new node xnew are compared (Line 16). The comparison is performed
using the function cost(·), which is the cost of the trajectory from x0 to that node
in the tree. If xnew has a better cost or x peer is NU L L (which is the case when
xnew is outside the δs radius of the closest witness), the witness snew will forget
about its old representative x peer and now it will be represented by xnew (Lines 17–
20). Subsequently, the old node x peer will be removed from Vactive and added to
Vinactive, thereby removing it from any nearest neighbor queries. One can think of
theVinactive set as consisting of nodes that no longer themselves provide good paths,
but may provide connectivity to children nodes in Vactive that may be the best in
their respective neighborhoods. After manipulating the vertex sets, an optimization
step can be taken that involves removing needless nodes in the tree (Lines 21–25).
These correspond to leaf nodes that are in the Vinactive. They can be removed in a
recursive manner. The addition and removal of nodes in the two vertex sets Vactive

and Vinactive is an important part of making SST computationally efficient, and is
illustrated in Fig. 1.
SST is a modification of SPARSE RRT that makes use of the “witness” set of

nodes. Including the set ofwitnesses allows for regions in the state space to have a rep-
resentative node, regardless of the pruning process of the tree. While SPARSE RRT
performed well experimentally, when exploring the theoretical guarantees that the

Fig. 1 Relation between S and the V sets. a A tree and a trajectory xinit → xc → xa where xa is
the representative of s; b The algorithm extends xinit → xb where xb has better cost than xa . xa is
moved from Vactive to Vinactive. c The representative of s is now xb (Lines 21–25 of Algorithm 1).
The trajectory xc → xa in Vinactive is pruned
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algorithm could provide, difficulties arose when reasoning about probabilistic com-
pleteness and asymptotic optimality. The main issue was that in execution, nodes are
potentially deleted frequently and unpredictably, which meant that some asymptotic
behaviors are difficult to determine.

4 Analysis

This section discusses the properties of SST and describes a schedule for reducing
parameters δs and δv over time to achieve asymptotic optimality.

Assumption 1 The assumptions used by the analysis include the following:

• The dynamics of Eq.1 are Lipschitz continuous in states and controls, have
bounded second derivatives, and the system is Small-Time Locally Accessible
(STLA) [4].

• The cost function is considered by this work to be the duration of a trajectory. Thus,
the cost function is Lipschitz continuous w.r.t. states, additive, and monotonic.

• The robustly feasiblemotionplanningproblemadmits robustly feasible trajectories
that are generated by piecewise constant control functions.

This set of assumptions define the widest set of systems for which asymptotic opti-
mality has been shown without access to a BVP solver.

A key part of the analysis is concerned with examining a δ-robust optimal path.
To facilitate this, a covering ball sequence is defined over such a path.

Definition 4 (Covering Balls) Given a trajectory π(t): [0, Tend ] → X f , clearance
δ ∈ R+ and time step T , the set of covering balls B(π(t), δ, T ) is defined as a set of
M + 1 balls {Bδ(x0), Bδ(x1), ..., Bδ(xM )} of radius δ, such that Bδ(xM ) is centered
at xi = π(iT ) ∀ i ∈ [0, M], where M = Tend

T .

For an example of a covering ball sequence, see Fig. 2. This construction gives
rise to the following definition:

Definition 5 (δ-Similar Trajectories) Trajectories π,π′ are δ-similar if for a contin-
uous scaling function σ : [0, t] → [0, t ′], it is true: π′(σ(t)) ∈ Bδ(π(t)).

Fig. 2 A set of covering
balls B(π∗(t), δ, T ) around
the optimal path π∗
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Lemma 1 (Existence of δ-Similar Trajectories)Let there be a trajectory π satisfying
Eq.1. Then there exists a positive value δ0, such that: ∀ δ ∈ (0, δ0], ∀ x ′

0 ∈ Bδ(π(0)),
and ∀ x ′

1 ∈ Bδ(π(t)), there exists a δ-similar trajectory π′, so that: (i) π′(0) = x ′
0

and π′(t ′) = x ′
1.

Lemma 1, which can be argued given the assumptions, helps to show that a
δ-similar trajectory to a δ-robust optimal one can be generated. If such a δ-similar
trajectory is found, then from the assumptions of Lipschitz continuity and the cost
function characteristics, a bound on the path quality can also be drawn.

4.1 Probabilistic δ-Robust Completeness

The proof begins by constructing a sequence of balls B(π∗, δ, T ) that cover the
δ-robust optimal path π∗ (see Fig. 2), which is guaranteed to exist by the problem
definition. LetBδ(x∗

i ) denote the i-th ball in the sequence centered around state x∗
i on

π∗. The first thing to show is that if a trajectory reaches one of these balls, there will
always be a node in the ball with equal or better cost in future iterations. Lemma 2
explains this result.

Lemma 2 Let δc = δ − δv −2δs > 0. If a state x ∈ Vactive is generated at iteration
n s.t. x ∈ Bδc (x∗

i ), then for every iteration n′ ≥ n, there is a state x ′ ∈ Vactive so
that x ′ ∈ B(δ−δv)(x∗

i ) and cost(x ′) ≤ cost(x).

Proof Given x is a node, there is a witness point s located near x . As in Fig. 3a, the
witness s can be located, in the worst case, at distance δs away from the boundary
of Bδc(x∗

i ) if x ∈ Bδc(x∗
i ). Note that x can be removed from Vactive by SST in later

iterations. In fact, x almost surely will be removed, if x �= x0. When x is removed,
there could be no state in the ballBδc (x∗

i ). In this case, the selection procedure has no
chance to return any state within this ball. The sample s will not be deleted, however.
A node x ′ representing s will always exist in Vactive and x ′ will not leave the ball

Fig. 3 A visualization of the relationship between the different radii used in the analysis of SST
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Bδs (s). SST guarantees that the cost of x ′ will never increase, i.e. cost(x ′) ≤ cost(x).
In addition, x ′ has to exist inside Bδ−δv

(x∗
i ) = Bδc+2δs (x∗

i ). �

Lemma 3 lower bounds the probability of selecting x ′ ∈ Bδ−δv
(x∗

i ), which exists.

Lemma 3 Assuming uniform sampling in the Sample function of Alg. 1, if δv +
2δs < δ and if ∃ x ∈ Vactive s.t. x ∈ Bδc (x∗

i ) at iteration n, then the probability that
BestNear selects for propagation a node x ′ ∈ Bδ(x∗

i ) can be lower bounded by a
positive constant γ for every n′ > n.

Proof BestNear performs uniform random sampling in X to generate ssample and
examines the ball Bδv

(ssample) to find the node with the best path. In order for a node
inBδ(x∗

i ) to be returned, the sample needs to be inBδ−δv
(x∗

i ). If the sample is outside
this ball, then a node not in Bδ(x∗

i ) can be considered, and therefore may be selected.
See Fig. 3a. Next, consider the size of the intersection of Bδ−δv

(x∗
i ) and a ball of

radius δv that is entirely enclosed in Bδ(x∗
i ). Let xv denote the center of this ball.

This intersection, shown in Fig. 3b, represents the area that a sample can be generated
to return a state from ball Bδ−δv

(x∗
i ). In the worst case, the center of ball Bδv

(xv)

could be on the border of Bδ−δv
(x∗

i ) as in Fig. 3b. Then, the probability of sampling

a state in this region is: γ = inf P
({

x ′ returned byBestNear : x ′ ∈ Bδ(x∗
i )

}) =
μ(Bδ−δv (x∗

i ) ∩Bδv (xv))

μ(X f )
. This is the smallest region that guarantees selection of a node

in Bδ(xi ). �

Given the assumptions of STLA, the Lipschitz continuity of X, U, and bounded
second order derivatives of the system equation, it can be shown that the probability
of propagating from one ball to another using MonteCarlo-Prop is positive.

Lemma 4 Given a trajectory π of duration T , the success probability for function
MonteCarlo-Prop to generate a δ-similar trajectory to π when called from an
input state x prop ∈ Bδ(π(x∗

i−1)) and for a propagation duration Tprop > T to the
ball Bδc (π(x∗

i )) is lower bounded by a positive value ρδ→δc > 0.

At this point, lower bounds on both the probability of selecting a node and the
probability of generating a trajectory that ends in the next ball of the sequence have
been argued. Based on these lower bounds, the following can be shown:

Theorem 1 If δv + 2δs < δ, then STABLE SPARSE RRT is probabilistically
δ-robustly complete.

Proof As in Fig. 2, consider the sequence B(π∗,T ,δ) over the optimal path π∗ for
δ > δv + 2δs . A specific ball Bδ(x∗

i ) can be seen in Fig. 3a. Lemma 2 shows that
nodes will continue to exist in Bδc (x∗

i ), if one was generated. Lemma 3 shows there
is a positive probability that nodes in Bδ−δv

(x∗
i ) can be selected. Lemma 4 argues

that MonteCarlo-Prop has a positive probability ρδ→δc of generating a trajectory
into the next ball Bδc (x∗

i+1).
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Let A(n)
i denote the event that at the n-th iteration, the algorithm generates one

trajectory π such that π(0) ∈ Bδ(x∗
i−1) and π(Tend) ∈ Bδc (xi ), meaning π is δ-

similar to x∗
i−1, x∗

i . Let E (n)
i denote the event that from iteration 1 to n, the algorithm

generates at least one such trajectory. Then, the event¬E (n)
i is the event the algorithm

fails to generate any near-optimal trajectory insideBδ−δv
(x∗

i ) after n iterations, which
only happens when all n iterations fail, i.e.,

P(¬E (n)
i ) = P(¬A(1)

i ) · P(¬A(2)
i |¬A(1)

i ) · ... · P(¬A(n)
i |

n−1⋂

j=1

¬A( j)
i ) (2)

The probability that ¬A(n)
i happens given

⋂n−1
j=1 ¬A( j)

i is equivalent to the prob-
ability of failing to generate a trajectory to the Bδc (x∗

i−1) plus the probability that a
trajectory has been generated to Bδc (x∗

i−1), but fails to generate a new trajectory to
Bδc (x∗

i ), i.e.,

P(¬A(n)
i |

n−1⋂

j=1

¬A( j)
i ) = P(¬E (n)

i−1) + P(E (n)
i−1) · P({fails to propagate to Bδc (x∗

i )})

≤ P(¬E (n)
i−1) + P(E (n)

i−1)(1 − γρδ→δc ) ≤ 1 − P(E (n)
i−1) · γρδ→δc (3)

Using Eqs. 2 and 3,

P(E (n)
i ) ≥ 1 −

n∏

j=1

(1 − P(E ( j)
i−1) · γρδ→δc ) (4)

For the base case, P(E ( j)
0 ) = 1 because x0 is always inBδc (x0). Then, consider event

E1 from iteration 1 to n using Eq.4,

P(E (n)
1 ) ≥ 1 −

n∏

j=1

(1 − γρδ→δc ) = 1 − (1 − γρδ→δc )
n =⇒

lim
n→∞P(E (n)

1 ) ≥ 1 − lim
n→∞(1 − γρδ→δc )

n = 1 − 0 = 1

The same result needs to be shown for E (n)
i+1. Set y(n)

i = ∏n
j=1(1 − P(E ( j)

i−1) ·
γρδ→δc ). The logarithm of y(n)

i behaves as follows,
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log y(n)
i = log

n∏

j=1

(1 − P(E ( j)
i−1) · γρδ→δc ) =

n∑

j=1

log(1 − P(E ( j)
i−1) · γρδ→δc ))

<

n∑

j=1

−P(E ( j)
i−1) · γρδ→δc = −γρδ→δc ·

n∑

j=1

P(E ( j)
i−1) (5)

From the inductive assumption that, P(E ( j)
i ) converges to 1 as j → ∞, then

limn→∞
∑n

j=1 P(E ( j)
i ) = ∞. Then,

lim
n→∞ log y(n)

i+1 < −γρδ→δc · lim
n→∞

n∑

j=1

P(E ( j)
i ) = −∞ ⇐⇒ lim

n→∞ y(n)
i+1 = 0

Using Eq. (4), with limn→∞ y(n)
i+1 = 0, it can be shown that:

lim
n→∞P(E (n)

i+1) = 1 − lim
n→∞ y(n)

i+1 = 1 − 0 = 1.

4.2 Asympotic Near-Optimality

The proof of asymptotic δ-robust near-optimality follows directly from Theo-
rem 1, the Lipschitz continuity, additivity, and monotonicity of the cost function
(Assumption 1). The completeness proof is already examining the generation of a
near optimal trajectory, but the bound on the cost needs to be calculated.

Theorem 2 If δv + 2δs < δ, then STABLE SPARSE RRT is asymptotically δ-
robustly near-optimal.

Proof Let x ′
i−1, xi denote the δ-similar trajectory segment generated by SST where

x ′
i−1 ∈ Bδc (x∗

i−1) of the optimal path and xi ∈ Bδ−δv
(x∗

i ). Lemma 4 guarantees that
the probability of generating it by MonteCarlo-Prop can be lower bounded as
ρδ→δc . Then from the definition of δ-similar trajectories and Lipschitz continuity of
the cost function (Kx is the Lipschitz constant for X):

cost(x ′
i−1 → xi ) ≤ cost(x∗

i−1 → x∗
i ) + Kx · δ (6)

Lemma 3 guarantees that when xi exists in Bδ−δv
(x∗

i ), then x ′
i , returned by the

BestNear function with least bound γ, must have equal or less cost, i.e. x ′
i can be

the same state as xi or a different state with smaller or equal cost:

cost(x ′
i ) ≤ cost(xi ) (7)

Consider Bδ(x∗
1 ), as illustrated in Fig. 4, according to (6) and (7),
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Fig. 4 Sequence of covering
balls over an optimal
trajectory π∗ and
nodes/edges generated by
SST

cost(x0 → x ′
1) ≤ cost(x0 → x1) ≤ cost(x0 → x∗

1 ) + Kx · δ

Assume this is true for k segments, then: cost(x0 → x ′
k) ≤ cost(x0 → x∗

k )+k ·Kx ·δ.
Consider the cost of the trajectory with k + 1 segments:

cost(x0 → x ′
k+1) ≤ cost(x0 → xk+1) = cost(x0 → x ′

k) + cost(x ′
k → xk+1)

≤ cost(x0 → x∗
k ) + k · Kx · δ + cost(x ′

k → xk+1)

≤ cost(x0 → x∗
k ) + k · Kx · δ + cost(x∗

k → x∗
k+1) + Kx · δ

= cost(x0 → x∗
k+1) + (k + 1) · Kx · δ

By induction, this holds for all k.

Since the largest k = T ∗
k

T , and the cost of the trajectory is its duration,

cost(x0 → x ′
k) ≤ cost(x0 → x∗

k ) + cost(x0 → x∗
k )

T
· Kx · δ =

(
1 + Kxδ

T

)
· c∗

k

Recall from Theorem 1, event Ek implies event
{
Y SST ≤ (1 + αδ)c∗

k

}
.

P

(
E (n)

k

)
= P

({
Y SST

n ≤ (1 + Kxδ

T
)c∗

k

})

As n → ∞, Theorem 1 guarantees that if δ > δv +2δs , E (∞)
k almost surely happens.

P

({
lim sup

n→∞
Y SST

n ≤ (1 + Kxδ

T
)c∗

k

}) = lim
n→∞P

(
E (n)

k

)
= 1 �
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4.3 Time Complexity Arguments

Now consider the convergence rate for SST, i.e. the iterations needed to return
a near-optimal trajectory with a certain probability. Specifically, the convergence
rate depends on the difficulty level of the kinodynamic planning problem which is
measured by the probability ρδ→δc of successfully generating a δ-similar trajectory
segment connecting two covering balls.

Theorem 3 For a δ-robust optimal trajectory consisting of k > 0 segments, and a
fixed ρδ→δc > 0, the iterations Nρδ→δc

for SST to generate a near-optimal solution

with probability greater than 1 − e−1 can be bounded by: n ≤ 1
1−e−1 · k

γρδ→δc
.

Theorem 3 argues that in order to achieve at least 1− e−1 ≈ 63.21% probability
for SST to generate a near-optimal trajectory, the needed iterations can be upper
bounded. This bound is in the same order as the expected number of iterations for
RRT to return a solution [16]. The iteration bound for RRT to return a feasible solution
with probability of at least 1−e−1 is shown as k

p , where k is the number of trajectory
segments of the solution and p is the minimum probability to select a vertex in the
“attraction sequence”. Probability p corresponds to the same concept of γrr t in this
paper. RRT models the Extend procedure with an additional assumption such that
generating a connection edge between consecutive “attraction wells” shall succeed
in one shot. Here, the Extend function corresponds to MonteCarlo-Prop, which
generates connection edges with probability at least ρδ→δ . Therefore, the expected
iteration bound for RRT is in the form of O( k

γrr t ·ρδ→δ
).

In contrast to RRT∗ which employs a steering function, the proposed algorithm
involves no such functions. All operations for the proposed algorithm are well under-
stood. Therefore, it is possible to evaluate the overall computational cost needed for
SST. The proof for Lemmas 5 and 6 are included in an extended version of this
work [17].

Lemma 5 For a k segment optimal trajectory with δ clearance, the expected running
time for SST to return a near-optimal solution with 1 − e−1 probability can be

evaluated as, O
(
δ−d · k

γρδ→δc

)
.

The benefit of SST is that the per iteration cost ends up being lower than that of
RRT, while a certain form of optimality guarantees can be provided.

Lemma 6 For a k segments trajectory with δ clearance, the expected running time
for the RRT algorithm to return a solution with 1− e−1 probability can be evaluated

as O
(
( k
γrr t ρδ→δ

) · (log( k
γrr t ρδ→δ

))
)

.

Comparing Lemmas 5 and 6 by quotient, O
(

k/γρδ→δc
k/γrr t ρδ→δ ·log(k/γrr t ρδ→δ)

)
=

O
(

γrr t ρδ→δ
γρδ→δc

· 1
− log γrr t ρδ→δ

)
. The first term γrr t ρδ→δ

γρδ→δc
is a finite value which is shown

in [17]. In addition, the second term converges to 0 as ρδ→δ decreases to 0.
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Therefore, the expected time complexity of SST is indeed smaller than the expected
time complexity of RRT for sufficiently difficult kinodynamic problems. This is
mainly because SST keeps a sparse data structure so that the cost of all near neighbor
queries, which is asymptotically the most expensive operation in these algorithms,
can be bounded by a constant. But this is noticeable only for difficult problems where
ρδ→δ is sufficiently small. Practically, RRT, perhaps, is still the fastest algorithm to
return the first feasible trajectory.

4.4 Space Requirements Arguments

A fairly simple fact is stated formally in Lemma 7.

Lemma 7 For any two distinct witnesses of SST s1, s2 ∈ S, where s1 �= s2, the
distance between them is at least δs , e.g., ∀s1, s2 ∈ S : ||s1 − s2|| > δs .

It can then be shown that S can be bounded if X f is bounded.

Corollary 1 If X f is bounded, the number of points of the set S and nodes in Vactive

is always finite, i.e. ∃M ∈ O(δ−d) : |S| = |Vactive| ≤ M.

The size of Vinactive cannot be easily bounded, but if pruning is performed as in the
algorithm, the size of Vinactive is manageable.

Generating the set S corresponds to a variant of Poisson Disk Sampling,
a.k.a. Naive Dart-Throwing with the difference that the sampling does not
strictly follow a Poisson Distribution. Related research refers to such
processes as Matérn Type III point processes [21]. This literature can be uti-
lized to improve the distribution of S, i.e., improve its discrepancy and dispersion.
In kinematic planning, there have been demonstrations of quasi-random sampling
for generating low discrepancy points [15]. The requirement for S is that it has to
be evenly distributed such that each Voronoi cell can be bounded by a hyper ball.
Therefore, SST can take advantage of deterministic sampling. In addition, “hard-
core” point process contributions can be employed for kinodynamic planning by
generating S offline, and then running SST.

4.5 Asymptotically Optimal Variant

Now consider the SST∗ algorithm shown in Algorithm 2. It provides a schedule to
shrink the parameters of SST. It appropriately merges solving an infinite sequence
of δ-robust motion planning problems. It can be proven that SST∗ is probabilistically
complete and asymptotically optimal. This is done by leveraging decreasing δs and
δv values determined by the scaling parameter ξ ∈ (0, 1)) and the decreasing δ of
the δ-robust trajectories that are admitted by SST.
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Algorithm 2: SST∗(X,U,x0,Tprop,δs,0,δv,0,ξ)

1 j ← 0; K ← k0;
2 δs ← δs,0; δv ← δv,0;
3 while true do
4 SST (X,U, x0, Tprop, K , δv, δs);
5 δs ← ξ · δs ; δv ← ξ · δv ; j ← j + 1;
6 K ← (1 + log j) · ξ−(d+w+1) j · k0;

Theorem 4 SST∗ is probabilistically complete and is asymptotically optimal.

When the δ clearance is arbitrarily small, the arguments outlined in Theorems
1 and 2 still hold. The drawback with starting with this arbitrarily small δ is that
SST will not be able to take advantage of sparsity. SST∗ is able to take advantage
of intermediate results, returning near-optimal results quickly, and progressively
increasing the number of nodes allowed for nearest neighbor queries, and thereby
providing an asymptotically optimal solution.

5 Evaluation

In order to evaluate the proposed method, a set of experiments involving several
different systems have been conducted. The proposed algorithm, SST, is compared
against RRT as a baseline and also with another common algorithm: (a) if a steering
function is available, a comparison with RRT∗ is conducted, (b) if RRT∗ cannot be
used, a comparison with a heuristic alternative based on a “shooting” function is
utilized [13].

The shooting function is numerically approximating a steering function but
doesn’t connect two states exactly. To alleviate this problem, when a rewire is per-
formed, entire subtrees are resimulated with the new end state that is close to the
original state. The overall results show that SST can provide consistently improving
path quality given more iterations as RRT∗ does for kinematic systems, achieve run-
ning time equivalent (if not better) than RRT, and maintain a small number of nodes,
all while using a very simple random propagation primitive.

Figure5 details the various setups that the algorithms have been evaluated on.
As a baseline, a kinematic point system is used. This allows a direct comparison of
results with RRT∗ given that a steering function is easily created. SST still makes
use of random propagation in this case, but good behavior is shown in the following
sections.

Evaluation was also conducted on pendulum-like systems, which include a single
link pendulum, a two-link passive-active acrobot system, and a cart-pole system. In
addition, a quadrotor system is considered, where distances are taken in a task space.
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Fig. 5 The benchmarks considered in the experiments. Each experiment is averaged over 50 runs
for each algorithm

These systems have simple state update equations, but are nonlinear. No steering
function is used in these experiments.

One of the more interesting applications of SST is in the domain of planning
for physically-simulated systems [3]. SST is able to provide improving path quality
given enough time and keeps the number of forward propagations to one per iteration.
In this setup, the computational cost of propagation overtakes the cost of nearest
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neighbor queries. Nearest neighbor queries become the bottleneck in problems like
the kinematic point where propagation and collision checking are cheap. In this
respect, SST is specially suited to plan for physically-simulated systems.

5.1 Quality of Solution Trajectories

In Fig. 6, the average solution quality to nodes in each tree is shown. This average is
a measure of the quality of trajectories that have explored the space being searched.
In every case, SST is able to improve quality over time, even in the case of the
physically-simulated car. RRTwill increase this average over time because it chooses
suboptimal nodes and further propagates them.

5.2 Time Efficiency

Figure7 shows time versus iterations plots for each of the systems. The graphs show
the amount of time it took to achieve a number of iterations. The running time of SST
is always comparable or better than RRT. RRT∗ has a higher time cost per iteration
as expected. Initially SST is slightly slower than RRT for the kinematic point, but
becomes increasingly more efficient later on. This is explained by Lemmas 5 and
6, since SST has better running time than RRT given the sparse data structure. For
physically-simulated systems, the computational cost is dominated by the forward
propagation, where both RRT and SST perform the same amount.

Fig. 6 The average cost to each node in the tree for each algorithm (RRT, RRT∗ or the shooting
approach, and SST)
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Fig. 7 The amount of time needed for each algorithm (RRT, RRT∗ or the shooting approach, and
SST)

5.3 Space Efficiency

One of the major gains of using SST is in the smaller number of nodes that are
needed in the data structure. Figure8 shows the number of nodes stored by each of
the algorithms. The number of nodes is significantly lower in SST, even when also
considering the witness set S. The sparse data structure of SST makes the memory
requirements quite small, in contrast to RRT and RRT∗, which don’t perform any
pruning operations. In the case of the shooting variant, sometimes the inaccuracy of
shooting will cause collisions to occur in resimulated trees, pruning them from the
tree. This however can lead to losing solution trajectories.

Fig. 8 Number of nodes in the tree (RRT, RRT∗ or the shooting approach, and SST)



Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning 281

6 Discussion

The focus inmotion planning has recently shifted towardsmethods with formal guar-
antees in terms of path quality. Achieving this objective for systems with dynamics
has generally required specialized steering functions [8, 12, 32]. The proposed SST
method does not require a steering function but still minimizes the length of the
solution trajectory over time. Theoretical analysis and simulated experiments indi-
cate that the running time and space requirements of SST are better even than RRT,
which can quickly provide feasible trajectories.

With regard to memory and in contrast to other tree planners, SST builds a sparse
data structure. Instead of requiring an infinite number of states, SST keeps a set
of finite witnesses for given input parameters. This is reminiscent of grid-based
approaches. Nevertheless, SST still provides benefits over such solutions. The grid
points in grid-based methods are usually fixed and fully specified upon initialization.
The solution trajectories have to go through these grid points. In SST, however, the
trajectories can change dynamically, are adaptive to the underlying characteristic of
the environment (e.g., presence of obstacles) and do not have to go through the static
witnesses. Furthermore, SST is an incremental method. It will only asymptotically
require the same set of samples as a grid-based technique and a solution is found
fast in practice. Improvements, such as branch-and-bound, can further reduce space
requirements.

By removing the requirement for a steering function, SST is well suited to solve
problems in other domains where steering functions are difficult to construct. One of
these areas is planning under uncertainty,where planning is performed in belief space.
It is typically not possible to compute a steering function in this domain, but forward
propagation can be used to update a probability distribution. It is also important to
evaluate the effectiveness of the approach on real systems with significant dynamics,
high-dimensional state spaces, in cluttered spaces and the effects of contacts in the
properties of the method.
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Adaptive Informative Path Planning
in Metric Spaces

Zhan Wei Lim, David Hsu and Wee Sun Lee

Abstract In contrast to classic robot motion planning, informative path planning
(IPP) seeks a path for a robot to sense the world and gain information. In adap-
tive IPP, the robot chooses the next sensing location using all information acquired
so far. The goal is to minimize the robot’s travel cost required to identify a true
hypothesis. Adaptive IPP is NP-hard. This paper presents Recursive Adaptive Iden-
tification (RAId), a new polynomial-time approximation algorithm for adaptive IPP.
We prove a polylogarithmic approximation bound when the robot travels in a met-
ric space. Furthermore, our experiments suggest that RAId is efficient in practice
and provides good approximate solutions for several distinct robot planning tasks.
Although RAId is designed primarily for noiseless observations, a simple extension
allows it to handle some tasks with noisy observations.

1 Introduction

Path planning usually seeks a collision-free path for a robot to reach a physical
location. In contrast, informative path planning (IPP) seeks a path for the robot to
sense the world and gain information:

• An unmanned aerial vehicle (UAV) searches a disaster region to pinpoint the
location of survivors.

• A mobile manipulator moves around and senses an object with laser range
finders [18] or tactile sensors [13] in order to estimate the object pose for grasping.

• An autonomous underwater vehicle inspects a ship hull for the presence of
explosive devices [10].
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In all these tasks, the robot has a set of hypotheses on the underlying state of the
world—the location of survivors, the pose of an object, etc.—and must move to dif-
ferent locations in order to sense and eventually identify the true hypothesis. Each
sensing operation provides new information, which enables the robot to act more
effectively in the future. To acquire this information, the robot, however, must move
around and incur movement cost, in addition to sensing cost. This paper presents
a practical algorithm, recursive adaptive identification (RAId), which computes a
near-optimal path for the robot to identify the true hypothesis with minimum move-
ment cost.

IPP contains, as a special case, the well-studied optimal decision tree (ODT)
problem, which basically has a single location with all sensing operations. Unfortu-
nately, ODT, even with noiseless sensing, is not only NP-hard, but also NP-hard to
approximate within a factor of (log n), where n is the total number of hypotheses [2].

There are two general classes of algorithms for IPP, nonadaptive and adaptive.
In nonadaptive planning, we compute a sequence of sensing operations in advance.
A robot executes these operation in order, regardless of the outcomes of operations
executed earlier. In adaptive planning, we choose, in each step, new sensing oper-
ations conditioned on the outcomes of sensing operations executed earlier. This is
clearly more powerful. RAId belongs to the second class.

RAId takes a divide-and-conquer approach, somewhat similar to binary search.
Each recursive step of binary search chooses a single most discriminating query
that prunes half of all hypotheses. RAId shares the basic idea, but is more complex.
There are two main difficulties. First, we cannot choose sensing locations one at a
time in isolation, because different locations provide different sensing information
and moving to a location affects future choices. Second, when choosing multiple
sensing locations together, we must consider not only information gain, but also
movement cost. Each recursive step of RAId constructs a near-optimal adaptive plan
that traverses a subset of sensing locations, by solving a group Steiner problem [1].
The traversal terminates when the robot encounters an “informative” observation,
which guarantees to eliminate a significant fraction of existing hypotheses.

In the following, Sect. 2 briefly surveys relatedwork. Section3 defines informative
path planning and presents RAId. Section4 analyzes the performance of the algo-
rithm. Section5 compares RAId with two widely used greedy algorithms. Although
our algorithm is designed primarily for noiseless observations, Sect. 6 presents an
extension of RAId to handle some tasks with noisy observations. Finally, Sect. 7
discusses limitations of this work and directions for future research.

2 Related Work

IPP is important to robotics and various related fields. The importance and the dif-
ficulty in efficiently computing optimal solutions for IPP have attracted significant
interest in recent years. One idea is to choose a set of “informative” sensing loca-
tions and then construct a minimum-cost tour to traverse them [11]. Another idea is
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to search for a plan over a finite horizon [10]. Although these heuristic algorithms
may work well in practice, they do not provide any theoretical performance guaran-
tee. The NAIVE algorithm replans in each step, using a nonadaptive IPP algorithm,
in order to achieve adaptivity [20]. It guarantees near-optimal performance when
the adaptivity gap is small, in other words, when adaptive planning does not have
significant advantage over nonadaptive planning. Unfortunately the adaptive gap can
be exponentially large even for very simple problems [10]. This is unsurprising in
light of the well-known benefit of acting adaptively [4, 7]. Furthermore, to achieve
nontrivial performance bound, NAIVE requires explicit construction of a submodu-
lar function with the locality property [20]. This is not always easy or possible. One
strength ofNAIVE is its ability to handle noisy observations. Our current workmakes
the assumption of noiseless observations, though we are extending the algorithm to
handle noisy observations (Sect. 6).

IPP is closely related to the adaptive traveling salesman (ATSP) problem [9]. In
contrast to the standard TSP, the traveling salesman here services only a subset of
locations with requests, but does not know this subset initially. When the salesman
arrives at a location, he finds out whether there is a request there. The goal is to find an
adaptive strategy for the salesman to service all requests and minimize the expected
cost of traveling. IPP contains ATSP as a special case. Each hypothesis represents a
subset of locations with requests. Each “sensing” operation is binary and answers the
query whether the current location has a service request or not. RAId has its root in
the isolation algorithm for ATSP [9]. To provide the theoretical performance bound,
the isolation algorithm uses linear programming in the inner loop to solve the group
Steiner problem. This is impractical. RAId solves the more general IPP problem,
which allows arbitrary hypothesis space and non-binary sensing. To solve the group
Steiner problem, it uses a combinatorial approximation algorithm [1] that is far more
effective in practice.

Our IPP algorithm contains three key elements: information gathering, robot
movement cost, and adaptivity. It touches on several important research topics, which
contain one or two, but not all three elements. If we focus on information gather-
ing only and ignore robot movement cost, IPP becomes sensor placement, view
planning, or ODT, which admits efficient solutions through, e.g., submodular opti-
mization, in both non-adaptive [15] and adaptive settings [7, 13]. If we account for
movement cost, there are several nonadaptive algorithmswith performance guarantee
(e.g., [12, 19]).

Although active localization [6] and simultaneous localization and mapping
(SLAM) [5] bear some similarity to IPP, they are in fact different, because IPP
assumes that the robot location is fully observable. Reducing active localization or
SLAM to IPP incurs significant representational and computational cost.

IPP, as well as other information-gathering tasks mentioned above, can all be
modeled as partially observable Markov decision processes (POMDPs) [14], which
provide a general framework for planning under uncertainty. However, solving large-
scale POMDP models near-optimally remains a challenge, despite the dramatic
progress in recent years [16, 17, 21]. The underlying structure of IPP allows simpler
and more efficient solutions.
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3 Informative Path Planning

Formally an IPP problem is specified as a tuple I = (X, d, H, ρ, O,Z, r). First, X
is a finite set of sensing locations, with associated distance metric d(x, x ′) for any
x, x ′ ∈ X . Next, H is a finite set of hypotheses, and ρ(h) specifies the prior probabil-
ity of hypothesis h ∈ H occurring. We also have a finite set of observations O and a
set of observation functionsZ = {Zx | x ∈ X}, with one observation function Zx for
each location location x . For generality, we define the observation functions proba-
bilistically: Zx (h, o) = p(o|x, h). For noiseless observations, Zx (h, o) is either 1 or
0. We say that an observation o and a hypothesis h are consistent, if Zx (h, o) = 1. In
thiswork,we focusmainly on the noiseless case. Finally, r is the robot’s start location.
To simplify the presentation, we assume r �∈ X , because either r provides no useful
sensing information or the robot has already visited r and acquired the information.

In adaptive planning, the solution is a policy π, which can be represented as a
tree. Each node of the policy tree is labeled with a sensing location x ∈ X , and each
edge is labeled with an observation o ∈ O (Fig. 1). To execute such a policy, the
robot starts by moving to the location at the root of the policy tree and receives an
observation o. It then follows the edge labeled with o and moves to the next location
at the child node. The process continues until the robot identifies the true hypothesis.
Thus every path in the policy tree of π uniquely identifies a hypothesis h ∈ H . Let
C(π, h) denote the total cost of traversing this path. Our goal is to find a policy
that identifies the true hypothesis by taking observations at the chosen locations and
minimizes the expected cost of traveling.

We now state the problem formally:

Problem 1 Given an IPP problem I = (X, d, H, ρ, O,Z, r), compute an adaptive
policy π that minimizes the expected cost

C(π) = EH C(π, h) =
∑

h∈H

C(π, h)ρ(h). (1)

A

B C

D

0 1

0 1 0 1

0 1
h1

h3 h4

h2 h5

Fig. 1 A policy tree with sensing locations {A, B, C, D}, observations {0, 1}, hypotheses
{h1, h2, . . . , h5}. With noiseless observations, every path in a policy tree from the root to a leaf
uniquely identifies a hypothesis. Suppose that a robot follows the shaded path σ. Then a hypothesis
h is consistent with all observations received along σ if and only if h belongs to the subtree rooted
at the node D
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We assume without loss of generality that in the worst case, the true hypothesis can
be identified by visiting all locations in X .

RAId is a recursive divide-and-conquer algorithm. In each recursive step, it con-
structs a near-optimal adaptive plan to traverse a subset of sensing locations in X
and eliminates inconsistent hypotheses using the observations received. The traver-
sal terminates when the robot receives an “informative” observation that reduces
the probability of the current hypothesis set H by a half. RAId then recurses on the
remaining hypotheses, until identifying the true hypothesis. A sketch of the algorithm
is shown in Algorithm 1.

To generate such a traversal, RAId solves a group Steiner problem. A group
Steiner problem is defined by two elements. One is an edge-weighted graph G =
(V, E, WE ). The other is a collection of groups V = {V1, V2, . . . , Vm} with corre-
sponding group-weights WV = {ν1, ν2, . . . , νm}. Each group Vi contains a subset
of vertices in V . A subgraph of G covers a group Vi ⊆ V if the subgraph con-
tains at least one vertex in Vi . The usual goal of a group Steiner problem is to
find a minimum-edge-weight tree that covers a sub-collection of groups with total
group-weight at least ν, for some given constant ν. In Algorithm 1, the procedure
GroupSteinerTour(V, E, WE ,V, WV , ν) computes a group Steiner tour, i.e., a
cycle in a graph-theoretic sense, instead of a tree.

Algorithm 1 RAId
1: procedure RAId(X, d, H, ρ, O,Z, r )
2: if |H | = 1 then
3: return H .
4: else
5: ν ← min

(
0.5, 1 − maxh∈H ρ(h)

)
.

6: τ ← GroupSteinerTour(X, X × X, d, {Xh}h∈H , ρ, ν),
where τ = (x0, x1, . . . , xt ) and x0 = xt = r .

7: (H, r) ← ExecutePlan(τ , H, r ).
8: Renormalize the probability ρ(h) for all h ∈ H so that

∑
h∈H ρ(h) = 1.

9: RAId(X, d, H, ρ, O,Z, r )

10: procedure ExecutePlan(τ , H, r )
11: i ← 1.
12: repeat
13: r ← xi .
14: Visit location r and receive observation o.
15: Remove from H all hypotheses inconsistent with o.
16: i ← i + 1.
17: until o ∈ Ωr or i = t .
18: r ← xt .
19: Move to location r .
20: return (H, r).
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For IPP, the graph in the group Steiner problem is the complete graph over X ,
and the edge-weight between two vertices x and x ′ is d(x, x ′).

A key step in our construction is to define the groups. Let Hx,o ⊆ H be the
subset of hypotheses consistent with observation o at x . We define the informative
observation set at x :

Ωx = {
o | p(Hx,o) ≤ 0.5

}
. (2)

By definition, Hx,o has small probability (less than 0.5), and H\Hx,o, the set of
hypotheses inconsistent with o, has large probability (greater than 0.5). As a result,
upon receiving o, each recursive step of RAId prunes all inconsistent hypotheses
H\Hx,o and reduces the probability of remaining consistent hypotheses by at least
a half (see Lemma 1). In this sense, each observation o ∈ Ωx is informative. Let o∗

x
be the most likely observation at x : o∗

x = arg maxo∈O p(Hx,o). It is interesting to
observe that

Ωx =
{

O if p(Hx,o∗
x
) ≤ 0.5 for all o ∈ O,

O \ {
o∗

x

}
otherwise.

Now we define one group for each hypothesis h ∈ H :

Xh = {x ∈ X | Zx (h, o) = 1 for some o ∈ Ωx }, (3)

which contains all locations having informative observations consistent with h. The
group-weight for Xh is simply ρ(h).

Finally, we set the target ν = min
(
0.5, 1 − maxh∈H ρ(h)

)
. RAId guarantees that

by traversing such a group Steiner tour, the robot will prune inconsistent hypotheses
with total probability at least ν. It would be desirable, but is not possible to simply set
ν = 0.5. If the true hypothesis has high probability, RAId may not be able to achieve
substantial pruning, as the remaining hypotheses have small total probability.

GroupSteinerTour first solves for a group Steiner tree T using a greedy approx-
imation algorithm [1] and then applies Christofides’ metric TSP approximation
algorithm [3] to the vertex set of T in order to generate a tour. Both approxima-
tion algorithms rely critically on the the metric property of the edge weight d.

RAId is an online algorithm, which interleaves planning and plan execution. It
plans a tour (Algorithm 1, line 6). The robot then traverses the locations on the tour
(Algorithm 1, line 7). At each location, the robot prunes all hypotheses inconsistent
with the received observation. It ends the traversal and returns to the start location,
after receiving an observation in the informative observation space or exhausting the
tour. RAId guarantees that the traversal either reduces the probability of consistent
hypotheses by a half or identifies the true hypothesis (see Lemma 1).
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4 Analysis

Our analysis consists of two main steps. In the first step, we analyze a variant of IPP,
called rooted IPP, in which the robot must return to the start location r in the end.
Our main idea is to show that each group Steiner tour computed enables the robot
to either prune inconsistent hypotheses with probability at least 0.5 or identify the
true hypothesis (Lemma 1). Furthermore, the robot traversing such a tour incurs a
cost not more than twice the expected cost of an optimal policy (Lemmas 2 and 3).
By bounding the number of recursive calls to RAId, we then obtain a result on its
performance for rooted IPP (Theorem 1). In the second step, we exploit this result
to bound the performance of RAId for IPP itself (Theorem 2).

We consider only rooted IPP for Lemmas 1–4 and Theorem 1.

Lemma 1 Let H ′ ⊂ H be the set of remaining hypotheses after a single recursive
call to RAId. Then, either p(H ′) ≤ 0.5 or |H ′| = 1.

Proof In each recursive call to RAId, the robot follows a group Steiner tour τ . If
it receives an observation o ∈ Ωx at some location x on τ , then the robot returns
to r immediately (Algorithm 1, line 19) and p(H ′) = p(Hx,o) ≤ 0.5 by definition
of Ωx . Otherwise, the robot visits every location x on τ and receives at every x
an observation o∗

x �∈ Ωx . Consider x ∈ Xh for some x on τ and h ∈ H . If the
robot receives the observation o∗

x �∈ Ωx at x , then h is inconsistent with o∗
x by the

definition of Xh and is pruned. Since the target of our group Steiner problem is ν,
the pruned hypotheses has probability at least ν, and the remaining hypothesis set
H ′ has probability at most 1 − ν. If there is a single hypothesis h∗ with p(h∗) ≥
0.5, then h∗ must be the only remaining hypothesis. Otherwise, p(H ′) ≤ 1 − ν
≤ 0.5. �

Next, we bound the edge-weight of an optimal group Steiner tour.

Lemma 2 Let π∗ be an optimal policy for a rooted IPP problem I. Let W ∗ be the
total edge-weight of an optimal group Steiner tour for I. Then W ∗ ≤ 2C(π∗).

Proof First, we extract a path σ from an optimal policy tree π∗ and use σ to construct
a feasible, but not necessarily optimal solution σr to the group Steiner problem for
I. Next, we show that the optimal policy traverses σ with probability at least 0.5.
This allows us to bound the total edge-weight of σr and thus that of an optimal group
Steiner tour by the cost of the optimal policy. Let (r, x1, x2, . . . , r) be a path in the
optimal policy tree π∗ such that every edge following a node xi in the path is labeled
with the most likely observation o∗

xi
= arg maxo∈O p(Hxi ,o). For any subpath φ,

Hφ = {h ∈ H | Zxi (h, o∗
xi

) = 1 for all xi in φ} is the set of hypotheses consistent
with the observations received at all locations in φ. Let σ = (r, x1, x2, . . . , xs) be
the shortest subpath of (r, x1, x2, . . . , r) such that p(Hσ) ≤ 1− ν, where the length
of σ is measured in the number of nodes in the path.

We now show that the tour σr = (r, x1, x2, . . . , xs, r) is a feasible solution to the
group Steiner tour problem. The key issue is to determine the total group-weight of
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X , the collection of groups covered by x1, x2, . . . , xs . At each location xi on σ, the
robot receives an observation o∗

xi
. If a hypothesis h ∈ H is inconsistent with o∗

xi
,

then h must be consistent with some o �= o∗
xi
, i.e., Zxi (h, o) = 1 for o ∈ Ωxi . Then

xi ∈ Xh by definition. In other words, xi covers Xh if h is inconsistent with o∗
xi
at xi ,

and X = {Xh | Zxi (h, o∗
xi

) = 0 for some xi in σ}. Since p(Hσ) ≤ 1 − ν, the total
group-weight ofX must be least ν. This proves thatσr is a feasible group Steiner tour.

Now consider the subpath σ′ = (r, x1, x2, . . . , xs−1). We have p(Hσ′) > 1 − ν,
as σ is the shortest path with p(Hσ) ≤ 1 − ν. To bound the expected cost of the
optimal policy π∗,

C(π∗) =
∑

h∈H

ρ(h)C(π∗, h) ≥
∑

h∈Hσ′
ρ(h)C(π∗, h).

For any h ∈ Hσ′ , the path that leads to h in the optimal policy tree π∗ must contain
σ as a subpath. Thus,

C(π∗) ≥
∑

h∈Hσ′
ρ(h)w(σr) ≥ (1 − ν)w(σr) ≥ (1 − ν)W ∗,

wherew(σr) is the total edge-weight of the tour σr. Rearranging the inequality above,
we get

W ∗ ≤ 1

1 − ν
· C(π∗) ≤ 2C(π∗).

�

Lemma 3 If RAId computes an optimal group Steiner tour, then the robot travels a
path with cost at most 2C(π∗) in each recursive step of RAId.

Proof In each recursive step of RAId, the robot travels a path whose cost is bounded
by the total edge-weight of the group Steiner tour computed. The conclusion then
follows directly from Lemma 2. �

Before moving to our first theorem, we need to connect a rooted IPP problem to
its subproblems, as RAId is recursive.

Lemma 4 Suppose that π∗ is an optimal policy for a rooted IPP problem I with
hypothesis set H and prior probability distribution ρ. Let {H1, H2, . . . , Hn} be a
partition of H, and let π∗

i be an optimal policy for the subproblem Ii with hypothesis
set Hi and prior probability distribution ρi , where ρi (h) = ρ(h)/ρ(Hi ) for each
h ∈ Hi . Then we have

n∑

i=1

ρ(Hi )C(π∗
i ) ≤ C(π∗).

Proof For each subproblem Ii , we can construct a feasible policy πi for Ii from the
optimal policy π∗ for I. Consider the policy tree π∗. Every path from the root of π∗
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to a leaf uniquely identifies a hypothesis h ∈ H . So we choose the policy tree πi as
the subtree of π∗ that consists of all the paths leading to hypotheses in Hi . Clearly
πi is feasible, as it identifies all the relevant hypotheses. Then,

n∑

i=1

ρ(Hi )C(π∗
i ) ≤

n∑

i=1

ρ(Hi )C(πi )

≤
n∑

i=1

ρ(Hi )
∑

h∈Hi

ρ(h)

ρ(Hi )
· C(πi , h)

=
∑

h∈H

ρ(h)C(π∗, h) = C(π∗).

�

We are now ready to bound the performance of RAId for rooted IPP, under an
assumption.

Theorem 1 Let π denote the policy that RAId computes for a rooted IPP problem.
If RAId computes an optimal group Steiner tour in each step, then

C(π) ≤ 2 (log (1/δ) + 1) C(π∗),

where C(π) is the expected cost of RAId and δ = minh∈H ρ(h).

Proof By Lemma 1, if a recursive step of RAId does not terminate, it reduces the
probability of consistent hypotheses by a factor of 1/2. For any h ∈ H , the number
of recursive steps required is then at most log(1/δ) + 1.

We now complete the proof by induction on the number of recursive calls to
RAId. For the base case of k = 1 call, C(π) ≤ 2C(π∗) by Lemma 3. Assume that
C(π) ≤ 2(k − 1)C(π∗) when there are at most k − 1 recursive calls. Now consider
the induction step of k calls. The first recursive call partitions the hypothesis set
H into a collection of mutually exclusive subsets, H1, H2, . . . , Hn . Let Ii be the
subproblem with hypothesis set Hi and optimal policy π∗

i , for i = 1, 2, . . . , n. After
the first recursive call, it takes at most k additional calls for each Ii . In the first call,
the robot incurs a cost at most 2C(π∗) by Lemma 3. For each Ii , the robot incurs a
cost at most 2(k −1)C(π∗

i ) in the remaining k −1 calls, by the induction hypothesis.
Putting together this with Lemma 4, we conclude that the robot incurs a total cost of
at most 2kC(π∗) when there are k calls. �

Finally, we use Theorem 1 to analyze the performance of RAId on IPP rather than
rooted IPP. To start, we argue that a rooted IPP solution provides a good approximate
solution for IPP.

Lemma 5 An α-approximation algorithm for rooted IPP is a 2α-approximation
algorithm for IPP.
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Proof Let C∗ and C∗
r be the expected cost of an optimal policy for an IPP problem

I and for a corresponding rooted IPP problem Ir, respectively. Since any policy
for I can be turned into a policy for Ir by retracing the solution path back to the
start location, we have C∗

r ≤ 2C∗. An α-approximation algorithm for rooted IPP
computes a policy π for Ir with expected cost Cr(π) ≤ αC∗

r . It then follows that
Cr(π) ≤ αC∗

r ≤ 2αC∗ and this algorithm provides a 2α-approximation to the
optimal solution of I. �

To obtain our main result, we need to address two remaining issues. First,
Theorem 1 assumes that RAId computes an optimal group Steiner tour. This is,
however, not achievable in polynomial time under standard assumptions. RAId uses
a polynomial-time greedy algorithm [1] that computes a group Steiner tree T with
a guaranteed approximation factor. It then applies Christofides’ metric TSP algo-
rithm [3] to the vertex set of T and generates a tour, instead of traversing T directly,
because Christofides algorithm provides a guaranteed 3/2-approximation to the opti-
mal TSP tour. Second, the greedy group Steiner approximation algorithm assumes
integer group-weights. To apply this algorithm and obtain the approximation bound,
we assume that the prior probabilities are coded in non-negative integers. We remove
the renormalization step (Algorithm 1, line 8) and make other minor changes accord-
ingly. Normalization of probabilities is not necessary for RAId. It only simplifies
presentation.

Theorem 2 LetI = (X, d, H, ρ, O,Z, r) be an IPP problem. Assume that the prior
probability distribution ρ is represented as non-negative integers with

∑
h∈H ρ(h) =

P. Let δ = minh∈H ρ(h)/P. For any constant ε > 0, RAId computes a pol-
icy π for I in polynomial time such that C(π) ∈ O((log|X |)2+ε log P log(1/δ)
C(π∗)).

Proof In the group Steiner problem for I, the vertex set is X . The greedy
approximation in RAId computes anα-approximation T to the optimal group Steiner
tree T ∗ [1], with α ∈ O((log|X |)2+ε log P). The total edge-weight of an opti-
mal group Steiner tree, w(T ∗), must be less than that of an optimal group Steiner
tour, W ∗, as we can remove any edge from a tour and turn it into a tree. Thus,
w(T ) ≤ α w(T ∗) ≤ α W ∗. Applying Christofides’ metric TSP to the vertices of
T produces a tour τ , which has weight w(τ ) ≤ 2w(T ), using an argument similar
to that in [3]. It then follows that w(τ ) ≤ 2αW ∗. In other words, RAId obtains
a 2α-approximation to the optimal group Steiner tour. Putting this together with
Theorem 1 and Lemma 5, we get the desired approximation bound. The algorithm
clearly runs in polynomial time. �

IPP is anNP-hardoptimizationproblem.RAIdprovides a polylogarithmic approx-
imation algorithm that runs in polynomial time. We further show in the next section
that RAId works well in practice.
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5 Implementation and Experiments

It is probably unsurprising that the robot actually does not need to return to the start
position, line 18–19) in each recursive step (Algorithm 1). This is mainly to simplify
the analysis. For the experiments, we implemented a RAId variant without these two
lines.

For comparison, we also implemented two greedy algorithms. The first one,
Information gain (IG), is widely used in practice. Let Q denote that random vari-
able that represents the true hypothesis. Suppose that the robot is currently located
at x . If it receives observation o at the next location x ′, the information gain is
H(Q) − H(Q|x ′, o), where H denotes the Shannon entropy. Entropy measures the
uncertainty in a random variable. Reducing entropy is the same as gaining informa-
tion. IG always chooses the next location to maximize the expected information gain
in a greedy manner:

max
x ′∈X

∑

h∈H

∑

o∈O

(
H(Q) − H(Q | x ′, o)

)
p(o|x ′, h)p(h).

To account for robot movement cost, one simple way is to maximize information
gain per unit movement cost (IG-Cost), again in a greedy manner:

max
x ′∈X

∑

h∈H

∑

o∈O

H(Q) − H(Q | x ′, o)

d(x, x ′)
p(o|x ′, h)p(h).

We implemented all three algorithms in the Clojure language and compared their
performance in simulation (Table1). For each test case, we ran the algorithms on
every hypothesis in H and calculated the average policy cost weighted by the prior
probabilities. Although cost is our main performance measure, we also recorded
total planning time for completeness (Table1). The running times were obtained on

Table 1 Performance comparison

|X | |H | |O| Cost Time (s)

IG IG-Cost RAId IG IG-Cost RAId

2-Star (d = 10, n = 5) 37 32 2 25.3 32.9 19.0 0.03 0.03 0.13

2-Star (d = 10, n = 6) 70 64 2 27.9 22.3 21.0 0.10 0.12 0.34

2-Star (d = 53, n = 6) 70 64 2 102.1 62.0 64.0 0.13 0.75 1.07

2-Star (d = 53, n = 7) 135 128 2 102.4 127.4 69.4 0.40 5.58 1.22

2-Star (d = 53, n = 8) 264 256 2 100.9 257.7 68.0 1.39 3.35 4.96

Grasping 170 144 154 2822.9 839.9 690.1 2.39 4.14 6.43

UAV Search 128 64 2 97.2 142.7 74.7 0.45 2.54 7.23

“Cost” is the average cost of a computed policy over all hypotheses. “Time” is the average total
planning time, excluding the time for plan execution
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a computer server with an Intel Xeon 2.4GHz processor. Overall, RAId takes longer
computation time than the two greedy algorithms, but produces much better policies.
Although our implementation is not optimized as a result of the implementation
language, the running times, which are on the order of seconds for these moderate-
scale test problems, are adequate for a range of online robot planning tasks.

5.1 2-Star Graph

We start with a simple example to gain some understanding of the main issues. There
are a total of 2n possible hypotheses H = {0, 1, 2, . . . , 2n−1}, with equal probability
of occurring. Each hypothesis h ∈ H is coded in its binary representation.

To identify the true hypothesis, the robot visits the nodes in a graph consisting
of two connected stars (Fig. 2). One star has center bn and n peripheral nodes
b0, b2, . . . , bn−1. The other star has center s2n and 2n peripheral nodes s0, s1, . . . ,
s2n−1. There is an edge connecting the two centers nodes, with edge-weight d. The
weight for an edge between a center and a connected peripheral node is 1. The set X
contains only the peripheral nodes and not the two centers, bn and s2n , which only
serve the purpose of connecting the peripheral nodes. The robot is initially located
at s0.

At each node bi in X , the robot receives observation 1 if the i th bit of a hypothesis h
is 1, and receives 0 otherwise. At each node si in X , the robot receives observation 1 if
h = i , and receives 0 otherwise. Clearly the b-nodes provide much more informative
observations than the s-nodes. The observations at b-nodes behave like binary search,
while the observations at s-nodes behave like sequential search. Since the robot starts
at s0, the main issue is to decide whether to pay the high cost of traversing the inter-
star edge in order to benefit from the more informative observations at the b-nodes.
Unfortunately, even in this very simple example, the issue cannot be resolved locally.

RAId has the best or close to the lowest cost in all instances (Table1). IG-Cost
reasons about cost, but it is unable to decide optimally whether to jump to b-nodes
or stay on s-nodes. When d = 10, IG-Cost transits to the b-nodes because it is not
deterred by distance. However, it turns out to be profitable to jump to b-nodes only
when n = 6. Hence, IG-Cost performs worse in n = 5. When we increase distance
d to 53, IG-Cost is misled by the greedy local analysis and decides to stay at the
s-nodes simply because it is cheaper to reach them. Its performance degrades quickly

Fig. 2 The 2-star graph
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as the number of hypotheses increases. In fact, IG-Cost’s regret, measured against the
optimal solution, increases exponentially, as n increases. Interestingly, IG sometimes
performs better than IG-Cost. This is, however, coincidence. By completely ignoring
themovement cost, IG naturally moves the b-nodes, which providemore informative
observations.

5.2 Grasping a Cup

There are two cups on the table, one with a handle and one without. A robot arm
needs to lift the cup with a handle by grasping on the handle (Fig. 3). Using an
external camera placed on the left side of the table, the robot can accurately sense
the positions of the two cups. However, due to occlusion, it is uncertain which cup
has a handle and where the handle is.

Each hypothesis (κ, θ) has two parameters: κ is a binary value that indicates
which cup has a handle, and θ is the cup’s orientation, which determines the handle
location. The handle must face away from the camera. So those hypotheses have
higher prior probabilities.

The robot arm has a single-beam laser range finder mounted at its the wrist. The
range finder reports the (discretized) distance to the nearest object in the direction
that the range finder is facing.

We sample seven wrist positions x1, x2, . . . , x7 around the cups (Fig. 3). At each
position, the robot can pan the range finder in the plane parallel to the tabletop.
Panning by a fixed amount incurs a cost of 4. Moving the wrist from one position to
another incurs a higher cost: the distance between the current position and the target

x1 x2 x3

x4

x5x6x7

Fig. 3 Grasp the cup with a handle. The figure shows the side view and the top view of the same
robot configuration with the robot hand on the right side of the table
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position, scaled up by a factor of 15. The robot arm starts at wrist position x1 on the
left side of the table.

RAId again has the lowest cost. Under RAId, the robot moves progressively from
x1 to x7 and pans the range finder at each position to take observations. This is a
good strategy, because it avoids excessive robot arm movement, which incurs high
cost. IG-Cost does not perform as well here. The robot moves to x6 in the first step,
because it expects to see the handle from there with high probability according to
the prior. However, with small probability, the cup is oriented so that the handle is
not visible from x6. In this case, the robot must pay a high cost to travel back to the
other positions. It turns out that on the average, the aggressive move to x6 does not
pay off. This example clearly shows the weakness of greedy strategies, which do not
planmultiple steps ahead. IG performs very poorly, because it completely ignores the
difference in action costs and moves the robot arm excessively between the various
wrist positions in order to seek sometimes minor additional information gain.

5.3 UAV Search

A UAV searches for a stationary target in an area modeled as an 8 × 8 grid (Fig. 4)
and must identify the grid cell that contains the target. Initially the target lies in any
of the cells with equal probabilities.

The UAV can operate at two different altitudes. At the high altitude, it uses a
long range sensor that determines whether the 3× 3 grid around its current location
contains the target. At the low altitude, the UAV uses a more accurate short-range
sensor that determines whether the current grid cell contains the target. Some grid
cells are not visible from the high altitude because of occlusion, and the UAV must
descend to the low altitude in order to search these cells.

s

s

Thelong range sensor
detects the target in
the 3 × 3 area.

Theshort range sensor
detects the target in
the grid cell at the
current UAV location.

true target location

h = 10

c = 1

c = 4

Fig. 4 Search for a stationary target in an 8 × 8 grid. At the high altitude, the long-range sensor
provides no information in the area shaded in gray, due to occlusion. The red curve indicates one
sample path generated by RAId
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The UAV starts at the low altitude. We use the Manhattan distance between two
grid cells as the basis of calculating the movement cost. The cost of flying between
two adjacent cells at the high altitude is 1. The corresponding cost at the low altitude
is 4. The cost to move between high and low altitudes is 10.

One may think that the optimal strategy is for the UAV to rise to the high altitude,
search and locate the target in a 3 × 3 area, and finally descend to the low altitude
in order to localize the target precisely. RAId, however, does not always do this,
because the cost of descending is high. Figure4 shows a sample run of RAId. After
identifying the 3 × 3 area, the UAV stays at the high altitude. It moves around in
the neighborhood and fuses the observations received to localize the target precisely
without descending.

IG-Cost does not perform well, again because it does not plan multiple steps
ahead. It fails to recognize that although the cost of climbing to the high altitude
seems high in one step, the cost can be amortized over many future high-altitude
observations, which are more informative. Under IG-Cost, the UAV always stays on
the low altitude and does not climb up.

6 Noisy Observations

Although RAId is designed for noiseless observations, we now describe a simple
extension, Noisy RAId , to handle noisy observations. Our strategy is first to create a
noiseless IPP problem I ′ = (X, d, H ′, ρ′, O,Z ′, r) from the original noisy one I =
(X, d, H, ρ, O,Z, r), by associating a hypothesis with observations. For noiseless
observations, each hypothesis h has a unique observation vector (o1, o2, . . . , o|X |),
where Zxi (h, oxi ) = 1 for each location xi ∈ X . This one-to-one relationship allows
us to represent a hypothesis by its associated observation vector. The hypothesis
space H is then simply a set of points in O |X |. For noisy observations, the one-to-
one relationship no longer holds, but the intuition of associating hypotheses with
their observation vectors remains valid.

Formally we set H ′ = O |X |. For a hypothesis h′ = (o1, o2, . . . , o|X |) in H ′, the
prior probability of h′ is the probability of observing h′ if the robot visits all loca-
tions in X : ρ′(h′) = ∑

h∈H ρ(h)
∏|X |

i=1 Zxi (h, oi ). Finally, the observation function
Z ′

xi
(h′, o) = 1 if o = oi .
Noisy RAId applies RAId to I ′ with three changes:

• For computational efficiency, we sample a set of n hypotheses from H ′ in each
recursive step of RAId and use it an approximate representation of H ′.

• Although I is transformed into I ′, our goal is still to acquire information on
the original hypothesis space H . We maintain a probability distribution over H .
Initially, b = ρ. Because of noise, we cannot use an observation to eliminate a
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Table 2 The performance of noisy RAId on the UAV search task with noisy observations

Noise Cost

n = 128 n = 192 n = 320

0.01 110.1 104.6 106.1

0.05 131.9 135.5 131.3

Noise level σ means that the high-altitude sensor reports a false observation with probability σ, and
n is the number of samples

hypothesis h ∈ H , but we can update their probabilities using the Bayes rule.
Suppose that the robot receives a new observation o at location x . We replace
Algorithm 1, line 15 with

b(h) ← η Zx (h, o)b(h) for every h ∈ H,

where η is a normalization constant.
• Finally, we terminate RAId if the most likely hypothesis h∗ = arg maxh∈H b(h)

has probability greater than or equal to a given constant γ ∈ (0, 1]).
Under the assumption of noiseless observations, Noisy RAId reverts back RAId. To
see this, note that in the first change, we may exhaustively sample every hypothesis
in H and make H ′ = H . In the second change, Zx (h, o) is either 1 or 0. Bayesian
update is then equivalent to hypothesis elimination. In the third change, we set γ = 1.

We performed preliminary experiments to evaluate this idea on the UAV Search
task (Sect. 5.3) with two different noise levels for the high-altitude sensor. The ter-
mination condition γ was set to 0.99. We evaluated multiple settings with different
numbers of samples. For each setting, we run one trial for every hypothesis h ∈ H
and averaged performance statistics. The results, reported in Table2, are promising.
Although the size of H ′ is 2128, the algorithm identifies the true hypothesis correctly
for every trial with only a few hundred samples in all settings. In other words, it
always identifies the correct hypothesis according to the ground truth. In general, the
robot’s travel cost increases with noisy observations, as expected. With more sam-
ples, we expect the algorithm to compute a better policy with lower cost. However,
the trend in the data is not definitive. Either a small number of samples is sufficient
in this case to produce a near-optimal policy or a much larger number of samples is
needed for significant improvement. Further investigation is required.

7 Conclusion

RAId is a new algorithm for the NP-hard informative path planning problem.
We show that it computes a polylogarithmic approximation to the optimal solu-
tion in polynomial time, when the robot travels in a metric space. Furthermore,
our experiments demonstrate that RAId is efficient in practice and provide good
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approximate solutions for several distinct robot planning tasks. Although RAId is
designed primarily for noiseless observations, a simple extension allows it to handle
some tasks with noisy observations. However, theoretical guarantees for RAId no
longer hold when there are noisy observations. Our simple extension to RAId may
benefit from borrowing ideas from algorithms for noisy Bayesian active learning
such as [8].

To expand the use of RAId, there are two main challenges. One is to develop a
principled and practical treatment of noisy observations with performance guarantee.
The other is scalability. Currently, RAId uses a “flat” representation, which explicitly
enumerates every possible hypothesis. Hierarchical or factored representations will
be needed in order to scale up to very large hypothesis spaces.
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The Feasible Transition Graph: Encoding
Topology and Manipulation Constraints
for Multirobot Push-Planning

Laura Lindzey, Ross A. Knepper, Howie Choset
and Siddhartha S. Srinivasa

Abstract Planning formultirobotmanipulation indense clutter becomesparticularly
challenging as the motion of the manipulated object causes the connectivity of the
robots’ free space to change. This paper introduces a data structure, the Feasible
Transition Graph (FTG), and algorithms that solve such complex motion planning
problems. We define an equivalence relation over object configurations based on
the robots’ free space connectivity. Within an equivalence class, the homogeneous
multirobot motion planning problem is straightforward, which allows us to decouple
the problems of composing feasible object motions and planning paths for individual
robots. The FTGcaptures transitions among the equivalence classes and encodes con-
straints that must be satisfied for the robots to manipulate the object. From this data
structure, we readily derive a complete planner to coordinate such motion. Finally,
we show how to construct the FTG in some sample environments and discuss future
adaptations to general environments.

1 Introduction

Much research has focused on manipulating objects using groups of small general-
purpose robots, rather than the traditional large single-purpose machines in a context
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such as manufacturing [1–5]. There are a number of scenarios in factories and ware-
houses for which using a team of robots can save time or even perform a task that
was impossible with a single robot. Examples include maneuvering a cargo pallet in
an area packed with boxes and performing precision assembly of large products like
airplanes.

In the first example, in a cluttered environment, transporting a bulky object can be
quite awkward. Consider a forklift trying to make a 90◦ turn among tight corridors.
It may be more efficient to set down the load, reposition, and then drive in the new
direction. However, this repositioning could be physically infeasible due to the load
blocking a lone forklift’s free space or logistically infeasible given the time required
to drive around other obstacles. In these cases, an additional forklift must already be
in position to efficiently pick up and transport the load.

In the second example, we observe that current strategies for manufacturing large
objects require factory fixtures called jigs. The goal is to have teams of robots replace
the jigs and carry large parts in and around the assembly area, bringing them into
contact when the assembly operation calls for it. This would allow themanufacturing
plant to become operational more quickly as well as be more flexible for reusing
the infrastructure for other tasks. However, this will require robots that are able to
maneuver large objects in a busy, cluttered factory floor.

One key challenge of these scenarios is that they require reasoning about how the
manipulated object’s location affects the manipulating robots’ ability to move freely.
They share that requirement with the multirobot object manipulation domain, which
considers a class of problems where a group of mobile robots must work together to
move an object from a start to a goal configuration (detailed in Sect. 3).

Consider cluttered environments such as in Fig. 1, with several robots pushing a
large object in a maze-like environment. The motions of robots and the object are

Robot

Movable Object

Obstacle

Robot’s C−obstacle

Object’s C−obstacle

Fig. 1 Example environment for object pushing. The same color scheme is used throughout the
paper
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coupled both by obstruction and by rules for manipulating the object. In this paper,
we explore the following questions:

P1—Existence: Given start and goal configurations for the object, does a feasible
plan exist for the robots to move the object?
P2—Synthesis: Find a plan to move the object from a start to a goal location for
given initial robot locations.
P3—Optimization: What is the minimum number of robots required to push the
object between two specific positions? What is the path-length-optimal feasible
object path between two specific positions?
P4—Minimalism: What is the minimum number of robots required to perform
any feasible object path in the environment?

We introduce a novel representation, the Feasible Transition Graph, and algorithms
operating upon it that allow us to answer the above questions. We then discuss an
implementation that solves these problems for a few simple types of environment
and manipulation models.

We achieve these results by reformulating object pushing as a constrained mini-
mization problem with constraints derived from two properties of the environment
(Sect. 4). First, we require that robots obey the semantics of pushing, which we
term manipulation constraints. These constraints determine how robots are able to
maneuver the object. Next, as the object’s motion changes the connectivity of the
robots’ free space, we require that each robot must move deliberately among merg-
ing and splitting connected components. We call this conservation of robots. These
two properties induce constraints on the number of robots occupying each connected
component.

We organize these constraints in a graph-like structure called the Feasible Transi-
tion Graph (Sect. 7), which makes it possible to solve multirobot planning problems
(P1, P2, P3) with a graph search (Sect. 5). General minimum sufficient robots prob-
lems (P4) require an optimization over this graph (Sect. 6).

In the multirobot object pushing domain, even simple scenarios reveal much com-
plexity. The FTG provides an abstraction that simplifies this complexity. A key future
challenge is to tractably construct such graphs for complex, higher-dimensional prob-
lems (Sect. 8).

2 Related Work

Approaches to manipulation planning often consider a set of alternating transit and
transfer actions. This makes it difficult to apply typical motion planning algorithms.
Under some conditions, the manipulation planning problem can be split into two
steps: first choosing a path for the object, and then finding robot paths that cause
the object to follow that path [6]. This decomposition is similar to the division of
multi-arm manipulation problems into transit and transfer tasks by [7]. Our work
focuses exclusively on what is required to find a feasible object path, instead of on
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solving the navigation problem for individual robots. Once a path for the object has
been found, it imposes a set of constraints on individual robot positions, from which
motions can be easily computed. Robot paths that obey these constraints can be found
using existing multirobot planning algorithms [8, 9].

Our multirobot manipulation task in clutter is closely related to navigation among
movable obstacles. They both require reasoning about manipulating an object whose
motion changes the connectivity of the robot’s free configuration space [6, 10]. In
this work, we use the observation that for determining whether a given manipulation
action is feasible it is sufficient to explicitly track which portions of the robot’s
configuration space are occupied.

Significant previous work has focused on the mechanics of object pushing and the
problem of how a team of robots can cause an object to follow a predetermined path.
Lynch and Mason investigated the controllability of point- and line-contact pushing
[11, 12]. More recently, [13] investigated how to compute paths for a team of robots
to push an object along a given path among obstacles.

Caging is a common method for solving the multirobot object pushing problem.
Rather than alternating transit and transfer actions, robot actions are chosen such
that they approach the goal while obeying constraints guaranteeing that the object
remain caged. This approach has resulted in complete algorithms for obstacle free
environments [14], and moderately cluttered environments [15–17]. However, we
consider environments with narrow passages where it is not physically possible to
cage an object.

Definitions

O = {Oi }, obstacles
R = {Ri }, robots
M manipulated object

EC equivalence class
EG equivalence graph

FTG feasible transition graph
C(ni ) constraints on ni ∈ FTG

mαi number of robots in αi

PRi , PR path of Ri , set of robot paths
PM , PM path for M, set of all such paths
FM , FM feasible path for M, set of all such paths

Q f ree
R (qM ) free configuration space of robot R with M at qM

Q f ree
M free configuration space of M

N (Q) number of connected components in space Q

N (qM ) shorthand for N
(

Q f ree
R (qM )

)
for qM ∈ Q f ree

M

A(ni ) possible assignments of robots for ni ∈ EG

αi i-th connected component of Q f ree
R (qM ) for qM ∈ α

3 Definitions and Problem Statement

Assume the workspace is a closed, bounded subset of R2, populated by obstacles
O = {Oi }. Identical robots R = {Ri } cooperate to manipulate the movable object
M , and are able to perform two types of actions within this environment: transit
actions, where they move within a connected component of their free configura-
tion space; and transfer actions, where they maneuver M . A solution for the object
manipulation problem consists of a path for M from a start configuration qM,init to a
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goal configuration qM,goal and a set of robot trajectories PR = {PR1 , PR2 , . . .} that
cooperate to move M along this path.

We consider the case of homogeneous robots, and define Qfree
R (qM ) to be the free

configuration space formed by any robot Ri moving among O with M at position
qM . Qfree

M is the free configuration space formed by M moving among obstacles O.

Let the continuous function PM : [0, 1] → Qfree
M be a path for the object, and the set

of all such paths be PM .
In order to tractably reason about all possible object paths, we define an equiv-

alence relation on object positions qM such that any path can be broken down into
a series of actions transitioning among equivalence classes (ECs). We say that two
object configurations qM,i and qM, j are equivalent if there exists a continuous path
p ∈ PM parametrized by s ∈ [0, 1], with p(0) = qM,i and p(1) = qM, j , along
which N (p(s)) is held constant. Each EC α is associated with a set of connected
components {α1, α2, . . .}, as shown in Fig. 2. We use mαi to represent the number
of robots occupying the connected component αi , and define a function N (Q) that
returns the number of connected components in a configuration space Q. N (q) is
used as shorthand for N (Qfree

R (q)).
We define feasible paths to be the subset of object paths that the robots are able

push the object along:

FM = {p ∈ PM | ∃PR causing M to follow p.}

For a path to be feasible, there must be sufficient space adjacent to the object for
a robot throughout the course of the manipulation. Considering the environment in
Fig. 2, no transition from ζ → α is feasible because there is no space for a robot
to the left of M . Similarly, any path from α → β → α → ζ is infeasible, despite

α
1

α
2

β
1

β
2

β
3

γ
1

γ
2

η
1

ζ
1

δ
1

δ
2

ε
1

η
1

Fig. 2 An EGwhere each node is represented by an example object configuration. Arrows indicate
neighboring ECs
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each individual transition being feasible. This is because earlier transitions requires
mα1 ≥ 1, but the final transition requires mα1 = 0.

Robots can move freely within Qfree
R , so chaining together feasible block paths

only requires keeping track of how many robots occupy each connected component
of Qfree

R (qM ), rather than the full cross product of |R| such spaces. Individual robot
trajectories can then be derived from the block path. This relies on two assumptions.
First, the robots are interchangeable, such that we do not have to consider how robot
positions affect the connectivity for other robots. (The robots in a conflict would
simply have their goal assignments swapped.) Second, we assume that robot packing
density is not a limiting factor, which depends on the details of the world model.

4 Approach

In cluttered spaces, constraints on manipulation and robot location interact in com-
plex ways. In this section, we present our approach to simplifying the analysis of
pushing interactions in order to solve Problems P1–P4. The first data structure, the
Equivalence Graph (EG), exposes the topological structure of the ECs as a function
of movable object position. The second data structure, the Feasible Transition Graph
(FTG), computes feasible kinematic motions, using the ECs from the EG for book-
keeping about robot occupancy. Implementation details for sample environments are
presented in Sect. 7.

4.1 Constraints

The data structures proposed here require us to associate constraints with each transi-
tion of the object across an ECboundary. Recall that we have two types of constraints:
manipulation and conservation of robots, as described in Sect. 1. These constraints
prescribe the number of robots assigned to each connected component. For example,
in the environment shown in Fig. 2, a transition from EC δ to β imposes the following
constraints:

mδ1 = mβ3 (conservation of robots)

mδ2 = mβ1 + mβ2 (conservation of robots)

mδ1 ≥ 1 (push manipulation)

mβ3 ≥ 1 (push manipulation).

Conservation of robots constraints deal with the splitting and merging of con-
nected components of Qfree

R (qM ) over time. These constraints, which are a function
of the geometry of the environment alone, take four different formswhichwedescribe
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with references to the ECs shown in Fig. 2. In the case of merging components, such
as δ → ε, we have mδ1 + mδ2 = mε1. For splitting components, such as α → β,
we have mα2 = mβ2 + mβ3. For the same transition, we have mα1 = mβ1, for com-
ponents involved in neither splitting nor merging. If a component has no associated
robots in the next EC, such as for γ → η, we have mγ 2 = 0.

Manipulation constraints require that every connected component, or set thereof,
responsible for generating a transition is occupied. We say that a connected compo-
nent is responsible for a transition if a robot occupying it would be able to push the
object in the required direction. This leads to constraints in the formofmαi ≥ 1. In the
case of multiple connected components able to execute the push, we only require that
one of them be occupied, and the constraint takes the form (mαi ≥ 1) ∨ (

mα j ≥ 1
)
.

Changing the manipulation model requires changing how these manipulation
constraints are defined and updating the feasibility checking to accommodate the
different robot positions during motion. For example, if we wanted to require one
robot pushing and one robot pulling,wewould require that the connected components
on either side of the object are occupied by at least one robot and that there is space
at the start and end of the motion for both robots. Other possible configurations
include allowing one robot to both push and pull, or requiring two robots pushing
side-by-side to manipulate the object.

4.2 Equivalence Graph

TheEquivalence Graph (EG) encodes a compact representation of the topology of the
environment and the motion of the object. It is an undirected graph used to represent
how the object’s motion between ECs affects the connectivity of Qfree

R . Each node of
the EG corresponds to an EC, as defined in Sect. 3. Every EC denotes a number of
connected components of the robots’ free configuration space, given alphanumeric
labels in Fig. 2. The edges represent object motions that cause a transition between
ECs, and are labeledwith the corresponding conservation of robots constraints. Using
the EG and an exact mapping qb �→ EC , it is possible to determine the conservation
of robots constraints involved for any object path PM .

4.3 Feasible Transition Graph

The Feasible Transition Graph (FTG) describes feasible object motions in the envi-
ronment. It is a directed graph, reflecting the fact that transfer actions are not
reversible in time. The nodes are object configurations, and edges are labeled with
the constraints on connected component occupancy required for the associated object
motion to be feasible. It has two key properties: any feasible object motion must map
to a walk on the FTG, and for any walk on the FTG, we must be able to determine
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which EC transitions have been crossed. If it is possible to exactly describe all
such transitions, the resulting planner will be complete, and bounds on the number
of robots required will be exact. Otherwise, it is possible to use a sampling-based
approach to construct the FTG and obtain a probabilistically complete planner.When
constructed, the FTG’s nodes have no associated constraints; the Planning (Sect. 5)
andMinimumSufficient Robot (Sect. 6) algorithms both add annotations to the nodes
of the FTG and propagate them through the FTG. These node annotations may repre-
sent constraints on robot assignments, denoted C(ni ), or feasible robot assignments,
denoted A(ni ).

5 Planning

Given an initial object position M and robot positions R, we wish to find a sequence
of object pushes that cause the object to reach the goal location (P2). We present a
roadmap-like planner that solves this problem. A roadmap planner uses a directed
graph, where the nodes are configurations and the edges represent feasible paths
between the configurations. It also requires that the graph be accessible/departible
from any configuration and that it preserves connectivity [18]. We use the FTG as
described in Sect. 4.3 as the roadmap, and give details for connecting start and goal
positions in Sect. 7.3.

Nodes in the FTG may be labeled with an assignment of robots to connected
components and/or a set of constraints. For P2, a labeling of robot assignments
indicates that there is a feasible object path that could result in the robots moving
from their given initial conditions to the indicated locations. A labeling of constraints
indicates that if those constraints are met at that node, then there is a feasible block
path from that node to the goal. A solution has been found when there exists a node
with an assignment of robots that satisfies its constraints.

Possible robot assignments to connected components of Qfree
R (qM ) propagate

along the edges, starting with the provided initial conditions, and only change along
edges that cross an EC boundary. The child node is assigned the set of all possible
robot assignments to {mαi } that satisfy the constraints on the transition and could
result from starting with (one of) the parent node’s robot assignment(s) and reparti-
tioning the robots into connected components, if applicable. For example, consider
the planning problem shown in Fig. 7b. The initial conditions are A(n11) = {ε1 = 3}.
After a transition from ε → δ, we have A(n12) = {(δ1, δ2) = (1, 2), (2, 1), (3, 0)}.
The partition (δ1, δ2) = (0, 3) was eliminated because it does not satisfy the con-
straints for the edge. In the case of a node with two parents, we add both sets of
possible assignments to the set. This has a branching factor proportional to

( |R|
|αi |

)
.

In practice, this may be reduced dramatically by the requirement that propagated
assignments satisfy the edge constraints, and is bounded by the number of robots
that must be considered for a given environment, as discussed in Sect. 6.
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Backpropagation of constraints is based on the observation that if an edge exists
between two nodes and there are a known set of constraints that would allow a path
from the child node to the goal, then the parent node’s constraints are the union of
the child node’s and the edge’s. For the same transition discussed above, we have
C(n11) = C(n12) ∪ C(n11 → n12) If multiple paths exist from a given node to the
goal, the constraints at that node are the disjunction of those from all edges leaving
it. For example, the environment shown in Fig. 3 has two topologically distinct paths
from the initial condition to the goal, described here in terms of the ECs that must
be traversed:

η → δ →γ → β → α

η →β → α

If either path is feasible, then a feasible path exists from nη → nα , so C(nη) =
(C(nδ) ∪ C(nη → nδ)) ∨ (C(nβ) ∪ C(nη → nβ)). Determining whether a feasible
path exists requires solving at least one satisfiability problem, which is in general
NP-complete, but in practice, efficient solvers exist. Additionally, search efficiency
involving the constraints can be improved by preferentially propagating constraints
along edges in the FTG that are known to lie on a path connecting the start and goal
nodes.

Since the FTG is complete by construction, so long as we use a complete graph
search algorithm the resulting planner is also complete. The resulting plan includes
an assignment of robots to connected components for each EC that the object passes
through. These constraints on robot position can be fed into amultirobot path planner
to generate a set of robot paths that are guaranteed to push the object to the goal.

We have discussed a solution to P2. This is a special case of P1, which asks if
any solution exists independent of initial robot assignments. For P1, only backprop-
agation of constraints is used, and it is necessary to check if a satisfying assignment
of robots to connected components exists at the start node. Optimizing for object

Fig. 3 Environment with topologically distinct paths to the goal, requiring different numbers of
robots. Goal is shown as dashed outline; ECs are labeled and different shades of gray
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distance or number of robots (P3) can be achieved by ordering the FTG traversal
based on these metrics.

6 The Minimum Sufficient Robots Problem

In this section, we derive a bound on howmany robots are required to push the object
along any feasible path in a given environment (P4). We term this the minimum
sufficient robots (MSR) problem. The resulting bound applies to the solution found
by any planning algorithm. It is of interest for determining how many robots to
purchase or deploy and for classifying how challenging a particular environment is
for multirobot object manipulation tasks.

An important distinction is that we are considering every feasible path in the
environment, not just the path-length-optimal ones. The environment shown in Fig. 4
demonstrates why it is necessary to propagate the constraints through the FTG, rather
than simply consider the union of all constraints in the EG. It is not possible for the
object to travel from the left half to the right half of the environment, so the full set of
constraints would lead to an overestimate of howmany robots are required. Consider
the environment shown in Fig. 5. The object path shown requires six robots to be
executed. However, there exists a path between the same initial and final positions
that requires only four robots, and there is a path in this environment that requires
nine robots. Thus, the MSR bound is the least upper bound to the number of robots
required to solve all point-to-point object motions, disregarding the path taken.

The FTG is designed to propagate constraints throughout the environment, which
allows us to find a tight bound on the minimum sufficient number of robots. Just as
in the planner, constraints on a directed FTG edge impute constraints on the edge’s
parent node. The two problems differ with respect to how constraints are joined when
there are multiple edges leading from a node. In the planner, we only require that
a feasible path exists to the goal; in the MSR problem, we require that all paths be
feasible. Thus, rather than taking the disjunction of constraints from outgoing edges,
we take the conjunction. A solution to the MSR problem can then be found by fully
propagating these constraint sets backward through the FTG until the graph becomes

Fig. 4 Environment where
using the set of all
constraints would give an
overestimate of the
minimum sufficient robots
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Fig. 5 Example
environment for object
pushing. We show an object
path that would require 6
robots, numbered in the
order that they push the
object. Intermediate robot
and object positions are
shown in lighter colors. A
dashed square shows the
initial object position

1

2

3

4

5
6

consistent. By consistent, we mean an assignment of constraints to each node that
will not change upon any further constraint propagation. In a consistent FTG, every
constraint on a node applies to some feasible object path starting at that node.

In order to solve P4, constraints must be propagated from every node, not just
the goal. After achieving a consistent set of constraints, the minimum sufficient
number of robots will be determined by the node whose set of constraints requires
the most robots. We have now reformulated the minimum sufficient robots problem
as a constrained integer minimization problem with bounded variables. In the worst
case, solving this requires a graph search over all possible combinations of variable
assignments [19], but the problem structure will allow improvement using heuristics
to guide the search.

The procedure outlined above is conceptually straightforward but computation-
ally inefficient, as it can require up to |Nr | traversals of the FTG to make the graph
consistent. This can be eliminated by preprocessing the FTG to condense it into a
directed, acyclic graph whose nodes are the FTG’s strongly connected components.
The initial constraints on each new node are the union of all constraints in the cor-
responding strongly connected component. This acyclic graph will only require one
additional traversal to propagate all constraints.
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7 Implementation

Wepresent implementations of the EGandFTG in two different environments, which
were chosen in an attempt to provide as simple an example as possible while still
retaining the complex configuration space structure of interest. Both environments
allow exact decomposition of Qfree

M into ECs; the first also has a completely-specified
FTG, whereas we use a probabilistic approach for the second.

Axis-Aligned Box Obstacles All objects in this environment (O, M , and R)
are closed, axis-aligned rectangles. Surface contact, including sliding, is allowed
between any pair of objects, but the intersection of their interiors must be empty.
The robots R may translate freely within their respective connected components of
Qfree

R (qM ). All motion of the object M is aligned with an axis and is generated by a
single robot Ri pushing M , in face-to-face contact. The resulting M + Ri assembly
can only move in the direction of M’s inward-pointing contact normal. This is the
same environment as [6] use, but with different constraints on object manipulation.

Polygonal Obstacles In this environment, all obstacles O are closed polygons, while
the object M and robots R are circular disks. As in the axis-aligned environment, the
robots translate freely within connected components of Qfree

R (qM ). Contact among
robots, or between the environment and robots or the object, is forbidden. Two robots
pushing in tandem are required to generate object motion. For robot–object normals
n̂i = qM −qRi|qM −qRi | , the possible object motion directions are given by v̂M = an̂1 + bn̂2,

for 0 < a, b < 1.

7.1 Equivalence Graph

There are two types of EC boundaries: those imposed by the boundaries of Qfree
M

and those created by transitions between ECs. Transitions between ECs correspond
to the object “pinching off” or “opening up” a previously (im)passable corridor for
the robot (connectivity), or to the object’s motion causing a connected component of
Qfree

R to disappear (existence). Connectivity changes can only occurwhen the object’s
edge is exactly a robot width or height away from an obstacle. For the axis-aligned
environment, these boundaries correspond to extending the obstacles by RR +2RM .
For the polygon world, these boundaries are the configuration space obstacles for
a disk with radius RR + 2RM (Fig. 6a). In the axis-aligned environment, existence
of connected components only changes along the same bounds as the connectivity
changes. For the polygon environment, changes in connected component existence
will occur when the robot is wedged into a corner, and the EC boundary corresponds
to an arc of radius RM + RR around the robot’s location (Fig. 6c).

We now have a tiling of the environment, where all qM in the interior of each tile
are guaranteed to result in the same N (Qfree

R (qM )). For each tile, we determine the
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(a)

(b) (c)

(d)

Fig. 6 Calculation of equivalence classes. a Dotted lines show potential EC boundaries derived
from transitions. b Division of QM into tiles. Tiles in Qfree

M are labeled with N (qM ): 
 for 3, ∗ for
2, ◦ for 1. c The black arcs show potential EC boundaries derived from a disappearing connected
component in Qfree

R . d Division of Qfree
M into ECs. Black indicates C-space obstacle, and each

different shade of gray is a different EC
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number of connected components in the robots’ free space (Fig. 6b). Equivalence
classes correspond to the union of neighboring tiles with the same N (Q). Figure6d
shows exact decompositions of both environments into ECs.

Finally, we need to find the edges of the EG, which correspond to possible object
motions that change the connectivity of Qfree

R (qM ). In these environments, such
edges are simple to compute, as they connect any ECs that share a spatial boundary.
They are then labeled with the conservation of robots constraints associated with
motion between those ECs. Figure2 shows a representation of the EG for the same
environment as the left column of Fig. 6.

7.2 Feasible Transition Graph

Axis-Aligned Environment The tiling calculated in Sect. 7.1 also captures all
changes in possible object motions, as pushing requires a robot to fit behind the
object. For an object motion qM1 → qM2, feasibility is calculated by determining if
the boundary between a connected component of Qfree

R (qM1) and the trailing edge
of the object’s C-obstacle has non-zero length.

In order to represent possible object motions within and along tile boundaries,
the FTG’s nodes are chosen to be the centroids of each tile, along with mid-points
of boundaries and the edges. Note that all locations within a tile will have the same
feasible motions as the centroid, so this sampling fully specifies all possible object
motions throughout Qfree

M . Directed edges are added for any feasible motion between
nodes, and labeledwith the corresponding constraints on connected component occu-
pancy from the EG. In order to have the required information to plan in the graph,
any edge that involves transitioning between ECs is also labeled with the correspond-
ing constraints on connected component occupancy from the EG. Figure7a shows a
representation of the FTG for a simplified version of the environment shown in Fig. 2.

Polygonal Environment The purpose of the FTG is to discover feasible motion
sequences within Qfree

M .We present a general, stochastic method based on Proba-
bilistic Roadmaps (PRMs) [20].

In this application, the PRM randomly samples object configurations from Qfree
M

and tries to connect them to nearby configurations. An edge EFTG in this roadmap
represents a trajectory in the configuration space of the object that obeys the manip-
ulation semantics. Computing these edges requires an inverse manipulation model.
In so doing, robots may be placed wherever they are needed to complete the motion.
Collision-free edges are annotated with the number of robots required in each con-
nected component to perform the transfer action. This roadmap describes feasible
object motions both within each EC and across EC boundaries.

We note the resemblance of this structure to Multi-Modal PRM [21] and the
manipulation planning PRM of [22]. Each generates a roadmap connecting several
manifolds of arbitrary dimension, which are bridged by lower-dimensional inter-
section manifolds. We show that our formulation of the FTG is probabilistically
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(a) (b)

Fig. 7 FTG and planning problem for a simplified version of Fig. 2’s environment. a FTG, subsam-
pled for clarity (only nodes at tile centers are drawn). ECs are shown as different shades of gray,
and the labels match those in Fig. 2. b Example instance of P2 (top), and connecting start/goal to
the FTG (bottom)

complete by reducing it in the context of a planning problem (P2) into an instance
of the Multi-Modal PRM (MM-PRM) of [21], constructed in the joint configuration
space of the object and n robots.

Consider an edge EFTG in the FTG joining two object states, qFTG
1 , qFTG

2 ∈ Qfree
M .

We show that this edge is equivalent to edges E M M
1 . . . E M M

k in the MM-PRM, with

k ≥ 2, representing a motion connecting q M M
1 , q M M

2 ∈ Qfree
M × Qfree

R

n
. We may

separately consider transit and transfer tasks of the robots. In transit tasks (E M M
1 ),

the robots alonemove, whereas transfer tasks (E M M
2 . . . E M M

k ) involve manipulation
of the object by the robots.

EFTG is annotated with constraints on the number of robots in several connected
components, which specify goal states for the robots. By the definition of a connected
component, each transit is a motion planning problem that can be solved easily by
a standard PRM. For homogeneous robots, the multirobot planning problem can be
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simplified by selectively permuting goal positions to avoid conflicts [23]. Note that
not all robots need to move.

Transfer tasks, whether within or between ECs, are defined by the coordinated
motion of the object and some subset of the robot. The motion of the relevant robots
is given by the inverse manipulation model. In the case of intra-EC motion (k = 2),
the other robots do not need to move. For inter-EC motion, k > 2 because the
transfer edges in the MM-PRM must meet at a point on the boundary between ECs.
In this case, the other robots must move to ensure they are in the correct connected
component after the transition. Any goal state within the new connected component
is an acceptable goal. Again, some robots may not move.

Any edge in the FTG may be mapped to an edge in a connected MM-PRM.
Therefore, the probabilistic completeness property of MM-PRMs applies also to this
FTG construction. Unlike MM-PRMs, the ECs in which we sample are typically the
full dimension of QM and the space of edges that cross an EC boundary is likewise
of full dimension. Consequently, it is not typically necessary to explicitly sample on
the boundary in order to get a connected FTG.

In comparison to building a roadmap directly in the high-dimensional joint con-
figuration space of the object and robots, we can get away with a lower dimensional
roadmap by exploiting structure in the problem. Specifically, there is minimal cou-
pling in themotion among the object and robots. TheEGallows us to specify goals for
the robots in advance without excessive precision. That is, provided that each robot
is in the correct EC, detailed positioning is a simple, decoupled motion planning
problem.

7.3 Planner

Finally, in order to use the FTG as a roadmap, we need to show that it is acces-
sible and departible. In the axis-aligned environment, simply connecting the points
qM,init, qM,final ∈ Qfree

M to the graph does not preserve connectivity. Consider the case
of a narrow hallway—if no motion perpendicular to the hallway is feasible, it is pos-
sible that therewill be a feasible path between two configurations that can never reach
a point in the graph. Instead, we extend the graph to include nodes corresponding
to the intersection of both points’ coordinates with the all other FTG edges (Fig. 7b,
bottom). The polygonal environment is simpler, as the start/goal positions can be
connected to the FTG in the same way as the randomly sampled configurations.

8 Discussion and Future Work

In this paper, we propose the Feasible Transition Graph, a representation for multi-
robot object-pushing in cluttered environments. This approach enables a user to
reason about resource allocation, including how many robots are needed and where
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they should be positionedwhile planningmotions for the object.Weprovide complete
algorithms for solving these planning problems, andwe describe how to construct the
FTG for a few simple environments. Our approach exploits the structure of transient
independence among robots to construct amuch simpler representation than the naive
search space comprising the joint configuration space of the object and all robots.

In future work, we plan to consider more general environments, particularly those
with a higher-dimensional configuration space. The probabilistic FTG construction
approach is already quite general, but we plan to investigate a probabilistically com-
plete construction of the EG for diverse environments as well.

Additionally, there are a number of simple extensions from what we described in
detail. First, heterogeneous robots may be handled in one of two ways. If they are of
different sizes, then therewill be additional ECboundaries corresponding to each new
robot radius. If they have different capabilities, then we must introduce additional
variables to the number of robots in a given connected component matching that
capability. In this way, we could handle planning for robots that must cooperate to
push and pull an object.
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Collision Prediction Among Rigid
and Articulated Obstacles
with Unknown Motion

Yanyan Lu, Zhonghua Xi and Jyh-Ming Lien

Abstract Collision prediction is a fundamental operation for planning motion in
dynamic environment. Existing methods usually exploit complex behavior models
or use dynamic constraints in collision prediction.However, thesemethods all assume
simple geometry, such as disc, which significantly limit their applicability. This paper
proposes a new approach that advances collision prediction beyond disc robots and
handles arbitrary polygons and articulated objects. Our new tool predicts collision by
assuming that obstacles are adversarial. Comparing to an online motion planner that
replans periodically at fixed time interval and planner that approximates obstaclewith
discs, our experimental results provide strong evidences that the newmethod signifi-
cantly reduces the number of replans whilemaintaining higher success rate of finding
a valid path. Our geometric-based collision prediction method provides a tool to han-
dle highly complex shapes and provides a complimentary approach to those methods
that consider behavior and dynamic constraints of objects with simple shapes.

1 Introduction

Imagine a scenario where a robot navigates itself through a disaster zone filled with
static obstacles, mobile robots carrying debris with various sizes and shapes and
mobile manipulators picking up and loading debris on top of the mobile robots or
conveyor belts. In this scenario, the robot must plan its path without knowing how
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the other robots will move. Similar scenarios can be found in factory, warehouse
or airport where a robot requires the same ability to navigate among other mobile
robots manipulating and carrying commercial goods with various sizes and shapes.
Figure1 illustrates three of such examples where a mobile robot, which is modeled
either as a point or a polygon, navigates through environments filled with static and
dynamic obstacles with various shapes. In motion planning literature, this problem
is usually known as online motion planning or sensor-based motion planning.

Online motion planning methods usually exploit the idea of temporal coherence
to gain better efficiency by repairing the invalid portion of the path or (tree-based or
graph-based) roadmaps [1–4] since the changes in the configuration space is usually
small from frame to frame. These planning strategies are often known as replanning
methods [5–9]. Although these replanning methods are efficient, almost all existing
frameworks update the environmental map and then replan periodically at fixed time
interval. That is, even if there are no changes in the configuration space, motion
planner will still be invoked to replan. The situation is even worse when replanning
is not done frequently enough: Paths that are believed to be validmay become unsafe.

Motivated by this issue, several strategies [8, 10–15] have been proposed to replan
adaptively only at the critical moments when the robot and obstacles may collide.
These critical moments are usually detected by collision prediction methods. The
main challenge in predicting collision stems from the assumption that obstacle’s
motion is unknown. Existing methods in collision prediction exploit complex behav-
ior prediction [14, 15] or consider dynamic constraints [10, 11, 13, 16]. However,
thesemethods all assume either translational or disc objects, which significantly limit
their applicability. This limitation seriously hinders the robot’s ability tomove in clut-
tered environments, such as those in the aforementioned scenearios and the examples
in Fig. 1, where moving obstacles can have arbitrary shapes and sizes and can even
be articulated objects. As we will show later, bounding these moving obstacles with
discs can lead to arbitrarily poor collision estimation.

Start

GoalCurrent

Start

Goal

Current 

Start
Goal

Current

(a) (b) (c)

Fig. 1 Three examples of a mobile robot moving from corner to corner through environments
filled with static (black) and dynamic (grey) obstacles whose motion is unknown to the robot.
Bounding these moving obstacles with circles can lead to poor collision prediction and result in
many unnecessary replanning. Our method predicts the collision time for obstacles with arbitrary
shapes including articulated objects. The obstacles shown in red are the ones with the earliest
collision times with respect to the current configurations of the robot (also shown in red). a Point
robot. b Polygonal robot. c Articulated obstacles
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In this paper, we propose a new geometric tool that advances collision prediction
beyond the translational and disc objects and can handle arbitrary polygons and artic-
ulated objects. The basic framework introduced in this paper models the obstacles as
adversarial agents that will minimize the time that the robot remains collision free.
As a result, a robot can actively determine its next replanning time by conservatively
estimating the amount of time (i.e., earliest collision time or simply ECT) that it can
stay on the planned path without colliding with the obstacles. The idea of ECT and
conservative advancement are detailed in Sect. 3. In Sects. 4–6, we discuss how ECT
can be formulated in the three scenarios illustrated in Figs. 1a–c, respectively. Our
prediction is determined only based on the last known positions of the obstacles and
their maximum linear and angular velocities. In the experimental results (in Sect. 8),
we demonstrate that an online planner using the proposed collision predictionmethod
significantly reduces the number of replanningswhilemaintaining the same or higher
success rate of finding a valid path than (1) planner that replans periodically at fixed
time intervals and (2) planner that bounds obstacles with circles. In essence, our main
contribution is a geometric-based collision prediction method that can handle highly
complex shapes. This tool provides a complimentary approach to the methods that
consider complex behavior prediction or handle dynamic constraints but with only
simple shapes.

2 Related Work

Motion planning problems involving dynamic environments can be roughly classi-
fied into two categories: (1) The trajectory of everymoving obstacle is fully known in
advance, and (2) the trajectory of a moving obstacle is partially or completely unpre-
dictable. Since our work falls into the second category, we will focus on reviewing
recent works considering unknown environments.

2.1 Collision Avoidance

Due to little knowledge of the environment, safety becomes very important and
challenging in path planning in unknown environments. Fraichard and Asama [17]
provided the formal definitions of two new concepts: inevitable collision state (ICS)
and inevitable collision obstacle (ICO). If the robot is in an ICS, no matter what its
future trajectory is, a collision eventually occurs with an obstacle in the environment.
ICO is a set of ICS yielding a collision with a particular obstacle. Shiller et al. [18]
proposed a motion planner based on Velocity Obstacles (VO) for static or dynamic
environments. The time horizon for a velocity obstacle is computed based on the
current positions of robot and the obstacle as well as control constraints. With this
adaptive time horizon strategy, the velocity obstacle tightly approximates the set
of ICS. Gomez and Fraichard [19] proposed another ICS-based collision avoidance
strategy called ICS-AVOID. ICS-AVOID aims at taking the robot from one non-ICS
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state to another. The concept of Safe Control Kernel is introduced and it guaran-
tees ICS-AVOID can find a collision-free trajectory if one exists. Recently, Bautin
et al. [20] proposed two ICS-checking algorithms. Both algorithms take a probabilis-
tic model of the future as input which assigns a probability measure to the obstacles’
future trajectories. Instead of answering whether a given state is an ICS or not, it
returns the probability of a state being an ICS. Wu and How [16] extended VO to
moving obstacles with constrained dynamics but move unpredictably. To compute
the velocity obstacle of an obstacle, it first predicts its reachable region considering
all possibly feasible trajectories and then maps this reachable region into velocity
space by dividing it by time. Computation of ICS or VO requires some informa-
tion about the future in the environment. When it comes to environments whose
future is completely unpredictable, methods applying ICS or VO may fail to avoid
approaching collisions.

The work closes to the spirit of our new method is by van den Berg and Overmars
[8]. Their work assumes that the robot and all obstacles are discs and it conservatively
models the swept volume of an obstacle over time as a cone with the slope being
its maximum velocity. In this way, no matter how the obstacle moves, it is always
contained inside this cone. Therefore, the computed path is guaranteed to be collision
free. However, these assumptions can be unrealistic formany applications. For obsta-
cles with arbitrary shapes or rotation, computing their swept volumes is nontrivial.

2.2 Collision Prediction

Since the robot has partial or no information about the environment, it is very difficult
to plan a collision free path for it tomove through a field of static or dynamic obstacles
to a goal. One of the biggest challenge is to predict possible collisions with dynamic
obstacles whose trajectories are unknown. There exists a lot of work which checks
collisions at a sequence of fixed time steps [7, 21–24]. For example, van den Berg
et al. [7] performed collision detections at fixed time intervals (every 0.1 s in their
experiments). Both the robot and dynamic obstacles were modeled as discs moving
in the plane. Moreover, the future motions of a moving obstacle were assumed to
be the same as its current motions. In order not to miss any collisions, they either
increased the number of time steps or assumed the objects move very slowly.

There are also works which adaptively changed the frequency of collision checks:
collisions are more frequently checked for two objects which are more likely to
collide. Hayward et al. [10], Kim et al. [13] and Hubbard [11] assumed that the
maximum magnitude of the acceleration is provided for each object. Hayward et al.
calculated the amount of time within which two moving spheres are guaranteed not
to collide with each other. Then more attention was adaptively paid to objects which
are very likely to collide. Hubbard first detected collisions between the bounding
spheres of two objects. Then the pairs of objects whose bounding spheres intersect
are further checked for collisions using sphere trees that represent the objects. Kim
et al. [13] first computed the time-varying bound volume for each moving sphere
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with its initial position, velocity and the maximum magnitude of its acceleration.
As time goes by, the radius of this time-varying bound volume increases and it is
guaranteed to contain the sphere at any time in the future. For two moving spheres,
whenever their time-varying bound volumes intersect, they are checked for actual
collision. Chakravarthy and Ghose [12] proposed collision cone approach (similar
as velocity obstacle) for predicting collisions between any two irregularly shaped
polygons translating on unknown trajectories. All these methods are limited to discs,
spheres or translational objects. Our new tool allows polygons with arbitrary shape
(even non-simple polygons) with rotation.

Almost all existing works collect sensory data and update its environmental infor-
mation at fixed times. As a result, either updating is redundant or the situation is even
worse if update is performed not frequently enough. The robot may be at some state
which leads it to be in unavoidable collisions. To address this, we propose to update
environmental belief when necessary by exploring temporal coherence of obstacles
and predict a critical time t such that the robot is guaranteed to move safely along
its current path until t .

3 Overview of Our Method

Planning a path in environments populated with obstacles with unknown trajectories
usually involves two steps: (1) find an initial pathΠ based on known information and
then (2) modify Π as the robot receives new information from its onboard sensors at
fixed times. In the rest of this paper, we assume that the robot R plans a pathΠ based
on its current belief of the state of the workspace. However, instead of determining
if Π is safe to traverse at fixed time, R determines the critical moment t that Π may
become invalid. The robot budgets a certain amount of time �t before this critical
moment t to update its belief and replan if necessary. We would like to emphasize
again that this setting is merely a framework among many other applications of
collision prediction that allows us to make our discussion more concrete.

Because the trajectory of the obstacles in workspace is unknown, the critical
moment t can only be approximated. To ensure the safety of the robot, our goal is
to obtain conservative estimation t ′ ≤ t of the unknown value t . Follow the naming
tradition in collision detection, we call such an estimation conservative advancement
on Π and denote it as CAΠ . To compute CAΠ , the robot assumes that all obstacles
are adversarial. That is, these adversarial obstacles will move in order to minimize
the time that Π remains valid.

Contrary to the traditional motion planning methods, the calculation of CAΠ

(performed by the robot) in some sense reverses the roles of robot and obstacles.
The robot R is now fixed to the path Π , thus the configuration of R at any given
time is known. On the other hand, the obstacles’ trajectories are unknown but will be
planned to collidewithR in the shortest possible time.Aswewill see later, themotion
strategy for an obstacle Oi will only depend on its shape, the maximum translational
velocity vi and a maximum angular velocity ωi around a given reference point.
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3.1 Estimate Conservative Advancement on Path Π

Without loss of generality, the problem of estimating CAΠ can be greatly simplified
if we focus on only a single obstacle and a segment of path Π . Let Π be a sequence
of free configurations Π = {c1, c2, . . . , cn} with c1 = S and cn = G, where the S
and G are start and goal configurations, respectively. Given a segment c j c j+1 ⊂ Π ,
we let ECTi, j be the earliest collision time (ECT) that Oi takes to collide with the
robot on c j c j+1. Then we have CAΠ = mini

(
min j (ECTi, j )

)
, where 1 ≤ i ≤ |O|

and 1 ≤ j < n. Note that ECTi, j is infinitely large, if Oi cannot collide with R
before R leaves c j c j+1.

Lemma 1 If ECTi, j �= ∞, then ECTi, j ≤ ECTi,k , ∀k > j .

Once an earliest collision time is detected for a path segment c j c j+1, it is not nec-
essary to check all its subsequent segments ckck+1 with j < k < n. In Sect. 3.1, we
will provide an overview on how ECTi, j can be computed.

Before we proceed our discussion, we would like to point out that our method
does not consider collisions between the obstacles. Although this makes our estimate
more conservative, the obstacle with the earliest collision time rarely collides with
other obstacles.

3.2 Earliest Collision Time (ECT)

Given a segment c j c j+1 ⊂ Π of path in C-space, our goal is to compute the earliest
collision time ECTi, j when obstacle Oi hits robot R somewhere on c j c j+1. Assume
R starts to move on Π at time 0.

Since the robot R moves along a known path Π , R knows when it reaches any
configuration c ∈ Π . Let t be the time that R takes to reach a configuration c(t) ∈
c j c j+1 and let T be the time when Oi reaches this c(t). Because Oi is constrained
by its maximum linear and angular velocities vi and ωi , there must exist an earliest
time T̂ for Oi to reach any c ∈ c1c2 without violating these constraints. Since
every configuration on c j c j+1 is parameterized by t , this T̂ can also be expressed
as a function of t . Let this function be f (t). Furthermore, when the robot R and
Oi collide, they must reach a configuration c at the same time. Therefore, we also
consider the relationship between t and T modeled by the function g(t) : t = T . See
Fig. 2a, b.

In Fig. 2a, a bold (red) curve represents the earliest arrival time f (t) and a black
straight line represents g(t). These two curves subdivide the space into interesting
regions.

• For a point p = (t, T > t), indicates situations thatOi reaches c(t) later than t . No
collisions will happen because when Oi reaches c(t), the robot R already passes
c(t).
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Collision Region
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t = T
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Fig. 2 The red (thicker) curves in both figures are plots of the earliest arrival time f (t) for an
obstacle. Black straight lines are plots of g(t) : t = T . a When there is at least one intersection (blue
dot) between f (t) and g(t), collision region is not empty. b Otherwise, the collision region is empty

• The points p = (t, T < f (t)) indicates impossible situations that Oi needs to
move faster than its maximum velocities in order to reach c(t) at T .

• For a point p = (t, f (t) < T < t) from the region above curve f (t) but below
curve t = T , Oi has the ability to reach c(t) earlier than R. In order to collide
with R, Oi can slow down or wait at c(t) until R arrives. We call this region the
collision region.

Given that the robot R enters the path segment c j c j+1 through one end point c j

at time t j and leaves c j c j+1 from the other endpoint c j+1 at time t j+1, the earliest
collision time ECTij is the t coordinate of left most point of the collision region
between t j and t j+1. Therefore if this collision region is empty, R and Oi will not
collide on c j c j+1.

Based on what has been discussed so far, the most important step of estimating
critical moment is to compute f (t), the earliest moment when Oi reaches c(t). The
shape of function f (t) depends on the type and the degrees of freedom of the robot
and obstacles.

In the following sections, we will discuss three examples of how f (t) can be
formulated when: (1) R is a point and Oi is a polygon, (2) both R and Oi are
polygons and (3) R is a point and Oi is an articulated object. From these examples,
we can build up f (t) for complex shapes even when rotation is considered.

4 Point-Polygon Case

Let us start with the case where robot R is a point and obstacle Oi is a polygon that
can translate and rotate around a given reference point o. Without loss of generality,
let us focus on a moving segment p1 p2 ∈ Oi . Given a configuration c(t) ∈ c j c j+1
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which represents the location of R at time t , we are interested in solving f (t), the
earliest moment when p1 p2 hits c(t).

To estimate the earliest collision time (ECT), we observe that Oi ’s rotation and
translation can be considered separately. That is, f (t) can be decomposed into trans-
lational and rotational components: tT , the time that the point c needs to translate at
velocity vi , and tR , the time that c needs to rotate at velocity ωi . If we let the closest
distance between c(t) and p1 p2 be a function d(t) of time, we can compute ECT
between p1 p2 and R moving from configuration c1 to configuration c2 using the
following lemma.

Lemma 2 The ECT between p1 p2 and c1c2 is:

ECT = argmin
tR

(|tR − tT |) = argmin
tR

(|tR − d(tR)/vi |) , (1)

where d(tR) is the distance between c(tR) ∈ c1c2 and segment p1 p2 when p1 p2
rotates θ = tRω around o.

Proof The key to this proof is the definition of the function d(t). In our analysis,
d(t) depends on two cases: (1) p1 p2 and c ∈ c1c2 are sufficiently far apart, and (2)
p1 p2 and c are sufficiently close. Details of the analysis can be found in [25]. �

In summary, to estimate the ECT of R and Oi , we decompose f (t) into translational
and rotational components: tT and tR and solve the optimization problem inLemma2.
Since both translation and rotation decrease the closest distance between R and Oi ,
the time spend on translation tT must equal the time spend on rotation tR . Again,
interested readers should refer to [25] for detail.

5 Polygon-Polygon Case

In this section, we briefly discuss the case that both the robot R and the obstacle Oi

are polygons. The robot R rotates around its center of mass and moves along the
designated path Π . Obstacle Oi undergoes unknown translation and rotation around
a given reference point o.

Taking the same conservative advancement approach,wewill focus our discussion
on the motion strategy that an edge q1q2 of Oi can take to collide with an edge p1 p2
of R at a given time t . Our main observation of computing the ECT etween is stated
in the following lemma.

Lemma 3 Given two separating line segments p1 p2 ∈ R and q1q2 ∈ Oi , the earliest
collision can only happen between an endpoint of p1 p2 and q1q2 or an endpoint of
q1q2 and p1 p2. Collisions at the interior portion from both line segments can only
happen after one of those two cases.

Proof See detailed proof in [25]. �
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Essentially, Lemma 3 allows us to determine the ECT of two line segments from
only two instances of point-polygon case discussed in Sect. 4. Given that R and Oi

are composed of n and m line segments, respectively, their ECT can be determined
via 2mn point-polygon case analysis.

6 Point-Articulated Obstacle Case

Let us now focus on collision prediction between a point robot and an articulated
obstacle in 2D, such as a mobile manipulator. The motion of such an articulated
obstacle Oi is unknown to the robot but constrained by the following assumptions:
(1) Oi can translate as a rigid body and it has a maximum translational velocity vi ,
and (2) every two adjacent linkages are connected by a revolute joint. In addition,
every revolute joint has a maximum angular velocity ω j . To simplify our discussion,
we assume that Oi has no branch and is represented as a sequence of m linkages
Oi = L1L2 . . . Lm . Linkage Li is closer to the base than linkage L j iff 1 ≤ i < j ≤
m, and we call Li an ancestor of L j .

We again are interested in detecting the earliest time when collisions occurred
between a point robot and such an articulated obstacle Oi . Let us first assume the
robot reaches c1 at t1 and reaches c2 at t2 where c1c2 is some path segment on its
current path Π . Note that the earliest collision time that we want to predict needs to
fall into the range [t1, t2] because we consider each path segment on Π separately,
and at this moment we are only interested in detecting collisions if the robot is on
c1c2. Ourmain observation of the ECT betweenOi and c1c2 is stated in the following
lemma.

Lemma 4 The computation of ECT between Oi and c1c2 is decomposable w.r.t. the
linkages of Oi . Let Ok

i be a subset of Oi including the linkages between L1 and Lk,
i.e., Ok

i = L1L2 . . . Lk≤m, then ECT(Oi , c1c2) can be written as:

ECT(Oi , c1c2) = min
1≤k≤m

(ECT(Ok
i , c1c2)) = min

1≤k≤m
(ECT(Lk, c1c2)) . (2)

Note that, in ECT(Lk, c1c2), the motion of Lk is constrained by Ok−1
i .

Proof We will provide a proof sketch here. See detailed proof in [25]. Let us start
from the first linkage L1. Without considering other linkages, we can compute the
earliest time t1 when L1 hits the robot using ideas from Sect. 4. Now we move on
to the next linkage L2. Considering only linkage L2 (whose motion is dependent
on linkage L1), the earliest collision at time t2 between L2 and c1c2) without con-
sidering collision status between L1 and c1c2 can also be determined through a
similar formulation from Sect. 4 (see details in [25]). Then there are only two possi-
ble cases: (1) L1 hits c1c2 earlier than L2 and (2) L2 hits c1c2 earlier than L1. Both
cases can be summarized into min(t1, t2) = min(ECT(L1, c1c2),ECT(L2, c1c2)).
This analysis process repeats for all successive links, and then we can conclude that
ECT(Oi , c1c2) = min1≤k≤m(ECT(Lk, c1c2)). �
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In summary, Lemma 4 allows us to reduce the computation of the ECT between a
point robot and an articulated obstacle of m linkages into m cases of point-polygon
analysis.

7 Planning Motion Using Predicted Collision

So far we assume that the robot only stays on a given path. In this section, we show
how to use the predicted collision in a motion planner. It is important to note that this
Rrt-based planner [26] discussed below is merely an example to show how earliest
collision time (ECT) can be used. Other planners, such as Prm-based planners can
also be combined with ECT.

In general, there are two desirable properties when a robot plans a path. First, a
path should bring the robot near the goal. Second, the path should remain safe (valid)
for as long as possible. With these two properties in mind, we propose to augment
Rrt with predicted collision. More specifically, the Rrt is constructed as usual but
each path from the root to a leaf is now associated with an ECT. The best path is then
a path in the Rrt that has the latest ECT while still reduces the geodesic distance
between the robot and the goal. An example of an augment Rrt is shown in Fig. 3.
In this example, paths from configuration r to all leaves reduce the distance to the
goal but the path πd to configuration d has the latest ECT, thus πd is the best path.

8 Experimental Results

We implemented the collision prediction method in C++ using Eigen linear algebra
library and NLopt library. Experimental results reported in this paper are obtained
from aworkstation with two Intel Xeon E5-2630 2.30GHzCPUs and 32GBmemory.
We tested our implementation in 12 environments shown in Figs. 1 and 4. These
environments contain both static and dynamic obstacles. For a dynamic obstacle, its
motion is simulated using Box2D physics engine by exerting random forces. The
robot knows the locations of static obstacles and the maximum translational velocity
and angular velocity of dynamic obstacle. The only way that the robot knows the

Fig. 3 An Rrt augmented
with earliest collision time.
The tree is rooted at current
configuration r of the robot.
Configurations c′ and d ′ are
the predicted earliest
collision locations on the
paths from r to c and d,
respectively obstacle goal

d

r
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e

c
f

c

b

d
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(d)

(a) (b) (c)

(e) (f)

(g) (h) (i)

Fig. 4 a–c Point-polygon environments. d–f Polygon-polygon environments. g–i Point-articulated
environments. In all environments, the green robot and blue robot indicate start configuration and
goal configuration, respectively. The red robot indicates the current configuration and the obstacles
which cause earliest collisions are colored in red. Black obstacles are static and light grey obstacles
are dynamic

pose of a dynamic obstacle is through its (simulated) onboard sensors. The best way
to visualize the environments is via animation. We encourage the reader to view the
videos at http://masc.cs.gmu.edu/wiki/ECT.

8.1 Compare to a Fixed-Time Strategy

In our first experiment, we compare two planning strategies: One replans adaptively
based on collision prediction using augmentedRrt (see Sect. 7), and the other replans
periodically at fixed time interval using regular Rrt.

http://masc.cs.gmu.edu/wiki/ECT
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Fig. 5 Compare our method to the fixed-time strategy. The top row is obtained from environments
in Fig. 1a, and a–c in Fig. 4, the middle row is obtained from environments in Fig. 1b and d–f in
Fig. 4, and the bottom row is obtained from environments in Fig. 1c and g–i in Fig. 4. Each data
point in the plot is an average over 500 runs. In the fixed-time strategy, the robot replans every 0.05,
0.1, 0.2, 0.5 and 1.0 s. Notice that the y-axis of (b), (d) and (f) is in logarithmic scale

Figure5 shows the success rate and number of replans obtained from environ-
ments in Fig. 4. The success rate is the number of runs that robot reaches the goal over
the total number of runs, and the number of replans is the number of times that the
robot replans to reach the goal. The maximum translational velocity of an obstacle
is set to 2m/s and the maximum angular velocity is set to 3 rad/s. The experiments
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Table 1 Average running
time in seconds

Method Time (s)

Our method 2.68

Replan every 0.05 s 25.70

Replan every 0.1 s 8.76

Replan every 0.2 s 4.00

Replan every 0.5 s 1.66

Replan every 1.0 s 0.97

are conducted for multiple situations when robot’s velocity is 1, 2, 4, 8 and 16m/s.
Each data point is collected over 500 runs (i.e. 100 runs for each environment).

Success Rate and Number of Replans. From the plots in Fig. 5, we show that our
approach using predicated collision helps the robot achieve nearly optimal success
rate with a small number of replans. First, let us look at Fig. 5a, c and e. We see that
the success rate of the proposed method is almost identical to or even better than the
fixed-time strategy with very high (and almost unrealistic) replanning frequency (i.e.
replan every 0.05 s.). This is especially clear when the robot’s velocity is greater than
2m/s. However, frequent updates introduce a large number of replans. As shown in
Fig. 5b, d and f, in order to provide a success rate similar to the proposed method,
the fixed-time strategy needs to replan around 100 times more.

Running Time. In Table1, we provide average computation times spent on replan-
ning over five environments for rigid obstacles. We observe that, to achieve similar
success rate, our method runs 3 and 12 times faster than fixed-time strategy with time
steps 0.1 and 0.05 s, respectively.

8.2 Compare to an Optimal Strategy

We further compare our method to a conservative optimal strategy [8]. In their work,
every obstacle must be a disc and its swept volume over time is conservatively
modeled as a cone with the slope being its maximum velocity. Therefore, the path,
if any, generated by their method is guaranteed to be safe.

To apply their strategy in our environments shown in Fig. 4, we replace the obsta-
cles with their smallest bounding circles. Static obstacles are modeled as moving
obstacles with zero velocity. Also note that bounding box is not allowed in their
method. Our experiments found that, the robot needs to move at 22m/s or faster in
order to find a safe path in Fig. 4b, and at least 15m/s in Fig. 4c. No path can be
found at lower speed in these environments. For environments in Figs. 1a and 4a, c,
the start or the goal is covered by one or more obstacles at the very beginning, thus no
path can be found. On the contrary, the proposed method provides better flexibility
while still allows the robot to achieve a nearly 90% success rate at 4m/s and almost
100% at 8m/s.
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9 Conclusion

In this paper, we proposed an adaptive method that predicts collisions for obstacles
with unknown trajectories. We believe that this collision prediction has many poten-
tial usages and advantages. Similar to collisions detection in the setting of known
obstacle motion, we have shown that collision prediction allows the robot to eval-
uate the safety of each edge on the extracted path with unknown obstacle motion.
When the robot travels on a predetermined path, collision prediction enables adaptive
repairing period that allows more robust and efficient replanning. Comparing to a
planning strategy that replans periodically at fixed time interval, our experimental
results show strong evidences that the proposed method significantly reduces the
number of replans while maintaining higher success rate of finding a valid path.
Because of its ability to handle arbitrary shapes including articulated objects, this
tool provides a complimentary approach to themethods that consider complex behav-
ior prediction or dynamic constraints but with only simple shapes. Even though the
obstacles are modeled as adversarial agents in this paper, we are currently investigate
strategies to incorporate the constraints in obstacles’ motion when better behavior
patterns of the obstacle are known [7].
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Asymptotically Optimal Stochastic Motion
Planning with Temporal Goals

Ryan Luna, Morteza Lahijanian, Mark Moll and Lydia E. Kavraki

Abstract This work presents a planning framework that allows a robot with
stochastic action uncertainty to achieve a high-level task given in the form of a tem-
poral logic formula. The objective is to quickly compute a feedback control policy
to satisfy the task specification with maximum probability. A top-down framework
is proposed that abstracts the motion of a continuous stochastic system to a discrete,
bounded-parameter Markov decision process (bmdp), and then computes a control
policy over the product of the bmdp abstraction and a dfa representing the temporal
logic specification. Analysis of the framework reveals that as the resolution of the
bmdp abstraction becomes finer, the policy obtained converges to optimal. Simula-
tions show that high-quality policies to satisfy complex temporal logic specifications
can be obtained in seconds, orders of magnitude faster than existing methods.

Keywords Planning under uncertainty · Temporal logic planning · Stochastic
systems · Formal control synthesis

1 Introduction

Robots are rapidly becoming capable of performing a wide range of tasks with a
high-degree of autonomy. There is a growing desire to take full advantage of these
systems by allowing a human operator to dictate a high-level task to the robot and let
the robot itself decide the low-level details of how to accomplish the task. Consider
an automated warehouse where items are retrieved by a robot and then dropped off at
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a central location for further processing. A single human dispatcher can coordinate
such tasks at a high-level by simply telling the robot which items to gather. This is
in contrast to lower-level coordination where a technically savvy or highly trained
operator must tell the robot how to gather each item. By abstracting the motion plan-
ning objective into a high-level task, the need for a human operator to reason over
low-level details (e.g., the order items are gathered) is obviated. There are two funda-
mental challenges, however, that inhibit this high-level abstraction. First, translating
a high-level specification into an equivalentmodel fit for amotion planning algorithm
is a computationally difficult endeavor, typically an exponential-time operation [1].
Second, physical robots suffer from uncertainties that can invalidate a motion plan,
like noisy actuation, unreliable sensing, or a changing environment, and robustly
handling uncertainty can require significant computation time [2]. Extensive litera-
ture exists for solving these challenges in isolation, butmethods that are both efficient
and effective at high-level task planning for an uncertain system remain elusive.

High-level specifications using temporal logics have been employed to improve
the expressiveness of a motion planning task (e.g., [3–10]). These logics allow for a
natural encoding of both Boolean and temporal constraints, and the classic motion
planning task of move from start to goal without collision can be greatly enhanced
using these operators. For instance, in the warehouse scenario described above, com-
plex tasks such as

Pick up items from locations A, B, and C, in any order, and drop them off at location D or
Pick up items from locations A or B and then C and drop them off in D; meanwhile, if B is
ever visited, then avoid E

are easily encoded using only temporal and Boolean operators. Given a motion plan-
ning specification in the form of a temporal logic formula, existing frameworks (e.g.,
[3–10]) consider a mixed discrete and continuous approach, where Boolean propo-
sitions are mapped to discrete regions of the state space and planning is performed
in the continuous space to satisfy the specification.

When the robot is subject to action uncertainty, robust motion planners have
been developed that compute a control strategy over the entire state space rather
than a single trajectory (e.g., [11–13]). This strategy is often referred to as a policy.
Conceptually, a policy is a lookup table that maps each state to a particular action.
An optimal policy maximizes the reward the robot can expect to receive given a
stochastic motion model of its evolution. Computing an optimal policy can take
significant time, however, because every state of the system must be reasoned over
to ensure the action selected is indeed optimal.

This work operates at the intersection of high-level task planning and planning un-
der action uncertainty. A top-down framework is presented that is capable of quickly
computing an optimal control policy that satisfies a temporal logic specification with
maximum probability by utilizing a combination of discrete and continuous space
planning. To robustly handle noise in the actuation of the robot, themethod constructs
an abstraction in the form of an uncertain Markov model that models the evolution
of the robot as it moves between discrete regions of the state space. Given a temporal
logic task specification, the framework then constructs an equivalent deterministic
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finite automaton (dfa) that expresses the task and computes an optimal control policy
over the product of the dfa and the discrete abstraction to maximize the probability
of satisfying the specification.

1.1 Related Work

Motion planning for realistic robotic tasks is the subject of a large body of recent
work known as formal methods in robotics [3–10]. The kinds of tasks that are stud-
ied typically admit a wide latitude of possible solutions; this is evident in the tasks
described earlier for the warehouse scenario. Many complex motion planning sce-
narios can be naturally translated to temporal logics, in particular linear temporal
logic (ltl) [14]. Unfortunately, temporal logic planning suffers from state space ex-
plosion, and existing methods rely on a discrete abstraction of the continuous system
to gain computational tractability.

One class of methods for temporal logic planning synthesize controllers over a
discrete abstraction of the state space [3, 5]. The relationship between the controllers
and a discretization of the space ensures that motion between adjacent regions is
realizable by the continuous system, known as a bisimilar abstraction. Synthesis
of reactive controllers have also been considered that allow for robust control in a
dynamic environment, provided that all environmental behaviors are also encoded in
temporal logic [4, 6, 15, 16]. These methods are correct-by-construction, and find a
satisfying trajectory if one exists. Synthesizing controllers that satisfy the bisimilarity
constraints, however, admits only simple dynamical models. Recent work attempts
reactive synthesis for non-linear systems [17], but constructing these controllers
remains computationally difficult.

Sampling-based motion planners have been augmented to satisfy a task speci-
fication given in ltl [7, 8, 10, 18, 19]. These works are able to quickly emit a
satisfying trajectory for systems with hybrid and/or complex dynamics. Note that
these methods are not correct-by-construction. The probabilistic completeness of
many sampling-based planners, however, guarantees that if a satisfying trajectory
exists, the probability of finding a trajectory grows to 1 over time.

The temporal logic planning methods described above do not address instances
where the robot suffers from uncertainties. When there is uncertainty in actuation,
methods exist for temporal logic planning that employ a Markov decision process
(mdp) to model the evolution of the system through the state space [20, 21]. The
goal in these methods is to compute a control policy over the mdp abstraction to
satisfy a high-level task with maximum probability. These works are incomplete,
however, in that methods to construct the approximating mdp for the robot are not
presented; only planning over an existing abstraction is discussed. Uncertain mdps,
where transition probabilities can belong to sets of values, have also been employed
to provide a hierarchical abstraction and improve computational complexity [22].
Strong assumptions must be made on the structure of this abstraction, many of which
are difficult to realize for physical systems.
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Construction of a Markov abstraction for continuous-time and space systems has
been studied in the literature for stochastic optimal control. In the stochastic motion
roadmap (smr) [11], the state space is discretized through sampling and an mdp is
constructed over the sampled states using a Monte Carlo simulation; a set of discrete
actions is assumed. Another method is the incremental mdp (imdp) algorithm [12],
which asymptotically approximates the optimal policy of the continuous stochastic
systemby sampling both a state and a set of candidate controls; a single control is cho-
sen for the state with value iteration. To ensure a good approximation of the optimal
policy, both smr and imdp construct a highly accurate mdp abstraction. Achieving
the Markov property exactly, however, requires very dense state space sampling. Re-
cent work suggests the use of a bounded-parameter Markov decision process (bmdp)
[23], a special class of uncertain mdps which can be solved in polynomial-time with
respect to the number of states, as the abstraction model [13, 24]. A bmdp allows
for coarse discretization of the state space by relaxing the Markov constraint while
still fully representing the memoryless transition model. Moreover, a bmdp does not
have the strong assumptions on the transition model that general uncertain mdps do.

1.2 Contribution

This paper introduces a planning framework that quickly computes a control pol-
icy for a system with uncertain actuation to satisfy a high-level specification with
maximum probability. The proposed planning framework utilizes a coarse Markov
abstraction to mitigate state space explosion when planning for the continuous sto-
chastic system. Unlike previous works in temporal logic planning, however, the
proposed framework makes few assumptions on the underlying dynamics, and is
applicable to a broad class of stochastic systems. The proposed method builds upon
previous work [13, 24] by constructing a coarse, bounded-parameter mdp (bmdp)
abstraction to model the evolution of the stochastic system through discrete regions
of the state space. Departing from the previous works, an optimal policy is com-
puted over the bmdp abstraction to satisfy a high-level specification given in tempo-
ral logic. The framework constructs the entire abstraction and control policy from
scratch, requiring only a model of the dynamics, a map of environment, and a task
specification. Although errors are introduced when discretely approximating a con-
tinuous process, analysis shows that as the discrete regions become smaller, errors
in the approximation limit to zero and the control policy that is computed converges
to the true optimal.

This work presumes that the task specification is given in co-safe ltl [1], a subset
of ltl.Althoughco-safe ltlhas infinite semantics, afinite trace is sufficient to satisfy
these formulas. In many robotics applications, tasks are required to be completed in
finite time, making co-safe ltl an ideal language for such high-level specifications.
A noteworthy property of the bmdp abstraction is that it can be reused for any co-safe
ltl specification given the same robot and workspace. Simulated results show that
given a bmdp abstraction, a complete control policy to satisfy the specification with
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maximum probability can be computed in seconds, orders of magnitude faster than
existing techniques.

2 Problem Formulation

The objective of thiswork is to compute a control policy for a fully-observable robotic
system with noisy actuation that satisfies a high-level task specification given in a
fragment of ltl with maximal probability. Formal definitions of the robotic system,
ltl specification language, and task satisfaction follow.

2.1 Stochastic Robotic System

Consider a robotic system with noisy actuation whose dynamics are described by
the following stochastic differential equation [12, 13, 24, 25]:

dx = f (x(t), u(t))dt + F(x(t), u(t))dw, (1)

x ∈ X ⊂ R
nx , u ∈ U ⊂ R

nu ,

where X and U are compact sets representing the state and control spaces, and
w(·) is an nw-dimensional Wiener process. Functions f : X × U → R

nx and
F : X ×U → R

nx ×nw are bounded andLipschitz continuous, where f (·, ·) describes
the robot’s nominal dynamics and F(·, ·) captures the influence of noise on the
dynamics. The pair (u(·), w(·)) is assumed to satisfy the Markov property. The
stochastic process is fully observable and stops once the interior of X is left.

2.2 Syntactically Co-Safe LTL

The mission of the stochastic system is specified by a syntactically co-safe ltl
formula φ [1, 7]. The syntax and semantics of such a specification is given here for
completeness.

Syntax: A syntactically co-safe ltl formula φ is defined inductively over a set
Π = {π1, . . . ,πn} of atomic Boolean propositions and a set of unary and binary
operators:

φ := π | ¬π | φ ∨ φ | φ ∧ φ | Xφ | Fφ | φ Uφ,

where π ∈ Π in an atomic proposition, ¬,∨, and ∧ represent the Boolean operators
negation, disjunction, and conjunction respectively, X is the temporal next operator,
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F represents the temporal eventually operator, and U denotes the temporal until
operator.

Semantics: The semantics of a syntactically co-safe ltl formula φ are defined over
infinite traces of 2Π . Let σ = {τi }∞i=0 denote an infinite trace, where τi ∈ 2Π .
Furthermore, let σi = τi , τi+1, . . . denote a suffix of the trace starting at step i .
The notation σ |= φ denotes that the trace σ satisfies co-safe formula φ and has the
following recursive definition:

– σ |= π if π ∈ τ0
– σ |= ¬π if π /∈ τ0
– σ |= φ1 ∨ φ2 if σ |= φ1 or σ |= φ2
– σ |= φ1 ∧ φ2 if σ |= φ1 and σ |= φ2

– σ |= Xφ if σ1 |= φ
– σ |= Fφ if ∃k ≥ 0 where σk |= φ
– σ |= φ1Uφ2 if ∃k ≥ 0 where σk |= φ2, and ∀i ∈ [0, k),σi |= φ1

Although the semantics have an infinite horizon, a finite trace is sufficient to
satisfy φ. Thus, a deterministic finite automaton (dfa) Aφ = (Z ,Σ, δ, z0, T ) can
be constructed that accepts exactly the satisfying traces of φ, where

• Z is a finite set of states,
• Σ = 2Π is the input alphabet, where each input symbol is a truth assignment for
all propositions in Π ,

• δ : Z × Σ → Z is the transition function,
• z0 ∈ Z is the initial state, and
• T ⊆ Z is the set of accepting states.

Let σ = σ0 . . . σl be a string over Σ . Aφ accepts σ iff a sequence of states ω0 . . . ωl

exists in Z where ω0 = z0, ωi+1 = δ(ωi ,σi ) for i = 0, . . . , l − 1, and ωl ∈ T .

2.3 Stochastic Motion Planning with Temporal Goals

Stochastic system (1) evolves in a static workspaceW consisting of a set of polytopic
obstacles O and a set of polytopic regions P = {p1, . . . , pn}, where pi is mapped
to atomic proposition πi . Proposition πi becomes true when the system visits any
part of region pi . With a slight abuse of notation, let σ denote the trajectory traced
by the system during execution. Execution terminates when σ |= φ or σ ∩ O 
= ∅,
whichever occurs first. Given these definitions, the problem addressed in this work
is now formally stated:
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Problem Definition: Given a fully-observable stochastic system (1) operating in a
workspaceW , compute a control policy for the system thatmaximizes the probability
of satisfying a syntactically co-safe ltl formula φ.

3 Methodology

A top-down framework for computing an optimal control policy is presented in
this section that maximizes the probability of satisfying a task specified in co-safe
ltl. Computation of the policy occurs in two phases. First, the evolution of the
stochastic system is abstracted to a particular kind of uncertain Markov model, a
bounded-parameter Markov decision process (bmdp) B. The bmdpmodels the range
of transition probabilities that are observed when the system transitions between
regions in a discretization of the state space. Second, the co-safe ltl specification φ
is translated into an equivalent dfa Aφ, and the Cartesian product P = B × Aφ is
computed. Conceptually, the product P is also a bmdp where each state is a unique
tuple (q, z), where q is a discrete region of the state space and z is a state in Aφ.
Then, an optimal policy is computed over P to reach any state (q ′, z′), where z′ is
accepting inAφ. With respect to the discretization, an optimal policy overP satisfies
φ with maximum probability. A block diagram illustrating the components of the
planning framework is shown in Fig. 1.

3.1 BMDP Abstraction

To achieve computational tractability, the proposed framework abstracts the evolu-
tion of the stochastic system to motions between discrete regions of the state space.
Since the system is stochastic, navigation of the system between any pair of adjacent
regions is presumed to be imperfect. Furthermore, the probability of transitioning
to an adjacent region depends on the initial state within the current region, which is
not known a priori. Therefore, a range of transition probabilities is required to fully
represent the likelihood of the system successfully moving between two regions,

State  
space 

Stochastic 
dynamics 

Co-safe LTL 
specification 

Control 
policy 

Interval Value 
Iteration DFA 

Product 
BMDP 

Discretization 
Local Policy 
Generation 

BMDP Construction 

BMDP 

Fig. 1 Diagram of the proposed stochastic temporal logic planning framework
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corresponding to the minimum and maximum over all initial conditions. The dis-
cretization, coupled with the transition probability ranges naturally lends itself to an
uncertain Markov decision process. This particular construction of the region level
abstraction, however, forms a special kind of uncertain mdp, known as a bounded-
parameter mdp (bmdp) [23]. A bmdp is able to capture the uncertainty over the
transition probabilities with a range of values, and can be solved optimally in poly-
nomial time. In the remainder of this section, a formal definition of the bmdp is given,
and the construction of the bmdp abstraction for stochastic planning is detailed.

Bounded-Parameter MDP A bounded-parameter Markov decision process (bmdp)
[23] is an mdp whose transition probabilities are not known exactly. Instead, these
values are presumed to lie within a range of real numbers. Formally, a bmdp is a
tuple B = (Q, A, P

̂

, P̂, L), where

• Q is a finite set of states,
• A is a finite set of actions,
• P

̂

: Q × A × Q → [0, 1] and P̂ : Q × A × Q → [0, 1] are pseudo-transition
probability functions that for state q ∈ Q under action a ∈ A return the minimum
and maximum transition probabilities to state q ′ ∈ Q, respectively,

• L : Q → 2Π is a labeling function that maps each q ∈ Q to a set of atomic
propositions in 2Π . L relates discrete states with the proposition regions.

The following property must also hold in a bmdp: for all q, q ′ ∈ Q and any
a ∈ A(q), P

̂

(q, a, ·) and P̂(q, a, ·) are pseudo-distribution functions such that 0 �
P

̂

(q, a, q ′) � P̂(q, a, q ′) � 1 and
∑

q ′∈Q P

̂

(q, a, q ′) � 1 �
∑

q ′∈Q P̂(q, a, q ′).

Discretization A discretization of the state space that respects both obstacles and
proposition regions forms the states of the bmdp abstraction. Formally, a discretiza-
tion of the bounded state space X is defined as a set of polytopic, non-overlapping
subspaces of X whose union is X .

A desirable discretization depends on a number of factors, including the geometry
and dynamics of the system. Practically speaking, the coarseness of the discretization
has a direct impact on policy computation time. The difficulty of discretizing a high-
dimensional space for motion planning purposes is well known [7]. The proposed
framework advocates a discretization of the workspace using a Delaunay triangu-
lation [26] that can easily be generated to respect obstacles and other regions of
interest. Moreover, this triangulation avoids skinny triangles which may be deleteri-
ous to the abstraction. Note that discretizing the workspace induces a discretization
of the state space by projecting each element of the state space into the workspace
and identifying the region the projection lies in.

Local Policy Computation Given a discretization of the state space, a local con-
troller or control policy is generated to optimally navigate the stochastic system
between adjacent regions. These local policies correspond to the actions of the bmdp
abstraction. The proposed framework is not dependent on a particular method for
local policy generation, so long as the transition probability range for successfully
moving between two regions can be calculated. A general method for computing



Asymptotically Optimal Stochastic Motion Planning with Temporal Goals 343

local policies is the imdp algorithm [12], a sampling-based approach that asymp-
totically approximates the optimal control policy for stochastic system (1) using a
series of progressively larger Markov decision processes. When local policies are
approximated with a Markov chain (as in imdp), the minimum and maximum transi-
tion probabilities for transitioning to an adjacent discrete region are easily obtained
with an absorbing Markov chain analysis [27]. The imdpmethod is used to compute
the local policies in the evaluation of this framework. Depending on the system em-
ployed, however, more specialized controllers can also be synthesized for stronger
guarantees in the local control policies.

3.2 Product BMDP and Optimal Policy

Recall that the objective of the system is given as a co-safe ltl formula φ, and
that a finite trace is able to satisfy this kind of specification. To compute a control
policy to satisfy φ, the specification is first translated into an equivalent dfa [1].
Unfortunately, constructing Aφ introduces an exponential blow-up with respect to
the size of φ. Nevertheless, tools exist that emit a minimized dfa virtually instantly
for the kinds of specifications commonly used for planning tasks [28]. GivenAφ, the
product of Aφ with the bmdp described above is computed, and then a policy over
the product is obtained to satisfy the specification with maximum probability. The
product bmdp is formally defined below.

Product BMDP Given a bmdp B and a dfa Aφ for a co-safe ltl specification φ,

the product bmdp P = B × Aφ is a tuple P = (QP , TP , AP , P

̂

P , P̂P ), where

QP = Q × Z , TP = Q × T, AP = A,

P

̂

P ((q, z), aP , (q ′, z′)) =
{

P

̂

(q, a, q ′) if z′ = δ(z, L(q ′))
0 otherwise,

P̂P ((q, z), aP , (q ′, z′)) =
{

P̂(q, a, q ′) if z′ = δ(z, L(q ′))
0 otherwise,

for q, q ′ ∈ Q, aP ∈ AP , a ∈ A, and z, z′ ∈ Z . Conceptually, P is both a bmdp
and a dfa. The goal is to compute a policy over the actions AP in P to reach
any terminal state (q, z) ∈ TP with maximum probability. Note that transitions in
the bmdp component of each state still obey the transition probabilities over the
actions between each discrete region, and a transition in the dfa occurs only when
the system enters a labeled proposition region that has a transition in the current
dfa state. Therefore, the policy that maximizes the probability of reaching a state in
TP optimizes the probability of satisfying φ (reaching an accepting state in Aφ). A
conceptual illustrationof the of the product bmdpP givenB andAφ is shown inFig. 2.

Optimal Policy Computation Finding a policy over P to satisfy specification
φ is equivalent to solving the maximal reachability probability problem [29].
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Fig. 2 a The minimal dfa Aφ for φ = (¬p3 U(p1 ∨ p2)) ∧ F p3. b A discretization of the state
space, allowing for the construction of a bmdp B with proposition regions p1, p2, and p3. c An
illustration of the product bmdp P = B × Aφ. Specification φ requires the system to transition
through P by visiting regions p1 or p2, followed by region p3. If proposition p3 is visited first, φ
cannot be satisfied. The accepting state is denoted with the double circle

The objective in this problem is to find the maximum probability that a set of states
can be reached from any other state in an mdp. Prior work also solves the maximal
reachability probability problem for a bmdp [30]. The key difference for a bmdp is
that the expected value (maximum probability) for each state is not a scalar value,
but rather a range derived from the transition probability bounds.

Note that a bmdp represents a uncountably-large set of mdps whose transition
probabilities lie in those of the bmdp. This implies that the optimization objective
for a bmdp is ambiguous since the true probabilities are unknown. The literature
proposes two optimal policies: a pessimistic policy that optimizes for the lower
bound probabilities, and an optimistic policy that optimizes for the upper bound
probabilities [23]. From these two criteria, absolute optimal value ranges for each
state in the bmdp naturally correspond to the minimum pessimistic value and the
maximum optimistic value.

The algorithm for computing anoptimal policy in a bmdp is interval value iteration
(ivi), the analog of value iteration for an mdp. Before ivi begins, an optimization
objective for the bmdp must be chosen (e.g., pessimistic or optimistic). For each
iteration of ivi, anmdp representative is selected, based on the optimization objective
and the current value estimate, and the typical Bellman backup is computed. Let P̃
denote the probability distribution for the mdp representative selected during an
iteration of ivi for the product bmdp P . Then the Bellman backup operation for
computing the maximum reachable probabilities in P is:

v(q) =
{
1 if q ∈ TP
maxa∈A(q)

[∑
q ′∈Q P̃(q, a, q ′)v(q ′)

]
otherwise.

(2)
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The result of the interval value iteration computation (2) is a control policy that
maximizes the probability of satisfying the co-safe ltl specification φ over the bmdp
abstraction. The value v(q) represents the probability that the stochastic system,
starting anywhere in region q, reaches an accepting state in the automatonAφ. Since
ivi reasons over discrete regions of the state space rather than individual elements,
significant savings in computation time are realized.

4 Analysis

This section analyzes the asymptotic convergence of the probability of satisfying a co-
safe ltl specificationφ computedover thebmdp abstraction to the true optimal values
for stochastic system (1). It is shown that the bmdp approximates the continuous
dynamics with a bounded error that is a function of the diameter of each polytopic
region. As the largest diameter in the discretization shrinks to zero, uncertainty in
the optimal value estimates for the bmdp are eliminated, indicating convergence to
the true maximum probabilities for the system to satisfy φ. Proof of these claims
begins by inspecting the local policies of the bmdp. A typical method for computing
such policies uses a discrete, locally consistent approximation of the continuous
dynamics, defined below.

Definition 4.1 (Definition 1.3 in [25]) Let ξ denote a controlled Markov chain ap-
proximating a stochastic system (1)whose dynamics are given by bounded, Lipschitz
continuous functions f and F . Each state x ∈ ξ is associated with a non-negative
holding timeΔt (x), representing the timea controlu is applied at state x . Let ξi denote
the i th state resulting from the stochastic process ξ, and the notationΔξi = ξi+1−ξi

denote the distance between two consecutive states in the discrete approximation. A
discrete time Markov chain ξ is locally consistent with continuous-time system (1)
if the following conditions are met for all x ∈ ξ, where w ∈ U is the control applied
at state x :

E[Δξi |ξi = x, ui = w] = f (x, w)Δt (x) + O(Δt (x)) (3)

Cov[Δξi |ξi = x, ui = w] = F(x, w)F(x, w)T Δt (x) + O(Δt (x)) (4)

where O(·) indicates an upper bound on the error introduced by the discrete time
approximation of the continuous dynamics as a function of the holding time.

In the bmdp abstraction, actions for each discrete region (local policies) are pre-
sumed to be locally consistentMarkov chains of stochastic system (1). Note, the imdp
method [12] computes a locally consistent Markov chain. A transition between re-
gions in the bmdp, however, likely requires a series of discrete time steps to complete.
Since each action is locally consistent, the modeling error in each bmdp transition is
bounded, as shown in the following lemma.
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Lemma 4.2 Given a bmdp abstraction of stochastic system (1) where actions induce
locally consistent Markov chains, the error incurred by a transition from region q to
adjacent region q ′ is bounded by the maximum expected time to exit q.

Proof Let ξμ denote the locally consistent Markov chain induced by action μ in the
bmdp abstraction defined over q that attempts to navigate the system from q to an
adjacent region q ′. Furthermore, let ΔTx (ξ

μ) be the expected time for the system to
exit region q from initial state x ∈ ξμ. From (3), (4), the error introduced by ξμ is
bounded by the discrete holding times at each state in ξμ. It then follows directly that
the error in the transition from region q is bounded by maxx∈ξμ O(ΔTx (ξ

μ)), which
is the maximum error that accumulates when the system evolves within q under μ
over all possible initial states. �

Furthermore, the expected exit time for system (1) fromabounded region is always
finite, and this time is a function of the initial state and the diameter of the region
([31], Chapter III, Lemma 3.1). Given the error incurred by the bmdp abstraction of
system (1) as a function of the diameter of each region, what remains to prove is that
as the maximum diameter shrinks to zero, an optimal bmdp policy asymptotically
converges to an optimal policy for the continuous system. Arguments are based on
the value functions corresponding to the optimal policies, and begin by inspecting
the transition probability ranges in the bmdp. For convenience, diam(q) denotes the
diameter of a polytopic region q in the discretization.

Lemma 4.3 Let μ denote a locally optimal, locally consistent control policy that
navigates the system (1) from region q to a region adjacent to q in a bmdp abstraction.
Then, for all q ′ adjacent to q:

lim
diam(q)→0

[
P̂(q,μ, q ′) − P̌(q,μ, q ′)

]
= 0. (5)

Proof (sketch)TheLipschitz assumption for stochastic system (1) asserts || f (x, u)−
f (x ′, u′)|| � K (||x − x ′|| + ||u − u′||), where K ∈ R is the Lipschitz constant.
An analogous assertion also holds for the covariance F . Since the system evolves
according to a locally optimal policy μ to maximize the probability of reaching an
adjacent, contiguous region, it follows from the Lipschitz condition of f, F that the
optimal transition probabilities for two states x, x ′ in a discrete region q differ only
by a function of the distance between x and x ′. As the diameter of q shrinks to zero,
the maximum distance between any two states in q also decreases to zero, indicating
that the transition probability ranges under μ to reach all neighboring regions also
converge to scalar values. �

For any policy over a bmdp, the range of optimal value function estimates falls
within the minimum pessimistic value and the maximum optimistic value. The fol-
lowing lemma shows that these policies and value function estimates always exist.
The subsequent theorem then relates the value function estimate to the continuous
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dynamics (1), showing that the values converge to the maximum probability of sat-
isfying a co-safe ltl specification for each state in the product bmdp abstraction as
largest diagonal in the discretization approaches zero.

Lemma 4.4 (Theorems 8 and 9 in [23]) For any bmdp there exists an optimistically
optimal and a pessimistically optimal policy. These policies converge pointwise to
the desired optimal value function.

Theorem 4.5 Let v̌(qp) denote the minimum pessimistically optimal value and
v̂(qp) denote the maximum optimistically optimal value for a state qp computed
by (2) over the product bmdp abstraction P for the stochastic system (1) and co-safe
specification φ. Then, for all qp ∈ QP :

lim
maxq∈Q diam(q)→0

[
v̂(qp) − v̌(qp)

] = 0, (6)

and v̂(qp) = v̌(qp) is the maximum probability of satisfying φ for all states x ∈ qp

of stochastic system (1).

Proof (sketch) It follows directly from Lemmas 4.3 and 4.4 that the value function
range for each region in the bmdp abstraction must converge to a single value as the
diameter of the largest discrete region shrinks to zero. Thus, (6) holds. Furthermore,
from Lemma 4.2, the bmdp models the underlying dynamics of the continuous sto-
chastic system arbitrarily well as the largest diameter in the discretization shrinks to
zero. Therefore, as |v̂(qp) − v̌(qp)| approaches 0 for all states in the product bmdp,
the value range for qp converges to a scalar value that is the continuously optimal
value for all states x ∈ qp. �

5 Evaluation

Evaluation of the proposed method for computing a control policy that satisfies
specification φ with maximum probability is given in this section. A 2D system with
single integrator dynamics and Gaussian noise is simulated. Formally, f (x, u) = u
and F(x, u) = 0.1I , where I is the identity matrix, as in [12, 13, 24]. Computations
are performed on a 2.4GHz Intel Xeon cpu with 12GB memory.

Simulated experiments are performed in a 20 × 20 warehouse inspired environ-
ment, shown in Fig. 3a. A set of proposition regions, p1, . . . , p8, represent regions of
interest in the warehouse, and region p9 represents a processing station where com-
pleted orders are taken. Two different co-safe ltl specifications are evaluated. The
first specification, φG , represents a gathering task, where the system must retrieve
three items in any order, then bring the completed order to the processing station.
Since the same item could exist in multiple locations, subformulas φ1 = (p1 ∨ p3),
φ2 = (p2 ∨ p4) and φ3 = (p5 ∨ p6 ∨ p7 ∨ p8) denote the possible locations for
items 1, 2, and 3, respectively. The second task, φS , is a rigid sequence of items to
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Fig. 3 a The 20×20 warehouse. Obstacles are gray, and nine proposition regions are shaded and
labeled. An obstacle and proposition respecting triangulation (826 triangles) is overlayed. The
system starts at the star. b Minimized dfa for φG . c Minimized dfa for φS . Self-transitions in the
dfas are omitted for clarity

gather, where item 1 must be retrieved before item 2, and item 2 must be retrieved
before item 3, and only then may the system return to the processing station. φG and
φS are represented in co-safe ltl as:

φG = (¬p9 Uφ1) ∧ (¬p9 Uφ2) ∧ (¬p9 Uφ3) ∧ F p9
φS = F(φ1 ∧ XF(φ2 ∧ XF(φ3 ∧ XF p9))).

The minimized automata for φG and φS are shown in Figs. 3b, c.
The computation time and quality of the resulting control policy from the proposed

bmdp abstraction are evaluated here. To compare this work against existing meth-
ods for planning under uncertainty, two state-of-the-art frameworks are extended to
compute policies that satisfy a co-safe ltl specification. The first method employs
a typical mdp abstraction, constructed using the smr method [11]. Eight unit con-
trols spanning the cardinal and ordinal directions are applied in the smr for a fixed
duration of 100ms. Given the smr, a policy is computed over the product of the
smr with Aφ in the style of existing temporal logic methods. The second approach
utilizes the imdp algorithm [12] and iteratively constructs an optimal policy directly
in the continuous state space X × Aφ. In the bmdp abstraction, a discretization with
826 triangles is used, local policies are computed using imdp, and a pessimistically
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optimal policy over the bmdp is computed. All three methods are executed until there
are 750 states sampled per unit area or four hours elapses, whichever is first. Previ-
ous work has shown this sampling density yields favorable policies for the system
evaluated [13].

Discrete abstraction The first step for the bmdp and smr methods is to construct a
discrete abstraction that models the evolution of the stochastic system in the envi-
ronment. This construction can be thought of as a one-time cost since the abstraction
can be reused for different tasks, provided the environment and robot stay the same.
The imdp algorithm does not emit a reusable abstraction since an optimal policy is
constructed directly by this method. Table1 shows that constructing the bmdp ab-
straction (over the discretization in Fig. 3a) is significantly faster than a comparable
mdp abstraction. bmdp construction for 826 discrete regions takes less than 20min
on a single processor, compared to over 45min for smr.

Policy computation Computing a policy to satisfy the specification with maximum
probability exposes stark differences in the three different methods, as noted in Ta-
ble1. In the bmdp and smrmethods, the Cartesian product of theMarkov abstraction
is taken with the automatonAφ, and an optimal policy over this product is computed.
For imdp, the policy is computed directly in the product space. The bmdp abstraction
requires just over 10 seconds to find an optimal (pessimistic) policy for φG and under
6 seconds to find an optimal policy for φS . Compare these times to smr, which re-
quires nearly 30min for φG and over 20min for φS . This difference accentuates the
gains in reasoning over discrete regions rather than individual state space elements.
The imdpmethod consistently reached a four hour timeout, and only contains about
half of the number of discrete states that exist the final bmdp and smr policies; the
complexity of imdp depends on the number of states in the existing approximating
structure, where each iteration takes more time than the previous.

Probability of Success Naturally, the significant gains in computation time for the
bmdp abstraction do not come without a price. The last two columns in Table1 show
the median probability of success to satisfy each of the specifications across all three
methods. Although the smr abstraction does not provide any formal guarantees,
this method is able to consistently find a virtually perfect policy. This result can be
attributed to the relatively simple system evaluated coupledwith the rather densemdp

Table 1 The average time to generate the discrete abstractions, average policy computation time,
and median probability of success for tasks φG and φS in the three methods evaluated

Abstraction time (s) Policy time (s) Probability of success

φG φS φG φS

bmdp 1181.59 10.80 5.87 0.979 0.973

smr 2494.68 1728.56 1234.97 1.000 1.000

imdp n/a 14,400.00 14,400.00 0.899 0.971

All values are taken over 50 independent runs. The abstraction for each method is a one time cost,
and can be reused for any φ
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abstraction utilized. Nevertheless, the much coarser bmdp abstraction cedes only 2–
3% probability of success compared to smr while providing computation times that
are substantially faster. Although imdp provides strong theoretical guarantees, the
complexity of this method prohibits scalability into the large product state space.
This is particularly evident for φG , whereAφ has 9 states, and imdp has a probability
of success at just around 90%.

6 Discussion

This work presents a method for efficient stochastic motion planning where the ob-
jective is a high-level specification given in co-safe ltl. By abstracting the evolution
of the robot to a bounded-parameter mdp where the states are discrete regions of the
state space, the method is able to quickly and effectively compute an optimal policy
over the product of the bmdp abstraction and a dfa representing the high-level spec-
ification with maximum probability. Evaluation of the approach shows that policies
for co-safe ltl specifications can be obtained in seconds once an abstraction is con-
structed. The bmdp abstraction admits optimal policy computation that is orders of
magnitude faster than existing methods.

The analysis of themethod indicates that as the discretization becomes finer, errors
introduced in the bmdp abstraction model limit to zero and the policy asymptotically
converges to optimal. As presented, the framework does not actively seek to reduce
the transition probability ranges or discrete region sizes to achieve asymptotic opti-
mality directly. It is a natural extension of this work, however, to refine local policies
with large probability ranges by shrinking the discrete region they are defined over.

The relatively simple dynamics considered in the evaluation of this work should
not be considered a limiting factor. The dynamics are reasoned over only at the bmdp
abstraction level. For a more complex system, the time to compute the bmdp abstrac-
tion will surely increase, but time to computing the satisfying policy is polynomial
in the number of discrete regions.
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Resolution-Exact Algorithms for Link Robots

Zhongdi Luo, Yi-Jen Chiang, Jyh-Ming Lien and Chee Yap

Abstract Motion planning is a major topic in robotics. Divergent paths have been
taken by practical roboticists and theoretical motion planners. Our goal is to pro-
duce algorithms that are practical and have strong theoretical guarantees. Recently,
we have proposed a subdivision approach based on soft predicates Wang, C., Chi-
ang, Y.-J., Yap, C.: On soft predicates in subdivision motion planning. In: 29th ACM
Symposium onComputational Geometry (SoCG’13), pp. 349–358 (2013). To appear
CGTA, Special Issue for SoCG’13 [20], but with a new notion of correctness called
resolution-exactness. Unlike mos ques for planar link robots. The technical contri-
butions of this paper are the design of soft predicates for link robots, a novel “T/R
splitting method” for subdivision, and feature-based search strategies. The T/R idea
is to give primacy to the translational (T) components, and perform splitting of rota-
tional components (R) only at the leaves of a subdivision tree. We implemented our
algorithm for a 2-link robot with 4 degrees of freedom (DOFs). Our implementation
achieves real-time performance on a variety of nontrivial scenarios. For comparison,
our method outperforms sampling-basedmethods significantly.We extend our 2-link
planner to thick link robots with little impact on performance. Note that there are no
known exact algorithms for thick link robots.
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1 Introduction

Algorithmic motion planning is a major topic in robotics. In the last 30 years, many
techniques have been developed. Divergent paths have been taken by practical robot-
icists and theoretical motion planners. There are three main approaches to algorith-
mic motion planning: exact, sampling and subdivision approaches [12]. The exact
approach has been developed byComputational Geometers [6] and in computer alge-
bra [2]. The correct implementation of exact methods is highly non-trivial because
of numerical errors. The sampling approach is best represented by Probabilistic
Roadmap (PRM) [8] and its many variants (see [19]). It is the dominant paradigm
among roboticists today. Subdivision is one of the earliest approaches to motion
planning [4]. Recently, we have revisited the subdivision approach from a theoreti-
cal standpoint [20, 22]. The present work continues this line of development.

Worst-case complexity bounds in motion planning are too pessimistic and ignore
issues like large constants, correct implementation of primitives, and adaptive behav-
ior. Roboticists prefer to use empirical criteria to measure the success of various
methods. For instance, Choset et al. [5, pp. 197–198, Fig. 7.1] noted that sampling
methods (but not exact or subdivisionmethods) “can handle” planning problems for a
certain1 10 degrees of freedom (DOFs) planar robot. It roughly means that sampling
methods for this robot could terminate in reasonable time on reasonable examples.
Of course, this is a far cry from the usual theoretical guarantees of performance. In
contrast, not only there are no exact algorithms for this robot, but the usual exact tech-
nique of building the entire configuration space is a non-starter. Likewise, standard
subdivision methods would frequently fail on so many degrees of freedom. It is sug-
gested [5, p. 202] that the current state of the art PRM-based planners “can handle”
5- to 12-DOF robots; subdivision methods may reach medium-DOF robots (say, 4 to
7 DOFs). According to Zhang et al. [23], there are no known good implementations
of exact motion planners for more than 3 DOFs. On the other hand, their work [23]
shows that subdivision methods “can handle” 4- to 6-DOF robots, including the gear
robot that has complex geometry.

The empirical evidence described in the previous paragraph challenges us to
come up with a “theoretical response”: can we design theoretical algorithms that
are practical and which roboticists want to implement? Our answer may be a little
surprising: the answer is yes, but we do not come down on the side of exact algo-
rithms. The three approaches (sampling, subdivision and exact) provide increasingly
stronger algorithmic guarantees. So the above empirical observations about their
relative abilities is not surprising. Barring other issues, one might think we should

1This robot was treated in Kavraki’s thesis [9] but its appearance seems to go back at least to
Barraquand and Latombe [1].
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use the strongest algorithmic method that “can handle” a given robot. Nevertheless,
we suggest [20, 22] that subdivision is preferable to both exact and sampling meth-
ods for two fundamental reasons. First, robotic systems (sensors, actuators, physical
constants,2 mechanical dimensions, environment, etc.) are inherently approximate.
Exact computation makes little sense in such a setting, while subdivision appear
to naturally support approximation. But to systematically design approximate algo-
rithms,we need a replacement for the standard exactmodel.We introduced the notion
of soft-predicates as the basis of an approximate computational model. Second, the
difficulty of sampling methods with the halting problem is a serious issue in the
form of “narrow passage problem.” Intuitively, researchers realize that subdivision
can overcome this (e.g., [23]), but there are pitfalls in formulating the solution: the
usual notion of “resolution completeness” is vague about what a subdivision planner
must do if there isNOPATH: one solutionmay reintroduce the halting problem,while
another solution might require exact predicates. To avoid the horns of this dilemma,
we introduce the concept of resolution-exactness. Taken together, soft predicates
and resolution-exactness, free us from exact computation and the halting problem.
They lead to new classes of planning algorithms that are not only theoretically sound,
but also practical.

Algorithms that provide resolution exactness promise to recover all the practical
advantages of the PRM framework, but with stronger theoretical guarantees. How-
ever, many challenges lie ahead to realize these goals. We need to test some of the
conventional wisdom of roboticists cited above. Is it really true that subdivision is
inherently less efficient than sampling methods? This is suggested by the state-of-art
techniques, but we do not see an inherent reason. Is randomness the real source of
power in sampling methods? There is some debate among roboticists on this point
(cf. LaValle et al. [11] and Hsu et al. [7]). We feel that the current limit of 6 DOFs
of subdivision algorithms is a desired barrier to cross

Contributions of this Paper. With the foundation of resolution-exactness and soft
predicates in place [20, 22], we need to develop techniques for designing such algo-
rithms. The present paper contributes to this goal. We focus on techniques for the
class of articulated robots. Note that even for a 2-link robot with 4 DOFs, the naive
splitting of configuration boxes into 24 = 16 is already unacceptable. It is also clear
that any such techniquemust be empirically supported by implementations.Wemake
several contributions in this paper

(A) Soft-predicates for link robots. As envisioned in [20], soft-predicates can exploit
a wide variety of techniques that trade-off ease of implementation against effi-
ciency. In this paper, we introduce soft-predicates based on the notion of length-
limited forbidden angles for link robots.

(B) A “T/R Splitting” technique based on splitting translational and rotational
degrees of freedom in different phases. Consider a freely translating k-link
planar robot with k + 2 DOFs. The naive subdivision would split each box into
2k+2 children; already for k = 2 or 3, this has little chance of being practical.

2All constants of Physics have at most 8 digits of accuracy. The speed of light is an exception: it is
exact, by definition.



356 Z. Luo et al.

An idea [20] is to consider two regimes: configuration boxes are originally in
the “large regime” in which we only split the translational degrees of freedom.
When the boxes are sufficiently small, in the “small regime”, we split the angu-
lar degrees of freedom. But this idea only delays the eventual 2k+2-way splits.
We now take this idea to the limit: we perform the angular split only once, at
the level just before the leaves. This turns out to be a winner.

(C) Extensions: Subdivision algorithms are typically easier to extend than exact
algorithms. For instance, let each robot link be thickened by taking the
Minkowski sum of a line segment with a disc of radius τ ≥ 0. We say the
link is thick when τ > 0. We give a simple heuristic implementation for thick
robots which shows little performance penalty. Note that there are no exact
algorithms known for such robots. Another easy extension (not implemented)
of our 2-link robot is to a k-spider robot. This is easy because the rotational
degree of freedom of each of the links are mutually independent.

(D) We implemented a 2-link robot (with 4 DOFs) in C/C++, and our experi-
ments are extremely encouraging: our planner can solve a wide range of non-
trivial instances in real time. Unlike sampling-based planners, we can terminate
quickly in case of NO-PATH, and our algorithm does not need any tuning para-
meters such as the number of samples, or cut-off bounds. To evaluate our
approach further, we also compared with some probabilistic sampling algo-
rithms (PRM [8], Gaussian-PRM [3] and RRT [10]) implemented in OMPL
[18]. Preliminary experiments indicate that our subdivision solution outper-
forms these significantly. Our code and datasets are freely distributed with the
Core Library,3 where various parameter settings for the experiments on
some highly non-trivial instances are reproducibly encoded in the Makefile tar-
gets. Images of such instances are given in the Appendix of the full paper [15].
A video clip showing the animation of one such resulting path is available.4

2 Preliminaries

The basic motion planning problem is this [12]: Let R0 be a fixed robot living in Rk

(k = 2, 3). It defines a configuration space Cspace = Cspace(R0). We may5 assume
Cspace(R0) ⊆ R

d if R0 has d DOFs. For any obstacle set Ω ⊆ R
k , we obtain a

corresponding free space C f ree = C f ree(Ω) ⊆ Cspace. The basic (exact) motion
planning problem for R0 is thus: the input is

I = (Ω, α, β, B0) (1)

3http://cs.nyu.edu/exact/core/download/core/.
4http://cs.nyu.edu/exact/gallery/2link/2link.html.
5It is standard to identifyCspace(R0)with a subset X ⊆ R

d . The topology ofCspace(R0) is generally
different from that of X . In the case of k = 2, the correct topology is easy to simulate since S1 may
be regarded as an interval with the endpoints identified.

http://cs.nyu.edu/exact/core/download/core/
http://cs.nyu.edu/exact/gallery/2link/2link.html
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where Ω ⊆ R
k is a polyhedral set, B0 ⊆ Cspace is a region-of-interest, and α, β ∈

Cspace are start and goal configurations. We want to find a path in B0 ∩C f ree from α

to β; return NO-PATH if no such path exists. An algorithm for this problem is called
an (exact) “planner”.

Fundamentals of Our Subdivision Approach. Our subdivision approach includes
the following three fundamental concepts (the details are given in the Appendix of
the full paper [15]):

• Resolution-exactness: this is our replacement for a standard concept in the subdi-
vision literature called “resolution completeness”: Briefly, a planner is resolution-
exact if there is a constant K > 1 such that if there is a path of clearance > K ε,
it will return a path, and if there is no path of clearance ε/K , it will return NO-
PATH. Here, ε > 0 is an additional input parameter to the planner, in addition to
the normal parameters.

• Soft Predicates: we are interested in predicates that classify boxes. Let R
d be

the set of closed axes-aligned boxes in R
d . Let C : R

d → {+1, 0,−1} be an
(exact) predicate where +1,−1 are called definite values, and 0 the indefinite
value. We extend it to boxes B ∈ R

d as follows: for a definite value v ∈
{+1,−1}, C(B) = v if C(x) = v for every x ∈ B. Otherwise, C(B) = 0. Call
C̃ : R

d → {+1, 0,−1} a “soft version” of C if whenever C̃(B) is a definite
value, C̃(B) = C(B), and moreover, if for any sequence of boxes Bi (i ≥ 1) that
converges monotonically to a point p, C̃(Bi ) = C(p) for i large enough.

• Soft Subdivision Search (SSS) Framework. This is a general framework for a
broad class of motion planning algorithms, in the sense that PRM is also such a
framework. One must supply a small number of subroutines with fairly general
properties in order to derive a specific algorithm. In PRM, one basically needs a
subroutine to test if a configuration is free, a method to connect two free config-
urations, and a method to generate additional configurations. For SSS, we need
a predicate to classify boxes in configuration space as FREE/STUCK/MIXED, a
method to split boxes, and a method to test if two FREE boxes are connected
by a path of FREE boxes, and a method to pick MIXED boxes for splitting. The
power of such frameworks is that we can explore a great variety of techniques and
strategies. This is critical for an area like robotics.

Link Robots. In our previous work [20], we focused on rigid robots. In this work,
we look at flexible robots; the simplest such examples are the link robots. Lumelsky
and Sun [13] investigated planners for 2-link robots in R2 and R3. Sharir and Ariel-
Sheffi [16] gave the first exact algorithms for planar k-spider robots.

By a 1-link robot, wemean a triple R1 = (A0, A1, �)where A0 and A1 are names
for the endpoints of the link, and � > 0 is the length of the link. Its configuration space
is SE(2) = R

2 × S1. If γ = (x, y, θ) ∈ SE(2), then R1[γ ] ⊆ R
2 denote the line

segmentwith the A0-endpoint at (x, y) and the A1-endpoint at (x, y)+�(cos θ, sin θ).
Call R1[γ ] the footprint of R1 at γ . Also, A0[γ ], A1[γ ] ∈ R

2 denote the endpoints
of R1[γ ].

For k ≥ 1, we define a k-link robot Rk recursively: Rk will have k + 1 named
points: A0, A1, . . . , Ak . We have defined R1. For k ≥ 2, Rk is a pair (Rk−1, Lk)
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Fig. 1 Some link robots

where Lk = (Xk, Ak, �k), Xk is a named point of Rk−1, Ak is the new named
point, and �k > 0 is the length of the kth link. The configuration space of Rk is
Cspace(Rk) := R

2 × (S1)k , with 2 translational DOFs and k rotational DOFs. See
Fig. 1 for some examples of such robots (k-chains and k-spiders).

We define the footprint of Rk : Let γ = (γ ′, θk) ∈ Cspace(Rk) where γ ′ =
(x, y, θ1, . . . , θk−1). The footprint of the kth link is Lk[γ ], defined as the line segment
with endpoints Xk[γ ′] and Ak[γ ] := Xk[γ ′] + �k(cos θk, sin θk). The footprint
Rk[γ ] is the union Rk−1[γ ′] ∪ Lk[γ ].

We say γ is free if Rk[γ ]∩Ω = ∅. As usual,C f ree(Rk) ⊆ Cspace(Rk) comprises
the free configurations. The clearance of γ is defined as C�(γ ) := Sep(Rk[γ ],Ω).
Here, Sep(X, Y ) := inf {‖x − y‖ : x ∈ X, y ∈ Y } denotes the separation of two
Euclidean sets X, Y ⊆ R

2.
Feature-Based Approach. Our computation and predicates are “feature based”

whereby the evaluation of box primitives are based on a set φ̃(B) of features associ-
ated with the box B.

Given a polygonal setΩ ⊆ R
2, the boundary ∂Ω may be subdivided into a unique

set of corners (points) and edges (open line segments), called the features of Ω .
LetΦ(Ω) denote this feature set. Our representation of f ∈ Φ(Ω) ensures this local
property of f : for any point q, if f is the closest feature to q, then we can decide if q
is inside Ω or not. To see this, first note that if f is a corner, then q is outside Ω iff q
is convex corner ofΩ . So suppose that f is a wall. Our representation assigns an ori-
entation to f such that q is insideΩ iff q lies to the left of the oriented line through f .

3 The T/R Splitting Method

The simplest splitting strategy is to split a box B ⊆ R
d into 2d congruent subboxes.

This makes sense for a disc robot, but even for the case ofCspace = SE(2), this strat-
egy is noticeably slow without additional techniques. In [20], we delay the splitting
of rotational dimensions, but the problem of 23 = 8 splits eventually shows up. In
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this paper, we push the delaying idea to the limit: we would like to split the rotational
dimensions only once, at the leaves of the subdivision tree when the translational
boxes have radius at most ε. Moreover, this rotational split can produce arbitrarily
many children, depending on the number of relevant obstacle features. Intuitively,
reducing the translational box down to ε for this technique is not severely inefficient
because there are only 2 DOFs for translation. Later, we introduce a modification.

The basis for our approach is a distinction between the translational and rota-
tional components of Cspace. Note that the rotational component is a subspace of
a compact space (S1)k , and thus it makes sense to treat it differently. Given a box
B ⊆ Cspace(Rk), we write B = Bt × Br where Bt ⊆ R

2 and Br ⊆ (S1)k are
(respectively) the translational box (t-box) and rotational box (r-box) correspond-
ing to B.

For any box B ⊆ Cspace(Rk), let itsmidpoint m B = m(B) and radius rB = r(B)

refer to the midpoint and radius of its translation part, Bt . Suppose the rotational part
of B is given by Br = ∏k

i=1[θi ± δ].
Suppose we want to compute a soft predicate C̃(B) to classify boxes B ⊆

Cspace(Rk). Following our previous work [20, 21], we reduce this to computing
a feature set φ̃(B) ⊆ Φ(Ω). The feature set φ̃(B) of B is defined as comprising
those features f such that

Sep(m B, f ) ≤ rB + r0 (2)

where r0 is farthest reach of the robot links from its base (i.e., A0). We say B is
empty if φ̃(B) is empty but φ̃(B1) is not, where B1 is the parent of B. We may
assume the root is never empty. If B is empty, it is easy to decide whether B is FREE
or STUCK: since the feature set φ̃(B1) is non-empty, we can find the f1 ∈ φ̃(B1)

such that Sep(m B, f1) is minimized. Then Sep(m B, f1) > rB , and by the above
local property of features, we can decide if m B is inside or outside Ω . Here then is
our (simplified) Spli t(B) function:

Spli t(B):
If B is empty,

Determine if B is free or stuck
Elif “r(B) > ε”

T -Spli t(B)

Else
R-Spli t(B)

Here, T -Spli t(B) splits only the translational component B (the rotational com-
ponent remains the full space, Br = (S1)k). Similarly, R-Spli t(B) splits only Br

and leaves Bt intact. The details of R-Spli t(B) are more interesting, and is taken up
in the next section.

Modified T/R Strategy. A possible modification to this T/R strategy is to replace
the criterion “r(B) > ε” of Spli t(B) by “r(B) > ε and |φ̃(B)| ≥ c”, for some
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(small) constant c. For instance if |φ̃(B)| = 2, we might be in a corridor region and
it seems a good idea to start to split the angles. The problem with this variation is
that the R-Spli t(B) gives only an approximation of the possible rotational freedom
in B; if no path is found, we may have to split Bt again, in order to apply R-Spli t
to the children of B. This may render it slower than the simple T/R strategy. As our
experiments show, a choice like c = 4 is a good default.

4 Soft Predicate for Rotational Degrees of Freedom

We design the rotational splitting R-Spli t(B) routine. Recall that this amounts to
splitting Br (leaving Bt intact). First assume the simple case where Rk is a k-spider.
In this case, each link of the robot is independent, so it suffices to consider the case
of one link (R1). Thus Br ⊆ S1. If this link has length � > 0, then R-Spli t(B)

splits the full circle S1 into a union of free angular intervals. The number of such
free angular ranges is equal to the number of features in φ̃(B)within distance � from
m(B).

Use the following convention for closed angular ranges: if 0 ≤ α1 < α2 <

2π , then [α1, α2] := {α : α1 ≤ α ≤ α2} and [α2, α1] := {α : 0 ≤ α ≤ α1 or α2 ≤
α < 2π}. In any case, if [α, α′] is an angular range, we callα (resp.,α′) the left (resp.,
right) stop of the range.

For p, q ∈ R
2, let Ray(p, q)denote the rayoriginating at p andpassing throughq,

and let θ(p, q) ∈ S1 denote its orientation. By convention, the positive x- and y-axes
have orientations 0 and π/2, respectively. If P, Q ⊆ R

2 are sets, let Ray(P, Q) =
{Ray(p, q) : p ∈ P, q ∈ Q}.

The main concept we need is the following: for � > 0, the length-limited (or
�-limited) forbidden range of P, Q is

Forb�(P, Q) := {θ(p, q) : p ∈ P, q ∈ Q, ‖p − q‖ ≤ �} .

If P ∩ Q is non-empty, then Forb�(P, Q) = S1. Hence we will assume P ∩ Q = ∅.
We may also assume P, Q are closed convex sets.

Our main task is to provide a compact computational formula for the set
Forb�(P, Q) where P is a box and Q is an edge feature. Without suitable insight,
this task can be bogged down in numerous cases, and hard to verify. We present a
simplified elegant analysis, initially by considering the case � = ∞. We simply write
Forb(P, Q) for Forb∞(P, Q). Call Ray(p, q) ∈ Ray(P, Q) a common tangent
ray if the line through Ray(p, q) is tangential to P and to Q. Such a ray is sepa-
rating if P and Q lie on different sides of the line through Ray(p, q). If P, Q are
not singletons, then there are four common tangent rays, and exactly two of them
are separating. We call a separating common tangent ray a left stop (resp., a right
stop) of (P, Q) if P lies to the right (resp., left) of the ray. Now it is not hard to see
that Forb(P, Q) = [θ(p1, q1), θ(p2, q2)] where Ray(p1, q1) and Ray(p2, q2) are
the left and right stops of (P, Q), as illustrated in Fig. 2.
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Fig. 2 Common tangent rays: Ray(p1, q1) and Ray(p2, q2) are the left and right stops of (P, Q)
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Fig. 3 Forbidden range Forb(Bt , W ) between box Bt and wall W

We apply these observations to the case where P is a translational box Bt and Q
is a wall W . If s is a side of Bt , let H(s) denote the closed half-space bounded by
s and that has empty intersection with the interior of Bt . Up to symmetry, there are
three cases as seen in Fig. 3:

(I) Bt has a unique side s such that W ⊆ H(s).
(II) Bt has two unique sides s and s′ such that W ⊆ H(s) ∩ H(s′).
(III) Bt has two sides s and s′ such that W ⊆ H(s) ∪ H(s′), but is not (I) or (II).

We can now easily compute the forbidden range (refer to Fig. 3):

Forb(Bt , W ) =
⎧
⎨

⎩

[θ(v, C), θ(v′, C ′)] if Case (Ia) or (IIa),
[θ(v, C), θ(v′, C)] if Case (Ib) or (IIb),
[θ(v, C), θ(v, C ′)] if Case (III).

(3)
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Next, we must account for the length �. The initial observation is that �-limited
forbidden ranges in one of the two forms

Forb�(v, W ) or Forb�(s, C) (4)

are straightforward to compute:

Forb�(v, W ) = Forb(v, D�(v) ∩ W ),

Forb�(s, C) = Forb(D�(C) ∩ s, C).

}

where D�(v) and D�(C) are the discs of radius � centered at v and C , respectively.
Subsets of S1 which are expressed in the form (4) are called cones. The cone decom-
position of a subset F ⊆ S1 amounts to writing F as the union of a finite number
of such cone sets. For instance, subcase (Ia) in the Eq. (3) has a cone decomposition
comprised of two cones:

Forb�(Bt , W ) = [θ(v, C), θ(v′, C ′)] = Forb�(v, W ) ∪ Forb�(s, C ′).

The following theorem shows that such a cone decomposition exists in the other
cases as well:

Theorem 1 Any �-limited forbidden range Forb�(Bt , W ) has a cone decomposition
comprising at most three cones.

5 Proof of Theorem 1

We use the cases in the formula (3) for Forb(Bt , W ) (refer to Fig. 3 for notation).

CASE (I) There is a unique side s of Bt such that the wall W lies in the half-
space H(s). We distinguish two subcases: let z denote the intersection of the line
through W and line through s. If z lies outside s, then we are in subcase (Ia);
otherwise we are in subcase (Ib). The situation where z is undefined because W
and s are parallel is treated under subcase (Ia).
First consider subcase (Ia) where C, C ′ are distinct corners of W . Note that
Forb(Bt , W ) = [θ(v, C), θ(v′, C ′)] can be written as the union of two angu-
lar ranges,

Forb(Bt , W ) = Forb(s, C ′) ∪ Forb(v, W ). (5)

However, it could also be written as

Forb(Bt , W ) = Forb(s, C) ∪ Forb(v′, W ). (6)

Can we extend these two representations of Forb(Bt , W ) into a cone decompo-
sition for Forb�(Bt , W )? What if we simply replace Forb(s, C ′) by Forb�(s, C ′),



Resolution-Exact Algorithms for Link Robots 363
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s

v
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α

C = b

z

b
W

s

Fig. 4 Length-limited forbidden zone analysis

etc? It turns out that only one of the two extensions is correct. Recall that sub-
case (Ia) is characterized by the fact that intersection point z lies outside s; wlog,
assume that z lies to the left of s as in Fig. 4. Suppose α ∈ Forb(Bt , W ). Then (5)
implies that there exists a pair

(a, b) ∈ (s × C ′) ∪ (v × W )

such that θ(a, b) = α. Similarly, (6) implies that there exists a pair

(a′, b′) ∈ (s × C) ∪ (v′ × W )

such that θ(a, b) = α. One such angle is illustrated in Fig. 4 with (a, b) = (v, b)

and (a′, b′) = (a′, C). It is easy to verify that this subcase implies

‖a − b‖ ≤ ‖a′ − b′‖.

It follows that

α ∈ Forb�(Bt , W ) ⇐⇒ α ∈ Forb�(s, C ′) ∪ Forb�(v, W ).

In other words, the representation (5) (but not (6)) extends to the �-limited for-
bidden angles:

Forb�(Bt , W ) = Forb�(s, C ′) ∪ Forb�(v, W ). (7)

Note that in case W and s are parallel, both representations (5) and (6) are equally
valid.

It remains to treat subcase (Ib), we have C = C ′ and so the preceding argument
reduces to Forb�(Bt , W ) = Forb�(C, s).

CASE (II) First consider subcase (IIa) where C, C ′ are distinct corners of W . The
analysis of subcase (Ia) can be applied twice to this case, yielding
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Forb�(Bt , W ) = Forb�(v, W ) ∪ Forb�(s, C ′) ∪ Forb�(s
′, C ′). (8)

For subcase (IIb), we have C = C ′ and so Forb�(v, W ) can be omitted. Thus
Forb�(Bt , W ) = Forb�(s, C) ∪ Forb�(s′, C).

CASE (III) This is simply

Forb�(Bt , W ) = Forb�(v, W ). (9)

This completes our proof of Theorem1.

6 Resolution Exactness of Our Algorithm

The cone decomposition leads to a simple formula for computing Forb�(Bt , W ).
We are ready to describe our R-Spli t(B) operator: Consider the set Θ(B) :=
S1 \ (⋃

i Forb�(Bt , Wi )
)
where Wi range over all walls with at least one corner in

φ̃(B). Write this set as the union of disjoint angular ranges

Θ(B) := A1 ∪ A2 ∪ · · · ∪ Ak . (10)

Each Bt × Ai is called a configuration cell belonging to B, and let R-Spli t(B)

denote the set of configuration cells belonging to B. Let Bt × A and B
t × A be two

configuration cells. We define these cells to be adjacent if Bt and B
t
are adjacent

(as translational boxes) and A ∩ A is non-empty. Motion planning is thus reduced to
searching in the adjacency graph of configuration cells.

The next lemma is about convergence and effectivity. Let
⋃

R-Spli t(B) be the
union of the configuration cells in R-Spli t(B). Clearly,

⋃
R-Spli t(B) ⊆ B ∩C f ree.

How good is
⋃

R-Spli t(B) as an approximation of B ∩ C f ree? This is about effec-
tivity of our method and is answered in part(ii) of the lemma.

Lemma 1 (i) Let (B1, B2, . . .) be a sequence of boxes in Cspace where Bi = Bt
i ×S1,

and Bt
i converges to a point p as i → ∞. Then

⋃
R-Spli t(Bi ) converges to the set

(p × S1) ∩ C f ree, i.e., the free configurations with the base at p.
(ii) Let B = Bt × S1. If γ ∈ B has clearance C�(γ ) > r(B), then γ ∈⋃
R-Spli t(B)

Proof (i) is immediate. To see (ii), let γ = (p, θ) ∈ B. We prove the contra-
positive. Suppose γ /∈ ⋃

R-Spli t(B). Then there is some p′ ∈ Bt such that
γ ′ = (p′, θ) is not free. But Sep(R1[γ ], R1[γ ′]) ≤ r(Bt ). This implies C�(γ ) ≤
r(Bt ) = r(B). �

Theorem 2 Assume the T/R method for splitting and R-Spli t is implemented exactly
in our SSS Algorithm for a spider robot Rk. Then we obtain an resolution-exact
planner for Rk.
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The proof follows the general approach in [20, 22]. Note if we implement
R-Spli t(B) by a conservative approximation with error that is bounded by r(B),
then we obtain a corresponding resolution-exact algorithm (but with larger constant
K ). Furthermore, if the predicate for each box B is numerically approximated with
error at most 2−r(B), the resulting algorithm is still resolution-exact [20, 22]. In short,
exact computation is not necessary. For our present paper, machine accuracy seems
to be empirically sufficient for all our examples.

7 Extensions to Thick Links

We could extend the T/R method to spider and chain robots. The efficiency will be
minimally impacted in the case of spider robots, but this is less clear for chain robots.
In this paper, we implement an extension to links with thickness: each link is now
the Minkowski sum of a line segment with a disc of radius τ > 0. Notice that there
are no known exact algorithms for thick link robots (except in the single link case
[17]). Let us now define the feature set φ̃(B) of a configuration box B to comprise
those features f such that

Sep(m B, f ) ≤ rB + r0 + τ. (11)

This may be compared to the original criterion (2). When r(B) ≤ ε, we must
perform R-Spli t(B). This requires us to compute Forb�,τ (Bt , W ), the �-limited
τ -thick forbidden range of Bt and W , for various W ’s. As in the thin case,
Forb�,τ (Bt , W ) has a cone decomposition. This reduces to computing the thick cone
Forb�,τ (v, W ) (or Forb�,τ (s, C), but this is similar). We can first compute the thin
cone Forb�(v, W ) = [α1, α2]. Then we compute “correction angles” κ1, κ2 so that
Forb�,τ (v, W ) = [α1 − κ1, α2 + κ]. There is one easy case: suppose a corner C
of W determines the angle α1. Then κ1 = arcsin(τ/d) where d = ‖v − C‖. We
have implemented this extension, but as the results show, this has little impact on the
performance. In a followup work, we will present the complete analysis of thick link
robots.

8 Experimental Results

We have implemented in C/C++ the planner for 2-link robots, both without and with
thickness, as described in this paper, and conducted experiments. The platform for
the experiments was a workstation with Linux OS, two 3GHz Intel Xeon CPUs and
6GB of RAM.
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Our code and datasets are freely distributed with the Core Library,6 where
various parameter settings for the experiments on some highly non-trivial instances
are reproducibly encoded in the Makefile targets. Here we present results on some
of these input obstacle sets: eg1, eg2, eg5, eg10, and eg300. Each of these inputs
was represented by a set of polygons (not necessarily disjoint), with the dimension
of the global environment 512 × 512. For eg 300, we generated 300 triangles at
random; for other datasets,wegeneratedpolygons to form interesting and challenging
environments for robot planners. Images of these inputs are found in the Appendix
of the full paper [15]. Additional experimental results are reported in the Master
thesis [14] based on this paper.

For each obstacle set, Table1 shows two statistics from running our planner: total
running time and the total number of tree boxes created. Each run has the parameters
(L1, L2, T ) where L1, L2 are the lengths of the 2 links and T ∈ {B, D, G} indicates7
the search strategy (B = BreadthFirstSearch (B F S), D = Distance+ Size, G =
GreedyBestFirst (G B F)). In the left table of Table1, we pick two variants of T/R
splitting: “Simple T/R” means applying R-Spli t when the box size is < ε, and
“Modified T/R” means applying R-Spli t when the feature set size is small enough
(controlled by the parameter c mentioned at the end of Sect. 3). The choice c = 4 is
used here.

We see that GBF and “Distance+ Size” are comparable to each other, and always
faster than BFS. Although “Modified T/R”was typically a winner, “Simple T/R” also
performed well—the bottom line is that the T/R splitting method, be it “Modified
T/R” or “Simple T/R”, gives a huge performance speed-up. In the right table of
Table1, we compare the performance of robots with various thickness values, where
we always used “Modified T/R”with c = 4. As can be seen, supporting thickness>0

Table 1 Statistics of running our algorithms

Obstacle robot Modified T/R Simple T/R
(input) (links) time (ms) boxes time (ms) boxes
eg1 (50,80,G) 198.0 8232 198.7 8514

(50,80,D) 241.1 10886 222.3 10042
(50,80,B) 486.1 29615 444.0 28802

eg2 (85,80,G) 431.1 23803 564.0 33199
(85,80,D) 394.5 21400 367.4 20060
(85,80,B) 681.8 53393 575.4 48851

eg5 (60,50,G) 655.1 22781 638.2 22617
(60,50,D) 751.8 25007 759.4 27185
(60,50,B) 806.6 40007 803.9 39868

eg10 (65,80,G) 129.6 9060 129.7 9060
(65,80,D) 95.2 7380 95.2 7380
(65,80,B) 169.6 15434 169.7 15434

eg300 (40,30,G) 256.6 6132 259.6 6133
(40,30,D) 267.6 6376 262.6 6337
(40,30,B) 3125.0 52318 2865.6 49944

robot & input
(links) time (ms) boxes time (ms) boxes
(50,80,G) thickness: 5 thickness: 6 (*)
eg1, = 4 280.4 95880 1368.5 62080
(85,80,G) thickness: 0 thickness: 6
eg2, = 2 588.7 35302 1618.2 67023
(43,43,G) thickness: 0 thickness: 9
eg5, = 2 2723.6 84867 2307.9 69774
(45,45,G) thickness: 0 thickness: 18
eg10, = 2 518.3 28129 503.9 19515
(40,30,G) thickness: 0 thickness: 7 (*)
eg300, = 2 944.9 19297 2359.9 33248

In the left table, all instances are with thickness 0 and ε = 4. In the right table, the thickness and ε

values are explicitly shown. The instances of “No Path Found” are marked with “(*)”

6http://cs.nyu.edu/exact/core/download/core/.
7Note that a random strategy is available, but it is never competitive.

http://cs.nyu.edu/exact/core/download/core/
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is quite easy (in fact quite easy to implement as well), with almost no performance
penalty—for some instances (eg5 and eg10) the performance of thickness >0 was
even faster (since thicker robots might result in some boxes to be classified as stuck
earlier)! This clearly shows the power of our soft predicates under the resolution-
exactness framework.

In Table2, we compare the performance of our planner for 2-link robots (with
thickness 0) with those of sampling-based methods RRT, PRM and Gaussian-PRM
(PRM planner with GaussianValidStateSampler) implemented in OMPL [18] (The
Open Motion Planning Library) version 0.14.1. For these sampling-based methods,
the time limit for solving motion planning problem was set to 300 seconds, and all
planner specific parameters were using theOMPL default values. (Note that our plan-
ner only has a parameter ε (for “Modified T/R” we always used c = 4)—therefore,
in our method and OMPL the default parameters were used in all experiments). We
report in Table2 the average results over 31 runs for these sampling-based methods,
where we see that overall Gaussian-PRM had the highest success rate within the
given running time, while RRT performed the worst. As can be seen, our inputs were
very challenging for all these sampling-based methods, and our running times were
significantly faster than all these methods—For example, comparing with the best
running times of the three sampling-based methods, for eg1 (198.0 vs. 2484ms) we
were 12.55 times as fast, for eg2 (367.4 vs. 3390ms) we were 9.23 times as fast,
for eg5 (638.2 vs. 68,865ms) we were 107.91 times as fast, and for eg300 (256.6
vs. 15,885ms ) we were 61.91 times as fast. These results show that our new algo-
rithms, in addition to providing stronger theoretical guarantees, also achieve superior
performance gains in practice.

9 Conclusions

We hope that the focus on soft methods will usher in renewed interest in theoretically
sound and practical algorithms in robotics, and more generally in Computational
Geometry. Our experimental results for link robots offer hopeful signs that this is
possible.

Our basic SSS framework (like PRM) is capable of many generalizations for
motion planning. One direction is to consider multiple-query models; another is
to exploit the stuck boxes for faster termination in case of NO-PATH. Extensions
to kinodynamic planning offer a chance at practical algorithms in this important
area where no known theoretical algorithms are practical. Much theoretical and
complexity analysis remains open.

It is clear that the theory of soft subdivision methods can be generalized and
extended to many traditional problems in Computational Geometry. But it can also
extend to new areas that are currently untouchable by our exact computational mod-
els, especially those defined by non-algebraic continuous data.
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Appendices

The full paper [15] has 2 appendices: Appendix I describes the experimental setup
including screen shots of the obstacle sets in our experiments. Appendix II provides
the basic theory of our Soft Subdivision Search (SSS) framework.
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Optimal Trajectories for Planar Rigid
Bodies with Switching Costs

Yu-Han Lyu and Devin Balkcom

Abstract The optimal trajectory with respect to somemetric may require verymany
switches between controls, or even infinitely many, a phenomenon called chattering;
this can be problematic for existingmotion planning algorithms that plan using afinite
set of motion primitives. One remedy is to add some penalty for switching between
controls. This paper explores the implications of this switching cost for optimal
trajectories, using rigid bodies in the plane (which have been studied extensively
in the cost-free-switch model) as an example system. Blatt’s Indifference Principle
(BIP) is used to derive necessary conditions on optimal trajectories; Lipschitzian
optimization techniques together with an A* search yield an algorithm for finding
trajectories that can arbitrarily approximate the optimal trajectories.

1 Introduction

Consider an example problem, inspired by aproblem fromMason [14]: amoverwants
to move a refrigerator from one location and orientation to another. The refrigerator
is too heavy to move by lifting or pushing, but it can be lifted onto any of the four
legs at the corners of the square base and rotated. If there are no obstacles, what is
the fastest sequence of rotations (with time cost computed as the sum of the absolute
values of the angles rotated through)?

For some configurations (moving the refrigerator in a straight line), there exists
no optimal trajectory with a finite number of actions: for any trajectory with finitely
many switches, there is a faster trajectory with more switches, a phenomenon called
chattering.When chattering occurs, the refrigeratormover is required to run back and
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forth between legs of the refrigerator infinitely many times, rotating the refrigerator
through an infinitely small angle.

The chattering phenomenon is a fundamental problem in robot motion planning.
Sussmann showed that an extension of the well-known Dubins car [9] to include
bounds on angular acceleration leads to chattering [26]. Desaulniers showed that
chattering may occur if there are obstacles in the environment [8], even for systems
that are well-behaved without obstacles.

A natural approach to avoiding trajectories that switch frequently between con-
trols is to charge a fixed cost for switches. This fixed cost both avoids chattering, and
penalizes otherwise un-modeled costs (such as the cost of wearing out a switching
mechanism, or the time cost of running between legs in the refrigerator-mover’s prob-
lem). We give an approximately optimal trajectory for refrigerator mover’s problem
with switching costs in Fig. 1; this trajectory was generated by the algorithm we will
present in this paper. In the robotics community, the model of charging a fixed cost
for discontinuous switches between controls has been used in practice [2, 25], but
the implications of switching costs for optimal trajectories have perhaps not been
thoroughly explored.

The main contributions of this paper are:

1. Necessary conditions for optimal trajectories for rigid bodies in the plane in the
costly-switch model, i.e. Theorems 1 and 2.

2. Apractical algorithm that finds approximately optimal trajectories for rigid bodies
in the plane, with arbitrarily small additive error. This algorithm may also be
trivially adapted to the zero-switch-cost model in the case that chattering does
not occur.

Rigid bodies are building blocks formanymodels of robotic locomotion ormanip-
ulation systems, and rigid bodies provide a good example for study of optimal tra-
jectories. We apply Blatt’s Indifference Principle (BIP) to show existence of optimal
trajectories, and to derive necessary conditions on these trajectories; for the simple
case of rigid bodies in the plane, analytical integration of certain differential equa-
tions of BIP is possible. We then show that Lipschitzian optimization techniques can
be applied to find trajectories between pairs of configurations, with arbitrarily small
error in both final configuration and time cost.

Fig. 1 An approximately
optimal trajectory for a
refrigerator robot starting at
(−2, 0, 0), with unit cost for
switching between any pair
of controls. The green line is
the control line

u1

Start

u2

u3 Goal
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We admit that this paper is quite technical, and builds on a body of previous work
that is also quite technical. Nonetheless, we consider the costly-switch model to be
fundamental, and Lipschitzian optimization techniques appear to provide a powerful
approach to finding algorithms that provide guarantees of approximate optimality.

This paper extends work by Furtuna [10], which derived strong necessary condi-
tions for optimal trajectories for rigid bodies in the plane with zero switching cost,
but which did not provide algorithms to connect particular pairs of configurations,
with bounds on error. This paper also extends [28], which does provide algorithms for
the zero-switching-cost problem; however, these previous algorithms are inefficient
for single-source, single-destination problems. Finally, this paper extends our work
in [13], which derives some analytical solutions to simple versions of the costly-
switch model using other techniques.

Related Work. For some models of mobile robots in the plane, optimal trajectories
can be found analytically, including Dubins [7, 9], Reeds-Shepp [20, 24, 26] cars.
We and many other researchers have tried to generalize techniques (typically based
on Pontryagin’s Maximum Principle [19]), aiming to gain a greater understanding
of optimal motion for mobile robots [1, 4–6, 21, 22]. However, we are aware of
little work in the robotics community providing strong results on optimal trajectories
with a cost of switches; a notable exception is work by Stewart using a dynamic-
programming approach to find optimal trajectories with a costly-switch model [25].

The problem of costly switches has been studied in the optimal control community
with results dating back as far as the 1970s. One of the most powerful tools for
solving optimal control problems, Pontryagin’s Maximum Principle (PMP) [19],
does not appear to be the right tool to characterize optimal trajectories in the costly-
switch model due to the discontinuity with respect to time in the control and cost
functions. In [3], Blatt proposed a model in which the control set contains certain
primitives (a discrete set of actions), and there is some fixed cost associated with
switching between controls. Blatt characterized a set of necessary conditions for
optimal trajectories under thismodel; these necessary conditions are known asBlatt’s
Indifference Principle (BIP). Blatt showed that optimal trajectories always exist and
the number of actions must be finite. Blatt’s necessary conditions are similar to, but
weaker than, those provided by PMP; using BIP to solve an optimal control problem
is more challenging than using PMP in the cost-free-switch model. In Blatt’s model,
the control set is a discrete set, but other models have been proposed [11, 15, 16].

Although the costly-switchmodelwas proposed in the ’70s, no algorithms for find-
ing optimal trajectories in costly-switch model were proposed until the ’90s [25, 27];
several algorithms have been developed recently [12, 30]. These recent approaches
are based on approximating the control function as a piecewise-constant functions,
and applying global optimization techniques to find optimal solutions. These algo-
rithms converge to optimal solutions as the number of iterations approaches infinity,
but cannot guarantee a bound of error within finite time. In this paper, we provide
a stronger result for a particular system; our algorithm guarantees a bound of error
within finite time, for the restricted problem of finding optimal trajectories of rigid
bodies in the plane.
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In the costly-switch model, due to the similarity between BIP and PMP, by adapt-
ing Furtuna’s analysis [10], we derive some general results that geometrically char-
acterize optimal trajectories for rigid bodies in the plane with costly switches. Based
on the necessary conditions for optimal trajectories, we also categorize optimal tra-
jectories into several types that are similar to Furtuna’s categorizations.

Although our conditions seem similar to Furtuna’s conditions, our conditions are
weaker due to the generality of the costly-switchmodel.We show that the problem of
finding optimal trajectories has two important parts: one is to determine an optimal
sequence of actions (the discrete structure of the trajectory), and the second is to
determine an optimal characteristic value H ∈ Rwhich in some sense parameterizes
the shape of the trajectory.

Model and Notation. We use q = (x, y, θ) ∈ SE(2) to denote a configuration, and
u = (vx , vy,ω) ∈ R3 to denote a control: x and y velocities in a frame attached to
the body (robot frame), and angular velocity. LetU be the control space containing a
finite number of primitives: constant-control actions. For example, one action might
be (vx , vy,ω) = (1, 0, 0), corresponding to driving in a straight line.

For a configuration q0, if we apply a sequence of actions u ∈ U n with a sequence
of durations t ∈ Rn+, then the result is a configuration q ′ = q(q0,u, t) ∈ SE(2),
where q is a continuous function that integrates the control over time in the world
frame and then adds q0 to obtain the resulting configuration q ′. Hence, a trajectory
can be represented as a pair of sequences (u, t).

Wemodel the cost of control switches as a functionC :U ×U → R+ that depends
on the control applied before and the control applied after. Furthermore, we assume
that for any three controls ua, ub, and uc, the cost of switching satisfies the triangle
inequality,C(ua, ub)+C(ub,+uc) ≥ C(ua, uc), to ensure that switching from ua to
uc directly is always faster than switching to uc through other intermediate controls.
The cost of a trajectory is the summation of all durations and all switch costs of a
trajectory.

Problem statement: given a start configuration qs , a final configuration q f , a
finite control set U , and a cost function C , find a trajectory (u, t) with the minimum
time cost, subject to q(qs,u, t) = q f .

2 Necessary Conditions of Optimal Trajectories

In this section, we will derive necessary conditions for optimal trajectories for rigid
bodies in the plane in the costly-switch model. Based on these necessary conditions,
we classify optimal trajectories into several classes.

2.1 Extensions of Previous Results

Due to the similarity between BIP and PMP, several results in [10] in the cost-free-
switch model can be extended to the costly-switch model by similar mechanisms.
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Hence, we list these results here and omit their proofs.

Theorem 1 Any optimal trajectory (u∗, t∗)with n actions in the costly-switch model
satisfies the following property: there exist four constants H > 0, k1, k2, and k3,
such that for any control u∗

i , 1 ≤ i ≤ n, with the instantaneous velocity (vx , vy,ω)
in the world frame when ui is applied at a configuration (x, y, θ), we have

k1vx + k2vy + ω(k1y − k2x + k3) = H, where k21 + k22 ∈ {0, 1}. (1)

A trajectory (u, t) is called extremal, if there exist four constants H > 0, k1, k2,
and k3, such that Eq.1 is satisfied. Equation1 is virtually identical to the necessary
condition derived using PMP for the cost-free-switch problem, except that there is
no requirement that controls maximize the Hamiltonian H . Instead, H need only be
constant throughout the trajectory.

An extremal trajectory with constants H, k1, k2, and k3, is called a control line
trajectory, if k21 + k22 = 1. An extremal trajectory with constants H, k1, k2, and k3,
is called a whirl trajectory, if k21 + k22 = 0.

Control Line Trajectories. There is a nice geometric interpretation for Theorem 1
when k21 + k22 = 1, related to the control line interpretation in [10]. For a control line
trajectory (u, t), we define its corresponding control line, represented as (k1, k2, k3)
as a line in the plane with heading (k1, k2) and distance k3 from the origin. Now,
consider Eq.1. The term k1vx + k2vy becomes the translational velocity along the
vector (k1, k2) and the term k1y − k2x + k3 becomes the signed distance from the
reference point of the robot to the control line. By Corollary 1 in [10], when a
rotation is applied, the signed distance from the rotation center to the control line
is always H/ω. Similarly, when a translation is applied, the dot product between
(k1, k2) and (vx , vy)must be H . See Fig. 2 for an (approximately) optimal trajectory
for an omni-directional vehicle with control lines in the cost-free-switch model and
in the costly-switch model. When the switch cost is introduced, optimal trajectories
tend to use fewer number of switches.

u2
u4 u2

(a) (b)

Fig. 2 Trajectories for an omni-directional vehicle starting at (−3,−1π). For the cost-free-switch
model, the optimal trajectory takes 5 actions. For the costly-switch model, the (approximately)
optimal trajectory takes 3 actions. Green lines are control lines. a Cost-free-switch model. b Costly-
switch model with switch cost 1
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Whirl Trajectories.Forwhirl trajectories, Eq.1 only implies that all angular velocities
are equal. We can also extend the result in [10] to the costly-switch model. Due to
space limitations, we do not include the result here.

2.2 Necessary Conditions for Control Line Trajectories

We can prove a further necessary condition for a control line trajectory to be optimal.

Theorem 2 In the costly-switch model, any optimal control line trajectory has either
zero translation actions, one translation action, or two non-parallel translation
actions.

Proof Let g = (u, t) be a control line trajectory. Suppose that g is optimal but has
two parallel translation actions. Let va and vb be the velocity vectors in the world
frame of two non-parallel translation actions of g. We can remove the action of vb

from g and increase the duration of va to ta + tb. The resulting trajectory still reaches
the goal but has one fewer control and hence has smaller cost. This contradicts the
optimality of g.

Suppose that g is optimal but has more than two non-parallel translation actions
Let va , vb, and vc be the velocity vectors in the world frame of three translation
actions of g. By Eq.1, we know that the projection of va , vb, and vc onto the control
line must be H . Let vay , vby , and vcy be the projection of va , vb, and vc onto the
norm of the control line. By the Pigeonhole Principle, we know that at least two of
vay , vby , and vcy have the same sign.

Without loss of generality, assume that vay and vby have the same sign; let their
durations be ta and tb respectively. SeeFig. 3. Ifvay = vby , then the velocity vectorsva

and vb are identical. This contradicts the assumption that va and vb are non-parallel.
If vay �= vby , then without loss of generality, we assume |vay | > |vby |.

Since the projections of va and vb onto the control line are the same, we can

remove the actions of vb from g and increase the duration of va to ta + tb|vby |
|vay | . Let

u be the control corresponding to the translation vector vb. Let u p and uq be the
control before and after u in the trajectory. The new trajectory will decrease cost by
tb|vby |
|vay | − tb − C(u p, u) − C(u, uq) + C(u p, uq), which is strictly larger than zero.

Hence, the resulting trajectory has smaller cost but still reaches the goal. This also
contradicts the optimality of g.

Fig. 3 Illustration of proof
of Theorem 2: a trajectory
containing three actions of
translations, va , vb, and vc.
The sign of vay and vby are
the same

v a

v b

v
c

vay

vby vcy
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We call a control line trajectory that has either zero translation actions, one transla-
tion action, or two non-parallel translation actions an extremal control line trajectory.

Singular, TGT, and Regular Trajectories. In [10], Furtuna classified trajectories with
control lines into four classes: singular, TGT, generics, and regular. Here, we also
classify extremal control line trajectories into four subtypes and we name trajectories
by the names of their counterpart trajectories in the cost-free-switch model. An
extremal control line trajectory is called singular if there exists a non-zero measure
interval along the trajectory that multiple controls have the same Hamiltonian value
within this interval.

As an extension of a result in [10], any singular trajectory in costly-switch model
contains exactly one translation with velocity vector parallel to the control line, or
contains a switch from one translation to another translation. Hence, by Eq.1, the
Hamiltonian values either equal to the velocity of the only translation, or can be
computed from the pair of consecutive translations. Since the control set U is given,
the set of all possible Hamiltonian values for singular trajectories is finite.

An extremal control line trajectory is called generic if the trajectory is not singu-
lar. A generic trajectory is called TGT if both the first control and the last control are
translations. For a TGT trajectory, when the initial configuration and goal configu-
ration are given, we can obtain the Hamiltonian value analytically, using methods
from [10]. A generic trajectory is called regular if it either starts or ends with a
rotation. For regular trajectories, we do not have enough information to determine
the Hamiltonian value, and hence finding optimal regular trajectories is the most
challenging task.

2.3 Taxonomy of Optimal Trajectories

We summarize the taxonomy of optimal trajectories as Fig. 4. Since the Hamiltonian
values for whirl, TGT, and singular trajectories can be determined, the problems of

Extremal trajectories

Whirl trajectories

Other whirlTwo stage trajectories

Control line trajectories

Extremal control line trajectories Other control line trajectories

Generic trajectories

TGT trajectories

Singular trajectories

Regular trajectories

Fig. 4 Taxonomy of optimal trajectories. Each node corresponds to a type of optimal trajectories;
each leaf node without border is not necessary for optimality. All leaf nodes with single border
can be solved analytically. For the leaf node with double border, regular trajectories, we provide a
search algorithm that can find a trajectory arbitrarily close to optimal trajectories
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finding optimal trajectories in these three classes is equivalent to finding an optimal
sequence of controls, a discrete search problem. For these three classes, we have
designed three different A* search algorithms to find candidate optimal trajectories
by searching over discrete trajectory structures; due to space limitations, we omit the
details, and focus on the most challenging case, regular trajectories.

The problem of finding optimal regular trajectories has two ingredients: one is
finding the Hamiltonian value H , which is a continuous variable, and another one is
finding the sequence of controls, chosen from a finite set.

3 Optimal Regular Trajectories

A regular trajectory is a generic trajectory either starting or ending with a rotation.

3.1 Extensions of Previous Results

Due to the similarity between BIP and PMP, several results in [10] in the cost-
free-switch model can be extended to the costly-switch model with a few simple
modifications. We list these results here and omit their proof.

For a fixed first control us , a fixed last control u f , and a given Hamiltonian value,
H , there exist at most two control lines; the mapping from the Hamiltonian values to
the control lines can be represented by two continuous functions. Furthermore, for
a control line L = (k1, k2, k3), k21 + k22 = 1, there exists a transformation TL from
the world frame to the control line frame. For a configuration q in the world frame,
we use q L = TL(q) to denote its representation in the control line frame whenever
the control line L is clear from the text.

For a configurationq L representing the configuration of the rigid bodywith respect
to the control line, and a candidate control u, we would like to determine the duration
that u may be applied before switching to some other control u′, while satisfying
Eq.1. It can be shown that there are at most two candidate durations such that at
the time of switch, both controls u and u′ have the same Hamiltonian value H . The
mapping from configurations in the control line frame to durations (possibly ∞) can
therefore be represented by two continuous functions.

In order to describewhich duration function is being considered,we use a duration
selector, which is a binary number associated with each pair of controls for a discrete
trajectory structure. We call a pair of (u, s) as a tentative structure if u is a sequence
of controls with length n and s is a sequence of duration selectors with length n − 1,
where si is the duration selector for control pair (ui , ui+1). For a given configuration
q L , the duration for each control in a tentative structure is fully determined except
for the last one.

If we knew the tentative structure for a trajectory, together with the Hamiltonian
value H (chosen from a continuous range), then the configuration(s) of the control
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line(s) consistent with the necessary conditions could be computed exactly, based on
techniques in [10]. In fact, the control line can be found using only the Hamiltonian,
the identity of the first and last controls, and the initial and the goal configurations;
this allows computation of durations of each control (except the last).

Given a configuration of the rigid body with respect to the control line, apply-
ing a particular control u will give a trajectory along which the Hamiltonian value
computed by Eq.1 is constant. Along this trajectory, the body may or may not reach
other configurations such that some other control can be applied giving this same
Hamiltonian value. It can be shown that for a particular value H , there is some set of
feasible control switches. Let Q(H) be the set of all possible pairs of controls (u, u′)
such that there is a feasible switch, for a given H . Then,

Theorem 3 There exists a finite set of critical values of R that partition the Hamil-
tonian values into a finite set of open intervals, such that for each interval D, if two
Hamiltonian values H and H ′ are in D, then Q(H) = Q(H ′). The set of critical
values of the Hamiltonian values can be computed by analyzing the control set U.

3.2 Reduction to a Lipschitzian Optimization Problem

It is easy to see that if there is a finite-time trajectory (found by any simple planner)
between a pair of configurations, there exists a computable bound, B, for the number
of actions in any optimal trajectories between those configurations in the costly-
switch model.

Together with Theorem 3, the bound B can be used to show that there are finitely
many discrete trajectory structures that must be considered for optimality. The basic
approach enumerates all candidate starting and final controls (us, u f ) for a trajectory.
Given each (us, u f ), we pose a Lipschitzian optimization problem to solve for H
values with time and position error at most ε, for any desired ε > 0. Then, we pick
the best trajectory among all approximately optimal trajectories.

The problem of finding optimal regular trajectories with the first control us and
the last control u f has two parts: one is to determine a optimal tentative structure and
another is to determine a Hamiltonian value H that approximately minimizes error
and time. We first show how to find optimal trajectories for a fixed H value and then
show how to determine H .

3.3 Finding Optimal Trajectories for a Fixed H

Let D be an open interval of the partition of the Hamiltonian values containing
H . Let Gus ,u f (D) be the set of tentative structures in G(D) with first control us

and final control u f . When us , u f , and H are fixed, there are at most two control
lines. For a fixed control line, for any tentative structure in Gus ,u f (D), the duration
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of each control is fully determined except for the last control, and the duration of
the last control will be determined by the goal configuration. Thus, finding optimal
trajectories for the fixed us, u f , and H is equivalent to finding the optimal tentative
structures in Gus ,u f (D). Although Gus ,u f (D) is a finite set, the size of Gus ,u f (D)

may be large and hence we cannot enumerate all tentative structures in Gus ,u f (D)

to find optimal trajectories. Our approach is to use A* search guided by the distance
function described below.

Distance Function. Let q L
s and q L

f be the initial and goal configurations, and g =
(u, s) be a tentative structure. For any trajectory that reaches q L

f with the last two
controls of un−1 and un , there are at most two possible configurations of switching
control from un−1 to un , and these two possible configurations only differ in x-
coordinates in the control line frame. Let q L

z1 and q L
z2 be these two configurations.

Let q L
n−1 be the configuration at which g will switch control from un−1 to un . Note

that q L
n−1 also only differ from q L

z1 and q L
z2 in x-coordinate. We define the distance

between g and the goal, d(L , g), to be the minimum difference from q L
n−1 to q L

z1 and
q L

z2 in x-coordinate.
We still need to determine the duration of the last control in order to compute the

cost. Let q L
n be the final configuration of the trajectory. We require that q L

n,y = q L
f,y

and q L
n,θ = q L

f,θ and the duration of the last control is determined by this restriction.
We define the cost of g, c(L , g) to be the sum of durations and switching costs.

Determining the Hamiltonian, H . In order to determine the best Hamiltonian value
H , we first compute the partition of the Hamiltonian values according to Theorem 3.
For each open interval, D, we determine the best Hamiltonian value H ∈ D. Then
we pick the optimal Hamiltonian value among all best Hamiltonian values for each
D.

Let D be an open interval of the partition of the Hamiltonian values. Since the
first control, us , and the last control, u f , are fixed, there are two mappings from H
to the control lines; let L(H) be one of the mappings from H to the control lines.
The problem of finding the best Hamiltonian value H ∈ D is as follows:

min c(L(H), g)

d(L(H), g) = 0

g ∈ Gus ,u f (D), H ∈ D. (2)

We will use Lipschitzian optimization techniques to solve Problem 2. Here, we
briefly introduce Lipschitzian optimization.

Lipschitzian Optimization.Thegoal of global optimization is to findoptimal solutions
of constrained optimization problem even for non-linear, non-continuous problems.

A function f : R → R is called Lipschitz continuous if there exists a constant
L ≥ 0, such that for all pairs x, y in the domain we have | f (x)− f (y)| ≤ L|x − y|,



Optimal Trajectories for Planar Rigid Bodies with Switching Costs 381

where L is called the Lipschitz constant. Given a Lipschitz continuous function
f (x), the problem of finding the global minimum minx f (x) is called a Lipschitzian
optimization problem. For Lipschitzian optimization problems, there exists efficient
algorithms to find globally (approximately) optimal solutions with arbitrarily small
error in a finite time [17].

The Lipschitzian optimization algorithm we used for solving Problem 2 is
Piyavskii’s algorithm [18]. The idea of Piyavskii’s algorithm is to iteratively sub-
divide a domain D into several intervals. For each interval, Piyavskii’s algorithm
determines the lower bound of the objective function based on Lipschitz constant,
and decides whether to further subdivide this interval or disregard this interval based
on the lower bound information. For any error bound ε > 0, Piyavskii’s algorithm
guarantees to find a solution with additive an error at most ε within a finite number
of iterations.

Wewill show that Problem2 can bemodeled asLipschitzian optimization problem
in the next section.

4 Lipschitz Continuity

Fix the first control to be us and the last control to be u f . Let D be an open
interval of the partition of the Hamiltonian values. Remember that the problem is
ming∈Gus ,u f (D),H∈D c(L(H), g), subject to d(L(H), g) = 0, where Gus ,u f (D) is a
finite set of tentative structures.

Since Lipschitz continuity is closed under the minimum operation, it suffices
to prove that for any g ∈ Gus ,u f (D), both the distance function d(L(H), g) and
cost function c(L(H), g) are Lipschitz continuous with respect to H ∈ D for any
g ∈ Gus ,u f (D).

4.1 Lipschitz Continuity of d(L(H), g) and c(L(H), g)

Let g = (u, s) ∈ Gus ,u f (D) be a tentative structure, where the length of u is n. We
first consider the cost function c(L(H), g), which depends on the durations of each
control and switch cost. Since the number of controls is n, the switch cost will not
change and hence we focus on durations. Let ti (H) be the duration for the i th control
ui with respect to H . Since c(L(H), g) is just a summation of all ti , we only need
to argue that each ti (H) is Lipschitz continuous.

Next, we consider the distance function d(L(H), g). For control ui and its cor-
responding sub-trajectory, we use di to denote the length of the sub-trajectory pro-
jection onto the control line. The distance function d(L(H), g) can be rewritten as
|q L

s,x + ∑n
i=1 di − q L

f,x |. It suffices to show that each di (H) and the mapping TL is
Lipschitz continuous.
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Durations ti (H) and projections di (H), 1 < i < n are easier to analyze, since
they depend on H directly. However, durations t1(H) and tn(H) depend on H , initial
configuration q L

s , and final configuration q L
f in the control line frame. Hence, t1(H)

and tn(H) depend on H not only directly but also indirectly through q L
s and q L

f .
Similarly, d1(H) and dn(H) also depend on H directly and indirectly. The analysis
of t1(H), tn(H), d1(H), and dn(H) should be separated from the analysis of ti (H)

and di (H), 1 < i < n. Due to space limitations, we only show the analysis of ti (H)

and di (H), 1 < i < n.

Analysis of t i (H) and di (H), 1 < i < n.

Theorem 4 Let D = (a, b) be an open interval of the partition of the Hamiltonian
values. Let g = (u, s) ∈ Gus ,u f (D) be a tentative structure with n actions. Let ti (H)

be the duration for the ui and di (H) be the length of projection of the sub-trajectory
corresponding to ui onto the control line. For any δ,0 < δ < (b−a)/2, both functions
ti (H) and di (H) are Lipschitz continuous with respect to H ∈ (a + δ, b − δ) for all
1 < i < n.

Proof The duration ti (H) and length di (H) are fully determined by ui−1, ui , ui+1,
and H . Let q L

i be the configuration in the control line frame at which the trajectory
switches control from ui−1 to ui . Let q L

i+1 be the configuration in the control line
frame at which the trajectory switches control from ui to ui+1. Here, we use a result
from [10] that there exists a point pi = p(ui−1, ui ) rigidly attached to the robot,
such that pi will lie on the control line when the robot is at q L

i . Similarly, when the
robot is at q L

i+1 and switches from ui to ui+1, there exists a point pi+1 = p(ui , ui+1)

attached to the robot such that pi+1 is on the control line.
We introduce some notation for the remainder of the proof. Let Z L = (Z L

x , 0)
be the location of pi attached to the robot at q L

i , which is on the control line. Let
SL = (SL

x , SL
y ) be the location of pi+1 attached to the robot at q L

i . Let ŜL = (ŜL
x , 0)

be the location of pi+1 attached to the robot at q L
i+1. By considering the position of

SL we can determine the ti and di .

Depending on whether ui is a translation or not, there are two cases:

ui is a translation. Let vi be the velocity of ui . By Theorem 1, the magnitude of the
projection of the velocity onto the control line is H . Consequently, the magnitude

of velocity in the y-coordinate in the control line frame is vL
y =

√
v2i − H2. The

duration of ti can be computed as SL
y /v

L
y . Consequently, the length of the projection

of the trajectory onto the control line, di (H), can be computed as ti H . Hence, it
suffices to prove ti is Lipschitz continuous (Fig. 5).

The control ui−1 must be a rotation, since if ui−1 is a translation, then ui and
ui−1 have the same Hamiltonian value along the sub-trajectory corresponding to ui

and the trajectory is a singular trajectory. Let RL = (RL
x , RL

y ) be the location of the
rotation center of control ui−1. Let lSZ be the distance between SL and Z L . Let θ
be the angle rotating from vector Z L SL to vector Z L RL counterclockwise. Since
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Fig. 5 Illustration of proof
of Theorem 4: ui is a
translation

RL

ZL

SL

ŜL

θ
θ1

the mutual distance among SL , RL and Z L is independent from H , lRZ and θ are
independent from H .

Let θ1 be the angle between segment SL ŜL and the control line; the value of θ1
is acos(H/vi ). Furthermore, it can be shown that the line Z L RL is perpendicular to
the line SL ŜL [10]. By geometric reasoning, SL

y can be computed as lSZ cos(θ −
acos(H/vi )) = (lSZ/vi )(H cos θ +

√
v2i − H2 sin θ). Hence,

ti = SL
y

vL
y

= lSZ

vi

⎛

⎝sin θ + H cos θ
√
v2i − H2

⎞

⎠ .

We know a differentiable function is Lipschitz continuous if, and only if, this
function has a bounded first derivative.

∂ti
∂H

=
(

vi lSZ cos θ

(v2i − H2)1.5

)

When H ∈ (a+δ, b−δ) and H < vi , the derivative of ti (H) and di (H) are bounded.

ui is a rotation. Let RL = (RL
x , RL

y ) be the location of the rotation center of control

ui and let RL⊥ = (RL
x , 0) be the projection of RL on the control line. We want

to compute the angle, ϕ0, between the control line to the vector RL SL , and the
angle ϕ1, between the control line to the vector RL ŜL ; these angles are measured in
counterclockwise direction. The duration ti (H) can be computed as (ϕ1 − ϕ0)/ωi ,
where the subtraction wrapping around 2π and the result has the same sign as ωi . Let
r be the distance between the reference point of the robot and RL when robot is at
q L

i . The projection of the trajectory on the control line, di (H), can be computed as
r(cosϕ1 −cosϕ0). Thus, it suffices to show that ϕ0 and ϕ1 are Lipschitz continuous
with respect to H (Fig. 6).

Let lRZ be the distance between RL and Z L and let lRS be the distance between RL

and SL . Let θ be the angle rotating from vector RL Z L to RL SL counterclockwise.
Note that θ, lRZ , and lRS are independent from H .
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Fig. 6 Illustration of proof
of Theorem 4: ui is a
rotation, ωi−1 > ωi , and
ωi+1 > ωi

RL

RL
⊥ZL

SL

ŜL

θ
θ1 θ2

Let θ1 be the angle between the segment RL Z L and RL RL⊥, which equals
acos(H/(lRZωi )). Let θ2 be the angle between the segment RL ŜL and RL RL⊥, which
equals acos(H/(lRSωi )). Let ωi−1 and ωi+1 be the angular velocity of ui−1 and ui+1
respectively. Based on θ1 and θ2, we can compute ϕ0 and ϕ1 as follows:

ϕ0 ϕ1

ωi > 0 Z L
x ≤ RL

x 3π/2 − θ1 + θ ŜL
x ≥ RL

x 3π/2 + θ2
ωi > 0 Z L

x > RL
x 3π/2 + θ1 + θ ŜL

x < RL
x 3π/2 − θ2

ωi < 0 Z L
x > RL

x π/2 − θ1 + θ ŜL
x < RL

x π/2 + θ2
ωi < 0 Z L

x ≤ RL
x π/2 + θ1 + θ ŜL

x ≥ RL
x π/2 − θ2

Thus, we have

∣
∣∣∣
∂ϕ0

∂H

∣
∣∣∣ ≤

(
(lRZωi )

2 − H2
)−0.5

and

∣
∣∣∣
∂ϕ1

∂H

∣
∣∣∣ ≤

(
(lRSωi )

2 − H2
)−0.5

.

Consequently,

∣∣
∣∣
∂ti
∂H

∣∣
∣∣ ≤

(
(lRZωi )

2 − H2
)−0.5 + (

(lRSωi )
2 − H2

)−0.5

|ωi | .

∣
∣∣∣
∂di

∂H

∣
∣∣∣ ≤ r

lRZ |ωi |

(

| sin θ1| +
∣
∣∣∣∣

H cos θ1√
(lRZωi )2 − H2

∣
∣∣∣∣

)

+ r

lRS|ωi |

(

| sin θ2| +
∣∣∣
∣∣

H cos θ2√
(lRSωi )2 − H2

∣∣∣
∣∣

)

When H ∈ (a+δ, b−δ), H is smaller than |lRZωi | and |lRSωi |, and the derivatives
of ti (H) and di (H) are bounded.
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5 Implemetation

We implemented the algorithm described in C++. Our testing environment is a desk-
top system with an Intel Xeon W3550 3.07 GHz CPU.

In the costly-switch model, we used three test cases. First, we used the bench
mover’s problem proposed in [13] as one test case. We compare our program’s result
with the result of analytical solver. Except for some cases in which the Hamiltonian
value is close to the upper bound (forwhichnumerical instability becomes aproblem),
our results coincide with the result of exact solver.

We used the refrigerator-movers problem as the second test case; one approxi-
mately optimal trajectory is shown in Fig. 1. Third, we used omni-directional vehicle
as a test case; one approximately optimal trajectory is show in Fig. 2b.

In the cost-free-switch model, we compared our program with the exact solver
proposed in [29], which determines optimal trajectories for the omni-directional
vehicle analytically. Although our program is a general solver that can solve all
problems of finding optimal trajectory for rigid bodies in the plane, our program is
only about ten times slower; one approximately optimal trajectory is show in Fig. 2a.

6 Conclusion and Future Work

By adding a cost for switching between controls, we ensure existence of solutions for
optimal control problems that do not involve chattering. By applying Blatt’s Indiffer-
ence Principle and Lipschitzian optimization approach, we can find approximately
optimal trajectories and the error can be forced to be arbitrarily small.

The most exciting area of future work is to explore the application of BIP to
systems other than rigid bodies in the plane. It is particularly interesting that optimal
trajectories with costly switches exist even in the presence of obstacles.

There are at least two challenges in applying a BIP-based approach to finding opti-
mal trajectories. The first challenge is that the potential number of optimal trajectory
structures can be huge in the costly-switch model. In the costly-switch model, an
algorithmmight potentially need to explore a number of structures that is exponential
in the number of controls in order to find solutions. For example, in order to find
approximately optimal trajectories for omni-directional vehicle, whose control set
contains fourteen controls, it takes about an hour to find an approximately optimal
trajectory for an initial configuration and goal configuration.

The second challenge is numerical instability. When the Hamiltonian value of
optimal trajectories is close to the boundary of the open interval in the partition
of the Hamiltonian values, the Lipschitz constant for the duration function may
be very large. Consequently, the numerical error in the computation also increases
significantly and is inherently unstable. This is an issue for our solver in the costly-
switch model and in the cost-free-switch model as well.
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Maximum-Reward Motion in a Stochastic
Environment: The Nonequilibrium Statistical
Mechanics Perspective

Fangchang Ma and Sertac Karaman

Abstract We consider the problem of computing the maximum-reward motion in a
reward field in an online setting. We assume that the robot has a limited perception
range, and it discovers the reward field on the fly. We analyze the performance of a
simple, practical lattice-based algorithm with respect to the perception range. Our
main result is that, with very little perception range, the robot can collect as much
reward as if it could see the whole reward field, under certain assumptions. Along
the way, we establish novel connections between this class of problems and certain
fundamental problems of nonequilibrium statistical mechanics. We demonstrate our
results in simulation examples.

Keywords Motion planning · Stochastic environments · Nonequilibrium statistical
mechanics

1 Introduction

Nonequilibrium statistical mechanics is a branch of physics that studies systems
operating at out-of-equilibrium states [1–3]. Although the ideas originated in the
physics literature, the theory has profound applications that lie well outside the
domain of physics, such as biology [3, 4], stock markets [5], and highway traffic [6,
7]. Arguably, it is for this reason that developing a fundamental and comprehensive
understanding of nonequilibrium statistical mechanics is considered to be one of the
grand challenges in our time, both by the U.S. Department of Energy [8, 9] and the
U.S. National Academy of Sciences [10].

In this paper, we point out novel connections between the fundamental problems of
nonequilibrium statistical mechanics and a large class of robot motion planning and
control problems. With the help of these connections, we design practical algorithms
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Fig. 1 An environmental
monitoring system, where
the blue cylinders are sensing
devices and the vehicle tries
to collect as much data from
them as possible

with provable performance guarantees for planning problems involving agile robots
operating in stochastic environments. In what follows, we briefly introduce this class
of problems and list our contributions.

We consider a large class of problems involving a robotic vehicle navigating in
a stochastic reward field to collect maximal reward. Let us motivate these prob-
lems with an example. Consider an environmental monitoring system, where mobile
robotic vehicles and stationary sensing devices work together to collect valuable
information about the state of the environment, as in Fig. 1. Imagine small sensing
devices that house primitive sensors, for example, for seismic, acoustic, or magnetic
measurements. Along with sensing, these devices include communication equipment
and (primitive) computational platforms. Suppose these sensing devices are deployed
throughout the environment for persistent monitoring purposes. Rather than attempt-
ing to form an ad-hoc network, we envision a mobile data-harvesting vehicle that
traverses the environment, discovers the sensing devices on the fly, and approaches
them to harvest their data.1

The robot may not know the precise positions of the sensing devices a priori.
Instead, sensors are discovered on the fly, and the robot makes small corrections
in its trajectory to collect as much information as possible. Clearly, the amount of
information that can possibly be collected depends on the agility of the robot (its
actuation capabilities) as well as its perception range (how soon it can discover
the sensors). In this setting, we consider the following fundamental problems: How

1Ad-hoc sensor networks may also be very valuable for environmental monitoring. In fact, such
technologies have been developed over past years. We note that the presented approach is for
motivational purposes. Yet, it may be beneficial over the ad-hoc network approach due to substantial
energy savings at the stationary sensors (as communication requirement is much lower); hence, the
sensor nodes require less maintenance. The main drawbacks are additional complexity of a mobile
vehicle, and communication delay due to the mobile vehicles physically carrying the data.
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quickly can the mobile robots harvest the data from the field, given their perception,
actuation, and computation capabilities? What are the planning algorithms that
achieve the optimal performance?

Let us note that similar problems [11] arise in a large class of applications, includ-
ing spy planes taking pictures of unexpected enemies, and rescue vessels saving lives
after disasters, where target locations are discovered on the fly. To generalize, we
consider a robot that is traversing a stochastic “reward field”, where the precise
value of the reward is discovered on the fly. Given the statistics of the reward, we
aim to answer fundamental questions regarding the optimal performance that can be
achieved.

We answer some of the aforementioned questions by establishing strong con-
nections between this class of problems and nonequilibrium statistical mechanics.
Roughly speaking, we view the robot as a particle traveling in a stochastic field. This
perspective allows us to directly apply some of the recent results from mathematical
physics to characterize various properties of agile robotics.

Designing planning algorithms for agile robots to avoid obstacles in cluttered
environments has long been a focus of robotics [12–14]. In contrast, planning problem
for collecting maximal reward in a stochastic environment has received relatively
little attention, although similar problems were considered in the operations research
literature (see, e.g., [15]).

The analysis in this paper is fundamentally different from these references, as
we utilize the mathematical foundations of nonequilibrium statistical mechanics.
The results we utilize were reported in the mathematical physics literature fairly
recently [16–22]. In fact, the connections we establish between mathematical physics
and this class of maximum-reward motion planning problems and algorithms may
be interesting on their own right, inspiring a novel class of analysis techniques and
practical algorithms with formal performance guarantees.

This paper is organized as follows. In Sect. 2, we provide a more precise problem
definition, and we discuss a set of algorithmic approaches that solve this problem in
Sect. 3. We devote Sect. 4 to a mathematically rigorous analysis of the proposed algo-
rithms. We lay out the connections with nonequilibrium statistical mechanics also in
this section. In Sect. 5, we provide the results of several computational experiments
that validate our theoretical results. Finally, we provide some concluding remarks in
Sect. 6.

2 An Online Reward-Collection Problem

We consider a mobile robotic vehicle that is tasked with visiting target locations. Due
to differential constraints, it is impossible to visit all targets. The robot’s mission is to
visit these target locations as best as possible, measured by the amount of “reward”
it collects per time unit during the course of the whole mission.

Targets are discovered on the fly, in the sense that the robot obtains the location
and reward information associated with that target only when it gets sufficiently close
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to a target location. Hence, the robot does not know a priori all of the tasks and the
reward associated with them. However, the statistics for the spatial distribution of
the target locations and their reward is known, for example from past experience. To
model this environment, we assume that the target locations and their rewards are
generated by a stochastic process. The robot operates in this stochastic environment.

We formalize this online motion planning problem as follows. Consider a mobile
robotic vehicle governed by the following ordinary differential equation:

ẋ(t) = f (x(t), u(t)) (1)

where x(t) ∈ X ⊂ R
n is the state and u(t) ∈ U ⊂ R

m is the control input. A state
trajectory x : [0, T ] → Y is said to be a dynamically-feasible trajectory, if there
exists u : [0, T ] → U such that u, x satisfy Eq. (1) for all t ∈ [0, T ].

Let R(·) denote the reward function, which associates each dynamically-feasible
trajectory, say x : [0, T ] → Y , with a reward denoted by R(x) ∈ R. The robot is
tasked with finding a motion (i.e., a dynamically-feasible trajectory) with maximal
reward.

The reward function is not known a priori, but is revealed to the robot in an online
manner. We formalize this aspect of the problem as follows. Let P(·) denote the
perception footprint of the robot that associates each state z ∈ X of the robot with
a footprint P(z) ⊂ X . When the robot is in state z ∈ X , it is able to observe only
the reward function associated with the partial trajectories within the set P(z). We
assume that the reward function does not vary with time, and that the statistics of
its distribution is known to the robot. The reward can only be collected once, so the
robot keeps exploring new regions.

This general setting represents a large class of reward-collection problems. In this
paper we study a special case that is more closely related to the motivational example
presented in the previous section. Let T ⊂ X be a discrete set of target locations.
Suppose each target z ∈ T is associated with a reward r(z), and the robot collects the
reward r(z) if it visits the state z. That is, given a trajectory x : [0, T ] → X , its reward
is R(x) := ∑

zi ∈Z r(z), where Z := {z ∈ T : x(t) = z for some t ∈ [0, T ]}. The
robot observes the locations and the rewards of all targets that fall within its perception
footprint, and collects the associated reward if it visits a particular target location.
It travels through this environment, discovering targets on the fly and adapting its
trajectory to maximize the total reward it gathers by visiting these targets.

3 Lattice-Based Motion Planning Algorithms

In such general setting, analytical solutions can be found only in some special cases.
Yet, there are efficient computational approaches, based on the proper discretization
of the set of all dynamically-feasible trajectories, that can achieve good performance.
Below, we outline such an algorithm.
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Lattice-based motion planning algorithms have long been successfully utilized in
robotics applications [23, 24]. Roughly speaking, these algorithms form a directed
lattice in the state space of the robot, and they select the best one among all paths
through this lattice. This task is often computationally efficient, which makes the
algorithm practical even in challenging problem instances. Below, we describe
lattice-based planning algorithms in our notation.

An infinite graph G = (V, E), where V is a countable set of vertices and E ⊂
V × V is a set of edges, is said to be a lattice, if the following are satisfied: (i) any
vertex is a state of the dynamical system described by Eq. (1), i.e., V ⊂ X , and
(ii) for any edge e = (v1, v2) ∈ E , there exists a dynamically feasible trajectory
xe : [0, Te] → X such that x(0) = v1 and x(Te) = v2.

A lattice-based receding-horizon motion planning algorithm works as follows.
Initially, the robot is at a state zinit ∈ V . For each iteration, the best path (e1, e2, . . . , ek)

through the “visible” part of the lattice is computed, and the robot follows the
dynamically-feasible trajectory xe1 : [0, Te1] → X that is associated with the first
edge on this path, denoted above by e1. Once the robot reaches the state v′ = xe1(Te1),
the same procedure is repeated with the part of the lattice that is visible to the robot.

We formalize this algorithm below by first introducing some notation and a couple
of sensing and actuation procedures that this algorithm utilizes. Let G = (V, E) be a
lattice for the robot governed by Eq. (1). Two edges e1 = (v1, v

′
1), e2 = (v2, v

′
2) ∈ E

are said to be connected if v′
1 = v2. A path through G is a sequence of edges,

denoted by π = (e1, e2, . . . , ek) such that ei ∈ E and ei and ei+1 are connected for
all i ∈ {1, 2, . . . , k − 1}. The i th edge on path π is denoted by π(i). The set of all
paths through G is denoted by Paths(G). Given a path p = (e1, e2, . . . , ek), let
xei : [0, Tei ] → X denote the dynamically feasible trajectory attached to the edge ei

in the lattice G = (V, E), and letTrajectory(p) denote the dynamically-feasible
trajectory formed by concatenating xei ’s, that is,Trajectory(p) is a dynamically-
feasible trajectory x p : [0, Tp] → X , where Tp = ∑k

i=1 Tei and x p(t) = xei (t −
∑i

j=1 Te j ) for all t ∈ [ ∑i
j=1 Te j ,

∑i+1
j=1 Te j

]
and all i ∈ {1, 2, . . . , k − 1}. Recall

that X is the state space of the robot. Given a subset P ⊂ X and a (potentially
infinite) graph G = (V, E), the projection of G on P is a new graph defined and
denoted as follows: Projection(G, P) := (VP , EP ), where VP = V ∩ P and
EP = E ∩ (VP × VP ).

Now, we define two procedures that allow the algorithm’s perception and actu-
ation. Let CurrentState() be a procedure that returns the current state of the
robot. Given a dynamically-feasible trajectory x : [0, T ] → X , let Execute(x)

denote the command that makes the robot follow the trajectory x .
Finally, we provide a formal description of the lattice-based receding-horizon

motion planning procedure in Algorithm 1. The algorithm first retrieves the robot’s
current state (Line 2). Subsequently, it computes the portion of the lattice that falls
within its sensor footprint (Line 3), and it then computes the optimal path through
this sub-lattice (Line 4). Finally, the robot takes the trajectory corresponding to the
first edge along the best path (Line 5), and it follows this path until it reaches the state
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(a) (b)

Fig. 2 The two-dimensional directed regular lattice, N2, is illustrated in Fig. a An example lattice
for a curvature constrained vehicle, also called the Dubins vehicle, is shown in Fig. b The latter
lattice can be embedded in N

2

that corresponds to the next vertex on the lattice (Line 6). This procedure continues
for N iterations (Lines 1–7).

1 for t = 1, . . . , N do
2 z ← CurrentState();
3 G P ← Projection(G,P(z));
4 π ← arg max{R(Trajectory(π) : π ∈ Paths(G P ))};
5 xfirst ← Trajectory(π(1));
6 Execute(xfirst);
7 end

Algorithm 1: Lattice-based receding-horizon online motion planning
This algorithm computes the maximum-reward path on a graph. Note that this

problem is NP-hard on a general graph [25]. However, for example, on acyclic graphs,
this problem can be solved efficiently [25]. In this paper, we focus on the analysis of
Algorithm 1 for acyclic lattices. This implies that, roughly speaking, the robot does
not return to a place it has been before, hence it constantly explores new regions in
the environment. An important acyclic graph is the d-dimensional directed regular
lattice Ld = (V, E), where V = N

d and (v, v′) ∈ E if v = (v1, v2, . . . , vd) and
v′ = (v1, v2, . . . , vk + 1, . . . , vn) for some k ∈ {1, 2, . . . , k}. The two-dimensional
directed lattice is illustrated in Fig. 2a. We say that a lattice G = (V, E) is embedded
in N

d if it is isomorphic to N
d . In Sect. 4.2, we pay special attention to the two-

dimensional lattice N
2. In Fig. 2b, we provide an example 2 dimensional lattice for

a non-holonomic vehicle.

4 Analysis of Online Motion Planning Algorithms

This section is devoted to the analysis of the lattice-based online planning algorithm.
This analysis sheds light on the relationship between the perception capabilities of
the robot and its performance. Specifically, we consider the following questions:
How much reward can the robot collect given a certain perception range? How does
this reward compare with the fundamental limit when the robot can observe the entire
reward field a priori and compute the best path?



Maximum-Reward Motion in a Stochastic Environment … 395

4.1 On Perception Range Versus Performance

Before presenting the main theoretical result of this section, let us provide some
notation. Let G = (V, E) be an acyclic graph with infinitely many vertices. Recall
that the set of all paths in G = (V, E) is denoted by Paths(G). Given a path
π ∈ Paths(G), let |π | denote the length of π measured by the number of vertices
that π visits. Let Π(vinit, n) denote the set of all paths that start from the vertex vinit
and cross at most n vertices. Suppose each vertex v ∈ V is associated with a reward
denoted by ρ(v). Let R(vinit, n) denote the total reward collected by following some
path that starts from vinit and crosses at most n vertices, i.e.,

R(vinit, n) = max
π∈Π(vinit,n)

∑

v∈π

ρ(v).

Note that R(vinit, n) is the maximum reward that the robot can collect in n steps if
it could see the whole environment, not the reward collected with limited percep-
tion range.

The perception range limitation allows the robot to observe the reward associated
with only a subset of the vertices. Let m be a number such that any vertex that can
be reached with a path of length m is within the perception range independently of
the starting vertex, i.e., m is such that, for all vinit ∈ V , any state in {v ∈ π : π ∈
Π(vinit, m)} is within the perception range of the robot when the robot is at state vinit .

Let Q(vinit, n; m) denote the reward that is achieved as follows. Let R1 denote
the reward that can be collected by a path that starts from vinit and has length m, i.e.,
R1 := R(vinit, m). Let v1 denote the vertex that the maximum-reward path (achieving
reward R1) ends at. Similarly, define Rk := R(vk−1, m), and let vk be the vertex that
path achieving reward Rk ends at. Finally, define

Q(vinit, n; m) :=
n/m∑

i=1

Ri

Compare this quantity with the reward that Algorithm 1 can achieve. Notice that
Algorithm 1 considers a larger set of paths each time it computes a maximum-reward
path through the observable part of the lattice. Moreover, Algorithm 1 computes a new
path right after the first edge along the path is executed. In contrast, the computation of
Q(vinit, n; m) considers only those paths that are of distance m, and moreover it only
computes a new path after the current one is fully executed. Given these observations,
we expect the reward achieved by Algorithm 1 to be at least Q(vinit, n; m). In other
words, Q(vinit, n; m) is a lower bound for the reward that Algorithm 1 can collect,
when measured in terms of suitable statistics, such as the expectation. Although
this statement can be properly formalized, we omit this formalism due to space
limitations.

Now we focus on the analysis of Q(vinit, n; m). In particular we compare
Q(vinit, n; m) and R(vinit, n). The former is the reward that the robot can collect
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with limited perception range m. The latter is the reward that the robot can collect if
it had infinite perception range. In what follows, the initial vertex vinit is fixed, and
it is the same for all results reported below. For simplicity, we drop vinit from our
notation, and we write Q(n; m) and R(n) in the sequel.

Our first result allows us to define the mean reward.

Proposition 1 The following holds:

lim
n→∞

E[R(n)]
n

= sup
n∈N

E[R(n)]
n

.

Proof The result follows directly from Fekete’s lemma [26], noting that the sequence
E[R(n)] is superadditive, hence −E[R(n)]/n is subadditive. �

Let’s define the mean reward per step as R∗ := limn→∞ E[R(n)]/n, which is
well defined by Proposition 1. We compare R∗ with Q(n; m)/n for suitable values
of m.

Theorem 1 Suppose R∗ is finite. Suppose that the rewards ρ(v) are independent
(but not necessarily identically distributed) and that they are uniformly almost-surely
bounded random variables, i.e., there exists some L such that P(|ρ(v)| ≤ L) = 1,
for all v ∈ V . Then, for any δ > 0, there exists a constant c such that

lim
n→∞P

( ∣∣∣∣
Q(n, c log n)

n
− R∗

∣∣∣∣ ≥ δ

)
= 0.

Roughly speaking, Theorem 1 implies that the robot can navigate to any vertex that
is at most n steps away almost optimally (as if it had infinite perception range), if its
perception range is at order log n. In other words, as the perception range increases,
the amount of distance that the robot can travel optimally increases exponentially
fast, as stated below.

Corollary 1 Suppose the assumptions of Theorem 1 hold. Then, for any δ > 0, there
exists some constant c such that

lim
m→∞P

( ∣∣∣
∣

Q(L(m), m)

L(m)
− R∗

∣∣∣
∣ ≥ δ

)
= 0,

where L(m) = ec m for some constant c that is independent of m (but depends on δ).

This corollary follows from Theorem 1 with a change of variables.
Before proving Theorem 1, we state an intermediate result that enables our proof.

This intermediate result is a concentration inequality, which plays a key role in
deriving many results in nonequilibrium statistical mechanics [20].
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Lemma 1 (See [20]) Let {Yi , i ∈ I} be a finite collection of independent random
variables that are bounded almost surely, i.e., P(|Yi | ≤ L) = 1 for all i ∈ I. Let C
be a collection of subsets of I with maximum cardinality R, i.e., maxC∈C |C | ≤ R
and let Z = maxC∈C

∑
i∈C Yi . Then for any u > 0,

P ( |Z − EZ | ≥ u) ≤ exp

(
− u2

64RL2 + 64

)
.

Finally, we present the proof for Theorem 1.

Proof (Theorem 1) Let I be the collection of nodes in the lattice. Define C =
{N (π), π ∈ Π}, where N (π) = {v ∈ π} is the set of nodes in the path π . Then,
for the maximum-reward path with at most n steps, the maximum cardinality is
maxC∈C |C | ≤ n. Then, by substituting R(n) for Z in Lemma 1,

P ( |R(n) − ER(n)| ≥ u) ≤ exp

(
− u2

64nL2 + 64

)
.

Therefore, for any δ = u
n > 0,

P

(∣
∣∣∣

Q(n, c log n)

n
− ER(n)

n

∣
∣∣∣ ≥ δ

)

= P

⎛

⎝
∣∣∣
∣

∑ n
m
i=1 Ri (m)

n
− ER(n)

n

∣∣∣
∣ ≥ δ

⎞

⎠

= P

⎛

⎝
∣∣∣∣

∑ n
m
i=1 Ri (m)

n
− ER(m)

m
+ ER(m)

m
− ER(n)

n

∣∣∣∣ ≥ δ

⎞

⎠ (2)

≤ P

⎛

⎝

⎧
⎨

⎩

∣∣∣∣

∑ n
m
i=1 Ri (m)

n
− ER(m)

m

∣∣∣∣ ≥ δ

2

⎞

⎠

⎫
⎬

⎭

⋃ {
ER(m)

m
− ER(n)

n

∣∣∣∣ ≥ δ

2

} )
,(3)

≤ P

⎛

⎝
∣∣∣∣

∑ n
m
i=1 Ri (m)

n
− ER(m)

m

∣∣∣∣ ≥ δ

2

⎞

⎠ + P

(
ER(m)

m
− ER(n)

n

∣∣∣∣ ≥ δ

2

)
(4)

= P

⎛

⎝

n
m∑

i=1

∣∣
∣∣Ri (m) − ER(m)

∣
∣ ≥ nδ

2

⎞

⎠ + P

(
ER(m)

m
− ER(n)

n

∣∣
∣∣ ≥ δ

2

)
. (5)

The inequality between line (2) and line (3) can be seen if we take the complements on

both sides, where {∣∣(
∑ n

m
i=1 Ri (m)

n − ER(m)
m )+(

ER(m)
m − ER(n)

n )
∣∣ < δ} ⊃ {∣∣

∑ n
m
i=1 Ri (m)

n −
ER(m)

m

∣∣ < δ
2 } ⋂{∣∣ER(m)

m − ER(n)
n

∣∣ < δ
2 }. Union bound is applied between line (3)

and line (4). Now we set m = c log n. Taking limit on both sides, we get
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lim
n→∞P

(∣∣
∣∣

Q(n, c log n)

n
− ER(n)

n

∣∣
∣∣ ≥ δ

)

≤ lim
n→∞P

⎛

⎝

n
m∑

i=1

∣∣∣∣Ri (m) − ER(m)

∣∣∣∣ ≥ nδ

2

⎞

⎠ + lim
n→∞P

(
ER(m)

m
− ER(n)

n

∣∣∣∣ ≥ δ

2

)

(6)

≤ lim
n→∞P

⎛

⎝

n
m∑

i=1

∣∣∣
∣Ri (m) − ER(m)

∣∣∣
∣ ≥ nδ

2

⎞

⎠ + 0 (7)

≤ lim
n→∞

n
m∑

i=1

P

(
|Ri (m) − ER(m)| ≥ mδ

2

)
(8)

≤ lim
n→∞

n

m
· exp

(

− (mδ
2 )2

64mL2 + 64

)

(9)

= lim
n→∞

1

c log n
· exp

((
1 − δ2

256L2 · c

)
log n + 64

)
. (10)

The first inequality comes from line (5). The inequality between line (6) and line (7)
is due to Proposition 1. As n increases, m → ∞, and thus both ER(m)

m and ER(n)
n

converge to the same constant R∗. Union bound is again applied between line (7) and
line (8). Lemma 1 is applied in line (9). Line (10) converges to 0 when the constant
c is sufficiently large, i.e., for any constant c ≥ 256L2

δ2 . �

Although the conclusion in Theorem 1 is exciting, it may be too restricted for
real-world applications, as it requires both independence among ρ(v) and the random
variables ρ(v) to be bounded almost surely. We propose a conjecture that generalizes
Theorem 1 by relaxing these assumptions. We believe that the reward collected by a
robot is arbitrarily close to optimal (as formalized by Theorem 1), even if the reward
is locally dependent (instead of independent) and the distribution of reward has light
tails (instead of being bounded). Local dependence refers to the case when ρ(v1) is
conditionally independent of all other rewards ρ(v2) given the local neighborhood
of v1, if v2 is not a neighbor.

Conjecture 1 Assume that the non-negative rewardρ(z)at each state z is distributed
with local dependence and that their distributions satisfy:

∫ ∞

0
(1 − F(x))1/ddx < ∞.

Then, for any δ > 0, there exists a constant c such that

lim
n→∞P

( ∣∣∣∣
Q(n, c log n)

n
− R∗

∣∣∣∣ ≥ δ

)
= 0.
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Notice that the assumptions of this conjecture are much weaker. We leave the
proof of this conjecture as a future work. The rationale behind this conjecture is
two-fold. Firstly, the relaxation on the boundedness of F is supported in a recent
text [16], where the sketch of the proof is given and the details are left as an exercise.
Secondly, the relaxation of the independence requirement is inspired by [17], where
the Hoeffding inequality for independent random variables can be extended to the
local dependent case with only slight modifications.

4.2 Special Case: Planning on the Directed Regular Lattice

The result in Theorem 1 includes two constants, namely the mean reward R∗ and
the constant c, the precise values of which are not known. In this section, we prove
various results to characterize these constants when the lattice G = (V, E) can be
embedded in N

d , particularly in the case when d = 2. Throughout this section, we
tacitly assume that G = (V, E) is embedded in N

d . Unless stated otherwise, our
results hold for all values of d satisfying d ≥ 2.

First, let us define some useful notation. The vertices of N
d are denoted by

w = (w1, w2, . . . , wd), where wk ∈ N. We define 
k w� := (
k w1�, 
k w2�, . . . ,

k wd�). Given a vertex w ∈ N

d , let T (w) denote the reward of the maximum reward
path that starts from the origin and reaches the vertex w. With a slight abuse of nota-
tion let Π(w) denote the set of all paths that start from the origin and end at the
vertex v. Then,

T (w) := max
π∈Π(w)

∑

w′∈π

ρ(w′).

On Almost-sure Convergence of the Reward: Let us point out an existing result
that shows the convergence result in Proposition 1 can be improved.

Proposition 2 (See Proposition 2.1 in [21]) Assume E[ρ(w)] < ∞. Define

g(w) := sup
k∈N

E[T (
k w�)]
k

.

Then, T (
n w�)
n converges to g(w) almost surely as n diverges to infinity, i.e.,

P

(
lim

n→∞
T (
n w�)

n
= g(w)

)
= 1

This result implies that R∗ is finite and that R(n)/n converges to R∗ as n → ∞,
almost surely.
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On Mean Reward: Suppose the dimensionality of the lattice is two, i.e., d = 2. Let
F denote the distribution for i.i.d. random variables ρ(w). Then, the results in [21]
imply that there are two cases for which R∗ can be computed exactly, namely when
F is an exponential distribution or a geometric distribution. More specifically, if F
is the exponential distribution with parameter λ = 1, then

g
(
(x, y)

) = (√
x + √

y
)2

, for all (x, y) ∈ N
2. (11)

On the other hand, if F is the geometric distribution with parameter p, then

g
(
(x, y)

) = x + 2
√

xy(1 − p) + y

p
, for all (x, y) ∈ N

2.

According to a recent survey paper [22], Timo Sepplinen conjectured that the function
for general distributions F with mean μ and variance σ 2 is

g
(
(x, y)

) = μ(x + y) + 2
√

σ 2xy, for all (x, y) ∈ N
2.

It is noted that a rigorous proof is beyond the reach of the mathematical statistical
physics community at this stage. However, if this conjecture holds, it has an important
implication for the problem considered in this paper. By the definition of R(n) and
Proposition 2, the reward per step, R(n)/n converges to μ + σ as the distance that
the vehicle travels increases to infinity, almost surely, i.e..

P

(
lim

n→∞
R(n)

n
= μ + σ

)
= 1.

under mild technical assumptions. Hence, in this case, R∗ = μ + σ . Simulation
results supporting this conjecture are shown in the next section.

On the Fluctuations of the Reward: Now, we shift our attention to the constant c in
the statement of Theorem 1. Recall that this constant is independent of n; however,
it depends on δ. We characterize how this constant depends on δ by employing
results from the nonequilibrium statistical mechanics literature. This investigation is
possible by utilizing more accurate characterizations of the function T (·). It is shown
in [19] that, for the aforementioned two cases,

T
(
(
xn�, 
yn�) ) − n g

(
(x, y)

)

n
1
3

→ F2

as n goes to infinity, where F2 is the Tracy-Widom distribution.
In this case, we find that c = κ δ3/2 for some constant κ that is independent of δ

and n, as stated below.
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Theorem 2 Suppose the lattice G = (V, E) is embedded in N
2 and ρ(w) are inde-

pendent identically distributed random variables. Suppose their common distribution
is either the exponential distribution or geometric distribution. Then,

lim
m→∞P

( ∣∣∣
∣

Q(L(m); m)

L(m)
− R∗

∣∣∣
∣ ≥ δ

)
= 0,

where L(m) = exp(κ δ3/2 m), for some constant κ > 0 independent of m and δ.

Before proving the theorem, let us compare it with Corollary 1. While Corol-
lary 1 characterizes the reward with respect to perception range m, Theorem 2 also
identifies its dependence on the error term δ. A natural conjecture is that the result
of Theorem 2 holds for any distribution with finite variance. In the next section, we
present simulation results that support this conjecture.

The proof of Theorem 2 is similar to that of Theorem 1. We omit the full proof;
but we outline the main differences.

Proof Let T W be a random variable with the Tracy-Widom distribution. Then, the
results in [19] imply the following: For all u ≥ 0,

P (T W ≥ u) = lim
n→∞P

(
R(n) − n R∗

n1/3 ≥ u

)

= lim
n→∞P

(
n2/3 (R(n)/n − R∗) ≥ u

)

= lim
n→∞P

( (
R(n)

n
− R∗

)
≥ u n−2/3

)

Define δ := u n−2/3. Hence, u = δ n2/3. It was showed very recently [27] that the
right tail of the Tracy-Widom distribution F2 can be characterized as follows:

lim
u→∞P (T W ≥ u) = α exp

(
−4

3
u3/2

)
.

Combining this with the previous equality, we obtain:

lim
n→∞P

(
R(n)

n
− R∗ ≥ δ

)
= α exp

(
−4

3

(
δ n2/3

)3/2
)

= α exp

(
−4

3
δ3/2 n

)
.

The rest of the proof follows the proof of Theorem 1. �
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5 Computational Experiments

In this section we provide simulations to support our analysis. There are two major
results. The first simulation shows how the speed of reward collection converges as
the distance n that the vehicle travels increases. The second simulation visualizes
how the expected distance that the robot can travel without losing too much reward
changes, as we increase the perception range.

5.1 Mean of Reward per Step

According to Eq. (11), when F is an exponential distribution with λ = 1, the limit of
reward per step is known. In this experiment, we create a 2-dimensional matrix where
each element w = (x, y) inside the matrix corresponds to the reward ρ(w). The i.i.d.
random variables ρ(w) follow an exponential distribution with mean 1. We find the
maximal reward T (z), from the origin to a set of locations {z = (x, y)|x + y = n},
using dynamic programming. This process is repeated 1000 times to compute the
empirical average. The result is shown in Fig. 3. A similar result can also be found
for the geometric distribution.

Recall the conjecture that g(x, y) = μ(x + y) + 2
√

σ 2xy, which implies that
R(n)

n → μ + σ almost surely as n → ∞. As mentioned earlier, a rigorous proof is
not known yet, but we show some simulation examples that support this conjecture.
We set up an experiment which is very similar to the previous one, except that the
distribution F of the random variables ρ(w) is a Poisson distribution with λ = 0.05.
The Poisson distribution is interesting because it is closely related with the example
we provide in Sect. 1, when the sensing devices are dispersed according to a Poisson
distribution.

Fig. 3 This plot shows the
relationship between the
reward per step,
T (x, n − x)/n, and the
x-coordinate of the final
destination of the robot. It
verifies that the lemma
g(x, y) = (

√
x + √

y)2 for
exponential distribution is
correct
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Fig. 4 This plot shows the
relationship between the
reward per step, R(n)

n , and the
travel distance n, for Poisson
distribution with λ = 0.05. It
supports the conjecture that
R(n)

n → μ + σ as n → ∞
for general distributions
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In Fig. 4, we plot the relationship between R(n)
n and n. In this scenario, μ + σ =

λ+√
λ = 0.05+√

0.05 = 0.2736. From the graph we can see that R(n)
n is converging

towards this value.

5.2 Receding Horizon

In Sect. 4.2 we have shown that with a perception range of m = O(log n), the
robot will be able to collect almost as many rewards as the optimal case (with full
information). Based on Theorem 2, we claim that for any fixed δ > 0, if we know
that the optimal reward per step is R∗, and we if would like to keep a reward per step
of no less than R∗ − δ with a fixed perception range m, then the expected maximal
travel distance of the robot is of order L(m) = exp(κ · δ1.5 · m) for some constant
κ > 0 that depends only on the distribution F .

Consider the following computational experiment. Suppose the robot is running
Algorithm 1 with a lattice that is embedded in N

2. We run this simulation until the
reward per step falls below R∗ − δ, and we measure the distance that the robot
has travelled before the simulation stops. We repeat this experiment 1000 times
on different realizations of the random variables. We average the distance that the
robot travels to compute an empirical average. In Fig. 5, we show the relationship
between the distance that the robot travels and the perception range m for geometric
distribution with p = 0.5 and and different values of δ.

The simulation results show that this distance increases exponentially, in fact
obeying the order exp(κ δ1.5 m), where κ is around 0.4 in this case. These simulation
results support the result of Theorem 2.
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Fig. 5 This plot shows the relationship between the distance a robot can travel (with reward per
step no less than R∗ −δ for geometric distribution with p = 0.5) and different values of δ. Note that
the y-axis is semi-log, which indicates that as perception range increases, the distance a robot can
travel without too much loss in reward increases exponentially. The red line is an approximation of
the real data. Notice that the exponent is around 0.4 · δ1.5, which supports Theorem 2

6 Conclusions

We analyze the maximum-reward paths computed by a simple, practical receding-
horizon online motion planning algorithm. In particular, we show that the distance
that the robot can travel almost optimally increases exponentially fast with increasing
perception range. We also characterize the exponent in terms of the error term. Along
the way, we establish novel connections between a class of path planning problems
and certain fundamental problems of non-equilibrium statistical mechanics, which
may be interesting on their own right.
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Future work includes the construction of a rigorous proof for the main conjecture
of the paper (given in Conjecture 1). We will study how the maximum reward scales
with other perception capabilities, such as perception uncertainty, as well as with the
actuation and on-board computation capabilities of the robot.
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Optimal Path Planning in Cooperative
Heterogeneous Multi-robot Delivery Systems

Neil Mathew, Stephen L. Smith and Steven L. Waslander

Abstract This paper addresses a team of cooperating vehicles performing
autonomous deliveries in urban environments. The cooperating team comprises two
vehicles with complementary capabilities, a truck restricted to travel along a street
network, and a quadrotor micro-aerial vehicle of capacity one that can be deployed
from the truck to perform deliveries. The problem is formulated as an optimal path
planning problem on a graph and the goal is to find the shortest cooperative route
enabling the quadrotor to deliver items at all requested locations. The problem is
shown to be NP-hard using a reduction from the Travelling Salesman Problem and
an algorithmic solution is proposed using a graph transformation to the Generalized
Travelling Salesman Problem, which can be solved using existing methods. Simula-
tion results compare the performance of the presented algorithms and demonstrate
examples of delivery route computations over real urban street maps.

1 Introduction

An emerging application for micro-aerial vehicles, such as quadrotors, is in
performing autonomous deliveries in urban environments. A number of large retail-
ers have recently announced plans to deploy quadrotors for expedited small package
deliveries. While quadrotors have the potential to significantly enhance the speed
of deliveries in urban environments as well as the distribution of supplies or aid
in inaccessible regions, a number of issues such as safety, security and endurance,
still need to be addressed. Current quadrotor systems are limited by small payload
capacities and short operating ranges that severely restrict the extent and efficiency of
an autonomous delivery network. Further, current safety regulations usually restrict
commercial drone flights to only within line-of-sight of an operator.

In this paper we propose to overcome these limitations by introducing a hetero-
geneous delivery team of two cooperating vehicles: a carrier truck and a carried
quadrotor. The role of the truck is to carry a shipment of packages to be delivered,
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as well as a docked quadrotor, and the role of the quadrotor is to carry individual
packages from the truck to specific delivery points in the environment. By requiring
the quadrotor to perform only the last leg of the delivery, both range and line-of-sight
limitations are accounted for.

We will assume that the quadrotor has a payload capacity of one package and
hence must return to the truck after each delivery. We also assume that the truck is
capable of recharging the quadrotor after each delivery and that it has an operating
range sufficient for the entire delivery mission. The goal of this paper is to propose a
framework to compute a minimum cost cooperative route enabling the quadrotor to
visit all delivery points in the environment. To this end, we will abstract the problem
on a graph and formulate the Heterogeneous Delivery Problem (HDP) as a discrete
optimal path planning problem. Solutions consist of routes, computed for the truck
and the quadrotor through the graph, that minimise the total cost of deliveries.

Related Work: The HDP belongs to a class of problems referred to as Carrier-
Vehicle Travelling Salesman Problems (CV-TSP), extensively studied by Garone
et al. [1] in the context of a marine carrier and an aircraft visiting a set of locations
to conduct a rescue mission in a planar environment. They formulate a continuous
optimization and compute a solution using a sub-optimal heuristic to split the problem
into two tractable subproblems: first, a TSP to compute the optimal visit order and
second, a convex optimization to compute the specific deployment points for the team
in Euclidean space. In contrast, given the discrete nature of our HDP, we will be able
to design a single optimization that computes cooperative paths for both vehicles.

Cooperative control in heterogeneous multi-robot teams has been investigated
for applications like search and rescue, surveillance, and exploration, [2–4], where
robots with complimentary capabilities must accomplish a common goal. The most
relevant are collaborative UAV-UGV teams where UAVs can rendezvous and dock
withUGVs to benefit from the larger payload capacity and energy resources of UGVs
[5, 6]. One of the main challenges with heterogeneous systems is the development
of cooperative planning algorithms to achieve a desired objective. Rathinam et al.
explore optimal path planning in heterogeneous teams using variants of theTravelling
Salesman Problem (TSP) and the Generalized Travelling Salesman Problem (GTSP)
[7, 8] which are well studied problems in operations research literature and can be
solved using a number of exact, approximate or heuristic algorithms. In this work we
use theNoon-BeanTransformation [9] to cast theGTSP as anAsymmetric Travelling
Salesman Problem (ATSP) and solve it using the Lin-Kernighan-Helsgaun (LKH)
heuristic solver [10]. Finally, we will draw from existing literature on vehicle routing
and pick-up delivery problems [11–13] to inform our work.

Contributions: The contributions of this paper are threefold. First, we formulate
the HDP as a novel adaptation of a carrier-vehicle system in a discrete environment.
Second, we prove NP-hardness of the HDP and present a solution based on an
efficient reduction to the GTSP. Finally, we examine a special case of the HDP
consisting of a single vehicle and multiple static warehouses, called the Multiple
Warehouse Delivery Problem (MWDP). We present two algorithms for the MWDP,
one, using an alternative transformation to the TSP and the other, a polynomial time
exact algorithm to compute an optimal delivery route.
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The organization of the paper is as follows. Section2 formulates the HDP as
an optimal path planning problem in a discrete environment. In Sect. 3, the HDP
is proved to be NP-hard. Section4 presents the transformation to the GTSP imple-
mented to solve theHDP. Section5 presents two algorithmic solutions for theMWDP
and finally, Sect. 6 compares and benchmarks all proposed algorithms through sim-
ulation results.

1.1 Definitions and Nomenclature

A graph is denoted by G = (V, E, c), where V is the set of vertices, E is the set of
edges and c : E → R is a function that assigns a cost to each edge in E . In a directed
graph, each edge is an ordered pair of vertices (vi , v j ) and is assigned a direction
from vi to v j . A partitioned graph, G, is a graph with a partition of its vertex set into
� mutually exclusive sets (V1, . . . , V�) where ∪�

i=1Vi = V .
A route over a graph is a sequence of vertices P = (v1, . . . , vk) linked by edges

(vi , vi+1), i = 1, . . . , k − 1. Following [14], a walk is a route such that no edge is
traversedmore than once. A path is a routewhere vi �= v j for all i, j ∈ {1, . . . , k−1}.
A closed route is a route of any type (e.g. route, walk, path) where v1 = vk . A tour
is closed path that visits all vertices in V exactly once.

Given a complete graph G = (V, E, c), the Travelling Salesman Problem (TSP)
computes a minimum cost tour of G. Given a partitioned complete graph G =
(V, E, c), with a vertex partition (V1, . . . , V�), the Generalized Travelling Salesman
Problem (GTSP) computes a minimum cost closed path, P , that visits exactly one
vertex in each vertex set Vi ⊂ V , i ∈ {1, . . . , �}.

2 The Heterogeneous Delivery Problem (HDP)

The HDP is abstracted on a directed graph G that represents the physical locations
of the delivery points, the location of a warehouse and a set of drivable routes on a
street network. An example HDP graph is shown in Fig. 1. The graph G contains the
locations of n delivery vertices, denoted by di , in set Vd (red vertices in Fig. 1), m
street vertices, denoted by wi , in set Vw (blue vertices in Fig. 1), and a warehouse
vertex, w0, where the truck and quadrotor are initially located. The vertices, edges
and costs of G are defined as follows:

Vertices: The vertex set V is defined as a union of three mutually exclusive subsets
V = V0 ∪ Vw ∪ Vd where V0 = {w0}, |Vd | = n, and |Vw| = m.

Edges: The edge set, E , is a unionof twomutually exclusive subsets, E = Ew∪Ed .
The set Ew contains directed street edges of the form (wi , w j ), that represent shortest
routes between street vertices for all wi , w j ∈ Vw. The set Ed contains pairs of
bidirectional flight edges of the form (wi , d j ) and (d j , wi ), for all wi ∈ Vw and
d j ∈ Vd , if wi is a viable deployment vertex to reach delivery point d j . These flight
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Fig. 1 The heterogeneous
delivery problem. The street
edges (solid lines) are shown
as either single or double
arrows, that represent pairs
of directed edges. All flight
edges (dashed lines) are
bidirectional edges between
vertices

edges would have to be computed prior to the first deployment, taking into account
the range and line-of-sight constraints. We define the set Wdi ⊂ Vw to be the set of
viable deployment vertices for each delivery point, di .

Edge Costs: For full generality, we define three types of edge costs for the truck-
quadrotor team. A flight edge in Ed can be traversed only by a quadrotor between a
street vertex, wi , and a delivery vertex, d j . A street edge in Ew may be traversed by
the truck, either carrying the quadrotor or travelling alone. Thus we define a triple
of costs C = (cq , ct , ctq) where cq : Ed → R≥0, assigns a quadrotor travel cost to
flight edges in Ed , ct : Ew → R≥0 assigns a truck travel cost to street edges in Ew,
and ctq : Ew → R≥0 assigns a docked truck-quadrotor travel cost on street edges
in Ew.

We extend the definition of a graph from Sect. 1.1 to G = (V, E, C), where C is
a triple of costs, and formulate the HDP, on G, as the problem of computing two
routes, for the truck and quadrotor, both starting and ending at vertexw0, such that the
truck, travelling on street edges, stops at a sequence of deployment points wi ∈ Vw

at which the quadrotor can take-off, visit a delivery point, di ∈ Vd and return to the
truck before the next deployment. The goal is for the quadrotor to visit all n delivery
points and minimize the total delivery cost of the mission.

Let the quadrotor’s route be a closed walk Pq along a sequence of unique edges
Eq ⊂ E and let the truck’s route be a tour Pt , with a sequence of edges Et ⊂ E .
Routes Pq and Pt share vertices at which the truck and quadrotor meet and share
edges during docked travel. The HDP can be formalized as follows.

Problem 1 (Heterogeneous Delivery Problem) Given G = (V, E, C), where V =
V0 ∪ Vw ∪ Vd , E = Ed ∪ Ew and C = (ct , cq , ctq), compute a closed walk Pq and a
closed path Pt that start and end at w0, such that (i) Pq visits each di ∈ Vd exactly
once; (ii) Pt is a sequence of deployment vertices that visits each unique wi ∈ Pq

exactly once, and in the order defined by the first visit to each wi in Pq ; and (iii) The
routes collectively minimize

∑

e∈Eq\Et

cq(e) +
∑

e∈Et \Eq

ct (e) +
∑

e∈Eq∩Et

ctq(e). (1)
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3 Proof of NP-Hardness

To prove NP-hardness of the HDP, we will show that (i) an instance of the TSP can
be reduced to an instance of the HDP, and (ii) an optimal HDP solution can be used
to generate an optimal TSP solution.

Theorem 1 The Heterogeneous Delivery problem is NP-hard.

Proof Let G ′ = (V ′, E ′, c′), with |V ′| = n, be an input to the TSP. To prove (i),
we give a polynomial-time transformation of G ′ into an input G = (V, E, C) of the
HDP as shown in Fig. 2.

The HDP is constructed such that each delivery vertex, di ∈ Vd corresponds to a
vertex vi ∈ V ′, and has only one unique viable street deployment vertexw j ∈ Wdi ⊂
Vw. Thus, construct the vertex set V = V0 ∪ Vd ∪ Vw, where |Vd | = n, |Vw| = n
and V0 contains an additional start vertex w0.

Now for each edge (vi , v j ) in E ′ with a cost c′(vi , v j ), add a sequence of directed
edges to E , from di to d j , given by (di , wi ), (wi , w j ), (w j , d j ), denoting the feasible
flight and street edges, and resulting in a total cost of cq(di , wi ) + ctq(wi , w j ) +
cq(w j , d j ). Let cq(e) = 0 for all flight edges e = (di , wi ) or e = (wi , di ). For all
street edges, e, we set ct (e) = ctq(e) = c′(e). Finally, add bidirectional edges from
all wi ∈ Vw to w0 and set c(w0, wi ) = 0 and c(wi , w0) = 0. This transformation
defines G, the required input to the HDP.

We can now demonstrate (ii) by showing that an optimal HDP solution, com-
prised of Pq and Pt , corresponds to the optimal TSP solution, P ′. From Fig. 2,
note that an HDP solution of the form, Pq = (w0, w1, d1, w1, . . . , wn, dn, wn, w0)

and Pt = (w0, w1, . . . , wn, w0), can be used to generate a TSP tour of the form
P ′ = (v1, . . . , vn, v1) by simply extracting the order of street vertices (w1, . . . , wn)

in Pt , since the truck must visit every wi ∈ Vw to service each di ∈ Vd . If E ′
P

contains the sequence of edges in P ′, then Et = E ′
P . Now, since cq(e) = 0 and

ct (e) = ctq(e) = c′(e), we can see that

∑

e∈Eq\Et

cq(e) +
∑

e∈Et \Eq

ct (e) +
∑

e∈Eq∩Et

ctq(e) =
∑

e∈E ′
P

c′(e).

Thus, the optimal solution to the HDP can indeed be transformed into the optimal
solution of the TSP, completing the proof. �

Fig. 2 A reduction from the
TSP on graph G ′ to the HDP
on graph G. a
G ′ = (V ′, E ′, c′). b
G = (V, E, C)

(a)

(b)
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4 Solution Approach

Given the NP-hardness of the HDP and the fact that it contains the TSP as a special
case, our solution approach will be to polynomially transform an instance of the HDP
into a GTSP, such that the optimal GTSP solution provides an optimal HDP solution
of equal cost.

Referring to Figs. 3 and 4, note that the approach will be presented in two trans-
formations. The first, T1 is a procedure to cast an HDP on graph G as a GTSP on a
partitioned graph G1 = (V 1, E1, c1), where each vertex set V 1

i ∈ V 1 corresponds to
a delivery point di ∈ Vd and the vertices in V 1

i correspond to the set of viable street
deployment points,w j ∈ Wdi ⊂ Vw, for each di . Edges correspond to feasible routes
between deliveries. The second transformation, T2, is a method to extract the HDP
solution, Pq , Pt , from a GTSP solution, P1. Lemmas 1 and 2 prove the correctness
of the transformations.

4.1 Transformation Algorithms

Figure4 illustrates the graph transformations on a sample HDP instance to aid in the
description. The problem in Fig. 4a is a simplified version of the example problem in
Fig. 1 and contains an environment G = (V, E, C), where |Vd | = 4 and |Vw| = 8.
Figure4b shows the transformed GTSP graph G1, as well as an optimal solution,
P1, through it. Finally, Fig. 4c shows how the GTSP solution can be translated to an
HDP solution on G. We will refer to these figures throughout the descriptions below.

Transformation T1: HDP to GTSPLet the input to transformation T1 be an instance
of the HDP defined on the directed graph G = (V, E, C). The output of T1 is a
partitioned directed graphG1 = (V 1, E1, c1)with V 1 partitioned into n+1mutually
exclusive subsets V 1 = {V 1

0 , . . . , V 1
n }, such that V 1 = ∪n

i=0V 1
i , corresponding to

the initial location w0 and each of n delivery vertices.
Algorithm 1 describes the transformation of the input G = (V, E, C) into the

output G1 = (V 1, E1, c1). In the graph G1, the vertex set V 1
0 contains w0, and

each vertex set V 1
i , i = {1, . . . , n}, contains a copy of all street vertices w j ∈ Vw

for which the flight edges (w j , di ) and (di , w j ) exist in E . We construct E1 as
follows. Consider two street vertices in G1 defined by wi ∈ V 1

a and w j ∈ V 1
b , where

Fig. 3 Graph transformation based solution approach to the HDP
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(a)

(b)
(c)

Fig. 4 Transformation of HDP to GTSP. Figure (b) and (c) highlight red edges (quadrotor travel),
blue edges (truck travel) and black edges (docked truck-quadrotor travel)

a �= b. The edge (wi , w j ) is added to E1 if either one of two subsets of edges,
α = {(da, wi ), (wi , w j ), (w j , db)}, or β = {(da, w j ), (wi , w j ), (w j , db)} exist in
E : i.e., if the quadrotor can deliver to da from wi , followed by db from w j .

Figure5 illustrates this mapping between the edges of E1 and E . The edge e ∈ E1

maps to either α or β in E between delivery vertices da and db as follows. In pattern
α, shown in Fig. 5a, b, the quadrotor, having delivered an item at da from wi , returns
to the truck at wi and travels in a docked state to w j , to be redeployed towards db.
In pattern β, shown in Fig. 5c, d, the quadrotor, having delivered an item at da from
wi travels directly from da to w j to rendezvous with the truck and pickup the item
to be delivered at db.

In Sect. 4.2, Lemma 1 states that the edge subsets α and β encode all potential
truck-quadrotor deployment patterns between any two delivery vertices, da and db,
for a chosen pair of respective street deployment vertices wi and w j . Thus, deploy-
ment patterns α and β present the only two potential edge costs for edges in E1, and
can be computed as follows:

c1α(wi , w j ) = cq(da, wi ) + ctq(wi , w j ) + cq(w j , db)

c1β(wi , w j ) = cq(da, w j ) + ct (wi , w j ) + cq(w j , db)
(2)
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Fig. 5 Mapping between
edges in GTSP and HDP. a
Pattern α (GTSP). b Pattern
α (HDP). c Pattern β

(GTSP). d Pattern β (HDP)

β

α

(a) (b)

(c) (d)

Given these two costs, the minimum cost deployment pattern between wi ∈ V 1
a

andw j ∈ V 1
b is chosen and a cost, c1(e) = min{c1α(e), c1β(e)} is assigned to the edge

(wi , w j ) ∈ E1. Figure4b illustrates the vertex sets of the constructed GTSP graph
G1 as a result of Algorithm 1.

Algorithm 1: Graph Transformation: G to G1.
Input : G = (V, E, C)

Output: G1 = (V 1, E1, c1)
V 1
0 = V01

foreach di ∈ Vd do2

V 1
i = {w j | w j ∈ Vw, (w j , di ) ∈ E, (di , w j ) ∈ E}3

V 1 = {V 1
0 , V 1

1 , . . . , V 1
n }4

E1 = {(wi , w j )| wi ∈ V 1
a , w j ∈ V 1

b , a �= b}5

foreach e = (wi , w j ) ∈ E1 where wi ∈ V 1
a , w j ∈ V 1

b do6
if a = 0 then7

cq (da, wi ) = 08

if b = 0 then9
cq (w j , db) = 010

c1α(e) = cq (da, wi ) + ctq(wi , w j ) + cq (w j , db)11

c1β(e) = cq (da, w j ) + ct (wi , w j ) + cq (w j , db)12

c1(e) = min{c1α, c1β }13

Transformation T1 has a runtime complexity of O(n2) and for an HDP with
|Vd | = n and |Vw| = m, it generates a GTSP of size 1 + nm. While this is a
significant increase in problem size, it represents the worst case with the quadrotor
having an infinite operating range such that for each di ∈ Vd , |Wdi | = m. In practice,
|Wdi | < m and the size of the GTSP is 1 + ∑n

i=1 |Wdi |. The simulation results in
Sect. 6, Fig. 8d show how the quadrotor range affects size and runtime complexity of
the GTSP transformation.
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The GTSP can now be solved using a variety of solvers in existing literature
and as seen in Fig. 4a, the solution to the GTSP is a closed path of the form P1 =
(w0, w1, . . . , wn, w0), wherew0 is the starting vertex and (w1, . . . , wn) is a sequence
containing one vertex from each set V 1

i ⊂ V 1.

Transformation T2: GTSP Solution to HDP Solution Given the optimal GTSP
solution P1, the optimal HDP solution composed of a closed walk Pq and a closed
path Pt can be obtained using Algorithm 2 as briefly described below.

Let the computed GTSP solution be defined by the sequence of vertices P1 =
(w0, w1, . . . , wn, w0)where each vertexwi , i ∈ {1, . . . , n}, belongs to a unique ver-
tex set V 1

j in G1. Since the optimal deployment pattern for every pair of deployment

points wi ∈ V 1
a and w j ∈ V 1

b was predetermined during the construction of G1, we
can construct Pq by inserting the vertices of the complete quadrotor path between
every consecutive vertex in P1. Pt can be constructed by copying all unique street
network vertices wi ∈ Vw from Pq in the order in which they occur in Pq .

Algorithm 2: Reconstructing Pq and Pt from P1.

Input : P1 = (w0, w1, . . . , wn, w0)

Output: Pq , Pt
Pq . append(w0, w1, da), where w1 ∈ V 1

a1
foreach i ∈ {1, . . . , n − 1} do2

if c1(wi , wi+1) = c1α(wi , wi+1) then3

Pq . append(wi , wi+1, db), where wi+1 ∈ V 1
b4

else5

Pq . append(wi+1, db), where wi+1 ∈ V 1
b6

if c1(wn, w0) = c1α(wn, w0) then7
Pq . append(wn, w0)8

else9
Pq . append(w0)10

foreach wi ∈ Pq do11
if wi /∈ Pt then12

Pt . append(wi )13

Pt . append(w0)14

In the HDP solution to the example problem, as shown in Fig. 4c, Pq =
(w0, w4, d1, w4, d2, w5, d3, w5, w1, d4, w1, w0) and Pt = (w0, w4, w5, w1, w0).
Transformation T2 is a linear in time, O(n), algorithm since the deployment pat-
terns between each consecutive pair of vertices in P1 were computed in T1.
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4.2 Correctness of the Transformation

This section proves that theGTSP transformation encodes all possible HDP solutions
and that the optimal solution to theGTSP can be used to generate the optimal solution
to the HDP.

Lemma 1 follows immediately from the discussion in Transformation T1, that
describes patternsα andβ. Thus, if theGTSP solution, P1, contains the edge (wi , w j )

and pattern α is chosen, then in the HDP solution, Pq will contain a subsequence
of edges {(da, wi ), (wi , w j ), (w j , db)}. If pattern β is chosen, Pq will contain a
subsequence {(da, w j ), (w j , db)}. Pt will contain edge (wi , w j ) in both cases. In
the case where da and db share deployment points (i.e. wi = w j ), the truck does not
move and hence α = β.

Lemma 1 Deployment patterns α and β are the only two HDP routes between any
two delivery vertices, da and db, given their respective street deployment points wi

and w j .

Lemma 2 validates transformation T2 by showing that any feasible or optimal
GTSP solution P1 directly corresponds to an HDP solution Pq , Pt .

Lemma 2 Any feasible GTSP tour on G1 corresponds to a pair of feasible HDP
routes on G. Moreover, an optimal GTSP solution corresponds to the optimal HDP
solution of identical cost.

Proof Each vertex set, V 1
a ⊂ V 1, corresponds to a delivery vertex da ∈ Vd . Lemma 1

proves that an edge (wi , w j ) ∈ E1, where wi ∈ Va and w j ∈ Vb, represents the
lowest cost HDP route from da to db for a respective wi and w j . Thus the set of
edges between all wi ∈ Va and w j ∈ Vb will encode any optimal route between da

and db, and this implies that any feasible GTSP solution on G1 will correspond to a
feasible HDP solution on graph G.

We prove that an optimal GTSP solution provides the optimal HDP solution, by
contradiction, as follows. Consider an optimal GTSP solution of the form P1 =
(w0, w1, . . . , wn, w0). We know that each edge (wi , wi+1) ∈ P1, where wi ∈ Va

and wi+1 ∈ Vb represents an optimal subsequence of edges in Pq and Pt , based on
the choice of α or β. Thus, a sub-optimal HDP solution can only be obtained if P1

contains (i) a sub-optimal ordering of vertex sets, or (ii) a sub-optimal selection of
vertices in any vertex set. This violates the definition of an optimal GTSP solution
and hence optimality is preserved in the transformation from P1 to P . �

4.3 Characterizing the HDP Solution

In a typical HDP solution, the truck-quadrotor team conducts deliveries in a clustered
manner, with the truck stopping at a sequence of deployment points given by Pt , such
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(a) (b)

(c) (d)

Fig. 6 HDP solution characterization based on cq , ct and ctq. All figures show w0 = (0, 0),
delivery points (red vertices), a gridded street network (blue vertices), the truck path (blue paths)
and quadrotor flight paths (green paths). a ct 
 ctq > cq . b ctq 
 ct > cq . c Low truck cost. d
High truck cost

that |Pt | ≤ m, while the quadrotor visits a subset of delivery vertices Dwi ⊂ Vd ,

from each wi ∈ Pt , such that ∪|Pt |
i=1Dwi = Vd .

Given an HDP instance, the structure and total cost of Pt , Pq , and the choice of
deployment patterns between each truck stop depend entirely on the relative values
of the cost functions cq , ct and ctq in G. Figure6 qualitatively illustrates the effect
of varying edge cost parameters on the nature of the HDP solution.

Figure6a, b show two special cases of the HDP solution that arise when the
costs, ct and ctq are greater than cq as follows. When ct 
 ctq, the cost of the
truck travelling alone is heavily penalized and all deployments occur using pattern
α as seen in Fig. 6a. Conversely, when ctq 
 ct , docked truck-quadrotor travel is
penalized, making deployment pattern β consistently preferable to α as shown in
Fig. 6b.

Finally, Fig. 6c, d illustrate the effect of the relative truck and quadrotor costs on
the HDP solution. Low values of ct and ctq relative to cq encourage greater truck
effort in the HDP solution, as in Fig. 6c, while higher values of ct and ctq relative to
cq result in a greater quadrotor effort, limited by its operating range, as in Fig. 6d.
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5 The Multiple Warehouse Delivery Problem (MWDP)

In this section, we further examine the special case of the HDP where all quadrotor
deployments occur using pattern β, similar to Fig. 6b. A limiting case of this problem
arises when ctq(e) = ∞, and ct (e) = 0 for all e ∈ E , thereby completely preventing
docked travel and assuming that the truck travelling alone has a zero cost and infinite
speed.

From Fig. 5 we can see that, cq(da, wi )+ctq(wi , w j ) ≥ cq(da, w j )+ct (wi , w j ),
is always true in this case, and hence every edge of Pq in the HDP solution will be a
flight edge of the form e = (wi , d j ) or e = (d j , wi ), with a cost cq(e). The total cost
of Pt is

∑
e∈Et

ct (e) = 0. Note that a zero cost, infinite speed truck can be interpreted
as a staticwarehouse at each street vertex andwewill define a special case of theHDP:
theMultipleWarehouseDelivery Problem (MWDP),where a set of delivery requests,
Vd = {d1, . . . , dn} must be fulfilled by a single vehicle from a set of warehouses
Vw = {w1, . . . , wm}. Figure7a illustrates an MWDP graph, G = (V, E, c), where
V = V0 ∪ Vw ∪ Vd , E contains directed edges (di , w j ) for all di ∈ Vd , w j ∈ Vw

and edges (w j , di ) if w j ∈ Wdi . Cost function, c : E → R≥0, represents the non-
negative travel cost, that satisfies the triangle inequality. The MWDP is stated in
Problem 2.

Problem 2 (Multiple Warehouse Delivery Problem) Given G = (V, E, c), where
V = V0 ∪ Vd ∪ Vw, compute a closed walk P , that starts and ends at w0, such that
each delivery vertex in Vd is visited exactly once.

The MWDP can be solved as an HDP using the methods in Sect. 4. However, the
downside of this approach is that it results in an increase in the size of the prob-
lem instance as described in Sect. 4.1. Exploiting the simplifications in the MWDP,
relative to the HDP, we present two improved solution approaches, first, a graph
transformation of the MWDP into a TSP and, second, an exact algorithm to solve
instances with a small, fixed number of warehouses.

(a) (b)

Fig. 7 The multiple warehouse delivery problem (MWDP). a Sample MWDP problem scenario.
b Optimal MWDP solution
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5.1 Transformation Algorithm: MWDP to TSP

Since, in the MWDP, the quadrotor uses pattern β for each delivery, there is only one
shortest path between any pair of delivery vertices di and d j , and it passes through
the warehouse vertex wa ∈ Wd j , such that c(di , wa) + c(wa, d j ) is minimized.
Therefore, we can cast the MWDP as a TSP, by transforming an MWDP instance
G = (V, E, c), into a TSP instance, G1 = (V 1, E1, c1), where V 1 = V0 ∪ Vd and
E1 contains edges e = (vi , v j ), for all vi , v j ∈ V 1. Now for each edge, (vi , v j ), we
identify the warehouse wa ∈ Wd j that minimizes c(di , wa) + c(wa, d j ), and set the
cost c1(vi , v j ) = c(di , wa) + c(wa, d j ).

Graph G ′ is a TSP instance of size |Vd | = n, which is significant smaller than the
GTSP and can be solved using a number of exact or heuristic algorithms in existing
literature such as the Lin-Kernighan [15] or LKH [10] heuristics. The TSP solution is
a sequence of vertices of the form P1 = (v0, v1, . . . , vn, v0), from which anMWDP
solution may be obtained by inserting the stored warehouse vertexwa , between each
consecutive pair of vertices {vi , v j } in P1. An optimal MWDP solution is illustrated
in Fig. 7b.

5.2 Kernel Sequence Enumeration (KSE) Algorithm

Figure7b shows that an optimal MWDP solution will always be of the form
P = (w0, wk1 , d1, wk2 , d2, . . . , wkn , dn, w0), where we have numbered the delivery
points so that they are visited in the order d1, d2, . . . , dn and each ki is in {1, . . . , m}.
All delivery vertices are visited in sub-sequences, (wki , di , wki+1) where wki is the
warehouse assigned to service di . Given this property, we identify two classes of
delivery vertices in P , (i) a localized delivery vertex, di , for which ki = ki+1 and
(ii) a transitional delivery vertex, di , for which ki �= ki+1. We also say that dn is a
transitional delivery vertex since it returns to w0. Two additional properties of P ,
that are proven by the triangle inequality are:

1. For every localized delivery vertex di in P , where (wki , di , wki+1) and ki = ki+1,
we must have that wki = argminw∈Vw c(w, di ). Thus wki = wki+1 is the closest
warehouse to di .

2. If the path P visits m P < m unique warehouses in Vw, then the number of transi-
tional delivery vertices |Dt | = m P . This implies that the quadrotor never revisits
a warehouse wki once it has transitioned to warehouse wki+1 with ki+1 �= ki .

Given these properties the following procedure gives us an exact algorithm for
solving the problem:

1. Enumerate all kernel sequences consisting of an ordered subset of warehouses
and a transitional delivery point between each pair of warehouses. In total there
are O(nmmm) possible kernel sequences.
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2. For each kernel sequence, create a complete path by assigning all remaining
delivery points as localized deliveries, using their closest warehouse in the kernel
sequence.

3. Output the shortest path among all completed kernel sequences.

To complete each kernel sequence we must compute the closest warehouse for
each remaining delivery point. Since there are at most m warehouses in the kernel
sequence and n delivery points that are not in the kernel sequence, the complexity
of each kernel completion step is O(nm). Therefore, the total runtime of this brute
force algorithm is O

(
(nm)m+1

)
.

Thus, the key point is that the algorithm is polynomial for a fixed number of
warehouses m. For example, if there are three warehouses and a larger number of
delivery points, this exact algorithm runs in O(n4) time, which may be acceptable,
and does not require a transformation to an NP-hard problem. However, for a larger
number of warehouses, this algorithm is less practical.

6 Simulation Results

The optimization framework for this paper was implemented inMATLAB. The solu-
tions were computed on a laptop computer running a 32 bit Ubuntu 12.04 operating
system with a 2.53GHz Intel Core2 Duo processor and 4GB of RAM.

The first set of results in Fig. 8, presents HDP solutions on a sample problem
instance with 30 delivery points and a gridded terrain with 100 street vertices in
an environment of arbitrary size renv. The key simulation parameters are ct ,cq ,ctq

and rq , the operating range of the quadrotor, defined as a percentage of renv, which
dictates the size of Wdi for each delivery point di and consequently, the size of the
GTSP. For these results, we set cq to be the Euclidean distance between vertices and
ct (e) = ctq(e) = 3cq(e) for all edges e.

In Fig. 8a, rq = 0.3 renv, which resulted in a GTSPwith 170 vertices and took 5.7s
to compute a solution. When rq was reduced to rq = 0.1 renv, the resulting GTSP
contained 82 vertices and took 2.3s to compute the solution, shown in Fig. 8b. From
the Fig. 8a, b, we can see that reducing the quadrotor range resulted in a smaller
problem size, and an increasing truck effort, similar to the properties observed in
Sect. 4.3 where a lower truck cost resulted in longer truck path in the HDP solution.
In the limiting case, theHDP approaches theMWDP special case in Fig. 8c, forwhich
the TSP method computes a solution in 0.45s. To assess this further, Fig. 8d shows
the effect of the quadrotor range on the size (right y-axis) and runtime complexity
(left y-axis) of the GTSP solution. Figure8e shows that for the MWDP case, the TSP
of size n presents a faster and more scalable solution than the GTSP approach as
shown by the average growth of runtime complexity as |Vd | in increased, keeping
other parameters and |Vw| constant.

In the case of the MWDP, all three solution methods can be employed with com-
parable results in terms of solution quality. While the KSE algorithm is useful to



Optimal Path Planning in Cooperative Heterogeneous Multi-robot Delivery Systems 421

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5 10 15 20 25 30 35
0

50

100

150

200
GTSP Size and Runtime

Quadrotor Range (% of Environment Size)

R
un

tim
e 

(s
ec

on
ds

)

5 10 15 20 25 30 35
0

200

400

600

800

N
um

be
r 

of
 v

er
tic

es
 in

 G
T

S
P

GTSP runtime

GTSP size

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

Number of Delivery Points

R
un

tim
e 

(s
ec

on
ds

)

MWDP Runtime Comparison (GTSP vs. TSP)

GTSP runtime

TSP runtime

(a) (b) (c)

(d) (e)

Fig. 8 HDP simulation results and GTSP performance. a HDP (rq = 0.3 renv). b HDP (rq =
0.1 renv). c MWDP TSP solution. d GTSP performance. e GTSP versus TSP for MWDP

Table 1 MWDP algorithm comparison

Delivery points Runtime Solution quality

GTSP TSP KSE GTSP TSP KSE

3 0.05 0.04 0.06 10.56 10.56 9.95

6 0.20 0.06 1.11 16.21 16.61 16.21

9 0.26 0.14 5.55 30.47 30.20 29.21

12 0.44 0.26 21.46 35.12 34.27 33.52

|Vw| = 3

obtain the optimal MWDP solution for smaller problem sizes it quickly becomes
impractical with greater complexity and the TSP method stands out as the appropri-
ate approach, as evident in Table1, which shows runtime and solution quality results
for an MWDP problem with |Vw| = 3 and an increasing number of delivery points.

Finally, Fig. 9 presents a realistic delivery scenario on a Google street map of a
15km2 area in a residential neighbourhood in Waterloo, Ontario, Canada. Figure9a
shows an HDP solution for 17 delivery points in contrast to a single delivery truck
conducting deliveries in Fig. 9b. Given a maximum range of 150m for the quadrotor
to ensure line of sight, the HDP solution in this problem instance results in a ≈50%
reduction in travel distance for the truck.
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Fig. 9 HDP solution on a map of Waterloo, Ontario. a HDP truck-quadrotor solution. b Truck
delivery route

7 Conclusions

This paper presents a novel adaptation of a heterogeneous carrier-vehicle system for
cooperative deliveries in urban environments. The HDP represents a class of cooper-
ative carrier-vehicle path planning problems in discrete environments, applicable to
a number of multi-robot systems in scenarios like search and rescue, surveillance and
exploration. In future work, we are interested in generalizing the HDP to allow mul-
tiple simultaneous quadrotor deliveries, scheduled delivery requests, and dynamic
scenarios where new requests arrive during execution.
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Composing Dynamical Systems to Realize
Dynamic Robotic Dancing

Shishir Kolathaya, Wen-Loong Ma and Aaron D. Ames

Abstract This paper presents a methodology for the composition of complex
dynamic behaviors in legged robots, and illustrates these concepts to experimen-
tally achieve robotic dancing. Inspired by principles from dynamic locomotion, we
begin by constructing controllers that drive a collection of virtual constraints to
zero; this creates a low-dimensional representation of the bipedal robot. Given any
two poses of the robot, we utilize this low-dimensional representation to connect
these poses through a dynamic transition. The end result is a meta-dynamical system
that describes a series of poses (indexed by the vertices of a graph) together with
dynamic transitions (indexed by the edges) connecting these poses. These formalisms
are illustrated in the case of dynamic dancing; a collection of ten poses are connected
through dynamic transitions obtained via virtual constraints, and transitions through
the graph are synchronized with music tempo. The resulting meta-dynamical system
is realized experimentally on the bipedal robot AMBER 2 yielding dynamic robotic
dancing.

1 Introduction

The problemof realizing differentmotion behaviors (or tasks) and switching between
these different behaviors in robots has been well studied [6, 11]. Examples of tech-
niques employed include the elastic strip framework for robot manipulators [6], the
decision theoretic approach for mobile robots [5] and Eigen behaviors for generic
robots [9]. In particular, the elastic strip framework is used to deviate from original
preplanned tasks to reactively avoid obstacles while allowing for smooth transitions;
the decision theoretic approach is used for mobile navigation; and Eigen behaviors
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are used to learn the tasks themselves. The resulting behaviors (or motion primitives)
obtained through these methods are important in meeting different task requirements
like pick and place, assembly, but have not been successful in applications like legged
locomotion which require dynamic stability and handling of instantaneous discrete
transitions (foot strikes).

While different locomotion behaviors have been obtained in legged robots [10,
19, 20] individually, formally composing these primitives in one single format and
realizing them on robots is still a subject in its infancy. In [16], a method for compos-
ing stair climbing and flat ground walking behaviors on a bipedal robot in simulation
was presented; importantly, in this work a formalism for composing these dynamic
behaviors was presented: meta-hybrid systems. Other methodologies have also been
considered which show similar characteristics including [15] which utilized state
machines to navigate over rough terrain and [18] which applies reinforcement learn-
ing techniques to switch between behaviors and thus navigate varying ground slopes.
Motivated by these constructions and the need to extend them beyond locomotion,
this paper explores an approach to achieving dynamically stable advanced locomo-
tion behaviors on bipedal robots by considering the problem of obtaining dynamic
dancing on the bipedal robot AMBER 2 (see Fig. 1).

Robotic dancing has been achieved in the past by copying the movements of
human motions through their realization as trajectories that ensure static stability
[4, 14]. Robotic dancing has also been utilized in the context of social interaction
[12], where special emphasis was given to synchronizing the rhythmic movements
with the music. But these works were mainly focused on maintaining the stability of
the robot while realizing dancing for the purposes of entertainment. With the goal
of placing more emphasis on establishing dynamically stable motion behaviors that
strictly satisfy time constraints (tempo of a music), this paper presents a methodol-
ogy of composing dynamical systems to yieldmeta-dynamical systems. In particular,
different poses are represented as the vertices of a directed graph and, according to
the edges of this graph, dynamic transitions are created that connect these poses. To

Fig. 1 The bipedal robot AMBER 2 (left), configuration angles (middle), and virtual constraints
(right)
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achieve this dynamic behavior, an optimization problem is presented for generating
dynamic transitions throughmethods motivated by human-inspired control [2, 3, 20,
21]. In particular, virtual constraints are considered that create a low-dimensional
representation of the robot through zero dynamics [19]. These yield desired trajecto-
ries of the robot (parameterized by the phase variable) that can be therefore designed
to dynamically transition between robot poses. Creating a low dimensional represen-
tation facilitates the ease of constraining the timing of these behaviors with a simple
manipulation of a phase variable (position of the hip). The end result is a methodol-
ogy for dynamically composing behaviors, designed specifically with a view toward
robotic dancing.

The paper starts with a discussion of modeling and control of AMBER 2 in
Sect. 2. Two phases, single support (SS) and double support (DS), are considered
and described. A sequence of poses is formulated along with corresponding desired
transitions between these poses. These are discussed in Sect. 3 along with dynamic
transitions which are designed through virtual constraints, with the end result being
a meta-dynamical system for dancing. Finally, to practically implement these behav-
iors on AMBER 2, Sect. 4 describes how desired angles and angular velocities are
reconstructed from the zero dynamics through a novel reconstruction process. The
dynamic transitions are synchronized with the music tempo through the parameteri-
zation of time used to define the virtual constraints. The end result is the experimental
realization of dynamic robotic dancing on AMBER 2 (a video of the dancing can be
found at [1]).

2 AMBER 2 Model and Control

This section will provide a short description of the bipedal robot used, AMBER 2, to
realize dynamic dancing. This sectionwill also show the control law used for tracking
the desired angles and velocities. AMBER 2 is a 2D bipedal robot with seven links
(two calves, two thighs, two feet and a torso, see Fig. 1). AMBER 2 is the second
generation and an expansion upon its predecessor, the non-footed (point feet) bipedal
robot, AMBER 1 (see [20]). Each of the joints are actuated by brushless DC (BLDC)
motors. In addition, the motion of AMBER 2 is restricted to the sagittal plane via
a boom Fig. 2. The boom is fixed rigidly to a rotating mechanism, which allows the
biped to walk in a circle with minimum friction. In addition, counterweights are
provided to cancel the weight on the robot due to the boom (note that the boom does
not support the robot in the sagittal plane, thereby restricting its overall motion to a
2D plane). The controller modules are remotely connected to the stationary power
supply with the help of slip rings located below the pivot.
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Fig. 2 AMBER 2 with the boom and electronics. The boom restricts motion to the sagittal plane.
As shown in the figure: (1) Counterweight used to balance the boom around the pivot, (2) Controller
module where the walking algorithm is running, (3) The boom, (4) Boom support structure which
keeps the torso horizontal by using a parallel four-bar linkage mechanism, (5) The bipedal robot
AMBER 2

2.1 Robot Dynamics

Due to the changes of contact points on the foot throughout the course of dancing,
generalized coordinates are naturally used to characterize the robot. Specifically, the
configuration space, Q ∈ R

n is represented in coordinates as θ = {ψ0, θb}, where
the extended coordinateψ0 ∈ R represents the rotation angle of the body fixed frame
with respect to a fixed inertial frame R0; here θb = [θsa, θsk, θsh, θnsh, θnsk, θnsa]T ,
θb ∈ R

b denotes the body coordinates of the robot as shown in Fig. 1. Note that the
translational coordinates px , pz are also shown in Fig. 1, which are not considered
in the dynamics since the stance toe is assumed to be pinned to ground throughout
the course of dancing. For AMBER 2, n = 7, b = 6, i.e., θb ∈ R

6 and θ ∈ R
7.

Continuous Dynamics. The Lagrangian dynamics for this n-DOF robot is obtained
as:

M(θ)θ̈ + H(θ, θ̇ ) = Bu, (1)

with the notations M ∈ R
n×n is the mass inertia matrix, H ∈ R

n is obtained from
Coriolis, Centrifugal and gravity forces apparent from the standard EOM for rigid
bodies. u ∈ R

k is the torque input with k the number of inputs, and B ∈ R
k×k is the

mapping from torque to joints. For AMBER 2, k = 6.
With the multiple foot behaviors that can be realized, we know that the feet cannot

go below ground. The dynamics need to be realized through the use of holonomic
constraints which constrain both heel and toe of the non-stance foot whenever they
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are in contact with ground. These holonomic constraints are enforced in the following
manner:

M(θ)θ̈ + H(θ, θ̇ ) = Bu + J T
sh Fsh + J T

nst Fnst + J T
nsh Fnsh, (2)

where Ji (θ) is the Jacobian of specific contact points i ∈ {sh, nst, nsh} correspond-
ing stance heel, non-stance toe and non-stance heel respectively. Fi (θ, θ̇ ), which are
the reaction forces due to the holonomic constraints, are defined for each domain
based on the contact conditions of the heel and toe. Note that Fi = 0 if there is no
contact with ground. Fi can be explicitly derived from the states x and the controller
u by differentiating the holonomic constraints twice. The details are omitted here
and can be found in [13]. If Fnst = 0, Fnsh = 0 and Fsh > 0, then a fully actuated
condition of the robot is realized.

Relabeling. If the robot takes a step, i.e., after the non-stance leg swings forward and
hits the ground, it is convenient to swap the stance and non-stance legs so that the
same motion primitive can be realized without the need to change the controller for
the robot. Therefore, at the end of every step relabeling of the angles is performed;
this is considered a discrete transition in a formal model.

2.2 Control

Since the objective is to achieve dancing, a convenient step is to make the joint angles
track a set of trajectories. We would like to generalize this by picking a vector of l
functions of joint angles, referred to as actual outputs ya , which we want to track
a vector of functions encoding the goal behaviors, termed the desired outputs yd .
The objective is to drive the error y = ya − yd → 0. These outputs are also termed
virtual constraints in [19]. The outputs are picked such that they are relative degree
two outputs. In other words, ya will be functions of joint angles, and not angular
velocities.

We first introduce the actual set of outputs (virtual constraints) which are inde-
pendent (as motivated by [2]): the linearized hip position, i.e., linearization of the
horizontal hip position (calculated from calf length Lc and thigh length Lt ) w.r.t. the
stance toe of the robot:

δphip = −(Lc + Lt )(ψ0 + θsk + θsa) − Ltθsk; (3)

the stance ankle angle, θsa ; the stance knee angle, θsk ; the non-stance knee angle,
θnsk ; the hip angle, θhip = θnsh − θsh ; the torso angle, θtor = ψ0 + θsa + θsk + θsh ;
and the non-stance foot angle, θns f = ψ0 + θsa + θsk + θsh − θnsh − θnsk − θnsa .
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We now introduce the Canonical Walking Function (CWF) which was first intro-
duced in [2] to realize human-like walking in robots [20]. The CWF is given by:

ycw f (t, α) = e−α4t (α1 cos(α2t) + α3 sin(α2t)) + · · ·
α5 cos(α6t) + α2α4α5

α2
2 + α2

4 − α2
6

sin(α6t) + α7. (4)

This CWF will be used to formulate our desired outputs with the parameters α

dictating the shape of the trajectory, but it is useful to establish a relationship between
time and the linearized hip position through a parameterization:

τ(θ) = (δphip(θ) − δphip(θ
+))

νhip
, (5)

which relates the hip position and time, where here νhip is the hip velocity. In other
words, the robot moving forward can be seen as increasing hip position or an increase
in time. Similarly, the robot moving backward can be seen as hip position reducing
or the parameterization of time going in reverse. Note that θ+ represents the robot
configuration at the beginning of one step which can be defined such that parameter-
ized time is zero at initial hip position. This parameterization can then be utilized to
directly get the initial configuration of the robot from the parameters α which helps
in reducing computation of the trajectory optimization parameters (see [2]).

Single Support and Double Support. There are two types of phases which will
be considered in the paper, single support SS (when one foot is flat on ground) and
double support DS (when both the feet are always on ground). There are other phases
like underactuation where only the stance toe is on the ground, which also can be
modeled but are more complicated to analyze and are therefore omitted from the
paper. Depending on the contact conditions being enforced, we get control systems
associated with the single support and double support phases, denoted by ( fSS, gSS)
and ( fDS, gDS), respectively (see [21]).

Single Support. In the single support phase, the foot angle ψ0 = 0, and the non-
stance foot is always above ground. Picking only the base coordinates θb, l = 5
desired outputs, yd

SS : R6 → R
5 and 5 actual outputs, ya

SS : R6 → R
5 are considered:

ya
SS(θb) =

⎡

⎢⎢⎢⎢
⎣

θsk

θnsk

θhip

θtor

θns f

⎤

⎥⎥⎥⎥
⎦

, yd
SS(τ (θ), αSS) =

⎡

⎢⎢⎢⎢
⎣

ycw f (τ (θ), αsk)

ycw f (τ (θ), αnsk)

ycw f (τ (θ), αhip)

ycw f (τ (θ), αtor )

ycw f (τ (θ), αns f )

⎤

⎥⎥⎥⎥
⎦

, (6)

where τ is a function of the configuration θ , as defined in (5), and the desired outputs
are functions of θ and αSS = [αsk, αnsk, αhip, αtor , αns f ]T . Therefore, the desired
trajectories are a function of (νhip, αSS) ∈ R

36. It is also important to note that
the actual output vector ya

SS is a linear function of the angles: ya
SS = HSSθ , with
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HSS ∈ R
5×6 being the transformation matrix. Since, ψ0 = 0, θ = [0, θT

b ]T for
single support phase.

The objective of the controller is to drive the outputs ySS = ya
SS − yd

SS to zero,
i.e., ySS → 0. This can be achieved by using a feedback linearizing controller (see
[17]), which involves using the model of the robot and inverting this model to obtain
a stable linear system. Due to inaccuracies in the model parameters and difficulty in
identification, we could instead use a simpler controller, e.g. PD controller, which
does not guarantee convergence to zero, but will ensure minimum tracking error
provided sufficient gains are used. Firstly, we define the following coordinate1:

ξSS = −(Lc + Lt )(θsa + θsk) − Ltθsk = CSSθb, (7)

where CSS ∈ R
1×6 is the row vector of constants. Note that ξSS derived here is same

as (3) with ψ0 omitted. If the controller used is expected to achieve zero tracking
error, i.e., ya

SS − yd
SS = 0, then the desired joint angles θ̇d

SS ∈ R
6 and velocities

θd
SS ∈ R

6 of the robot for the single support phase which realize this equality can be
obtained as:

ya
SS = yd

SS =⇒
[

CSS
HSS

]
θd
SS =

[
ξSS
yd
SS

]
. (8)

Therefore, the desired angle configuration and the angular velocities are:

θd
SS =

[
CSS
HSS

]−1 [
ξSS
yd
SS

]
, θ̇d

SS =
[

CSS
HSS

]−1
[

1
∂yd

SS
∂τ

]
ξ̇SS

νhip
. (9)

The PD controller can thus be defined as:

u pd
SS = −K p

SS(θb − θd
SS) − K d

SS(θ̇b − θ̇d
SS), (10)

where K p
SS, K d

SS are the proportional and derivative gain matrices respectively.

Double Support. The double support phase adds extra constraints to the robot like
friction, pinning conditions (holonomic constraints [13]) and normal forces, which
will constrain the dynamics of the robot. The actual and desired outputs for the robot
can be defined similar to (6). In the double support phase, the stance ankle angle θsa

is added as:

ya
DS =

[
θsa

ya
SS

]
, yd

DS =
[

ycw f (τ (θ), αsa)

yd
SS

]
, (11)

where ya
DS : R

7 → R
6, yd

DS : R
7 → R

6, αDS = [αsa, αT
SS]T , with αDS ∈ R

43.
The actual outputs can also be written as ya

DS = HDSθ , with HDS ∈ R
6×7.

1Note that the motivation for this coordinate is given by Partial Zero Dynamics as considered in
[3].
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Since the actuators have the potential to fight each other due to overactuation, a
feedback linearizing controller will not necessarily yield exponential convergence:
ya
DS− yd

DS → 0. However, since the objective of the controller during the double sup-
port phase is to achieve dynamic behaviors in the robot to realize a dancing sequence,
the convergence of the outputs to zero is ignored. Similar to (3), the following coor-
dinate is defined:

ξDS = −(Lc + Lt )(ψ0 + θsk + θsa) − Ltθsk = CDSθ, (12)

where CDS ∈ R
1×7 is the row vector of constant terms. Having obtained the expres-

sion for ξDS, the desired joint angles and velocities can be defined as:

θd
DS =

[
CDS
HDS

]−1 [
ξDS
yd
DS

]
, θ̇d

DS =
[

CDS
HDS

]−1
[

1
∂yd

DS
∂τ

]
ξ̇DS

νhip
. (13)

With K p
DS, K d

DS as the proportional and derivative matrices, the PD controller is:

u pd
DS = −K p

DS(θ − θd
DS) − K d

DS(θ̇ − θ̇d
DS), (14)

Note that, both thesematrices are not square since u pd
DS ∈ R

6. In fact, the first columns
of the gain matrices are zeros.

2.3 Configuration Zero Dynamics

For the single support phase, with a feedback linearizing controller (see [17])
being applied, the outputs ySS are exponentially driven to zero. The control sys-
tem ( fSS, gSS) will exhibit zero dynamics. In other words, we have the following
restriction of the dynamics to the zero dynamics surface given by:

ZSS = {(θ, θ̇ ) : ySS(θb) = 0, L f ySS(θb, θ̇b) = 0, ψ0 = 0, ψ̇0 = 0}. (15)

This restriction of the dynamics to a surface enables us to connect different motion
primitives of the single support phase in a way such that the transition between
domains occurs without change of ySS.2 In other words, the transitionwill be smooth.
Motivated by the desire to relax the derivative condition in (15), we introduce the
notion of configuration zero dynamics defined to be:

CZSS = {(θ, θ̇ ) : ySS(θb) = 0, ψ0 = 0}. (16)

2Note: The construction of the PD controller defined in (7)–(10) is based on the notion that the
desired angles and velocities: (θd

SS, θ̇
d
SS) ∈ ZSS.
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For the double support phase, due to geometric constraints, it is not possible
to realize zero dynamics. But, it is possible to connect a motion primitive with the
single support phase due to the choice of controller. The concept of configuration zero
dynamics plays an important role in the context of dancing, since when switching
between a large collection of surfaces, if the configuration zero dynamic constraints
are ensured, this allows for a transition without a sudden change in desired angles.
If the zero dynamics constraints are ensured, then it allows for a smooth transition
(jerk free) from one desired trajectory to other. This will be utilized in the next
section through the composition of configuration zero dynamic surfaces to allow
for minimum jerk transitions between domains. In addition, this constraint will be
independent of the speed in which the transition is executed.

3 Meta-Dynamical Systems

To achieve dancing, the primary goal is to connect trajectories, i.e., desired outputs
yd , for each motion primitive; that is, we wish to compose dynamical systems. To
this end, this section will present the notion of meta-dynamical systems which gives
a formalism to the notion of composition. We begin by considering different poses
of the robot that will be connected through dynamic transitions.

Pose. A pose of a robot is a configuration θ , which is intended to be realized in the
robot. In other words, a pose is just a captured frame of a robot while in motion.
For example, a robot with hip forward and low and both feet flat is a crouch, and is
considered a pose of the robot. There are several possible poses that the robot can
assume. If the stance toe is always on ground (since jumping is not considered), the
three remaining points (non-stance toe and heel and stance heel) can be either in
contact or not. Therefore, there are eight possible general cases for pose generation.
Accordingly, wewill consider: front heel lift (FHL), front toe lift (FTL), back heel lift
(BHL), all feet flat on ground (FF), swing (S) with stance foot being flat on ground,
double heel lift (DHL), front toe and back heel lift (FTBH), and underactuation (UA)
with only stance toe in contact with ground. All the eight generic poses are shown
in Fig. 3.

It is important to note that there could be more than one type of back heel lift,
front toe lift, and other combinations as well. In other words, there are more than
eight types of poses. For example, we could have two different kinds of flat footed
poses, where the vertical hip position is high for one and low for the other. This
will be discussed further in Sect. 4 where the poses of dancing on AMBER 2 are
introduced. If a set of poses θ1, θ2, . . . , θi is considered, then dancing is achieved by
just executing dynamic transitions between these poses.

Dynamic Transition. Let x = (θT , θ̇T ) ∈ R
2n , and ẋ = f (x) be a dynamical

system. Let Φ(t; x0) be the solution to ẋ = f (x) at time t ∈ Rwith initial condition
x0, and let πθ be the canonical projection πθ (x) = θ .



434 S. Kolathaya et al.

Fig. 3 Eight generic poses of a robot based upon possible contact points

Definition 1 A dynamic transition between two poses, θ0 and θ f , is a solution
Φ(t; x0) to the dynamical system ẋ = f (x) such that there exists a point x0 ∈ R

2n

and a time t f ≥ 0 with πθ(Φ(0; x0)) = θ0 and πθ (Φ(t f ; x0)) = θ f

This definition allows us to formally introduce meta-dynamical systems:

Definition 2 The meta-dynamical system is defined as a tuple:

M = (Γ,P,T), (17)

• Γ is a directed graph given as:Γ = (V,E), whereV is the set of vertices describing
desired poses realizable on the robot, and E represents transitions between these
poses. We denote the source and target of an edge e ∈ E by source(e) ∈ V and
target(e) ∈ V.

• P is the set of poses given by: P = {Pv}v∈V, where Pv = θv ∈ R
n .

• T is the set of dynamic transitions: T = {Te}e∈E, where Te = Φe is the dynamic
transition between the poses θsource(e) and θtarget (e).

Creating dynamic transitions. Suppose we want to construct a meta-dynamical
system. Assume we are given a directed graph Γ with the set of poses P. Using
the constructions given in Sect. 2.2, we can construct a set of dynamic transitions T.
Given that the desired outputs yd are obtained through Canonical Walking Functions
as described in (6) and (11), we propose the following optimization problem for
creating a dynamic transition Te for a particular edge e ∈ E:
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(ν∗
hip, α

∗) = argmin
(νhip,α)∈Rd

CostD(νhip, α, νr
hip, α

r ) (18)

s.t.

[
yd
Phase(0, α)

yd
Phase(τmax , α)

]
=

[
HPhaseθ0
HPhaseθ f

]
, (CZD)

where νr
hip, α

r are the reference parameters, Phase ∈ {SS,DS} denotes whether the
robot is in single support or double support phase, and τmax is the time at the end of
the step which is computed in the following manner:

τmax = (CPhaseθ f − CPhaseθ0)/νhip, (19)

with νhip being the hip velocity, as introduced in (5). The cost of dancing (or objective
function), CostD, is the least squares error relative to reference data:

CostD =
∑

i

[yd(t[i], α) − yd(t[i], αr )]T [yd(t[i], α) − yd(t[i], αr )], (20)

where the reference used is either obtained from human data which have discrete
heel toe behavior, or obtained from the formerly established walking gaits which
were provably stable and experimentally realized on robots (see [20, 21]). Note that
in some of the transitions for dancing where there were no reference trajectories,
a zero cost will be used. The defining aspect of this paper is using the constraints
(CZD), which realizes configuration zero dynamics and is thus instrumental in being
able to compose different motion primitives to form a meta-dynamical system. This
follows from the fact that the end result of the optimization is a dynamic transi-
tion; for example, if Phase = SS, the parameters obtained from the optimization
(ν∗

hip, α
∗), utilized in the feedback linearizing controller and applied to the control

system ( fSS, gSS), yields a dynamic transition.

Example: dynamic leg swing. To illustrate meta-dynamical systems, we will con-
sider a simple example consisting of two poses: back heel lift (BHL) and swing (S)
(see Fig. 4). Due to space constraints, it is not possible to show how the optimization
problem was formulated for each and every transition in case of dancing. Therefore,
we consider a specific example of transition from pose PB H L to PS2, i.e., from back
heel lift to swing. The two poseswith the transition is depicted separately in Fig. 4.We
can accordingly define the meta-dynamical system in the following manner:

Discrete structure and poses. The graph is given by:

Fig. 4 Figures showing the
initial pose (left) and the final
pose (right) for crouching.
The red arrows are the edges
from which we wish to
construct dynamic transitions
between these poses

BHL S2
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Γ = (V,E), V = {S,BHL}, E = {S → BHL,BHL → S}. (21)

The set of poses is given by: P = {Pv : v ∈ V}. The set of transitions is given by:
T = {Te : e ∈ E}. The edges are depicted by the arrows shown in Fig. 4. Note that
the above example can have more than 2 edges depending on how the transitions
between poses are obtained. We will now introduce the optimization problem which
realizes the dynamic transitions, Te, from one pose to the other.

Dynamic transitions. Having obtained the desired angles and angular velocities (9),
(13), we can now discuss the transition optimization which yields the motion primi-
tive for the swing action.

The cost for the optimization was evaluated by obtaining the least squares fit with
the multi-domain walking trajectory obtained on AMBER2 as found in [21]. The
time parameter was picked such that only the swing portion of [21] was considered
for the cost. In other words, the value τ was constrained in the optimization to match
the reference trajectories. Additional constraints, like sufficient foot clearances on
ground, were imposed throughout the step. The knee angle was also constrained to be
within a certain limit to ensure low torque is utilized. That is, the final optimization
(with physical constraints) is given by:

(ν∗
hip, α

∗) = argmin
(νhip,α)∈R36

CostD(νhip, α, νr
hip, α

r ) (22)

s.t. (CZD)

τmax < 0.4

min(hnst ) > 0

min(θnsk) > 0,

Fig. 5 Tiles of a leg swing behavior consisting of a transition from back heel lift to swing pose.
The top tiles illustrate the behavior of the robot achieved in simulation, and the bottom tiles show
the same behavior realized experimentally on AMBER 2
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where the resulting optimal solution yields the parameters for the desired trajectories
represented through the outputs. Since the constraints are non-linear, the optimization
method used is active-set through MATLAB. If this optimization were to be done
online, a learning technique like [8] could have been used instead, but, this does not
yield dynamically stable trajectories which are necessary for maintaining balance.
When this is applied on the robot through trajectory reconstruction (10), the swing
of the non-stance leg is observed as shown in Fig. 5. The same controller was also
applied on AMBER 2, both in simulation and experiment, with tiles of the resulting
behavior shown in Fig. 5.

4 Dynamic Robotic Dancing on AMBER 2

This section presents the process of realizing dynamic dancing inAMBER2 by using
themethods introduced in this paper.Wewill not consider the cases UA,DHL, FTBH
from Fig. 3 since they require higher torque and are relatively difficult to realize in
the robot. Therefore, we will consider the remaining five generic cases of the feet
behavior for generating the pose. We will consider three types of front heel lift:
FHL1, FHL2, FHL3, one front toe lift: FTL, three types of flat-footed poses: FF1,
FF2, FF3, two types of swing poses: S1,S2, and finally one back heel lift pose: BHL.
All ten poses are shown in Fig. 6. The end result is an oriented graph Γ = (V,E),
where:

V = {FHL1,FHL2,FHL3,FTL,FF1,FF2,FF3,S1,S2,BHL}, (23)

and E is the set of red arrows in Fig. 6.
For generating the dynamic transition between poses, the optimization (18) was

accordingly solved. Since it was not necessary to optimize trajectories to transition
from every pose to every other pose, we considered 20 edges (or optimized dynamic
transitions) which satisfied configuration zero dynamic (CZD) constraints. There-
fore, we consider the set of edges as shown in Fig. 6, with the resulting dynamic
transition: T = {Te : e ∈ E}, obtained through the optimization in (18). Note,
additional constraints were also implemented in the optimization to realize different
behaviors varying from constraining the angles, to allowing sufficient foot clearance,
to constraining the velocities, to constraining final parameterized time: τmax .

Synchronizing with music. The particular method employed to synchronize the
behaviors of the robot with the music is to utilize the parameterization of time (5)
to change the hip position of the robot within a prespecified tempo period. Since τ

is a direct function of the hip position, a change in τ causes a corresponding change
in desired trajectories of the robot (as represented by the outputs parameterized by
τ ) resulting in synchronization between the beats of the music and the dynamic
transitions. Dynamic programming methods as described in [7] are used to generate
music tempo speed for a given song.
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BHL

FF1

FF2

FF3

FHL1

FHL2

FTL

FHL3

S1

S2

Fig. 6 Oriented graph for the meta-dynamical system considered for AMBER 2 in order to obtain
dynamic dancing

Sequence Design. To design a proper dancing sequence to the chosen music, the
tempo period ΔT , which was obtained from the beats, is utilized as the fundamental
period. For AMBER 2 dancing, each sequence input which executes the transition
from one pose to the other is given in the following format:

S = {α, τmax , ndance, m0, m1, n f reeze,Phase,Leg}, (24)

where α is the set of parameters specifying the desired trajectory. The starting pose is
specified by the time parameter,m0τmax , and the ending pose is specified bym1τmax .
Note that τmax is the maximum time parameter for current gait. ndance is the tempo
number specifying for how long AMBER 2 will transition for the current primitive,
while n f reeze denotes the tempo number specifying for how long the robot will freeze
at the end of the transition. Phase ∈ {SS,DS} indicates the current phase of the robot,
and Leg ∈ {Left,Right} determines which leg is the stance leg.
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Algorithm 1 Real Time Module
Input: Encoder/motor status; AMBER 2 parameters: calf length Lc, thigh length Lt ;
Input: Optimization parameters: δphip(θ+), νhip, α;
Input: Joint angles and angular velocities θa, θ̇a ; PD controller gains: K p

Phase, K d
Phase;

Input: Dance sequence (see Fig. 6) in (α, τmax , ndance, m0, m1, n f reeze , Phase, Leg);
Output: Torque commands for FOC;
1: Enable Motor Drives;
2: repeat
3: Wait till all motor drives are Enabled
4: until ( Drive-Status == Enable )
5: while ( ¬ Stop-RT ) do
6: Based on specified stance foot, reform θa, θ̇a from Left/Right to Stance/NonStance;
7: Read absolute real time t and sequenceIndex;
8: if 0 ≤ t ≤ Tdancendance then
9: if m1 > m0 then

10: τd = m0τmax + τmax
t

Tdancendance
;

11: else
12: τd = m0τmax − τmax

t

Tdancendance
;

13: end if
14: else
15: τd = m1τmax ;
16: end if
17: Based on τd , calculate (ξPhase) using one of (7) or (12);
18: Calculate yd

Phase(τd , α), ẏd
Phase(τd , α) based on Canonical Walking Function (4);

19: Calculate vdance based on the time duration Tdance;
20: Based on Phase, apply trajectory reconstruction to get (θd , θ̇d ) with updated vdance;
21: Based on Phase, compute torque by choosing one of (10) or (14);
22: Reform torque u from Stance/NonStance to Left/Right and send it to FPGA;
23: if t ≥ Twalk + T f reeze then
24: sequenceIndex +1;
25: Reset time clock;
26: end if
27: Log Data into Remote Desktop;
28: end while
29: Disable motor drives; Report errors and stop the Real Time VI;

The desired angles and velocities are obtained from (9) for SS, and (13) for DS
with the time parameter τ being manually varied from m0τmax to m1τmax during the
period Tdance = ndanceΔT seconds. It is important to note here, since the dancing
duration Tdance is specified differently than the original time duration, the transition
speed changes. Accordingly, the hip velocity should also be scaled as:

vdance = Tdanceνhip/((m1 − m0)τmax ), (25)

with νhip is the designed hip velocity encoded in the motion primitive α. To obtain
the torque controller used in the robot, νhip in (9) and (13) is replaced with vdance and
the desired angles, velocities are accordingly computed. Having the desired angle
and velocity of the robot, the torque controller is obtained from (10) or (14) based on
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Fig. 7 Experimental realization of the meta-dynamical system on AMBER 2, resulting in dynamic
robotic dancing (which can be viewed at [1])

the value of Phase given by the sequence S. At the end of each sequence, the robot
can also be frozen for the time T f reeze = n f reezeΔT seconds. More details about
the algorithm used is shown in Algorithm 1.

Control Implementation and Results. On the hardware level, the controller for
AMBER 2 is implemented on two levels: a high level controller, which is realized
in Real-Time (RT) with the pseudocode running in RT as shown in Algorithm 1;
and a low level controller, which is realized by an FPGA for interfacing with the
hardware modules. Implementing the proposed algorithm in the robot resulted in
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Fig. 8 Experimental data comparing the actual and desired angles for a sequence of steps extracted
from a part of the dance sequence as realized on AMBER 2. The vertical dashed lines indicate end
points of the transitions

dynamically stable dancing accurately synchronized with the tempo of the music.
Figure8 shows the comparison between desired and joint angle trajectories, Fig. 7
shows the configuration of the robot at different instances of time during the dance
sequence. The video of AMBER 2 dancing is shown in [1].

5 Conclusions

This paper successfully showed how to achieve dynamically stable dancing in the
bipedal robot AMBER 2 which is accurately synchronized with the music. The
dance sequence is seen as a composition of motion behaviors with different poses
and transitions tied together in the form of a meta-dynamical system. The dance
was about 1.5min long showing 10 poses and 20 transitions from one to the other.
Tracking results also verified the method used. Future work involves implementing
more complex behaviors like the underactuation, flips and flying behaviors, using
different surfaces and terrains, and also music with varying tempo.
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The Lion and Man Game on Convex Terrains

Narges Noori and Volkan Isler

Abstract We study the lion-and-man game in which a lion (the pursuer) tries to
capture a man (the evader). The players have equal speed and they can observe each
other at all times. In this paper, we study the game on surfaces of convex terrains.
We show that the lion can capture the man in finite number of steps determined by
the terrain geometry.

1 Introduction

Pursuit-evasion problems have been receiving increasing attention in the robotics
community. Many applications that include a search mission for a target can be
modeled as pursuit-evasion games. Interesting representative applications are search-
and-rescue, security, and environmental monitoring. In this paper, we study a fun-
damental pursuit-evasion game known as the lion-and-man game. In this game, the
lion’s goal is to capture the man while the man’s goal is to avoid capture forever.
This problem has been traditionally studied in graph settings or in geometric setups
on the plane [1]. It has been shown that a single lion can capture the man in a cir-
cular arena when the players take turns in moving and moreover when they have
complete information about the location of each other [2, 3]. This result has been
generalized to simply connected polygons in [4] where it is shown that a single lion
can still achieve capture. In more complex setups where obstacles are also present in
the polygonal environment, three lions can win the game [5]. Other results are also
available for the case that the players have limited sensing [4, 6, 7].

Although the game in higher dimensions is relevant from an application perspec-
tive, little is known about its properties in such environments. Kopparty and Ravis-
hankar showed that d + 1 lions can capture the man in R

d if and only if the man
starts inside their convex hull [8]. Alexander et al. [9] showed that if the environment
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has non-positive curvature (i.e. it is CAT(0)), the lion can eventually capture the man
by greedily moving toward the man. Recently Klein and Suri [10] showed that four
lions can capture the man on a polyhedral surface. When the polyhedral surface has
boundary, Noori and Isler [11] showed that three lions can win the game under the
condition that the capture radius is greater than zero. One question that remains open
is whether one or two lions can capture the man on a terrain which is a special class
of polyhedral surfaces with boundary. In this paper, we study the game on convex
terrains and show that one lion can catch the man. Notice that there are convex ter-
rains that are not CAT(0) but still a single pursuer can capture the evader in them.
An example is a hemisphere [9].

A terrain is obtained by assigning a single height value to each point in a bounded
region of a plane in R

2. Our pursuit strategy is based on guarding wavefronts and
pushing them towards the evader. A wavefront at height z is defined as the set of
points on the terrain that are on the same height z. We first discretize the terrain
by a set of wavefronts. The pursuer starts from the highest wavefront and pushes
the frontier wavefront downwards while preventing the evader from entering any
previously guarded wavefront. Intuitively, the perimeter of the frontier wavefront
is increased in this downward sweep. This allows the pursuer to use the difference
between the perimeter of two consecutive wavefronts in order to make progress. In
this paper, we formalize this idea and analyze its correctness.

The paper is organized as follows. In Sect. 2 we present the preliminary definitions
we use throughout the paper. An overview of the proposed strategy is presented in
Sect. 3. The discretization of the terrain intowavefronts is explained in Sect. 4.Details
of the pursuer strategy for guarding the current wavefront and making progress to
the next wavefront are presented in Sects. 5 and 6 respectively. We present the details
of correctness proofs in [12].

2 Preliminaries

In this section, we present concepts and definitions that will be useful throughout the
paper. The game will take place on the surface of a convex terrain which is defined as
follows. A terrain is a polyhedral surface in R3 given by a finite set of points which
we call them vertices of the terrain. The vertices are triangulated which implies that
the faces of the terrain are triangles. Each vertex of a terrain has a single height
value associated with it, i.e. terrains are height maps [13]. To make the presentation
easier, we assume that all terrain vertices are at different heights which is attainable
by slightly perturbing the height function. This will be relevant in Sect. 4 where we
construct the set of wavefronts. A convex terrain is a terrain with a convex height
function. Finally, we refer to the common segment between two adjacent faces as an
edge of the terrain.

We refer to the two-dimensional plane with the lowest height, i.e. the z = 0 plane,
as the base plane. We occasionally refer to this plane as the XY -plane. Moreover,
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we use the coordinate frame XY Z with its origin placed on any arbitrary point in the
base XY -plane (Fig. 1).

The game is played on the surface of a convex terrain excluding the XY -plane at
the base. This surface is denoted by T . The set of points on T with z = 0 are referred
to as the boundary of T . The perimeter of this boundary is denoted by |T |. We denote
a specific path between p1, p2 ∈ T by T (p1, p2). We also use the operator + for
concatenating two paths e.g. T (p1, p3) = T (p1, p2) + T (p2, p3).

2.1 Game Model

We use the following game model. We denote the location of the pursuer and the
evader byP and E respectively. The playersmove in turns. Each turn takes a unit time
step. In each turn, the players can move along any arbitrary path of length less than
or equal to one (the step-size). The pursuer and the evader both have full-visibility:
they can observe the location of the other player. The pursuer captures the evader if
at any time,1 the length of the shortest path between them, which lies on T , becomes
less than or equal to one (the step-size). The justification for this capture condition
is that if we assume non-zero area for the players (contrary to the point model), the
pursuer captures the evader if they collide.

2.2 Wavefront, Projection and Image

We now present some important concepts that we will use in our strategy.

Definition 1 (The Perpendicular Image and Pre-Image) For a point p = (x, y, z)
on T , the point q = (x, y) is called the perpendicular image of p onto the base plane.
Also, p is called the pre-image of q. Similarly, one can define the image (pre-image)
of a path on T (on the XY -plane).

Note that we reserve the term projection for an important ingredient of our strategy
which we will present shortly. We have the following useful proposition.

Proposition 1 The pre-image of any continuous path in the XY -plane is a contin-
uous path on T .

Definition 2 Let p1 and p2 be two distinct points which are on the same face f
of T . Consider the straight line segment that connects them on T , and denote its
length by L . Also, let l be the length of its perpendicular image. We refer to the ratio
α(p1, p2) = l

L as the length coefficient associated with p1 and p2.

1This includes the entire time interval in one step.
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Fig. 1 a Discretization of T by a set of wavefronts. b The partitioning of the exterior of W i into
wedge regions and edge regions. c The projection of E onto the wavefront W . Here, p1 and p2 are
the projections of E1 and E2 respectively

The length coefficient α(p1, p2) is in fact the cosine of the angle between the
segment p1 p2 and the XY -plane. Notice that the largest possible value of this angle
is the angle between the face f and the XY -plane. Therefore, the minimum length
coefficient is well defined in the sense that it is a finite positive number. This is
because faces with vertical edges are not allowed, and also the two points p1 and p2
are distinct.

Proposition 2 The length coefficients are positive and less than or equal to one, i.e.
0 < α(p1, p2) ≤ 1. We refer to the minimum possible length coefficient on T as
α = min f ∈T minp1,p2∈ f α(p1, p2).

Lemma 1 Let p1 and p2 be two distinct points on T . Let s be the shortest path
between p1 and p2 on T . Denote the length of s and its image by aT and a respectively.
Then aT ≤ a

α
.

Proof Let f1, f2, · · · , fk be the sequence of faces that s passes through. Observe
that the portion of s which is on fi is a line segment (because otherwise, s can be
shortened by taking the line segment between the entry and the exit points of fi ).
Let si denote the line segment on fi . Denote the length of si and its image by aT,i

and ai respectively. Then, aT = ∑
i aT,i and a = ∑

i ai . By Proposition 2, we have
aT,i ≤ ai

α
. Therefore,

∑
i aT,i ≤ ∑

i
ai
α
. Thus, aT ≤ a

α
. �

We next present an important ingredient of our strategy: the wavefronts.

Definition 3 (Wavefronts) We refer to the set of points on T which are on the same
height z as the wavefront at z. Throughout the paper, we reserve the letter W for the
wavefronts.

Observe that thewavefront at height z is the intersection of T with the plane Z = z
which are both convex sets. Therefore, wavefronts are also convex polygons. Also,
the image of a wavefront in the XY -plane is obtained by taking the perpendicular
image of every point of the wavefront.
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Definition 4 Let p1, p2 ∈ W be two points on the wavefront W . We denote the
shorter path from p1 to p2 along W by W (p1, p2), and its length by dW (p1, p2). We
also denote the length of the segment pi

1 pi
2 in the XY -plane by dXY (p1, p2).

Let W i be the perpendicular image of a wavefront W . We partition the region out-
side W i (in the base plane) into regions of two types: the edge regions and the wedge
regions as follows. Suppose that the vertices of W i are labeled as {w1, w2, ..., wn}
in the clockwise order. See Fig. 1b for an illustration. Let l1j and l2j be the two per-
pendicular lines to edges w j−1w j and w jw j+1 which are drawn from w j .

Definition 5 (Wedge Regions and Edge Regions) For an edge w jw j+1, its corre-
sponding edge region is the region in between l2j and l1j+1. For a vertex w j ∈ W i ,

its corresponding wedge region is the region in between l1j and l2j . Notice that these
regions are non-overlapping since W is a convex polygon.

We use the following feature of T to provide the capture time of our strategy:

Definition 6 (Wedge Angle) For a given wavefront vertex w j , the wedge angle is
defined as the angle between l1j and l2j in the base plane.

We are now ready for presenting the key concept in guarding the wavefronts:
the projection of the evader onto a wavefront. Let E i and W i be the perpendicular
images of E and a wavefront W onto the XY -plane respectively. Also, suppose that
E i is outside the region enclosed by W i . The projection of E onto the wavefront W
is defined as follows.

Definition 7 (Projection onto a Wavefront) Consider the partitioning of the exterior
region of W into wedge regions and edge regions. See Fig. 1b. There will be two
cases based on the location of E i : 1) E i is inside the edge region associated with an
edge w jw j+1 (e.g. E i

1); 2) E i is inside the wedge region of a vertex w j (e.g. E i
2). In

the first case, let p denote the intersection of the edgew jw j+1 and the perpendicular
line to the edge w jw j+1 which passes through E i . In the second case, let p denote
the vertex w j . Then, the projection of E onto W is the pre-image of p on T (Fig. 1c).
We denote this point on T as π(E, W ).

Remark 1 Notice that the perpendicular image in Definition 1 is different from the
projection onto a wavefront in Definition 7. For a point p ∈ T , its image is denoted
by pi while its projection onto W is denoted by π(p, W ).

3 Overview

The idea of our pursuit strategy is the following. We first discretize the surface of T
by a set of wavefronts (Sect. 4). Initially, the pursuer goes to the highest point of T .
(In this paper we assume that this point is unique. It is not too difficult to show that
our strategy is applicable if there are more than one point with the same height.).
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The highest point is in fact the first wavefront in the set of wavefronts. The pursuer’s
strategy has two components: (1) guarding the current wavefront in order to prevent
the evader from crossing it without being captured, (2) making progress by moving
to the next wavefront.

Definition 8 We refer to the wavefront that the pursuer is currently guarding as the
frontier wavefront. Throughout the paper, we denote the frontier wavefront by W
and the wavefront right below it by Wn .

We achieve these two goals as follows. We consider the images of the wavefronts
in the XY -plane (Fig. 3b).Meanwhile we use the images of the players and projection
of the evader onto wavefronts to transform the game to the base plane and guide the
pursuer’s strategy on T (Fig. 1c). In order to guard the current wavefront W , the
pursuer uses the projection of the evader onto W because the projection has the nice
property that it is closer to all points on W than the evader.

Therefore, if we place the pursuer on the projection of the evader, then the evader
cannot crossW without being captured (Lemma11).Although locatingP atπ(E, W )

accomplishes our guarding goal, it makes it difficult to achieve the progress goal as
follows. Suppose that the evader is in an edge region and let l be the corresponding
edge in W . See Fig. 2a. The evader can make it impossible for the pursuer to make
progress by using the following strategy. The evader moves back and forth between
e1 and e2 such that ei

1ei
2 is parallel to l. In response, the pursuer has to move between

p1 and p2 (the projection of e1 and e2 respectively) to stick to its strategy of staying
on the projection of the evader. Since the segment ei

1ei
2 is parallel to l and also because

the length of ei
1ei

2 can be one, the length of p1 p2 is one. Consequently, the pursuer
has to use all of its one unit of motion for guarding W : Nothing is left for it to make
progress and move to Wn . The evader can repeat this for infinitely many steps, and
thus it can escape forever against the pursuit strategy of staying on the projection.

We resolve the aforementioned problembyplacing the pursuer “close” toπ(E, W )

instead of “exactly” at π(E, W ). In particular, we place the pursuer on W at distance
dπ > 0 from the projection of the evader onto W (to the left side of π(E, W )). For
example in Fig. 2a, if the evader is at e1 the pursuer is located at p instead of p1.
Under certain conditions on dπ , the pursuer can still prevent the evader from crossing
W . The pursuer can accomplish even more by making progress to the next wavefront

e2
e1

p

W

W
(a) (b)

n

p1

p2

l

dπ

e2
e1

pW
Wn p1

l

dπ

Fig. 2 a The projection of e1 and e2 onto W are p1 and p2 respectively. b Progress in rook strategy



The Lion and Man Game on Convex Terrains 449

in certain events such as when the evader moves to the left (Fig. 2b). We refer to this
idea as the rook strategy. We present the details of guard and progress components of
the strategy in Sects. 5 and 6 respectively. Our main effort in this paper is dedicated
to providing the necessary conditions on dπ .

Finally, our pursuit strategy has another design parameter in addition to dπ : the
discretization distance D which is the distance between two consecutive wavefronts
(we will define the distance between two wavefronts in Sect. 4). We show that dπ

and D must satisfy constraints that are functions of the terrain geometry (Lemma 3,
Sect. 6.1, Lemmas 5 and 7).

4 Wavefronts

We now study the discretization of T onto wavefronts. To do so, we move a plane
which is parallel to the XY -plane downwards along the z direction starting from the
highest point of the terrain. Notice that this plane is moved continuously. We then
look at the images of the corresponding wavefronts in the XY -plane.

We show that the changes in the combinatorial structure of these images occur
at the vertices of T . We refer to these changes as the discrete events. The set of
wavefronts is then determined with regard to these discrete events.

In particular, before encountering a vertex two consecutive wavefronts are poly-
gons that are similar to each other. Here, by similar we mean the following. Let
W1 and W2 be two wavefronts such that there is no terrain vertex in between them
(Fig. 3a). Then W i

2 is obtained from W i
1 by shifting all the edges of W i

1 in paral-
lel. The shifting amount can be different for each edge (Fig. 3). When the frontier

w1

w2

v
f1 f2

f3

f4

f5

(a) (b)

Fig. 3 a A vertex event at v: The edge associated with face f4 disappears. Then a new edge
associated with f3 appears. b The image of the wavefronts is shown
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Fig. 4 a W1 and W2 on T . b Their images

reaches a vertex in T , we still have this parallel shifting pattern. However, some
edges disappear from the frontier, and then new edges appear as the frontier passes
the vertex (Fig. 3). We now formalize these events as follows.

Consider the wavefront W at height z and let F(z) denote the set of faces that
intersect W . We use F(W ) to denote the same set of edges if W is clear from the
context. Also, let w be an edge in W which lies on the face f ∈ F(z) (Fig. 3a). We
refer to w as the edge in W which is associated with the face f . Now, as W is moved
downwards, there can be no vertex on its way (no vertex event), or it will encounter
a vertex (vertex events).

No vertex event: Let W1 and W2 be two wavefronts at heights z + ε (ε > 0) and
z respectively such that F(z) = F(z + ε) = F (Fig. 4a). In other words, there is no
vertex in T at height between z and z + ε. Let f be a face in F , and let w1 and w2
be the two edges in W1 and W2 respectively that are associated with f . Then, the
images of w1 and w2 in the XY -plane are parallel to each other (Fig. 4b). Moreover,
this observation is true for all edges of W1 and W2.

Disappearing and appearing vertex events: Let v be a vertex of T which is at
height z, and let W be the wavefront at z. Notice that if there are multiple vertices
at the same height, we have multiple vertex events at the same time, one for each
vertex. The argument below is still valid in this case.

Let Wu be thewavefront at z+ε1 (ε1 > 0) such that for heights h in z < h ≤ z+ε1
we have F(z+ε1) = F(h) = U (Fig. 5a). Next, denote the two faces that are adjacent
to v in W by f1 and f2 (Fig. 5a). Let U ′ be the subset of U which is adjacent to v

excluding f1 and f2 (U ′ ⊂ U − { f1, f2}). Then, as the frontier wavefront moves
from z + ε1 to z, the edges in W i

u that are associated with U ′ disappear in W i . See
Fig. 5b . We refer to this event as the disappearing vertex event.

Similarly, let Wl be the wavefront at z − ε2 (ε2 > 0) such that for heights h in
z − ε2 ≤ h < z we have F(z − ε2) = F(h) = L . Let L ′ ⊂ L −{ f1, f2} be the set of
faces that are adjacent to v excluding f1 and f2 (Fig. 5). Then, as the frontier moves
from z to z − ε2 new edges associated with L ′ appear in W i

l . We refer to this event
as the appearing vertex event.
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Fig. 5 a The surface T . b The XY -plane

The following Definition will be useful later when we define the distance between
two wavefronts.

Definition 9 (The closing and opening wavefront vertices) Consider the portion of
Wu that intersects U ′ (Fig. 5). We denote the two wavefront vertices on Wu that
enclose this portion by c1 and c2. We also refer to them as the closing vertices.
Similarly, o1 and o2, the opening vertices, are defined on Wl .

Now that we have the discrete events, we are ready to define the distance between
two consecutive wavefronts.

Distance Between Two Wavefronts: The distance between two consecutive
wavefronts W and Wn , which is denoted by d(W, Wn), is defined as follows for
each of the three types of transitions between W and Wn :

No vertex event: Let us denote the image of the wavefront vertices in W
by {w1, w2, · · · , wk}. Similarly, denote the vertices in Wn by {w′

1, w
′
2, · · · , w′

k}
(Fig. 6a). Then, d(W, Wn) is defined as 1

α
max1≤ j≤k w jw

′
j .

Appearing vertex event: See Fig. 6b. We define an auxiliary polygon in the XY -
plane based on the image of Wn . Let us denote this new polygon by Wa . Then Wa

is obtained by taking the extension of the two edges in Wn that are adjacent to o1

w1

w2
wk

w1

w2

wk

W i

W i
n

oi
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vi

wn

W i

W i
n

ci
1 ci

2
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n

(a) (b) (c)

Fig. 6 Images of W and Wn are shown in the base plane. a No vertex event. b Appearing vertex
event. The appearing edges on W i

n are shown in thicker line. c Disappearing vertex event
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and o2. Let vn be the intersection of these two extension lines. Then, d(W, Wn) is
defined as the maximum of d(W, Wa) (from the previous no vertex event definition)
and 1

α
max(vi oi

1, v
i oi

2).
Disappearing vertex event: See Fig. 6c. Similar to the no vertex event case, let wi

and w′
i denote the rest of the wavefront vertices on W and Wn respectively. Then,

d(W, Wn) is defined as the maximum of 1
α
max(vi ci

1, v
i ci

2) and
1
α
max1≤ j≤k w jw

′
j .

We are now ready to present the discretization of T by wavefronts.
Discretization of T by the Wavefronts: In order to discretize T , we need the

discretization distance D as the input parameter. For a given value of D, we can
choose the wavefronts on T such that the distance between any two consecutive
wavefronts is at most D.

Specifically, the procedure for obtaining the wavefronts is the following. We add
the highest point as the first wavefront. Starting from this first wavefront, we move
downwards until the wavefront distance is D or we reach a terrain vertex. We then
add the wavefront at this height as the second wavefront. We continue with this
procedure until we reach the XY -plane and the surface of T is completely swept.

In our strategy we use the following property:

Lemma 2 (Distance between projections onto two consecutive wavefronts) Let W
and Wn be two consecutive wavefronts and e be a point outside Wn. The distance
between p1, the image of the projection of e onto W , and p2, the image of the
projection of e onto Wn, is less than D where D is the maximum distance between
any two wavefronts in the XY -plane.

Proof The point e can be in an edge region or a wedge region of the wavefront W .
In each case, we show that the distance between p1 and p2 is less than D (Lemmas 8
and 9). �

5 Guarding Wavefronts

In this section we present the pursuer’s strategy for guarding the current wavefront
W . The pursuer locates itself on W at distance dπ > 0 along W away from the
projection of the evader onto W . In order to prevent the evader from crossing W ,
the distance dπ must satisfy a constraint that we present in this section. We call this
configuration for guarding W the rook configuration which we formalize as follows.
Suppose that the evader is outside the region enclosed by W (i.e. the evader is below
W ). Also, suppose that the pursuer is on the wavefront W . Consider the projection
of E onto W which is denoted by π(E, W ).

Definition 10 (The Rook Configuration on T ) The pursuer on the wavefront W is
in rook configuration if dπ = dW (P, π(E, W )) ≤ α

2 where α is the minimum length
coefficient. Figure7a depicts an illustration (See Definition 4 and Proposition 2 for
dW and α respectively.).
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Fig. 7 Proof of Lemma 3. a The players are shown on T along with their images on the base plane.
b The images in the base plane. c If dπ < h, the evader cannot cross W without capture

In the following, we first show that when the pursuer is in the rook configuration,
it can capture the evader if it tries to cross the wavefront W (Lemma 3). We then
show that once the pursuer establishes the rook configuration on the frontier W , it
can maintain it afterwards as the evader moves (Lemma 4).

Lemma 3 Suppose that the pursuer is on the wavefront W in rook configuration
(i.e. at distance dπ ≤ α

2 along W away from the projection of E). Then, the evader
cannot cross W without being captured.

Proof Our proof has two parts. First, we show that the condition dπ ≤ α
2 implies that

either the evader is already captured or dπ is less than the shortest distance between
the evader and the wavefront W . We use this result in the second part of the proof
and show that the pursuer can capture E if it tries to cross W .

First part: We would like to show that if dπ ≤ α
2 , then either we have capture

or the distance between the evader and W is at least dπ . We first introduce a lower
bound on the distance between E and W . We then show that this lower bound is more
than dπ .

To find the lower bound, we take another step to find another lower bound in the
base plane. We connect this lower bound in the base plane to the lower bound on
T by means of Lemma 1 and Proposition 2. Consider the image of E and W in the
base plane (Fig. 7a). In the base plane, we know that the image of the projection
of the evader onto W (i.e. π i (E, W )) is the closest point on W i to the image of E
(Lemma 11). Notice that the shortest path between E i and π i (E, W ) is a line segment
(since T is convex). Let us denote the length of this shortest path by h. Thus, all paths
in the base plane are longer than h, and the length of the pre-image of each path in the
base-plane is more than the length of its image. Therefore, all paths on T between
P and E are longer than h.

We now show that h > dπ . To do so, we consider the triangle between the
image of E , the image of P and the image of the projection of the evader onto W
in the base plane, and we use the triangle inequality as follows. See Fig. 7b. Let
a denote the length of the segment between E i and P i in the base plane and aT
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denote the length of its pre-image on T . Similarly, let m denote the length of the
segment between P i and the image of the projection of the evader. If aT ≤ 1, the
evader is already captured. Therefore, suppose that aT > 1. Thus, a > α (Lemma 1).
According to triangle inequalitywe havem+h ≥ a.We also have dπ ≥ m. Therefore
dπ + h ≥ m + h ≥ a. Together with a > α we have dπ + h > α. Now if α

2 ≥ dπ ,
we conclude that h > α − dπ ≥ α

2 . Thus h > α
2 and hence h > dπ . To recap, the

shortest distance between the evader and the wavefront is at least h and h is more
than dπ . Thus, dπ is a lower bound for the shortest distance between P and E .

Second part: We next show that if the evader crosses W it will be captured by
the pursuer. We show that there exists a path on T from the pursuer to the evader
which is shorter than two. Therefore, the pursuer can capture the evader by moving
along this path for one unit (at the end of this move the distance between the players
is less than step size and hence we have capture). Suppose that the evader moves
from e1 to e2 and crosses W at point q. Let us denote the length of the evader path
from e1 to q by l1. Similarly, let l2 be the length of the evader path from q to e2.
Thus l1 + l2 ≤ 1. See Fig. 7c. We show that the length of the path composed of
W (P, q) and the evader path from q to e2 is less than 2. Let us denote the length
of this path by l p. Notice that l p = dπ + le + l2 where le is the distance between
the projection of the evader onto W and q along W (Fig. 7c). From the first part of
the proof we know that dπ ≤ l1. Also, according to Lemma 11 we have le ≤ l1.
Therefore, l p = dπ + le + l2 ≤ l1 + l1 + l2 ≤ 1+1. Thus, at the end of the pursuer’s
turn the distance between the players is less than the step size. �

Finally, we show that the pursuer can keep up staying close to the projection of
the evader onto W as the evader moves.

Lemma 4 The distance that the projection of the evader onto W travels is less than
the distance that the evader travels.

Proof Consider the partitioning the region outside W i into the wedge regions and
the edge regions (Fig. 1b). The distance that the evader travels in each region is more
than the distance that its projection onto W travels. �

6 Making Progress

We now focus on the pursuer’s strategy for making progress towards the next wave-
front Wn which is based on the motion of the evader.

Remark 2 Without loss of generality, we assume that the pursuer establishes the rook
configuration by locating itself to the left of π(E, W ). We then use the clockwise
direction, as the base direction for classifying the evader’s motion.

The evader’s motion can be categorized into three types of events: (1) the evader
does not move in its current turn, (2) the evader moves in the counter clock-wise
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direction in its current turn, (3) the evader moves in the clock-wise direction for the
next O(N ) steps where N is finite and we will specify it later in Sect. 6.3. In all of
these events, we show that the pursuer can move to the projection of the evader onto
the next wavefront Wn (π(E, Wn)). After moving to π(E, Wn), the pursuer needs
only one extra step to locate itself in the rook configuration i.e. at distance dπ away
from π(E, Wn). The pursuer repetitively applies this strategy to make progress to the
next wavefront. Therefore, the evader will be captured in finite number of steps.

The key property that we incorporate in order to show that the pursuer can move
to the projection of the evader onto the next wavefront is that for all points e the
distance between the projection of e onto two consecutive wavefronts is less than the
distance between the wavefronts themselves (Lemma 2).

The result of our paper is the following theorem.

Theorem 1 (Capture onConvexTerrains) Our proposed pursuit strategy guarantees
capture in finite number of steps. Specifically, the pursuer captures the evader in
O(( DT

D + n).
|T |

1−dπ−D ) where n is the number of vertices on T , |T | denotes the
perimeter of T , DT is the diagonal of T , dπ is the rook configuration distance, and
D is the distance between wavefronts.

Proof In Lemma 6 we show that N = |T |
1−dπ−D . Therefore, after at most N =

|T |
1−dπ−D steps, the pursuer can move from W to Wn and update W to Wn . The
distance between two consecutive wavefronts is D or less than D when we have a
vertex in between them (according to the construction phase). Thus, we have at most
DT
D + n wavefronts. Hence, the capture time is O(( DT

D + n).
|T |

1−dπ−D ). �

6.1 Making Progress When the Evader Stays Still

In this section, we consider the case that the evader remains still in its turn. The
pursuer uses this extra step in order to make progress towards the next wavefront.
The key idea is that the distance between the projection of E onto two consecutive
wavefronts W and Wn is at most D (Lemma 2). Therefore, the distance between
the pursuer and the projection of the evader onto Wn is at most dπ + D. This is
because the pursuer is guarding W in the rook configuration and thus away from the
projection of E onto W for dπ . Consequently, dπ and D can be chosen small enough
such that the pursuer can move to the projection of E onto the next wavefront in one
step.

As a result, if we design dπ and D such that dπ + D ≤ 1 the pursuer can move
to the new projection of the evader in only one step.



456 N. Noori and V. Isler

π(En)i

π(E)i
Pi

E i

E i
n

W i

W i
n

Fig. 8 The evader moves counter clockwise

6.2 The Evader Moves Counter Clock-wise

We now consider the case that the evader is moving in counter clock-wise direction
in the current time-step. Similar to Sect. 6.1 we use the observation that the distance
between the projection of any point onto two consecutive wavefronts is at most D
(Lemma 2). Therefore, the pursuer can move to π(En, W ) along W and then from
there it can go to π(En, Wn) in only one step (Fig. 8) if dπ and D are designed
properly.

Lemma 5 Suppose that the evader moves counter clock-wise in its turn. Then, if
we design dπ and D such that max(dπ , 1 − dπ ) + D ≤ 1, the pursuer can move to
π(En, Wn) in one step.

Proof Consider the projection of En onto W : it can be to the left or to the right of P
(Fig. 8). Therefore, the distance betweenP andπ(En, W ) is at mostmax(dπ , 1−dπ ).
The distance between π(En, W ) and π(En, Wn) is at most D (Lemma 2). Thus, dπ

and D must satisfy: max(dπ , 1 − dπ ) + D ≤ 1. �

6.3 The Evader Moves in Clock-Wise Direction for O(N) Steps

Wenow consider the case that the evader is moving in the clock-wise direction for the
next O(N ) where N is chosen such that after N steps it is guaranteed that either: (1)
we have a time step such that the evader has to stay still ormove counter-clockwise, or
(2) the projection of the evader onto the current wavefront W circumnavigates around
W for a complete round. In other words, if E moves clock-wise for N steps, π(E, W )

will come back to the same point on W . Notice that if in one of these O(N ) steps, the
evader stays still or moves counter clock-wise, then the pursuer can use the strategy
in Sects. 6.1 and 6.2 for making progress towards Wn . Therefore, we can assume that
during the next O(N ) the evader is moving clockwise. In this case, we show that the
pursuer can make progress as follows. Since π(E, W ) circumnavigates around W ,
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Fig. 9 The pursuer can make progress as the evader crosses a wedge region

the evader crosses the wedge region of a wavefront vertex w ∈ W (Fig. 9). We show
that by properly selecting dπ and D the pursuer can move to the projection of the
evader onto the next wavefront Wn in one step. Intuitively, as the evader crosses the
wedge region of w its projection onto W remains fixed i.e. w. Therefore, the pursuer
does not need to move along W to maintain the rook configuration (which is staying
close to the projection of the evader onto W ). Instead, the pursuer moves toward the
next wavefront Wn by moving to π(E, Wn). In the following, we first compute N
and then we present the condition on dπ and D for making progress.

We now compute the number of steps N that are required for moving clock-wise
such that the projection of E onto W circumnavigates around W for a complete round.
In other words, if E moves clock-wise for N steps, π(E, W ) will come back to the
same point on W .

Lemma 6 Consider the next O(N ) steps where N = |T |
1−dπ−D ) and |T | denotes the

perimeter of the boundary of T (Assume that dπ + D < 1.). Then, we will have
at least one of the following events in these O(

|T |
1−dπ−D ) steps: (1) for at least one

turn E does not move, or (2) it moves counter clock-wise, or (3) E circumnavigates
around W i.e. π(E, W ) comes back to the same point on W .

Proof Suppose that we don’t have none of the the first and the second events.
We show that for sure we will have the third event. Since the first and the
second events did not occur, the evader is moving clock-wise. Let E and En

denote the location of the evader before and after a turn. For simplicity let us use
the notations de = dW (π(E, W ), π(En, W )) and dπ = dW (P, π(E, W )). Con-
sider the path T (P, π(En, Wn)) = W (P, π(E, W )) + W (π(E, W ), π(En, W )) +
T (π(En, W ), π(En, Wn)). The length of this path is dπ + de + D. Let us denote
this length by dp. There will be two case: (1) dp ≤ 1, (2) dp > 1. In the first
case, if dp ≤ 1, the pursuer can move to π(En, Wn) and make progress to the next
wavefront Wn .

In the second casewe have 1 < dp = dπ +de+D. Consequently, 1−dπ −D < de.
In this case, the evader’s projection onto W moves for at least 1−dπ − D. Notice that
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the perimeter of W is atmost |T | since the boundary of T and W are convex polygons.
Therefore, after at most |T |

1−dπ−D steps, π(E, W ) comes back to the same point on W .
Notice that here the following condition is required: 0 < 1−dπ − D ⇒ dπ + D < 1.

�

Next, we show that if π(E, W ) circumnavigates around W , the pursuer can make
progress to the next wavefront Wn by moving to π(E, Wn).

Lemma 7 Suppose that the evader moves in the same direction (clockwise) such
that its projection onto W comes back to the same point on W . Then, if dπ and D
satisfy the following inequality the pursuer can move to the projection of the evader
onto the next wavefront Wn: dπ + D ≤ (α − dπ ) sin γ where γ is the wedge angle
(Definition 6) in T with minimum sin γ and α is the minimum length coefficient
(Proposition 2).

Proof Since the projection of the evader onto W circumnavigates for a complete
round around W , the evader crosses the wedge region of a wavefront vertex w ∈ W .
Let us denote the image of the evader in the base plane by e1 and e2 as it crosses the
corresponding wedge region (Fig. 9). In the following, we first find a lower bound
on the length of the evader path e1e2. We then show that there is path between the
pursuer and the projection of e2 onto Wn of length at most dπ + D. By choosing
dπ and D such that dπ + D is less than the lower bound on the length of the evader
path e1e2 we ensure that the pursuer can move to π(e2, Wn) and thus make progress
to Wn .

We now present the lower bound on the length of the evader path e1e2. Consider
the segment in between the images of P and e1 in the base plane. Since T is convex
and also according to Proposition 1, the pre-image of this segment is a valid path on
T . Let us denote the length of this path on T from P to e1 by aT . Also, let a be the
length of the image of this path (the segment in the base plane). Since the evader is
not captured, it must be that 1 < aT . Therefore, α < a (Lemma 1). Next, let h be the
length of the segment e1wi in the base plane, and de be the length of the evader path
T (e1, e2). Notice that the pursuer is in the rook configuration. Thus, the distance
dW (P, w) = dπ . Therefore, using the triangle property, we have dπ + h ≥ a. Thus,
h ≥ α − dπ . Observe that the length of the evader path between e1 and e2 is at least
h sin γ (See Fig. 9). Therefore, de ≥ h sin γ ≥ (α − dπ ) sin γ. Therefore, the path
that the evader travels on T from e1 to e2 is longer than (α − dπ ) sin γ.

Next, we present the pursuer path to π(e2, Wn). Observe that the projection of
e1 and also e2 onto W is w. Since the pursuer is in the rook configuration on W
the distance between the pursuer and w along W is dπ . Also, the distance between
π(e2, W ) = w and π(e2, Wn) is at most D (Lemma 2). Therefore, the pursuer path
W (P, w) + T (w, π(e2, Wn)) is shorter than dπ + D. Consequently if we design dπ

and D such that dπ +D ≤ (α−dπ ) sin γ, then the pursuer pathwill be shorter than the
evader path. Therefore, we must have: dπ (1+ sin γ)+ D ≤ α sin γ ⇒ dπ < α sin γ

1+sin γ .
Hence, the pursuer can move to π(e2, Wn) as a response to evader motion from e1
to e2. �



The Lion and Man Game on Convex Terrains 459

7 Conclusion

We studied the lion andman game on convex terrains and presented a pursuit strategy
which guarantees that the pursuer can reduce the distance between the players to the
step size in finite time. The capture time is a function of the terrain’s properties such
as its height and maximum slope as well as the perimeter of its projection onto the
base plane.

One of the questions left open in this work is the optimality of this strategy. A
second research direction is to characterize terrains in which a single pursuer suffices
for capture. Even though convexity is sufficient, it is not necessary. A related question
is to compute minimum number of pursuers for a given terrain.

Appendix

Remark 1 In the following proofs, we treat the disappearing vertex event as a no
vertex event with edge length zero for the disappearing edges.

Lemma 8 Let W1 and W2 be two consecutive wavefronts, and e be a point outside
W i in the XY -plane. Suppose that e is in the edge region of an edge m1 in W1. Then,
the distance between p1, the image of the projection of e onto W1, and p2, the image
of the projection of e onto W2, is less than D where D is the maximum distance
between any two wavefronts in the XY -plane [12].

Lemma 9 Let W1 and W2 be two consecutive wavefronts, and e be a point outside
W i in the XY -plane. Suppose that e is in the wedge region of a vertex w1 in W1.
Then, the distance between p1 = wi

1, the image of the projection of e onto W1, and
p2, the image of the projection of e onto W2, is less than D where D is the maximum
distance between any two wavefronts in the XY -plane [12].

Lemma 10 Consider the image of a wavefront W in the XY -plane. Let e be a point
in the XY -plane which is outside W i . Let p be the projection of e onto W i . The line
segment ep makes two angles with W i . Then both of these angles are larger than
π
2 [12].

Lemma 11 Consider the image of a wavefront W onto the XY -plane, i.e. W i . Let
e1 be a point in the XY -plane which is outside the region enclosed by W i . Moreover,
let e denote the projection of e1 onto W i ( i.e. π(e1, W ), see Definition 7). Then, for
all points q ∈ W i , we have [12]:

• In the XY -plane, e is closer to q than e1. We show this by proving that dW (e, q) ≤
dXY (e1, q).

• In the XY -plane, e is closer to e1 than any other point q on W i . In other words,
dXY (e, e1) ≤ dXY (q, e1).
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RRTX: Real-Time Motion Planning/
Replanning for Environments
with Unpredictable Obstacles

Michael Otte and Emilio Frazzoli

Abstract We present RRTX, the first asymptotically optimal sampling-based
motion planning algorithm for real-time navigation in dynamic environments (con-
taining obstacles that unpredictably appear, disappear, andmove).Whenever obstacle
changes are observed, e.g., by onboard sensors, a graph rewiring cascade quickly
updates the search-graph and repairs its shortest-path-to-goal subtree. Both graph
and tree are built directly in the robot’s state space, respect the kinematics of the
robot, and continue to improve during navigation. RRTX is also competitive in static
environments—where it has the same amortized per iteration runtime as RRT and
RRT* Θ (log n) and is faster than RRT# ω

(
log2 n

)
. In order to achieve O (log n)

iteration time, each node maintains a set of O (log n) expected neighbors, and the
search graph maintains ε-consistency for a predefined ε.

Keywords Real-time ·Asymptotically optimal ·Graph consistency ·Motion plan-
ning · Replanning · Dynamic environments · Shortest-path

1 Introduction

Replanning algorithms find amotion plan and then repair that plan on-the-fly if/when
changes to the obstacle set are detected during navigation.We present RRTX, the first
asymptotically optimal sampling-based replanning algorithm. RRTX enables real-
time kinodynamic navigation in dynamic environments, i.e., in environments with
obstacles that unpredictably appear, move, and vanish. RRTX refines, updates, and
remodels a single graph and its shortest-path subtree over the entire duration of
navigation. Both graph and subtree exist in the robot’s state space, and the tree is
rooted at the goal state (allowing it to remain valid as the robot’s state changes during
navigation). Whenever obstacle changes are detected, e.g., via the robot’s sensors,
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Fig. 1 Dubins robot (white circle) using RRTX to move from start to goal (white square)
while repairing its shortest-path tree (light-gray) versus obstacle changes. Color is cost-to-goal.
Planned/executed paths are white/red. Obstacles are black with white outlines. Time (in seconds)
appears above each sub-figure. Tree edges are drawn (not Dubins trajectories). See http://tinyurl.
com/l53gzgd for video

rewiring operations cascade down the affected branches of the tree in order to repair
the graph and remodel the shortest-path tree (Fig. 1).

Although RRTX is designed for dynamic environments, it is also competitive in
static environments—where it is asymptotically optimal and has an expected amor-
tized per iteration runtime of Θ (log n) for graphs with n nodes. This is similar to
RRT and RRT* Θ (log n) and faster than RRT# Θ

(
log2 n

)
.

The expected Θ (log n) time is achieved, despite rewiring cascades, by using two
new graph rewiring strategies: (1) Rewiring cascades are aborted once the graph
becomes ε-consistent,1 for a predefined ε > 0. (2) Graph connectivity information

1“ε-consistency” means that the cost-to-goal stored at each node is within ε of its look-ahead cost-
to-goal, where the latter is the minimum sum of distance-to-neighbor plus neighbor’s cost-to-goal.

http://tinyurl.com/l53gzgd
http://tinyurl.com/l53gzgd
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is maintained in local neighbor sets stored at each node, and the usual edge symmetry
is allowed to be broken, i.e., the directed edge (u, w) will eventually be forgotten
by u but not by w or vice versa. In particular, node v always remembers the original
neighbors thatwere calculated upon its insertion into the search-graph.However, each
of those original neighbors will forget its connection to v once it is no longer within
an RRT*-like shrinking D-ball centered at v (with the exception that connections
within the shortest-path subtree are also remembered). This guarantees: (A) each
node maintains expected O (log n) neighbors, (B) the RRT* solution is always a
realizable sub-graph of the RRTX graph—providing an upper-bound on path length,
(C) all “edges” are remembered by at least one node. Although (1) and (2) have
obvious side-effects,2 they significantly decrease reaction time (i.e., iteration time
versus RRT# and cost propagation time versus RRT*) without hindering asymptotic
convergence to the optimal solution.

A YouTube play-list of RRTXmovies at http://tinyurl.com/l53gzgd shows RRTX

solving a variety of motion problems in different spaces [13].

1.1 Related Work

In general, RRTX differs from previous work in that it is the first asymptotically
optimal sampling-based replanning3 algorithm.

Previous sampling-based replanning algorithms (e.g., ERRT [2], DRRT [3], mul-
tipartite RRT [19], LRF [4]) are concerned with finding a feasible path. Previous
methods also delete nodes/edges whenever they are invalidated by dynamic obsta-
cles (detached subtrees/nodes/edges not in collisionmay be checked for future recon-
nection). Besides the fact that RRTX is a shortest-path planning algorithm, it also
rewires the shortest-path subtree to temporarily exclude edges/nodes that are cur-
rently in collision (if the edges/nodes cease to be in collision, then RRTX rewires
them back into the shortest-path subtree).

RRT# [1] is the only other sampling-based algorithm that uses a rewiring cas-
cade; in particular, after the cost-to-goal of an old node is decreased by the addition
of a new node. RRT# is designed for static environments (obstacle appearances,
in particular, break the algorithm). In Sect. 3 we prove that in static environments
the asymptotic expected runtime to build a graph with n nodes is Θ (n log n) for
RRTX and ω

(
n log2 n

)
for RRT#.

PRM [6] is the first asymptotically optimal sampling-based motion planning
algorithm. PRM*/RRT* [5] are the first with Θ (log n) expected per iteration time.
PRM/PRM*/RRT* assume a static environment, andRRT* uses “Lazy-propagation”

2(1) Allows graph inconsistency. (2) Prevents the practical realization of some paths.
3Replanning algorithms find a sequence of solutions to the same goal state “on-the-fly” versus an
evolving obstacle configuration and start state, and are distinct from multi-query algorithms (e.g.,
PRM [6]) and single-query algorithms (e.g., RRT [10]).

http://tinyurl.com/l53gzgd
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to spread information through an inconsistent graph (i.e., data is transferred only via
new node insertions).

D* [17], Lifelong-A* [7], and D*-Lite [8] are discrete graph replanning algo-
rithms designed to repair an A*-like solution after edge weights have changed. These
algorithms traditionally plan/replan over a grid embedded in the robot’s workspace,
and thus find geometric paths that are suboptimal with respect to the robot’s state
space—and potentially impossible to follow given its kinematics.

Any-Time SPRT [14] is an asymptotically optimal sampling-based motion plan-
ning algorithm that maintains a consistent graph; however, it assumes a static envi-
ronment and requires O (n) time per iteration.

LBT-RRT [16] is designed for static environments andmaintains a “lower-bound”
graph that returns asymptotically 1+ ε̂ “near-optimal” solutions. Note that tuning ε̂

changes the performance of LBT-RRT along the spectrum between RRT and RRT*,
while tuning ε changes the graph consistency of RRTX along the spectrum between
that of RRT* and RRT# (i.e., in static environments).

Recent work [12] prunes sampling-based roadmaps down to a sparse subgraph
spanner that maintains near-optimality while using significantly fewer nodes. This
is similar, in spirit, to how RRTX limits each nodes neighbor set to O (log n).

Feedback planners generate a continuous control policy over the state space (i.e.
instead of embedding a graph in the state space). Most feedback planners do not
consider obstacles [15, 18], while those that do [11] assume that obstacles are both
static and easily representable in the state space (sampling-based motion planning
algorithms do not).

1.2 Preliminaries

LetX denote the robot’s D-dimensional state space. X is a measurable metric space
that has finite measure. Formally, L (X ) = c, for some c < ∞ and L (·) is the
Lebesgue measure; assuming d(x1, x2) is a distance function onX , then d(x1, x2) ≥
0 and d(x1, x3) ≤ d(x1, x2)+d(x2, x3) and d(x1, x2) = d(x2, x1) for all x1, x2, x3 ∈
X . We assume the boundary of X is both locally Lipschitz-continuous and has finite
measure. The obstacle space Xobs ⊂ X is the open subset of X in which the robot is
“in collision” with obstacles or itself. The free space Xfree = X \ Xobs is the closed
subset of X that the robot can reach. We assume Xobs is defined by a set O of a
finite number of obstacles O , each with a boundary that is both locally Lipschitz-
continuous and has finite measure.

The robot’s start and goal states are xstart and xgoal, respectively. At time t the
location of the robot is xbot(t), where xbot : [t0, tcur] → X is the traversed path of
the robot from the start time t0 to the current time tcur, and is undefined for t > tcur.
The obstacle space (and free space) may change as a function of time and/or robot
location, i.e. �Xobs = f (t, xbot). For example, if there are unpredictably moving
obstacles, inaccuracies in a priori belief of Xobs, and/or a subset of Xfree must be
“discovered” via the robot’s sensors.
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A movement trajectory π(x1, x2) is the curve defined by a continuous mapping
π : [0, 1] → X such that 0 �→ x1 and 1 �→ x2. A trajectory is valid iff both
π(x1, x2) ∩ Xobs = ∅ and it is possible for the robot to follow π(x1, x2) given
its kinodynamic and other constraints. dπ (x1, x2) is the length of π(x1, x2).

1.3 Environments: Static Vs Dynamic and Related
Assumptions

A static environment has an obstacle set that changes deterministically versus t and
xbot, i.e.,�Xobs = f (t, xbot) for f known a priori. In the simplest case,�Xobs ≡ ∅.
In contrast, a dynamic4 environment has an unpredictably changing obstacle set, i.e.,
f is a “black-box” that cannot be known a priori. The assumption of incomplete prior
knowledgeof�Xobs guaranteesmyopia; this assumption is the defining characteristic
of replanning algorithms, in general. While nothing prevents us from estimating
�Xobs based on prior data and/or online observations, we cannot guarantee that any
such estimate will be correct. Note that �Xobs �= ∅ is not a sufficient condition for
X to be dynamic.5

1.4 Problem Statement of “Shortest-Path Replanning”

Given X , Xobs, xgoal, xbot(0) = xstart, and unknown �Xobs = f (t, xbot), find
π∗(xbot, xgoal) and, until xbot(t) = xgoal, simultaneously update xbot(t) along
π∗(xbot, xgoal) while recalculating π∗(xbot, xgoal) whenever �Xobs �= ∅, where

π∗(xbot, xgoal) = arg min
π(xbot,xgoal)∈Xfree

dπ (xbot, xgoal)

1.5 Additional Notation Used for the Algorithm and Its
Analysis

RRTX constructs a graph G := (V, E) embedded in X , where V is the node set and
E is the edge set. With a slight abuse of notation we will allow v ∈ V to be used in
place of v’s corresponding state x ∈ X , e.g., as a direct input into distance functions.

4 The use of the term “dynamic” to indicate that an environment is “unpredictably changing” comes
from the artificial intelligence literature. It should not be confused with the “dynamics” of classical
mechanics.
5For example, if X ⊂ R

d space, T is time, and obstacle movement is known a priori, obstacles are
stationary with respect to X̂ ⊂ (

R
d × T

)
space-time.
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Thus, the robot starts at vstart and goes to vgoal. The “shortest-path” subtree of G is
T := (VT , ET ), where T is rooted at vgoal, VT ⊂ V , and ET ⊂ E . The set of
‘orphan nodes’ is defined V c

T = V \VT and contains all nodes that have become
disconnected from T due to�Xobs (c denotes the set compliment of VT with respect
to V and not the set of nodes in the compliment graph of T ).

G is built, in part, by drawing nodes at random from a random sample sequence
S = {v1, v2, . . .}. We assume vi is drawn i.i.d from a uniform distribution over X ;
however, this can be relaxed to any distribution with a finite probability density for
all v ∈ Xfree. We use Vn , Gn , Tn to denote the node set, graph, and tree when the node
set contains n nodes, e.g., Gn = G s.t. |V | = n. Note mi = |Vmi | at iteration i , but
mi �= i in general because samples may not always be connectable to G. Indexing
on m (and not i) simplifies the analysis.

En (·) denotes the expected value of ‘·’ over the setS of all such sample sequences,
conditioned on the event that n = |V |. The expectation En,vx (·) is conditioned on
both n = |V | and Vn\Vn−1 = {vx } for vx at a particular x ∈ X .

RRTX uses a number of neighbor sets for each node v, see Fig. 2. Edges are
directed (u, v) �= (v, u), and we use a superscript ‘−’ and ‘+’ to denote associ-
ation with incoming and outgoing edges, respectively. ‘Incoming neighbors’ of v

is the set N−(v) s.t. v knows about (u, v). ‘Outgoing neighbors’ of v is the set
N+(v) s.t. v knows about (v, u). At any instant N+(v) = N+

0 (v) ∪ N+
r (v) and

N−(v) = N−
0 (v) ∪ N−

r (v), where N−
0 (v) and N+

0 (v) are the original PRM*-like
in/out-neighbors (which v always keeps), and N−

r (v) and N+
r (v) are the ‘running’

in/out-neighbors (which v culls as r decreases). The set of all neighbors of v is
N (v) = N+(v) ∪ N−(v). Because T is rooted at vgoal, the parent of v is denoted
p+
T (v) and the child set of v is denoted C−

T (v).

Fig. 2 Neighbor sets of/with node v. Left v is inserted when r = r1. Right later r = r2 < r1. Solid
neighbors known to v. Black solid original in- N−

0 (v) and out-neighbors N+
0 (v) of v. Colored solid

running in- N−
r (v) and out-neighbors N+

r (v) of v. Dotted v is neighbor of vi �= v. Dotted colored
v is an original neighbor of vi . Bold edge in shortest-path subtree. Dashed other sub-path
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g(v) is the (ε-consistent) cost-to-goal of reaching vgoal from v through T .
The look-ahead estimate of cost-to-goal is lmc(v). Note that the algorithm stores
both g(v) and lmc(v) at each node, and updates lmc(v) ← minu∈N+(v) dπ (v, u)+
lmc(u) when appropriate conditions have been met. v is ‘ε-consistent’ iff g(v)−
lmc(v) < ε. Distvm is the cost-to-goal of v given Tm . Recall that π∗

X (v, vgoal) is
the optimal path from v to vgoal through X ; the length of π∗

X (v, vgoal) is g∗(v).
Q is the priority queue that is used to determine the order in which nodes become

ε-consistent during the rewiring cascades. The key that is used for Q is the ordered
pair

(
min(g(v),lmc(v)),g(v)

)
nodes with smaller keys are popped from Q before

nodes with larger keys, where (a, b) < (c, d) iff a < c ∨ (a = c ∧ b < d).

2 The RRTX Algorithm

RRTX appears in Algorithm 1 and its major subroutines in Algorithms 2–6 (minor
subroutines appear on the last page). The main control loop, lines 3–17, terminates
once the robot reaches the goal state. Each pass begins by updating the RRT*-like
neighborhood radius r (line 4), and then accounting for obstacle and/or robot changes
(lines 5–8). “Standard” sampling-based motion planning operations improve and
refine the graph by drawing new samples and then connecting them to the graph
if possible (lines 9–14). RRT*-like graph rewiring (line 16) guarantees asymptotic
optimality, while rewiring cascades enforce ε-consistency (line 17, and also on line 6
as part of updateObstacles()). saturate(v, vnearest), line 12, repositions v

to be δ away from vnearest.
extend(v, r) attempts to insert node v into G and T (line 5). If a connection is

possible then v is added to its parent’s child set (line 6). The edge sets of v and its
neighbors are updated (lines 7–13). For each new neighbor u of v, u is added to v’s
initial neighbors sets N+

0 (v) and N−
0 (v), while v is added to u’s running neighbor sets

N+
r (u) and N−

r (u). This Differentiation allows RRTX to maintain O (log n) edges
at each node, while ensuring T is no worse than the tree created by RRT* given the
same sample sequence.
cullNeighbors(v, r) updates N−

r (v), and N+
r (v) to allow only edges that

are shorter than r—with the exceptions that we do not remove edges that are part
of T . RRTX inherits asymptotic optimality and probabilistic completeness from
PRM*/RRT* by never culling N−

0 (v) or N+
0 (v).

rewireNeighbors(v) rewires v’s in-neighbors u ∈ N−(v) to use v as their
parent, if doing so results in a better cost-to-goal at u (lines 3–6). This rewiring is
similar to RRT*’s rewiring, except that here we verify that ε-inconsistent neighbors
are in the priority queue (lines 7–8) in order to set off a rewiring cascade during the
next call to reduceInconsistency().
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Algorithm 1: RRTX(X , S)
V ← {vgoal}1

vbot ← vstart2

while vbot �= vgoal do3

r ← shrinkingBallRadius()4

if obstacles have changed then5

updateObstacles()6

if robot is moving then7

vbot ← updateRobot(vbot)8

v ← randomNode(S)9

vnearest ← nearest(v)10

if d(v, vnearest) > δ then11

v ← saturate(v, vnearest)12

if v X∈� obs then13

extend(v, r)14

if v ∈ V then15

rewireNeighbors(v)16

reduceInconsistency()17

Algorithm 2: extend(v, r)
Vnear ← near(v, r)1

findParent(v, Vnear)2

if p+
T (v) = ∅ then3

return4

V ← V ∪ {v}5

C−
T (p+

T (v)) ← C−
T (p+

T (v)) ∪ {v}6

forall u ∈ Vnear do7

if π(v, u) ∩ Xobs = ∅ then8

N+
0 (v) ← N+

0 (v) ∪ {u}9

N−
r (u) ← N−

r (u) ∪ {v}10

if π(u, v) ∩ Xobs = ∅ then11

N+
r (u) ← N+

r (u) ∪ {v}12

N−
0 (v) ← N−

0 (v) ∪ {u}13

Algorithm 3: cullNeighbors(v, r)
forall u ∈ N+

r (v) do1

if r < dπ(v, u) and p+
T (v) �= u then2

N+
r (v) ← N+

r (v) \ {u}3

N−
r (u) ← N−

r (u) \ {v}4

Algorithm 4: rewireNeighbors(v)
if g(v) − lmc(v) > ε then1

cullNeighbors(v, r)2

forall u ∈ N−(v) \ {p+
T (v)} do3

if lmc(u) > dπ(u, v) + lmc(v) then4

lmc(u) ← dπ(u, v) + lmc(v)5

makeParentOf(v, u)6

if g(u) − lmc(u) > ε then7

verrifyQueue(u)8

Algorithm 5: reduceInconsistency()
while size(Q) > 0 and1

keyLess(top(Q), vbot) or lmc(vbot) �= g(vbot)
or g(vbot) = ∞ or Q 	 vbot do

v ← pop(Q)2

if g(v) − lmc(v) > ε then3

updateLMC(v)4

rewireNeighbors(v)5

g(v) ← lmc(v)6

Algorithm 6: findParent(v, U)
forall u ∈ U do1

π(v, u) ← computeTrajectory(X , v, u)2

if dπ(v, u) ≤ r and3

lmc(v) > dπ(v, u) + lmc(u) and π(v, u) �= ∅
and Xobs ∩ π(v, u) = ∅ then

p+
T (v) ← u4

lmc(v) ← dπ(v, u) + lmc(u)5

reduceInconsistency() manages the rewiring cascade that propagates
cost-to-goal information and maintains ε-consistency in G (at least up to the level-
set of lmc(·) containing vbot). It is similar to its namesake from RRT#, except that
in RRTX the cascade only continues through v’s neighbors if v is ε-inconsistent
(lines 3–5). This is one reason why RRTX is faster than RRT#. Note that v is always
made locally 0-consistent (line 6).
updateLMC(v) updateslmc(v) based on v’s out-neighbors N+(v) (as in RRT#).

findParent(v, U ) finds the best parent for v from the node set U .
propogateDescendants() performs a cost-to-goal increase cascade leaf-ward
through T after an obstacle has been added; the cascade starts at nodes with
edge trajectories made invalid by the obstacle and is necessary to ensure that the
decrease cascade in reduceInconsistency() reaches all relevant portions of
T (as in D*). updateObstacles() updates G given �Xobs; affected by nodes
are added to Q or V c

T , respectively, and then reduceInconsistency() and/or
propogateDescendants() are called to invoke rewiring cascade(s).
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3 Runtime Analysis of RRT, RRT*, RRTX, and RRT#

In Sects. 3.1–3.3 we prove bounds on the time required by RRT, RRT*, RRTX, and
RRT# to build a search-graph containing n nodes in the static case �Xobs = ∅. In
Sect. 3.4 we discuss the extra operations required by RRTXwhen �Xobs �= ∅.
Lemma 1

∑n
j=1 log j = Θ (n log n).

Proof log ( j + 1) − log j ≤ 1 for all j ≥ 1. Therefore, by construction: −n +∫ n
1 log x dx ≤ ∑n

j=1 log j ≤ n + ∫ n
1 log x dx for all n ≥ 1. Calculus gives: −n +

1−n
ln 2 + n log n ≤ ∑n

j=1 log j ≤ n + 1−n
ln 2 + n log n. �

Slight modifications to the proof of Lemma 1 yield the following corollaries:

Corollary 1
∑n

j=1
log j

j = Θ
(
log2 n

)
.

Corollary 2
∑n

j=1 log
2 j = Θ

(
n log2 n

)
.

Let f RRT
i and f RRT∗

i denote the runtime of the i th iteration of RRT and RRT*,
respectively, assuming samples are drawn uniformly at random fromX according to
the sequence S = {v1, v2, . . .}. Let f RRT (n), f RRT∗(n), and f RRTX

(n) denote the
cumulative time until n = |Vn|, i.e., the graph contains n nodes, using RRT, RRT*,
and RRTX, respectively.

3.1 Expected Time Until |V | = N for RRT and RRT*

References [5, 10] give the following propositions, respectively:

Proposition 1 f RRT
i = Θ (logmi ) for i ≥ 0, where mi = |Vmi | at iteration i .

Proposition 2 E
(

f RRT∗
i

) = Θ
(

f RRT
i

)
for all i ≥ 0.

The dominating term in both RRT and RRT* is due to a nearest neighbor search. The
following corollaries are straightforward to prove given Lemma 1 and Propositions 1
and 2 (proofs are omitted here due to space limitations).

Corollary 3 E
(

f RRT (n)
) = Θ (n log n).

Corollary 4 E
(

f RRT∗(n)
) = Θ (n log n).
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3.2 Expected Amortized Time Until |V | = N
for RRTX (Static X )

In this section we prove: En

(
f RRTX

(n)
)

= Θ (n log n). The proof involves a com-

parison to RRT* and proceeds in the following three steps:

1. RRT* cost-to-goal values approach optimality, in the limit as n → ∞.
2. For RRT*, the summed total difference (i.e., over all nodes) between initial and

optimal cost-to-goal values is O (εn); thus, when n = |Vn|, RRTXwill have
performed at most O (n) cost propagations of size ε given the same S.

3. For RRTX, each propagation of size ε requires the same order amortized time
as inserting a new node (which is the same order for RRT* and RRTX).

By construction RRTX inherits the asymptotically optimal convergence of RRT*
(we assume the planning problem, cost function, and ball parameter are defined
appropriately). Theorem 38 from [5] has two relevant corollaries:

Corollary 5 P
({
lim supn→∞ gn(v) = g∗(v)

}) = 1 for all v : v ∈ Vn<∞.

Corollary 6 limn→∞ En (gn(v) − g∗(v)) = 0 for all v : v ∈ Vn≤∞.

Consider the case of adding vx as the nth node inRRT* (Fig. 3),where vx is located
at x . The RRT* parent of vx is p and d(vx , p) is the distance from vx to p. The length
of the trajectory from vx to p is dπ (vx , p). The radius of the shrinking neighborhood
ball is r . By construction d(vx , p) < r and dπ (vx , p) < r . Let d̂(vx , p) be a stand
in for both d(vx , p) and dπ (vx , p). The following proposition comes from the fact
that limn→∞ r = 0.

Proposition 3 limn→∞ En,vx

(
d̂(vx , p)

)
= 0, where p is RRT* parent of vx .

Lemma 2 limn→∞ En,vx (gn(vx ) − g∗(vx )) = 0.

Fig. 3 Node vx at x is
inserted when n = |Vn |. The
parent of vx is p. dπ (vx , p)

is the distance from vx to p
along the (red) trajectory.
gn(vx ) and gn(p) are the
cost-to-goals of vx and p
when n = |Vn |, while g∗(vx )

and g∗(p) are their optimal
cost-to-goals, respectively.
The neighbor ball (blue) has
radius r . Obstacles are not
drawn
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Proof By the triangle inequality g∗(vx ) + d(p, vx ) ≥ g∗(p). Rearranging and then
adding gn(vx ) to either side:

gn(vx ) − g∗(vx ) ≤ gn(vx ) − g∗(p) + d(p, vx ). (1)

Equation (1) holds over all S ∈ {Ŝ : Vn\Vn−1 = {vx }} ⊂ S, thus

En,vx (gn(vx ) − g∗(vx )) ≤ En,vx (gn(vx ) − g∗(p) + d(p, vx )). (2)

By construction gn(vx ) = gn(p) + dπ (vx , p). Substituting into (2), using the linear-
ity of expectation, and taking the limit of either side:

lim
n→∞En,vx

(
gn(vx ) − g∗(vx )

) ≤
lim

n→∞En,vx

(
gn(p) − g∗(p)

)+ lim
n→∞En,vx (dπ (vx , p))+ lim

n→∞En,vx (d(p, vx )).

The law of large numbers guarantees that x (i.e., location of vx ) becomes uncor-
related with the cost-to-goal of p, in the limit as n → ∞. Thus, consequently:
limn→∞ En,vx (gn(p) − g∗(p)) = limn→∞ En (gn(p) − g∗(p)). Using Corollary 6
and Proposition 3 (twice) finishes the proof. �

Applying the law of total expectation yields the following corollary regarding the
nth node added to V , and completes step 1 of the overall proof.

Corollary 7 limn→∞ En (gn(v) − g∗(v)) = 0, where Vn \ Vn−1 = {v}.
Lemma 3

∑n
m=1 Em (gm(vm) − g∗(vm)) = O (εn) for all n such that

1 ≤ n < ∞ and where Vm \ Vm−1 = {vm} for all m s.t. 1 ≤ m ≤ ∞.

Proof Using the definition of a limit with Corollary 7 shows that for any c1 > 0
there must exist some nc < ∞ such that En (gn(v) − g∗(v)) < c1 for all n > nc. We
choose c1 = ε and define c2 = ∑nc

m=1 Em (gm(vm) − g∗(vm)) so that by construction∑n
m=1 Em (gm(vn) − g∗(vn)) ≤ c2 + εn for all n s.t. 1 ≤ n < ∞. �

Let f pr (n) denote the total number of cost propagations that occur (i.e., through
any and all nodes) in RRTX as a function of n = |Vn|.
Lemma 4 En ( f pr (n)) = O (n).

Proof When m = |Vm | a propagation is possible only if there exists some node v

such that gm(v) − g∗(v) > ε. Assuming RRT* and RRTX use the same S, then by
construction gm(v) for RRT* is an upper bound on gm(v) for RRTX for all v ∈ Vm

andm such that 1 ≤ m < ∞. Thus, f pr (n) ≤ (1/ε)
∑n

m=1 gm(vm) − g∗(vm), where
gm(vm) is the RRT*-value of this quantity. Using the linearity of expectation to apply
Lemma 3 we find that En ( f pr (n)) ≤ (1/ε)O (εn). �

Corollary 8 lim
n→∞

En( f pr (n))
cn ≤ 1 for some constant c < ∞.



472 M. Otte and E. Frazzoli

Corollary 8 concludes step two of the overall proof. The following Lemma 5
uses the notion of runtime amortization.6 Let f̂ single(n) denote the amortized time
to propagate an ε-cost reduction from node v to N (v) when n = |Vn|.

Lemma 5 P

(
{ lim
n→∞

f̂ single(n)
c log n ≤ 1}

)
= 1 for some constant c < ∞.

Proof By construction, a single propagation through v requires interaction with
|N (v)| neighbors. Each interaction normally requires Θ (1) time–except when the
interaction results in u ∈ N (v) receiving an ε-cost decrease. In the latter case u
is added/updated in the priority queue in O (log n) time; however, we add this
O (log n) time to u’s next propagation time, so that the current propagation from
v only incurs Θ (1) amortized time per each u ∈ N (v). To be fair, v must account
for any similar O (log n) time that it has absorbed from each of the c1 nodes
that have given it an ε-cost reduction since the last propagation from v. But, for
c1 ≥ 1 the current propagation from v is at least c1ε and so we can count it as
c1 different ε-cost decreases from v to N (v) (and v only touches each u ∈ N (v)

once). Hence, c1 f̂ single(n) = |N (v)| + c1O (log n). By the law of large numbers,
P ({limn→∞ |N (v)| = c2 log n)} = 1, for some constant c2 s.t. 0 < c2 < ∞. Hence,

P

(
{limn→∞ f̂ single(n) ≤ (c2/c1) log n + log n}

)
= 1, setting c = 1 + c2/c1 fin-

ishes the proof. �

Corollary 9 lim
n→∞

En

(
f̂ single(n)

)

c log n ≤ 1 for some constant c < ∞.

Let f all(n) denote the total runtime associated with cost propagations by the
iteration that n = |Vn|, where f all(n) = ∑ f pr (n)

j=1 f̂ single(m j ) for a particular run of

RRTX resulting in n = |Vn| and f pr (n) individual ε-cost decreases.

Lemma 6 lim
n→∞

En
(

f all (n)
)

cn log n < 1 for c ≤ ∞.

Proof limn→∞ En ( f pr (n)) �= 0 and limn→∞ En

(
f̂ single(n)

)
�= 0, so obviously

lim
n→∞

En( f pr (n))En

(
f̂ single(n)

)

En( f pr (n))En

(
f̂ single(n)

) = 1. Although f̂ single(n) and f pr (n) are mutually

dependent, in general, they become independent7 in the limit as n → ∞. Thus,

lim
n→∞

En

(
f pr (n) f̂ single(n)

)

En( f pr (n))En

(
f̂ single(n)

) = lim
n→∞

En( f pr (n))En

(
f̂ single(n)

)

En( f pr (n))En

(
f̂ single(n)

) = 1. Note that the

previous step would not have been allowed outside the limit. Using algebra:

6In particular, if a node u receives an ε-cost decrease > ε via another node v, then u agrees to
take responsibility for the runtime associated with that exchange (i.e., including it as part u’s next
propagation time).
7i.e., because the number of neighbors of a node converges to the function log n with probability 1
(as explained in Lemma 5).
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lim
n→∞

En

(∑ f pr (n)
j=1 f̂ single(n)

)

En( f pr (n))En

(
f̂ single(n)

) = 1. Using Corollaries 8 and 9:

lim
n→∞

En

(∑ f pr (n)
j=1 f̂ single(n)

)

c1c2n log n ≤ lim
n→∞

En

(∑ f pr (n)
j=1 f̂ single(n)

)

En( f pr (n))En

(
f̂ single(n)

) = 1 for some c1, c2 < ∞.

Using algebra and defining c = c1c2 finishes the proof. �

Corollary 10 En
(

f all(n)
) = O (n log n).

Theorem 1 En

(
f RRTX

(n)
)

= Θ (n log n).

Proof When �Xobs = ∅, RRTX differs from RRT* in 3 ways: (1) ε-cost propa-
gation, (2) neighbor list storage, and (3) neighbor list culling.8 RRTX runtime is
found by adding the extra time of (1), (2), and (3) to that of RRT*. Corollary 10
gives the asymptotic time of (1). (2) and (3) are O (|N (v)|), the same as finding a

new node’s neighbors in RRT*. Therefore, En

(
f RRTX

(n)
)

= En
(

f RRT∗(n)
) +

En
(

f all(n)
)
. Trivially: En

(
f RRT∗(n)

) = Θ
(
En

(
f RRT∗(n)

))
, and by Corollar-

ies 4 and 10: En

(
f RRTX

(n)
)

= Θ (n log n) + O (n log n) = Θ (n log n). �

3.3 Expected Time Until |V | = n for RRT#

RRT# does not cull neighbors (in contrast to RRTX) and so all nodes continue to
accumulate neighbors forever.

Lemma 7 En (|N (v)|) = Θ
(
log2 n

)
for all v s.t. v ∈ Vm for some m < n < ∞.

Proof Assuming v is inserted when m = |Vm |, the expected value of En (|N (v)|),
where n = |Vn| for some n > m is:

En (|N (v)|) = c logm+∑n
j=m+1

c log j
j =c

(
logm+

(∑n
j=1

log j
j

)
−

(∑m
j=1

log j
j

))

where c is constant. Corollary 1 finishes the proof. �

RRT# propagates all cost changes (in contrast, RRTX only propagates those larger
than ε). Thus, any cost decrease at v is propagated to all descendants of v, plus
any additional nodes that become new descendants of v due to the propagation.
Let f pr#(n) be the number of propagations (i.e., through a single node) that have
occurred in RRT# by the iteration that n = |Vn|.
Lemma 8 P(limn→∞ n

f pr#(n)
= 0) = 1 with respect to S.

8Note that neighbors that are not removed during a cull are touched again during the RRT*-like
rewiring operation that necessarily follows a cull operation.
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Proof By contradiction. Assume that P(limn→∞ n
f pr#(n)

= 0) = c1 < 1. Then there

exists some c2 and c3 such thatP(limn→∞ n
f pr#(n)

≥ c2 > 0) = c3 > 0 and therefore

E(limn→∞ n
f pr#(n)

) ≥ c2c3 > 0, and the expected number of cost propagations to

each v s.t. v ∈ Vn is c4 = 1
c2c3

< ∞, in the limit as n → ∞. This is a contradiction
because v experiences an infinite number of cost decreases with probability 1 as a
result of RRT#’s asymptotic optimal convergence, and each decrease (at a non-leaf
node) causes at least one propagation. �

The runtime of RRT# can be expressed in terms of the runtime of RRT* plus the
extra work required to keep the graph consistent (cost propagations):

f RRT#
mi

= Θ
(

f RRT∗
mi

) + ∑ f pr#(mi )
j=1 f pr#

j . (3)

Here, f pr#(mi ) is the total number of cost propagations (i.e., through a single node)
by iteration i when mi = |V |, and f pr#

j is the time required for the j th propagation

(i.e., through a single node). Obviously f pr#
j > c for all j , where c > 0. Also, for

all j ≥ 1 and all m the following holds, due to non-decreasing expected neighbor
set size versus j :

Em

(
f pr#

j

)
≤ Em

(
f pr#

j+1

)
(4)

Lemma 9 lim
n→∞

n log2 n

En

(
∑ f pr#(n)

j=1 f pr#
j

) = 0.

Proof lim
n→∞

En

(∑n
j=1 f pr#

j

)

En

(
∑ f pr#(n)

j=n+1 f pr#
j

) = 0 because the ratio between the number of terms in

the numerator versus denominator approaches 0, in the limit, by Lemma 8, and the
smallest term in the denominator is no smaller than the largest term in the numera-

tor, by (4). Obviously, lim
n→∞

En

(∑n
j=1 f pr#

j

)

En

(
∑ f pr#(n)

j=1 f pr#
j

) ≤ lim
n→∞

En

(∑n
j=1 f pr#

j

)

En

(
∑ f pr# (n)

j=n+1 f pr#
j

) = 0. Rear-

ranging: lim
n→∞

∑n
j=1 Em j

(
f pr#

j

)

En

(
∑ f pr#(n)

j=1 f pr#
j

) = 0. By Lemma 7: lim
n→∞

∑n
j=1 Em j

(
c log2 m j

)

∑n
j=1 Em j

(
f pr#

j

) = 1 for

some constant c such that 0 < c < ∞. Hence,

lim
n→∞

∑n
j=1 Em j

(
f pr#

j

)

En

(
∑ f pr#(n)

j=1 f pr#
j

)

∑n
j=1 Em j

(
c log2 m j

)

∑n
j=1 Em j

(
f pr#

j

) = c
∑n

j=1 Em j

(
log2 m j

)

En

(
∑ f pr#(n)

j=1 f pr#
j

) = 0

Corollary 2 with the linearity of expectation finishes the proof. �

Corollary 11 En

(∑ f pr#(n)
j=1 f pr#

j

)
= ω

(
n log2 n

)
.
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In the above,ω
(
n log2 n

)
is a stronger statement than�

(
n log2 n

)
.We are now ready

to prove the asymptotic runtime of RRT#.

Theorem 2 En

(
f RRT#
n

)
= ω

(
n log2 n

)
.

Proof Taking the limit (as mi = n → ∞) of the expectation of either side of (3)
and then using Corollaries 4 and 11, we see that the expected runtime of RRT# is

dominated by propagations: En

(
f RRT#
n

)
= Θ (n log n) + ω

(
n log2 n

)
. �

3.4 RRTX Obstacle Addition/Removal in Dynamic
Environments

The addition of an obstacle requires finding Vobs, the set of all nodes with trajectories
through the obstacle, and takes expected O (|D(Vobs)| log n) time. The resulting call
to reduceInconsistency() interacts with each u ∈ D(Vobs), where D(Vobs)

is the set of all descendants of all u ∈ Vobs, and each interaction takes expected
time O (log n) due to neighbor sets and heap operations. Thus, adding an obstacle
requires expected time O (|D(Vobs)| log n). Removing an obstacle requires similar
operations and thus the same order of expected time. In the special case that the
obstacle has existed since t0, then D(Vobs) = ∅ and time is O (1).

4 Simulation: Dubins Vehicle in a Dynamic Environment

We have tested RRTX on a variety of problems and state spaces, including unpre-
dictably moving obstacles; we encourage readers to watch the videos we have posted
online at [13]. However, due to space limitations, we constrain the focus of the cur-
rent paper to how RRTX can be used to solve a Dubins vehicle problem in a dynamic
environment.

The state space is definedX ⊂ R
2 ×S

1. The robot moves at a constant speed and
has a predefinedminimum turning radius rmin [9].Distance between twopoints x, y ∈
X is defined d(x, y) =

√
cθ (xθ − yθ )2 + ∑2

i=1(xi − yi )2, where xθ is heading and

xi is the coordinate of x with respect to the i th dimension of R2, and assuming
the identity θ = θ + 2π is obeyed. The constant cθ determines the cost trade-off
between a difference in location versus heading. d(x, y) is the length of the geodesic
between x and y throughR2×S

1. dπ (x, y) is the length of the Dubins trajectory that
moves the robot from x to y. In general, dπ (x, y) �= d(x, y); however, by defining
cθ appropriately (e.g., cθ = 1) we can guarantee dπ (x, y) ≥ d(x, y) so that d(x, y)

is an admissible heuristic on dπ (x, y).
Figure1 shows a simulation. rmin = 2m, speed = 20 m/s, sensor range = 10m.

The robot plans for 10 s before moving, but must react on-the-fly to �Xobs.
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5 Discussion

RRTX is the first asymptotically optimal algorithm designed for kinodynamic replan-
ning in environments with unpredictably changing obstacles. Analysis and sim-
ulations suggest that it can be used for effective real-time navigation. That said,
the myopia inherent in dynamic environments makes it impossible for any algo-
rithm/agent to avoid collisions with obstacles that can overwhelm finite agility and/or
information (e.g., appear at a location that cannot be avoided).

Analysis shows that RRTX is competitive with all state-of-the-art motion planning
algorithms in static environments. RRTX has the same order expected runtime asRRT
and RRT*, and is quicker than RRT#. RRTX inherits probabilistic completeness and
asymptotic optimality from RRT*. By maintaining a ε-consistent graph, RRTX has
similar behavior to RRT# for cost changes larger than ε; which translates into faster
convergence than RRT* in practice.

Algorithm 7: updateObstacles()
if ∃O : O ∈ O ∧ O has vanished then1

forall O : O ∈ O ∧ O has vanished do2

removeObstacle(O)3

reduceInconsistency()4

if ∃O : O ∧O∈� O has appeared then5

forall O : O ∧O∈� O has appeared do6

addNewObstacle(O)7

propogateDescendants()8

verrifyQueue(vbot)9

reduceInconsistency()10

Algorithm 8: propogateDescendants()
forall v ∈ V c

T do1

V c
T ← V c

T ∪ C−
T (v)2

forall v ∈ V c
T do3

forall u ∈ N+(v) ∪ {p+
T (v)} \ V c

T do4

g(u) ← ∞5

verrifyQueue(u)6

forall v ∈ V c
T do7

V c
T ← V c

T \ {v}8

g(v) ← ∞9

lmc(v) ← ∞10

if p+
T (v) �= ∅ then11

C−
T (p+

T (v)) ← C−
T (p+

T (v)) \ {v}12

p+
T (v) ← ∅13

Algorithm 9: verrifyOrphan(v)
if v ∈ Q then remove(Q, v)1

V c
T ← V c

T ∪ {v}2

Algorithm 10: removeObstacle(O)
EO ← {(v, u) ∈ E : π(v, u) ∩ O �= ∅}1

O ← O \ {O}2

EO ← EO \ {(v, u) ∈ E : π(v, u) ∩ O′ �= ∅3

for some O′ ∈ O}
VO ← {v : (v, u) ∈ EO}4

forall v ∈ VO do5

forall u : (v, u) ∈ EO do6

dπ(v, u) ← recalculate dπ(v, u)7

updateLMC(v)8

if lmc(v) �= g(v) then verrifyQueue(v)9

Algorithm 11: addNewObstacle(O)
O ← O ∪ {O}1

EO ← {(v, u) ∈ E : π(v, u) ∩ O �= ∅}2

forall (v, u) ∈ EO do3

dπ(v, u) ← ∞4

if p+
T (v) = u then verrifyOrphan(v)5

if vbot ∈ π(v, u) then πbot = ∅6

Algorithm 12: verrifyQueue(v)
if v ∈ Q then update(Q, v)1

else add(Q, v)2

Algorithm 13: updateLMC(v)
cullNeighbors(v, r)1

forall u ∈ N+(v) \ V c
T : p+

T (u) �= v do2

if lmc(v) > dπ(v, u) + lmc(u) then3

p′ ← u4

makeParentOf(p′, v)5

The consistency parameter ε must be greater than 0 to guarantee Θ (log n)

expected iteration time. It should be small enough such that a rewiring cascade
is triggered whenever obstacle changes require a course correction by the robot. For
example, in a Euclidean space (and assuming the robot’s position is defined as its
center point) we suggest using an ε no larger than 1/2 the robot width.
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6 Conclusions

We present RRTX, the first asymptotically optimal sampling-based replanning algo-
rithm. RRTX facilitates real-time navigation in unpredictably changing environments
by rewiring the same search tree for the duration of navigation, continually repair-
ing it as changes to the state space are detected. Resulting motion plans are both
valid, with respect to the dynamics of the robot, and asymptotically optimal in static
environments. The robot is also able to improve its plan while it is in the process of
executing it. Analysis and simulations show that RRTXworks well in both unpre-
dictably changing and static environments. In static environments the runtime of
RRTX is competitive with RRT and RRT* and faster than RRT#.

Acknowledgments This work was supported by the Air Force Office of Scientific Research, grant
#FA-8650-07-2-3744.
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Orienting Parts with Shape Variation

Fatemeh Panahi, Mansoor Davoodi and A. Frank van der Stappen

Abstract Industrial parts are manufactured to tolerances as no production process
is capable of delivering perfectly identical parts. It is unacceptable that a plan for a
manipulation task that was determined on the basis of a CADmodel of a part fails on
some manufactured instance of that part, and therefore it is crucial that the admitted
shape variations are systematically taken into account during the planning of the
task. We study the problem of orienting a part with given admitted shape variations
by means of pushing with a single frictionless jaw. We use a very general model
for admitted shape variations that only requires that any valid instance must contain
a given convex polygon PI while it must be contained in another convex polygon
PE . The problem that we solve is to determine, for a given h, the sequence of h
push actions that puts all valid instances of a part with given shape variation into
the smallest possible interval of final orientations. The resulting algorithm runs in
O(hn) time, where n = |PI | + |PE |.

Keywords Part feeding · Shape variation · Pushing

1 Introduction

Most of the existing solutions in algorithmic automation assume a severely idealized
world in which parts are perfectly identical to their CAD-model and manipulators
and sensors are infinitely accurate. In real life, however, parts are manufactured to
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tolerances [6, 7] and therefore vary in shape [1], and sensors [4] and actuators [5]
are inaccurate, causing the aforementioned algorithms to fail when employed in
practice. The challenge is therefore to design algorithms for planning manipulation
tasks that explicitly take into account manipulator (and sensor) inaccuracy and part
imperfection and report solutions that work despite their presence. In this paper, we
concentrate on part shape variation and study its impact on the problem of feeding
or orienting it by means of pushing with a frictionless jaw in the spirit of the work
by Goldberg [11]. We employ a very general model for shape variation and system-
atically explore its impact on the task of orienting by pushing. We use the resulting
properties to develop a robust algorithm that reduces the uncertainty in the pose of
an imperfect part, i.e., a part with shape variation, as much as possible.

Sensorless manipulation has received considerable attention over the past two
decades. It focuses on manipulation systems that use simple (and thus cheap and
reliable) hardware components that are only capable of performing simple physical
actions while using simple or no sensors. The goal in sensorless part feeding or
orienting is to reduce the set of possible orientations until the part is in a known final
orientation. Lozano-Perez et al. [8] and Erdmann and Mason [9] proposed designs
for feeding based on a finite set of actions to orient a part. Akella and Mason [10]
developed a complete open-loop plan for feeding bymeans of pushing.Goldberg [11]
showed that there always exists a plan for orienting a polygonal part by pushing or
squeezing using a frictionless parallel-jaw gripper and proposed a greedy algorithm
for computing the shortest such plan in O(n2 log n) time, where n is the number
of vertices of the part. He conjectured that the length of the shortest plan is linear
in n. Chen and Ierardi [12] proved Goldberg’s conjecture and also showed how
to compute the maximum uncertainty radius such that a plan still exists. Berretty
et al. [13] showed that 3D (polyhedral) parts can be oriented by a sequence of pushes
by a perpendicular pair of planar jaws and gave an O(n3 log n) time algorithm to
find such a plan.

There are also approaches that are based on constrained forms of pushing.Wiegley
et al. [14] considered a system consisting of a conveyor belt with fences mounted
to its sides, which reorient parts that slide along them while traveling on the belt.
The problem of designing the fences is equivalent to computing push actions with
constraints on successive push directions. Wiegley et al. presented an exponential
algorithm for finding the shortest sequence of fences that orients a given part. Berretty
et al. [15] presented an alternative graph-based algorithm that runs in O(n3 log n)

time. In addition, Goldberg [11] and Chen and Ierardi [12] also studied grasps in
which a jaw first pushes and then squeezes a part. Their time and complexity bounds
are similar to those for pure pushing.

Several authors consideredmodels and problems involving uncertainty in geomet-
ric data. Formodeling shapevariation, geometric approaches such as ε-geometry [16],
λ-geometry [17], toleranced and interval-geometry [18, 20] were proposed. In these
models, imprecise input data (e.g. vertices of a polygon) are constrained to vary in
a region such as a segment, disk, rectangle, or any convex polygon, and worst and
best cases of the output of certain problems are studied.
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There have been a few studies into part feeding in a context of imperfect parts.
Akella and Mason [22] studied the problem of orienting convex polygons whose
vertices and center of mass lie inside predefined disks centered at their nominal
locations. They required that any variation keeps the part convex. They proposed
graph-based approaches for fence and push-squeeze plans for parts that satisfy their
assumptions. The problem of orienting a part by fences has been studied by Chen
et al. [3]. They used a similar model for part shape variation by allowing the vertices
to vary inside disks and squares that are defined relative to the center of mass. Based
on their assumptions they proposed a method for computing the maximum allowable
disk or square for each vertex for feeding. In addition to these studies, other related
work [23, 24] considered location uncertainty and shape variation in a grasp planning
context.

In comparisonwith the aforementioned studies, we consider amore generalmodel
for shape variation that allows to characterize variation along the entire boundary
instead of only at the vertices. The model assumes that any valid instance of a part
contains a given convex shape while it is contained in another given convex shape.
Our goal is to solve the part feeding or orienting problem for the imperfect part, that
is, we want to find the sequence of pushes that puts all instances from the shape
family into the smallest possible interval of orientations. To this end we generalize
the notions of radius and push function [11] to families of shapes. In Sects. 3 and 4
we present several properties of the generalized push function along with its upper
and lower envelopes. These properties help us to develop a greedy algorithm for
reporting the smallest interval of possible orientations for the entire shape family
after a given number h of pushes. We also show that there exist imperfect parts for
which there always is a next push that shrinks the interval of possible orientations.

2 Preliminaries

In this section, we explain our assumptions and introduce the terminology and nota-
tion used throughout the paper. To do this, we first define the problem of orienting a
part with shape variation. Then, we will have a short review of the relevant concepts
from previous work and finally we define similar concepts for a part with shape vari-
ation. For brevity, we have omitted most proofs in this paper, but interested readers
can find those in our technical report [27].

2.1 Orienting Parts with Shape Variation

Manufactured parts always have slight imperfections; hence, they are designed
up to certain tolerances. We study the problem of orienting a part with shape
variations by means of pushing with a single frictionless jaw [11] under the gen-
eral shape variation model presented in [19]. In this model, for any manufac-
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P c

PI

PM
PE

P c

(a) (b)

Fig. 1 a A family of shapes specified by a subshape PI and a supershape PE of a model part PM
along with a valid instance P ∈ S(PI , PE ). b A polygon P and its supporting line in the vertical
downward direction; when the single jaw moves upward, P rotates in counterclockwise direction

tured planar model part of PM , the set of acceptable instances is a family of
shapes S(PI , PE ) = {P ⊂ R

2|PI ⊆ P ⊆ PE }where PI and PE are twogiven closed
objects satisfying PI ⊆ PM ⊆ PE . The closed region resulting from subtracting the
interior of PI from PE is referred to be tolerance zone and denoted by Q. See Fig. 1a.
We will often refer to a part with shape variation as an imperfect part. The objects PI

and PE in this paper are assumed to be convex and polygonal with a total of n edges.
The property of convexity helps us to compute a tight bound on the final orientation
of an imperfect part. Also, we assume that the boundaries of PI and PE are disjoint.

When there is variation in part shape there will also be variation in the location of
the center of mass of the part. In general, the problem of finding the exact locus of
the center of mass for a polygon with shape variation has been mentioned as an open
problem in [4, 22]. An algorithm for computing a polygonal approximation of the
locus has been presented in [19] under the aforementioned shape variation model.
However, for simplicity in this paper, we assume that all instances of an imperfect
part have their center of mass at the origin. As a result, an instance P belongs to
S(PI , PE ) if its boundary lies completely inside the tolerance zone Q when its center
of mass is placed at the origin.

The basic action of pushing a part at the direction of θ consists of placing a single
jaw in orientation θ and moving it in a direction perpendicular to itself. When a part
P is pushed, it will start a compliant motion (rotation), during which it decreases
the distance from its center of mass to the jaw. The motion stops when the normal to
the jaw passes through the center of mass of the part. We refer to the corresponding
direction of the contact normal as an equilibrium orientation. An equilibrium orien-
tation is a stable orientation if an edge of part’s convex hull is in contact with the
jaw [2].

We define the problem of orienting an imperfect part to be that of finding the
sequence of push actions that orients the part to the smallest possible orientation
set. This possible orientation set consists of disjoint intervals. However, we do not
exploit this fact and focus on finding the smallest single interval that contains all
possible orientations.
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2.2 Definitions for a Part

Throughout this paper, directions are relative to a fixed coordinate frame attached
to the origin, increasing in counterclockwise order. Let the set of orientations of P
be identified with points on the planar unit circle S1 : [0, 2π). For any orientation
θ, the supporting line at the direction θ is a supporting line whose normal vector
emanating from the origin has direction θ. See Fig. 1b. Pushing P at the direction θ
means aligning the jaw with the supporting line at the direction θ. For an interval Θ ,
we let L(Θ) and U (Θ) be the lower and upper bounds (left and right endpoints) of
Θ , respectively, and |Θ| be its length.

The radius function rP : S1 → R
+ of a part P maps an angle θ onto the distance

between the center of mass and the supporting line of P at the direction θ [2]. The
distance function δP : S1 → R

+ of P maps an angle θ onto the distance between
the center of mass and the intersection point of the boundary ∂P of P and the ray
emanating from the center of mass at the direction θ [13]. Figure2 depicts the radius
functions of PI and PE and the distance function of PE for the illustrated imperfect
part. The radius and distance functions are closely related; see Observation1.

Observation 1 The local minima and maxima of rP and δP coincide; rP is increas-
ing (decreasing) if and only if δP is increasing (decreasing).

The push function φP : S1 → S1 of P maps a push direction of the jaw relative
to P in its reference orientation onto the orientation of P after alignment with the

Fig. 2 An example of an imperfect part, the corresponding graphs of rI , rE are illustrated in black
and the red graph depicts δE . The illustrated angles θR , θL and θN are R-type, L-type and N-type,
respectively; θm is bothR-type andL-type. θcw is a clockwise and θcw is a counterclockwise unstable
angle. [θ′, θ) and (θ1, θ2) are N-type intervals
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jaw. It is well known [11] that the push function follows directly from the radius
function as it maps all orientations that are strictly between two consecutive local
maxima of the radius function onto the local minimum that is enclosed by these
local maxima; moreover, the push function maps each local maximum of the radius
function onto itself.

2.3 Definitions for a Part with Shape Variation

In this subsection, we define the relevant concepts related to imperfect parts. For
simplicity, we use the abbreviations rI = rPI , rE = rPE , and δE = δPE . Figure2
illustrates an example of an imperfect part and the graph of rI , rE and δE . The
following lemma shows that rI and rE bound the radius function of all instances of
an imperfect part.

Lemma 1 rI ≤ rP ≤ rE for all P ∈ S(PI , PE ).

Pushing an imperfect part means pushing an unknown instance from a shape
family S(PI , PE ). As a consequence, the outcome of such a push is the set of all
orientations that might result after pushing any shape P ∈ S(PI , PE ). To capture this
behavior we define the generalized push function Φ∗ : S1 → P(S1), where P(S1)

denotes the power set of S1. This function maps an angle θ onto the set of all possible
orientations after a single push action in the direction θ, so Φ∗(θ) = {φP(θ)|P ∈
S(PI , PE )}. As there are several ways to enclose the sets Φ∗(θ) by a single interval
(due to the cyclic nature of S1) we must be careful when defining these intervals to
avoid ambiguity. To this end we introduce the lower push function and the upper
push function in Definition1.

Definition 1 The lower push function Φ∗
L : S1 → S1 and upper push function

Φ∗
U : S1 → S1 are the functions that bound Φ∗ as follows. We consider three cases

based on the push direction θ.

(a) If all instances of S(PI , PE ) rotate clockwise when pushed at θ then let α and
β be tight upper and lower bounds on the magnitude of the clockwise rotations,
respectively. Then Φ∗

L(θ) = θ − α and Φ∗
U (θ) = θ − β.

(b) If all instances of S(PI , PE ) rotate counterclockwise when pushed at θ then letα
and β be tight lower and upper bounds on the magnitude of the counterclockwise
rotations, respectively. Then Φ∗

L(θ) = θ + α and Φ∗
U (θ) = θ + β.

(c) Otherwise let α and β be tight upper bounds on the magnitudes of the clock-
wise and counterclockwise rotations, respectively. Then Φ∗

L(θ) = θ − α and
Φ∗

U (θ) = θ + β.

Note that for each θ ∈ S1 the interval [Φ∗
L(θ),Φ∗

U (θ)] contains the set Φ∗(θ).
We will occasionally denote this interval by Φ(θ) and refer to it as the smallest
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interval containing the set Φ∗(θ). Moreover, for an interval Θ ⊆ S1 we let Φ(Θ) =
[Φ∗

L(L(Θ)),Φ∗
U (U (Θ))]

We also note that Φ∗
L and Φ∗

U are monotone (non-decreasing), which admits a
greedy approach to orient the imperfect part into the smallest possible range of angles.
We start with the initial set of possible orientations Θ0 = [0, 2π) and repeatedly
obtain Θi+1 by selecting it to be the shortest image of any translate of Θi under Φ.
The process continues as long as |Θi+1| < |Θi |. To this end, we need to compute the
functionsΦ∗

L andΦ∗
U . For different types of orientations, the values of these functions

are computed differently. These types of angles are defined in the next section.

Remark Since range anddomainofΦ∗
L andΦ∗

U are S1, it is possible thatΦ∗
L(L(Θ)) >

Φ∗
U (U (Θ)). In this case, |Φ(Θ)| = 2π + Φ∗

U (U (Θ)) − Φ∗
L(L(Θ)).

3 Types of Orientations

The set of all orientations can be divided into five types based on the computation of
their image under Φ∗

L and Φ∗
U . We distinguish two primary types which consist of

two and three subtypes respectively.

• An orientation θ is unstable if there is no P ∈ S(PI , PE ) for which rP has a
local minimum a θ. Such an orientation can never be the final orientation of the
imperfect part after pushing. Unstable orientations can be (i) clockwise unstable,
or (ii) counterclockwise unstable.

• An orientation θ is potentially stable or p-stable if there exists an instance P ∈
S(PI , PE ) for which rP has a local minimum at θ. Such an orientation can be a
final orientation of the imperfect part after pushing. Potentially-stable orientations
can be (i) right type (R-type), or (ii) left type (L-type), or (iii) neutral type (N-type).

In the following subsections we define the subtypes and properties of p-stable and
unstable orientations. The types of orientations divide S1 into intervals of orientation
of the same type. These intervals will be referred to as critical intervals. The type of
a critical interval equals the type of orientations it contains

3.1 Unstable Intervals

Unstable intervals help to reduce the uncertainty in the orientation of an imperfect
part as they can never appear in the set of possible orientations after a push action.
The following lemma describes how we can distinguish unstable angles.

Lemma 2 An orientation θ ∈ S1 is unstable if and only if δE (θ) < rI (θ).

Figure2 shows several unstable intervals, in which the (red) graph of δE lies below
the (lower black) graph of rI . Lemma2 shows that we can determine the subdivision
of S1 into unstable and p-stable intervals by computing the intersection of δE and rI .
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Note that the unstable intervals can be computed in O(n) time since the number of
intersection points cannot exceed O(n).

Observation 2 Let Θ ⊂ S1 be an unstable interval. All instances P ∈ S(PI , PE )

will rotate in the same direction, i.e., in either clockwise or counterclockwise direc-
tion, for all push directions θ ∈ Θ .

The above observation shows that there are clockwise and counterclockwise ori-
entations and intervals. For any instance P ∈ S(PI , PE ), rP is strictly increasing in
a clockwise unstable interval and strictly decreasing in a counterclockwise unstable
interval. In Fig. 2, θcw and its containing interval are clockwise unstable while θccw

and its containing interval are counterclockwise unstable.

3.2 Potentially-Stable Intervals

According to Lemma2 p-stable orientations are angles in which the graph of δE lies
above the graph of rI . Now consider the graph of δE . A p-stable angle θ is called
R-type if from the point (θ, δE (θ)) the graph of rI is horizontally visible to the right.
Similarly, it is called L-type if the graph of rI is horizontally visible to the left. If
there is no horizontal visibility of rI the p-stable angle is referred to as N-type. In
Fig. 2 the angle θR is R-type because the horizontal ray emanating from (θ, δE (θ))
to the right first hits rI ; θL is an L-type angle as the horizontal ray emanating from
(θ, δE (θ)) to the left hits rI .

The following definition describes the three types of angles more precisely.

Definition 2 Let θ ∈ S1 be a p-stable angle.

• θ isR-type if and only if there is no angle ξ such that θ < ξ < θ′ and rE (ξ) = δE (θ),
where θ′ > θ is the smallest angle such that rI (θ

′) = δE (θ). The angle θ′ is called
upper bound of θ denoted by BU (θ).

• θ isL-type if and only if there is no angle ξ such that θ′ < ξ < θ and rE (ξ) = δE (θ),
where θ′ < θ is the largest angle such that rI (θ

′) = δE (θ). The angle θ′ is called
lower bound of θ denoted by BL(θ).

• θ is N-type if it is neither R-type nor L-type.

Remark Throughout this paper, the term right refers to the counterclockwise direc-
tion and left refers to the clockwise direction. The following observation can bemade
about rI and rE . See Fig. 2.

Observation 3 Let θ ∈ S1 be R-type (L-type). Then rE is increasing (decreasing) in
a sufficiently small right (left) neighborhood of θ and rI is increasing (decreasing)
in a sufficiently small left (right) neighborhood of BU (θ) (BL(θ)).

It is possible that an angle is both L-type and R-type. Lemma3 shows that such
angles are local minima of rE .
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Lemma 3 If θ ∈ S1 is R-type and L-type, then θ is a local minimum of rE .

It is not difficult to see that each orientation is of one of the aforementioned types.
Lemma4bounds the resulting number of critical intervals and their computation time.

Lemma 4 There are O(n) critical intervals; they are computable in O(n) time.

4 Computing the Lower and Upper Push Functions

To compute Φ∗
L and Φ∗

U , we need to find the tight lower and upper bounds for
the amount of clockwise or counterclockwise rotation of an imperfect part. (See
Definition1.) Recall that when a part is pushed, it rotates in the direction in which
the radius function decreases. As a result, we are interested in as longest as possible
non-increasing curve (to the right as well as to the left) that lies completely between
rI and rE . We note that not every such a curve corresponds to a valid part. Therefore,
our strategy is to construct valid instances which create these bounds for clockwise
and counterclockwise rotations when it is being pushed at θ.

In this section, we show that if θ belongs to a counterclockwise unstable interval
then Φ∗

L(θ) is the right endpoint of that interval. Otherwise, Φ∗
L(θ) is the left bound

of some specific L-type angle. Similarly, if θ belongs to a clockwise unstable interval
then Φ∗

U (θ) is the left endpoint of that interval. Otherwise, Φ∗
U (θ) is the right bound

of some specific R-type angle. We will focus on computing upper bounds in this
section with the understanding that lower bounds can be computed similarly.

If θ is a clockwise unstable angle then there is no instance P ∈ S(PI , PE ) that
rotates counterclockwise. Therefore, the upper bound cannot exceed the left endpoint
of the unstable interval that contains θ. This upper bound is easy to compute.We now
assume that θ is not a clockwise unstable angle. In this case, Φ∗

U (θ) ≥ θ. We note
that if an instance P rotates counterclockwise, then rP has to be strictly decreasing
in a sufficiently small right neighborhood of θ. We define an instance whose radius
function is decreasing along the largest possible interval. We refer to this instance
as the upper critical instance at the direction θ. The critical instance suggests us
an approach to compute Φ∗

U (θ). We present an algorithm that constructs the upper
critical instance for every θ. Then, we prove a theorem that helps to compute Φ∗

U
from these critical instances.

By definition, if P is an upper critical instance, then rP has to be decreasing in
the interval [θ, Φ∗

U (θ)]. For angles in which rE is decreasing, it is not difficult to find
such instances. For the other angles we prove the following lemma.

Lemma 5 Let θ ∈ S1 be an angle such that rE is increasing in a right neighborhood
of θ and let P ∈ S(PI , PE ) be an instance that rotates counterclockwise after a single
push action at the direction θ. Then rP (θ) ≤ δE (θ).

The next corollary follows from Lemma5 and Observation1.
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Corollary 1 Let θ ∈ S1 be an R-type angle and P ∈ S(PI , PE ) be its upper critical
instance. Then rP (θ) ≤ δE (θ).

Corollary1 reveals that BU (θ) is an upper bound on Φ∗
U (θ). Note that by Obser-

vation3 for an R-type angle θ, rI is ascending in the left neighborhood of BU (θ). So,
no decreasing curve starting in the right neighborhood of θ cannot extend beyond
BU (θ). The following lemma shows that BU (θ) is tight.

Lemma 6 Let d > 0 be a constant and [θ1, θ2] ⊂ S1 be an interval such that for all
θ ∈ [θ1, θ2], rI (θ) ≤ d ≤ δE (θ). Then there is an instance P such that rP (θ) = d
for all θ ∈ [θ1, θ2].

So far, we discussed how to compute Φ∗
U (θ) if θ is clockwise unstable or R-type.

Otherwise, we claim that there is an instance P ∈ S(PI , PE ) such that rP is decreas-
ing in [θ, BU (θm)], where θm is the closest R-type angle to θ in counterclockwise
direction. If such an angle does not exist, then the upper bound is 2π. The following
lemma shows that θm is a local minimum of rE .

Lemma 7 If an angle θ is neither a clockwise unstable angle nor an R-type angle,
then the closest R-type angle to θ in counterclockwise direction is a local minimum
for rE .

Algorithm1 creates the upper critical instance for an angle θ0 that is not clockwise
unstable. The key idea is that for such an angle θ0, there is an instance P ∈ S(PI , PE )

such that rP is decreasing in [θ0, BU (θm)]where θm is the closestR-type angle to θ0 in
counterclockwise direction. If there is no such R-type angle, then there is an instance
that can rotate arbitrarily close to 2π. We explain how to construct a decreasing
function and then show that this function is a part of the radius function of the instance
reported by Algorithm1. Lemma6 shows that any horizontal ray that lies above the
graph of rI and below the graph of δE lies on the radius function of some instance.
Note that according to Lemma5 for any θ ∈ [θ0, BU (θm)] if rE is increasing in the
neighborhood of θ and P rotates in counterclockwise direction, then rP (θ) < δE (θ).
Therefore, we construct a function for P by starting from θ0 and follow the horizontal
ray emanating from (θ0, δE (θ0)) as long as it stays below δE and above rI . Here P
satisfies rP (θ) = δE (θ0). If the ray hits rI we are done. Alternatively, it hits δE

at some angle θ′ at which δE is decreasing in the right neighborhoods of θ′. We
continue by choosing rP (θ) = δE (θ′) cos(θ′ − θ) until we hit rE . Then we follow rE

until the closest local minimum and then again we use horizontal rays and continue
similarly. The blue graph in Fig. 3 is an example of a function that is created using this
procedure. Algorithm1 constructs the corresponding instance which is also shown in
Fig. 3. In Algorithm1, P(θ1, θ2) stands for the part of P between two rays emanating
from the center of mass in directions θ1 and θ2, EI and EE are the sets of edges of
PI and PE respectively, and Dd is the boundary of a disc of radius d centered at the
center of mass.
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Algorithm 1 Constructing the upper critical instance
1: procedure Construct Q(θ0) 
 θ0 is not a cw unstable angle
2: Q ← null 
 Initialization
3: Continue ← T rue
4: d ← δE (θ0)
5: if ∂Dd lies inside the tolerance zone then
6: Q ← Dd 
 Upper critical instance is a disc
7: else
8: while (Continue)
9: d ← δE (θ0)
10: θ1 ← The closest angle to θ0 in ccw direction such that ∂Dd intersects
11: the segment s ∈ EI ∪ EE at the direction θ1 and θ0 
= θ1
12: if s ∈ EI then 
 θ0 is an R-type angle
13: e ← the segment on the tangent line of Dd and PI between them.
14: α ← The direction of the normal vector of e.
15: Q ← Q ∪ Dd (θ0,α) ∪ e
16: Continue ← False
17: else
18: if Dd (θ0, θ1) is inside the tolerance zone then
19: Q ← Q ∪ Dd (θ0, θ1)
20: θ0 ← θ1
21: else
22: θm ← the closest local minimum of rE to θ0 in ccw direction.
23: Q ← Q ∪ PE (θ0, θm)

24: θ0 = θm
25: Construct the rest of P arbitrarily to make it a valid instance.
26: end procedure

θ

θ

θ

m

c

u

0

Fig. 3 Illustration of Algorithm1 for an imperfect part. The critical instance constructed for the
given angle θ0 is shown in blue. The diagram on the right shows that the corresponding radius
function is decreasing; θm is the closest R-type angle in counterclockwise direction from θ0 and
θu = BU (θm)
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The following lemmas provide the basis for the computation of the critical
instance.

Lemma 8 Let θ ∈ S1 be R-type and satisfying θ = BU (θ). There is no instance
P ∈ S(PI , PE ) that rotates counterclockwise when pushed at θ.

Lemma 9 Assume that an imperfect part is pushed at direction θ0. If there is no
θ 
= θ0 such that θ is an R-type angle, then there is an instance in S(PI , PE ) that
rotates arbitrarily close to 2π. Otherwise, we consider the following cases for the
upper bound of the final orientation considering all instances P ∈ S(PI , PE ).

(a) If θ0 is a clockwise unstable angle, then the left endpoint θu of the containing
unstable interval is a tight closed upper bound.

(b) If θ0 is not a clockwise unstable angle, then θu = BU (θm), with θm being the
closest R-type angle to θ0 in counterclockwise direction, is a tight open upper
bound.

We summarize the discussion of this section in the following theorem.

Theorem 4 Φ∗
L and Φ∗

U can be computed in O(n).

Proof Lemma4 shows that the critical intervals can be computed in O(n). For any
θ belonging to a critical interval Θ , the function Φ∗

U can be computed by applying
Lemma9.

• If Θ is clockwise unstable, then Φ∗
U (θ) = L(Θ).

• IfΘ isR-type, thenΦ∗
U (θ) = BU (θ). Note that for anR-type angle θ, rI (Φ

∗
U (θ)) =

δE (θ). Then, Φ∗
U (θ) = r−1

I (δE (θ)) for the corresponding range of δE and domain
of r−1

I .
• For all remaining intervals, i.e., counterclockwise unstable, L-type and N-type,

Φ∗
U (θ) = BU (θm)where θm is the closest R-type angle in counterclockwise direc-

tion. According to Lemma7, θm is a local minimum of rE ; therefore it is sufficient
to check only the local minima. Since the number of local minima is linear and they
occur in order, using a simple traversal of the graphs all of them can be computed
in a linear time.

The time complexity of computing Φ∗
U is O(n). The same bound applies to Φ∗

L . ��
Figure4a, b illustrate an imperfect part and the radius and distance functions.

The corresponding Φ∗
L and Φ∗

U are depicted by blue and black curves in Fig. 4c,
respectively. It can be observed that for unstable and N-type intervals, the graphs of
Φ∗

L and Φ∗
U are horizontal. For L-type intervals, the graph of Φ∗

L curves downward
and the graph of Φ∗

U is horizontal, while for R-type intervals the graph of Φ∗
U curves

upward and the graph of Φ∗
L is horizontal.
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(a)

(b) (c)

Fig. 4 a An example of an imperfect part. b rI , rE (black) and δE (red). c Φ∗
L (blue) and Φ∗

U
(black)

5 An Algorithm for Orienting an Imperfect Part

In the previous section we have shown how to computeΦ∗
L andΦ∗

U . The monotonic-
ity of these functions admits a greedy approach to find, for a given integer h ≥ 0, the
sequence of h push actions that orients an imperfect part into the smallest possible
interval of orientations. Let Θi be the smallest interval containing all possible orien-
tations after i pushes. Obviously, Θ0 = S1, and after the first push the part will be
in one of the p-stable orientations, so Θ1 = S1 − Πmax , where Πmax is the largest
unstable interval. The intervalΘi+1 can be obtained by computing the shortest image
of any translate of Θi under Φ. The process continues as long as |Θi+1| < |Θi | and
i < h. Lemma10 helps us to discretize the search for Θi+1 by showing that it suf-
fices to consider only translates of Θi in which one of its endpoints coincides with
an endpoint of some unstable interval. We first give an observation that is needed to
prove Lemma10. It says that any p-stable angle θ appears in its own image under
Φ∗ (and Φ), because, by definition, there is an instance in S(PI , PE ) that is stable
after pushing at θ.

Observation 5 Φ∗
L(θ) ≤ θ ≤ Φ∗

U (θ) if and only if θ is a p-stable angle, for any
θ ∈ S1.

Lemma 10 Let Θ ⊂ S1 be an interval with the smallest image under Φ among all
the intervals with the length of a given value. If |Φ(Θ)| < |Θ|, then there exists an
interval Θ ′ ⊂ S1 with |Φ(Θ)| = |Φ(Θ ′)| such that L(Θ ′) or U (Θ ′) coincides with
an endpoint of an unstable interval.

Algorithm2 computes the smallest possible interval of orientations for an imper-
fect part after (at most) h push actions. Lemma10 shows that it suffices to repeatedly
align the endpoints of the current smallest interval Θi with each of the endpoints
of the k unstable intervals Π j (1 ≤ j ≤ k) to determine Θi+1. Figure5 shows the
application of the algorithm to the imperfect part of Fig. 4.
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Algorithm 2 Compute the smallest possible orientation set
1: procedure Compute-the-Smallest-Interval(Φ∗

L , Φ∗
U ,Π = {Π1,Π2, . . . ,Πk}, h)

2: i ← 1, X1 ← 2π − max1≤ j≤k{|Π j |} 
 Initialization
3: Continue ← T rue
4: while (Continue) and i ≤ h
5: S ← ∅
6: for j = 1 to k 
 For all unstable intervals
7: S ← S ∪ {[L(Π j ), L(Π j ) + Xi ]} ∪ {[U (Π j ) − Xi , U (Π j )]}
8: Θi ← Θ ∈ S such that ∀Θ ′ ∈ S, |Φ(Θ)| ≤ |Φ(Θ ′)|
9: if (|Φ(Θi )| < Xi )
10: i ← i + 1
11: Xi ← |Φ(Θi )|
12: else
13: Continue ← False
14: return Θi , Xi for all 1 ≤ i ≤ h
15: end procedure

Theorem 6 Algorithm2 finds the sequence of h ≥ 0 push actions that puts the
imperfect part given by S(PI , PE ) in the smallest interval of possible orientations
in O(hn) time.

Instead of running Algorithm2 for a given maximum number h of pushes, we can
also remove that bound and run it as long as the intervals Θi continue to shrink, to
obtain the largest possible reduction of the uncertainty in the imperfect part’s pose.
A natural question that arises is whether the algorithm would terminate in that case
and thus whether the maximum reduction of pose uncertainty can be obtained after
a finite number of pushes. It turns out that it is not always the case.

Recall that Algorithm2 repeatedly aligns the left or right endpoint of an interval
Θi with one of the O(n) endpoints of an unstable interval Γ . The other endpoint of
Θi then ends up in one of the O(n) critical intervals, say Γ ′. In order to obtainΩ(n2)

iterations the endpoints of some interval Θ j with j > i should be able to return to
the same pair of intervals consisting of Γ and Γ ′.

We assume without loss of generality that the left endpoint of Θi (and the future
interval Θ j ) coincides with an endpoint of an unstable interval endpoint ΓL . It is
not hard to see that the interval ΓR containing the right endpoint(s) must have a
variable Φ∗

U .

Lemma 11 Assume that the left endpoints of two intervals Θi and Θ j in Algorithm2
for some j > i share the same endpoint of an unstable interval ΓL and their right
endpoints lie in the same critical interval ΓR. Then ΓR must be R-type.

Lemma12 helps us to determine the conditions for which the resulting intervals
of Algorithm2 can be shrunk endlessly.

Lemma 12 Let d > 0 be a constant value and f be a continuous and non-decreasing
function which has a derivative at every point in its domain A ∈ R. Consider the
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Fig. 5 Illustration of Algorithm2 applied to the imperfect part of Fig. 4a, showing the intervals Θi
for i = 0, . . . , 7. The length of the image of any translate of Θ7 will be at least as long as Θ7; as a
result, no further reduction of the interval of possible orientations is possible

recursive sequence with the general term xn+1 = f (xn) − d and the first element
x0 > 0. If this sequence is decreasing and converges to some limit a ∈ A then

• f (x) < x + d, d f/dx > 1 where x ∈ [a, x0]
• f (a) = a + d

Let Ψi (i > 0) be the i th interval that has its left endpoint in the unstable
interval ΓL and its right endpoint in the critical interval ΓR . Assume that i > 1
and |Φ(Ψi )| < |Ψi |. According to Observation5, an unstable interval does not
appear in its image while an R-type interval does appear in its image. See Fig. 6b.
Considering the identity function and the image of Ψi−1, it can be observed that
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d

f (x)

g(x) = x + d

a x1 x0

(a) (b)

Fig. 6 a The sequence of xn+1 = f (xn) − d where lim
n→∞ xn = a. b L(Ψi−1) lies on L(ΓL ) and

U (Ψi−1) lies in ΓR ; |Φ(Ψi−1)| = |Ψi−1| − |ΓL | + Φ∗
U (U (Ψi−1)) − U (Ψi−1)

|Ψi | ≤ |Φ(Ψi−1)| = Φ∗
U (U (Ψi−1))−Φ∗

L(L(Ψi−1)) = |Ψi−1|−|ΓL |+Ψ (U (Ψi−1))

where Ψ (θ) = Φ∗
U (θ) − θ. Therefore, |Ψi | ≤ Φ∗

U (U (Ψi−1)) − (|ΓL | − L(Ψi−1)).
Note that |ΓL | − L(Ψi−1) is a constant. According to Lemma12 the smallest possi-
ble final orientation set can be obtained after a finite number of iterations unless the
following conditions are met.

1. For θ ∈ ΓR the graph of f (θ) = θ + (|ΓL | − L(Ψi−1)) lies above the graph of
Φ∗

U and dΦ∗
U /dθ < 1.

2. The graph of f (θ) = θ + (|ΓL | − L(Ψi−1)) intersects Φ∗
U in ΓR .

According to Lemma12, if Ψi satisfies both conditions, then the right endpoint
of Ψi gets close to the intersection point of f (θ) = θ + (|ΓL | − L(Ψi−1)) and
Φ∗

U (θ). Therefore, lim
i→∞ |Ψi | = |θ − L(ΓL)| where θ is an angle such that Φ∗

U (θ) =
θ + (|ΓL | − L(Ψi−1)). So the final orientation set can get arbitrarily close to this
limit by increasing the number of push actions.

Recall that the symmetric case, where ΓL is L-type, is similar. There exist imper-
fect parts [27] that meet both of the above conditions for some Θi .

6 Conclusion

In order for automated planning algorithms for part handling tasks to be useful in
practice it is important that these algorithms are capable of dealingwith the inevitable
shape variations of real industrial parts. The few papers that do not assume perfect
parts generally assume a very restrictive model for shape variations, and often only
determine howbig these variationsmust be to invalidate a solution that was computed
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based on the perfect model part. In this paper, we have considered a more general
model for shape variations and studied its effects on orienting parts by pushing. We
have proposed an algorithm that takes into account these variations during planning
and as such outputs a plan that simultaneously orients all instances satisfying the
model into the smallest possible interval of orientations after a given number of push
actions. We have also investigated the conditions for which the part cannot obtain
the smallest final orientation set after finite number of push actions.

The set of possible orientations of an imperfect part can consists of several disjoint
intervals. In this paper, we have focused on finding the smallest interval that contains
all these subintervals. A different version of the problem would be to minimize the
total size of the subintervals. Another extension is to allow for independent variations
in the location of the center of mass. It is also interesting to explore which parameters
affect the length of the final orientation interval; examples of such parameters are
the width of the tolerance zone and the eccentricity of the part.
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tolerance in feeding and fixturing. In: Agarwal, P.K., Kavraki, L.E., Mason M.T., Peters., A.K.
(eds.) Robotics: the algorithmic perspective, pp. 297–311 (1998)

4. Lavalle, S.M.: Planning Algorithms, chapter 12: Planning Under Sensing Uncertainty. Cam-
bridge University Press (2006)

5. Dogar,M., Srinivasa, S.S.: A framework for push-grasping in clutter. Robot.: Sci. Syst. 2 (2011)
6. Requicha, A.A.G.: Toward a theory of geometric tolerancing. Int. J. Robot. Res. 2, (1983)
7. Voelker, H.: A current perspective on tolerancing and metrology. Manufact. Rev. 6(4) 1993
8. Lozano-Perez, T., Mason, M.T., Taylor, R.H.: Automatic synthesis of fine-motion strategies

for robots. Int. J. Robot. Res. 3(1), 3–24 (1984)
9. Erdmann, M.A., Mason, M.T.: An exploration of sensorless manipulation. IEEE J. Robot.

Autom. 4, 367–379 (1988)
10. Akella, S., Mason, M.T.: Posing polygonal objects in the plane by pushing. In: Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2255–2262
(1992)

11. Goldberg, K.: Orienting polygonal parts without sensors. Algorithmica 10(2), 201–225 (1993)
12. Chen, Y.-B., Ierardi, D.J.: The complexity of oblivious plans for orienting and distinguishing

polygonal parts. Algorithmica 14, 367–397 (1995)
13. Berretty, R.-P., Overmars, M.H., van der Stappen, A.F.: Orienting polyhedral parts by pushing.

Comput. Geom.: Theor. Appl. 21, 21–38 (2002)
14. Wiegley, J.A., Goldberg, K., Peshkin, M., Brokowski, M.: A complete algorithm for designing

passive fences to orient parts. Assembly Autom. 17(2), 129–136 (1997)
15. Berretty, R.-P., Goldberg, K., Overmars,M.H., van der Stappen, A.F.: Computing fence designs

for orienting parts. Comput. Geom.: Theor. Appl. 10(4), 249–262 (1998)
16. Guibas, L., Salesin, D., Stolfi, J.: Epsilon geometry: building robust algorithms for impre-

cise computations. In: Proceedings of the 5th ACM Annual Symposium on Computational
Geometry, pp. 208–217 (1989)

17. Davoodi, M., Mohades, A.: Data imprecision under λ-geometry: range searching problems.
Scientia Iranica 20(3), 663–669 (2013)



496 F. Panahi et al.

18. Roy, U., Liu, C., Woo, T.: Review of dimensioning and tolerancing. Compu. Aid. Desig. 23(7)
(1991)

19. Panahi, F., van der Stappen, A.F.: Bounding the locus of the center of mass for a part with
shape variation. In: Proceedings of the Canadian Conference on Computational Geometry, pp.
247–252 (2013)

20. Ostrovsky-Berman, Y., Joskowicz, L.: Tolerance envelopes of planar mechanical parts with
parametric tolerances. Comput. Aid. Desig. pp. 531–534 (2005)

21. Bern, M., Eppstein, D., Guibas, L.J., Hershberger, J.E., Suri, S., Wolter, J.: The centroid of
points with approximate weights. In: Proceedings of the 3rd European SymposiumAlgorithms,
LNCS 979, pp. 460–472 (1995)

22. Akella, S., Mason, M.T.: Orienting toleranced polygonal parts. Int. J. Robot. Res. 19(12),
1147–1170 (2000)

23. Brost, R.C.: Automatic grasp planning in the presence of uncertainty. Int. J. Robot. Res. 7(1),
3–17 (1988)

24. Kehoe, B., Berenson,D., Goldberg, K.: Toward cloud-based graspingwith uncertainty in shape:
estimating lower bounds on achieving force closure with zero-slip push grasps. In: Proceedings
of the IEEE International Conference on Robotics and Automation (2012)

25. Giora, Y., Kaplan, H.: Optimal dynamic vertical ray shooting in rectilinear planar subdivisions.
In: Proceedings of the 18th ACM-SIAMSymposium onDiscrete Algorithms, pp. 19–28 (2007)

26. Rao, A.S., Goldberg, K.: Manipulating algebraic parts in the plane. IEEE Trans. Robot. Autom.
11(4), 598–602 (1995)

27. Panahi, F., Davoodi, M., van der Stappen, A.F.: Orienting a part with shape variation Tech-
nical Report UUCS-2014-007, Department of Information and Computing Sciences, Utrecht
University, Utrecht, The Netherlands (2014)



Smooth and Dynamically Stable Navigation
of Multiple Human-Like Robots

Chonhyon Park and Dinesh Manocha

Abstract We present a novel algorithm for smooth and collision-free navigation for
multiple human-like robots. Our approach combines reciprocal collision avoidance
with kinematic and dynamic stability constraints to compute a non-oscillatory tra-
jectory for each high-DOF robot. We use a multi-level optimization algorithm that
combines acceleration-velocity obstacles with trajectory optimization. We highlight
our algorithm’s performance in different environments containing multiple human-
like robots with tens of DOFs.

1 Introduction

animation, computer-aided design and related applications. As part of the recent
DARPA challenge, attention to autonomous planning for humanoid robots has
increased; this has stimulated considerable interest in efficient planning algorithms
for high-DOF robots. Multiple human-like characters are commonly used in com-
puter animation, and it is important to automatically compute their motion. Digital
models of humans or mannequins are frequently used in assembly and virtual proto-
typing applications for design, assembly, and maintenance (for example, evacuation
planning for a building or an airplane).

Human-like robots are, however, a challenge for planning. They have high
degrees-of-freedom (DOF), which increases the complexity of their configuration
and search spaces.must also satisfy their kinematic and dynamic stability constraints:
the computed posture for each human-like robot should be statically stable, and the
forces and torques acting on each robot should maintain an equilibrium for dynamic
stability. Some additional challenges arise in environments with multiple robots. The
total number of DOF of the system increases linearly with the number of robots in the
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environment. Furthermore, it is important to compute smooth, non-oscillatory trajec-
tories for these robots. Finally, the resulting environments may be non-planar (e.g.
stairs), and it is difficult to navigate these complex environments while maintaining
the stability and smoothness constraints. At the same time, most motion planning
algorithms for multi-robot systems are restricted to low-DOF robots or do not take
into account dynamics and stability constraints for human-like robots.

There is extensive work on motion planning for high-DOF robots as well as
collision-free navigation of low-DOF multiple robots. The simplest algorithms for
single-robot planning are based on sampling-based algorithms [13, 16] and can be
extended to take into account kinematic and dynamic constraints [4, 5, 8, 26], There
is recent resurgence in use of optimization-based techniques [12, 19, 22] as they can
generate collision-free and smooth trajectories. Most optimization-based planners
are designed for a single robot planning scenario in an environment composed of
static and dynamic obstacles.
Main Results: In this paper, we address the problem of efficient navigation of
multiple high-DOF human-like robots. Our approach can generate non-oscillatory,
collision-free trajectories for each robot while accounting for kinematics, dynamics,
and smoothness constraints. We use a multi-level optimization based algorithm to
compute these trajectories. In the first level, we compute collision-free trajectories for
each robot using acceleration-velocity obstacles. Our formulation takes into account
the kinematic constraints of each human-like robot and reduces the computation to
linear programming. The resulting trajectories are then used in the second phase to
compute smooth motion for each DOF or joint of the human-like robot. We optimize
the trajectory to compute a physically correct, dynamically stable motion for each
robot (e.g. a walking motion) that takes into account all the contacts between the
robot and the environment. The overall formulation is efficient and conservative.
If the optimization algorithm computes the trajectories, they are are guaranteed to
satisfy the constraints: smoothness, dynamic stability, and collision avoidance. How-
ever, it is possible (e.g. narrow passages) that the optimization algorithm may not
find a global minima that would satisfy all the constraints.

We have evaluated our algorithm in different environments, using from 2 to 8
human-like robots with 34 DOFs each. We use a hierarchical decomposition scheme
to improve the performance of the high-DOF planning for each robot.

The rest of the paper is organized as follows. In Sect. 2, we survey related work
in optimization-based planning for high-DOF robots and in planning for multiple
robots. In Sect. 3, we describe the two-level optimization algorithm that computes a
trajectory for each robot. Section 4 analyzes our algorithm and provides guarantees
on the resulting trajectories. Finally, we highlight our algorithm’s performance in
different scenarios in Sect. 5.
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2 Related Work

In this section, we give a brief overview of prior work in optimization-based and
multi-robot planning.

2.1 Optimization-Based Motion Planning for High-DOF
Robots

Optimization-based planners compute a trajectory using a continuous planning for-
mulation. The optimization function can have various constraints formulated into tra-
jectory computation, including path smoothness and collision-avoidance constraints.
Khatib proposed the use of potential fields for real-time obstacle avoidance [14].
This approach is extended using elastic strips [6] and elastic bands [21] to compute
minimum-energy paths using gradient-descent methods. Some recent approaches,
such as [12, 22] and [19], directly encode constraints into the optimization cost
functions, then use a numerical solver to compute a trajectory.

Some optimization-based planning approaches take into account the stability of
the motion, which is an important criterion in motion planning for high-DOF human-
like robots. These include techniques based on inverse pendulum [11] or the zero
moment point [10], but these approaches are limited to planar ground (i.e. flat sur-
faces). Recently, many optimization-based approaches approaches have integrated
stability constraints directly into trajectory optimization [7, 18, 20, 24]. Mordatch
et al. [18] use a contact-invariant optimization formulation, along with a simpli-
fied physics model, to generate various motions for animated characters. Posa and
Tedrake [20] directly optimize the contact forces, along with the state of the robot
and the user input. Dai and Tedrake [7] formulate the uncertainty of the terrain into
the optimization formulation.

2.2 Multi-robot Collision Avoidance

Algorithms that plan for multiple robots can be classified into either centralized or
decoupled algorithms. The centralized planners [17, 23, 27] treat multiple robots as a
single robot with the combined DOFs of all component robots and apply single-robot
planning algorithms to the combination. Because the complexity of the centralized
planning grows as the number of robots increases, the centralized planners are limited
to environments with only a few low-DOF robots. On the other hand, the decoupled
planners compute robot trajectories in a distributed manner, which allows them to
plan for a large number of robots [1, 15].

Velocity obstacles [9] is one of the most widely-used approaches for motion plan-
ning in dynamic environments. The basic velocity-obstacle method was extended
by Berg et al., who offered a method using reciprocal velocity obstacles [30] that
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is especially useful for avoiding collisions between robots; it is fast and generates
oscillation-free motion among the robots. Some variants of reciprocal velocity obsta-
cles also take into account maximum acceleration limits or smoothness constraints
[2, 29]. However, these approaches all assume that the robots have simple disc-like
or spherical shapes.

3 Planning Algorithm

In this section, we give an overview and the details of our two-level motion plan-
ning algorithm for multiple high-DOF human-like robots. Our optimization-based
algorithm is decomposed into two levels. The first level computes collision-free
trajectories for multiple robots based on kinematic constraints. The second level
optimizes the individual trajectories with smoothness and stability constraints.

3.1 Overview

Our planning algorithm assumes that each of the multiple robots computes its own
trajectory in a decoupled manner without any explicit communication between the
robots. We assume that each planner has a full representation of the environment
and of the position and velocity of the other robots in the environment. Our current
formulation therefore doesn’t account for any uncertainty in the environment or the
position and velocity of other robots.

Figure 1a gives an overview of the algorithm for each robot. The planning approach
consists of multiple modules: scheduler, sensor data collection, and robot controller.

PB BV,Goal 
Setting 

Scheduler 

Robot 
Controller Sensor Data Collection 

Environment (Other Robots) 

Robot 
Motors 

Motion Planner 

Collision
Avoidance 

Trajectory 
Optimization 

Smoothness 
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Motion Planner 

Compute AVOs 

Collision Avoidance

Compute Half-planes 

Apply Kinematic Constraints 

Choose New Velocity 

Intersection of  
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Trajectory Optimization 

Generate Initial Trajectory 

Stability 
Cost 

Contact 
Cost 

Planning  
Request 

(a) The overall planning algorithm (b) Two-level planner

Fig. 1 a An overview of our planning algorithm. The scheduler module sends a planning request
to the planner during each time step. The computed trajectory is sent to the robot controller. b The
motion planner is decomposed into two levels: collision avoidance and trajectory optimization and
various stages of each level are shown in the figure. The collision avoidance module computes a
velocity that avoids collisions with other robots, then generates an initial trajectory for each robot
that is then used for trajectory optimization
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When a goal position (new or initial) for each robot is set, the scheduler sends a
planning request to the motion planner. The planning request has a planning time
limit Δt . The sensor module updates the environmental information, including the
positions and velocities of other robots; based on this environmental information,
the motion planner then computes a trajectory for the next execution step.

The motion planner is decomposed into two levels. For each robot A, the first
level computes a collision-avoiding velocity vnew

A that ensures that A does not collide
with other robots during that interval. In the computation of the collision-avoiding
velocity, we model each robot A as a 2D disk, which can be defined using a point
pA = (xA, yA) and a radius rA that can cover the actual robot. We use the 2D
position of the root link of the model hierarchy, which usually corresponds to waist
or pelvis link of a human-like robot, as pA and denote it as the root of the robot
A. The computed velocity vnew

A is constrained by the kinematic constraints of the
given human-like robot model, and these constraints depend on the orientation of the
robot θA. We denote this velocity bound computed by the kinematic constraints for a
human-like robot as H(θA). vnew

A is used to generate a collision-free initial trajectory
for the second level, which then computes a trajectory for the robot using trajectory
optimization. The second level takes into account the robot model’s smoothness and
dynamic stability constraints.

3.2 Collision Avoidance

Our collision avoidance computation algorithm is based on acceleration-velocity
obstacles (AVO) [29]. AVO is a set of velocities at which the robot would collide
with obstacles (including other robots) if the robot velocity is in AVO. AVO can be
defined in 2D space for two disc-shaped robots A and B. First we denote an open
disc of radius r centered at p as

D(p, r) = {q|‖q − p‖ < r}. (1)

Using (1), AVO for robot A respect to B is defined as the set of all relative velocities
vAB = vA − vB such that:

AVOδ,τ
AB =

⋃

t∈[0,τ ]

D

(
δ(e−t/δ − 1)vAB − pAB

t + δ(e−t/δ − 1)
,

rAB

t + δ(e−t/δ − 1)

)

, (2)

where pAB = pA − pB is the relative position, vAB = vA − vB is the relative
velocity, rAB = rA + rB is the sum of robot radii, τ is the time horizon, and δ is
an acceleration control parameter [29]. The definition implies that if the robot A
chooses a new velocity v′

A which pushes vAB outside of AVOδ,τ
AB , the robots will not

collide before time τ while A and B have the same acceleration control parameter δ.
The set of collision-avoiding velocities C Aδ,τ

A|B for A with respect to B is defined as
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C Aδ,τ
A|B(vB) = {v + vB |v /∈ AVOδ,τ

AB}. (3)

In a multi-robot planning environment with more than two robots, the computed
velocity of the collision avoidance should be outside the AVOs of all other robots. We
use the optimal reciprocal collision avoidance (ORCA) algorithm [30] to compute
these velocities. Rather than computing the exact set of collision-avoiding velocities
C Aδ,τ

A|B , the ORCA algorithm defines the permitted velocities for A respect to B as
a half-plane:

ORCAδ,τ
A|B(vB) = {v|(v − (vopt

A + 1

2
u)) · n ≥ 0}, (4)

where vopt
A is optimization velocity (the velocity that the robot would have chosen if

there are had been no obstacles), u = (arg minv∈∂AVOδ,τ
A|B

‖v−(vopt
A −vopt

B )‖)−(vopt
A −

vopt
B ) and n is the outward normal of the boundary of AVOδ,τ

A|B at (vopt
A −vopt

B )+u. The
computed velocities eliminate oscillatory motion or trajectory without any explicit
communications between the robots [30]. The optimal velocity ORCAδ,τ

A for A is
computed as the intersection of the half-planes,

ORCAδ,τ
A =

⋂

B �=A

ORCAδ,τ
A|B(vB). (5)

Our algorithm also applies the kinematic constraints of the human-like robot
(Sect. 3.3),

ORCAθ,δ,τ
A = H(θ) ∩ ORCAδ,τ

A . (6)

From the set of velocities in ORCAθ,δ,τ
A , our algorithm computes the velocity that is

closest to vopt
A ; it then computes the goal position of the current planning step pgoal

A :

vnew
A = arg min

v∈ORCAθ,δ,τ
A

‖v − vopt
A ‖, (7)

pgoal
A = pA + vnew

A Δt. (8)

3.3 Kinematic Constraints for Human-Like Robots

The computation of AVO (2) requires the radius of the robot. We use the personal
space defined by a radius r , rather than the exact physical extent of the robot, as part
of our collision avoidance computation. Personal space is a psychological concept
corresponds to the empty region between two nearby persons that reflects each per-
son’s comfort level and allows enough space for them to swing their limbs. In the
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context of multi-robot planning, this Personal space is used to provide each robot
enough space to move its arms and legs.

The basic AVO algorithm takes into account kinematic constraints in terms of
maximum velocity and acceleration limits. But the prior algorithm is designed for
2D disc like robots, and is therefore indifferent to the robot’s orientation when com-
puting velocities [29]. For human-like robots, kinematic constraints are highly depen-
dent on the robot’s orientation. Our approach therefore uses orientation-dependent
velocity constraints since we are working with human-like robots. We denote these
orientation-dependent velocity constraints as H(θ), and add these constraints to the
computed set of collision-avoiding velocities.

A locomotion of a human-like robot A is modeled by a trajectory of the robot
root states, (pA, vA, θA). The human-like robots move by taking individual foot-
steps, which correspond to contacts between robot feet and the ground. Each new
footstep’s generation is constrained by the last footstep [25]. In order to formulate
this constraint, we assume the human-like robot moves based on forward walking,
and that the robot’s root orientation is the same as the orientation of one of the feet
that moved in the last footstep [3]. The constraint of the permitted new position of a
left foot can be formulated as

{(x − d sin θ + s1 cos θ′, y − d cos θ + s1 sin θ′)|θ′ ∈ [θ, θ + α]}, (9)

where d is the distance between the robot root and the left foot, s1 is the bound of
forward walking (i.e., the length of a stride), and α is the maximum z-axis rotational
angle of the left foot. The constrained region is shown in Fig. 2a in the blue color.
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Fig. 2 Formulating the velocity bound of the kinematic constraints H(θ) for a human-like robot.
a The permitted left foot position and right foot position for forward walking, when the last step
is taken by the right foot (shown in dotted lines). In a forward walking, a single left step only can
turn the robot orientation to the left; with only two steps, the robot can orient itself to the left and
right sides, within a range of [θ − α, θ + α] (α is the maximum z-axis rotational angle of the left
foot). b Permitted robot root position for two steps, which is a symmetric shape corresponding to
the robot orientation θA. c The velocity bound H(θ) for a human-like robot. The robot maintains
its orientation except when it is facing towards the goal; it then orients itself toward the goal
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The position of the previous footstep is shown with the dotted line. The robot can
only change its orientation to one single side within a single footstep; if we plan
only a single footstep during the planning interval, it therefore invalidates most of
the collision avoiding velocities. Rather than using a single footstep, we compute
two consecutive steps within our planning time interval. In this case, the permitted
position of the second right footstep is anything within the range of orientations
in [θ − α, θ + α] (green region shown in Fig. 2a), and the robot root position has
a large symmetric bound corresponding to the robot orientation θA, as shown in
Fig. 2b. The velocity bound depending on the robot’s orientation corresponds to the
bound on the position of robot’s root, and can be computed from the two constants,
stride distance s and time step Δt . However, the forward walking assumption means
that the robot cannot choose to move to the side or back. Robots can, however,
move a distance s2 in an arbitrary direction using two footsteps without changing
their orientation; this is useful when the robot, in order to avoid collisions with
other robots, must move in a direction very different from its current orientation.
Therefore, we formulate the velocity constraint H(θ) shown in Fig. 2c using both
forward walking and side-stepping, depending on the angle between robot’s current
orientation and its orientation towards the goal position pgoal = (xgoal , ygoal). We
use the forward walking bound when θ ∈ tan−1(pgoal − pA) ± α/2; otherwise
we use the side-stepping bound D(0, s2/Δt). The bound on the angle α allows the
robot to change its orientation towards its desired orientation in one planning step,
and perform side-stepping or back-stepping motion when the robot is not heading
towards pgoal because of other nearby robots. The velocity bound H(θ) is formulated
as the union of the side-stepping and the forward walking bounds,

D(0,
s2

Δt
)
⋃ (

D(0, 2
s1

Δt
) ∩

{
v|

∥∥∥tan−1(v) − θgoal
∥∥∥ <

α

2

}

∩
{

v|v − (v · n)n <
s1

Δt
sin α

} )
, (10)

where θgoal = tan−1(pgoal − pA), and n = (cos θ, sin θ).

3.4 Trajectory Optimization

The second level of our motion planner performs trajectory optimization based on
all the DOFs of the robot. The initial trajectory Q is initialized using the result of the
computation of the collision-avoiding velocity. The trajectory of the root position is
initialized as a cubic polynomial curve by Hermite interpolation using the position
and the velocity of the goal position of the prior planning step and the new collision-
avoiding velocity and position as the end-point constraints. Then Q is optimized using
all DOFs of the robot. We use the ITOMP optimization-based framework [19] for the
trajectory optimization. The trajectory Q is first discretized into N + 2 waypoints,
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{qI , q1, . . . , qN , qG}, where N is the number of internal waypoints. Each waypoint
qi is a robot configuration of all actuated joints and the position of the robot root.
The start configuration qI is set to the current robot configuration, and the goal
configuration qG is set with the goal position of the robot root pgoal

A . The internal
waypoints {q1, . . . , qN } are initialized using an interpolation to generate a smooth
trajectory. Using the internal waypoints {q1, . . . , qN } as the optimization variables,
our planner optimizes the following cost function to compute the optimal trajectory:

Q∗ = arg min
q1,...,qN

N∑

k=1

(C(qk) + ‖qk−1 − 2qk + qk+1‖2), (11)

where the term C(qk) represents the cost function for the waypoint qk, and the
second term ‖qk−1 − 2qk + qk+1‖2 represents the smoothness at waypoint qk. The
waypoint smoothness is computed based on the finite-difference accelerations on the
joint trajectories.

3.5 Dynamic Stability and Contacts Generation

It is important that the trajectories of articulated human-like robots with high-DOFs
are dynamically stable and that the robot is able to maintain its balance. As shown
in Fig. 3a, a robot configuration qk is stable when the sum of the all internal and
external forces exerted on the robot is zero [28]. This zero sum implies that the
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Fig. 3 A human-like robot makes contacts c1 and c2 with the ground plane. The gravity force wg

and the inertia force wi are applied to the robot. The contact forces w1
c and w2

c can have values in
their friction cone. The robot is stable when w1

c +w2
c +wg +wi = 0. a Forces exerted on the robot.

b Friction cone
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contacts between the robot and the rest of the environment (e.g. the ground) need to
be planned accordingly, positioning the robot so that the resultant forces maintain
that equilibrium.

In our formulation, the waypoint cost function C(qk) includes the costs for the
stability constraints that account for force equilibrium and contacts generation for a
waypoint qk. These costs can be expressed as

C(qk) = CStabili ty(qk) + CContact (qk). (12)

CStabili ty(qk) represents the cost from the violation of the equilibrium of forces, and
it is defined as

CStabili ty(qk) = min
w1

c ,...,wL
c

‖
L∑

l=1

wl
c + wg(qk) + wi (qk)‖, (13)

where L is the total number of contact points, and wg(qk) and wi (qk) are the gravity
and inertia forces at waypoint qk, respectively. wl

c is the contact reaction force of
lth contact point, which is constrained by Coulomb’s friction law. wl

c is its friction
cone defined by a friction coefficient μ to avoid slipping (Fig. 3b). In other words,
wl

c should satisfy
‖wl

c − (nl · wl
c)n

l‖ ≤ μ(nl · wl
c), (14)

where nl is the contact normal of lth contact.
CContact (qk) represents the penalty cost from the invalid contacts generation:

The reaction forces from contact points affect the stability cost computation of (13).
The magnitudes of the contact forces can be directly optimized in the trajectory
optimization [20], but we use instead an indirect approach used in Contact-Invariant
Optimization, that assigns scalar variables ρ for contact points, then computes the
appropriate contact forces wc and the penalty cost CContact (qk) [18]. The cost is
defined as

CContact (qk) =
L∑

l=1

ρl
k(‖el

k(qk)‖2 + ‖ċl
k(qk)‖2), (15)

where L is the total number of potential contact points and ċl
k is the velocity of the

l-th contact point cl
k. el

k represents the distance from cl
k to the nearest point on the

obstacles. Therefore, the cost function becomes high when the contact point is not
on the environment or is sliding. ρl

k is a scalar variable that represents whether the
l-th contact is active in the waypoint qk. The contact cost is ignored when ρl

k is 0,
which implies that the corresponding contact point cl

k is inactive at waypoint qk.
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4 Mathematical Guarantees

In this section, we give the mathematical guarantees of our planning algorithm’s
suitability for high-DOF human-like robots; including smoothness of the computed
trajectory and local collision avoidance among multiple robots.

4.1 Smoothness of the Computed Trajectory

The ORCA algorithm generates a continuous trajectory of velocities, and that this
continuous velocity trajectory guarantees the smoothness of the robot trajectory [30].
In our approach, the velocities computed by ORCA in the first computation level
are used to generate the initial trajectory Q, which used as input for the trajectory
optimization in the second-level computation. Therefore, it is necessary to show
that the trajectory after the optimization is smooth, and that the partial trajectories
computed in multiple planning steps keep the continuity between next and previous
trajectories at their endpoints.

Theorem 1 Given a small duration δt between adjacent waypoints on a trajectory
that is computed from our planning algorithm, the velocity of the trajectory is con-
tinuous, i.e., the waypoints on the trajectory satisfy q̇i ≈ q̇i+1 for all i , where ≈
denotes ‘arbitrarily close to’ as δt → 0.

Proof Our planning algorithm computes partial trajectories of length Δt in multiple
planning steps using ORCA-based collision avoidance and the trajectory optimiza-
tion. As described in Sect. 3.4, the waypoints qi on the trajectory are evenly spaced
by δt and evaluated on polynomial curves of joints P(t), i.e., qi = P(i · δt). Since
Ṗ(t) ≈ Ṗ(t + δt) holds for any polynomial curves, q̇i = Ṗ(i · δt) ≈ Ṗ(i · δt + δt) =
q̇i+1 for the initial trajectories. It is guaranteed in [22] that the trajectory optimization
using covariant gradient updates keeps the smoothness of the initial trajectory.

In the each planning step, the planner uses the position, velocity, and accelera-
tion of the goal waypoint of the last planning step as the endpoint constraint when
performing the initial trajectory computation of the partial trajectory. It ensures that
any pair of two adjacent waypoints (qi , qi+1) on the entire trajectory is a subset of
a single planning step trajectory, where q̇i ≈ q̇i+1 holds.

4.2 Local Collision Avoidance

It is given by [30] that the ORCA algorithm can guarantee that the computed trajectory
for robot A is collision-free for time τ if ORCAδ,τ

A is not empty; choosing vopt
A

carefully ensures that it is never empty. We can claim that this holds true for our
collision avoidance computation even with the kinematic constraints introduced by
high-DOF human-like robots.
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Theorem 2 Given a time step δt , the computed trajectory for a robot A does not
collide with trajectories of any other robot B for B �= A, if ORCAδ,τ

A is not empty.

Proof In Fig. 2c, H(θ) covers the velocities that ‖v‖ ≤ s/Δt , regardless of the
orientation θ. It implies ORCAθ,δ,τ

A can be non-empty if ORCAδ,τ
A is not empty.

If the collision avoidance algorithm chooses a collision-avoiding velocity vnew
A in

ORCAθ,δ,τ
A , that means that the personal space of robot A, D(pA, rA) will not intersect

with the personal spaces of other robots during time interval τ . The robot A is always
completely contained by D(pA, rA), so the robot A does not intersect with other
robots if Δt ≤ τ .

5 Experimental Results

In this section, we describe the implementation of our multi-robot planning algo-
rithm and present the results in different scenarios. We implemented our algorithm
for simulated robots using a human-like robot model which has 34 DOFs. The robot
model is 2.3 m tall, and we set the variables for kinematic constraints and replan-
ning: radius of the personal space r = 1.0m, stride s = 0.5m, maximum foot z-axis
rotational angle α = π/2, the number of internal waypoints in the trajectory opti-
mization N = 100, planning step size Δt = 2 s, the velocity obstacle time horizon
τ = 10 s, and the acceleration control parameter δ = 4 s. The planning computation
for each robot was performed using separate threads. As it is shown in Fig. 1, each
planner first computes a collision avoiding velocity vnew

A and corresponding initial
trajectory, then optimizes the trajectory, which has two footsteps. We decompose
the robot model and plan the trajectories of the decomposed robot components in
a hierarchical manner to improve the performance of the planning. Timing results
were taken on a PC equipped with an Intel i7-2600 8-core CPU 3.4 GHz.

We test our approach in several benchmark scenarios to demonstrate the collision
avoidance behavior and dynamically stable motions. We highlight the results for
planning in different benchmarks in Table 1.

• Position Exchange (Fig. 4a): Two robots exchange their positions by passing each
other.

• Dynamic Obstacles (Fig. 4b): The benchmark has moving obstacles, and 8 robots
have to cross obstacle’s path to navigate to their goals.

• Circle (Figs. 4c, and 5): We initialize 8 robots on a circle. Each robot moves through
the center of the circle to the goal position opposite its initial position.

• Narrow Passage (Fig. 4d): Static obstacles make narrow passages, which is like a
building entrance. Eight robots move through the narrow passage.

Videos of these and other benchmark experiments can be found at http://gamma.cs.
unc.edu/MultiRobot/.

Position Exchange scenario is used as a benchmark for many ORCA-based
approaches [29, 30]. In this benchmark, two robots are initialized to exchange their

http://gamma.cs.unc.edu/MultiRobot/
http://gamma.cs.unc.edu/MultiRobot/
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Table 1 Planning results for different benchmarks

Benchmark Number of
robots (DOFs)

Trajectory
length (s)

Collision
avoidance
time (ms)

Trajectory
optimization
time (ms)

Features

Position
exchange

2(68) 40 0.007 617 Collision
avoidance on a
non-planar
ground

Dynamic
obstacles

8(272) 48 0.023 476 Real-time
dynamic
obstacle
handling

Circle 8(272) 76 0.030 670 Kinematic
constraints (w/
Side-stepping)

Circle w/o
side-stepping

8(272) 96 0.031 656 Kinematic
constraints
(w/o
Side-stepping)

Narrow
passage

8(272) 100 0.045 1108 Hierarchical
planning for
narrow
passage

We show the number of robots; the trajectory length that corresponds to the total time that the
robots took to reach their goals; the average computation times for the collision avoidance and the
trajectory optimization for each planning step. Videos of these benchmarks can be found at http://
gamma.cs.unc.edu/MultiRobot/

positions by passing each other. They move directly toward their goals at beginning,
but when the robots notice that a collision will happen within τ , they change their
directions to avoid the collision. Furthermore, we consider an uneven group with
steps. Our planner compute the walking motion on uneven ground using the contact
and stability constraints (12).

Dynamic Obstacles benchmark has three dynamic obstacles that move using con-
stant velocities, and are not reactive to the robots. Robots know the velocities and
positions of the obstacles, and move while avoiding collisions with the dynamic
obstacles. This benchmark shows that our approach can naturally deal with the pres-
ence of obstacles that do not adapt its motion to the other robots, using human-like
robots with forward walking and side-stepping motions.

Our third benchmark is Circle, where the robots are placed along the circumfer-
ence of a circle and their corresponding goal are at the anti-podal positions. The
ground is not planar, but the computed trajectories are smooth and dynamically sta-
ble, with no oscillations or collisions. We also computed robot trajectories of Circle
benchmark with restricting the robot motion only to forward walking, and show
the comparison of the computed trajectories in Fig. 5. In the trajectories with side-
stepping (Fig. 5a, c), the red segments show side-stepping motions. It shows that

http://gamma.cs.unc.edu/MultiRobot/
http://gamma.cs.unc.edu/MultiRobot/
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Fig. 5 Comparison of computed trajectories of Circle benchmark with and without side-stepping.
Black segments show the forward walking motions, and the red segments show side-stepping
motions. a Trace of robots with side-stepping. b Trace of robots with side-stepping. c Zoomed
center of (a). d Zoomed center of (c)
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robots use the side-stepping to move around other robots. For example, the yellow
robot moves using back steps to avoid colliding with the magenta robot. The trajec-
tories are collision-free and smooth. However, if we restrict the robot motion only
to forward walking (Fig. 5b, d), the trajectories are neither collision-free nor smooth
(see Theorem 2). Furthermore, the time that the robots reach their goal of the for-
ward walking only motions is 96 s, which is greater than 76 s of motions using both
forward walking and side-stepping.

Finally, we highlight some narrow passages due to static obstacles in the Narrow
Passage benchmark. In this benchmark, the width of the passage is shorter than the
personal space radius r = 1.0, and we use a smaller radius for collision avoidance
computation. Moreover, there are obstacles at a height that is the same as that of
the robot. In order to handle the obstacles, we add the collision cost in trajectory
optimization. Figure 4d shows that the robots move their arms and heads to avoid
collisions with the obstacles in the computed trajectories. In Fig. 4e, we show the
planning time of the collision avoidance and the trajectory optimization for each
planning step for a robot. It shows that the collision avoidance computation takes
less than 0.01ms, during the entire trajectory. Most of the time is spent in trajectory
optimization.

6 Conclusions, Limitations and Future Work

In this paper we have proposed a motion planning algorithm for multiple high-DOF
human-like robots. We model the kinematic constraints of a human-like robot and
apply these constraints in computing collision avoidance. We have combined this
collision avoidance formulation with trajectory optimization in the entire planning
framework using the result of the collision avoidance computation to generate the
initial trajectory for the trajectory optimization. The trajectory optimization step
uses constraints for contacts and stability; these constraints ensure that the computed
motion is dynamically feasible for the given high-DOF human-like robot. Therefore,
our planning algorithm computes trajectories for multiple robots, which are guar-
anteed to be smooth, to avoid collisions with other robots, to obey the kinematic
constraints of human-like robots, and to remain dynamically stable. We validate our
algorithm in several benchmark scenarios where multiple robots move on uneven
ground without collisions.

There are some limitations to our approach. The guarantees of the collision avoid-
ance algorithm on the collision-free initial trajectory holds for a limited set of opti-
mal velocities vopt

A . The collision avoidance performs better when using the current
velocity as the optimal velocity, but this breaks the guarantees.

There are many avenues for future work. Our approach expects reciprocality from
other robots. However, there are scenarios in which full reciprocality is not expected,
such as environments have multiple robots and multiple humans. One possible future
direction for research is the creation of a planning algorithm for use in environments
containing both robots and humans. Furthermore, our approach can be combined



512 C. Park and D. Manocha

with real human behavior [3] to generate virtual human motions. Moreover, we
would like to investigate better modeling of the kinematic constraints of human-like
robots H(θ) for high-speed motions.

Acknowledgments This research is supported in part by ARO Contract W911NF-10-1-0506, NSF
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Scaling up Gaussian Belief Space Planning
Through Covariance-Free Trajectory
Optimization and Automatic Differentiation

Sachin Patil, Gregory Kahn, Michael Laskey, John Schulman,
Ken Goldberg and Pieter Abbeel

Abstract Belief space planning provides a principled framework to computemotion
plans that explicitly gather information from sensing, as necessary, to reduce uncer-
tainty about the robot and the environment. We consider the problem of planning in
Gaussian belief spaces, which are parameterized in terms of mean states and covari-
ances describing the uncertainty. In this work, we show that it is possible to compute
locally optimal plans without including the covariance in direct trajectory optimiza-
tion formulations of the problem. As a result, the dimensionality of the problem
scales linearly in the state dimension instead of quadratically, as would be the case if
we were to include the covariance in the optimization. We accomplish this by taking
advantage of recent advances in numerical optimal control that include automatic
differentiation and state of the art convex solvers. We show that the running time
of each optimization step of the covariance-free trajectory optimization is O(n3T ),
where n is the dimension of the state space and T is the number of time steps in the
trajectory. We present experiments in simulation on a variety of planning problems
under uncertainty including manipulator planning, estimating unknown model pa-
rameters for dynamical systems, and active simultaneous localization and mapping
(active SLAM). Our experiments suggest that our method can solve planning prob-
lems in 100 dimensional state spaces and obtain computational speedups of 400×
over related trajectory optimization methods.

1 Introduction

A key challenge in robotics is to robustly complete tasks such as navigation and
manipulation in the presence of uncertainty. One way to deal with uncertainty is to
explicitly gather information from sensing to reduce uncertainty about aspects of the
robot and the environment that are critical for completion of a task. The problem
of computing motion plans that optimally perform information gathering actions
as necessary can be formalized as a Partially Observable Markov Decision Process

S. Patil (B) · G. Kahn · M. Laskey · J. Schulman · K. Goldberg · P. Abbeel
University of California, Berkeley, USA
e-mail: sachinpatil@berkeley.edu

© Springer International Publishing Switzerland 2015
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_30

515



516 S. Patil et al.

(POMDP) [19], which is defined over the space of probability distributions of the
state space, also referred to as the belief space.

Computing globally optimal solutions for the POMDP problem is known to be
computationally intractable [25]. As a result, recent work including, but not limited
to, [10, 14, 18, 23, 26, 27, 29, 36], has focused on solving this problem in Gaussian
belief spaces,where beliefs are concisely parameterized asGaussian distributions and
are propagated using a Bayesian filter such as an extended Kalman filter (EKF). This
body of work has lead to the development of novel methods for solving the problem.
Unfortunately, the computational effort involved in computing plans using these
methods is a bottleneck when there is considerable uncertainty during execution and
it is potentially necessary to re-plan at every time step in a receding horizon control
context [27].

In this work, we formulate the planning problem in Gaussian belief spaces as
a trajectory optimization problem. We show that it is possible to compute locally
optimal plans by optimizing over just the control inputs and mean states as opposed
to optimizing over control inputs, mean states, and covariances [26, 27]. We refer to
this formulation as covariance-free trajectory optimization in Gaussian belief spaces.
Excluding the covariance from the optimization has two major implications—(i)
the dimension of the optimization problem is now linear in the state dimension
instead of quadratic, thereby leading to considerable computational speedups, and
(ii) this eliminates the constraint that ensures that the covariances at all time steps
are consistent with the Bayesian belief update, which is nonlinear by virtue of matrix
operations such as the matrix inverse involved in the update.

Weaccomplish covariance-free trajectory optimization by taking advantage of two
recent advances in numerical optimal control. The first is the use of reverse mode
automatic differentiation, which is a technique for efficiently evaluating derivatives
of scalar-valued computer represented functions up tomachine precision [2, 15]. The
second is the development of efficient receding horizon convex solvers [12, 13] that
exploit a priori knowledge about the temporal structure of the problem to generate
efficient solver code specific to a problem instance. We show that a combination of
both techniques is important for achieving a computational complexity of O(n3T )

per optimization step, where n is the state space dimension and T is the number of
time steps.

We evaluate our approach in simulation vis-à-vis other trajectory optimization
methods, including dynamic programming [36] and trajectory optimization with co-
variances [26, 27]. We consider planning problems in a variety of domains including
planning manipulator motions under uncertainty [35], estimating parameters of in-
accurate dynamical systems [38], and active simultaneous localization and mapping
(active SLAM) [18]. Our experiments suggest that by not including the covariance
in the optimization, it is possible to compute plans in Gaussian belief spaces for 100
dimensional state spaces and we have obtained computational speedups of 400×
over related methods.
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2 Related Work

Planning in the belief space for many robotic tasks is naturally defined over contin-
uous state, action, and observation spaces. In this setting, prior work has tackled the
planning problem from a number of different angles:

(1) Point-based value iterationmethods [22, 28] select a limited set of representative
belief points and iteratively apply value updates to those points to compute a
control policy over belief space.

(2) Simulation-based methods [32, 33] generate a few potential plans and select a
plan that optimizes a given metric such as information gain.

(3) Regression-based planning [20] uses logical representations of the belief state
to compute plans that achieve a desired goal.

(4) Sampling-basedmethods [1, 6, 16, 17, 29] use randomized exploration strategies
to explore the belief space in search of an optimal plan.

(5) Policy search methods [8, 10] directly optimize parameters of a control policy
using approximate inference in Gaussian belief spaces.

(6) Trajectory optimization methods [14, 18, 21, 23, 26, 27, 34, 36] compute lo-
cally optimal trajectories (and policies, if applicable) that trade off actuation and
sensing actions to maximize information gain over a finite horizon.

Gaussian belief space planning focuses on Gaussian parameterizations of the
belief in terms of the mean and covariance. Of the aforementioned categories, spe-
cialized methods in categories (4), (5), and (6), have been developed for computing
locally optimal plans in Gaussian belief spaces. Trajectory optimization methods
(category (6)) can be further classified into two categories (Fig. 1):

• Dynamic programming [4] in Gaussian belief spaces: Examples include using
linear quadratic regulator (LQR) [27], differential dynamic programming (DDP)
[14], and iterative LQG [36]. In addition to computing a locally optimal trajectory,
these methods also compute an associated control policy.

• Direct optimization methods [5] in Gaussian belief spaces: Examples include op-
timizing just over controls (also known as shooting) [18, 23] or optimizing over
controls, mean states, and covariances (also known as collocation) [26, 27]. These
methods compute a locally optimal open-loop trajectory.

Fig. 1 Taxonomy of
trajectory optimization
methods for Gaussian belief
space planning. Our
covariance-free optimization
formulation optimizes over
controls only (shooting) or
both controls and mean
states (partial collocation)

Trajectory Optimization 

Dynamic 
Programming 

Direct 
Optimization 

Shooting 
(controls only) 

Partial Collocation 
(controls,  

mean states) 

Full Collocation 
(controls, mean 

states,  covariances) 
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Our covariance-free trajectory optimization method lies in the sub-category of
direct trajectory optimization methods that optimize over controls and mean states
only. Prior work has explored shooting methods by directly optimizing over the
sequence of control inputs using control sampling [23], which is not desirable in the
case of continuous action spaces common in robotic tasks. Indelman et al. [18] use
gradient descent to optimize over the sequence of controls but use finite differences
to compute the gradient of the objective function. As we will show in Sect. 5, use of
finite differences over long trajectories leads to poorly conditioned gradients, leading
to slow convergence. In this work, we compute exact gradients using automatic
differentiation (Sect. 4.2).

Prior work has also explored the possibility of optimizing over mean states and
control inputs for planning under uncertainty. However, the formulation of Vitus and
Tomlin [37] cannot account for state- and control-dependent noise,which is important
for belief space planning. Kontitsis et al. [21] use covariance matrix adaption (CMA)
based optimization to optimize the objective subject to constraints on the evolution
of the mean state but this sampling-based optimization method is computationally
expensive.

3 Gaussian Belief Space Planning:
Preliminaries and Notation

Let x = [xR, xO]ᵀ ∈ R
nx be the system state consisting of the state xR of the robot

and the state xO of relevant objects in the environment. Let u = [uR, uO]ᵀ ∈ R
nu

denote the combined control input applied to the system and z = [zR, zO]ᵀ ∈ R
nz

be the vector of measurements obtained about the system state using sensors. We are
given stochastic dynamics andmeasurementmodels given bynonlinear differentiable
functions f and h:

xt+1 = f(xt , ut , qt ), qt ∼ N (0, I ), (1)

zt = h(xt , rt ), rt ∼ N (0, I ), (2)

where qt is the Gaussian dynamics noise and rt is Gaussian measurement noise.
We consider a Gaussian parameterization of the belief (x̂t ,Σt ) consisting of the

mean state x̂t and the covariance Σt . We assume that the initial belief (x̂0,Σ0) is
given. Given a current belief (x̂t ,Σt ), a control input ut , and a measurement zt+1,
the belief state evolves using a Bayesian filter such as an extended Kalman filter
(EKF), according to a stochastic process given by [36]:

x̂t+1 = f(x̂t , ut , 0) − Kt (zt+1 − h(f(x̂t , ut , 0), 0), (3a)

Σt+1 = (I − Kt Ht )Σ
−
t+1, (3b)
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At = ∂f
∂x

(x̂t , ut , 0), Qt = ∂f
∂q

(x̂t , ut , 0), Σ−
t+1 = AtΣt Aᵀ

t + Qt Qᵀ
t , (3c)

Ht = ∂h
∂x

(x̂t+1, 0), Rt = ∂h
∂r

(x̂t+1, 0), Kt = Σ−
t+1Hᵀ

t (HtΣ
−
t+1Hᵀ

t + Rt Rᵀ
t )−1.

(3d)

Weconsider discrete-timeGaussian belief space planning problems that are solved
over a finite horizon T in which a robot performs information gathering actions as
necessary, to minimize uncertainty during task execution. For example, in localiza-
tion, a robot seeks to reduce the variance of its state, and in parameter estimation,
the robot seeks to reduce the variance of its model parameters. In general, objectives
that are functions of means, covariances, and control inputs can be considered.

Depending on the optimal control method used, the objective is to either compute
a sequence of controls ut or a control policy ut = πt (x̂t ,Σt ) for all 0 ≤ t < T that
minimizes the objective:

E
z1:T

[

cT (x̂T ,ΣT ) +
T −1∑

t=0

ct (x̂t ,Σt , ut )

]

, (4)

where cT and ct are given immediate cost functions and the expectation is taken
over the stochastic measurements. The planning problem can be illustrated as a
graphical model as shown in Fig. 2. The solid lines in the graphical model indicate
relationships between the means x̂0:T , covariances Σ0:T , and controls u0:T −1. The
dashed lines indicate the dependence of the immediate cost functions c0:T and the
different variables.

In our experiments, we encode the objective of minimizing the uncertainty while
penalizing the control effort by using cost functions of the form:

ct (x̂t ,Σt , ut ) = tr(MtΣt ) + uᵀ
t Nt ut , cT (x̂T ,ΣT ) = tr(MT ΣT ) (5)

where minimizing the trace of the covariance Σt minimizes the uncertainty and
matrices Mt and Nt are positive semi-definite cost matrices. However, the cost func-
tions are general enough to include additional problem-specific terms.

Fig. 2 Graphical model for
finite horizon Gaussian
belief space planning. Given
the initial belief (x̂0,Σ0), all
subsequent x̂t and Σt are
functions of x̂0, Σ0, and the
sequence of controls u0:t−1.
The immediate cost
functions ct and cT are
functions of the controls,
mean states, and covariances

Σ0 Σ1 ΣT· · ·

x̂0 · · ·x̂1 x̂T

u0 u1 · · ·

c0 c1 cT· · ·
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4 Covariance-Free Trajectory Optimization

4.1 Formulation

Direct methods for trajectory optimization [5] formulate the planning problem as a
nonlinear trajectory optimization problem. In this setting, the stochastic, partially-
observed control problem described in Sect. 3 is replaced by a deterministic optimal
control problem, which is computationally tractable. As first pointed out by Platt et
al. [27], this can be accomplished bymaking the assumption that themaximum likeli-
hood observation is obtained at each time step, i.e., zt = h(x̂t , 0). This eliminates the
stochasticity in the evolution of the mean state (Eq. 3a), converting the problem into a
deterministic optimal control problem. The goal is to compute a sequence of controls
u0:T −1 that minimizes the objective cT (x̂T ,ΣT )+∑T −1

t=0 ct (x̂t ,Σt , ut ), without the
expectation term appearing in the original objective (Eq.4). This class of methods
computes an open-loop sequence of controls u0:T −1. During execution, we follow
the model predictive control paradigm [7] of repeatedly re-planning to account for
the current observation. However, the key is to be able to re-plan sufficiently fast.

Since all subsequent x̂t andΣt are functions of x̂0,Σ0, and the sequence of controls
u0:t−1, as shown in Fig. 2, it is possible to formulate the optimization problem in
terms of one or more of controls, mean states, and covariances. The three possible
formulations are shown in Table1. Here, C(·) represents the objective expressed in
Eqs. 4 and 5 in terms of the optimization variables, x̂target represents the desired mean
target state, and Xfeasible and Ufeasible are sets of feasible states and control inputs,
respectively.

Of these, the shooting and partial collocation formulations constitute the
covariance-free optimization formulations considered in this work and are de-
scribed below:

Table 1 Three possible formulations for direct trajectory optimization in Gaussian belief spaces

Covariance-free trajectory optimization

Shooting Partial collocation Full collocation

min
u0:T −1

C(x̂0, Σ0, u0:T −1)

s.t f̃(x̂0, u0:T −1, 0) = x̂target

f̃(x̂0, u0:t−1, 0) ∈ Xfeasible

ut ∈ Ufeasible

min
u0:T −1

x̂0:T

C(x̂0:T , Σ0, u0:T −1)

s.t x̂t+1 = f(x̂t , ut , 0)

x̂T = x̂target,

x̂t ∈ Xfeasible,

ut ∈ Ufeasible

min
u0:T −1

x̂0:T
Σ0:T

C(x̂0:T , Σ0:T , u0:T −1)

s.t x̂t+1 = f(x̂t , ut , 0),

Σt+1 = (I − Kt Ht )Σ
−
t+1,

x̂T = x̂target,

x̂t ∈ Xfeasible,

ut ∈ Ufeasible

Our covariance-free optimization formulation either optimizes only over controls (shooting) or over
controls and mean states (partial collocation)
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(i) Shooting: The objective C(x̂0,Σ0, u0:T −1) is a nonlinear function of the initial
belief (x̂0,Σ0) and the sequence of controls u0:T −1 since the immediate cost func-
tions ct (x̂t ,Σt , ut ) are dependent on the previously applied controls (Fig. 2). For
planning problems, it is often desired that the mean state at the final time step is at a
desired target, i.e., x̂T = x̂target. However, since x̂T is dependent on the sequence of
controls, the optimization contains a possibly nonlinear constraint f̃(x̂0, u0:T −1, 0) =
x̂target, where f̃(x̂0, u0:T −1, 0) = f(f(. . . (f(x̂0, u0), u1), . . .), uT −1) computes the
state at time step T . A similar iterative nonlinear constraint arises for restricting the
states x̂0:T to the set of feasible statesXfeasible. In practice, these nonlinear constraints
are typically added as costs to the optimization objective. The optimization problem
has dimension nuT .

(ii) Partial Collocation: A second formulation considers optimizing over the
controls u0:T −1 and mean states x̂0:T . Similar to shooting, the objective
C(x̂0:T ,Σ0, u0:T −1) is nonlinear and dependent on the initial covariance Σ0 and
the mean states and controls (Fig. 2). In this formulation, the final target constraint
x̂T = x̂target is directly included in the optimization as x̂T is included in the opti-
mization. Similarly, bounds on the controls and mean states are directly included in
the optimization. The optimization problem has dimension (nx + nu)T .

Comparison with Full Collocation: Prior work has typically considered full
collocation that optimizes over means, controls, and covariances [26, 27]. The main
advantage of full collocation is that the objective C(x̂0:T ,Σ0:T , u0:T −1) is only de-
pendent on local variables at each time step. The objective considered in this work
turns out to be quadratic, which is suitable for numerical optimizationmethods. Also,
constraints on the mean states and controls are directly included in the optimization
formulation.

However, since the covariance matrices Σt are included in the optimization, it is
important to ensure that the covariance matrices are consistent with the evolution of
the belief state, as given in Eq.3b. This equality constraint is nonlinear because of the
presence of matrix operations, particularly the matrix inverse used to compute the
Kalman gain (Eq.3d), and is difficult to satisfy in a numerical optimization procedure.
In addition, the optimization dimension increases because of the inclusion of the
covariancematrices. The optimization problem has dimension (nx(nx+1)/2+nu)T ,
where we exploit the symmetry in Σt to only store the lower diagonal half [26, 27].
Additional care, such as using the square root of the covariance matrix instead of the
covariance itself [26], also needs to be taken to ensure that the covariances remain
positive semi-definite during the course of the optimization.

4.2 Tools for Covariance-Free Trajectory Optimization

We rely on two key advances in numerical optimal control—(i) automatic differenti-
ation to accurately compute gradients of the nonlinear objective, and (ii) state of the
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art convex solvers that are used in a sequential quadratic programming framework
for optimizing the nonlinear objective subject to constraints.

Automatic Differentiation: For covariance-free trajectory optimization, the ob-
jective C(x̂0,Σ0, u0:T −1) is a nonlinear function of the initial belief (x̂0,Σ0) and the
sequence of controls u0:T −1. If numerical finite differences are used to compute the
gradient of the nonlinear objective, then the gradients are poorly conditioned. For
instance, a small change in the control input u0 will often have a dramatically large
effect on the objective as compared to a small change in uT −1. In Sect. 5, we show
that using gradients computed using finite differences indeed lead to slower conver-
gence. One alternative would be to hand-compute the analytical expressions of first
and preferably second-order derivatives. However, this is difficult for complex func-
tions such as the matrix inverse involved in the belief dynamics (Eq.3). Special cases
also need to be taken into account to correctly handle singularities in computation.

Automatic differentiation (AD) [15] is a technique for evaluating derivatives of
computer represented functions and can deliver directional derivatives, up tomachine
precision, of arbitrary computer-represented functions. Automatic differentiation has
resulted in the development of efficient numerical optimal control methods [11] and
recent work on optimization onmanifolds for robotics applications [31].We note that
automatic differentiation is different from symbolic differentiation, which directly
operates on functions represented in a special purpose symbolic language. We refer
the reader to Griewank et al. for a comparative study [15].

In our case, since the objective is scalar valued, we use the reversemode for differ-
entiation that offers considerable savings to bemade by exploiting the structure, spar-
sity, and symmetry of the Jacobian. Several computational tools have been developed
to facilitate reverse mode automatic differentiation. Examples include Theano [3],
ADOL-C [15], and CasADi [2]. We use CasADi since it also supports matrix-valued
atomic operations. We only compute the gradients using automatic differentiation
and not the complete Hessian of the objective. Even though it is possible to compute
the entire Hessian, it is computationally very expensive and does not scale well to
larger problems. We use the symmetric rank 1 (SR1) update method to update the
Hessian using the gradients computed using automatic differentiation [24].

An important consequence of using reverse-mode automatic differentiation is
what is known as the cheap gradient principle which states that the complexity of
computing the gradient of a scalar-valued function is bounded above by a small con-
stant factor times the complexity of evaluating the function itself [15]. This fact will
be used in the analysis of the running time of covariance-free trajectory optimization
methods.

State of the art Convex Solvers: We use sequential quadratic programming
(SQP) to locally optimize the non-convex, constrained optimization problem that
results from the covariance-free formulation. SQP [24] optimizes problems in para-
meter θ of the form minθ C(θ) subject to constraints. One repeatedly constructs
a quadratic program (quadratic objective and linear constraints) that locally ap-
proximates the original problem around the current solution θ . Then one solves
the quadratic program to compute a stepΔθ that make progress on the original prob-
lem. Two necessary ingredients in a SQP implementation are trust regions and merit
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functions. A trust region constrains θ in each subproblem to the region where the
approximation is valid. The trust region is adaptively changed based on the merit
function, which has the form fμ(θ) = f (θ) + μ · ConstraintViolation(θ). Here,
μ is a given penalty parameter that penalizes violations of nonlinear constraints,
and it ensures that the steps taken by the algorithm make progress on both the cost
function and the constraints. The optimization algorithm solves a series of problems
minθ fμ0(θ),minθ fμ1(θ), . . . ,minθ fμn (θ) for μ0 < μ1 < · · · < μn where the
penalty parameter μ is sequentially increased in an outer loop. We used sequential
quadratic programming (SQP) with �1 penalties [24], also used by Schulman et al.
[30] for robot motion planning in state space.

At the core of the SQP method is a QP solver. We efficiently solve the underlying
QPsusing anumerical optimization codegeneration framework calledFORCES [13].
FORCES generates code for solving QPs that is based on the interior-point method
and is specialized for convex multistage problems such as trajectory optimization.
Automatic code generation for convex solvers has gained popularity since it is able
to exploit the fact that all problem dimensions and the structure of the problem is
known a priori. This permits generation of highly customized and fast solver code that
solves instances of a particular problem. We use this solver for all our experiments,
including for the full collocation formulation.

An important consequence of using the FORCES code generation framework is
that the complexity of solving a QP in m optimization variables and T time steps
is O(m3T ), instead of worst case complexity of O(m3T 3) that is associated with
a condensing procedure used to reduce the number of optimization variables in QP
solvers [12]. This speedup is obtained from exploitation of the known temporal
structure of the problem. This fact will be used in the analysis of the running time of
covariance-free trajectory optimization methods.

4.3 Running Time Analysis

For the sake of analysis, we assume that the dimension nx of the state space, nu of the
control input space, and nz of the measurements are O(n). As a result, the covariance
matrix has dimension O(n2). Let T be the number of time steps in the trajectory
being optimized, also referred to as the trajectory horizon.We analyze the complexity
of each step of the optimization procedure since the number of optimization steps
required for convergence cannot be expressed in terms of n or T .

Computing the objective (Eq.5) requires the propagation of the beliefs along a
trajectory according to Eq. (3). Since the Bayesian update requires matrix operations
such as multiplication operations and matrix inversion of matrices of order O(n2),
the complexity of each update step is O(n3). As a result, the overall complexity of
computing the objective for all time steps is O(n3T ).

We analyze the complexity of each step of the optimization for covariance-free
optimization. The complexity of computing the gradients using reverse-mode auto-
matic differentiation is O(n3T ) using the cheap gradient principle. The shooting and
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partial collocation formulations have nuT and (nx + nu)T optimization variables,
respectively. The complexity of solving each QP using the FORCES code gener-
ation framework is O(n3T ). This is the same order of complexity as computing
the objective, and hence is a lower bound on the planning complexity for trajectory
optimization methods.

We note that the locally optimizing the full collocation formulation is of the order
of O(n6T ), since it contains (nx(nx+1)/2+nu)T or O(n2)T optimization variables.
In practice, however, the nonlinear equality constraint that ensures that the beliefs are
consistent with the belief update (Eq.3b) requires introduction of additional slack
variables in the SQPmethodwith �1 penalties, which results in a large constant factor.
We also note that the complexity of dynamic programming methods is O(n6T ) for
iLQG [36], which can be reduced to O(n4T ) if the immediate cost functions are
assumed to be quadratic in the mean and linear in the variance, as is the case in
our work.

5 Experiments

We present experimental results in simulation for Gaussian belief space planning in
a variety of domains involving uncertainty, including planning manipulator motions,
estimating model parameters for uncertain dynamical models, and active simultane-
ous localization andmapping (active SLAM). All execution times are based on aC++
implementation of our method running on a single 3.5 GHz Intel i7 processor core.

5.1 6-DOF Manipulator Planning with Kinematics

In this experiment, we consider a 6-DOF A465 CRS robot arm moving in a 3D en-
vironment [35], as shown in Fig. 3. The state xt = [θ1t , . . . , θ6t ]ᵀ of the robot is a 6D
vector consisting of the joint angles. The control input ut = [ω1

t , . . . , ω
6
t ]ᵀ is a 6D

vector consisting of the angular speeds at each of the joints, corrupted by dynamics
noise qt = [q1

t , . . . , q6
t ]ᵀ ∼ N (0, I ). The robot receives feedback from an overhead

stereo camera setup that measures the position of the end effector pt = [xt , yt , zt ]ᵀ.
Each camera ci has a known location [xi , yi , zi ]ᵀ and unit focal distance. The mea-
surement zt is a 4D vector consisting of the pixel coordinates of the end effector
on the imaging planes of both cameras, corrupted by Gaussian measurement noise
rt ∼ N (0, I ). This results in the following stochastic dynamics and measurement
models:

f(xt , ut , qt ) = xt + τ(ut + αqt ), (6a)

h(xt , rt ) =
[
(xt − x1)

(yt − y1)
,

(zt − z1)

(yt − y1)
,
(xt − x2)

(yt − y2)
,

(zt − z2)

(yt − y2)

]ᵀ
+ βrt , (6b)
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where τ is the duration of each time step, and α and β are scaling constants for the
dynamics and measurement noise terms. It is important to note that the signal to
noise ratio, and hence the reliability of measurements, increases with a decrease in
the distance to the stereo camera setup.

The objective is to move the robot end effector from an initial position to
a target position while minimizing uncertainty in the end effector position. Let
N (p̂T ,Σ(p̂T )) be the uncertainty in the end effector position with mean p̂T and
covariance Σ(p̂T ) ∈ R

3×3. We approximate Σ(p̂T ) as Σ(p̂T ) = JΣT Jᵀ, where
ΣT is the covariance in the state at the final time step and J = ∂g

∂x (x̂T ) is the Jacobian
of the forward kinematics function g(x) = p evaluated at the final mean state x̂T .
The objective is to minimize tr(MT Σ(p̂T )) + ∑T −1

t=0 uᵀ
t Nt ut , which optimizes the

trade-off betweenminimizing uncertainty and the cumulative control effort, for given
matrices MT and Nt , 0 ≤ t < T .

Experiments: Figure3a shows a baseline interpolated trajectory between the start
position and target position. Figure3b shows an instance of a trajectory computed
using belief space planning using covariance-free partial collocation. The plan is
able to infer that it is advantageous to get closer to the camera to get more reliable
measurements before heading to the target to reduce uncertainty at the final time step.

Wecompared the performance of the three direct optimization formulations on this
problem. Dynamic programming methods such as iLQG [35] are unable to compute
a solution for this problem due to the inability to enforce joint angle constraints.
To evaluate the performance of these methods, we considered 100 random initial
start positions while keeping the mean target position constant for the end effector.

Fig. 3 6-DOF Manipulator: The objective is to move the end effector from the initial position
(blue sphere) to the final mean target position (red sphere) while minimizing the uncertainty in
its position. The robot receives feedback from a stereo camera setup mounted overhead (shown in
green). The trajectory of the end effector is shown in black. The initial and final variance is shown
as a blue and red ellipse, respectively. a A naïve trajectory obtained by interpolating between the
initial and target states (joint angles) results in considerable uncertainty at the final time step. b A
belief space plan infers that it is advantageous to get more reliable measurements by getting closer
to the stereo camera setup, hence resulting in reduced uncertainty at the target
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Table 2 Comparison of trajectory optimization methods on the 6-DOF

Opt. vars Time (s) Improvement over
baseline (%)

Shooting 84 0.046 ± 0.014 29.7 ± 5.1

Partial coll. (auto diff.) 174 0.024 ± 0.004 71.6 ± 1.7

Partial coll. (finite
diff.)

174 0.902 ± 0.184 69.5 ± 2.4

Full coll. 405 6.518 ± 0.510 56.8 ± 2.3

Manipulator scenario in terms of computation time and improvement over a baseline interpolated
trajectory

All trajectories have a horizon of T = 15 time steps. We compared the different
methods on the basis of computation time and by howmuch the planning was able to
improve the considered objectivewhen compared to a baseline interpolated trajectory
between the start and target states (Fig. 3a). The results are summarized in Table2.
The experiments show a significant speed up of up to 200× is obtained by excluding
the covariance from the optimization. The partial collocation formulation performs
best, in part because the dynamics constraint x̂t+1 = f(x̂t , ut , 0) is a linear constraint.
In the shooting method, we include an additional cost term to penalize violation of
the constraint that the end effector should be at a desired target position. This cost
term conflicts with the original objective, leading to lower quality trajectories.

We also compared the effect of using automatic differentiation (Sect. 4.2) ver-
sus using numerical finite differences for the partial collocation formulation. Using
finite differences leads to poorly conditioned gradients, which leads to slower con-
vergence. In our experiments, we observed slowdowns of up to 40× as compared to
implementations that used automatic differentiation to compute gradients.

5.2 Parameter Estimation for Two-Link Pendulum
with Dynamics

In this experiment, we consider a two-link pendulum [9] actuated at both joints.
However, the lengths [l1, l2]ᵀ and masses [m1, m2]ᵀ of the pendulum are not ex-
actly known. We follow the method of Webb et al. [38] to estimate these uncertain
parameters using Gaussian belief space planning by considering an augmented state
consisting of the pendulum state and the parameters. The objective is to infer the
model parameters {m1 = m2 = 0.5 kg, l1 = l2 = 0.5m}, given noisy measure-
ments of the end-effector position of the pendulum and the joint velocities. While
random exploration can be used to solve this problem, we demonstrate that Gaussian
belief space planning can be used to intelligently explore by acquiring information
from sensing and hence converge faster to the actual model parameters.

The system state xt = [θ1t , θ2t , θ̇1t , θ̇2t , l1t , l2t , m1
t , m2

t ]ᵀ of the robot is a 8D vector
consisting of the joint angles, the angular velocities of the joints, and the four para-
meters that need to be estimated. The control input ut = [μ1

t , μ
2
t ]ᵀ is a 2D vector
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consisting of the motor torques. The robot state is also corrupted by Gaussian noise
qt = [q1

t , . . . , q4
t , 04×1]ᵀ ∼ N (0, I ). This yields the following nonlinear dynamics

model:

f(xt , ut , qt ) = xt + τ [θ̇1t , θ̇2t , θ̈1t , θ̈2t , 04×1]ᵀ + αqt , where (7a)
[
θ̈1t

θ̈2t

]

=
[ 1

3m1
t l1t l1t + m2

t l1t l1t
1
2m2

t l2t l1t cos(θ
1
t − θ2t )

1
2 l1t l2t m2

t cos(θ
1
t − θ2t ) 1

3m2
t l2t l2t

]−1 [
c1
c2

]
, (7b)

[
c1
c2

]
=

[
−l1t ( 12m2

t l2t θ̇2t θ̇2t sin(θ1t − θ2t ) − g sin θ1t ( 12m1
t + m2

t )) + μ1
t

1
2m2

t l2t (l1t θ̇1t θ̇1t sin(θ1t − θ2t ) + g sin θ2t ) + μ2
t

]

,

(7c)

where τ is the duration of the time step, α is the noise scaling factor, and g =
9.82m/s2 is the gravitational constant. In our implementation, we use Runge-Kutta
(RK4) integration of the dynamics for numerical stability.

The robot obtains noisy measurements of the position of the end effector and the
angular velocities at each joint. The measurement zt is a 4D vector, corrupted by
measurement noise rt ∼ N (0, I ) that is related to the state xt according to

h(xt , rt ) =
[
l1t cos θ1t + l2t cos θ2t , l1t sin θ1t + l2t sin θ2t , θ̇1t , θ̇2t

]ᵀ + βrt , (8)

where β is the measurement noise scaling factor.
Experiments: Figure4 shows the performance of different optimal control meth-

ods on convergence of the parameter m1 as compared to execution of a random
sequence of controls. We note that the parameter values are not updated as part of
the planning process. We execute the first control for each computed plan in a model
predictive control fashion and then update the parameters using the full Bayesian up-
date of the belief that incorporates the current simulated observation (Eq. 3). Belief
space planning is able to explore by intelligently gathering information as required
for faster convergence in terms of the number of execution steps required. We con-
sider a trajectory with T = 15 time steps. Due to space limitations, we only show
convergence results for one parameter m1. Similar results were obtained for the sec-
ond mass parameter. However, the length parameters l1 and l2 converge faster to the
correct values since they explicitly occur in the measurement model.

The performance of optimal control methods is also compared in Fig. 4, as aver-
aged over 100 runs and 300 execution time steps. In terms of convergence, all the
methods require roughly the same number of execution steps for converging to a
reasonable estimate. However, there is a considerable difference in execution times.
The shooting formulation is up to 400× faster than the full collocation formula-
tion with the covariance in the optimization. We also compare with a state of the
art iLQG implementation [34] and found that iLQG was 10× faster than full col-
location but convergence of iLQG to the true parameter values was slower than the
covariance-free formulations.
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Opt. vars Time(s)
Shooting 28 0.004 ± 0.002

Partial Coll. 148 0.152 ± 0.109
Full Coll. 570 1.595 ± 0.068
iLQG – 0.153 ± 0.017

Fig. 4 Parameter Estimation: (left) The performance of different optimal control methods on the
parameter estimation scenario. (right) The convergence of the parameter m1 to the true value of 0.5
kg (red) for different optimal control methods. The value of the parameter m1

t is plotted over time
(blue) and three standard deviations of the uncertainty in the parameter value is shown in cyan. The
timestep where the value is within 10% of the true value is marked in green

5.3 Active SLAM

Active simultaneous localization and mapping (active SLAM) [18, 32, 33] aims to
compute plans for a mobile robot to explore the environment (represented in terms
of landmarks) such that the uncertainty about the environment and the robot state
are simultaneously minimized in a SLAM framework.

We consider a car-like robot with state xR
t = [xt , yt , θt ]ᵀ consisting of the car

position [xt , yt ]ᵀ and heading angle θ . The control inputsut = [vt , φt ]ᵀ consist of the
velocity vt and steering angle φt , corrupted by Gaussian noise qt = [q1

t , q2
t ]ᵀ. Let W

be the length of thewheelbase of the robot. The state of the environment xO ∈ R
2·L is

a vector consisting of L landmark positions [xi , yi ]ᵀ, i ∈ {1, . . . , L}. The combined
system state is then given by xt = [xR

t , xO]ᵀ. The observation function z ∈ R
2·L

consists of the distance and heading measurements from the current state of the robot
relative to each landmark. Following the framework of standard EKF-SLAM, this
gives us the following stochastic dynamics and measurements models:

f(xt , ut , qt ) =

⎡

⎢
⎢
⎣

xt

yt

θt

xO

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

(vt + q1
t ) cos(θt + φt + q2

t )

(vt + q1
t ) sin(θt + φt + q2

t )

(vt + q1
t ) tan(φt + q2

t )/W
02·L×1

⎤

⎥
⎥
⎦ , h(xt , rt ) =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

√
(xt − x1t )2 + (yt − y1t )2

tan−1(
yt −y1t
xt −x1t

) − θt

...√
(xt − x L

t )2 + (yt − yL
t )2

tan−1(
yt −yL

t

xt −x L
t
) − θt

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

+ rt .



Scaling up Gaussian Belief Space Planning Through Covariance-Free Trajectory … 529

Experiments: In this scenario, the robot has a limited sensing range and can
only sense landmarks within a distance of dmax from its current position. In order
to get a smooth measurement function, we smooth the boundary of the circular
sensing region of radius tmax using a sigmoid function [27]. Figure5a shows a state
space trajectory that visits four waypoints in the environment (in counter-clockwise
order), each segment consisting of T = 15 time steps. However, due to the limited
sensing range, the robot is unable to detect any of the landmarks, hence resulting in
a considerable increase in uncertainty along the entire trajectory. In contrast, belief
space planning using the partial collocation formulation is able to compute plans
that visit landmarks en route to waypoints to reduce uncertainty in robot state and
landmark positions (Fig. 5b).

We compared the performance and improvement over a baseline state space
trajectory (Fig. 5a) for varying number of landmarks. The landmark positions were
sampled within three clusters in the environment to preserve the complexity of the
planning problem. Figure6a shows the performance of covariance-free optimization
formulations (both shooting and partial collocation) as compared to full collocation
and iLQG [34]. The covariance-free formulations are faster than full collocation and
iLQG, which is consistent with our preliminary analysis of the running times of these
formulations. The shooting formulation is slower than partial collocation because of
the target constraints imposed by the waypoints, which leads to slower convergence.

Figure6b shows the improvement in the objective using belief space planning
relative to the objective evaluated for a baseline state space trajectory. Partial collo-
cation leads to greatest reduction in the objective as compared to other methods. The
improvement increases with an increase in the number of landmarks, indicating that

Fig. 5 Active SLAM: A car-like robot navigating in an environment with L = 12 landmarks.
The robot uses EKF-SLAM for simultaneous localization and mapping. The objective is to plan
motions for the robot to visit four landmarks (in counter-clockwise order) in the environment,
starting from the bottom left, to minimize uncertainty in its state and the landmark positions. a
A state space trajectory is unable to detect any landmarks due to the limited range of sensing of
the robot, resulting in considerable accumulation of uncertainty (shown as blue ellipses). b Belief
space planning using covariance-free partial collocation computes a plan that leads the robot to visit
landmarks en route to waypoints to considerably reduce uncertainty
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(a)

(b)

Fig. 6 Active SLAM: a Performance of trajectory optimization methods as the number of land-
marks in the environment increase shown in terms of the mean and 1 standard deviation computed
across 25 runs. b Improvement in the objective relative to the objective evaluated for a baseline
state space trajectory shown in Fig. 5a. Partial collocation performs best in terms of both criteria.
Overall, covariance-free optimization scales to 50 landmarks (103 dimensional state space) with an
average computation time of 103 s for the entire trajectory
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belief space planning computes different plans that optimize the objective further,
for different arrangements of landmarks.

We could not scale the covariance-free formulations beyond 50 landmarks because
of the inability of CasADi [2] to compute gradients using automatic differentiation
since CasADi usage exceeded available memory. However, this tool is under active
development and we envision that future releases will allow us to scale beyond this
number.

6 Discussion and Conclusion

In this work, we focused on trajectory optimization formulations for computing lo-
cally optimal plans in Gaussian belief spaces. We showed that by excluding the
covariance from the optimization, we can solve planning problems in 100 dimen-
sional state spaces and obtain computational speedups of 400× compared to related
approaches that incorporate the covariance in the state. The running time complexity
per step of the optimization is O(n3T ), which is an improvement over related ap-
proaches. We summarize the pros and cons of the different trajectory optimization
formulations in Table3.

Table 3 Comparison of trajectory optimization methods for Gaussian belief space planning

Covariance-free opt. Full collocation Dynamic
programmingShooting Partial collocation

Quadratic objective
(Eq.5)

X X � �

Control policy X X X �
Max likelihood
observation
assumption

� � � X

Infeasible
initialization

X � � X

Ensures Σt � 0
(PSD)

� � X X

Target constraint X � � X

State bounds X � � X

Control bounds � � � X

Covariance bounds X X � X

Optimization
problem size

nuT (nx + nu)T (
nx(nx+1)

2 + nu)T T problems of size
(

nx(nx+1)
2 + nu)

Complexity per O(n3T ) O(n3T ) O(n6T ) O(n6T ) [36]

optimization step O(n4T ) [34]
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Our experiments suggest that covariance-free partial collocation offers consider-
able promise moving forward. In future work, we plan to improve on the scalability
of covariance-free trajectory optimization. We also plan to address the issue of col-
lision avoidance by adding a cost term to the objective as in van den Berg et al. [36].
An expanded version of the paper and code for reproducing the results reported in
this paper, is available at: http://rll.berkeley.edu/beliefopt/.
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Planning Curvature and Torsion Constrained
Ribbons in 3D with Application
to Intracavitary Brachytherapy

Sachin Patil, Jia Pan, Pieter Abbeel and Ken Goldberg

Abstract A “ribbon” is a surface traced out by sweeping a constant width line
segment along a spatial curve. We consider the problem of planning multiple disjoint
and collision-free ribbons of finite thickness along curvature and torsion constrained
curves in 3D space. This problem is motivated by the need to route multiple smooth
channels through a 3D printed structure for a healthcare application and is relevant
to other applications such as defining cooling channels inside turbine blades, routing
wires and cables, and planning trajectories for formations of aerial vehicles.We show
that this problem is equivalent to planning motions for a rigid body, the cross-section
of the ribbon, along a spatial curve such that the rigid body is oriented along the unit
binormal to the curve defined according to the Frenet-Serret frame.We present a two
stage approach. In the first stage, we use sampling-based rapidly exploring random
trees (RRTs) to generate feasible curvature and torsion constrained ribbons. In the
second stage, we locally optimize the curvature and torsion along each ribbon using
sequential quadratic programming (SQP). We evaluate this approach for a clinically
motivated application: planning multiple channels inside 3D printed implants to
temporarily insert high-dose radioactive sources to reach and cover tumors for intra-
cavitary brachytherapy treatment. Constraints on the curvature and torsion avoid
discontinuities (kinks) in the ribbons which would prevent insertion. In our experi-
ments, our approach achieves an improvement of 46% in coverage of tumor volumes
as compared to an earlier approach that generates each channel in isolation.

1 Introduction

Our work is motivated by applications where contiguous pathways or channels have
to be routed through 3D environments while avoiding collisions with obstacles. In
particular, we consider a clinical application of intracavitary brachytherapy where
radioactive doses have to be delivered to cancerous tumors occurring in body cavities
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Fig. 1 3D printed implants for intracavitary brachytherapy: Hollow internal channels (mutu-
ally collision-free) embedded within a 3D printed implant for delivering radiation to tumors (red).
The channels provide passage to radioactive sources. The candidate dose dwell segments (shown
in dark blue) are aligned tangentially and placed proximal to the tumors to achieve sufficient dose
distribution to the tumor volume while minimizing radiation exposure to healthy tissue. a Single
channels computed using the approach of Garg et al. [14]. b Compared to single channels, multiple
channels in ribbon-like arrangements can increase coverage of the tumor volume that is directly
irradiated, leading to improved treatment outcomes. The challenge is to generate such mutually
collision-free, curvature and torsion constrained ribbons from the candidate dwell segments to the
entry region while staying within the implant volume

such as oral, rectal, gynecological, auditory, and nasal. Garg et al. [14] demonstrated
that 3D printing can be used to design customized implants that conform to the
patient anatomy. These implants have hollow internal channels that provide pas-
sage to radioactive sources. These implants allow precise positioning of radioactive
sources that sufficiently irradiate the tumorswhileminimizing radiation to healthy tis-
sues, which can potentially improve treatment outcomes. They constructed implants
with mutually collision-free channels that provide passage to catheters carrying a
radioactive source (Fig. 1a).

The effectiveness of these implants for radiation treatment depends on how effec-
tively candidate locations for placing the radioactive seed can cover the tumor surface
proximal to the implant. We refer to these locations as candidate dose dwell seg-
ments (Fig. 1a). The use of single channels is not sufficient for large tumors. In this
work, we address this issue by generating contiguous channels within the 3D printed
implant. The resulting arrangement of channels, which looks like a ribbon (Fig. 1b),
can increase coverage and hence achieve sufficient dose distribution to large tumor
volumes. These ribbon-like arrangements are also spatially efficient, and allow for
a larger number of channels to be embedded within the implant. Such arrangements
are also better localized in space, thus improving the structural integrity of the 3D
printed implant during the printing process. We note that such ribbon-like channel
arrangements also commonly occur in other applications such as for routing wires
inside electronic equipment such as computers and routing cooling channels through
turbine blades [17].
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The channels in these ribbons have to allow a radioactive source of finite dimen-
sions to pass through [14],which imposes a constraint on themaximum instantaneous
curvature of the ribbon. The spatial curve that generates the ribbon should also be
continuous and differentiable (at leastC1-continuous) since kinks in the curve would
not allow catheters to pass through the channels. The catheters carrying the radioac-
tive source also have limited flexibility and have to be pushed/pulled through the
channels during treatment, which imposes a constraint on the cumulative curvature
and torsion (or twist) along the ribbon. Imposing constraints on the curvature and
torsion is also important from the perspective of fabricating these implants. Dur-
ing the printing process, the spatial volume corresponding to channels is printed
with a soluble support material that is later dissolved to create hollow channels
[21]. However, unnecessary turns (curvature) and twists (torsion) in the channels can
prevent the support material from being completely dissolved. In addition, each cus-
tomized implantwould havemultiple channels that provide access to different tumors
and these channels would have to be mutually collision-free since any intersection
between channels would lead to forks within the channels. This could potentially
cause undesirable ambiguity in the motion of a catheter when pushed through such
a channel.

In this work, we consider the problem of generating such curvature and torsion
constrained ribbons in 3D spaces that avoid collisions with obstacles and other rib-
bons. In geometry, a ribbon is a swept surface traced out by sweeping a constantwidth
line segment along a spatial curve. In our application, we consider a rigid body that
describes the cross-section of the channels in a ribbon. The rigid body being swept
out is oriented along the unit binormal to the curve. There are infinitely many choices
of orthonormal frames [4] along a spatial curve for orienting the rigid body. In our
work, we choose the Frenet-Serret frame which can be explicitly described in terms
of the curvature and torsion along the curve [4].

We adopt a two stage approach for generating ribbons with the aforementioned
specifications. We use a rapidly-exploring random trees (RRT) planner [20] that
generates feasible curvature and torsion constrained candidate ribbons. These plan-
ners explore the configuration space by random sampling. However, the randomized
nature of these planners can cause unnecessary changes in curvature and torsion along
the ribbon. We locally minimize the curvature and torsion by using an optimization
method based on sequential quadratic programming (SQP) [10] that is modified for
our application. In doing so, we combine the benefits of a global exploration strategy
using a randomized planner and a local optimization strategy to generate high quality
ribbon trajectories.

We study the effectiveness of our approach for designing multiple ribbon-like
arrangements of channels within 3D implants. As shown in Fig. 1b, ribbon-like
arrangements lead to improved coverage of the tumor volume (46% improvement
in our experiments), which allows for more effective treatment. We also show that
ribbon-like arrangements are spatially efficient, allowing us to embed a larger num-
ber of channels within the implant as compared to prior work that embeds single
channels [10, 14].



538 S. Patil et al.

2 Related Work

The geometry of swept surfaces and swept volumes has been extensively studied
in the literature [12]. A ribbon is a particular example of a swept surface where
a constant width rigid body is swept along a spatial curve [13, 18]. Ribbons find
applications in a number of domains including computer aided geometric design
[31], geometry modeling of DNA strands [16], for planning layout arrangements
of roads [36] and for path planning for rigid formations of nonholonomic vehicles
[2, 19]. Sampling-based planning was used to generate variable width ribbon-like
paths between a camera and moving object in the environment [15]. The computed
paths were smoothed to generate pleasing camera motions. The notion of grouping
parallel paths, similar to ribbons, has also been studied for coverage applications in
robotics such as machine milling, lawn mowing, snow removal, and planning search
and rescue operations [6].

Prior work has also explored the topic of modeling and finding minimum energy
configurations of linear deformable objects such as suture threads [5, 22]. The equi-
librium or minimum energy configurations of these elastic objects inherently min-
imize curvature and torsion along the length of the object. These methods could
be used to compute a ribbon configuration that minimizes curvature and torsion.
However, it is not clear if these methods could be used to impose constraints on the
curvature and torsion along the length of the ribbon. Furthermore, these methods do
not consider generation of collision-free configurations directly, and instead gener-
ate a sequence of deformations in the object that avoid collisions with obstacles [5,
22]. In our work, the ribbons are not physically-based and are carved out of the 3D
implant volume, thus allowing us to directly generate ribbons by planning motions
for a rigid body that describes the cross-section of the ribbon.

Planning smooth motions of rigid bodies in 3D has also been studied [2, 3,
8, 38]. This requires planning in the space of 3D positions and orientations, also
commonly referred to the SE(3) group. However, prior work has addressed the
issue of generating minimum cost trajectories that inherently minimize curvature
and torsion along the trajectory in environments without obstacles.

We also note that the motion model that describes the evolution of the ribbon
surface also applies to other domains, including modeling the motion of an airplane,
a roller coaster, or bevel-tipped steerable needles [35]. In the case of steerable needles,
the rigid body is assumed to be a point while in the case of the continuum robots, the
rigid body is assumed to have a circular cross-section. In particular, motion planning
for steerable needles has been extensively studied [1, 10, 11, 25, 26, 33, 37]. Our
approach can be used to explicitly limit the torsional rotation of the needle, thus
potentially improving planning and control of steerable needles [32].

The motivation behind using 3D printed implants for intracavitary brachyther-
apy and characterization of the effectiveness of treatment in terms of a coverage
metric is presented by Garg et al. [14]. They used a sampling-based RRT plan-
ner to generate individual, curvature constrained channels. Duan et al. [10] used an
optimization-based method to compute these channel arrangements for individual
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channels. In contrast, we consider the problem of generating ribbon-like arrange-
ments of contiguous channels that is more spatially efficient. Also, both approaches
use a stop-and-turn strategy for modeling the kinematics, which is inconsequential
for a single channel but would induce an instantaneous torsional twist in the ribbon.
We consider a different kinematic model of the evolution of the ribbon that explicitly
considers torsion to model the twist along the length of the ribbon. We also combine
the benefits of sampling-based and optimization-based planning methods instead of
using them in isolation and show that a combination of the two methods is important
for generating high-quality ribbons.

3 Kinematic Model of the Ribbon

In this section, we define the kinematic model of how a ribbon can be constructed
by sweeping a rigid body corresponding to the cross-section of the ribbon along a
continuous, differentiable spatial curve in 3D space. Let pt = [xt , yt , zt ]T ∈ R

3 be
a 3D point on the spatial curve parameterized by parameter t . To define the local
configuration of the ribbon cross-section at a given parameter value,we need to define
an orthonormal frame at the given point (Fig. 2). There are infinitely many choices
for such a frame [4]. In this work, we choose the Frenet-Serret frame, the evolution
of which can be described in terms of the curvature and torsion of the spatial curve,
which are quantities of interest in this work. We note that the following analysis
also applies to other choices such as the Bishop’s frame, also known as the rotation
minimizing frame [4, 34].

The Frenet-Serret frame is oriented so that the xt , yt , and zt axes in the local
coordinate frame of the rigid body are oriented along the tangent tt , normal nt , and
binormal bt vectors of the curve. The pose of a rigid body oriented according to
the Frenet-Serret frame at point pt can be written as a 4 × 4 transformation matrix
Xt ∈ SE(3) given by

Xt =
[

Rt pt

0 1

]
=

[
tt nt bt pt

0 0 0 1

]
, (1)

Fig. 2 A ribbon is a swept surface traced out by sweeping a rigid body along a spatial curve. At
each point along the curve, the rigid body is oriented according to the Frenet-Serret frame, where
the xt , yt , and zt axes in the local coordinate frame of the rigid body are oriented along the tangent
tt (red), normal nt (green), and binormal bt (blue) vectors of the curve. We consider the problem of
generating such curvature and torsion constrained ribbons through 3D space that avoid collisions
with obstacles in the environment
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where the 3× 3 rotation matrix Rt = [tt |nt |bt ] ∈ SO(3) describes the orthonormal
frame in terms of tt , nt , and bt .

For a given parameter t , the Frenet-Serret frame evolves according to the following
differential equations of motion [4, 18] as

ṫt = vtκt nt , (2a)

ṅt = −vtκt tt + vtτt bt , (2b)

ḃt = −vtτt nt , (2c)

ṗt = vt tt , (2d)

where vt is the speed of the spatial curve, κt is the curvature, τt is the torsion of the
spatial curve for a given parameter t , and the dot operator indicates the derivative
with respect to the parameter t . These equations of motion can be rewritten as [29]

[
ṫt ṅt ḃt ṗt

0 0 0 0

]
=

[
tt nt bt pt

0 0 0 1

]
⎡

⎢⎢
⎣

0 −vtκt 0 vt

vtκt 0 −vtτt 0
0 vtτt 0 0
0 0 0 0

⎤

⎥⎥
⎦ . (3)

Using Eqs. (1) and (3), we get the following relation

Ẋt = Xt

⎡

⎢⎢
⎣

0 −vtκt 0 vt

vtκt 0 −vtτt 0
0 vtτt 0 0
0 0 0 0

⎤

⎥⎥
⎦ = XtUt , (4)

where Ut ∈ se(3) is the velocity twist of the rigid body in its local coordinate frame
[23] and is completely described in terms of three parameters vt , κt , and τt . In Sect. 5,
we will use the motion parameters ut = [vt , κt , τt ]T as the basis for generating the
desired curvature and torsion constrained ribbons in 3D space.

By definition, Ut can be decomposed into the instantaneous linear vt and angular
wt velocities in the local coordinate frame of the body as [23]

Ut =

⎡

⎢⎢
⎣

0 −vtκt 0 vt

vtκt 0 −vtτt 0
0 vtτt 0 0
0 0 0 0

⎤

⎥⎥
⎦

=
[[wt ]× vt

0 0

]
, where wt = [vtτt , 0, vtκt ]T , vt = [vt , 0, 0]T , (5)

and the notation [·]× stands for a 3× 3 skew-symmetric matrix. Note that the above
kinematic model is subject to nonholonomic constraints.

Informally, this implies that since the rigid body does not undergo any motion
in the direction of the binormal vector bt , the curvature and torsion stay constant
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Larger κ, Smaller κ,Constant κ,

t
b

nn
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Larger vSmaller vConstant v

Fig. 3 Ribbons generated by sweeping a line segment along a circular arc (shown as dashed line).
Left The ribbon is oriented along the binormal vector b pointing into the page. If the line segment
does not undergo anymotion along the binormal vector, each channel along the ribbon has a constant
curvature κ , torsion, and length, which equals the curvature, torsion (zero in this case), and length
of the circular arc. Right The ribbon lies in the plane of the page. If the line segment undergoes
motion along the normal vector n, each channel along the ribbon has different curvatures, torsional
values, and lengths, which makes the planning problem much harder

at points along bt . Hence, to generate a curvature and torsion constrained ribbon, it
suffices to plan motions of a rigid body describing the cross-section of the ribbon
along a single spatial curve, such that the cross-section is oriented along the binormal
vector to the curve. We illustrate this phenomenon in Fig. 3. If we consider alternate
kinematicmodelswhere the rigid bodymight undergomotion along the normal vector
nt , different channels along the ribbon would have different curvatures, torsional
values, and lengths. This makes the planning problem harder because it is difficult
to impose separate constraints on the curvature and torsion of individual channels in
the ribbon.

When the velocity twist Ut is held constant over time interval of duration δ, the
differential motion model given by Eq. (4) can be explicitly integrated as

Xt+1 = Xt exp(δUt ) (6)

where exp : se(3) → SE(3) is the exponential operator, for which an analytical
expression exists and can be evaluated in closed-form [23].

4 Problem Definition

We consider the problem of generating a setR = {r1, . . . , rn} of n collision-free rib-
bons within an implant that reach candidate dose dwell segments proximal to tumors
and are curvature and torsion constrained (Fig. 1). We are provided the following
inputs:

• Description of the 3D external geometry of the implant I as a triangle mesh.
• Description of the geometry of the entry region E at the base of the implant.
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• Set of n poses D = {X1, . . . , Xn} that describe the 3D positions and orientations
of groups of dose dwell segments {d1, . . . , dn} corresponding to each ribbon.

• Set O of other obstacles (voids or forbidden regions) within the implant.
• Channel width w.
• Maximum limits on speed v̄, instantaneous curvature κ̄ , cumulative curvature κ̄c,
instantaneous torsion τ̄ , and cumulative torsion τ̄ c.

For planning purposes, we assume that each ribbon r i , 1 ≤ i ≤ n, is discretized
into a set of T i time steps, each of constant duration δ. From Sect. 3, the local

configuration of the i th ribbon at time step t is specified by the pose Xi
t =

[
Ri

t pi
t

0 1

]

of a rigid body describing the cross-section of the ribbon for 0 ≤ t ≤ T i . We further
assume that the twist Ui

t , described in terms of motion parameters ui
t = [vi

t , κ
i
t , τ

i
t ]T

(Eq. (5)), remains constant for the duration of the step t for 0 ≤ t < T i .
For sake of conciseness, we introduce the notation X i = {Xi

t : 0 ≤ t ≤ T i } to
denote the set of all poses, and U i = {ui

t : 0 ≤ t < T i } to denote the set of all control
inputs for ribbon r i . The entire ribbon r i can be parameterized as [X i ,U i ], and can
be generated by integrating the constant twist between subsequent time steps.

The planning objective can be formally stated as: Generate the setR = {r1, . . . ,
rn} of ribbons, such that ∀ r i = [X i ,U i ], the following constraints are satisfied:

• Xi
0 = Xi : The initial pose is constrained to be the pose of the i th dose target.

• Xi
T i ∈ E : The cross-section of the ribbon at final time step T i lies within the entry

region to permit insertion of catheters.
• Xi

t+1 = Xi
t exp(δUi

t ): The poses at consecutive time steps are related according
to the kinematics model given by Eq. (6).

• (r i ∩ I = ∅) ∧ (r i ∩ O = ∅): Ribbon r i does not collide with the implant
boun-dary I and does not collide with other obstacles O in the environment.

• r i ∩ r j = ∅, 1 ≤ j ≤ n, j 	= i : All ribbons are mutually collision-free.
• (|κ i

t | < κ̄) ∧ (|τ i
t | < τ̄) for 0 ≤ t < T i : The instantaneous curvature and torsion

values are within their respective bounds.

• (
∑T i −1

t=0 |δvi
tκ

i
t | < κ̄c) ∧ (

∑T i −1
t=0 |δvi

t τ
i
t | < τ̄ c): The cumulative curvature and

torsion along the ribbon is respectively constrained.

In addition, for practical applications, it is desirable to minimize the cumulative
curvature and torsion along the length of each ribbon. Formally, given user supplied
weights ακ and ατ , we wish to minimize the following objective for each ribbon r i :

C(U i ) = ακ

T i −1∑

t=0

(δvi
t κ

i
t )

2 + ατ

T i −1∑

t=0

(δvi
t τ

i
t )

2, (7)

which is equivalent to minimizing the energy or rotational strain along a curve [22].
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5 Approach

In this section, we describe our two stage planning approach. In the first stage, we
use a sampling-based rapidly-exploring random trees (RRT) planner that sequentially
explores the free space in the environment to compute feasible candidate ribbons.
These candidate ribbons are then simultaneously locally optimized using sequential
quadratic programming (SQP) to minimize the cumulative curvature and torsion
along the length of each ribbon.

5.1 Rapidly-Exploring Random Trees (RRT)

In the first stage, we use a customized sampling-based RRT planner [20] to plan
motions of the rigid body according to the nonholonomic kinematic model descried
in Sect. 3. We sequentially generate a feasible ribbon corresponding to each dwell
segment group di , 1 ≤ i ≤ n in D using the RRT planner. We note that it is also
possible to simultaneously plan for all the dose segments but in our experiments, we
found that doing so failed to find feasible solutions in the kind of constrained envi-
ronments considered in this work. In the second stage, however, we jointly optimize
over all ribbons.

Our customized RRT algorithm is summarized in Algorithm1. Starting from each
pose Xi ,we iteratively growa treeT in the pose spaceof 3Dpositions andorientations
that grows towards the entry region E subject to constraints (Sect. 4). A node is
iteratively added to the tree as follows. First, a point p ∈ R

3 is randomly sampled
from the implant volume such that it does not collidewith obstaclesO or other ribbons
R. We also bias the sampling towards the entry region to ensure progress [20] As
opposed to directly sampling a pose, this strategy has been shown to work better
for nonholonomic systems such as the ribbon and bevel-tipped steerable needles
[26]. Given p, we search for a node X in the tree that is nearest to p according to a
reachability-guided distancemeasure, which has been shown toworkwell in practice
[26, 30].

The node X is then expanded as follows. We randomly sample control inputs
u = [v, κ, τ ]T in the ranges [0, v̄], [−κ̄, κ̄], and [−τ̄ , τ̄ ], respectively. We select
the best set of controls u that gets closest to p using the Euclidean distance metric
[37]. Let X ′ be the new pose obtained by integrating the controls starting from pose
X (Eq. (6)). We then check if X ′ is feasible, i.e., it does not violate the cumulative
curvature κ̄c and torsion τ̄ c constraints. This is easy to check by storing the cumulative
curvature and torsion values at each node in the tree as it is grown. If feasible, we
then check if the constant twist trajectory between X and X ′ does not collide with
the implant boundary I , obstacles O, and the existing set of ribbonsR. If collision-
free, we add X ′ and the edge from X to X ′ to the tree T . If X ′ lies within the entry
region, we stop growing the tree and compute a plan by traversing the tree T starting
backwards from X ′ till the root node is reached. Given this plan, we generate the
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Algorithm 1 R ← ribbon_generation(I, E, D,O, w, v̄, κ̄, κ̄c, τ̄ , τ̄ c)

1: R = ∅
2: for all di ∈ D do � Process {d1, . . . , dn} sequentially
3: T ← ∅ � Initialize RRT tree
4: T ← add_vertex(Xi ) � Add pose Xi as root node
5: repeat
6: p ← random_point(I,O,R, E) � Sample 3D collision-free point
7: X ← nearest_neighbor(p, T ) � Reachability-guided neighbor search
8: u ← control_sampling(X, p, v̄, κ̄, τ̄ ) � Sampling for best control [v, κ, τ ]T

9: X ′ ← integrate_twist(X, u, δ) � Integrate constant twist using Eq.6
10: if feasible(X ′, κ̄c, τ̄ c) ∧

collision_free(X, X ′, I,O,R) then � Check feasibility
11: T ← add_vertex(X ′) � Add pose to tree
12: T ← add_edge(X, X ′) � Add edge to tree
13: end if
14: until (X ′ ∈ E) ∨ max_iterations_reached � Repeat till entry region reached
15: r i ← build_ribbon(T , X ′, w) � Generate ribbon from Xi to X ′
16: R ← R ∪ r i � Add ribbon to set R
17: end for
18: return R

Fig. 4 No obstacle scenario: Ribbons generated by a the RRT planner and b the local optimization
method. TheRRTplanner uses random sampling of control inputs,which leads to unnecessary twists
and turns in the generated ribbon. The local optimization is able to compute an optimal ribbon with
zero curvature and torsion

entire ribbon r i by integrating the sequence of controls along each edge of the plan.
This ribbon r i is added to the set of existing ribbons R.

It is well known that randomized planners compute sub-optimal or non-smooth
plans [20]. We illustrate this in a scenario with no obstacles in Fig. 4. The RRT
planner computes a feasible solution to the entry region but the solution is clearly
sub-optimal, with unnecessary twists and turns (Fig. 4a). We also note that the RRT
planner does not optimize the objective stated in Eq. (7). As is standard practice, we
then further locally optimize the RRT solution using a local optimization procedure
outlined below. In the scenario with no obstacles, the local optimization improves the
RRT initialization to a straight ribbon with zero curvature and torsion, as is expected
(Fig. 4b). However, we note that the nonholonomic kinematic model and planning in
the pose space makes it difficult to employ standard smoothing heuristics suggested
in the literature [20].
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5.2 Local Optimization

In this stage, we simultaneously optimize the cumulative curvature and torsion along
all ribbons in the set R of feasible ribbons generated by the RRT planner. Each
ribbon r i ∈ R is parameterized as a sequence of poses and controls as [X i ,U i ] and
has T i time steps. We formulate the optimization problem using the objective and
constraints described in Sect. 4 as:

min
X i ,U i

1≤i≤n

n∑

i=1

C(U i ), subject to constraints. (8)

Objective and constraints: Theoptimizationproblemstated abovehas aquadratic
objective (Eq. (7)), which iswell suited for optimization. However, the constraints are
nonlinear. These constraints are converted into the standard equality and inequality
constraints for optimization as described below:

• Constraints already expressed in standard form: Xi
0 = Xi , (|κ i

t | < κ̄), and
(|τ i

t | < τ̄).

• Non-convex constraints in standard form include: Xi
t+1 = Xi

t exp(δUi
t ),

∑T i −1
t=0

|δvi
t κ

i
t | < κ̄c, and

∑T i −1
t=0 |δvi

t τ
i
t | < τ̄ c.

• In this work, the entry region E is defined as a convex region. We use a bounding
circle or rectangle depending on the scenario. The constraint Xi

T i ∈ E is then
formulated as a nonlinear inequality constraint based on whether the ribbon cross-
section at time step T i lies within the bounds of E .

• The collision avoidance constraints (r i ∩ I = ∅) and (r i ∩O = ∅) are encoded as
nonlinear inequality constraints sd(Xi

t , Xi
t+1, I ) > 0 and sd(Xi

t , Xi
t+1,O) > 0,

respectively, for 0 ≤ t < T i , 1 ≤ i ≤ n. Here, sd denotes the signed distance.
Similarly, the constraint r i ∩ r j = ∅ is encoded as sd(Xi

t , Xi
t+1, X j

t , X j
t+1) > 0

for 1 ≤ j ≤ n, j 	= i . We refer the reader to Schulman et al. [28] for details
on how to efficiently compute the signed distance between convex objects and
linearize such constraints.

Optimization method: We solve this constrained nonlinear optimization prob-
lem via sequential quadratic programming (SQP), where we repeatedly construct
a quadratic program (QP) that locally approximates the original problem around
the current solution. In our formulation, the objective is directly expressed in the
quadratic form. However, the constraints are nonlinear and have to be linearized for
inclusion in the QP. The QP is then solved and we compute a step based on a merit
function [24] to ensure that progress is made on the original problem. To satisfy
constraints up to a tolerance, we use �1 penalties that are progressively increased
over the SQP iterations. We refer the reader to [24] for additional details on the
�1-SQP method. This method has been successfully used for robot motion planning
in a variety of contexts [10, 28].
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The optimization problem outlined above is, however, described directly over the
set of poses X . Using a global parameterization of the rotation group, such as axis-
angle coordinates or Euler angles, is not suitable for direct optimization [27]. Instead,
we follow the approach of Saccon et al. [27] and Duan et al. [10]. We consider a
local coordinate parameterization of the pose given by the Lie algebra se(3), which is
defined as the tangent vector space at the identity of SE(3). The local neighborhood
of a nominal pose X ∈ SE(3) is then defined in terms of the incremental twist
x̄ ∈ R

6 using the exp map [23]. We then construct and solve each QP in terms of
the increments to the previous solution. At each SQP iteration, the set of poses X i is
updated based on the incremental twists computed by solving the QP approximation.
We refer the reader to Duan et al. [10] for additional details.

Note on simultaneous versus sequential optimization: Duan et al. [10] propose
a sequential optimization strategy for optimizing the generated channels.A sequential
strategy involves a lesser number of variables and collision avoidance constraints in
the optimization problem. However, in our experiments, we found that the sequential
strategy failed to generate a feasible set of ribbonsR because it imposes an ordering
on which ribbons to optimize for. We believe that this is especially true in spatially
constrained environments. The simultaneous optimization strategy, although more
expensive, is able to resolve conflicts by jointly optimizing over all the ribbons.

5.3 Discussion

We consider three planning scenarios to highlight the merits and demerits of the RRT
planner and the local optimization method. In each of these scenarios, we consider
a box-shaped implant volume. The objective is to generate a ribbon from a specified
target configuration to the entry region,which is defined by one of the faces of the box.

In the first scenario, as shown in Fig. 4, we do not consider any obstacles. The
RRT planner generates a ribbon with unnecessary twists and turns as a result of the
randomized nature of the algorithm (Fig. 4a). The local optimization method is able
to optimize the ribbon to generate one with zero curvature and torsion (Fig. 4b).

Fig. 5 Two walls scenario: Two walls are positioned such that a direct path to the entry region
is blocked. a The RRT planner explores the free space to find a sub-optimal ribbon. b Local
optimization fails to find a feasible solution starting from an infeasible, straight line initialization to
the entry region. c The RRT generated ribbon is provided as initialization to the local optimization,
to generate a ribbon that minimizes curvature and has zero torsion
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Fig. 6 Narrow passage scenario: The target is oriented so that a feasible ribbon would have to
simultaneously twist and turn and make its way through a narrow passage. a Feasible solution
found by the RRT planner. b The RRT solution is further locally optimized to minimize curvature
and torsion. Without the feasible initialization, the local optimization is unable to find a feasible
solution. The narrow passage is a known problem for sampling-based planners like RRT. For
narrower passages than the one considered here, our approach is unable to find a solution even
though a feasible solution exists for a passage that is just wider than the ribbon width

In the second scenario, as shown in Fig. 5, we consider two box-shaped obstacles
that block the straight line path from the target configuration to the entry region.
If we use local optimization in isolation with a naïve straight line initialization for
the ribbon, the optimization is unable to resolve collisions with the two obstacles
(Fig. 5b). The RRT planner is able to resolve collisions but generates a sub-optimal
ribbon (Fig. 5a). However, applying local optimization to the RRT-generated ribbon
generates a high quality ribbon that is able to avoid collisions with obstacles (Fig. 5c).

In the third scenario, as shown in Fig. 6, we consider two box-shaped obstacles that
only permit passage to the entry region via a narrow passage. The target orientation is
specified such that the ribbon would have to simultaneously twist and turn to be able
to traverse the narrow passage. Narrow passages are a known problem for sampling-
based planners likeRRTbecause it is difficult to generate and connect to collision-free
samples in the narrow passage. This problem becomes especially difficult when the
kinematicmodel is nonholonomic. The RRT planner is able to resolve collisions after
repeated attempts (8 in our case) to generate a sub-optimal ribbon (Fig. 6a). Local
optimization in isolation is unable to find a feasible solution. However, applying
local optimization to theRRT-generated ribbon is able to locally optimize the solution
(Fig. 6b). However, for passages narrower than the one considered here, our approach
is unable to find a feasible solution even though one exists for passages that are
just wider than the ribbon width. Even though the RRT planner is theoretically
probabilistically complete [20], i.e., it is guaranteed to find a solution if one exists,
we cannot guarantee that this would be true in practice for our application.

6 Designing 3D Implants for Intracavitary Brachytherapy

We consider a scenario where a 3D printed implant is used for treatment of OB/GYN
tumors, as shown in Fig. 7. The implant was modeled as a cylinder of height 7cm
and radius 2.5cm, with an attached hemisphere with radius 2.5cm. The dimensions
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Fig. 7 We consider an implant volume modeled as a cylinder and attached hemisphere. The objec-
tive is to generate 6 mutually collision-free ribbons that reach groups of candidate dwell segment
groups proximally located and oriented tangentially to the tumors. a The RRT planner is able to
sequentially plan for each dwell segment group to generate collision-free ribbons that have unnec-
essary twists. b The candidate ribbons are jointly optimized locally to minimize the curvature and
torsion along the length of each ribbon

of the implant was designed based on dimensions reported by Garg et al. [14].
We considered 3 tumors that are targeted for intracavitary brachytherapy treatment.
We placed 6 groups of candidate dose dwell segments that are placed proximal to
the tumors within the implant volume and oriented tangentially to maximize dose
distribution to the tumor volumes. The circular entry region is the base of the implant.
The objective is to generatemutually collision-free, curvature and torsion constrained
ribbons within the implant volume that reach the candidate dose dwell segments.

Standard catheters used for brachytherapy are 1.65–2mm [9] in diameter. In this
scenario, we consider channels of width w = 2.5mm. We impose a constraint on the
instantaneous curvature of κ̄ = 1cm−1 based on the maximum allowable curvature
reported by Garg et al. [14] for radioactive sources that are 1mm in diameter and
5mm in length. We also impose a constraint on the instantaneous torsion of τ̄ = 0.1
radians. We set maximum limits on the cumulative curvature and torsion for each
ribbon as κ̄c = π

2 and τ̄ c = π
2 units, respectively.We also constrain the cross-section

of each ribbon at the respective final time steps to lie within the specified entry region.
We implemented our planning approach in C++ and used the Bullet collision

checking library [7] for collision checking queries. Figure7a shows the candidate rib-
bons computed using the RRT planner. The candidate ribbons are mutually collision-
free but contain unnecessary changes in curvature and torsion along the ribbons
since the RRT planner does not optimize the considered objective. Figure7b shows
the results of jointly optimizing the ribbons using the local optimization approach.
In practice, this optimized arrangement of channels would be printed with support
material and later dissolved to compute the hollow internal channels within the
implant volume.

Table1 summarizes the computation time required to generate these ribbons using
theRRTplanner and local optimization aswe vary the number of channels per ribbon.
The RRT planner is faster since it generates these ribbons sequentially while the
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Table 1 Performance of our planning approach with different number of channels per ribbon

Num.
channels (s)

1 2 3 4 5 6

RRT time 0.6 1.1 3.5 9.6 16.7 38.4

Opt. time 53.7 81.9 143.5 247.3 313.9 397.1

The cumulative time is the sum of the RRT and optimization times. The reported times for the RRT
planner are averaged over 10 runs. All execution times are based on experiments run on a single
3.5GHz Intel i7 processor core

Fig. 8 Generating individual channels for groups of candidate dwell dose segments following the
approach of Garg et al. [14]. Even with 3 dwell segments per group (18 channels in all), the implant
volume is occupied with internal channels. The planner is unable to generate single channels for
greater than 3 channels per group. This leads to less effective coverage of the tumor volume in terms
of dose distribution and can also compromise the structural integrity of the implant

local optimization jointly optimizes over all ribbons and hence is computationally
expensive. In this scenario, our approach was not able to find a solution for greater
than 6 channels per ribbon due to the limited free space within the implant volume.

We also compared the use of using ribbon-like arrangements versus generating
single channels for groups of dose dwell segments. Figure8 shows the arrangement
of individual channels for groups of 3 dwell segments, beyond which the planner is
unable to compute feasible solutions. The use of single channels leads to inefficient
utilization of space within the implant volume, as shown in Fig. 7b.

The use of single channels also limits the number of reachable dose dwell seg-
ments. This affects the coverage of tumor volume that can receive radiation, thus
limiting the treatment effectiveness. We used the coverage metric proposed by Garg
et al. [14] to compute coverage of the tumor volume using reachable candidate dose
dwell segments. Each dose dwell segment is partitioned into dwell positions for the
radioactive source in intervals of 5mm,which corresponds to the length of the source.
Any point inside a tumor is then said to be covered if a dwell position lies within
a ball of ε radius. A smaller coverage radius (ε) parameter results in lower dose to
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healthy organs while supplying sufficient radiation to the tumor volumes. Hence a
higher tumor coverage with small ε is preferred for brachytherapy treatment.

In this scenario, we found that dwell positions generated with ribbon-like channel
arrangements (Fig. 7b) achieved 100%coverage of the tumor volume for ε = 2.1cm.
In contrast, the coverage achieved for single channels (Fig. 8) for ε = 2.1cm is
only 54%. Achieving 100% coverage is important to prevent cancer recurrence.
Using ribbon-like arrangements allows us to achieve this coverage while minimizing
damage to surrounding healthy tissue. We refer the reader to Garg et al. [14] for
additional details on the coverage metric.

7 Conclusion

In this work, we posed the problem of planning curvature and torsion constrained
ribbons that avoid collisions with obstacles in 3D environments. We showed that this
problem is equivalent to planning motions for a rigid body along a spatial curve, such
that the rigid body is oriented along the unit binormal to the curve defined according
to the Frenet-Serret frame. We used a combination of sequential sampling-based
(RRT) planning and simultaneous local optimization (SQP) to can compute high
quality ribbons for designing channels within 3D printed implants for intracavitary
brachytherapy.

This opens up several avenues for future work. We plan to extend this work to
automatically compute dose dwell segments are proximally located with respect to
the external tumors. We plan to test our planning approach to design and print 3D
implants and evaluate them in clinical brachytherapy trials. Alternate arrangements
of channels, such as bundles or tubes instead of ribbons will also be considered.
We envision that our approach will also be useful for other applications such as
routing ribbon-like arrangements of cooling channels, wires and cables, and planning
motions for bevel-tipped steerable needles and formations of aerial vehicles.
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A Quadratic Programming Approach
to Quasi-Static Whole-Body Manipulation

Krishna Shankar, Joel W. Burdick and Nicolas H. Hudson

Abstract This paper introduces a local motion planning method for robotic systems
withmanipulating limbs, moving bases (legged or wheeled), and stance stability con-
straints arising from the presence of gravity. We formulate the problem of selecting
local motions as a linearly constrained quadratic program (QP), that can be solved
efficiently. The solution to this QP is a tuple of locally optimal joint velocities. By
using these velocities to step towards a goal, both a path and an inverse-kinematic
solution to the goal are obtained. This formulation can be used directly for real-
time control, or as a local motion planner to connect waypoints. This method is
particularly useful for high-degree-of-freedom mobile robotic systems, as the QP
solution scales well with the number of joints. We also show how a number of practi-
cally important geometric constraints (collision avoidance, mechanism self-collision
avoidance, gaze direction, etc.) can be readily incorporated into either the constraint
or objective parts of the formulation. Additionally, motion of the base, a particular
joint, or a particular link can be encouraged/discouraged as desired. We summarize
the important kinematic variables of the formulation, including the stance Jacobian,
the reach Jacobian, and a center of mass Jacobian. The method is easily extended to
provide sparse solutions, where the fewest number of joints are moved, by iteration
using Tibshirani’s method to accommodate an l1 regularizer. The approach is vali-
dated and demonstrated on SURROGATE, a mobile robot with a TALON base, a 7
DOF serial-revolute torso, and two 7 DOF modular arms developed at JPL/Caltech.

K. Shankar (B) · J.W. Burdick · N.H. Hudson
California Institute of Technology, Pasadena, USA
e-mail: krishna@robotics.caltech.edu

J.W. Burdick
e-mail: jwb@robotics.caltech.edu

N.H. Hudson
e-mail: nhudson@jpl.nasa.gov

© Springer International Publishing Switzerland 2015
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_32

553



554 K. Shankar et al.

1 Introduction

Consider one or more (possibly redundant) serial chain manipulator arms mounted
on a mobile robot base. The base could be a wheeled or tracked vehicle, or it may
be a multi-legged walker (see Fig. 1a, b). The mechanism may also contain a neck
upon which visual and range sensors are mounted. We are particularly interested in
the cases where the arms have sufficient reach and mass such that the mobile vehicle
may tip over in the presence of gravity when they are extended too far during a
manipulation task.

Suppose the robot must manipulate an object, where the manipulation task can
be described by tool frame locations.

1. What arm configurations satisfy the manipulation constraints?
2. How do we apportion base and limb motion to achieve the goal?
3. How do we guard against vehicle tip-over—can we move the limbs in such a way

as to keep the system center of mass over a safe region of support?q Can we move
in a way to improve stability with respect to gravitational forces?

4. How dowe incorporate natural task constraints, such asmechanism self-collision,
obstacle avoidance, and preferred camera gaze direction?

These problems form a generalized inverse kinematic problem, where the distal
end of the manipulator(s) must be placed at specified locations, while incorporating
numerous constraints, as well as optimality criteria which resolve ambiguities in the
case of multiple possible solutions. The optimality criteria also endow the solution
with desirable properties. Since the analysis in this paper is limited to quasi-static
motions, the key kinematic variables governing arm motions and center of mass
stability can be formulated in terms of appropriate Jacobian matrices (see Sect. 2).

Because systems of the type seen in Fig. 1a, b are kinematically redundant, we pro-
pose a solution which is intellectually related to the classical methods of redundancy
resolution in fixed based redundant manipulator arms [1, 2]. However, instead of
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Fig. 1 Key reference frames for, a a legged-base robot, b a wheeled-base robot, c manipulator base
robot
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using a classical Jacobian pseudo-inverse type of solution, we formulate the problem
as a convex optimization problem, specifically a constrainedQuadratic Programming
problem. Like the task-priority method of redundancy resolution [2], the formulation
allows for multiple task priorities to be encoded as constraints or optimality criteria.
However, unlike Jacobian pseudo-inverse methods, our QP formulation readily inco-
porates hard constraints and multiple optimality criteria, has better performance near
singulariites, and in practice tends to avoid awkward solutions for large kinematic
chains [3]. Its real-time performance renders obsolete the need for heuristics [4] or
look-up tables [5] to circumvent the curse of dimensionality with highly articulated
systems.

The problem of mobile manipulation planning [6, 7] and whole body motion
planning for humanoids [8] or multi-legged systems has attracted researchers for
several decades. Theoretical advances in Convex Programming, and the associated
introduction of efficient numerical optimization codes, allow us to propose new
approaches which have not only serious computational speed advantages, but also
allow added flexibility and generality in specifying the task objectives.

We are not the first to propose the use of Convex Optimization or Quadratic Pro-
gramming techniques for solving inverse kinematics problems, for localmotion plan-
ing of highly articulated mechanisms, or whole body manipulation planning. Zhang
et al. [9, 10] used quadratic programming to solve kinematically redundant manipu-
lator redundancy resolution problems. Kanehiro et al. [11, 12] show the use of QPs
to incorporate fast collision avoidance calculations as part of humanoid whole body
motion planning. Our method incorporates many additional constraints and optimal-
ity criteria, and our explicit formulation of several key kinematic equations [13] gives
us significant advantages in terms of reported computation time (even adjusting for
Moore’s law). Very recently, MIT’s DARPA Robotics Challenge team [14] used a
sparse nonlinear optimization software that employs a sequential quadratic program-
ming approach, to find inverse kinematic solutions to pose the Atlas humanoid robot,
or to solve localmotion planningproblems involvingmanipulationwithAtlas.Weuse
a different objective function, which has several advantages, incorporate additional
task criteria, and our explicit kinematic formulae also give us a reported computa-
tional speed advantage. We also provide solution existence and uniqueness results,
and local feasibility certificates. Finally, or method can be readily adapted to pro-
vide sparse solutions, where only a minimum number of joints are moved in solving
the motion planning problem. For mechanisms configured with brakes on the joint
actuators, this option allows for energetically efficient mechanism motions, as much
of the gravitational load on the mechanism can be supported by the friction forces at
the brakes, instead of active joint torques.

We do not consider dynamic effects in this paper. However, many (e.g. [15] and
citations therein) have obtained controllers for full dynamic models of humanoids
with contact from simple convex QPs.

Structure of the Paper: Sect. 2 reviews the kinematics required to explicitly
describe all possible motions of any robot link as well as the center of mass as a
function of joint motions. In Sect. 3 we describe the optimization based approach
to finding paths in configuration space that reach a given task-frame goal, and pro-
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vide some analysis and describe extensions. In Sect. 4, we validate our ideas on the
SURROGATE platform, and provide details related to computation time.

2 Stance and Reach Kinematics for Mobile Robots

We are interested in developing a whole body local planning framework which can
be applied to

• multi-limbed robots, such as RoboSimian (see [13]), which can use its limbs either
for walking or manipulating (Fig. 1a).

• wheeled or tracked vehicles mounted with one or more manipulators, and possibly
articulated torsos (Fig. 1b and Sect. 4), such as the SURROGATE robot described
in Sect. 4.

• multi-limbed robots with a fixed base, but a possible articulated torso (Fig. 1c).
While such robots are not mobile in a conventional sense, their articulated torso
presents a similar problem of apportioning the task-solving motions between the
limb and the torso. Also, movements of the system’s center-of-mass far from the
base places very large strain on the torso motors.

For this class of problems, we are concerned with describing the motions of a
tool frame affixed to the manipulator(s), a frame describing the base’s location, and
the location of the center of mass (since its position affects quasi-static stability
of the vehicle), all with respect to a world frame, W . This section reviews and
derives the basic kinematic relationships between the movement of the frames and
the mechanism joint motions. We also need to incorporate knowledge of the contact
forces between feet and the terrain to ensure stability in the legged case. Let B
denote a right-handed orthogonal coordinate system fixed to the robot’s base, and
let reference frame Ei be affixed to the end-effector of the i th manipulating arm.
We will call the point at which the manipulator is attached to the base a shoulder,
and to it we associate the reference frame Si . We use conventions and notions from
[16], which describes rigid body transformations using homogeneous transforms and
velocities using twists. We will first develop some general relationships that govern
this problem, and then specialize them for the particular classes of robots in Fig. 1.

2.1 Reach Jacobian

The location of the end effector in the world frame is given by gWE ∈ SE(3),

gWE = gWBgBSgSE

where gM N describes the homogeneous transformation between references frames
M and N . The body velocity of the end effector, is a twist, defined by



A Quadratic Programming Approach to Quasi-Static Whole-Body Manipulation 557

V b
WE = (g−1

WE ġWE)∨ =
(

(gWBgBSgSE)−1 d

dt
(gWBgBSgSE)

)∨
= AdgEB V b

WB+V b
SE

where the adjoint AdgM N transforms velocities from frame N to frame M . If we have
a kinematic model (a map between joint velocities and robot motion) of the base, we
can write

V E
WE = AdgEB JB(θB, x0)θ̇B + Jl(θl)θ̇l

where JB(θB, x0) is the Base Jacobian, x0 includes additional necessary configu-
ration and contact information (e.g. contact frame location and orientation) and the
mechanism joint variables are divided into base joint variables, θB, and manipulat-
ing limb joint variables, θl , i.e. θ � (θB, θl)

T . Transforming this result to the Base
Frame yields:

VB
WE =

[
JB(θB, x0) 0

0 AdgBE Jl(θl)

]
θ̇ � JR(θ, x0)θ̇

where JR(θ, x0) is the Reach Jacobian, which describes how base motions and limb
motions contribute to tool frame motion, as described to an observer in frame B.

2.2 The Center of Mass Jacobian

This section will derive the twist velocity of the center of mass for arbitrary motions
of the base, supporting legs and any number of free arms. Suppose that our robot
moves quasi-statically, and wewant to ensure that it does not fall over during motion.
We do this by ensuring that static equilibrium is satisfied at every instant. That is,
the sum of moments and forces on any point of the robot are always zero.

Given a description of the robot’s physical contacts with the world, the conditions
for static equilibrium define a support region of all possible center of mass locations.
For example, if the robot’s feet only support point contacts without friction, and we
assume that the robot can produce infinite torque at its joints, then the support region
is the convex hull of the contacts.

Recall that the center of mass for a system of particles is located at the mass
weighted average of the component particles’ position. We can attach reference
frames to each link whose origins coincide with the link center of mass. The trans-
formation from the world-fixed frame to the center of mass in frame C is then

gWC = mB
M

gWB + 1

M

N∑

i=1

ni∑

j=1

mi, jgW(i, j)

where mi, j is the mass of the j th link in the i th limb, and gW(i, j) is a transformation
from the world frame to the link frame. We can obtain the body velocity of the center
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of mass by differentiating this expression:

V̂WC = g−1
WC ġWC = mB

M
gCBV̂ B

WBg
−1
CB + 1

M

N∑

i=1

ni∑

j=1

mi, jgC(i, j)V̂
(i, j)
W(i, j)g

−1
C(i, j)

Converting to twist coordinates, and transforming to the base frame yields:

VB
WC = AdgBC V C

WC = mB
M

V B
WB + 1

M

N∑

i=1

ni∑

j=1

mi, j

(
V B
WB + V B

B(i, j)

)

= mB
M

V B
WB + 1

M

N∑

i=1

ni∑

j=1

mi, j

(
V B
WB + AdgBSi

Ji, j (θi→ j )θ̇i→ j

)

= V B
WB + 1

M

N∑

i=1

ni∑

j=1

mi, jAdgBSi
Ji, j (θi→ j )θ̇i→ j (1)

where

Ji, j (θi,1, . . . , θi, j ) =
[(

∂gSi (i, j)

∂θi,1
g−1
Si (i, j)

)∧
. . .

(
∂gSi (i, j)

∂θi, j
g−1
Si (i, j)

)∧]

is the (i, j)th link’s Jacobian with respect to Si (it is analogous to the spatial Jacobian
of a manipulator with respect to its base). It maps the joint velocities of the first j
joints in the i th limb (θ̇i→ j ) to the velocity of the j th link frame in the base B frame.

Following [13], this expression can be reorganized by introducing the “mass-
weighted Jacobian”. The mass-weighted Jacobian is defined as

J̄k =
[(

∑nk
j=1

mk, j
M

)
ξ1,k . . .

(
∑nk

j=i
mk, j

M

)
ξ ′

i,k . . .

(
mk,nk

M

)
ξ ′

nk ,k

]
, (2)

where M is the total robot mass and ξi is the twist associated with the i th joint at
zero configuration, with

ξ ′
i = Ad

(eξ̂1θ1 ...eξ̂i−1θi−1 )
ξi .

We substitute it into Eq. (1) to get

V B
Wc = JB(θ)θ̇B +

N∑

i=1

AdgBSi
J̄i (θi )θ̇i = JC(θ, x0)

⎛

⎜⎜⎜
⎝

θB
θ1
...

θn

⎞

⎟⎟⎟
⎠

where JC (θ, x0) is the “center-of-mass Jacobian”:

JC(θ, x0) =
[

JB(θB, x0) AdgBs1
J̄1 . . . AdgBsn

J̄N

]
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These building blocks are all that are required to solve a very large class of local

constrained inverse kinematics and planning problems.

2.3 Kinematics for a Legged Base

The key specializations for the case of a legged base with arbitrarily many legs is
summarized here, details are available in [13]. The kinematics for a legged robot
arise from contact constraints—these prevent the feet from moving in directions that
frictional forces can be applied in. Applying these constraints, we find that

ST VB
WB = JB(θB, x0)θ̇B (3)

where S, given by

S = −
[
AdT

g−1
Ac1

Bc1 · · · AdT
g−1
Acn−1

Bcn−1

]

is the Stance Map—a map between end effector forces and forces on the base (its
transpose maps velocities at the contact frame to velocities at the base frame), and
Bi is the wrench basis at the i th contact.1 In the case of a legged robot, the θ ’s don’t
split cleanly into a body component and limb components, as the body’s motion is
due to three or more supporting limbs. Define θi to the joint angles in the i th limb,
an let ni be the number of joints in the i th limb. Suppose that the robot has N limbs,
and M < N limbs making contact with the terrain at contact frames ci , i = 1 . . . m.
Then, for an M-limbed quasi static-walking robot, the base Jacobian takes the form:

JB(x0, θ1, . . . , θM ) = −

⎡

⎢⎢
⎣

BT
c1Ad

−1
gs1c1

J1(θ1) 0
. . .

0 BT
cM

Ad−1
gsM cM

JM (θM )

⎤

⎥⎥
⎦ . (4)

The center of mass Jacobian is given by

JC(θ, x0) =
⎡

⎢⎢
⎢⎢
⎣

BT
c1Adgc1s1

J̃1(θ1) BT
c1Adgc1s2

J̄2(θ2) . . . BT
c1Adgc1sM

J̄M (θM ) . . . BT
c1Adgc1sN

J̄N (θN )

BT
c2Adgc2s1

J̄1(θ1) BT
c2Adgc2s2

J̃2(θ2)
.
.
.

. . .
.
.
.

. . . BT
cM

AdgcM sM
J̃M (θM ) . . . BT

cM
AdgcM sN

J̄N (θN )

⎤

⎥⎥
⎥⎥
⎦

,

where J̄i is the weighted Jacobian defined in (2) and

1Refer to [16], Chap.5 for background.
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J̃k =
[(

∑nk
j=1

mk, j +M
M

)
ξk,1 . . .

(
∑nk

j=i
mk, j +M

M

)
ξ ′

k,i . . .

(
mk,nk +M

M

)
ξ ′

k,nk

]
.

It is straightforward to show that [13]

ST VB
WC = JC(θ, x0)θ̇ . (5)

2.4 Kinematics for a Wheeled Base

Suppose that we have manipulator arms attached to a differential-drive base with
unit width. The base’s configuration is restricted to a plane, and consists of position
and heading, (x, y, φ). The motion of the base is described by2

⎛

⎝
ẋ
ẏ
φ̇

⎞

⎠ = 1

2

⎡

⎣
cosφ cosφ

sin φ sin φ

−1 1

⎤

⎦
(

θ̇L

θ̇R

)

where θL is the left wheel angle, and θR the right (see Fig. 1). We obtain the Base
Jacobian by rewriting the kinematics in the body frame, and lifting to twists in 3
dimensions. One finds that the base Jacobian is given by

JB =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

1
2

1
2

0 0
0 0
0 0
0 0
−1
2

1
2

⎤

⎥⎥⎥⎥⎥
⎥
⎦

,

so that

V B
WB = JB

(
θ̇L

θ̇R

)

Suppose that the robot has N arms, and let the joint angles in the i th arm be
denoted by θi . Then the Center of Mass Jacobian is simply

JC(θ1, θ2, . . . θN ) = [
JB J̄1(θ1) . . . J̄N (θN )

]

2These kinematics are well known, and arise from writing the no-slip conditions for each wheel
with respect to the base frame.
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2.5 Kinematics for a Serial Chain Torso

In this case, the spatial and base frame can be coincident, and the Base Jacobian is
simply the Base’s spatial Jacobian:

JB(θB) =
[
ξ1 ξ

†
2 . . . ξ

†
nB

]

where ξi is the twist associated with the i th joint at zero configuration and

ξ
†
i = Ad−1

(eξ̂i θi ...eξ̂nB θnB )
ξi .

The center of mass Jacobian in this case is

JC(θ, x0) =
[

JB(θB, x0) AdgBS1
J̄1(θ1) . . . AdgBSn

J̄N (θN )
]

3 The Local Motion Planning Problem: A Quadratic
Program

This sectionmotivates and describes the formulation of the explicit QP that is the crux
of this paper. A basic problem is formulated ,and then extended for more general use.

Recall that our task is described as an end-effector pose. Suppose that at every
instant, we move optimally based only on knowledge of the current configuration,
and the system kinematics. Naively, we might try to ‘move towards the goal as much
as possible, without falling down’. This statement is very naturally translated into a
constrained minimization problem:

minimize ‖VB
WE − ṼB

WE‖2,PE + ‖VB
WC − ṼB

WC‖2,PC + ‖θ̇‖2,Pθ

subject to JR(θ, x0)θ̇ = VB
WE

JC (θ, x0)θ̇ = VB
WC

(6)

The objective indicates that we want to choose VB
WE to be close (with respect to a

weighted 2-norm defined by ‖x‖2,P = √
xT Px where the weighting matrices are

nominally diagonal, e.g. PE = diag[wE
1 . . . wE

6 ]) to a desired end-effector velocity
ṼB
WE and the true center of mass velocity should be close to a specified velocity

ṼB
WC . The desired center of mass velocity might be determined so that the resulting

motion of the robot’s center of mass remains fully within the support region (e.g.
towards the center of support—a more natural way to control center of mass motion,
using constraints, is given below). The desired end-effector velocity is specified as
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the tangent to the desired end-effector path in SE(3).3 The path can be any c2 curve.
The weights’ relative magnitude corresponds to the importance of each term and
component of motion in a given problem. Generally, weights in PE are chosen to be
significantly larger than the other weights, as the end effector goal is the highest pri-
ority. We have an exhaustive understanding of existence and uniqueness of solutions
to this problem, and we state it as a proposition:

Proposition 1 The constrained minimization (6) has a solution when PE , PC and Pθ

1. are positive definite, or
2. are positive semi-definite, and both JR and JC have full rank.

Moreover, (6) has a unique solution whenever there is no local motion that keeps the
center of mass and end effector stationary.

Theproof of this fact is straightforward, and follows from rank analysis of theKKT
matrix.4 For the reader interested in a more detailed argument, we provide and prove
this fact explicitly for legged robots in [13]. The argument is almost identical for any
robot. Practically, this means is that singularities do not have as large an impact as
they do for existing iterative IK (inverse kinematics) solvers. Intuitively, this makes
sense, since we are not enforcing velocities, but instead simply encouraging them.
Geometrically, the solution is a oblique projection of possible joint velocities onto
affine subspaces defined by the kinematics.

3.1 Fully Integrated Planning

We expand this framework and rewrite the problem in order to easily and extensibly
handle a broad variety of constraints and goals, and to make the problem size as com-
pact as possible in the interest of efficiency.5 We do this by substituting the equality
constraints into the objective directly, and by adding linear inequality constraints to
accommodate hard limits.

Let Fg
i be a frame (attached anywhere to the mechanism) with an associated

motion goal and let ṼB
BFg

i
be the corresponding desired instantaneous velocity of this

frame. In order to write the motion goals efficiently in the objective, we can square

3A desired velocity for the end-effector can be determined from the transformation between the
current pose and the desired pose; the velocity (twist) corresponding to the error is determined by
the matrix logarithm. See [16] Chap.2.
4This is the coefficient matrix one obtains when the KKT conditions for this problem posed as
a QP in standard form are written as a linear equation in primal and dual variables. See [17] for
background.
5The worst case complexity of solving a QP with linear constraints is shown to be O(n3L) where
n is the size of the decision variable, and L is the program input size [18].
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norms (without changing anything), and expand the residual between desired and
true motion as

‖VB
BFg

i
− ṼB

BFg
i
‖22,PF

g
i

= θ̇T J T
Fg

i
PFg

i
JFg

i
θ̇ − 2θ̇T J T

Fg
i

ṼB
BFg

i
+ (ṼB

BFg
i
)T ṼB

BFg
i

In order to efficiently represent hard constraints, we notice that we can restrict
the motion of a frame Fr

i in the ‘direction’ of Ṽ r
i by enforcing

(Ṽ r
i )T VB

BFr
i

= (Ṽ r
i )T JFr

i
θ̇ ≥ αi ,

where αi ≥ 0.
Suppose that we have n motion goals, and p hard constraints. Define

P =
n∑

i=1

J T
Fg

i
PFg

i
JFg

i
+ Pθ , β = −2

n∑

i=1

J T
Fg

i
ṼB
BFg

i
,

A =
⎡

⎢
⎣

(Ṽ r
1 )T JFr

1
...

(Ṽ r
p )T JFr

p

⎤

⎥
⎦ , α =

(
α1
...αp

)

We can now write a much more general constrained minimization problem:

minimize θ̇T P θ̇ + θ̇T β

subject to Aθ̇ ≤ α

(7)

where the inequality constraint holds element wise. With this more general formula-
tion, a vast number of manipulation goals, subgoals and constraints can be naturally
included. Some of these include:

Pointing The z-axis of a given link frame Fi can be pointed in particular direction
by adding the link’s velocity and the twist in the desired direction to the objective.
One neglects rotation in the pointing direction by letting

PFi = AdT
gFiB

diag[wFi
1 , w

Fi
2 , . . . w

Fi
5 , 0]AdgFiB

(the instantaneous rotation about the frame-fixed z-axis is ignored). This could be
used, for example, to encourage a gaze direction.

Tracking A link frame Fi can be moved along a desired trajectory by adding it to
the objective, along with the tangent to the trajectory at the current configuration.

Collision Repulsion If the robot is in a configuration at which it makes contact
with obstacles or itself, the links in contact can be forced tomove away by defining
a repulsive velocity as the normal to the collision plane [19], and adding a hard
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inequality constraint forcing the link to move in the repulsive direction by making
the corresponding αi a positive number. For self-collisions, one or both collision
links can be made to move away from collision.

Hard Static Equilibrium Constraints The center of mass can be kept within the
robot’s support region using linear inequality constraints. Let vi be the twist
corresponding to pure translation towards the i th side of the support region. Let
the distance to the i th side be di . If we enforce the constraint

vT
i VB

BC = vT
i JC (θ, x0)θ̇ ≤ di

for every side of the support region, and if the robot follows velocity for much
less than 1s, the center of mass will not leave the support region.

Frame Boundaries A frame (or the difference between frames) can be kept in any
polyhedral region in space using inequality constraints on frame velocity; these
are constructed in the same way as the hard static equilibrium constraints. This
could be used, for example, to keep the robot within some workspace boundaries,
or to enforce hard constraints on gaze.

Joint Limit and Singular Configuration Avoidance These are straightforward
to implement as inequality constraints on joint velocities.

Configuration Biasing The robot can be biased towards a known nominal con-
figuration by adding a body velocity bias to nominal pose, and a joint angle bias
that penalizes motions away from nominal joint angles.

Fewest Joints Moving We can look for solutions that move as few joints as pos-

sible by using a weighted 1-norm on θ̇ (defined by ‖x‖1,P =
n∑

i=1
|Px |i in the

objective of (6)). This problem tends to provide solutions that are sparse in joint
velocities. The solver will remain quite fast in this case, as the problem can be
solved by a few iterations (approximately the same number as the number of
joints) of the problem formed without θ̇ in the objective [20].

3.2 Feasibility Certificates and Optimal Constraints

The ability to certify feasibility or lack thereof is crucial for ensuring that partial plans
that end in unsafe configurations are not executed. The problem (7) is infeasible if
and only if the constraints cannot be met. We can check constraint feasibility very
rapidly by solving the following linear program (the parameters are the same as those
in (7)):

minimize −t
subject to Aθ̇ − α ≤ t

t ≤ 1 .

(8)

The optimal solution value is 1 if the constraints are feasible and 0 otherwise.
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In order to choose α in a clever way, one might ensure that feasibility is satisfied
using (8) for the minimum values of α, and thereafter select an ‘optimal’ α in the
sense of the following problem:

minimize 1T α

subject to Aθ̇ ≤ α

−1 ≤ α ≤ 1
(9)

Normalizing the resulting optimal α, we get the constraints that most aggressively
avoid the limits we put on the system.

3.3 Iterative Algorithm

This section describes a method that integrates the ideas presented in this paper so
far (this is the algorithm we use in the experiment of Sect. 4). We define a robot
configuration data structure C, that contains the transformations to every joint and
link frame as well as the center of mass frames, the instantaneous twists of every
joint in the robot as seen in the base frame. We assume there are n frames that
are following trajectories, and up to p inequality constraints; when there are fewer
than p constraints for an iteration, the unused rows and elements of A and α are
chosen to be trivially satisfied. In addition, for checking feasibility, α is set to the
minimum reasonable value (e.g. a very small positive number for collision avoidance,
or exactly the distance to a support region boundary). We also assume the existence
of the following functions.

GoalDist(C) Returns the distance to the goal (e.g. distance between end-effector
current and desired poses.

SupportRegionVector(C, i) Returns direction from the center of mass to the i th
face of the support region in the base frame, for i ∈ 1 . . . s where s is the number
of faces of the support region–the locus of center-of-mass locations at which the
robot is quasi-statically stable.

COMDist(C, i) Computes the distance from the center of mass to the i th face of
the support region.

CheckFeasibility(A, α) Returns the solution to the LP (8).
SetAlpha(C, A) Returns a sensible choice of α using (9) or otherwise.
SolveQP(P, β, A,α) Returns the solution to (7). A key part of any algorithm that

works using the ideas presented here is the QP solver. We used CVXGEN [21],
to generate a fast, custom, primal-dual interior point method solver (a small,
stand-alone C code).

ComputeStepSize(C, θ̇ ) Computes a step size Δt by searching [0, 1] and ensuring
that stepping by Δt × θ̇ does not result in violation of constraints. We found that
this function is unnecessary in most cases (the step size can be set to 1).

Update(C, θ̇ , Δt) Updates the configuration after moving by Δt × θ̇ .
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Initialize C;
while GoalDist(C) > ε do

for i = 1 . . . n do
Compute desired twists ṼB

BFi
. Select weighting matrices Pi ;

for i = 1 . . . s do
Ṽ r

i = SupportRegionVector(C,i)
αi = COMDist(c,i)

if In Collision then
for i = 1 . . . # of Collisions do

Set Ṽ r
B(i+s) to be collision normal

Construct P, β, A, α as given in (7) ;
if CheckFeasibility(A,α) then

SetAlpha(C,A) ;
θ̇ = SolveQP(P, β, A,α) ;
Δt = ComputeStepSize(C,θ̇ ) ;
Update(C, θ̇ , Δt))

else
Return Failure

Algorithm 1: QP-based path-planning and goal configuration search.

4 Implementation with Surrogate

Surrogate is a highly redundant 21 DOF robot torso mounted on differential drive
mobile base (Figs. 2, 3 and 4). The following experiments demonstrate the use of
iteratively solving the local quadratic program, and using the resulting velocities to
move the robot end effector closer to the desired goal while also moving the torso
and non-manipulating arm to maintain balance. At the end of each iteration, the
velocities are integrated (multiplied by the time constant used to compute velocity
constraints in the QP) to form small joint position displacements. Joint motions are
limited to 0.1 radians per iteration.

Collisions between robotic bodies are computed using Bullet Collision Detection
[22]. If collisions are detected after applying a joint position update, the previous QP
is run again with additional velocity constraints enforcing repulsive motion between
the bodies found in contact. Bullet provides a pairwise list of bodies in collision, and
approximate collision locations.

The average run time for a single iteration (computing all Jacobians, constraints,
and collisions, and solving the QP) was 348µs. On average just solving the QP took
267µs, or 78% of the computation time. All computations were restricted to a single
processing core of a 2.4GHz i7. In the reported cases (a–f) in Fig. 2 the maximum
average iteration time was for case (a), which ends in a near singular case, at 584µs,
while the minimum was case (b), at 274µs. The iterations were stopped when the
end effector displacement error was less than 0.001m and 0.001 rad. Figure2 case
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Fig. 2 Inverse Kinematics (IK) computed to specified end goals. The robot differential drive base
is fixed. The red sphere is the robot center of mass (COM), and the red rectangle is the support
polygon projected to the height of the COM. a Reaching to a point 1m in front of the robot, and
0.2 m below the drive plane. b Reaching to a torus 0.5m in front of the robot. c Reaching to a torus
1.25m to the side of the robot. d Starting pose for all IK searches. e IK computed to (a) without
using balance constraints. f IK computed to (b) stopping on detected collisions

(a) required 247 iterations to complete at a total time of 0.14s, and case (b) took 17
iterations at a total time of 0.004s.

The Surrogate robot has 7 degrees of freedom (DOF) in each limb and the torso.
The serial chain from the robot base to the primary end effector is 14 DOF, with an
extra 7 DOF on the free armwhich can be used for balancing. This leaves 8 redundant
DOF in the main serial chain, with an extra 7 DOF in the free limb.The limbs and
torso on the Surrogate robot do not have a kinematic wrist, which makes deriving
analytic inverse kinematics difficult.

As a comparison, IKfast (http://openrave.org/docs/latest_stable/openravepy/
ikfast/) was used to compute analytic IK for the limb and the torso. Each IKfast
call for the limb or torso requires fixing one joint, and solves for the IK of the
remaining 6 joints in the limb or torso (resulting in up to 8 configurations). Each
IKfast call for a Surrogate limb takes approximately 1000ms, in contrast to a Barrett
limb (with a wrist) which takes approximately 5ms [23]. As the redundant space
in the main serial chain is so high (8 DOF), searching over this space and using
analytic IK to solve for joint angles is intractable. Figure4 shows snapshots form a
SURROGATE effort to turn a valve 90◦.

http://openrave.org/docs/latest_stable/openravepy/ikfast/
http://openrave.org/docs/latest_stable/openravepy/ikfast/
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i i i i= 0 = 5 = 10 = 15

i = 20 i i i= 25 = 100 = 247

Fig. 3 Sequential iterations of solving the local QP to compute inverse kinematics for the left limb
to a point 1m in front and 0.2m below robot base. The desired end effector location is shown by the
highlighted hand at iteration i = 0. Subsequent iterations show the output robot state redisplayed.
Iterations 5 and 10 show the free right limb being constrained from contacting the robotic torso.
The robot center of mass (red ball) is within the support polygon (red rectangle) for all iterations

5 Conclusion and Future Work

This paper introduced a Quadratic Programming (QP) method to plan the local
motions of robots with (possibly redundant) manipulator arms mounted on mobile
bases (wheeled and legged bases, or highly articulated torsos) in the case where grav-
itational effects limit the possible stable locations of the system center of mass. We
posed a generalized redundancy resolution approachwhich incorporates several opti-
mality factors, while handling several types of constraints, such as self-collision, sta-
ble center of mass movement, local obstacle avoidance, and sensor gaze constraints.
The locally optimal joint velocities produced by the QP solver can be used in real-
time feedback control, or as a component of a global motion planning approach. Our
application of themethod to the 21DOF SURROGATE robot resulted in surprisingly
fast real-time solution performance. In part this is due to the efficiency of modern
QP codes, but in part we believe the speed arose from our explicit formulation of
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Fig. 4 Turning a valve using QP inverse kinematics: The robot’s motion is computed by iteratively
solving the QP, and then executed on the robot in real time. a Starting pose. b Pre-contact with the
valve. c Contact with the valve. d Half way through turning the valve. e The valve is fully open.
The robotic torso significantly extended to achieve required end effector goals, and the free limb
has contracted to maintain balance stability. Video available at http://krishna.caltech.edu/WBM

the key kinematic relationships. The QP formulation also leads to solution existence,
uniqueness and infeasibility results. We are currently investigating how this local
solution can be integrated into a receding horizon control and planning framework.
Based on prior work, this combination should have the excellent real-time local per-
formance demonstrated in this paper, coupled with completeness and correctness of
a global motion planner.
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On-line Coverage of Planar Environments by
a Battery Powered Autonomous Mobile
Robot

Iddo Shnaps and Elon Rimon

Abstract This paper is concerned with on-line coverage of unknown planar
environments by a mobile robot of size D operating with a limited energy capacity
battery. The battery capacity is represented by the path length L that the robot can
travel under a full battery charge. Starting at S, the robot has to cover a planar environ-
ment containing unknown obstacles, and return to S upon task completion. During
task execution the robot may return to S at any time to recharge its battery. The paper
first describes a battery powered off-line coverage methodology, then introduces the
BPC (Battery Powered Coverage) algorithm that performs on-line battery powered
coverage using position and local obstacle detection sensors. The performance of
the BPC algorithm is measured by its competitiveness, determined by measuring its
total on-line path length, l, relative to the optimal off-line solution lopt. The paper
establishes that the BPC algorithm has a competitive performance of l ≤ L

D lopt.
The paper additionally establishes a universal lower bound of l ≥ log( L

4D )lopt over
all on-line battery powered coverage algorithms. Execution example illustrates the
usefulness of the BPC algorithm.

1 Introduction

As mobile robots are deployed in ever more demanding tasks, they must traverse
unknown environments containing obstacles while relying on sensors and on-board
information storage. Examples of autonomous mobile robots in everyday use are
vacuum cleaners [17], lawnmowers [15], and industrial warehouse robots [16]. With
few exceptions of tethered mobile robots [1, 11, 20], mobile robots usually operate
with on-board batteries that allow only a few hours of continuous operation [6].
The need to return for battery recharge is a major concern in mobile robot tasks that
require high power consumption or long periods of continuous operation.
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On-line coverage is perhaps the most common task undertaken by such mobile
robots. Much like cleaning a house or mowing a lawn, the objective of this task is
to move the robot over every floor tile or patch of the environment, while avoiding
collision with obstacles. Due to its many applications, on-line mobile robot coverage
is a highly researched topic in the robotics and computational geometry literature
e.g., [2, 5, 8, 10, 12]. However, while most papers assume battery powered mobile
robots, the battery’s limited energy capacity has not been included in the coverage
planning process. A related problem where a point robot explores an unknown graph
in piecemeal fashion is discussed in the computational geometry literature [3, 4, 7].
However, these papers do not consider the influence of the robot’s size and its avail-
able on-board energy on the algorithm performance.

This paper considers the on-line battery powered coverage problem, where
an autonomous mobile robot has to cover an unknown planar environment using
a limited capacity battery. The robot has no prior knowledge of the environment, but
is able to accumulate local information using on-board sensors and data storage. The
robot is initially located at S and must return to this point upon task completion. Dur-
ing task execution the robot may return to S at any time to recharge its battery. The
paper introduces the BPC algorithm that performs on-line battery powered coverage
using position and local obstacle detection sensors. The algorithm’s competitive per-
formance is analyzed, and a universal lower bound over all on-line battery powered
coverage algorithms is established.

The efficiency of on-line algorithms is measured by their competitive complexity
[10, 14]. It consists of an upper bound on the candidate on-line algorithm expressed in
terms of the optimal off-line solution, lopt, and a universal (i.e. algorithm independent)
lower bound over all on-line algorithms solving the given problem also expressed
as a function of lopt. Icking et al. [13] and Gabriely and Rimon [8] established such
bounds for the on-line coverage problemwith unlimited battery capacity: (1+ ε)2lopt

for the upper bound, and 2lopt for the universal lower bound over all on-line coverage
algorithms operating with unlimited battery capacity. The same analysis tools will
be used in the current paper to evaluate the efficiency of the BPC algorithm, and to
obtain a universal lower bound over all on-line battery powered coverage algorithms.
This paper continues our work on mobile robots operating under limited resource
constraints. We have recently studied the coverage of planar environments by a
mobile robot tethered to a base point S by a finite length cable [19, 20]. However,
a tethered mobile robot has unlimited energy supply, while a battery powered mobile
robot must recurrently return to S to charge its battery.

The paper is structured as follows. The next section describes our setup and dis-
cusses issues concerning the battery’s limited energy capacity. Section3 describes an
off-line battery powered coverage methodology in fully known environments. Based
on the off-line methodology, the on-line BPC algorithm is described and illustrated
in Sect. 4. The competitive efficiency of the BPC algorithm is analyzed in Sect. 5,
while a universal lower bound over all on-line battery powered coverage algorithms
is derived in Sect. 6. The conclusion poses open problems which generalize the bat-
tery powered coverage problem to a wider set of problems concerned with limited
resource mobile robot tasks.
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2 Problem Description and Basic Setup

The paper considers the following problem. A mobile robot of size D has to per-
form on-line coverage (i.e. visit every point) of a planar environment populated by
unknown stationary obstacles, while powered by an on-board limited energy capac-
ity battery. The robot is initially located at S and must return to this point upon task
completion. A charging station is located at S to which the robot can return at any
time to recharge its battery. The robot is equipped with position and local obstacle
detection sensors, as well as on-board memory which can be used to accumulate
measurements of the obstacles encountered during task execution.

A full battery charge can be characterized by a time span of τ seconds which
allows the robot to travel with uniform speed v (note that τ depends on the battery’s
energy capacity and the current drawn by the robot system). Assuming the robot
travel with uniform speed v, the battery’s time span can be used to establish the total
path length, L , that the robot can travel under full battery charge:

L =
τ∫

0

v dt = v · τ.

A basic assumption is that L�D, meaning that the battery’s capacity allows the
robot to travel much further than its own size D.

Battery powered coverage introduces the following constraint into the coverage
process. Denote by dst(p, S) the shortest path length from a point p back to S within
the obstacle free portion of the environment. The robot must continuously maintain
an obstacle free path from its current location, p(t), back to the charging station S,
which gives the constraint:

dst
(

p(t), S
) ≤ L − v · t 0 ≤ t ≤ L/v.

The coverage area is thus limited to a disc centered at S having a maximal radius
of 1

2 L . When obstacles are present in the environment, the coverage area consists
of all points p accessible from S and satisfying the constraint: dst(p, S) ≤ 1

2 L
(Fig. 1). To ensure a battery charge margin for coverage of peripheral points in
the environment, the robot will limit its coverage to points p satisfying the stricter
constraint: dst(p, S) ≤ 1

2ρL , where 0 < ρ < 1 is a user specified parameter. By
limiting coverage to this smaller area, the robot will have (1−ρ)L of its total battery
charge available for actual coverage when reaching points located 1

2ρL away from
S. The on-line battery powered coverage problem is defined as follows.

Definition 1 Starting at S, the on-line battery powered coverage problem requires
that the robot cover all points in a planar unknown environment located at most 1

2ρL
away from the charging station S, and return to S upon task completion.
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Fig. 1 The maximal
coverage area under the
limited battery capacity
constraint

A remark on the battery charging time: The ensuing coverage task analysis need
not be concerned with the battery charging time for the following reason. Assume
a linear charging model, τc(l) = κ · l, where τc is the elapsed charging time, l
is the path length enabled by the battery charge, and k a numerical constant. The
total time to execute an on-line coverage task P at a uniform speed v is given by
t (P) = l

v
+ τc(l) = ( 1

v
+ κ) · l. The optimal time to execute the same coverage task

is given by topt(P) = lopt
v

+ τc,opt(lopt) = ( 1
v

+ κ) · lopt. It follows that the ratio,
t (P)/topt(P) = l/ lopt, is independent on the elapsed charging time τc. The ensuing
analysis will evaluate the ratio l/ lopt without explicit consideration of the battery
charging time.

3 Off-line Battery Powered Coverage

This section describes an off-line battery powered coverage methodology that will
influence the BPC algorithm. The off-line methodology assumes full knowledge of
the environment and uses four notions: the shortest path potential function, the saddle
curves, the corridors induced by saddle curves, and the coverage path split cells.
Assume the environment is discretized into D × D floor tiles, or cells, where D is
the robot’s size. The shortest path potential function is defined as follows (see Fig.2).

Definition 2 The shortest path potential function,V (p), assigns to each cell center
point, p, the minimal travel distance from S to p along a path that lies in the obstacle
free portion of the environment: V (p) = dst(p, S).

Remark During on-line coverage the robot can only build a partial representation of
V, based on information collected on-line by the robot. This partial representation,
the estimated potential function V (p), is defined as the minimal travel distance from
S to p only through the portion of the environment currently known to the robot.
As opposed to the true potential function, the estimated potential function changes
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Fig. 2 Equipotential contours of V with the induced saddle curves and split cells

during task execution as the robot discovers new pathways in the environment. Note
that only when all cells are covered the robot can conclude that V =V . ◦
Next consider the potential function saddle curves induced by internal obstacles.1

Assume the base point S is located at the center of a free cell. Initially V (S) = 0,
and V increases monotonically away from the base point S. Around a single internal
obstacle, the potential function increases along both sides of the obstacle until its
contours meet at the obstacle’s far end. The meeting point marks the beginning of a
saddle curve defined as follows (Fig. 2).

Definition 3 A saddle curve is a continuous curve in the free-space consisting of
points whose shortest path to S is achieved via two homotopically distinct paths.2

The paper’s technical report discusses some properties of the saddle curves [18]. In
particular, each internal obstacle induces a single saddle curve [18, Proposition A.1],
and the shortest path from S to any point p lies along a path that has no intersections
with any saddle curves in the environment. The saddle curves will act as virtual
boundaries that identify shortest paths from S to points in the environment. Based
on these definitions, the potential function’s value at each free cell, V (p), indicates
the shortest path length needed in order to reach this cell from S.

Remark During on-line coverage, the robot will use the estimated potential function,
V , to determine the saddle curves in the currently known environment. The location
of some saddle curves will therefore change at discrete instants when new internal
obstacles are discovered during on-line coverage. ◦
1An internal obstacle is any obstacle surrounded by a loop of obstacle free cells.
2Two continuous paths α, β : [a, b] → R

2 connecting S to p in the free environment belong to the
same homotopy class if there is a continuous mapping, F(t, s) : [a, b] × [0, 1] → R

2, such that
F(t, 0) = α(t), F(t, 1) = β(t) for t ∈ [a, b], and F(a, s) = S, F(b, s) = p for s ∈ [0, 1].
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Starting at S, the off-line coverage methodology guides the robot along increasing
equipotential contours of V, up to a maximal level of V = 1

2ρL . When all cells of
certain value V (p) = c are covered, the robot continues along a new contour of
cells with potential value V (p) = c + D, where D is the robot’s size. The robot thus
covers D-wide rings that initially expand outward from S. However, as opposed to
a classical breadth first search, when entering a corridor (defined below), the robot
follows the equipotential contours only within this corridor. The robot thus advances
through higher valued contours within one corridor, regardless of the potential value
of cells in alternate corridors. When advancing up the equipotential contours, a
newly established contact of the current contour with an obstacle may occur. This
event divides the equipotential contour and hence the robot’s course into two possible
corridors. Such events occur at the following split cells (see Fig. 2).

Definition 4 A free cell adjacent to an obstacle’s boundary is called a split cell if
the equipotential contour of V splits at this cell into two contour segments.

Each split cell marks the beginning of two corridors, defined as follows.

Definition 5 A corridor is a connected 2D region consisting of the union of equipo-
tential contour segments, which start at a split cell and is bounded by obstacles and
saddle curves.

The off-line coverage methodology stores the split cells in a stack. Upon reaching
a new split cell, the robot chooses a single corridor through which it will continue its
coverage. When the robot completely covers any particular corridor, it retreats to the
previously stacked split cell and proceeds to cover the alternate corridor. Eventually
the robot returns to the split cell closest to the base point S, fromwhich it returns to S.
Finally, the robot monitors its battery energy level throughout the coverage process.
When the battery level reaches the value V (p) at the robot’s current cell p, the robot
returns to S along the shortest path, recharges its battery, then returns to p along the
shortest path to resume the coverage process.

Example The off-line coverage methodology is suboptimal only when the saddle
curves of V induce D-wide corridors in the environment. In all other cases the off-
line coverage methodology is optimal as illustrated in Fig. 3a. The figure shows
a rectangular environment populated by two internal obstacles which induce two
saddle curves. Assuming a fully charged battery allows only partial coverage of each
corridor, the figure depicts the robot’s path as it follows increasing equipotential
contours of V in each corridor (Fig. 3b, d), while retreating along the shortest path
back to S for battery recharge (Fig. 3c, e). Note that while following increasing
equipotential contours, the robot eventually covers the entire accessible environment
while visiting every free cell precisely once (Fig. 3f). ◦
The following proposition establishes an upper bound on the performance of the
off-line coverage methodology.
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Fig. 3 Execution example of the off-line battery powered coverage methodology

Proposition 3.1 The off-line battery powered coverage methodology covers all
accessible cells located at most 1

2ρL away from S with total path length l satis-
fying: lopt ≤ l ≤ 1

1−ρ
lopt,

where ρ is the battery’s energy charge and lopt the optimal coverage path length.

Proof The off-line coverage methodology consists of two interleaved phases. One
phase executes an optimal coverage path of total length lopt, the other phase guides
the robot back to the charging station S, then guides the robot back to the cell where
the optimal coverage path resumes. Every charging phase starts at a cell located at
most 1

2ρL away from S. At this instant the robot follows the shortest path back to S,
recharges its battery, then returns to the previously covered cell. The total path length
traveled during each charging phase is thus upper bounded by 2 · 1

2ρL = ρL . The
robot spends the remainder of its battery, (1−ρ)L , for advancing along the optimal
coverage path of total length lopt. It follows that the robot returns to charge its battery
at most lopt/(1−ρ)L times. The robot’s total path length is thus upper bounded by

l ≤ lopt + lopt

(1 − ρ)L
· ρL =

(
1 + ρ

1 − ρ

)
lopt = 1

1 − ρ
lopt.

�

The upper bound specified in Proposition 3.1 can be interpreted as follows. The
value of ρ determines the portion of the accessible environment that the robot must
cover. Lower values of ρ leave a larger portion of the battery’s energy for the actual
coverage path, while higher values of ρ allow the robot to reach further away from
S but require more frequent battery charges. For instance, when ρ = 0.5 the robot’s
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total path length satisfies the inequality l ≤ 2 · lopt, while ρ = 0.9 increases the upper
bound to l ≤ 10 · lopt.

4 On-line Battery Powered Coverage

This section describes the BPC algorithm which performs on-line battery powered
coverage of planar unknown environments. The algorithm uses three data structures.
The known environment grid M , an open list O , and an unreachable list U . The
known environment grid, M , holds the covered cells as well as their free neighbors,
together with saddle curves information. The open list, O , consists of the unvisited
free cells in M which hold an estimated potential value V ≤ 1

2ρL , where 1
2ρL is the

maximal allowed travel distance from S discussed in Sect. 3. The unreachable list,
U, consists of all free cells in M which hold an estimated potential value V > 1

2ρL .
These cells lie beyond the robot’s reach via the currently known environment.

The open list O is sorted by increasing order of the cells’ V value. The BPC algo-
rithm additionally inserts a stack of the split cells into O , which divides the open list
into sub-lists. Each sub-list corresponds to a particular corridor in the environment.
For instance, Fig. 4 depicts the open list divided into two sub-lists by the split cell
SC1. As the robot advances up the equipotential contours of V in a particular corridor,
it covers only the open cells in the sub-list bounded by the split cell that defines the
location of the current corridor in the environment. This sub-list is referred to as the
active sub-list, and is located at the beginning of O . Upon reaching a new split cell,

Fig. 4 The environment’s
open list,
O ={p1, p2, p3,SC1,

p4, . . . , p11}, is subdivided
by the split cell SC1
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Fig. 5 Execution example of the BPC algorithm (see text)

the algorithm splits the active sub-list into two sub-lists by inserting the new split cell
into O . When all cells within the active sub-list are covered, the algorithm continues
to cover cells in the next sub-list of O, thus reaching every accessible corridor in
a depth first search manner.

The BPC algorithm identifies a new internal obstacle when the area covered by the
robot closes a loop. For instance, the covered area in Fig. 5e closes a loop about B1.
In this event the estimated potential function, V , is updated throughout the known
environment grid M . This on-board computation runs a classical BFS on M . While
a bit longer to execute, it is still much faster than any physical motion of the robot.
During this update, the split cells and the sub-lists of O are re-defined to match
the updated estimated potential function V . After each update of V , the algorithm
transfers from U into O all cells whose new value satisfies V ≤ 1

2ρL .
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While executing the on-line coverage process, the robotmonitors its battery energy
level. When the battery level reaches the value V (p) at the robot’s current cell p,O
the algorithm guides the robot back to S along the shortest path within the known
environment M (note that this path does not cross any saddle curves of V ). After
battery recharge at S, the sub-lists in O are reordered, so that the robot will leave
S towards the sub-list which holds the lowest value of V , from where the coverage
continues until O becomes empty. A pseudo-code description of the BPC algorithm
follows.

On-Line BPC Algorithm:
Sensors: Position sensor. Obstacle sensor capable of detecting obstacles in the cells
adjacent to robot’s current position.
Data structures: environment grid M , open list O , unreachable list U .
Initialize: O = {S}, U = ∅, V (S) = 0.
While O is non-empty:
Extract O[1] into p;
While current battery level is higher than V (p) :
1. If p is not an existing split cell in O:

1.1 Travel to p along the shortest path in M ;
1.2 Add the reachable free neighbors of p to O (sorted by V );
(Each free neighbor q of p acquires V (q) = min{V (q), V (p) + D})
1.3 Add the unreachable free neighbors of p to U ;
1.4 If p is new split cell, stack p in O and create sub-lists accordingly;

2. If an internal obstacle is detected:
(A neighboring cell q of p satisfies V (q)<V (p) − D or V (q) > V (p) + D)
2.1 Update V by running BFS on M ;
2.2 Update O and U ; Merge sub-lists in O as instructed;
2.3 Add a new saddle curve into M ;
2.4 Retreat along shortest path across new saddle curve;

End of while loop;
Retreat along shortest path in M back to recharge at S;
Choose as a new active sub-list the one with minimal V in O;
End of while loop;
Return along shortest path to S.

Execution example: Figure5 depicts an execution example of the BPC algorithm
in a planar environment containing unknown obstacles B1 and B2. The robot starts a
BFS coverage from S until contact with B1 is established (Fig. 5a). The contact point
is defined as a split cell, SC1. The robot chooses the corridor on the right of this cell,
and continues with BFS coverage within this corridor (Fig. 5b). Along this corridor,
the battery’s energy runs low and the robot returns to S along the shortest path in M to
recharge its battery (Fig. 5c). The robot next continues with BFS coverage of the sub-
list in O nearest to S, associated with the corridor on the left of SC1. The robot next
encounters the obstacle B2, and defines the contact point as a second split cell, SC2

(Fig. 5d). The robot continues with BFS coverage in the corridor to the right of SC2,
until it encounters the area covered earlier (Fig. 5e). It identifies an internal obstacle
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by completing a full circumnavigation of B1. At this instant the robot updates V
throughout M , and defines the saddle curve of B1 (note that SC2 is no longer a split
cell). The robot proceeds to cover the remaining free cells in the current corridor,
while treating the saddle curve of B1 as a virtual obstacle (Fig. 5f). The robot detects
a new split cell, SC3 and continues with BFS coverage until the battery’s energy runs
low and the robot must return to recharge at S along the shortest path in M (Fig. 5f).
The robot next continues with BFS coverage of the sub-list in O nearest to S, this
time in the corridor to the left of SC2 (Fig. 5g). At the far side of B2 the robot reaches
an area covered in the previous iteration. Hence V is updated throughout M , and
the robot continues in the current corridor while treating the saddle curve of B2 as
a virtual obstacle (Fig. 5h). Finally, when all cells are covered, the robot returns to S
along the shortest path in M (Fig. 5i). ◦
The following lemma establishes that the BPC algorithm covers all free cells in the
accessible environment.

Lemma 4.1 During execution of the BPC algorithm, the robot covers all free cells
accessible from S and located at most 1

2ρL away from S.

Proof While executing the BPC algorithm, every free cell in the known environment
M that can be reached from S by the limited capacity battery is eventually transferred
to O . Since the algorithm stops only when O becomes empty, all reachable cells in
M are eventually covered by the robot. Assume that O becomes empty while some
reachable free cells were never inserted into M and hence remained uncovered. Let
p1 be the cell holding the minimal V value among all reachable cells that remained
uncovered upon algorithmcompletion. Since a path of length atmost 12ρL exists from
S to p1, V (p1) ≤ 1

2ρL . Let p2 be the cell adjacent to p1 along the shortest path from
p1 back to S in the full environment. Since V (p2) < V (p1) and V (p1) is minimal
among all reachable uncovered cells, p2 must be a covered cell in M . But the BPC
algorithm inserts every free neighbor of the current cell into M . Therefore p1 must
have been inserted into M when the robot was located at p2, and eventually covered
by the BPC algorithm. The algorithm therefore covers every free cell reachable from
S under the limited battery capacity constraint. �

5 Competitive Upper Bound on the BPC Algorithm

This section derives an upper bound on the BPC algorithm’s path length, using the
following notion of competitiveness.

Definition 6 ([10, 14]) An on-line algorithm solving a navigation problem P is
competitive with ratio k if the cost of solving any instance P of P does not exceed
k times the cost of solving P optimally using full off-line information.

Assuming the robot travels with uniform speed, wewill measure the BPC algorithm’s
performance using the robot’s total path length l. Our objective is to derive an upper
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bound on l as a function of the optimal off-line solution lopt. Let us first establish
a lower bound on lopt in fully known planar environments. Denote by n the total
number of D × D accessible free cells located at most 1

2ρL away from S. Since the
purpose of the task is to cover all accessible cells, lopt ≥ nD, where D represents the
robot’s size as well as the travel distance between neighboring cells. The following
theorem specifies a competitive upper bound on the BPC algorithm.

Theorem 1 The total path length generated by the on-line BPC algorithm is upper
bounded by l ≤ ρ L

D lopt,

where ρ is the battery charge margin, L is the full battery charge path length, D is
the robot’s size, and lopt is the optimal off-line battery powered coverage path length.

Proof While executing the BPC algorithm, the robot covers increasing equipotential
contour segments of V . Let us first establish that the robot travels a distance of at
most ρL between any two equipotential contour segments of V . Due to the battery’s
limited energy capacity, the robot can only reach cells that require a travel distance
of at most L = 1

2ρL from S. In worst case the robot must travel via S between two
equipotential contour segments located at most 1

2ρL away from S. Under the BPC
algorithm, the robot travels along the shortest path in the known environment M .
Hence the shortest path length between any two equipotential contour segments in
M is at most ρL .

Assume the environment contains n accessible free cells. In each iteration of
the BPC algorithm, a single cell, p = O[1], is extracted from the open list O. If
p is not an existing split cell, the robot travels to this cell via the shortest path
in the known environment M . Since the robot travels in worst case a distance of
ρL from its current cell to p, the BPC algorithm’s total path length satisfies l ≤
nρL . The optimal off-line solution satisfies lopt ≥ nD, thus giving: l ≤ ρ L

D nD ≤
ρ L

D lopt. �

Note that the upper bound specified in Theorem 1 is proportional to the ratio L/D,

which is expected to be a large number in any practical system. It remains to establish
wether the BPC algorithm’s upper bound is tight, or perhaps it is lower and matches
the universal lower bound next discussed.

6 A Universal Lower Bound on On-line
Battery Powered Coverage

This section derives a universal lower bound over all on-line battery powered
coverage algorithms of planar unknown environments. The lower bound will allow
us to assess the efficiency of the BPC algorithm in relation to any other on-line bat-
tery powered coverage algorithm. The following theorem specifies a lower bound on
on-line battery powered coverage.
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Fig. 6 The sub-environment
block Q1

Theorem 2 Every on-line battery powered coverage algorithm generates in worst
case a path length l satisfying the lower bound:

l ≥ log
( L
4D

)
lopt,

where L is the path length allowed by a full battery charge, D is the robot’s size, and
lopt is the optimal off-line battery powered coverage path length.

Proof Wewill execute a hypothetical on-line battery powered coverage algorithm in
an environment consisting of rectangular corridors, termed blocks. In each iteration
one more block will be added to the environment. The algorithm’s behavior will be
observed, and the new block will be modified based on the algorithm’s behavior.
A deterministic coverage algorithm will generate the same series of decisions in
the modified environment,3 and the algorithm’s total path length in the modified
environment will give the universal lower bound.

The first block, Q1, is depicted in Fig. 6. From S emanate three D-wide corri-
dors, a1, b1 and c1. The corridor a1 circumnavigates the block clockwise, while the
corridors b1 and c1 circumnavigate it anticlockwise (this structure will repeat in all
subsequent smaller blocks). The three corridors meet at the point A1 located on the
block’s far corner. The three corridors have the same length of la,1 = L/4. A full
circumnavigation of Q1 thus requires exactly half of a full battery charge.

Starting at S, the robot executes the on-line coverage algorithm. During algorithm
execution the robot must eventually reach the point A1 via one of the three corridors.
Assume the robot reaches A1 via corridor a1. From this point the algorithm must
follow one of two possible scenarios. Scenario I: from A1, the robot covers one of
the remaining corridors, b1 or c1, until it fully circumnavigates Q1 and reaches S
(Fig. 7a). Scenario II: from A1, the robot enters both corridors, b1 and c1, for some
finite lengths lb and lc, retreats back to A1, and eventually returns to recharge at S
via corridor a1 (Fig. 7b).

3If the selected algorithm is non-deterministic, in worst case one outcome of the algorithm will be
as bad as a deterministic algorithm.
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Fig. 7 Coverage of Q1 in a Scenario I, and b Scenario II

Fig. 8 Scenario I. a The modified block Q1 without the corridor c1 and an additional smaller block
Q2. b The environment (Q1, Q2, Q3)

Scenario I: In this scenario the robot travels a total length of at least 2la,1 = L/2
upon returning to S. Assume the robot returns to S via corridor b1. Alter Q1 by
removing the corridor c1, marking the point A1 as S2, then adding a smaller block
Q2 as depicted in Fig. 8a. The corridors a2, b2 and c2 have the same length of
la,2 = ( 12 L − V (S2))/2 = L/8, where V (S2) = la,1 = L/4 is the length of corridor
a1. Now re-start the algorithm from S in the modified (Q1, Q2) environment. Since
the robot is guided by the same deterministic algorithm (and since the robot’s local
obstacle detection sensors cannot detect the changes made in the environment), the
robot will first fully circumnavigate the modified block Q1 before entering the new
block Q2. Next we observe the algorithm’s behavior while covering the block Q2,
alter Q2 accordingly while marking the point A2 as S3, then add a third smaller
block Q3 as depicted in Fig. 8b. The length of the three corridor in Q3 is given by
la,3 = ( 12 L − V (S3))/2 = L/16, where V (S3) = la,1 + la,2 = L/4 + L/8 = 3L/8
is the length of corridors a1 and a2.

This process is repeated until the corridors’ length in the last block, Qk , is la,k =
( 12 L − V (Sk))/2 = D, where D is the robot’s size.4 By construction la,i = la,i−1/2

4Assume for convenience that L is an integer multiple of D.
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for i = 1, . . . , k. The total number of iterations is therefore k = log( L
2D ). The

coverage path length in the i’th iteration, denoted li , is given by

li ≥ 2V (Si ) + 2la,i = 2
i∑

j=1

la, j = (1 − 2−i )L .

The total path length of scenario I, denoted lI , is given by the summation:

lI =
k∑

i=1

li ≥
(

log(
L

2D
) − 1

2
· (1/2)log(L/2D) − 1

−1/2

)

· L ≥
(
log(

L

2D
) − 1

)
· L ,

where we removed the logarithmic exponent, since (1/2)log(L/2D) → 0 for L�D.
Noting that log( L

2D ) − 1 = log( L
4D ), one obtains lI ≥ log( L

4D )L .
Scenario II: In this scenario the robot reaches the point A1 through corridor a1,

enters both corridors b1 and c1 for finite lengths lb and lc, then returns to S via
corridor a1. The on-line coverage algorithm must maintain sufficient battery level
to allow safe return for recharge at S. Once the robot enters corridors b1 and c1 for
finite lengths of lb and lc, it will be unable to fully circumnavigate the block Q1, and
will therefore be forced to return to S via corridor a1. Based on this consideration,
we alter the block Q1 be removing the uncovered portion of the corridor c1 while
marking its distal end as S2, then add a smaller block Q2 as depicted in Fig. 9a. Note
that corridor b1 is left unaltered in the (Q1, Q2) environment. The corridors a2, b2
and c2 have the same length of la,2 = ( 12 L − V (S2))/2, where V (S2) = la,1 + lc is
the corridors’ length from S to S2.

Fig. 9 Scenario II. a The modified block Q1 with a truncated corridor c1 and an additional smaller
block Q2. b The environment (Q1, Q2, Q3)
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Now re-start the coverage algorithm from S in the modified (Q1, Q2) environ-
ment. The robot’s local obstacle detection sensors cannot detect the changes made in
the environment. The algorithm will therefore guide the robot along the same path
in the modified block Q1, and only then will guide the robot to the new block Q2.
The robot will thus travel a total path length l1 ≥ 2(la,1 + lb + lc) in the modified
block Q1 until returning to S. Assuming lb > lc, this path length is lower bound by
l1 ≥ 2(la,1 + 2lc). Next we observe the algorithm’s on-line behavior while covering
the block Q2, alter this block according to the algorithm’s behavior while marking
the distal end of the truncated corridor c2 as S2, then add a third smaller block Q3
as depicted in Fig. 9b. This process is repeated until the corridors’ length in the last
block, Qk , is la,i = ( 12 L − V (Si ))/2 = D, where D is the robot’s size.

Let lc,i denote the robot’s path length in the corridor ci . As shown in [18, Lemma
A.3], the maximal value of lc,i under the conditions lc,i ≤ lb,i and li ≤ 1

2 L is
given by lc,i = la,i/2. This choice gives the smallest number of iterations, and
accordingly it gives the lowest total path length during scenario II. By construction
la,i = (la,i−1 − lc,i−1)/2 for i = 1, . . . , k. Substituting lc,i−1 = la,i−1/2 gives
la,i = la,i−1/4, and therefore la,i = 2−2i L for i = 1, . . . , k. The total number of
iterations is thus k = 1

2 log(
L
D ). In this scenario lc,i holds its maximal value, and

this value enforces the total path length of each iteration to be li = L . The total path
length of scenario II, denoted lI I , is computed by summing all contributions of li :

lI I =
k∑

i=1

li =
k∑

i=1

L = 1
2 log(

L

D
) · L .

The optimal off-line solution lopt: By executing an adaptation of the depth first
search strategy in the modified environment (Q1, . . . , Qk), the robot can move up
along one side of each modified block Qi , then return along each block opposite
side. When this strategy is summed over all k modified blocks, the optimal off-line
coverage path length is given by lopt = 2

∑k
i=1(la,i + lc,i ) ≤ L .

The universal lower bound is obtained by minimizing the ratio l/ lopt over all
possible alterations of scenarios I and II in each block of the environment. As shown
in [18], it suffices to consider environments whose k blocks are uniformly modified,
either by scenario I or by scenario II. Hence it suffices to minimize the ratio l/ lopt

over the two choices l = lI or l = lI I . Since lI < lI I , one obtains the universal
lower bound: l ≥ log( L

4D )L ≥ log( L
4D )lopt. �

Note that the universal lower bound is proportional to log(L/D), while the BPC algo-
rithm’s upper bound is proportional to L/D. This gap raises the following question.
Either the universal lower bound is actually proportional to L/D (thus indicating that
the BPC algorithm is worst case optimal), or more efficient methods proportional
to log(L/D) exist for solving the on-line battery powered coverage problem. Since
L�D in any industrial grade battery operating mobile robot, the closing of this gap
can have a significant practical implications.
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7 Conclusion

This paper considered the on-line battery powered coverage problem. The paper first
described an off-line battery powered coverage methodology. Using the shortest path
potential function for the environment, V , the off-line methodology guides the robot
along increasing equipotential contours of V while treating the saddle curves of V as
virtual obstacles. When the battery level runs low the robot returns to recharge at S
along the shortest path, then resume the coverage process. The off-line methodology
path length satisfies the upper bound l ≤ 1

1−ρ
lopt, where ρ is the battery’s charge

level margin and lopt is the optimal off-line battery powered coverage path length.
The paper next described the the BPC (Battery Powered Coverage) algorithm

that performs on-line battery powered coverage. The BPC algorithm maintains an
estimated shortest path potential function, V , based on the currently known environ-
ment. The BPC algorithm guides the robot along increasing equipotential contours
of V . When the battery’s energy level reaches V (p) at the robot’s current cell p, the
robot returns to recharge at S and then resumes the coverage process. The on-line
BPC algorithm eventually covers all free cells located at most 1

2ρL away from S
using a total path length l ≤ ρ L

D lopt, where L is the robot’s path length under a full
battery charge, D is the robot’s size, and lopt is the optimal off-line battery powered
coverage path length. Note that this upper bound is proportional to L and is inversely
proportional to the robot’s size D.

Finally, the paper established a universal lower bound over all on-line battery
powered coverage algorithms. Every on-line battery powered coverage algorithm
generates in worst case a coverage path length of l ≥ log( L

4D )lopt. Assuming a fixed
battery energy capacity, the universal lower bound becomes arbitrarily largewhen the
robot’s size, D, decreases to zero. In particular, a point robot cannot cover unknown
planar environments with any finite competitive ratio, since L/D → ∞ (and hence
l/ lopt → ∞) when D = 0. Similar observations have been made for point robots
performing other tasks such as on-line search [5] and on-line navigation [9].

The paper raises two open problems. First, the BPC algorithm’s upper bound is
proportional to L/D. Is this a tight upper bound? Second, is the universal lower
bound a tight lower bound, or perhaps it is proportional to L/D (thus indicating that
the BPC algorithm is worst case optimal)? The closing of either gap is an important
challenge, since L�D in practical robot systems. The following are two additional
open problems. First, the BPC algorithm uses local obstacle detection sensors. In
principle, longer range obstacle detection sensors such as vision or sonic sensors will
not give the robot an advantage in highly congested environments. However, in prac-
tical environments such as office buildings, city streets, or outdoor landscapes, these
more sophisticated sensors can be used to plan more efficient coverage paths. Thus,
an adaptation of the BPC algorithm to longer detection range sensors is an important
practical challenge. Second, preliminary experiments indicates that the BPC algo-
rithm requires good position sensors. Localization technology is rapidly improving
with low cost systems and SLAM technology, and an experimental validation of the
BPC algorithm will be reported in future research.



588 I. Shnaps and E. Rimon

Finally, battery powered coverage is a specific example of a wider family of
problems concerned with limited resource mobile robot tasks. In this paper, the lim-
ited resource is the battery’s limited energy capacity. Another limited resource prob-
lem concerns mobile robots attached to a fixed base point by a cable of finite length.
Although each of these problems is associated with its special constraints (in the
cable problem the robot may not cross its cable or tear it away from the base point),
many similarities exist between the competitive bounds for the two problems. These
similarities raise questions regarding other limited resource on-line mobile robot
problems. We invite the robotics research community to identify additional limited
resource mobile robot problems, in the hope of establishing a fundamental under-
standing of the hardware, sensors, and algorithms required to solve these problems.
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Finding a Needle in an Exponential Haystack:
Discrete RRT for Exploration of Implicit
Roadmaps in Multi-robot Motion Planning

Kiril Solovey, Oren Salzman and Dan Halperin

Abstract We present a sampling-based framework for multi-robot motion planning
which combines an implicit representation of a roadmap with a novel approach for
pathfinding in geometrically embedded graphs tailored for our setting. Our pathfind-
ing algorithm, discrete-RRT (dRRT), is an adaptation of the celebrated RRT algo-
rithm for the discrete case of a graph, and it enables a rapid exploration of the
high-dimensional configuration space by carefully walking through an implicit rep-
resentation of a tensor product of roadmaps for the individual robots.We demonstrate
our approach experimentally on scenarios of up to 60 degrees of freedom where our
algorithm is faster by a factor of at least ten when compared to existing algorithms
that we are aware of.

1 Introduction

Multi-robot motion planning is a fundamental problem in robotics and has been
extensively studied. In this work we are concerned with finding paths for a group
of robots, operating in the same workspace, moving from start to target positions
while avoiding collisions with obstacles as well as with each other. We consider the
continuous formulation of the problem, where the robots and obstacles are geometric
entities and the robots operate in a configuration space, e.g., Rd (as opposed to the
discrete variant, sometimes called the pebble motion problem [5, 12, 18, 23], where
the robots move on a graph). Moreover, we assume that each robot has its own start
and target positions, as opposed to the unlabeled case (see, e.g., [3, 17, 30, 32]).
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1.1 Previous Work

We assume familiarity with the basic terminology of motion planning. For
background, see, e.g., [10, 21]. Initial work on motion planning aimed to develop
complete algorithms, which guarantee to find a solutionwhen one exists or report that
none exists otherwise. Such algorithms for the multi-robot case exist [28, 29, 36] yet
are exponential in the number of robots. The exponential running time, which may
be unavoidable [14, 31] can be attributed to the high number of degrees of freedom
(dof )—the sum of the dofs of the individual robots.

For two or three robots, the number of dofs may be slightly reduced [4], by con-
structing a path where the robots move while maintaining contact with each other. A
more general approach to reduce the number of dofs was suggested by van den Berg
et al. [7]. In their work, the motion-planning problem is decomposed into subprob-
lems, each consisting of a subset of robots, where every subproblem can be solved
separately and the results can be combined into a solution for the original problem.

Decoupled planners are an alternative to complete planners trading completeness
for efficiency. Typically, decoupled planners solve separate problems for individual
robots and combine the individual solutions into a global solution (see, e.g., [6, 22]).
Although efficient in some cases, the approach usually works only for a restricted
set of problems.

The introduction of sampling-based algorithms such as the probabilistic road-
map method (PRM) [16], the rapidly-exploring random trees (RRT) [19] and their
many variants, had a significant impact on the field of motion planning due to their
efficiency, simplicity and applicability to a wide range of problems. Sampling-based
algorithms attempt to capture the connectivity of the configuration space (C-space)
by sampling collision-free configurations and constructing a roadmap—a graph data
structure where the free configurations are vertices and the edges represent collision-
free paths between nearby configurations. Although these algorithms are not com-
plete, most of them are probabilistically complete, that is, they are guaranteed to
find a solution, if one exists, given a sufficient amount of time. Recently, Karaman
and Frazzoli [15] introduced several variants of these algorithms such that, with high
probability they produce paths that are asymptotically optimal with respect to some
quality measure.

Sampling-based algorithms can be easily extended to the multi-robot case by
considering the fleet of robots as one composite robot [27]. Such a naive approach
suffers from inefficiency as it overlooks aspects that are unique to the multi-robot
problem. More tailor-made sampling-based techniques have been proposed for the
multi-robot case [13, 26, 30]. Particularly relevant to our efforts is the work of
Švestka and Overmars [33] who suggested to construct a composite roadmap which
is a Cartesian product of roadmaps of the individual robots. Due to the exponential
nature of the resulting roadmap, this technique is only applicable to problems that
involve a modest number of robots. A recent work by Wagner et al. [35] suggests
that the composite roadmap does not necessarily have to be explicitly represented.
Instead, they maintain an implicitly represented composite roadmap, and apply their
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M* algorithm [34] to efficiently retrieve paths,whileminimizing the explored portion
of the roadmap. The resulting technique is able to cope with a large number of robots,
for certain types of scenarios. Additional information on these two approaches is
provided in Sect. 2.

1.2 Contribution

Wepresent a sampling-based algorithm for themulti-robotmotion-planning problem
called multi-robot discrete RRT (MRdRRT). Similar to the approach of Wagner et
al. [35], we maintain an implicit representation of the composite roadmap. We pro-
pose an alternative, highly efficient, technique for pathfinding in the roadmap, which
can cope with scenarios that involve tight coupling of the robots. Our new approach,
which we call dRRT, is an adaptation of the celebrated RRT algorithm [19] for the
discrete case of a graph, embedded in Euclidean space.1 dRRT traverses a com-
posite roadmap that may have exponentially many neighbors (exponential in the
number of robots that need to be coordinated). The efficient traversal is achieved
by retrieving only partial information of the explored roadmap. Specifically, it con-
siders a single neighbor of a visited vertex at each step. dRRT rapidly explores the
C-space represented by the implicit graph. Integrating the implicit representation of
the roadmap allows us to solve multi-robot problems while exploring only a small
portion of the C-space.

We demonstrate the capabilities of MRdRRT on the setting of polyhedral robots
translating and rotating in space amidst polyhedral obstacles.We provide experimen-
tal results on several challenging scenarios, where MRdRRT is faster by a factor of
at least ten when compared to existing algorithms that we are aware of. We show that
we manage to solve problems of up to 60 dofs for highly coupled scenarios (Fig. 1).

The organization of this paper is as follows. In Sect. 2 we elaborate on two
sampling-basedmulti-robotmotion planning algorithms, namely the composite road-
map approach by Švestka andOvermars [33] and thework on subdimensional expan-
sion and M* by Wagner et al. [34, 35]. In Sect. 3 we introduce the dRRT algorithm.
For clarity of exposition, we first describe it as a general pathfinding algorithm for
geometrically embedded graphs. In the following section (Sect. 4) we describe the
MRdRRTmethod where dRRT is used in the setting of multi-robot motion-planning
problem for the exploration of the implicitly represented composite roadmaps. We
show in Sect. 5 experimental results for the algorithm on different scenarios and
conclude the paper in Sect. 6 with possible future research directions.

1We mention that we are not the first to consider RRTs in discrete domains. Branicky et al. [9]
applied the RRT algorithm to a discrete graph. However, a key difference between the approaches is
that we assume that the graph is geometrically embedded, hence we use random points as samples
while they use nodes of the graph as samples. Additionally, their technique requires that all the
neighbors of a visited vertex will be considered—a costly operation in our setting, as mentioned
above.
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Fig. 1 3D environments with robots that are allowed to rotate and translate (6DOFs). In scenarios
a–c robots of the same color need to exchange positions. a Twisty scenario with 8 corkscrew-shaped
robots, in a room with a barrier. b Abstract scenario with 8 L-shaped robots. c Cubicles scenario
with 10 L-shaped robots. d Home scenario with 5 table-shaped robots that are placed in different
rooms. The goal is to change rooms in a clockwise order. The scenario were constructed using
meshes that are provided by the Open Motion Planning Library [11] (OMPL 0.10.2) distribution

2 Composite Roadmaps for Multi-robot Motion Planning

We describe the composite roadmap approach introduced by Švestka and
Overmars [33]. Here, a Cartesian product of PRM roadmaps of individual robots
is considered as a means of devising a roadmap for the entire fleet of robots. How-
ever, since they consider an explicit construction of this roadmap, their technique
is applicable to scenarios that involve only a small number of robots. To overcome
this, Wagner et al. suggest [34, 35] to represent the roadmap implicitly and describe
a novel algorithm to find paths on this implicit graph.

Let r1, . . . , rm be m robots operating in a workspace W with start and target
configurations si , ti . We wish to find paths for every robot from start to target, while
avoiding collision with obstacles as well as with the other robots. Let Gi = (Vi , Ei )

be a PRM roadmap for ri , |Vi | = n, and let k denote themaximal degree of a vertex in
anyGi . In addition, assume that si , ti ∈ Vi , and that si , ti reside in the same connected
component of Gi . Given such a collection of roadmaps G1, . . . , Gm a composite
roadmap can be defined in two different ways—one is the result of a Cartesian
product of the individual roadmaps while in the other a tensor product is used [2].
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The composite roadmap G = (V,E) is defined as follows. The vertices V

represent all combinations of collision-free placements of the m robots. Formally,
a set of m robot configurations C = (v1, . . . , vm) is a vertex of G if for every i ,
vi ∈ Vi , and in addition, when every robot ri is placed in vi the robots are pair-
wise collision-free. The Cartesian and tensor products differ in the type of edges in
the resulting roadmap. If the Cartesian product is used, then (C, C ′) ∈ E, where
C = (v1, . . . , vm), C ′ ∈ (v′

1, . . . , v
′
m), if there exists i such that (vi , v

′
i ) ∈ Ei , for

every j �= i it holds that v j = v′
j , and ri does not collide with the other robots

stationed at v j = v′
j while moving from vi to v′

i . A tensor product generates many
more edges. Specifically, (C, C ′) ∈ E if (vi , v

′
i ) ∈ Ei for every i , and the robots

remain collision-free while moving on the respective single-graph edges.2

Remark Throughout thiswork, unless stated otherwise,we refer to the tensor product
composite roadmap.

Note that by the definition of Gi and G it holds that S, T ∈ V, where S =
(s1, . . . , sm), T = (t1, . . . , tm). The following observation immediately follows (for
both product types).

Observation 1 Let C1, . . . , Ch be a sequence of h vertices of G such that S =
C1, T = Ch and for every two consecutive vertices (Ci , Ci+1) ∈ E. Then, there
exists a path for the robots from S to T .

Thus, given a composite roadmapG, it is left to find such a path between S and T .
Unfortunately, standard pathfinding techniques, which require the full representation
of the graph, cannot be used since the number of vertices ofG alonemay reach O(nm).
One may consider the A* algorithm [25] , or its variants, as appropriate for the task,
since it may not need to traverse all the vertices of graph. A central property of A*
is that it needs to consider all the neighbors of a visited vertex in order to guarantee
that it will find a path eventually. Alas, in our setting, this turns out to be a significant
drawback, since the number of neighbors of every vertex is O(km).

Wagner et al. propose an adaptation of A* to the case of a composite roadmap
calledM* [34]. Their approach exploits the observation that only the motion of some
robots has to be coupled in typical scenarios. Thus, planning in the joint C-space
is only required for robots that have to be coupled, while the motion of the rest of
the robots can be planned individually. Hence, their method dynamically explores
low-dimensional search spaces embedded in the full C-space, instead of the joint
high-dimensional C-space. This technique is highly effective for scenarios with a
low degree of coupling, and can cope with large fleets of robots in such settings.
However, when the degree of coupling increases, we observed sharp increase in the
running time of this algorithm, as it has to considermany neighbors of a visited vertex.

2There is wide consensus on the term tensor product as defined here, and less so on the term
Cartesian product. As the latter has already been used before in the context of motion planning, we
will keep using it here as well.
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3 Discrete RRT

We describe a technique which we call discrete RRT (dRRT) for pathfinding in
implicit graphs that are embedded in a Euclidean space. For clarity of exposition,
we first describe dRRT without the technicalities related to motion planning. We add
these details in the subsequent section. As the name suggests, dRRT is an adapta-
tion of the RRT algorithm [19] for the purpose of exploring discrete geometrically-
embedded graphs, instead of a continuous space.

Since the graph serves as an approximation of some relevant portion of the Euclid-
ean space, traversal of the graph can be viewed as a process of exploring the subspace.
The dRRTalgorithm rapidly explores the graph by biasing the search towards vertices
embedded in unexplored regions of the space.

LetG = (V, E) be a graphwhere every v ∈ V is embedded in a point in Euclidean
space Rd and every edge (v, v′) ∈ E is a line segment connecting the points. Given
two vertices s, t ∈ V , dRRT searches for a path in G from s to t . For simplicity,
assume that the graph is embedded in [0, 1]d .

Similarly to its continuous counterpart, dRRTgrows a tree rooted in s and attempts
to connect it to t to form a path from s to t . As in RRT, the growth of the tree is
achieved by extending it towards random samples in [0, 1]d . In our case though,
vertices and edges that are added to the trees are taken from G, and we do not
generate new vertices and edges along the way.

As G is represented implicitly, the algorithm uses an oracle to retrieve information
regarding neighbors of visited vertices.We first describe this oracle and then proceed
with a full description of the dRRT algorithm. Finally, we show that this technique
is probabilistically complete.

3.1 Oracle to Query the Implicit Graph

In order to retrieve partial information regarding the neighbors of visited vertices,
dRRT consults an oracle described below. We start with several basic definitions.

Given two points v, v′ ∈ [0, 1]d , denote by ρ(v, v′) the ray that starts in v and
goes through v′. Given three points v, v′, v′′ ∈ [0, 1]d , denote by ∠v(v

′, v′′) the
(smaller) angle between ρ(v, v′) and ρ(v, v′′).

Definition 1 (Direction Oracle) Given a vertex v ∈ V , and a point u ∈ [0, 1]d we
define

OD(v, u) := argmin
v′

{
∠v(u, v′)|(v, v′) ∈ E

}
.

In other words, the direction oracle returns the neighbor v′ of v such that the direction
from v to v′ is closest to the direction from v to u.
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3.2 Description of dRRT

At a high level, dRRT proceeds similar to the RRT algorithm, and we repeat it here
for completeness. The dRRT algorithm (Algorithm 1) grows a trees T which is a
subgraphs of G and is rooted in s (line 1). The growth of T (line 3) is achieved by an
expansion towards random samples. Additionally, an attempt to connect T with t is
made (line 4). The algorithm terminates when this operation succeeds and a solution
path is generated (line 6), otherwise the algorithm repeats line 2.

Expansion of T is performed by the EXPAND operation (Algorithm 2) which
performs N iterations that consist of the following steps: A point qrand is sampled
uniformly from [0, 1]d (line 2). Then, a node qnear that is the closest to the sample
(in Euclidean distance), is selected (line 3). qnear is extended towards the sample by
locating the vertex qnew ∈ V , that is the neighbor of qnear in G in the direction of
qrand (by the direction oracle OD). Once qnew is found (line 4), it is added to the
tree (line 6) with the edge (qnear, qnew) (line 7). See an illustration of this process
in Fig. 2. This is already different from the standard RRT as we cannot necessarily
proceed exactly in the direction of the random point.

After the expansion, dRRT attempts to connect the tree T with t using the CON-
NECT_TO_TARGET operation (Algorithm 3). For every vertex q of T , which one
of the K nearest neighbors of t in T (line 1), an attempt is made to connect q to
t using the method LOCAL_CONNECTOR (line 2) which is a crucial part of the
dRRT algorithm (see Sect. 3.3).

Finally, given a path from some node q of T to t the method RETRIEVE _PATH
(Algorithm 1, line 6) returns the concatenation of the path from s to q, with �.

3.3 Local Connector

We show in the following subsection that it is possible that T will eventually reach t
during the EXPAND stage, and therefore an application of LOCAL_CONNECTOR
will not be necessary. However, in practice this is unlikely to occur within a short
time frame, especially when G is large. Thus, we employ a heavy-duty technique,
which given two vertices q0, q1 of G tries to find a path between them. We mention
that it is common to assume in sampling-based algorithms that connecting nearby
samples will require less effort than solving the initial problem and here we make a

Algorithm 1 dRRT_PLANNER (s, t)
1: T .init(s)
2: loop
3: EXPAND(T )
4: � ← CONNECT_TO_TARGET(T , t)
5: if not_empty(�) then
6: return RETRIEVE_PATH(T ,�)
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qrand

T

qrand

qnear

qrand

qnear

qnew

qrand

qnear

qnew

(a) (b)

(c) (d)

Fig. 2 An illustration of the expansion step of dRRT. The tree T is drawn with black vertices
and edges, while the gray elements represent the unexplored portion of the graph G. a A random
point qrand (purple) is drawn uniformly from [0, 1]d . b The vertex qnear of T that is the Euclidean
nearest neighbor of qrand is extracted. c The neighbor qnew of qnear , such that its direction from
qnear is the closest to the direction of qrand from qnear , is identified. d The new vertex and edge
are added to T . Additional information for Theorem 2 : In b the Voronoi diagram of the vertices
of T is depicted in blue, and the Voronoi cell of qnear , Vor(qnear), is filled with light blue. In c
the Voronoi diagram of the rays that leave qnear and pass through its neighbors is depicted in red,
and the Voronoi cell of ρ(qnear, qnew), Vor′(qnear, qnew), is filled with pink. The purple region in d
represents Vor(qnear) ∩ Vor′(qnear, qnew)

similar assumption. We assume that a local connector is effective only on restricted
pathfinding problems, thus in the general case it cannot be applied directly on s, t , as
it may be highly costly (unless the problem is easy). A concrete example of a local
connector is provided in the next section.

3.4 Probabilistic Completeness of dRRT

Recall that an algorithm is probabilistically complete if the probability it finds a
solution tends to one as the run-time of the algorithm tends to infinity (when such
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a solution exists). For simplicity, we show that dRRT possesses a stronger property
and with high probability will reveal all the vertices of the traversed graph, assuming
this graph is connected.

The proof relies on the assumption that the vertices of the traversed graph G are in
general position, that is, every pair of distinct vertices are embedded in two distinct
points in R

d , and for every triplet of distinct vertices the points in which they are
embedded are non-collinear. This issue will be addressed in the following section,
where we consider the application of dRRT on a specific type of graphs. The proof
does not need to take into consideration the local connector.

Theorem 1 Let G = (V, E) be a connected graph embedded in [0, 1]d where the
vertices are in general position. Then, with high probability, every vertex of G will
be revealed by the dRRT algorithm, given sufficient amount of time.

Algorithm 2 EXPAND (T )
1: for i = 1 → N do
2: qrand ← RANDOM_SAMPLE()
3: qnear ← NEAREST_NEIGHBOR(T , qrand)
4: qnew ← OD(qnear, qrand)
5: if qnew �∈ T then
6: T .add_vertex(qnew)
7: T .add_edge(qnear, qnew)

Algorithm 3 CONNECT_TO_TARGET(T , t,)
1: for q ∈ NEAREST_NEIGHBORS(T , t, K ) do
2: � ← LOCAL_CONNECTOR(q, t)
3: if not_empty(�) then
4: return �

5: return ∅

Proof Denote byU the set of vertices of T after the completion of an iteration of the
algorithm. Let v∗ ∈ V \ U be an unvisited vertex such that there exists (v, v∗) ∈ E ,
where v ∈ U . We wish to show that the probability that T will be expanded on
the edge (v, v∗), and thus v∗ will be added to U , is bounded away from zero. For
simplicity we assume that there exists a single vertex v ∈ U that has an edge to v∗.

Denote by Vor(v) the Voronoi cell [8] of the site v, in the Euclidean (standard)
Voronoi diagram of point sites, where the sites are the vertices of U (Fig. 2b). In
addition, denote by Vor′(v, v∗) the Voronoi cell of ρ(v, v∗), in a Voronoi diagram of
the ray sites ρ(v, v∗), ρ(v, u1), . . . , ρ(v, u j ), where u1, . . . , u j are the neighbors of
v in T , not including v∗ (Fig. 2c).

Notice that in order to extend T from v to v∗ the random sample qrand in EXPAND
(Algorithm 2) has to fall inside Vor(v)∩Vor′(v, v∗). Thus, in order to guarantee that
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v∗ will be added to T , with non-zero probability, we show that the shared region
between these two cells has non-zero measure, namely |Vor(v) ∩ Vor′(v, v∗)| > 0,
where |�| denotes the volume of �.

By the general position assumption we can deduce that |Vor(v)| > 0 and
|Vor′(v, v∗)| > 0. In addition, the intersection between the two cells is clearly non-
empty: There is a ball with radius r > 0whose center is v and is completely contained
inVor(v); similarly, there is a cone of solid angle α > 0with apex at v fully contained
in Vor′(v, v∗). Hence, it holds that |Vor(v) ∩ Vor′(v, v∗)| > 0, otherwise v and v∗
are embedded in the same point. �

Wenote that amore careful analysis can yield an explicit boundon the convergence
rate of dRRT. Such a bound may be computed using the size of the smallest cell in
the Voronoi diagram of all nodes of G.

4 Multi-robot Motion Planning with dRRT

In this section we describe the MRdRRT algorithm. Specifically, we discuss the
adaptation of dRRT for pathfinding in a composite roadmap G, which is embedded
in the joint C-space of m robots. In particular, we show an implementation of the
oracleOD , which relies solely on the representation ofG1, . . . , Gm . Additionally,we
discuss an implementation of the local connector component that takes advantage
of the fact that G represents a set of valid positions and movements of multiple
robots. Finally, we discuss the probabilistic completeness of our entire approach to
multi-robot motion planning.

4.1 Oracle OD

Recall that given C ∈ V and a random sample q,OD(C, q) returns C ′ such that C ′ is
a neighbor of C inG, and for every other neighbor C ′′ of C , ρ(C, q) forms a smaller
angle with ρ(C, C ′) than with ρ(C, C ′′), where ρ is as defined in Sect. 3.4.

Denote by C(ri ) the C-space of ri . Let q = (q1, . . . , qm) where qi ∈ C(ri ), and
let C = (c1, . . . , cm) where ci ∈ Vi . To find a suitable neighbor for C we first find
the most suitable neighbor for every individual robot and combine the m single-
robot neighbors into a candidate neighbor for C . We denote by c′

i = OD(ci , qi ) the
neighbor of ci inGi that is in the direction of qi . Notice that the implementation of the
oracle for individual roadmaps is trivial—for example, by traversing all the neighbors
of ci in Gi . Let C ′ = (c′

1, . . . , c′
m) be a candidate for the result of OD(C, q). If

(C, C ′) represents a valid edge in G, i.e., no robot-robot collision occurs, we return
C ′. Otherwise, OD(C, q) returns ∅. In this case, the new sample is ignored and
another sample is drawn in the EXPAND phase (Algorithm 2).

The completeness proof of the dRRT (Theorem1) for this specific implementation
of OD , is straightforward. Notice that in order to extend C = (c1, . . . , cm) to C ′ =
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(c′
1, . . . , c′

m) the sample q = (q1, . . . , qm) must obey the following restriction: For
every robot ri , qi must lie in Vor(ci ) ∩ Vor′(ci , c′

i ) (where in the original proof we
required that q will lie in Vor(C) ∩ Vor′(C, C ′)). Also note that the points in C(ri )

are in general position, as required by Theorem 1, since theywere uniformly sampled
by PRM.

4.2 Local Connector Implementation

Recall that in the general dRRT algorithm the local connector is used for connect-
ing two given vertices of a graph. As our local connector we rely on a framework
described by van den Berg et al. [7]. Given two vertices V = (v1, . . . , vm),V′ =
(v′

1, . . . , v
′
m) ofGwe find for each robot i a path πi on Gi from vi to v′

i . The connec-
tor attempts to find an ordering of the robots such that robot i does not leave its start
position on πi until robots with higher priority reached their target positions on their
respective path, and of course that it also avoids collisions. When these robots reach
their destination robot i moves along πi from πi (0) to πi (1). During the movement
of this robot the other robots stay put.

The priorities are assigned according to the following rule: if moving robot i along
πi causes a collision with robot j that is placed in v j then robot i should move after
robot j . Similarly, if i collides with robot j that is placed in v′

j then robot i should
move before robot j . This prioritization induces a directed graph I. In case this
graph is acyclic we generate a solution according to the prioritization of the robots.
Otherwise, we report failure.

We decided to use this simple technique in our experiments due to its low cost,
in terms of running time, regardless of whether it succeeds finding a solution or not.
We wish to mention that we also experimented with M* with a bounded degree of
coupling (to avoid considering exponentially many neighbors) as the local connector
in our algorithm.However, the ordering algorithmof [7] turned out to be considerably
more efficient.

4.3 Probabilistic Completeness of MRdRRT

In order for the motion-planning framework to be probabilistically complete, we still
need to show that (i) as the number of samples used for each single-robot roadmap
tends to infinity, the composite roadmap will contain a path (if such a path exists) and
(ii) that the proof of Theorem 1 still holds when the size of the graph tends to infinity.
Indeed, Švestka and Overmars [33] show that the composite roadmap approach is
probabilistically complete when the graph-search algorithm is complete. However,
in our setting, the graph-search algorithm is only probabilistically complete and the
proof may need to be refined as the size of each Voronoi cell tends to zero.

We note that as the composite roadmap is finite, it is easy to modify the dRRT
algorithm such that it will be complete. This may be done by keeping a list of
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exposed nodes that still have unexposed edges. At the end of every iteration of the
main loop of dRRT (Algorithm 1, line 2) one node is picked from the list and one of
its unexposed edges is exposed (finding an unexposed edge is done in a brute force
manner). Although the above modification ensures completeness of dRRT and hence
probabilistic completeness of MRdRRT, we are currently looking for an alternative
proof that does not require altering the dRRT algorithm.

5 Experimental Results

We implemented MRdRRT for the case of polyhedral robots translating and rotating
among polyhedral obstacles (see Fig. 1). We compared the performance ofMRdRRT
with RRT and an improved (recursive) version of M* that appears in [34]. To make
the comparison as equitable as possible, as dRRT does not take into consideration the
quality of the solution, we use the inflated version ofM* [34] with relaxed optimality
guarantees.

Implementation details. The algorithmswere implemented inC++. The experiments
were conducted on a laptop with an Intel i5-3230M 2.60GHz processor with 16GB
of memory, running 64-bit Windows 7. We implemented a generic framework for
multi-robot motion planning based on composite roadmaps. The implementation
relies on PQP [1] for collision detection, and performs nearest-neighbor queries
using the Fast Library for Approximate Nearest Neighbors (FLANN) [24]. Metrics,
sampling and interpolation in the 3D environments followed the guidelines presented
by Kuffner [20]. To eliminate the dependence of dRRT on parameters we assigned
them according to the number of iterations the algorithm performed so far, i.e.,
the number of times that the main loop has been repeated. Specifically, in the i’th
iteration each EXPAND (Algorithm 2) call performs 2i iterations (N = 2i ), while
CONNECT_TO_TARGET uses K = i candidates that are connected with t .

Test scenarios. We report in Table1 the running times of M* and dRRT for the
scenarios. The first three scenarios are especially challenging as they consist of a
large number of robots, and require a substantial amount of coordination between
them. The fourth scenario (“Home”) is more relaxed and consists of only five robots
and requires little coordination.

We ran each of the three algorithms 10 times on each scenario. RRT proved
incapable of solving any of the test scenarios, running for several tens of minutes
until terminating due to exceeding the memory limits. We believe that RRT as-
is is not suitable for high-dimensional, coupled, multi-robot motion planning. M*
exhibited slightly better performance. For the first three scenarios, which involve
multiple robots and require a substantial amount of coordination, it never exceeded
a success rate of 40%. In particular, it often ran out of memory or ran for a very long
duration (we terminated it if its running time exceeded ten times the running time
of MRdRRT). On the other hand, MRdRRT was stable in its results and managed to
solve all the scenarios for each of the 10 attempts. When M* did manage to solve
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one of the first three scenarios, it explored between 2.5 and 10 times the number of
vertices that dRRT explored. For the fourth scenario the results of MRdRRT and M*
were comparable and in general we found M* more suitable for situations where
only a small number of robots have to interact at any given time. We mention that
MRdRRT was unable to solve scenarios that consist of a substantially larger number
of robot than we used in our experiments. We believe that it would be beneficial to
consider a stronger local connector in such cases.

6 Discussion

In this section we state the benefits of MRdRRT, which consists of an implicitly
represented roadmaps for multi-robot motion planning combined with an efficient
approach for pathfinding for such roadmaps.

Recall that the implicitly-represented composite roadmap G results from a ten-
sor product of m PRM roadmaps G1, . . . , Gm . The reliance on the precomputed
individual roadmaps eliminates the need to perform additional collision checking
between robots and obstacles while querying G. This has a substantial impact on
the performance of MRdRRT as it is often the case that checking whether m robots
collide with obstacles is much more costly than checking whether the m robots col-
lide between themselves. This is in contrast with more naive approaches, such as
RRT which consider the group of robots as one large robot. In such cases, checking
whether a configuration (or an edge) is collision free requires checking for the two
types of collisions simultaneously.

The M* algorithm, which also uses the underlying structure of G, performs very
well in situations where only a small subset of the robots need to coordinate. In
these situations it can cope, almost effortlessly, with several tens of robots while
outperforming our framework. However, in scenarios where a substantial amount of
coordination is required between the robots M* suffers from a disadvantage, since it
is forced to consider exponentially many neighbors when performing the search on
G. In contrast, dRRT performs a “minimalistic” search and advances in small steps,
little by little, regardless of the difficulty of the problem at hand. Moreover, dRRT
strives to reach unknown regions inGwhile avoiding spending too much time in the
exploration of regions that are in the vicinity of explored vertices. This is done via
the Voronoi bias, as shown in the proof of Theorem 1. This is extremely beneficial
when working on G since it contains vertices which represent essentially the same
conformation of the robots, and thus considering many vertices within a small region
would not lead to a better understanding of the problem at hand. To justify this claim,
consider the following example. Suppose that for every robot i , vi is a vertex of Vi

that has k neighbors in Gi at distance at most ε. Then the vertex (v1, . . . , vm) ∈ V

might have as much as km neighbors that are at distance at most ε
√

m in G.
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7 Future Work

Towards optimality. Currently, our algorithmic framework is concernedwithfinding
some solution. Our immediate future goal is to modify it to provide a solution with
quality guarantees, possibly by taking an approach similar to the continuous RRT*
algorithm [15], which is known to be asymptotically optimal. A fundamental differ-
ence between RRT* and the original formulation of RRT is in a rewiring step, where
the structure of the tree is revised to improve previously examined paths. Specifically,
when a new node is added to the tree, it is checked as to whether it will be more
beneficial for some of the existing nodes to point to the new vertex instead of their
current parent in the tree. This can be adapted, to some extent, to the discrete case,
although it is not clear whether this indeed will lead to optimal paths.

dRRT in other settings of motion planning. In this paper we combined the dRRT
algorithm with implicit composite roadmaps to provide an efficient algorithm for
multi-robot motion planning. One of the benefits of our framework comes from the
fact that it reuses some of the already computed information to avoid performing
costly operations. In particular, it refrains from checking collisions between robots
with obstacles by forcing the individual robots to move on precalculated individ-
ual roadmaps (i.e., Gi ). We believe that a similar approach can be used in other
settings of motion planning. In particular, we are currently working on a dRRT-based
approach for motion planning of a multi-linked robot. The new approach generates
an implicitly-represented roadmap, which encapsulates information on configura-
tions and paths between configuration that do not induce self-intersections of the
robot, while ignoring the existence of obstacles. Then, we overlay this roadmap on
the workspace, an operation which invalidates some of the nodes and edges of the
roadmap. Thus, we know only which configurations are self-collision free, but not
obstacles collision-free. Then we use dRRT for pathfinding on the new roadmap,
while avoiding self-collision tests and while exploring a small portion of the infinite
roadmap.

Acknowledgments We wish to thank Glenn Wagner for advising on the M* algorithm and Ariel
Felner for advice regarding pathfinding algorithms on graphs. We note that the title “Finding a
Needle in an Exponential Haystack” has been previously used in a talk by Joel Spencer in a different
context.
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11. Şucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom.
Mag. 19(4), 72–82 (2012)

12. Goraly, G., Hassin, R.: Multi-color pebble motion on graphs. Algorithmica 58(3), 610–636
(2010)

13. Hirsch, S., Halperin, D.: Hybridmotion planning: coordinating two discsmoving among polyg-
onal obstacles in the plane. In: WAFR, pp. 239–255. Springer, New York (2002)

14. Hopcroft, J., Schwartz, J., Sharir, M.: On the complexity of motion planning for multiple
independent objects; PSPACE-hardness of the “Warehouseman’s Problem”. IJRR 3(4), 76–88
(1984)

15. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimalmotion planning. IJRR 30(7),
846–894 (2011)

16. Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.: probabilistic roadmaps for path plan-
ning in high dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580
(1996)

17. Kloder, S., Hutchinson, S.: Path planning for permutation-invariant multi-robot formations. In:
ICRA, pp. 1797–1802 (2005)

18. Kornhauser, D.: Coordinating Pebble motion on graphs, the diameter of permutation groups,
and applications. M.Sc. thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (1984)

19. Kuffner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning.
In: ICRA, pp. 995–1001 (2000)

20. Kuffner, J.J.: Effective sampling and distance metrics for 3D rigid body path planning. In:
ICRA, pp. 3993–3998 (2004)

21. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
22. Leroy, S., Laumond, J.P., Simeon, T.:Multiple path coordination for mobile robots: a geometric

algorithm. In: IJCAI, pp. 1118–1123 (1999)
23. Luna, R., Bekris, K.E.: Push and swap: fast cooperative path-finding with completeness guar-

antees. In: IJCAI, pp. 294–300 (2011)
24. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm config-

uration. In: VISSAPP, pp. 331–340. INSTICC Press (2009)
25. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-

Wesley, Reading (1984)
26. Salzman, O., Hemmer, M., Halperin, D.: On the power of manifold samples in exploring

configuration spaces and the dimensionality of narrow passages. In: WAFR, pp. 313–329
(2012)

27. Sanchez, G., Latombe, J.C.: Using a PRM planner to compare centralized and decoupled
planning for multi-robot systems. In: ICRA, pp. 2112–2119 (2002)

28. Schwartz, J.T., Sharir, M.: On the piano movers’ problem: III. Coordinating the motion of
several independent bodies. IJRR 2(3), 46–75 (1983)

29. Sharir, M., Sifrony, S.: Coordinated motion planning for two independent robots. Ann. Math.
Artif. Intell. 3(1), 107–130 (1991)



Finding a Needle in an Exponential Haystack … 607

30. Solovey, K., Halperin, D.: k-color multi-robot motion planning. In:WAFR, pp. 191–207 (2012)
31. Spirakis, P.G., Yap, C.K.: Strong NP-hardness of moving many discs. Inf. Process. Lett. 19(1),

55–59 (1984)
32. Turpin, M., Michael, N., Kumar, V.: Computationally efficient trajectory planning and task

assignment for large teams of unlabeled robots. In: ICRA, pp. 834–840 (2013)
33. Švestka, P., Overmars, M.: Coordinated path planning for multiple robots. Robot. Auton. Syst.

23, 125–152 (1998)
34. Wagner, G., Choset, H.: M*: a complete multirobot path planning algorithm with performance

bounds. In: IROS, pp. 3260–3267. IEEE (2011)
35. Wagner, G., Kang, M., Choset, H.: Probabilistic path planning for multiple robots with subdi-

mensional expansion. In: ICRA, pp. 2886–2892 (2012)
36. Yap, C.: Coordinating the motion of several discs. Technical report, Courant Institute of Math-

ematical Sciences, Michigan State University, New York (1984)



Stochastic Extended LQR:
Optimization-Based Motion
Planning Under Uncertainty

Wen Sun, Jur van den Berg and Ron Alterovitz

Abstract We introduce a novel optimization-based motion planner, Stochastic
Extended LQR (SELQR), which computes a trajectory and associated linear control
policy with the objective of minimizing the expected value of a user-defined cost
function. SELQR applies to robotic systems that have stochastic non-linear dynam-
ics with motion uncertainty modeled by Gaussian distributions that can be state-
and control-dependent. In each iteration, SELQR uses a combination of forward and
backward value iteration to estimate the cost-to-come and the cost-to-go for each state
along a trajectory. SELQR then locally optimizes each state along the trajectory at
each iteration to minimize the expected total cost, which results in smoothed states
that are used for dynamics linearization and cost function quadratization. SELQR
progressively improves the approximation of the expected total cost, resulting in
higher quality plans. For applications with imperfect sensing, we extend SELQR to
plan in the robot’s belief space.We show that our iterative approach achieves fast and
reliable convergence to high-quality plans in multiple simulated scenarios involving
a car-like robot, a quadrotor, and amedical steerable needle performing a liver biopsy
procedure.

1 Introduction

When a robot performs a task, the robot’s motion may be affected by uncertainty
from a variety of sources, including unpredictable external forces or actuation errors.
Uncertainty arises in a variety of robotics applications, including aerial robots mov-
ing in turbulent conditions, mobile robots maneuvering on unfamiliar terrain, and
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robotic steerable needles being guided to clinical targets in soft tissue. A deliberative
approach that accounts for uncertainty during motion planning before task execution
can improve the quality of computed plans, increasing the chances that the robot will
complete the desired motion safely and reliably.

We introduce an optimization-based motion planner that explicitly considers the
impacts of motion uncertainty. Recent years have seen the introduction of multiple
successful optimization-based planners, although most have focused on robots with
deterministic dynamics (e.g., [1–3]). Compared to commonly used sampling-based
planners [4], optimization-based planners produce plans that are smoother (without
requiring a separate smoothing algorithm) and that are computed faster, albeit some-
times with a loss of completeness and global optimality. Prior optimization-based
planners that consider deterministic dynamics can only minimize deterministic cost
functions (e.g., minimizing path length while avoiding obstacles). In this paper we
focus on robots with stochastic dynamics, and consequently minimize the a pri-
ori expected value of a cost function when a plan and corresponding controller are
executed. The user-defined cost function can be based on path length, control effort,
and obstacle collision avoidance.

We first introduce the Stochastic Extended LQR (SELQR)motion planner, a novel
optimization-based motion planner with fast and reliable convergence for robotic
systems with non-linear dynamics, any cost function with positive (semi) definite
Hessians, and motion uncertainty modeled using Gaussian distributions that can be
state- and control-dependent. Our approach builds on the linear quadratic regulator
(LQR), a commonly used linear controller that does not explicitly consider obstacle
avoidance. As an optimization-based approach, SELQR starts motion planning from
a start state and returns a high-quality trajectory and an associated linear control pol-
icy that consider uncertainty and are optimizedwith respect to the given cost function.

To achieve fast performance, our approach in each iteration uses both the sto-
chastic forward and inverse dynamics in a manner inspired by an iterated Kalman
smoother [5]. In each iteration’s backward pass, SELQR uses the stochastic dynam-
ics to compute a control policy and estimate the cost-to-go of each state, which is the
minimum expected future cost assuming the robot starts from each state. In each it-
eration’s forward pass, SELQR estimates the cost-to-come to each state, which is the
minimum cost to reach each state from the initial state. SELQR then approximates
the expected total cost at each state by summing the cost-to-come and the cost-to-go.
SELQR progressively improves the approximation of the cost-to-come and cost-to-
go and hence improves its estimate of the expected total cost. A key insight in SELQR
is that we locally optimize each state along a trajectory at each iteration to minimize
the expected total cost, which results in smoothed states that are cost-informative and
used for dynamics linearization and cost function quadratization. These smoothed
states enable the fast and reliable convergence of SELQR.

We next extend SELQR to consider uncertainty in both motion and sensing.
Although the robot in such cases often cannot directly observe its current state, it can
estimate a distribution over the set of possible states (i.e., its belief state) based on
noisy and partial sensormeasurements.We introduce B-SELQR, a variant of SELQR
that plans in belief space rather than state space for robots with both motion and
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Fig. 1 We show plans computed by SELQR for needle steering for a liver biopsy with motion
uncertainty. The objective is to access the tumor (yellow) while avoiding the hepatic arteries (red),
hepatic veins (blue), portal veins (pink), and bile ducts (green). The smooth trajectories explicitly
consider uncertainty and minimize the a priori expected value of a cost function that considers
obstacle avoidance and path length. a The needle trajectory computed by SELQR when inserted
from the side. b The needle trajectory computed by SELQR when inserted from the front

sensing uncertainty, where belief states are modeled with Gaussian distributions. For
such robots, the motion planning problem can be modeled as a Partially Observable
Markov Decision Process (POMDP). Exact global optimal solutions to POMDPs are
prohibitive for most applications since the belief space (over which a control pol-
icy is to be computed) is, in the most general formulation, the infinite-dimensional
space of all possible probability distributions over the finite dimensional state space.
B-SELQR quickly computes a trajectory and locally-valid controller from scratch in
belief space.

We demonstrate the speed and effectiveness of SELQR in simulation for a car-
like robot, quadrotor, and medical steerable needle (see Fig. 1). We also demonstrate
B-SELQR for scenarios with imperfect sensing.

2 Related Work

Optimization-based motion planners have been studied for a variety of robotics
applications and typically consider robot dynamics, trajectory smoothness, andobsta-
cle avoidance. Optimization-based approaches have been developed that plan from
scratch as well as that locally optimize a feasible plan created by another motion
planner (such as a sampling-based motion planner), e.g. [1–3, 6–8]. These methods
work well for robots with deterministic dynamics, whereas SELQR is intended for
robots with stochastic dynamics.

Our approach builds on Extended LQR [9, 10], which extends the standard LQR
to handle non-linear dynamics and non-quadratic cost functions. Extended LQR
assumes deterministic dynamics, implicitly relying on the fact that the optimal
LQR solution is independent of the variance of the motion uncertainty. In contrast to
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Extended LQR, SELQR explicitly considers stochastic dynamics and incorporates
the stochastic dynamics into backward value iteration when computing a control
policy, enabling computation of higher quality plans. Approximate InferenceControl
[11] formulates the optimal control problem using Kullback-Leibler divergence min-
imization but focuses on cost functions that are quadratic in the control input. Our
approach also builds on Iterative Linear Quadratic Gaussian (iLQG) [12], which
uses a quadratic approximation to handle state- and control-dependent motion uncer-
tainty but, in its original form, did not implement obstacle avoidance. To ensure that
the dynamics linearization and cost function quadratization are locally valid, iLQG
requires special measures such as a line search. Our method does not require a line
search, enabling faster performance.

For problems with partial or noisy sensing, the planning and control problem can
bemodeled as aPOMDP [13]. Solving aPOMDP toglobal optimality has been shown
to be PSPACE complete. Point-based algorithms (e.g., [14–16]) have been developed
for problems with discrete state, action, or observation spaces. Another class of
methods [17–19] utilize sampling-based planners to compute candidate trajectories
in the state space, which can be evaluated based on metrics that consider stochastic
dynamics.Optimization-based approaches havebeendeveloped for planning in belief
space [20, 21] by approximating beliefs as Gaussian distributions and computing
a value function valid only in local regions of the belief space. Platt et al. [21]
achieve fast performance by defining deterministic belief system dynamics based on
the maximum likelihood observation assumption. Van den Berg et al. [20] require a
feasible plan for initialization and then use iLQG to optimize the plan in belief space.
We will show that B-SELQR, which considers stochastic dynamics, converges faster
and more reliably than using iLQG in belief space and can plan from scratch.

3 Problem Definition

Let X ⊂ R
n be the n-dimensional state space of the robot and let U ⊂ R

m be
the m-dimensional control input space of the robot. We consider robotic systems
with differentiable stochastic dynamics and state- and control-dependent uncertainty
modeled using Gaussian distributions. Let τ ∈ R

+ denote time, and let us be given
a continuous-time stochastic dynamics:

dx(τ ) = f(x(τ ), u(τ ), τ )dτ + N (x(τ ), u(τ ), τ )dw(τ ), (1)

with f : X × U × R
+ → Ẋ and N : X × U × R

+ → R
n×n , where x(τ ) ∈ X,

u(τ ) ∈ U, and w(τ ) is a Wiener process with dw(τ ) ∼ N (0, dτ I ).
We assume time is discretized into intervals of durationΔ, and the time step t ∈ N

starts at time τ = tΔ. As we will see in Sect. 4.5, by integrating the continuous time
dynamics both backward and forward in time,we can construct the stochastic discrete
dynamics and the deterministic inverse discrete dynamics:
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xt+1 = gt (xt , ut ) + Mt (xt , ut )ξt , (2)

xt = ḡt (xt+1, ut ), (3)

where ξt ∼ N (0, I ), with gt , ḡt ∈ X×U → X and Mt ∈ X×U → R
n×n as derived

in Sect. 4.5. Note that gt (ḡt (xt+1, ut ), ut ) = xt+1 and ḡt (gt (xt , ut ), ut ) = xt .
Let the control objective be defined by a cost function that can incorporate metrics

such as path length, control effort, and obstacle avoidance:

Ex

[

cl(xl) +
l−1∑

t=0

ct (xt , ut )

]

, (4)

where l ∈ N
+ is the given time horizon and cl : X → R and ct : X × U → R

are user-defined local cost functions. The expectation is taken because the dynamics
are stochastic. We assume the local cost functions are twice differentiable and have
positive (semi)definite Hessians: ∂2cl

∂x∂x ≥ 0, ∂2ct
∂u∂u > 0, ∂2ct

∂[ x
u ]∂[ x

u ] ≥ 0. The objective

is to compute a control policy π (defined by πt : X → U for all t ∈ [0, l)) such
that selecting the controls ut = πt (xt ) minimizes Eq. (4) subject to the stochastic
discrete-time dynamics. This problem is addressed in Sect. 4.

For robotic systems with imperfect (e.g., partial and noisy) sensing, it is often
beneficial during planning to explicitly consider the sensing uncertainty. We assume
sensors provide data according to a stochastic observation model:

zt = h(xt ) + nt , nt ∼ N (0, V (xt )), (5)

where zt is the sensor measurement at step t and the noise is state-dependent and
drawn from a given Gaussian distribution. We formulate this motion planning prob-
lem as a POMDP by defining the belief state bt ∈ B, which is the distribution of
the state xt given all past controls and sensor measurements. We approximate belief
states using Gaussian distributions. In belief space we define the cost function as

Ez

[

cl(bl) +
l−1∑

t=0

ct (bt , ut )

]

, (6)

where the local cost functions are defined analogously toEq. (4). Theobjective for this
problem is to compute a control policy π (defined by πt : B → U for all t ∈ [0, l))
in order to minimize Eq. (6) subject to the stochastic discrete-time dynamics. This
problem is addressed in Sect. 5.

4 Stochastic Extended LQR

SELQR explicitly considers a system’s stochastic nature in the planning phase and
computes a nominal trajectory and an associated linear control policy that consider the
impact of uncertainty. With the control policy from SELQR, the robot then executes
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the plan in a closed-loop fashion with sensor feedback. As in related methods such
as iLQG [12], SELQR approximates the value functions quadratically by linearizing
the dynamics and quadratizing the cost functions. But, as we will show, SELQR
uses a novel approach to compute promising candidate trajectories around which to
linearize the dynamics andquadratize the cost functions, enabling faster performance.

4.1 Method Overview

To consider non-linear dynamics and any cost function with positive (semi)definite
Hessians, SELQR uses an iterative approach that linearizes the (stochastic) dynamics
and locally quadratizes the cost functions in each iteration. As shown in Algorithm
1 and described below, each iteration includes both a forward pass and a backward
pass, where each pass performs value iteration.

As in LQR, SELQR uses backward value iteration to compute a control policy π
and, for all t , the cost-to-go vt (x), which is the minimum expected future cost that
will be accrued between time step t (including the cost at time step t) and time step
l if the robot starts at x at time step t . The backward value iteration, as described in
Sect. 4.2, considers stochastic dynamics. SELQR also uses forward value iteration
to compute the cost-to-come v̄t (x), which computes the minimum past cost that was
accrued from time step 0 to step t (excluding the cost at time step t) assuming the
robot’s dynamics is deterministic, as described in Sect. 4.3. The sum of vt (x) and
v̄t (x) provides an estimate of v̂t (x), the minimum expected total cost for the entire
task execution given that the robot passes through state x at step t . Selecting x to
minimize v̂t yields a sequence of smoothed states

x̂t = argminxv̂t (x) = argminx(v̄t (x) + vt (x)), 0 ≤ t ≤ l. (7)

At each iteration, SELQR linearizes the (stochastic) dynamics and quadratizes
the cost function around the smoothed states. With each iteration, SELQR progres-
sively improves the estimate of the cost-to-come and cost-to-go at each state along
a plan, and hence improves its estimate of the minimum expected total cost. With
this improved estimate comes a better control policy. The algorithm terminates when
the estimated total cost converges. The output of the motion planner is the control
policy πt for all t , where each πt is computed during the backward value itera-
tion, which considers the stochastic dynamics. During execution, a robot at state x
executes control ut = πt (x) at time step t .

SELQR accounts for non-linear dynamics and non-quadratic cost functions in
a manner inspired in part by the iterated Kalman Smoother [5], which iteratively
performs a forward pass (filtering) and a backward pass (smoothing) and at each
iteration linearizes the non-linear system around the states from the smoothing pass.
Likewise, SELQR consists of a backward pass (a backward value iteration) and a
forward pass (a forward value iteration). The combination of these two passes at
each iteration enables us to compute smoothed states around which we linearize the
(stochastic) dynamics and quadratize the cost functions.
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Algorithm 1: SELQR
Input: stochastic continuous-time dynamics (Eq.1); ct : local cost functions for 0 ≤ t ≤ l;

Δ: time step duration; l: number of time steps

Variables: x̂: smoothed states; π: control policy; π̄: inverse control policy; vt : cost-to-go
function; v̄t : cost-to-come function

1 πt = 0, St = 0, st = 0, st = 0
2 repeat
3 S̄0 := 0, s̄0 := 0, s̄0 := 0
4 for t := 0; t < l; t := t + 1 do
5 x̂t = −(St + S̄t )

−1(st + s̄t ) (smoothed states)
6 ût = πt (x̂t ), x̂t+1 = g(x̂t , ût )

7 Linearize inverse discrete dynamics around (x̂t+1, ût ) (Eq. (16))
8 Quadratize ct around (x̂t , ût ) (Eq. (12))
9 Compute S̄t+1, s̄t+1, s̄t+1, v̄t+1, π̄t (forward value iteration in Sec. 4.3)

10 end
11 Quadratize cl around x̂l in the form of Eq. (12) to compute Ql , ql , and ql
12 Sl := Ql , sl := ql , and sl := ql .
13 for t := l − 1; t ≥ 0; t := t − 1 do
14 x̂t+1 = −(St+1 + S̄t+1)

−1(st+1 + s̄t+1) (smoothed states)
15 ût = π̄t (x̂t+1), x̂t = ḡ(x̂t+1, ût )

16 Linearize stochastic discrete dynamics around (x̂t , ût ) (Eq. (11))
17 Quadratize ct around (x̂t , ût ) (Eq. (12))
18 Compute St , st , st , vt , πt (backward value iteration in Sec. 4.2)
19 end
20 until Converged (e.g., v0 stops changing significantly);
21 return πt for 0 ≤ t ≤ l

4.2 Backward Pass

We assume the cost-to-come functions v̄t (x), the inverse control policy π̄t , and the
smoothed state x̂l are available from the previous forward pass. The backward pass
computes cost-to-go functions vt (x) and control policy πt , using the approach of
backward value iteration [22] in a backward recursive manner:

v�(x) = c�(x), vt (x) = min
u

(
ct (x, u) + Eξt

[vt+1(gt (x, u) + Mt (x, u)ξt )]
)
, (8)

πt (x) = argmin
u

(
ct (x, u) + Eξt

[vt+1(gt (x, u) + Mt (x, u)ξt )]
)
.

To make the backward value iteration tractable, SELQR linearizes the stochastic
dynamics and quadratizes the local cost functions to maintain a quadratic form of
the cost-to-go function vt (x): vt (x) = 1

2xT St x+xT st + st . The backward pass starts
from step l by quadratizing cl(x) around x̂l (line 11) as

cl(x) = 1
2xT Qlx + xT ql + ql , (9)
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and constructing quadratic vl(x) by setting Sl = Ql , sl = ql , and sl = ql . Starting
from t = l − 1, vt+1(x) is available. To proceed to step t , SELQR first computes

v̂t+1(x) = 1
2xT (St+1 + S̄t+1)x + xT (st+1 + s̄t+1) + (st+1 + s̄t+1). (10)

Minimizing the quadratic v̂t+1(x) with respect to x gives the smoothed states x̂t+1
(line 14). With the inverse control policy π̄t from the last forward pass, SELQR
computes ût and x̂t (line 15), around which the stochastic discrete dynamics can be
linearized as

gt (x, u) = At x + Bt u + at , M (i)
t (x, u) = Fi

t x + Gi
t u + ei

t , 1 < i ≤ n, (11)

where M (i)
t denotes the i’th column of matrix Mt , and At , Bt , Fi

t , Gi
t , at , and ei

t are
given matrices and vectors of the appropriate dimension, and the cost function ct can
be quadratized as

ct (x, u) = 1

2

[
x
u

]T [
Qt PT

t
Pt Rt

] [
x
u

]
+

[
x
u

]T [
qt

rt

]
+ qt . (12)

By substituting the linear stochastic dynamics and quadratic local cost function
into Eq.8, expanding the expectation, and then collecting terms, we get a quadratic
expression of the value function vt (x),

vt (x) =min
u

(
1

2

[
x
u

]T [
Ct ET

t
Et Dt

] [
x
u

]
+

[
x
u

]T [
ct

dt

]
+ et

)

, (13)

where Ct , Dt , Et , ct , dt , et are parameterized by St+1, st+1, st+1, Qt , qt , qt , Pt , Rt ,
rt , At , Bt , at , Fi

t , Gi
t , and ei

t following the similar derivation in [12]. Minimizing
Eq. (13) with respect to u gives the linear control policy:

u = πt (x) = −D−1
t Et x − D−1

t dt . (14)

Filling u back into Eq. (13) gives vt (x) as a quadratic function of x with St =
Ct − ET

t D−1
t Et , st = ct − ET

t D−1
t dt , and st = et − 1

2dT
t D−1

t dt (line 18).

4.3 Forward Pass

The forward pass recursively computes the cost-to-come functions v̄t (x) and the
inverse control policy π̄t using forward value iteration [9]:

v̄0(x) = 0, v̄t+1(x) =min
u

(ct (ḡt (x, u), u) + v̄t (ḡt (x, u))), (15)

π̄t (x) = argmin
u

(ct (ḡt (x, u), u) + v̄t (ḡt (x, u))).
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To make the forward value iteration tractable, we linearize the inverse dynamics and
quadratize the local cost functions so that we can maintain a quadratic form of the
cost-to-come function v̄t (x): v̄t (x) = 1

2xT S̄t x + xT s̄t + s̄t .
The forward pass starts from time step 0 (line 3) to construct the quadratic v̄0(x)

by setting S̄0 = 0, s̄0 = 0, and s̄0 = 0. At time step t , we assume v̄t (x) and vt (x)

are available. To proceed to step t + 1, SELQR first computes the smoothed state
x̂t by minimizing the sum of vt (x) and v̄t (x) (line 5) which are quadratic. Since πt

is available, SELQR then computes the ût and x̂t+1 as shown in line 7. Then, the
deterministic inverse discrete dynamics is linearized around (x̂t+1, ût ):

ḡt (x, u) = Āt x + B̄t u + āt , (16)

where Āt , B̄t , and āt are given matrices and vectors of the appropriate dimension,
and the local cost function ct is quadratized around (x̂t , ût ) to get the quadratic form
as in Eq. (12).

Substituting the linearized inverse dynamics and quadratic local cost function into
Eq. (15), expanding the expectation, and then collecting terms, we get a quadratic
expression for v̄t+1(x),

v̄t+1(x) = min
u

(
1

2

[
x
u

]T [
C̄t Ē T

t
Ēt D̄t

] [
x
u

]
+

[
x
u

]T [
c̄t

d̄t

]
+ ēt

)

, (17)

where C̄t , D̄t , Ēt , c̄t , d̄t , ēt are computed from S̄t , s̄t , s̄t , Āt , B̄t , āt , Qt , qt , qt , Pt ,
Rt , and rt following the derivation in [9]. The corresponding linear inverse control
policy that minimizes Eq. (17) has the form

ut = π̄t (xt+1) = −D̄−1
t Ēt xt+1 − D̄−1

t d̄t . (18)

Plugging ut into Eq. (17) gives v̄t+1(x) as a quadratic function of x with S̄t+1 =
C̄t − ĒT

t D̄−1
t Ēt , s̄t+1 = c̄t − ĒT

t D̄−1
t d̄t , and s̄t+1 = ēt − 1

2 d̄T
t D̄−1

t d̄t (line 9).

4.4 Iterative Forward and Backward Value Iteration

Without any a priori knowledge, SELQR initializes the cost-to-go functions and
the control policy to 0’s (line 1). As shown in Algorithm 1, SELQR starts with a
forward pass and then iteratively performs backward passes and forward passes until
convergence (e.g., v0 stops changing significantly). Similar to the iterated Kalman
Smoother and to Extended LQR [9], SELQR performs Gauss-Newton like updates
toward a local optimum.

Informed search methods often achieve speedups in practice by exploring from
states that minimize a heuristic cost function. Analogously, in SELQR, the cost-to-
go provides the minimum expected future cost, and the cost-to-come estimates the
minimum expected cost that has been already accrued. The forward value iteration
uses a deterministic inverse dynamics due to the intractability of computing a sto-
chastic discrete inverse dynamics. Hence, the function v̂t (x) estimates the minimum
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total cost assuming the robot passes through a given state x at time step t . Previous
methods such as iLQG choose states for linearization and quadratization by blindly
shooting the control policy from the last iteration without any information about the
cost functions. These methods usually need measures such as line search to maintain
stability. By computing smoothed states that are informed by cost for linearization
and quadratization, we show, experimentally, that our method provides faster con-
vergence.

4.5 Discrete-Time Dynamics Implementation

If f(x, u, τ ) in Eq. (1) is linear in x and N is not dependent on x, then the distribution
of the state at any time τ is given by x(τ ) ∼ N (x̂(τ ),Σ(τ )), where x̂(τ ) and Σ(τ )

are defined by the following system of differential equations:

˙̂x = f(x̂, u, τ ), Σ̇ = ∂f
∂x

(x̂, u, τ )Σ + Σ
∂f
∂x

(x̂, u, τ )T + N (x̂, u, τ )N (x̂, u, τ )T .

For non-linear f and state- and control-dependent N , the equations provide first-
order approximations. Instead of using an Euler integration [12], we use the Runge-
Kutta method (RK4) to integrate the differential equations for x̂ and Σ forward in
time simultaneously to compute gt and Mt in Eq. (2), and integrate the differential
equation for x̂ to compute the ḡt in Eq. (3).

5 Stochastic Extended LQR in Belief Space

We introduce B-SELQR, a belief-state variant of SELQR for robotic systems with
both motion and sensing uncertainty, where beliefs are modeled with Gaussian dis-
tributions. With an imperfect sensing model defined in the form of Eq. (5) and an
objective function in the form of Eq. (6), the motion planning problem is a POMDP.
B-SELQR needs a stochastic discrete forward belief dynamics and a deterministic
discrete inverse belief dynamics. While the stochastic belief dynamics (Sect. 5.1)
can be modeled by an Extended Kalman Filter (EKF) [23] as shown in [20], the key
challenge here is to develop the deterministic discrete inverse belief dynamics. We
will show in Sect. 5.2 that the inverse belief dynamics can be derived by inverting
the EKF.

5.1 Stochastic Discrete Belief Dynamics

Let us be given the belief of the robot’s state at time step t as xt ∼ N (x̂t ,Σt ) and a
control input ut that the robot will execute at time step t . The EKF is used to model
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the stochastic forward belief dynamics [20] by

x̂t+1 = g(x̂t , ut ) + wt , wt ∼ N (0, Kt HtΓt+1), (19)

Σt+1 = Γt+1 − Kt HtΓt+1,

where

Γt+1 = AtΣt AT
t + Mt (x̂t , ut )Mt (x̂t , ut )

T , At = ∂g
∂x

(x̂t , ut ),

Kt = Γt+1H T
t (HtΓt+1H T

t + V (x̂′
t+1))

−1, Ht = ∂h
∂x

(g(x̂t , ut )).

We refer readers to [20] for details of the derivation. Defining the belief bt =[
x̂T

t , vec[√Σt ]T
]T
, the stochastic belief dynamics is given by

bt+1 = Φ(bt , ut ) + W (bt , ut )ξt , ξt ∼ N (0, I ), (20)

where W (bt , ut ) =
[√

Kt HtΓt+1
T
, 0

]T
and vec[Z ] returns a vector consisting of

all the columns of matrix Z . The dynamics is stochastic since the observation is
treated as a random variable.

5.2 Deterministic Inverse Discrete Belief Dynamics

To derive a deterministic inverse belief dynamics, we use the maximum likelihood
observation assumption as introduced in [21].

Proposition 1 (Deterministic InverseDiscreteBeliefDynamics)We assume an EKF
with the maximum likelihood observation assumption is used to propagate the beliefs

forward in time. Given bt+1 = [
x̂T

t+1, vec[
√

Σt+1]T
]T

and the control input ut

applied at time step t, there exists a belief bt = [
x̂T

t , vec[√Σt ]T
]T

such that bt+1 =
Φ(bt , ut ) and bt is represented by

x̂t = ḡ(x̂t+1, ut ), (21)

Σt = Ā−1
t (Γ̄t − M̄t M̄T

t ) Ā−T
t , (22)

where

M̄t = Mt (ḡ(x̂t+1, ut ), ut ), Āt = ∂g
∂x

(ḡ(x̂t+1, ut ), ut ),

Γ̄t = (I − Σt+1 H̄ T
t V̄ −1

t H̄t )
−1Σt+1, H̄t = ∂h

∂x
(x̂t+1), V̄t = V (x̂t+1). (23)

Proof Let us assume xt+1 ∼ N (x̂′
t+1,Σ

′
t+1) is the prior belief obtained from the

process update of the EKF by evolving the system dynamics from time step t to t +1
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before any observation is received.With the prior belief, let us assume an observation
zt+1 is received, and then the EKF updates the belief as follows:

x̂t+1 = x̂′
t+1 + K̄t (zt+1 − h(x̂′

t+1)), Σt+1 = Σ ′
t+1 − K̄t H̃tΣ

′
t+1, (24)

where H̃t = ∂h
∂x (x̂′

t+1) and

K̄t = Σ ′
t+1 H̃ T

t (H̃tΣ
′
t+1 H̃ T

t + V (x̂′
t+1))

−1. (25)

The maximum likelihood observation assumption means zt+1 = h(x̂′
t+1). Hence

we see x̂t+1 = x̂′
t+1 from Eq. (24).Due to this equivalence we can see that H̄t = H̃t

and V̄t = V (x̄′
t+1) (H̄t and V̄t are defined in Eqs. (23)). Hence, Eq. (25) can be

re-written using H̄t and V̄t as

K̄t = Σ ′
t+1 H̄ T

t (H̄tΣ
′
t+1 H̄ T

t + V̄t )
−1. (26)

By right multiplying (H̄tΣ
′
t+1 H̄ T

t + V̄t ) on both sides of the above equation and
then subtracting the term K̄t H̄tΣ

′
t+1 H̄ T

t on both sides, we get

K̄t V̄t = (Σ ′
t+1 − K̄t H̄tΣ

′
t+1)H̄ T

t . (27)

By substitutingΣt+1 fromEq. (24) into the above equation and then rightmultiplying
V̄ −1

t on both sides, we get the expression for K̄t ,

K̄t = Σt+1 H̄ T
t V̄ −1

t . (28)

Then, we substitute Eq. (28) back into Eq. (24) and then solve for Σ ′
t+1,

Σ ′
t+1 = (I − Σt+1 H̄ T

t V̄ −1
t )−1Σt+1. (29)

The process update of EKF can be modeled as

x̂′
t+1 = g(x̂t , ut ), Σ ′

t+1 = ∂g
∂x

(x̂t , ut )Σt
∂g
∂x

(x̂t , ut )
T + Mt (x̂t , ut )Mt (x̂t , ut )

T .

(30)
Since x̂′

t+1 = g(x̂t , ut ) and x̂′
t+1 = x̂t+1, we see x̂t = ḡ(x̂′

t+1, ut ) = ḡ(x̂t+1, ut ).
Hence, we prove Eq. (21).

Substituting x̂t = ḡ(x̂t+1, ut ) into Eq. (30), we get Σ ′
t+1 = ĀtΣt ĀT

t + M̄t M̄T
t ,

where Āt and M̄t are defined in Eqs. (23). We then solve for Σt and get

Σt = Ā−1
t (Σ ′

t+1 − M̄t M̄T
t ) Ā−T

t . (31)

By substituting Eq. (29) into Eq. (31), we prove Eq. (22). �

Equations (21) and (22) model the deterministic discrete inverse belief dynamics,
which wewrite as bt = Φ̄(bt+1, ut ). One can show that bt+1 = Φ(Φ̄(bt+1, ut ), ut ).
With the stochastic discrete forward belief dynamics and deterministic inverse belief
dynamics, together with cost objective Eq. (6) defined over belief space, we can
directly apply SELQR to planning in belief space.
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6 Experiments

We demonstrate SELQR in simulation for a car-like robot, a quadrotor, and amedical
steerable needle. Each robot must navigate in an environment with obstacles.We also
apply B-SELQR to a car-like robot. We implemented the methods in C++ and ran
scenarios on a PC with an Intel i3 2.4GHz processor.

In our experiments, we used the local cost functions

c0(x, u) = 1
2 (x − x∗

0)
T Q0(x − x∗

0) + 1
2 (u − u∗)T R(u − u∗),

ct (x, u) = 1
2 (u − u∗)T R(u − u∗) + f (x), cl(x, u) = 1

2 (x − x∗
l )T Ql(x − x∗

l ).

where Q0, Ql , and R are positive definite. We set x∗
0 to be a given initial state and

x∗
l to be a given goal state. Setting Q0 and Ql infinitely large equates to fixing the
initial state and goal state for planning. We set function f (x) to enforce obstacle
avoidance. For SELQR we used the same cost term as in [9]:

f (x) = q
∑

i

exp(−di (x)), (32)

where q ∈ R
+ and di (x) is the signed distance between the robot at state x and

the i’th obstacle. Since the Hessian of f (x) is not always positive semidefinite, we
regularize the Hessian by computing its eigendecomposition and setting the negative
eigenvalues to zeros [9]. We assume each obstacle is convex. For non-convex obsta-
cles, we apply convex decomposition. For B-SELQR, to approximately consider the
probability of collision we set f (b) = q

∑
i exp(−di (b)), where di (b) is the min-

imum number of standard deviations of the mean of the robot’s belief distribution
needed to move to the obstacle’s surface [20].

6.1 Car-Like Robot in a 2-D Environment

We first apply SELQR to a non-holonomic car-like robot that navigates in a
2-D environment and can perfectly sense its state. The robot’s state x = [x, y, θ, v]
consists of its position (x, y), orientation θ, and speed v. The control inputsu = [a,φ]
consist of acceleration a and steering wheel angle φ. The deterministic continuous
dynamics is given by

ẋ = vcos(θ), ẏ = vsin(θ), θ̇ = vtan(φ)/d, v̇ = a, (33)

where d is the length of the car-like robot. We assume the dynamics is corrupted
by noise from a Weiner process (Eq.1) and define N (x(τ ), u(τ ), τ ) = α‖u(τ )‖,
α ∈ R

+. For the cost function we set Q0 = Ql = 200I , R = 1.0I , and q = 0.2.
Figure2a shows the environment and the SELQR trajectory (illustrated by the

path that results from following the control policy computed by SELQR assuming
zero noise). Consideration of stochastic dynamics is important for good performance.



622 W. Sun et al.

0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

7
x 10

−3

Noise Level

D
ev

ia
tio

n 
to

 G
oa

l

Extended LQR (closed−loop)
Stochastic Extended LQR (closed−loop)
Locally optimal trajectory (open−loop)

α

(a) (b)

Fig. 2 a The SELQR trajectory for a car-like robot moving to a green goal while avoiding red
obstacles. b Mean and standard deviations for the deviation from the goal over 1,000 simulations
for SELQR and related methods with different noise levels

Figure2b shows the deviation from the goal for varying levels of noiseα.We compare
with Extended LQR, which uses deterministic dynamics to compute the control
policy, andwith open-loop execution of SELQR’s nominal trajectory,which performs
poorly due to themotion uncertainty and need for feedback. The control policies from
SELQR result in a smaller deviation from the goal since SELQR explicitly considers
the control-dependent noise.

In Table1, we show SELQR’s fast convergence for different values of Δ. The
results are averages of 100 independent runs for random instances. In each instance,
the initial state x∗

0 was chosen by uniformly sampling in theworkspace, and the corre-
sponding goal state was x∗

l = −x∗
0 (where the origin is the center of the workspace).

Compared to iLQG, our method achieved approximately equal costs but required
substantially fewer iterations and less computation time.

Table 1 Quantitative Comparison of SELQR and iLQG

Scenario Δ (s) SELQR iLQG

Avg
cost

Avg
time (s)

Avg
#Iters

Avg
cost

Avg
time (s)

Avg
#Iters

Car-like robot 0.05 79.4 0.4 5.7 80.5 1.1 13.4

0.1 55.5 1.0 16.0 53.4 2.5 43.2

0.2 50.8 1.2 18.4 51.7 2.0 35.4

Quadrotor 0.025 552.1 30.3 7.7 798.0 52.7 23.4

0.05 272.7 50.1 14.4 292.1 113.7 51.6

0.1 191.1 66.3 20.0 197.1 163.9 76.4

Steerable needle 0.075 53.6 0.79 5.3 58.3 1.2 12.5

0.1 42.6 0.95 6.36 44.5 1.4 14.6

0.125 39.1 1.3 10.1 40.0 1.5 15.6
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Fig. 3 SELQR trajectories for a quadrotor in an 8 cylindirical obstacle environment. a SELQR
trajectory with q = 1.0. b SELQR trajectory with q = 0.3

6.2 Quadrotor in a 3-D Environment

To show that SELQRscales to higher dimensions,we apply it to a simulated quadrotor
with a 12-D state space. Its state x = [p, v, r, w] ∈ R

12 consists of position p,
velocity v, orientation r (angle-axis representation), and angular velocity w. Its con-
trol input u = [u1, u2, u3, u4] consists of the forces exerted by each of the four
rotors. We directly adopt the continuous dynamics ẋ = f(x, u) with physical pa-
rameters of the quadrotor and the environment from [9]. We add noise defined by
N (x(τ ), u(τ ), τ ) = α‖u(τ )‖, where α ∈ R

+.
Figure3 shows the SELQR trajectory for two different values of q, where we set

α = 2%, Q0 = Ql = 500I , and R = 20I . As expected, the trajectory with larger q
has larger clearance from obstacles. In Table1, we show SELQR’s fast convergence
for the quadrotor scenario for different values of Δ. We conducted randomized runs
in amanner analagous to Sect. 6.1. For the quadrotor, compared to iLQG, our method
achieved slightly better costs while requiring substantially fewer iterations and less
computation time.

6.3 Medical Needle Steering for Liver Biopsy

We also demonstrate SELQR for steering a flexible bevel-tip needle through liver
tissue while avoiding critical vasculature modeled by a trianglular mesh (Fig. 1). We
use the stochastic needle model introduced in [24], where the kinematics are defined
in SE(3). We represent the state x by the tip’s position p and orientation r (angle-
axis). The control input isu = [v,w,κ]T , where v is the insertion speed,w is the axial
rotation speed, and κ is the curvature, which can vary from 0 to amaximum curvature
of κ0 using duty-cycling. For the cost function, we set u∗ = [0, 0, 0.5κ0]T . Hence,
we penalize large insertion speed, which given l and Δ corresponds to penalizing
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Fig. 4 a B-SELQR trajectory for a car-like robot navigating to a goal (green) in a 2-D light-dark
domain (adapted from [21]). bB-SELQR trajectory for the environment with obstacles (red circles).
The blue ellipsoids show3 standard deviations of the belief distributions. B-SELQRconverges faster
than iLQG in belief space in both scenarios

path length. It also penalizes curvatures that are too large (close to the kinematic
limits of the device) or too small (requiring high-rate duty cycling, which may cause
tissue damage).

Figure3 shows the SELQR trajectories for two insertion locations withΔ = 0.1s,
l = 30, Q0 = Ql = 100I , R = I , and q = 0.5. Table1 shows SELQR’s fast
convergence for the steerable needle for varying Δ. The results are averages of
100 independent runs for random instances. In each instance, the goal state was
held constant, and we set the initial state x∗

0 such that the needle was inserted into
the tissue from a uniformly-sampled point on the left (corresponding to the skin
surface). Compared to iLQG, our method achieved approximately equal costs but
required substantially fewer iterations and less computation time.

6.4 Belief Space Planning for a Car-Like Robot

We apply B-SELQR to the car-like robot in Sect. 6.1 but now with added uncertainty
in sensing. We consider the light-dark domain scenario suggested in [21]. The robot
localizes itself using noisy measurements from sensors in the environment. The
reliability of the measurement varies as a function of the robot’s position. The robot
receives reliable measurements in the bright region and noisier measurements in the
darker regions. Formally, the observation model is

zt = xt + nt , nt ∼ N (0, ((x − x∗)2 + 1)β I ), (34)

where β ∈ R
+ is a given constant.

For belief space planning we use the cost functions

c0(b, u) = 1
2 (b − b∗

0)
T Q0(b − b∗

0) + 1
2 (u − u∗)T R(u − u∗),

ct (b, u) = 1
2 tr[

√
Σ Qt

√
Σ] + 1

2 (u − u∗)T R(u − u∗) + f (b),

cl(b, u) = 1
2 (x̂ − x∗

l )T Ql(x̂ − x∗
l ) + tr[√Σ Ql

√
Σ].

We set Q0 = 1000I , R = 2I , Qt = 10I , Ql = 500I , q = 0.1, and β = 0.1.
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Figure4 shows theB-SELQR trajectory and associated beliefs along the trajectory
for a scenario with and without obstacles. The computed control policies steer the
robot to the light region where the measurement noise is smallest in order to better
localize the robot before proceeding to the goal. We also show the convergence of
B-SELQR. We compare with iLQG executed for the same cost functions in belief
space using themethod in [20]. The statistics were computed by averaging the results
of 100 random instances. (For each random instance, we randomly sampled the initial
state x∗

0.) On average, B-SELQR requires fewer iterations to reach a desired solution
quality.

7 Conclusion

We presented Stochastic Extended LQR (SELQR), a novel optimization-based
motionplanner that computes a trajectory and associated linear control policywith the
objective of minimizing the expected value of a user-defined cost function. SELQR
applies to robotic systems that have stochastic non-linear dynamics and state- and
control-dependent motion uncertainty. We also extended SELQR to applications
with imperfect sensing, requiring motion planning in belief space. Our approach
converges faster and more reliably than related methods in both the robot’s state
space and belief space for multiple simulated scenarios, ranging from a mobile robot
to a steerable needle.

In futurework,we hope to broaden the applicability of the approach. The approach
currently assumesmotion and sensing uncertainty aremodeled usingGaussian distri-
butions.While this assumption is often appropriate, it is not valid for some problems.
Our approach also relies on first and second order information, so to improve stability
we plan to investigate the use of automatic differentiation. We also plan to apply the
methods to physical robots like steerable needles in order to efficiently account for
motion and sensing uncertainty.
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An Approximation Algorithm for Time
Optimal Multi-Robot Routing

Matthew Turpin, Nathan Michael and Vijay Kumar

Abstract This paper presents a polynomial time approximation algorithm for
Multi-Robot Routing. The Multi-Robot Routing problem seeks to plan paths for
a team of robots to visit a large number of interchangeable goal locations as quickly
as possible. As a result of providing a constant factor bound on the suboptimality
of the total distance any robot travels, the total completion time, or makespan, for
robots to visit every goal vertex using this plan is no more than 5 times the optimal
completion time. This result is significant because it provides a rigorous guarantee
on time optimality, important in applications in which teams of robots carry out time-
critical missions. These applications include autonomous exploration, surveillance,
first response, and search and rescue.

1 Introduction

The Multi-Robot Routing (MRR) problem seeks to safely and efficiently utilize
a team of N robots to visit M goal locations with no preference of which robot
visits a target or in what order the targets are visited. MRR is a common problem
in autonomous exploration, surveillance, first response, and search and rescue. For
example, consider a team of robots searching every room in a building for humans in
need of assistance. Unfortunately, even for point robots, this problem reduces to the
travelling salesman problem and as a result, generating optimal plans is NP-Hard.

This problemof allocating robots to visit spatially distributed tasks is common in
the operations research and multi-robot planning communities. There are numerous
exact and approximation algorithms with a wide range of assumptions made about
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the solutions. A particularly relevant problem is the Vehicle Routing Problem (VRP)
[8]. The VRP seeks to generates routes for a team of agents leaving a starting location
refered to as the depot, visiting a number of goal locations, and returning back to
the depot.

The VRP is especially well suited to shipping industries where trucks are phys-
ically leaving depots at the start of a shift and returning to the same depot at the end.
In the robotics community where robots are not necessarily beginning at a common
starting location, the Multiple Depot Vehicle Routing Problem (MDVRP) [15] is
considered. In the MDVRP, agents are not required to start and finish at one central
location, but can instead operate out of up to N unique locations with each agent
returning to its original depot. This makes the MDVRP more suitable than the basic
VRP for teams of robots and allows the system to replan based on updated goal
information without requiring robots to return to the depot.

Typically, solutions to the VRP seek to minimize the total distance traveled by
all robots. With this cost function, it is possible that most robots travel a relatively
short distance and a few agents must travel much further to ensure all locations are
visited, unacceptable for time criticalmissions. Consider the simple example in Fig. 1
to demonstrate that minimizing the maximum cost for any robot reduces completion
time. The minimize maximum distance formulation of the VRP is referred to as the
Minimum Maximum Vehicle Routing Problem (MMVRP) [16].

The variation of the VRP that most closely resembles this work is the Mini-
mumMaximumMultiple Depot Vehicle Routing Problem (MMMDVRP) [4]. While
a suboptimality bound of 4 times the optimal has been previously provided [1] for
the min-max N path problem, it does not include planning for robots at multiple
starting locations. To bridge this gap, this paper will choose an assignment of robots
to sequences which minimizes the maximum cost and uses solutions to the bottle-
neck assignment problem [3]. While there exist approximation algorithms for the
MDVRP [17], and the MMVRP [9], to the knowledge of the authors there are no
computationally tractable approximation algorithms to the MMMDVRP.

(a) (b) (c)

Fig. 1 Shown in a is a set of two robots and seven goals that need to be visited be either robot. b
shows the typical minimum cost solution that requires one robot to travel 7 spaces. c displays the
minimum maximum solution. The min-max solution has a total cost of 8, but will complete after
each robot travels 4 units. The minimum cost solution takes nearly twice as long to complete as the
min-max cost solution
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This paper presents a polynomial time approximation algorithm for assigning
and ordering N robots to visit M goals and is particularly relevant to the case where
M � N . The proposed algorithmproduces solutions that havemaximumcompletion
time no more than 5 times the cost of the optimal solution. While the algorithm
presenteddoes not explicitly consider collision avoidance, some simplemodifications
ensure the solution incorporates collision avoidance. Handling collision in this way
does not guarantee bounded time-optimal solutions, but does preserve the min-max
distance property. Fortunately, due to its construction, the collision free approach
tends to yield solutions with limited robot-robot interactions and will often preserve
the time-optimal bound.

After preliminaries in Sect. 2, this paper states theMulti-Robot Routing problem
definition in Sect. 3. Section4 presents Algorithm 1 that is shown to be a complete,
polynomial time approximation algorithm to the MRR problem. Some refinement
strategies are presented in Sect. 5 that often improve the solution quality. Next, Sect. 6
details how to avoid collisions between robots. Section7 presents simulation results
and the paper concludes in Sect. 8.

2 Preliminaries

In this work, N robots are tasked to visit M goal states γ = {g1, g2, . . . , gM } where
typically M � N . The initial state of robot i is xi , where σ = {x1, x2, . . . , xN }.

An underlying graph GV = (V, E) is constructed to be used for planning robot
actions to reach goal locations. This graph can be constructed in either a stochastic
or deterministic manner, but GV is required to be undirected. The cost C(v1, v2) is
the cost, or travel time, of navigating from v1 to v2. Robots are assumed to move at
constant velocity such that the cost is equivalent to the navigation distance between
vertices and therefore the functionC respects the triangle inequality. Then, define Gγ

as the graph that contains all goal vertices γ and up to
(M
2

)
edges have corresponding

feasible or safe (ignoring robot-robot collisions) finite length paths connecting the
goal states.

Sequence Si is the list of goal vertices in the order they will be visited by a robot
i . Since all goal locations must be visited by a robot, the elements in each sequence
form disjoint sets with union equal to the set of all goal locations:

{v ∈ S1} ∪ {v ∈ S2} ∪ . . . ∪ {v ∈ SN } = γ

{v ∈ Si } ∩ {v ∈ S j } = ∅ ∀i �= j

With slight abuse of notation, define the cost of traversing all edges in an ordered list
of vertices Si as C(Si ). For example, if S1 = {v1, v4, v3}, and the cost of sequence
1 is defined as C(Si ) = C(v1, v4) + C(v4, v3). Each element in a sequence can be
referenced by position in the sequence using superscripts such that in the previous
example, S(1)

1 = v1.
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A Hamiltonian path is defined as a path that visits each vertex in a set and in this
case will be represented by a sequence. Define Ĥ(vi , v j , . . .) as an approximation
to the minimum cost Hamiltonian path to visit a set of vertices. Ĥ can be computed
by doubling the Minimum Spanning Tree (MST) of all points in the set to visit,
shortcutting, and removing an edge. This can be alternatively be computed using
Algorithm 3 for higher quality solutions. However, this methods adds a substantial
computation cost.

3 Problem Statement

The cost of the optimal assignment of goals to robots and the sequencing of these
goals is defined as:

J � = minimize
S1,S2,...,SN

max
i∈{1,2,...,N } C(si , S(1)

i ) + C(Si ) (1)

This optimal solution produces a result that has the minimum maximum cost so-
lution to reach a sequence and navigate the sequence. Since the costs are assumed
to be navigation time, this will produce a minimum time solution, also known as a
minimum makespan solution.

The optimal assignment problem could be solved using brute force, however this
would require an exponential number of operations.This is a result of the N M possible
assignments of goals to robots and for each of those assignments, the minimum
cost Hamiltonian path needs to be found which has up to M ! permutations of the
goals assigned. Instead of attempting to solve the NP-Hard routing problem, this
paper provides a polynomial time heuristic approach in Algorithm 1 that generates a
solution with the maximum travel time of any robot no more than 5 times the optimal
completion time J �.

4 Approximation Algorithm

This section presents Algorithm 1, an approximation algorithm to the optimization
in (1). Algorithm 1 provides an approximation ratio of 5, meaning that the solution
produced will not have cost more than 5 times the optimal solution.

The basic flow of the method is as follows. For a given guess Ĵ , Algorithm
2 attempts to return a solution with cost no more than 5 Ĵ . If Algorithm 2 cannot
find a solution, it will be shown that no solution exists with cost smaller than Ĵ .
This implies that Ĵ < J � and Ĵ must be increased to find a solution. Line 4 in
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(a) (b) (c) (d)

Fig. 2 a displays a set of 9 goal locations as green stars and 4 start locations as red circles. The
MSF is constructed in (b). It happens in this example, that the MSF is also the result of doubling
the MSF, removing an edge and shortcutting. Then in (c), this Hamiltonian path is split into N
sequences. Finally in (d), the robots are each assigned to a sequences. Since this was successful,
the next iteration in Algorithm 2 will have a smaller value of Ĵ

Algorithm 1 performs a bisection search over Ĵ to find the smallest value of Ĵ that
returns a solution. Lines 1–3 in 1 can bemoved into 2, however the current placement
yields improved computational performance through caching. A summary graphic
of Algorithm 2 for a given guess Ĵ is displayed in Fig. 2. Now, each step in these
algorithms will be discussed in greater detail.

Algorithm 1 MultiRobotRouting
1: Compute paths to every goal state from every start and goal state, cache costs
2: Compute the Minimum Spanning Forest of Gγ

3: F ← list of edges in MSF(Gγ), sorted by cost
4: Find the minimum value Ĵ which returns a valid solution in Algorithm 2
5: if A valid solution was found then
6: return Valid solution with minimum value Ĵ
7: else
8: return No valid solution exists

Line 1 computes and caches the cost of a robot navigating from every start
location to every goal state as well as the cost of navigating from every goal to every
other goal state. Since the graph is undirected, Dijkstra’s algorithm [7] can be used
to plan from a single goal to every other vertex in the graph with complexity of
O(|E | + |V |log|V |) [10]. This step is repeated for each goal state.

Line 2 constructs a Minimum Spanning Forest (MSF) of Gγ and line 3 sorts
these edges into list F by the cost of a robot navigating the edge. These two steps
can be done in one step using Kruskal’s algorithm [13] for constructing MSFs with
complexity bound O(M2logM). Note that F has at most M − 1 edges.

Line 4 finds the minimum guess Ĵ that returns a solution to Algorithm 2. This
can be performed using bisection search with upper and lower limits of 0 and the
sum of all edge costs in the MSF plus the maximum distance each robot travels,
respectively.
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Algorithm 2 begins by initializing U , the empty set of unordered sequences
in line 1. Then, in lines 2–3 remove all edges longer than Ĵ from MSF(Gγ) and
construct the MSF of the remaining graph. This is equivalent to the MSF of the
original graph Gγ after removing all edges longer than Ĵ . Computing the MSF has
a total complexity of O (M log(M)) since there are fewer than M edges in F .

Next, in lines 5–9, sequences to visit every vertex in the goal set are found, each
of which has cost no larger than 4 Ĵ . Line 6 computes the approximate minimum
cost Hamiltonian path visiting all vertices in the tree Ti as outlined in Sect. 2 where
an Eulerian path through the graph can be found in linear time using Hierholzer’s
algorithm [11]. Line 7 computes k, the number of sequences required to visit every
vertex in tree Ti such that each sequence has cost no more than 4 Ĵ . Note that if
C(Ĥi ) is zero, this means that only one vertex is in the tree. A robot is still required
to visit the vertex and therefore k = 1 in this case. The approximate Hamiltonian
path is then split up into k sequences, each of which has cost no more than 4 Ĵ and
then each of these sequences is added to the total list of sequences to visit U . Every
input tree Ti is already a MST and each vertex is present only in one tree. Therefore
lines 5–9 have total complexity bound of Θ(M).

Line 11 checks to see if there are a feasible number of sequences to visit. If there
are more sequences than robots, the algorithm returns J � > Ĵ . If, however, there are
sufficient robots to visit the goals, then the algorithm finds the optimal assignment
of robots to sequences.

Line 12 adds empty sequences to U to ensure it has N elements. Line 13
computes the cost matrix for assignment of robots to goals. Empty sequences have
a cost of 0 as the robot does not need to move to visit every vertex in the sequence.
Since the cost of navigating every robot to every sequence must be compared, this
step has complexity bound of Θ(N 2).

Next in line 14, the bottleneck optimization problem is soved for the assignment
of robots to sequences. This has complexity bound ofO(N 3), but this can be slightly
reduced in practice by removing edges in A larger than Ĵ and using the methods
in [2].

Line 15 compares the maximum cost of reaching any sequence to the guess Ĵ .
If the maximum cost is greater than Ĵ , then the algorithm returns J � > Ĵ . Otherwise,
the algorithm returns the ordered list of sequences S, by rearranging the sequences
in U according to the optimal bottleneck assignment. Finally, the algorithm returns
this list of assigned sequences.

4.1 Optimality Bound

By construction, any path returned has cost no more than 5 Ĵ . This is a result of
the fact that each sequence added to U has cost no more than 4 times Ĵ and the
assignment ensures getting to the first vertex in a solution has cost no greater than Ĵ .

Lemma 1 Algorithm 2 never returns FAILURE unless J � > Ĵ .
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Algorithm 2 MinMax Cost Assigned Sequences( Ĵ )
1: U ← ∅
2: Define graph G Ĵ as all goal vertices and edges in the MSF(Gγ) with cost less than Ĵ
3: Compute MSF(G Ĵ )

4:
5: for Tree Ti in MSF(G Ĵ ) do

6: Compute approximate minimum cost Hamiltonian path Ĥi ← Ĥ(v ∈ Ti )

7: ki ≡ max
(⌈

C(Ĥi )

4 Ĵ

⌉
, 1

)

8: Split Ĥi into k sequences, each of which has cost no larger than 4 Ĵ
9: Add these ki sequences to set U
10:
11: if |U | ≤ N then
12: Add (N − |U |) empty sequences to U
13: Ai j ← C(si , U (1)

j ), cost to navigate robot i to the first vertex in sequence j
14: Find bottleneck assignment of A
15: if max cost of assignment ≤ Ĵ then
16: Reorder U into S using optimal assignment of robots to sequences
17: return S
18:
19: return FAILURE (this implies J � > Ĵ )

Proof There are two conditions which would result in the algorithm returning FAIL-
URE. Case 1 occurs when there are more sequences in U than there are robots to
visit sequences. Case 2 arises when the cost of assigning any robot to a sequence is
greater than Ĵ . In each of these cases, it will be shown that the algorithm will never
return FAILURE unless J � > Ĵ .

Case 1 |U | > N . This proof of correctness is a direct result of Lemma 17 presented
in [1], but will be outlined here. Assume the opposite that |U | > N and J � ≤ Ĵ . By
construction, each tree in the MSF is separated from every other tree by a distance
of at least Ĵ since any larger value is removed from the MSF. In this case, J � ≤ Ĵ
and therefore, each tree can be considered individually since any edges connecting
trees will by definition be larger than Ĵ and therefore larger than J �.

The optimal solution for tree i has connected k�
i paths. These optimal paths for

tree i can be connected into a spanning tree with edges each having cost nomore than
Ĵ . The total cost of the connecting edges is no greater than (ki −1) Ĵ and by extension
has cost less than ki J �. Therefore this spanning tree has cost no greater than 2ki J �.
Each edge of this tree can be doubled and every vertex can be visited with cost no
greater than 4ki J �. Since this is the maximum cost of any path by construction,
there is no possible way that |U | > N while simultaneously J � ≤ Ĵ , leading to a
contradiction. Therefore, the algorithm will never incorrectly return FAILURE due
to |U | > N .

Case 2 maxi C(si , S(1)
i ) > Ĵ

It is not possible for the algorithm find maxi C(si , S(1)
i ) > Ĵ when in truth

J � ≤ Ĵ . Each vertex must be visited in the optimal solution and it is clear that every
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vertex in γ can be visited by some robot with cost no greater than Ĵ . The bottleneck
assignment used explicitly minimizes the maximum cost of this assignment.

Theorem 1 Algorithm 1 either correctly returns that there is no solution to the robot
routing problem or a solution that has cost of no more than 5J �.

Proof For any sequences returned,C(Si ) ≤ 4 Ĵ is clear from construction. Similarly,
the cost of navigating robot i to sequence Si returned by Algorithm 2 is less than Ĵ .

By performing binary search over Ĵ and utilizing the correctness property in
Lemma 1, any returned solution from Algorithm 1 has the property that Ĵ ≤ J �.
Therefore, if a solution is returned, the maximum cost of any robot reaching the
assigned sequence plus the maximum sequence cost is no more than 5J � since the
maximum cost to reach any sequence is no more than J � and the maximum cost of
any sequence is 4J �. Therefore this algorithm has an approximation ratio of 5.

4.2 Completeness

Assuming the underlying graph GV is dense enough, Algorithm 1will find a solution
if a solution exists. This is due to the fact that Ĵ will continue to increase until reaching
the sum of all edges in the graph plus the maximum cost to reach any vertex. At that
point, the minimum spanning forest connects all goal vertices that can be visited by
one robot. If each tree is able to be visited, regardless of cost, it will have a successful
assignment.

4.3 Computational Complexity

This section will analyze the computational complexity for the approximation algo-
rithm in Algorithm 1.

Lines 1–3 in Algorithm 1 have complexity O
(
M (|E | + |V | log|V |) + M2

log M) as discussed previously.
The search to find the minimum feasible value of Ĵ can be reformulated to be

strongly polynomial by replacing the bisection search with binary search over all
possible breaking points for Ĵ . Finding minimum maximum sequences constitute(M
2

)
possible breaking points (see [1] for further detail) and the costs to navigate

every robot to each goal introduce an additional N M breaking points. Therefore,
Line 4 in Algorithm 1 calls Algorithm 2 a maximum of O(log M) times.

Algorithm 2 is dominated by computing the O(N 3) bottleneck assignment [2]
and computing the MSF with fewer than M edges. The overall complexity of Algo-
rithm 2 is O(N 3 + M log M).

To conclude, the overall complexity ofAlgorithm1 is:O(M(|E |+|V | log|V |)+
(N 3 + M2)log M).
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5 Refinement

This section discusses a number ofmodifications that typically result in higher quality
solutions. However, these do not reduce the optimality bound andmay add additional
computational cost.

The first improvement will be discussed in detail in Sect. 5.1. After final as-
signment of robot to goal set, it is advantageous to replan Ĥ using Algorithm 3 to
incorporate the initial conditions into the planning.

A second improvement can be made when performing the bottleneck assign-
ment. It is reasonable to not only search over the minimum maximum value of the
cost of assignment, but rather the minimum maximum value of cost of assignment
plus the cost of the segment. The success condition must also be changed such that
the total cost of a robot getting to and visiting all goals in the assigned sequence is
less then 5 Ĵ . This does not not change the proof for correctness in Theorem 1.

Finally, in line 13 of Algorithm 2, the cost can be chosen as the minimum cost
to navigate to either the first or last vertex. If the last vertex is closer to a robot, the
sequence ordering can be reversed due to the undirected graph assumption.

5.1 Sequence Refinement

With slight abuse of notation, let H �(si , Si ) be theminimum cost sequence beginning
at si and visiting every vertex in Si . While finding minimum cost Hamiltonian paths
is known to be NP-Hard, Algorithm 3 finds a suboptimal sequence Ĥ(si , Si ) and is
based on the Christofides Algorithm [5], which finds a bounded suboptimal solution
to the TSP that has cost no more than 3/2 times the optimal cost of the TSP. Lemma
2 proves that the suboptimality of this algorithm is bounded by a constant factor of
3/2 and this reordering of vertices will tend to improve performance over doubling
each edge in the MST. For ease of reference, the subscripts for si and Si are omitted
in the algorithm and for the remainder of this section.

Algorithm 3 begins in line 1 by generating the graph GS where vertices in GS

are those in S. Since one robot has been assigned to every goal in the sequence S, the
graph is connected. Adding the fact that the original graph is undirected, this graph
must be complete.

The graph G O is constructed of all vertices in the MST with odd connectivity
in line 2. It can be shown that the number of vertices in G O is even (see [5]). The
starting location s is then added to the graph G O with edge costs equal to the cost of
visiting each of vertex in the graph. Dummy vertex d is added in lines 4–5, preserving
an even number of vertices in G O . The dummy vertex is selected to have infinite
cost to the start vertex and zero cost to every other vertex. This ensures the starting
robot will be matched to exactly one non-dummy vertex.

A minimum cost perfect matching [6] is found for the vertices in G O in line 6.
The dummy vertex will each be matched with a vertex other than the start vertex.
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The Eulerian path Ĥ is constructed in line 7 such that each edge in both theMST and
in the perfect matching are visited once. The dummy vertex and duplicate vertices
are removed in line 8. The computational cost of this algorithm is dominated by the
cost for finding the minimum perfect matching, which has bounded complexity of
O(|S|3) for complete graphs [14].

Algorithm 3 SequenceRefinement Ĥ(s, S)

1: Generate complete graph GS from the set of all vertices in S
2: G O ← the set of goal vertices with odd connectivity in MST(GS)

3: Add robot start s to G O
4: d ← dummy vertex with zero cost to goal vertices, infinite cost to s
5: Add d to G O
6: M� ← minimum perfect matching for G O

7: Ĥ ← Eulerian path that begins at s, then traverses every edge in MST(GS) ∪ M�

8: Remove d and duplicate vertices from Ĥ
9: return Ĥ

Lemma 2 Algorithm 3 has approximation ratio 3/2: C(Ĥ(s, S)) ≤ 3
2C(H �(s, S))

Proof This proof follows directly from [5] but adds a dummy vertex and only con-
nects to the start vertex once.

It is clear that the sumof the cost of the edges in theminimumspanning tree is not
greater than the optimal path C(MST(GS)) ≤ C(H �). Additionally, C(M�) ≤ 1

2 H �

using the same logic as in [5]. After removing dummy vertices, but before removing
duplicate vertices, the heuristic path Ĥ traverses each edge in M� and MST(GS)

once resulting in C(Ĥ) = C(MST(GS)) + C(M�) ≤ 3
2C(H �). Since the graph

respects the triangle equality, removing duplicate vertices will only reduce the cost
of C(Ĥ).

6 Collision Avoidance

This section presents a method to ensure collision avoidance between robots for
a orthogonally connected regular grid with grid size greater than robot diameter
2R. Additionally, assume each robot moves one grid cell per unit time. It should
be noted that the results in this section do not have time-optimal solutions, but do
preserve the minimum-maximum distance optimality bound. In sufficiently open
spaces, the minimum-maximum distance solution will tend to be close to the time-
optimal solution.

First, predict the desired motion of each robot for one time step in the future.
Between the current time step and the prediction, determine if two robots are at-
tempting to swap goal states. In the event of such a crossing, robot exchange their
sets of remaining goals. This strategy will decrease the distance traveled by either
robot by at least 1 grid cell length.
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Next, in the prediction step, check for multiple robots occupying the same cell.
In this case, examine each robots’ list of remaining goals to visit. If there is a robot
occupying the cell at the current time, it exchanges sequences with the robot that
has the highest remaining cost sequence. If there is a robot currently in the cell, it is
guaranteed to move out of the cell. The robot attempting to enter the cell with highest
remaining cost is allowed to enter and all other robots remain stationary. Using this
rule, the maximum distance traveled by any robot does not increase.

These simple rules ensure the maximum distance traveled by a robot will not
increase and collisions will be avoided. Additionally, these rules ensure progress is
always being made by at least one robot and the system will eventually complete
successfully.

7 Simulation Results

This section presents some simulation results using Algorithm 1. Figure3 shows
some basic results for small scale randomly generated problems (Fig. 4).

Figure5 presents the computation time trends as a function of M for a large
number of trials with 10 robots. This figure nicely demonstrates the trends in compu-
tational time match the predictions from Sect. 4.3. In both the figure and prediction,
computing the MSF has the largest growth with respect to increasing M . One de-
viation from expectation is the fact that refinement is expected to grow cubically in
M . However, the simulations use Blossom 5 [12], a state of the art minimum weight
perfect matching solver and this cubic growth is only evident when thousands of
goals are used. Note that simulations for 10 robots visiting 200 goals reliably takes
less than 5s total computation time.

Figure6 demonstrates that the collision avoidance modification is sufficient to
ensure collision avoidance for all robots.

(a) (b) (c)

Fig. 3 Simulated trials with randomly generated consistent goal positions and varying N . Red
circles are robot start locations and green stars are goal locations. The listed Ĵ value is the smallest
value of Ĵ to return a solution for the problem. Notice how different the solutions are with different
numbers of robots. This is a result of the refinement in Sect. 5
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Fig. 4 100 simulation trials for each value of M with N = 10 to demonstrate computational
growth. Note that both the planning (red) and refinement (pink) grow roughly linearly in the number
of robots. The binary search of Algorithm 1 grows superlinear in M , but sub-quadratic as expected.
Computing the MSF has expected complexity O(M2 log M) and begins to dominate computation
time above M = 200

Fig. 5 100 simulation trials for each value of N with M = 100 to demonstrate computational
growth. In this example, all steps have about constant computation time with respect to N . The
O(N 3) expected growth for the binary search is not visible at such small values of N
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Fig. 6 a shows an a set of initial conditions to visit. Despite the high degree of interaction, it can
be seen in (b) that no two robots ever have negative clearance and therefore avoid collisions

8 Conclusion

This paper presents a centralized method for generating sequences of goals to visit
such that all goal locations are visited by point robots in no more time than a constant
factor times the optimal. The computational complexity is shown to be polynomial
in the number of robots and the number of goals. Then, a collision avoidance scheme
was designed to ensure all robots safely reach their goal location for a simplified
robot. Finally, a set of simulation results are presented to demonstrate the efficiency
of the method.

An interesting avenue for future research would be the investigation of addi-
tional refinement steps. For example, the segments currently are divided using a
simple process of attempting to minimize the largest segment. It may be possible
to incorporate the locations of robots and the assignment of robot to goals when
dividing segments. This would provide a better solution in practice, however would
still not improve the bound on suboptimality.
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Decidability of Robot Manipulation
Planning: Three Disks in the Plane

Marilena Vendittelli, Jean-Paul Laumond and Bud Mishra

Abstract This paper considers the problem of planning collision-free motion of
three disks in the plane. One of the three disks, the robot, can autonomously translate
in the plane, the other two move only when in contact with the robot. This represents
the abstract formulation of a manipulation planning problem. Despite the simplicity
of the formulation, the decidability of the problem had remained unproven so far. We
prove that the problem is decidable, i.e., there exists an exact algorithm that decides
whether a solution exists in finite time.

1 Introduction

The problem of planning collision free motion for a free-flying single-body robot
in environments populated by static obstacles has been widely studied in the past
decades and can be considered today well understood. In this paper we consider a
generalization of this basic problem by allowing the presence of movable obstacles,
i.e., objects in the environment that the robot can move by “grasping” them, while
avoiding collisions with all the obstacles and objects.

The problem of motion planning in the presence of movable obstacles was first
introduced in [1], the corresponding journal version appearing in [2], where the
decidability is proven for the case of discrete grasps. This problem was further
generalized in [3] to the so-calledmanipulation planning problemwhere themovable
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obstacles are considered as objects to be moved to reach a goal position. In that paper
the authors present an algorithm for the case of discrete placements and grasps. This
is the formulation briefly described in Chap.11 of Latombe’s book [4]. Decidability
of the problem in the case of continuous grasps and placements was shown in [5]
considering one movable object.

While [6] provides an efficient probabilistically complete algorithm in the case
of several movable obstacles, the decidability problem, i.e., the existence of an exact
algorithm that decides wether a solution exists in finite time, remained open even in
the case of two movable objects as also mentioned in [7].

In this paper we prove that the manipulation planning problem for a robot that
can freely translate in the plane and two objects that can move only if they are in
contact with the robot is decidable. The proof is based on a cell decomposition of
the collision-free contact configuration space and on a property (reduction property)
establishing the equivalence of paths continuously satisfying the contact constraint
to manipulation paths along which the objects either translate rigidly with the robot
as a single object (transfer paths) or remain in a fixed position while the robot moves
freely (transit path). To prove that the reduction property holds for the considered
manipulation model we make use of the controllability result in [8] beside providing
a constructive proof in the appendix.

Although somewhat theoretical, the presented result is expected to lay the basis for
answering important questions such as characterizing underwhich conditionsmotion
in contact can be reduced to a manipulation path and how to efficiently construct
manipulation graphs related to many different problems (climbing, walking, multi-
contact planning), how to determine the rate of convergence of probabilistic planners
for the manipulation of multiple objects.

The paper is organized as follows. In the next section we formalize the prob-
lem after defining the configuration space and its connectivity through manipulation
paths. In Sect. 3 we establish the conditions under which motion in contact can be
reduced to a manipulation path. Section4 illustrates the main steps for the con-
struction of the manipulation graph and Sect. 5 concludes the paper. Finally, in the
Appendix we propose a constructive geometric proof of the reduction property when
the robot is in contact with both obstacles.

2 Problem Formulation

Consider the scene in Fig. 1: O1 and O2 are movable objects while R can translate
autonomously in a polygonal (or semi algebraic) environment with obstacles. The
objects O1 and O2 canmove only if in contact with R; otherwise, they are considered
as fixed obstacles.
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R

O1

O2

Fig. 1 Scenario of the considered manipulation planning problem

2.1 Configuration Space

The configuration spaces of the robot and the objects are defined as:

• CR = R2, the configuration space of the robot;
• CO1 = R2, the configuration space of O1;
• CO2 = R2, the configuration space of O2.

The combined configuration space is obtained as C = CR × CO1 × CO2 = R6. A
configuration q ∈ C is given by the triplet q = (q R, q O1

, q O2
), where q R ∈ CR ,

qO1
∈ CO1 , qO2

∈ CO2 .
The collision-free configuration space Cfree is obtained by removing from C the

set of configurations:

• q R such that the robot is in contact with static obstacles or overlaps with either
static or movable obstacles;

• q O1
such that O1 overlaps with the static obstacles, the robot or with O2 (contact

between objects and obstacles is allowed);
• q O2

such that O2 overlaps with the static obstacles, the robot or with O1 (contact
between objects and obstacles is allowed).

2.2 Configuration Space Paths and Manipulation Paths

Configuration space paths may or may not include contacts. To move the objects,
however, the robot must be in contact with the objects. Paths of interest in C can be
categorized according to the three motion modalities:

• robot free motion: this is a path in C characterized by the absence of contact
between the robot and the objects;
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• single-contact motion: this is a path in C constrained by the condition of contact
between the robot and either one of the objects; along the path in contact both the
position of the robot and the position of the object relative to the robot can change;

• double-contact motion: this is a path in C constrained by the condition that the
robot is in contact with both objects; along the path the robot position and the
positions of the objects relative to the robot can change.

The above described paths might or might not be feasible for a manipulation
system depending on its characteristics. In this work we consider only manipulation
by stable grasp. This means that sliding, rolling, pushing are not included in our
analysis. Therefore, not all the configuration space paths are feasible in our setting.
Feasible motions correspond to paths of two types:

• transfer paths alongwhich either the robot grasps one of the two objects andmoves
rigidly with it (while the other remains in a fixed position) or it grasps both the
objects and moves rigidly with them; along these paths the relative configurations
between robot and objects in contact do not change;

• transit paths along which the robot moves alone and the objects remain in fixed
positions.

A sequence of transit and transfer paths is called a manipulation path.

2.3 C-Space Connectivity through Manipulation Paths

In this section we illustrate the structure of C in terms of the submanifolds defined by
the contact constraints and their interconnection through transit and transfer paths.
Figure2 shows the representative configurations in each manifold.

The embedding configuration space C has dimension 6 and foliates with the posi-
tion of the movable objects. In particular, leaves of dimension 2 correspond to fixed
positions of the two objects. Transit paths belong to one of these leaves.Manipulation
paths across the leaves (the objects change position) require leaving the manifold. A
representative configuration in this manifold is shown at the top of Fig. 2.

Configurations on the second row (from top) of Fig. 2 represent the single-contact
manifold which has dimension 5, foliates with the absolute position of one object
and the relative position of the other with respect to the robot. The leaves of interest
for the considered problem have dimension 3 and correspond to fixed positions of the
object which is not in contact with the robot. Manipulation paths across the leaves
require leaving the manifold.

The double-contact manifold, represented by the configurations on the third row
of Fig. 2, has dimension 4 and foliates with the relative position of the contact points.
The leaves of interest have dimension 3 and 2 and correspond respectively to one or
both the points of contact being fixed. Manipulation paths across the leaves require
leaving the manifold.
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Fig. 2 Structure of the configuration space C induced by the contact constraints and interconnection
of the contact submanifolds through transit and transfer paths

Finally, the triple-contact manifold has dimension 3, foliates with the position of
the contact points and the leaves have dimension 2. Manipulation paths across the
leaves require leaving the manifold.

As will be illustrated in Sect. 3.2, the “manipulability” properties associated with
these manifolds are actually transversal to this geometric structure and depend on
the controllability of the underlying manipulation system.

2.4 The Manipulation Planning Problem

Relying on the definitions and analysis of the previous sections, we can formulate
the following problem.
Manipulation Planning Problem. Given an initial configuration qs ∈ Cfree and a
goal configuration qg ∈ Cfree, find a sequence of transit and transfer paths joining
qs to qg , if it exists.

To prove that this problem is decidable we adopt the same approach as [5]. First
we study the problem of reducing the configuration space paths belonging to the
contact manifolds represented in Fig. 2 to manipulation paths. Then, we determine
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a cell decomposition of the contact space. Finally, we complete the proof with the
construction of the manipulation graph whose connected components characterize
the existence of solutions to the above defined manipulation problem.

Thefirst part of our approach consists, in fact, of answering the following question:
is it possible to reduce any collision-free configuration space path describing motion
with contact between the robot and one or both objects to a (finite) sequence of transit
and transfer paths?Answering this question requires studying the local controllability
of the manipulation system that is possible to associate with the manipulation model
adopted in this paper. The analysis is described in the following section and is based
on the result by Goodwine and Burdick [8] providing condition for controllability of
kinematic control systems on stratified configuration spaces.

3 Controllability of the Manipulation System

To answer the first part of the manipulation planning problem we define here the
simple kinematics describing the manipulation system underlying the considered
planning problem. This system has a stratified configuration space and we use the
result in [8] to establish its local controllability.

3.1 Controllability on Stratified Configuration Spaces

We briefly recall here the main definitions and properties of stratified configuration
spaces and the stratified controllability property that we prove to hold in our case.
Stratified configuration manifold (Definition 2.2 in [8]): Let M be a manifold (possi-
bly with boundary), and n functionsΦi : M �→ R, i = 1, . . . , n be such that the level
sets Si = Φ−1

i (0) ⊂ M are regular submanifolds of M , for each i , and the inter-
section of any number of the level sets, Si1i2...im = Φ−1

i1
(0) ∩ Φ−1

i2
(0) ∩ . . . Φ−1

im
(0),

m ≤ n, is also a regular submanifold of M . Then M and the functions Φi , define a
stratified configuration space.

The driftless systems defined on stratified configuration manifolds are described
on each stratum, or on strata intersections, by equations of motion characterized by
smooth vector fields and the only discontinuities present in the equations of motion
are due to transitions on and off of the strata or their intersections.
Stratified controllability (Proposition 4.4 in [8]): if there exists a nested sequence of
submanifolds at the configuration x0

x0 ∈ Sp ⊂ Sp−1 ⊂ · · · ⊂ S1 ⊂ S0 = M,

where the subscript is the codimension of the submanifold, such that the associated
involutive distributions satisfy
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p∑

j=0

−
ΔS j |x0 = Tx0 M

and each
−
ΔS j has constant rank for some neighborhood Vj ⊂ S j , of x0, then the

system is stratified controllable from x0 in M .
Stated differently, if the involutive closures of the distributions associated to each

submanifold in the nested sequence intersect transversely then the system can flow
in any direction in M .

3.2 Stratified Controllability of the Manipulation System

For the stated manipulation problem, the ambient manifold M is given by the com-
bined configuration space C and has dimension 6. The submanifolds are defined by
the contact conditions as described in Sect. 2.3. The lowest stratum is the double
contact manifold and has codimension equal to 2. There are two submanifolds of
codimension 1 (contact with only one of the two objects) and the sequence will
include only one of them.
Denote by x = (xR, yR, xO1 , yO1 , xO2 , yO2)

T a configuration of the manipulation
system, the equations of motion on each stratum are as follows. Recalling that, in the
considered setting, R can only translate in the plane and the objects can be moved
when in contactwith R with a stable grasp, the equation ofmotion on each substratum
has the form

ẋ = gSi
1 u1 + gSi

2 u2

where u1, u2 are the inputs for the manipulation system and gSi
1 , gSi

2 are the input
vector fields that have a different expression on each substratum. In particular, in
S0 = C we have

gC1 = (1, 0, 0, 0, 0, 0)T , gC2 = (0, 1, 0, 0, 0, 0)T .

These vector fields describe the free motion of the robot alone on a leaf of C that
depends on the position of the objects.

On the single-contact manifold Cc1 they have the expressions

g
Cc1
1 = (1, 0, 1, 0, 0, 0)T , g

Cc1
2 = (0, 1, 0, 1, 0, 0)T

and on Cc2

g
Cc2
1 = (1, 0, 0, 0, 1, 0)T , g

Cc2
2 = (0, 1, 0, 0, 0, 1)T .
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Fig. 3 Stratification of the configuration space induced by the contact constraints

Flowing along these vector fields amounts to moving the object in contact while
staying on a leaf that depends on the position of the object that is not touched by the
robot. Since both the single-contact manifolds have codimension 1, S1 will be equal
to either one of them in the sequence of nested submanifolds. This will however
implicitly assume that the position of one of the two objects will remain constant,
i.e., the system is flowing on a leaf of the single contact manifold.

Finally on the double-contact manifold S2 = Cc1,c2 it is

g
Cc1,c2
1 = (1, 0, 1, 0, 1, 0)T , g

Cc1,c2
2 = (0, 1, 0, 1, 0, 1)T .

On this stratum the objects move with the robot without changing the points of
contact.

It is easy to verify that the stratified controllability proposition holds by choosing
as involutive distributions

−
Δ S2 = span (g

Cc1,c2
1 g

Cc1,c2
2 )

−
Δ S1 = span (g

Cc1
1 g

Cc1
2 ) or

−
Δ S1 = span (g

Cc2
1 g

Cc2
2 )

−
Δ S0 = span (gC1 gC2 ).
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Figure3 illustrates the stratification of the configuration space induced by the
contact constraints. By virtue of the controllability property described above, any
continuous path in contact with the robot in S2 and in each leaf of S1 can be approx-
imated by a manipulation path. This is referred to as reduction property.

4 Building the Manipulation Graph

The reduction property established in the previous section leads to the conclusion
that any collision-free path in contact contained in a connected component of either
S2 or a leaf of S1 is equivalent to a manipulation path. The key issue that remains is to
build a geometric data structure that accounts for the decidability of the manipulation
problem.

We propose here an extension of the manipulation graph as it has been introduced
in [5] for the case of a single disk to move. In that case a single class GRASP
representing the admissible (i.e., not in collision with static obstacle nor overlapping
the object to move) contact configurations between the robot and the object was
defined. The nodes of the manipulation graph were then given by the connected
components of GRASP. The adjacency relation was given by the existence of transit
paths between two nodes.1

In the case of twomovable objects it is necessary to introduce two classesGRASP1
and GRASP2 and to build the manipulation graph over the connected components of
GRASP1 and GRASP2.

The class GRASP1 (resp. GRASP2) represents all the configurations in Cfree such
that the robot is in contact with the object O1 (resp. O2). This approach implies that
the position of the object which is not in contact with the robot can change within the
class. As a consequence, the reduction property shown in the previous section does
not apply on the connected components of GRASP1 and GRASP2, i.e., any path in
GRASP1 and GRASP2 cannot be necessarily approximated by a sequence of transit
and transfer paths. This is themain difference compared to the case of a single object.

The reduction property holds however inside each leaf of the foliation of GRASP1
(resp. GRASP2) that keeps constant the position of O2 (resp. O1): any path inside
these leaves can be approximated by a sequence of transit and transfer paths. These
are the leaves of dimension 3 in the manifolds defined by the contact constraints
schematically represented in Fig. 2.

The key questions are then: (i) how to determine the connected components of
GRASP1 and GRASP2, and (i i) how to build a manipulation graph that will account
for the existence of a manipulation path.

1In [9] the authors propose a generalization to the case where the object may be further subjected
to some placement constraints. The nodes of the manipulation graph are the various connected
components of Grasp ∩ Placement space and the adjacency relation is based on the existence of
either transit paths or transfer paths.
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Fig. 4 Schematic illustration of the decomposition induced by projecting a cell onto another

The answer to the first question is easy. GRASP1 and GRASP2 are components of
the 5-dimensional contact submanifold of Cfree. If there exists a cell decomposition
of the 6-dimensional space Cfree, then this cell decomposition induces by retraction
on its boundary a cell decomposition of the 5-dimensional contact space (up to some
potential singularities we do not consider in this paper). Then, such a cell decom-
position leads to a straightforward characterization of the connected components of
GRASP1 and GRASP2. The first question is then reduced to the existence of an algo-
rithm that provides a cell decomposition for the case of three disks moving freely on
a plane. It just so happens that Schwartz and Sharir [10] propose a general algorithm
for many disks as an extension of their algorithm for two disks.2

Notice that applying the retraction of the cell decompositions iteratively pro-
vides a cell decomposition of the various contact submanifolds, and ultimately a cell
decomposition of GRASPO1,O2 = GRASP1 ∩ GRASP2.

Building the manipulation graph is the second issue to be addressed. To this
end, we refine the cell decompositions of the various connected components of
GRASP1 and GRASP2 by considering their projections along the three directions
of the foliations generated by: (i) transit paths (the robot moves alone), (ii) transfer
paths of type 1 (O2 does not move), (iii) transfer paths of type 2 (O1 does not move).
As a result, the projection of a given cell C1 onto a cell C2 induces a decomposition
of C2 into several cells C2i (see Fig. 4). Henceforth, we denote by the letter c all the
cells issued from these refinement process.

Consider two points p1 and p2 in two cells c1 and c2 of GRASP1 and GRASP2
respectively. c1 and c2 are 5-dimensional. p1 and p2 belong respectively to two
3-dimensional leaves L1 and L2.

We consider two cases. Let us first consider the existence of a manipulation
path remaining in the contact space. A necessary and sufficient condition for the
existence of such a contact path between p1 and p2 is that L1 and L2 intersect same
connected component of GRASPO1,O2 . The existence of the path can be decided
by computing a refinement of the cell decomposition of GRASP1 and GRASP2 as
follows: consider the merging of the projections of both GRASP1 and GRASP2 cell
decomposition along the direction of the respective foliations onto GRASPO1,O2 . It
gives rise to a decomposition of GRASPO1,O2 into many cells. Then refine the initial

2It should be noted that this extension is not trivial and, to our knowledge, it has never been
implemented.
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cell decomposition of GRASP1 and GRASP2 by “lifting” all cells in GRASPO1,O2

along the foliations. Each elementary cell of GRASPO1,O2 appears as the basis of
two cylinders that contain cells of GRASP1 and GRASP2 respectively. The resulting
cells of GRASP1 and GRASP2 constitute the nodes of the manipulation graph.

We then introduce the following adjacency relation: two cells in GRASP1 (resp.
GRASP2) are adjacent if and only if they have a common frontier and they belong
to same cylinder. After the general method proposed in [11] it is known that the
computation of such a cylindrical decomposition is possible, though non-trivial.

For the second case, we consider the existence of a manipulation path between
p1 and p2 that goes through the free-space. The main idea is the same as for the
previous case. It is simpler because we have to consider only the foliation induced
by transit paths. The leaves of the foliation are 2-dimensional. We consider the cell
decomposition ofGRASP1 andGRASP2 after addressing the first case above.We add
an edge between two cells c1 and c2 belonging respectively to GRASP1 and GRASP2
if and only if the projection of c1 onto c2 along the foliation by transit path is not
empty.
We have then the following
Theorem: There exists a manipulation path between two configurations in the free
space if and only if these configurations retract on two cells belonging to the same
connected component of the manipulation graph.

The proof follows the same principle as the proof in [5, 9].
Wrapping up, the manipulation graph nodes are either cells of S2 or the refined

cells in S1; adjacency in the contact space is provided by transfer paths between the
refined cells; adjacency in the free space is provided by transit paths between the
refined cells.

5 Conclusion

We have shown in this paper that for the manipulation planning problem for three
disks (one robot and two movable objects) in the plane it is possible to construct an
exact representation of the admissible (i.e., collision-free and satisfying the contact
constraints) configuration space in the form of a manipulation graph to be searched
for a solution.

To prove the result, we have preliminarily generalized the so called reduction
property to the case of double contact. Then, using the cell decomposition proposed
by Schwartz and Sharir [10] and a specific analysis of the structure of the con-
figuration space, we have illustrated the fundamental steps for the construction of
the manipulation graph the connectivity of which accounts for the existence of a
manipulation path.

Future work includes studying the case of an arbitrary number of movable objects
and the adaptation of the result to more realistic manipulation systems. Different
manipulation models, possibly including pushing and sliding are also a potential
interesting evolution of this work.
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Appendix

In this section we propose a constructive geometric proof of the reduction prop-
erty for paths in configuration space constrained by contact between the robot and
both objects. Preliminary to this proof is the conceptual illustration of the contact
manifolds.

Single-Contact Manifold

Paths corresponding to motion in contact with only one object lie in a 5-dimensional
manifold immersed in Cfree that foliates with the position of the obstacle that is not
in contact. On each leaf the reduction property in [5] can be applied to transform any
path in contact into a sequence of transfer and transit paths. In principle, there exist
two identical spaces of this kind, one for each object, and they are transversal to each
other. We call these spaces Cc1 and Cc2 . Figure5 provides a conceptual illustration of
Cc1 and the paths in Cc1 and Cc1 ∩ Cc2 represented in Cc1 .

Fig. 5 Illustration of Cc1 and the paths in contact: dim(Cc1 ) = 5 while the dimension of its leaves is
3. Each leaf is a replication of the configuration space of R in contact with O1, the only difference
between leaves being the position of O2. A path in contact with both O1 and O2 is transversal to
the leaves spanning Cc1 . The manifold of contact configurations between R and O2 has the same
structure but is transversal to the space illustrated in the figure
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Double-Contact Manifold

Paths of the robot in contact with both objects belong to the 4-dimensional manifold
Cc1,c2 = Cc1 ∩ Cc2 at the intersection between Cc1 and Cc2 . A path in contact with
both objects is represented by the green dashed path in Fig. 6 as a path “across” the
foliation of one of the single-contact manifolds.

We start with the following claim: Because of the foliations of Cc1 and Cc2 , any path in
this manifold should be equivalent to a sequence of transfer paths with two contacts
and paths in either Cc1 or Cc2 . Figure6 shows an example of such a decomposition:
the green dashed path in contact with both objects can be reduced to the sequence
composed by the black dotted path and the blue continuous path. Along the black
dotted path both objects are in contact and the contact points do not change along the
path. The path terminates where one of the object has reached the desired position.
The blue path is a single-contact path lying on a leaf of one of the single contact
manifolds. We know that the reduction property applies to paths in contact lying on
either of these two manifolds, therefore, we only need to show that the green dashed
path is equivalent to the sequence of black and blue paths. Figure7 illustrates the
property through an example: given the initial and the final configurations, respec-
tively qs and qg , any path in the double-contact manifold is admissible. Figure8
shows how to reduce it to a sequence of transfer and transit paths. A formal proof to
this Generalized Reduction Property follows.

Fig. 6 Illustration of the “reduction property” to be proven: is the dashed green path equivalent to
the sequence of dotted and blue (continous) path?
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Fig. 7 Any path in the double-contact manifold is admissible to go from qs to qg but not any path
is a manipulation path

Fig. 8 Can any path in the double-contact manifold be “reduced” to a sequence of transfer and
transit paths as in the figure?

Generalized Reduction Property

Generalized Reduction Property: Any two configurations belonging to the same
connected component of the double-contact manifold can be connected by a manip-
ulation path.

Proof It is a direct generalization of the reduction property proof in [5]. Let qa and
qb be two configurations in the double-contact manifold connected by a collision-
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free path in Cc1,c2 . Note that, since the robot is not allowed to move in contact with
static obstacles, this path is actually contained in the subset C̃c1,c2 of Cc1,c2 of all
configurations such that the robot is not in contact with any static obstacle. This is
an open set in CR but might not be in C.

Denoted the collision-free path as p : [0, 1] → C̃c1,c2 , with p(0) = qa and
p(1) = qb, some preliminary definitions are in order:

pR : projection of p on CR ;
pO1

: projection of p on CO1 ;
pO2

: projection of p on CO2 ;
pR−O1

: contact configuration relative to object O1 on p;
pR−O2

: contact configuration relative to object O2 on p.

Assume that the objects can neither be in contact with obstacles nor in con-
tact between themselves (quite unrealistic, to be removed later) and let q = p(s),
s ∈ [0, 1], be a configuration on the path. Due to the non-contact hypothesis, it is
always possible to define an open ball B1 in the collision-free single-contact config-
uration space Cc1,free, centered on the contact configuration pR−O1

(s)3 and without
considering O2. Its projection Dε1 in CR is homeomorphic to a disk of radius ε1 > 0.
The object O1 will not collide with obstacles as long as it is in contact with R ∈ Dε1 .
In the same way there exists a ball B2 in the collision-free single-contact configura-
tion space Cc2,free, centered on the contact configuration pR−O2

(s). Its projection Dε2
in CR is a disk of radius ε2 > 0.

Denote by ε = min{ε1, ε2}. Due to the continuity of p, there exists an ηR > 0
such that

∀τ ∈]s − ηR, s + ηR[, pR(τ ) ∈ Dε/2,

an η1 > 0 such that

∀τ∈]s−η1,s+η1[,||( pR(τ )− pO1
(τ ))−( pR(s)− pO1

(s))||<ε/4,

and an η2 > 0 such that

∀τ∈]s−η2,s+η2[,||( pR(τ )− pO2
(τ ))−( pR(s)− pO2

(s))||<ε/4.

Denote by η3 = min{η1, η2}, and conclude that

∀τ∈]s−η3,s+η3[,||( pO2
(τ )− pO1

(τ ))−( pO2
(s)− pO1

(s))||<ε/2.

Consider now η = min{ηR, η3} and two configurations along the path: q1 = p(τ1)
and q2 = p(τ2), with τ1 < τ2 and both in the interval ]s − η, s + η[.

The path p(τ ) = ( pR(τ ), pO1
(τ ), pO2

(τ )), τ ∈ [τ1, τ2] that transfers of O1 in
double-contact can be written as

3This is a point in Cc1 .
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pR(τ ) = pO1
(τ ) + ( pR(τ1) − pO1

(τ1))

pO1
(τ ) = pO1

(τ )

pO2
(τ ) = pO1

(τ ) + ( pO2
(τ1) − pO1

(τ1)),

and the transfer path p(τ ) = ( pR(τ ), pO1
(τ ), pO2

(τ )), τ ∈ [τ1, τ2] of O2 in single-
contact to its goal position

pR(τ ) = pO1
(τ2) + ( pO2

(τ ) − pO1
(τ )) + ( pR(τ1) − pO2

(τ1))

pO1
(τ ) = pO1

(τ2)

pO2
(τ ) = pO1

(τ2) + ( pO2
(τ ) − pO1

(τ )).

Finally, transit path p(τ ) = ( pR(τ ), pO1
(τ ), pO2

(τ )), τ ∈ [τ1, τ2] of R to its
goal:

pR(τ ) = pO2
(τ2) + ( pR(τ ) − pO2

(τ ))

pO1
(τ ) = pO1

(τ2)

pO2
(τ ) = pO2

(τ2).

As a result of the choice of η these paths should all be feasible, i.e., collision-free.
A symmetric argument can be provided if O2 is transferred first to its goal position.	

This proof could be completed by considering the case of objects-obstacles and
object-objects contacts, but omitted due to lack of space. The critical point in this case
is that double-contact motion could not be allowed because it would not be possible
to define an open disk in either of the two one-contact manifolds. It is then necessary
to prove that a motion in double contact can be reduced to a sequence of motions
in single contact. To achieve this reduction it is sufficient to break both contacts and
move back to one of the two single-contact manifolds where the reduction property
holds. It is, in fact, possible to show that there always exists a set of “escape”directions
allowing the robot to un-grasp both obstacles.
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A Topological Perspective on Cycling
Robots for Full Tree Coverage

Han Wang, Cheng Chen and Yuliy Baryshnikov

Abstract We study the topology of the space of coverings for a metric tree with
disks embedded in the tree. Focusing on the coverings with excess one disk, we
prove that its topological structure is that of a Cayley graph of the permutation group
Sn . What follows is a centralized algorithm for stabilizing periodic swarm coverings
based upon feedback control with the designed vector field on a maximal subset of
the space, removing discontinuity loci.

Keywords Swarm control · Space of coverings ·Metric tree ·Hybrid vector field ·
Cayley graph

1 Introduction

Robotic coverage bymulti-agent systems is an important area (see an early survey [7])
with many facets and research threads. Here we consider a quite natural scenario:
a finite number of mobile agents, equipped with sensors (for simplicity, we restrict
ourselves here with constant sensing radii) need to cover a terrain of interest at all
times. This is the full coverage condition that is to be maintained by the multi-agent
system. As the condition is collective, depending on the positions of all agents, it
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Fig. 1 Mobile robots move in a nontrivial “cloud” space of coverings with each point in this space
corresponding to a full coverage of the target terrain in green; the target terrain is then simplified
to a metric tree covered by flat disks of different colors. The arrow on the right figure shows the
possible movement of a flat disk of radius r on the tree

is natural to consider the corresponding object, the space of coverings defined as
follows:

Definition 1 In a compact metric space X ⊂ R
d , denote by B(x, r) ⊂ X the metric

ball (or disk) of radius r centered at x ∈ X . The space of (labelled) coverings (SoC)
is defined as:

Covn(r, X) = {(x1, x2, . . . , xn) :
⋃

i∈[n]
B(xi , r) ⊇ X}. (1)

Note that the space is a subset of Cartesian power of X :

Covn(r, X) ⊂ Xn .

In this sense it can be viewed as a configuration space points of which represent
configurations of the multi-agent system: this usage is common in topology (and
topological robotics, compare [10]), but can perhaps evoke somemisleading allusions
to mechanics. We use the term here exclusively in topological sense.

Many fundamental questions related to covering configurations can be rendered
in terms of understanding the structure of Covn(r, X). Here, we study a particular
question of finding a feedback control stabilizing on a periodic trajectory in the
covering space Covn(r, X).

This problem is highly nontrivial as the topology of the space of coverings is
highly nontrivial even in the simplest situations, and depends on the metric and
topological properties of the covered terrain X . This paper deals with one of the
simplest terrains X , a metric tree. The metric trees can be treated in practice either as
some approximations of the target terrain (eg., [4]1), or subregion coverage we want
to reinforce with absolute coverage. Figure1 illustrates the imaginative scenario for
our motivation.

1We point out that coverage on a graph in our setting is completely different from [4], where the
coverage on a graph means exhaustive visits of all the vertices of the graph.
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Even for such simple (1-dimensional, simply connected) spaces X , the corre-
sponding SoCs have rich topological properties, due to a fascinating interplay of
topological and combinatorial properties.

We will be working exclusively with the excess 1 SoCs. By excess we understand
the difference of n, the number of mobile agents, with the minimal number of agents
required to cover X at given sensing radius (i.e. smallest l such that Covl(r, X) �= ∅).

The topology of the SoC is important from the viewpoint of feedback stabilization:
continuity of the feedback control cannot be possible if the topology (more precisely,
the homotopy type) of the SoC does not match that of the limiting cycle [21]. This,
of course, necessitates introduction of discontinuities (e.g. switched systems [16]).
In the situation of the coverage problem of a metric tree we will see that the topology
of the SoC differs from that of the limiting cycle, precluding the existence of a
continuous vector field for the feedback stabilization.

2 Relation to Previous Work

Topology is the key ingredient here. The idea of using (algebraic) topology in motion
planning has a long tradition. One particular inspiration for us was the work [12]
where the authors designed a vector field on the topological configuration space for
a two-cooperative-robot system operated on a Y-shaped graph to conduct a periodic
motion. As a recent example, [3] studies the topology of the configuration space of
a legged locomotion. The authors built there a two-step feedback control to stabilize
the centipede to a desired motion. In the same spirit, we use the topology of the SoC.
More generally, the topological robotics evolved into a thriving area, with several
recent developments reported in [10].

As the main task constraining the multi-agent system we consider here is the
coverage of a domain, it is worth reviewing a few of the relevant references here. We
emphasize that most of the literatures deal with the static coverage thus [8, 9, 19,
24] deal with the problem of finding a covering configuration by the agents (which
can be interpreted as the problem of finding a control with Covn(r, X) being an
attractor), perhaps with some quality guarantees, so that a configuration optimal in
some sense is sought (with either centralized or decentralized controls).

Many versions of the coverage problem have tangential resemblance with our
setup: thus one might request that all points of the terrain has been sensed by the
agents, or that some targets (mobile or not, always or intermittently visible etc.) are
sensed. Such problems are addressed by papers on sweep coverage [6, 13] and lawn-
mower type coverage [15], search [20, 23] and exploration [4], ergodic dynamics
for uniform coverage [17] etc.

What we consider is the dynamic coverage type problem, where maintaining
the coverage is strictly enforced, which has not been considered yet in previous
literatures. Rigorous consideration of the topology of the resulting configuration
spaces and their implications for the feedback are novel, and has not been considered
elsewhere.
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The remaining part of the paper is arranged as follows. In Sect. 3, we introduce
relevant topological background and the mathematical setting with respect to the
coverage problem onmetric trees.We also present a theorem connecting the topology
of the space of coverings withCayley graphs. In Sect. 4, comparisons of the topology
of the spaces of coverings for two prototypical types of trees are presented. In Sect. 5,
we provide an elegant proof of our theorem using induction. In Sect. 6, a design of
patrol pattern on the space of coverings is demonstrated with a ‘minimal’ cut as we
remove discontinuous loci for the vector field. In Sect. 7, a numerical example of this
design is shown to stabilize the multi-agent system on a Y-shaped graph, and our
stability result is presented in the simulation.

3 Settings

We present in this section our special setting for studying the spaces of coverings,
together with necessary notions from graphs, topology and group theory.

3.1 Metric Tree

A metric tree Γ = (V, E,ω) is a tree with vertex set V and edge set E that all edges
in E are closed line segments in R that are homeomorphic to [0, 1], and the weight
map ω : E → R

+ suggests the length ω(e) of e. ω induces a metric d on Γ , where
d(x, y) is the length of the shortest path connecting the points x and y on the graph.

A flat disk B(x, r) centered at x with radius r consists of all points on Γ at
distance at most r from x . The right figure in Fig. 1 shows flat disks (of possible
different sizes) covering a metric tree.

3.2 Spaces of the Coverings

According to (1), the number of degrees of freedom of the system (dimension for
Covn(r, X)) increases as n increases with a fixed r . In general we are interested with
the topology of Covn(r, X) with different values of r and n. The topology of the
covered terrain X also determines Covn(r, X).

Suppose we have n coverings and k is the least number we need to cover X , the
excess number is defined to be n − k.

Studying the topology ofCovn(r, Γ ) in general is highly nontrivial, simplification
of Covn(r, Γ ) partly depends on the excess number of the coverings. The smallest
dimension of the subspace which Covn(r, Γ ) can be reduced into without changing
the topological invariant relies on the excess number. In this paper we will concen-
trate on the case of excess number being 1, as this case yields the first nontrivial
topology of the space of coverings.



A Topological Perspective on Cycling Robots for Full Tree Coverage 663

Let Γn be a metric graph with n edges and the weight map ω being the constant 1.
We consider the space of coverings for Γn with excess one covering disk as follows:

Covn+1(Γn) := Covn+1(1/2, Γn).

3.3 Topological Invariant

Given two topological spaces X and Y , suppose we have two continuous maps f
and g from X to Y . A homotopy H between f and g is a continuous map from
X ×[0, 1] → Y satisfying H(x, 0) = f (x) and H(x, 1) = g(x). If such map exists,
f is homotopic to g.
Two spaces X andY arehomotopy equivalent if there exists continuous functions

f : X → Y and g : Y → X such that f ◦ g is homotopic to identity map idY on Y ,
and g ◦ f is homotopic to identity map idX on X . Roughly speaking, two spaces
are homotopy equivalent if one can be deformed continuously into the other. If two
spaces are homotopy equivalent, we say they are of the same topological type, for
they share many topological invariants. Interested readers can consult [1] or [14] for
more details.

One topological invariant, namely, Euler Characteristic, classically defined on
the surfaces of polytopes as the alternating sum of the number of facets, edges
and vertices (χ = V − E + F) is also invariant for two homotopy equivalent cell
complexes consisting of cells in different dimensions (see e.g., [14]). In such setting,
Euler characteristic can be defined as

χ =
∑

i

(−1)i ni ,

whereni is the number of i-dimensional cells.Many topological spaces canbe studied
as cell complexes. An undirected graph, for example, can be seen as a 1-dimensional
cell complex. One can also consult [18] for a basic topology introduction in the
setting of robot motion planning.

3.4 Cayley Graph of the Permutation Group Sn

Given a group G and a subset R of G, the Cayley graph of G with a generating set R
is the directed graph C(G, R) with vertex set identified with G, and an edge (g, gr)

for each g ∈ G, and r ∈ R. In particular, if R = R−1 (for any r ∈ R, r−1 ∈ R), then
C(G, R) is an undirected graph.

The permutation group Sn is the set of permutations of [n], i.e., the set of bijec-
tions from [n] to [n]. We follow the common convention of denoting a permutation
as an ordered n-tuple σ = (π1π2 . . . πn) with πk ∈ [n], for k = 1, . . . , n. Applying
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1,2,3,4

2,1,3,4 1,3,2,4 1,2,4,3

2,3,1,4 2,1,4,3 3,1,2,4 1,3,4,2 1,4,2,3

3,2,1,4 2,3,4,1 2,4,1,3 3,1,4,2 1,4,3,2 4,1,2,3

3,2,4,1 2,4,3,1 4,2,1,3 3,4,1,2 4,1,3,2

3,4,2,1 4,2,3,1 4,3,1,2

4,3,2,1

Fig. 2 Covering L3 with 4 disks is shownon the left,Cov4(L3) deform retracts to the 1-dimensional
object: the 1-skeleton of the permutahedron P4, a truncated octahedron (in the middle), the same
topological type. The 1-skeleton again can be represented as the Cayley graph of S4 with generating
set {(1, 2), (2, 3), (3, 4)} on the right

one permutation after another can be seen as the product of two permutations, which
is also a permutation; this is why Sn is a group. A transposition, denoted as (i, j),
where i, j ∈ [n] and i �= j , indicates that the i th position is swapped with the j th
position for some permutation. We are interested with the generating set R consist-
ing of only transpositions. For example, the Cayley graph of S4 with generating set
{(1, 2), (2, 3), (3, 4)} is shown in Fig. 2 on the right.

To any set R of transpositions of Sn , we can associate a primitive graph, with
vertex set [n], and edges representing all transpositions in R.

With all the needed preparations, we can now present our main topological result.

Theorem 1
Covn+1(Γn) 	h C(Sn+1, R),

where R is the generating set of transpositions whose primitive graph is Γn, and 	h

stands for “homotopy equivalent”.

The proof of Theorem 1 is shown in Sect. 5.

Theorem 2
Covn(r, I ) 	h Skelk(Pn),

where I is the unit interval and k = n − 
 1
2r �, Skelk stands for the k-th skeleton,

which is the union of all the k-dimensional faces of a polytope. Pn stands for the
polytope of a permutahedron, which is the convex hull of all vectors that are obtained
by permuting the coordinates of the vector (1, 2, . . . , n).

The permutahedron is an interesting polytope whose vertices can be identified
with the permutations of Sn as described in [25]. Its 1-skeleton can be identified
with some Cayley graph. The proof of this result is presented in [2] and is related
to the topology of certain diagonal subspace arrangements, see [5]. In the following
section, we present the special case with n = 4 and excess 1 in Theorem 2 for one’s
convenience together with some topological intuitions.
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4 Example: Chain Versus Dandelion

Ann-chain is ametric tree Ln withn edges of unit length and2 leaves.Ann-dandelion
is a metric tree Xn with n edges of unit length and n leaves.

Consider the generating sets

R1
n+1 = {(1, 2), (2, 3), . . . , (n, n + 1)},

R2
n+1 = {(1, 2), (1, 3), . . . , (1, n + 1)}.

Note that Ri
n+1 = (Ri

n+1)
−1 for i = 1, 2, so C(Sn+1, Ri

n+1) are both undirected
graphs.

It is clear immediately that the primitive graph of R1
n+1 is Ln ; the primitive graph

of R2
n+1 is Xn .

4.1 Covering L3 with Excess One

According to Theorem 2, Cov4(L3) has the homotopy type of 1-skeleton of P4, the
permutahedron with 4! vertices. Edges are formed by adjacent transpositions of the
coordinates of vertices. Therefore the 1-skeleton of P4 is the Cayley graph of S4
with generating set R1

4. To understand the theorem, one can imagine three covering
disks situated on each edge with one excess. On a single edge which is covered by
two disks, we have some freedom of moving them. In such a case, we can first order
them on the edge, if their order does not change (no switch), the configuration space
for the two points is just homotopy equivalent to a point; if they do change the order,
we can see this as switch of jobs: the one with lower order takes charge of covering
the whole edge, and the other with higher order becomes a freely roaming disk on
the graph. The roaming one can switch others out too, the minimal rotational switch
among three covering disks is achieved on two neighboring edges. Hence, the SoC
of L3 restricted on any two neighboring edges with three disks B(xi , 1/2) can be
retracted to, geometrically, a hexagon. In other words, a hexagon is formed when
three disks are switched with one another. Different hexagons are glued together at
places where they share common configurations. Figure2 presents the SoC first as
the gluing of hexagons (middle), which finally turns into the 1-skeleton of P4. More
details are given in [22].

4.2 Covering Y Graph (X3) with Excess One

This example highlights our gluing technique and shows interesting topological struc-
tures compared with Cov4(L3). If one fixes a specific covering disk on one branch,
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the other two branches with three covering disks will yield a hexagon in the SoC by
a rotational switch among the disks on the two edges. The total number of hexagons
in Cov4(Y ) depends on the choice of the neighboring two edges on Y and that of
the fixed covering disk as well. There are 4 options of the fixed disk and 3 options of
the edge for the disk to cover, thus there are 4 × 3 = 12 hexagons in Cov4(Y ). We
construct Cov4(Y ) by gluing the 12 hexagons. To realize the gluing pattern we can
create imaginary mid-points on the edges of the original 12 hexagons, representing
the roaming disk’s position at the central vertex while moving on the edge. Figure3
illustrates how to visualize the gluing for three neighboring hexagons.

Alternatively, consider any permutation (an ordered 4-tuple) s ∈ S4 representing
a covering configuration that the i + 1st element in s covers the i th branch of Y by
resting at the mid-point of that branch, and the first element in s lies at the central
vertex. A little reflection shall convince us that each edge of the above mentioned
12 hexagons can be labelled by some s ∈ S4. We can make each hexagon into the
dual one with each vertex labelled by s ∈ S4 and each edge labelled by an ordered
3-partition of the set {1, 2, 3, 4}. Since the hexagons share a vertex if and only if
the labelings are the same, the degree of any vertex is 3, and an edge is shared
by 2 hexagons. Therefore, we have 12 hexagons, 24 vertices and 36 edges to form
Cov4(Y ) as a 1-complex. The graph is known as the Nauru graph, which is toroidal
and thus can be realized on a torus. Moreover, the Nauru graph is the Cayley graph
of S4 with generating set R2

4.
Comparing the above results for L3 and Y is quite interesting. Cov4(L3) can be

embedded on a sphere while Cov4(Y ) can be embedded on a torus. Yet a straight-
forward counting tells us they have the same Euler characteristic invariant. The
two Cayley graphs of Sn+1, on the other hand, have different expansion properties.
C(Sn+1, R2

n+1) is a better expander than C(Sn+1, R1
n+1), as known facts pointed out

in [11].

Fig. 3 Covering Y with 4 disks is shown on the left (note that the central disk has partial coverage
of all the branches), after the gluing in the middle, Cov4(Y ) becomes a Cayley graph of S4 with
generating set {(1, 2), (1, 3), (1, 4)} on the right, known as the Nauru graph, which is able to be
embedded on a torus
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5 Proof of Theorem 1

To prove Theorem 1, we denote the vertex set of the tree as V = {v1, . . . , vn+1}.
For σ = (π1 . . . πn+1) ∈ Sn+1, consider C̃ovσ as the subset of Covn+1(Γn) with the
constraints that vi ∈ B(xπi , 1/2), ∀i ∈ [n]. It follows

Covn+1(Γn) =
⋃

σ∈Sn+1

C̃ovσ.

Lemma 1 C̃ovσ is homotopy equivalent to a point.

Proof Consider disks B(xπi , 1/2) covering leaves of Γn , we can move them to the
mid-point of the edge that leads to leaf vi ; delete the edge connecting the leaves as
well as the covering disks on that edge, treat the rest as a subtree of Γn and repeat the
above procedure. When we are left with two disks, fix their centers at the mid-point
of the last edge with all the other disks each fixed at the mid-point of some edge. The
procedure yields deformation retracts from C̃ovσ to the ending configuration point.
�

Lemma 2 C̃ovσ1 and C̃ovσ2 can deformation retract to the same point if and only
if σ1 and σ2 differ by a transposition (i, j), and e = (vi , v j ) is an edge of Γn.

Proof C̃ovσ1 and C̃ovσ2 can only intersect at the configuration with (vi , v j ) covered
by two disks centering at the mid-point of the edge. �

Now we can prove Theorem 1:

Proof We proceed by induction. When n = 2, the tree is an unit interval, it is clear
thatCov2(Γ1) is homotopy equivalent toC(S2, (1, 2)), which is an edge. The vertices
inC(S2, (1, 2)) are (12) and (21), representing covering conditions that vi is covered
by B(xi , 1/2), or by B(x3−i , 1/2), for i = 1, 2.

Suppose Covn(Γn−1) 	h C(Sn, R). The vertices in C(Sn, R) are n-tuples
(π1π2 . . . πn) representing the covering condition that vi ∈ B(xπi , 1/2). If we con-
nect one more vertex (leaf) vn+1 to some node vp in Γn−1, we get Γn . We also add
another disk B(xn+1, 1/2).

Consider a subset of Covn+1(Γn) as follows:

{(x1, . . . , xn+1) : (x1, . . . , x̂k, . . . , xn+1) ∈ Covn(Γn−1), B(xk, 1/2) 
 vn+1},

where k = 1, . . . , n +1, and the ‘hat’ symbol over xk indicates that B(xk, 1/2) is not
considered in Covn(Γn−1). It is easy to see that the subset is homotopy equivalent
to Covn(Γn−1), the symmetry implies that we have n + 1 copies of Covn(Γn−1) in
Covn+1(Γn) by allowing one among all n + 1 disks to cover vn+1. By assumption,
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Covn(Γn−1) 	 C(Sn, R), soCovn+1(Γn) has (n+1)n! = (n+1)! vertices, each rep-
resented by a permutation of [n]∪{n+1}. For two permutationsσ1 = (π1 . . . πnn+1)
and σ2, C̃ovσ1 is connected directly with C̃ovσ2 by an edge if σ1 and σ2 differ by
the n + 1st position in σ1 and the pth position (of the first n positions) in σ2.
Note that (p, n + 1) ∪ R generates Sn+1, so Covn+1(Γn) 	 C(Sn, R′), where
R′ = (p, n + 1) ∪ R. �

6 Feedback Stabilization

We want to implement patrol, i.e., a periodic cycle of the multi-robot system in the
SoC. Assuming a station for the robots is placed somewhere on the metric tree, and
one wants to periodically drive each robot to the station for recharging or making
shift. Such patrol corresponds to a trajectory γ in Covn+1(Γn).

Suppose we have a vector field v defined on γ. A feedback stabilization for γ is
a dynamical system

ẋ = f (x,u),

with u being the continuous feedback control and f (x,u) coincides with v on γ, this
system has γ as the attractor, so γ is also called the limiting cycle.

The topology of the SoC forbids a closed-loop feedback stabilization in the SoC.
To address this issue, we follow [3] to construct hybrid vector fields in accordance
with the topological properties of the configuration space. Define an admissible basin
for γ as an open subsetBswhere a continuous vector field can be designed to stabilize
the system. Then a cut is a complement set of Bs in Covn+1(Γn).

The cut set should correspond to discontinuous loci of the hybrid vector field. A
natural question follows as to how small the cut can be. According to Theorem 1, a
simple enumeration yields the Euler characteristic χ = #(v) − #(e) = (n + 1)! −
(n + 1)!n/2 = −(n + 1)!(n − 2)/2, therefore Covn+1(Γn) is homotopy equivalent
to a wedge sum of circles, which is also known as a bouquet, i.e., the circles are
touched at a point. By making cuts on some of the circles of the bouquet, we turn
the remaining parts into one topological circle γ. Therefore, the ‘minimal’ cut in a
set-theoretic sense according to [3] is a set of (n + 1)!(n − 2)/2 isolated points.

We propose a hybrid vector field v defined on Bs as follows:

ẋ = f p(x,u), p ∈ Sn+1,

where u is the feedback control and p is the switching signal expressed by one of
the elements in Sn+1. This system is said to stabilizing on γ if γ is attractive within
Bs.



A Topological Perspective on Cycling Robots for Full Tree Coverage 669

6.1 Vector Field Design for Patrols

Generally, we define patrol in the SoC in the following sense:

Definition 2 A patrol for coverage on a terrain X with the base set B ⊂ X is a
periodic trajectory in the SoC Covn(r, X), i.e. a mapping γ : S1 → Covn(r, X)

such that each of the n agents visits B.

In the paper we focus on a particular form of patrol, i.e., a repeated coverage on
a metric tree Γn as a periodic trajectory in the SoC such that each of the disks visits
every edge (in a prescribed order).2 In the sequel of the paper we simply call our
scheme a patrol, even though more general scenarios shall be explored for future
work.

We define γi recursively as a patrol on a sub-tree with i edges in Γi+1, i.e., by
removing one edge that leads to a leaf in Γi+1, for i = 1, . . . , n − 1.

Based on the definition of γi , we have a natural order for all the edges of Γn

according to their removal order (first removed edge comes first). Assume we also
have vector fields vi which are defined in the SoC and attracted to γi , for i = 1, . . . , n.
The design of such vector fields for our patrol pattern consists of two stages:

1. Rearrange the covering disks so that every edge is covered by exactly one disk
except for one covered by two disks, decide the free roaming disk from the two.

2. On each level of patrol γi , i = 1, . . . , n, vi is implemented according to some
instruction cycle described by ordered generating subset from R.

The first stage is implemented following the idea of proof for Lemma 1 in order to
decide the excess disk for roaming. For the second stage to reach γn , we arrange all
the elements in our generating set R at the level of γl to an instruction cycle {qi }l

i=1
according to the order of the edges. Each qi is an indicator of the specific edge that
is covered by two disks, and a switch of job (one disk is fixed and the other is free to
roam) is done on the edge, via the instruction of qi . In order to implement Theorem 1,
we also define the following:

Definition 3 A cycle realization of a patrol γl , l = 2, 3, . . . , n is a mapping γ̂l :
S1 → C(Sl+1, {qi }l

i=1) which captures the patrol pattern of γl . The set of vertices
of C(Sl+1, {qi }l

i=1) is called the permutation set for γ̂l .

Then with an initial state (permutation in Sl+1), the trajectory of γ̂l can be
described using path on the Cayley graph on Sl+1 generated by {qi }; the vertices
of the graph play the role of ‘landmarks’. We denote {V c} as the vertices of the
Cayley graph on Sl+1.

For example, when l = 2, suppose we have q1 = (2, 3), q2 = (1, 2), with initial
configuration labelled as V c

1 = (123) in C(S3, {qi }2i=1). Then the trajectory for γ̂2 is
expressed as follows:

2We use cycle (σ1, . . . ,σn+1) to indicate the visiting order for each disk on every edge of Γn . This
notation is not to be confused with a permutation. It means σi is switched with σi+1 and σn+1 is
switched with σ1.
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V c
1 = (123) → V c

2 = (132) → V c
3 = (312) → V c

4 = (321)

→ V c
5 = (231) → V c

6 = (213) → V c
1 = (123).

By induction, we immediately have

Proposition 1 The trajectory of γ̂l can be obtained by repeating the instruction
cycle {qi }l

i=1 l + 1 times, for different level l = 1, . . . , n.

Note that γ̂l and ˆγl+1 have vertices as their common landmarks, since by con-
struction of γ̂l we can always extend vertices of the Cayley graph on Sl+1 to those of
the Cayley graph on Sl+2 by extending instruction {qi }l

i=1 with ql+1. Therefore, any
initial state on Covn+1(Γn) can be matched and attracted to a permutation on γ̂l , for
some l = 2, . . . , n. Then, the state can be driven from γ̂l to ˆγl+1 through common
vertices between these trajectories. Finally, the state will be able to arrive at γ̂n and
periodically move along it. This leads to our finding of the minimal cut.

6.2 Minimal Cut

A hybrid vector field can be built corresponding to the pattern we have shown, and
the minimal cut on Covn+1(Γn) is able to be derived to implement the hybrid vector
field.

Proposition 2 In order to drive any initial state to the limiting cycle γn continuously,
a cut set should consist of cuts made on (n + 1)!(n − 2)/2 edges of C(Sn+1, R).

Proof We consider the k-th level SoC denoted as Ck+1, which is a subspace of
Covn+1(Γn) formed by permutating k + 1 disks while fixing n − k disks on the first
n − k edges. To calculate the number of cuts, we point out the following facts:

• We have Πn+1
i=k+2i choices of Ck+1, each of which contains (k + 1)! vertices.

• Every vertex in Ck+1 is connected to a vertex in a neighboring Ck+1 by an edge,
which can be denoted by qn−k . And there are one cut in each of these edges except
for the entrance and exit edges of some γ̂k in Ck+1 to ˆγk+1.

• There is an extra cut within each γ̂k in Ck+1.

According to these facts, the number of cuts on the edges between each Ck+1 and its
neighbors is ((k + 1)! − 2), and these cuts are simultaneously shared by two Ck+1.
Thus, including the one inside, one Ck+1 should produce [((k + 1)! − 2)/2 + 1] =
(k + 1)!/2 cuts. We have Πn+1

i=k+2i choices of Ck+1 and k can be any element in

{2, 3, . . . , n}, which leads the total number of cuts to (Πn+1
i=k+2i)(k +1)!(n −2)/2 =

(n+1)!(n−2)/2. This resultmatches theminimal cutwe require from the topological
perspective of the SoC. �
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7 Numerical Implementation of Patrol on Y Graph

In this section, we will construct a hybrid feedback stabilization on the SoC of the
Y graph for γ3 we desire. A topological visualization of the configuration space of
Y with labeled vertices and the diagram of our desired patrol in the SoC is shown in
Fig. 4.

Recall Cov4(Y ) 	h C(S4, R), where R = {(1, 2), (1, 3), (1, 4)}. We label the
center vertex of Y as position 1 in the elements of R, and the other three vertices are
labeled clockwise as position 2, 3 and 4, respectively. Each of the four disks occupies
one of the four positions at each time. The disk in position 1 is the roaming disk while
the other three disks cover three edges respectively.

On the other hand, as is indicated in Fig. 4, we use the vertices in the SoC as
landmarks to imply the patrol pattern, denoted as V c

i , i = 1, 2, . . . , 24. Each of
these vertices are labeled by one of the permutations in S4, and an edge between two
neighboring vertices represents a transposition in R.

The hybrid vector field on Cov4(Y ) consists of two parts: one is a continuous
vector field v3 attracted to γ3, the other consists of 4 vector fields v2 attracted to γ2’s.
As what we have pointed out, the realization of γ3 requires repeating transpositions

Fig. 4 The cycle realization of the patrol on Y graph is shown in red, which contains 12 vertices
in S(1)

4 and the blue curves illustrate the system configuration driven from the remaining vertices in

S(2)
4 to γ̂3, following a hybrid vector field. The green loci represent the cuts
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in the generating set four times, leading to 3 × 4 = 12 transpositions, which are
marked by 12 vertices in the SoC. Hence, S4 is divided into two subsets S(1)

4 =
{V c

1 , V c
2 , . . . , V c

12} and S(2)
4 = {V c

13, V c
14, . . . , V c

24}, representing the vertices on v3

and the vertices on v2 respectively. The following vertices in S(1)
4 form γ̂3 as its

landmarks:

V c
1 = (1234), V c

2 = (2134), V c
3 = (3124), V c

4 = (4123), V c
5 = (1423), V c

6 = (2413),

V c
7 = (3412), V c

8 = (4312), V c
9 = (1342), V c

10 = (2341), V c
11 = (3241), V c

12 = (4231).

The vector field v3 can be constructed by combining 12 atomic vector fields, each
of which achieves a transposition in R. So v3 can be expressed as:

ẋ = f p(x), p ∈ S(1)
4 ,

where the state is represented as a vector x = |x | êi for i = 1, 2, 3, where êi is a unit
vector denoting the direction of each corresponding edge ei in the primitive graph.
Regarding the center vertex as the origin and outward direction as positive, we obtain
|x | ∈ [0, 1] with 0 at the center point. Each atomic vector field realizes two steps:

• Step I: The disk which was replaced in the last transposition becomes a roaming
disk and moves to the center vertex;

• Step II: After reaching the center, the roaming disk continues to move along a
different edge until transposing the disk on that edge.

The vector field in one of the transpositions can be built as:

ẋ p(1) =
{

k(−x p(1)) − ε ∂U
∂x p(1)

êdep, if x p(1) = ∣∣x p(1)
∣∣ êdep

k(xdest − x p(1)) − ε ∂U
∂x p(1)

êdest , if x p(1) = ∣
∣x p(1)

∣
∣ êdest or

∣
∣x p(1)

∣
∣ = 0

ẋ p(2) = k(0.5ê1 − x p(2)) − ε
∂U

∂x p(2)
ê1

ẋ p(3) = k(0.5ê2 − x p(3)) − ε
∂U

∂x p(3)
ê2

ẋ p(4) = k(0.5ê3 − x p(4)) − ε
∂U

∂x p(4)
ê3

ptwhere p is the switching signal denoted by a permutation in S(1)
4 , and p(i) is the

i-th digit of this permutation. p switches from the current value V c
j to the next value

V c
j+1 when the roaming disk reaches its destination. k is the control gain, ε is a small

positive real number, êdep and êdest represent unit vectors on the edges of departure and
destination of the roaming disk respectively, xdest denotes the disk to be transposed
with the roaming one. U is a barrier function to establish the boundaries of the SoC.
It generates a huge repelling force when the system is getting close to the boundary
between the SoC and the forbidden configurations. In this way, a transposition can be
obtained by driving the roaming disk firstly to the center and then to the desired edge
while stabilizing the other three disks to themiddle points of the corresponding edges.
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After building the atomic vector fields to achieve the transpositions, we need to
combine them to obtain a continuous vector field v3. What we do here is to use
logic functions as coefficients multiplied to each atomic vector field of v3 and add
them together. A logic function is a continuous mathematical approximation whose
value is 1 or 0, representing “true” or “false”, respectively. For example, we use
c1 = eα(x j −xi )/(1 + eα(x j −xi )) with α a large positive number to represent the
statement “x j is larger than xi”. c1 ≈ 1 when this statement is true, and c1 ≈ 0 when

the statement is false. Similarly, we use c2 = e
α

xi ê j
|xi | /(1+ e

α
xi ê j
|xi | ) as a logic function

to judge the statement “xi = |xi | ê j”. Then, by adding up all the atomic vector fields
multiplied by their corresponding logic functions, one can obtain a continuous vector
field v3.

The other part of the hybrid vector field on Cov4(Y ) is made up of v2, which
drives the system to v3 when the initial state is on the other 12 vertices in S(2)

4 outside
γ̂3. Logic functions are also applied to v2 by exciting one part of the whole vector
field at one time. Figure5 shows a simulation of the trajectories of the agents based
on the hybrid vector field designed above.

Finally, since the hybrid vector field yields a periodic trajectory, we applied
Poincaré map to numerically check the stability of it. A linear approximation of
Poincaré map is:

P(x0) ≈ Ax0 + B,

where x0 and P(x0) are the state variables at the same 3× 2 dimensional projection
space before and after mapping respectively, A is a 3×3 matrix, B is a 3×2 matrix.
The vector field is stable if the spectral radius ρ(A) = max(|λ(A)|) < 1.

Together with the sensitivity test, we compute ρ(A) corresponding to various
control gains k and show the result in Table1 and Fig. 6.
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Fig. 5 Simulation result of trajectories of the covering disks on Y . The periodic trajectory in terms
of the norm position of each disk is plotted as a function of time in (a), and their trajectories on
Y embedded in R

2 is shown as a function of time in (b). In the simulation, control gain k = 15,
ε = 10−6 and α = 100
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Table 1 The spectral radius ρ(A) for different control gains k in Poincaré map

k 1 2 3 4 5 6 7 8 9 10

ρ(A) × 104 9.11 8.92 15.1 1.41 1.18 7.27 2.92 1.45 1.60 2.07

k 15 20 30 40 50 60 70 80 90 100

ρ(A) × 104 6.26 3.43 1.38 22.3 2.98 9.55 0.57 5.69 0.43 4.50
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Fig. 6 Simulation result of the application of Poincaré map in showing the stability of the desired
vector field on Y when the control gain k = 15. Here the perturbed initial state x0 are chosen on a
sphere (the blue dots) with the center (black dot) on the periodic trajectory and radius r = 0.1. The
green curves represent the trajectories of the perturbed initial conditions and the red dots represent
the positions after Poincaré mapping

8 Conclusion and Future Work

In this paper, we have launched a topological study for the SoCs, which yields a sys-
tematic approach to the multi-robot coverage problemwith patrol. As the topological
equivalence of the SoC, Cayley graph has been introduced to characterize our space
of interest and essentially benefit our design of feedback control.

The novelty of our design of hybrid feedback control basically lies in the choice
of vertices from the Cayley graph as switching signals, with a clear description of
the cut set. In the future we will consider the design of a distributed control law
with possible hierarchical structures in the robot swarm, where the properties of the
Cayley graph such as its expansion could play a role. Other curious cases include
the excess more than one for covering metric trees. Swarm motion planning on the
corresponding high dimensional SoCswould be considered.We believe our study has
potential applications in sustainable aerial full coverage; as part of future work, the
consideration of collision requires that either the UAVs operate at different altitude,
otherwise non-collision condition should be imposed for the SoCs. Practical issues
such as obstruction of the view andmobile communication also need to be considered
in the future.

Acknowledgments The research is sponsored byONRunder the grant numberN00014-11-1-0178.



A Topological Perspective on Cycling Robots for Full Tree Coverage 675

References

1. Anthony Armstrong, M.: Basic Topology. McGraw-Hill, London (1979)
2. Baryshnikov, Y.: On the spaces of coverings. Preprint (2014)
3. Baryshnikov, Y., Shapiro, B.: How to run a centipede: a topological perspective. Geometric

Control Theory and sub-Riemannian Geometry. Springer INdAM Series, vol. 5, pp. 37–51
(2014)

4. Batalin, M.A., Sukhatme, G.: The design and analysis of an efficient local algorithm for cover-
age and exploration based on sensor network deployment. IEEE Trans. Robot. 23(4), 661–675
(2007)

5. Björner,A.: Subspace arrangements. In: First EuropeanCongress ofMathematics, pp. 321–370.
Springer, Berin (1994)

6. Cheng, W., Li, Z., Liu, K., Liu, Y., Li, X., Liao, X.: Sweep coverage with mobile sensors. In:
IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008, pp. 1–9
(2008)

7. Choset, H.: Coverage for robotics-a survey of recent results. Ann. Math. Artif. Intell. 31(1–4),
113–126 (2001)

8. Cortés, J., Bullo, F.: Nonsmooth coordination and geometric optimization via distributed
dynamical systems. SIAM Rev. 51(1), 163–189 (2009)

9. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks.
IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

10. Farbe, M.: Invitation to topological robotics. Eur. Math. Soc. (2008)
11. Friedman, J.: On Cayley graphs on the symmetric group generated by transpositions. Combi-

natorica 20(4), 505–519 (2000)
12. Ghrist, R.W., Koditschek, D.E.: Safe cooperative robot dynamics on graphs. SIAM J. Control

Optim. 40(5), 1556–1575 (2002)
13. Guo, Y., Qu, Z.: Coverage control for a mobile robot patrolling a dynamic and uncertain

environment. In: Fifth World Congress on Intelligent Control and Automation, WCICA 2004,
vol. 6, pp. 4899–4903 (2004)

14. Hatcher, A.: Algebraic Topology. Cambridge UP, Cambridge (2002)
15. Hubenko, A., Fonoberov, V.A., Mathew, G., Mezic, I.: Multiscale adaptive search. IEEE Trans.

Syst. Man, Cybern. Part B: Cybern. 41(4), 1076–1087 (2011)
16. Liberzon, D.: Switching in Systems and Control. Springer, Berlin (2003)
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Towards Arranging and Tightening Knots
and Unknots with Fixtures

Weifu Wang, Matthew P. Bell and Devin Balkcom

Abstract This paper presents a controlled tying approach for knots using fixtures
and simple pulling motions applied to the ends of string. Each fixture is specific to a
particular knot; the paper gives a design process that allows a suitable fixture to be
designed for an input knot. Knot tying is separated into two phases. In the first phase,
a fixture is used to loosely arrange the string around a set of rods, with the required
topology of the given knot. In the second phase, the string is pulled taut and slid along
the rods (the tightening fixture) in a direction such that the cross-sections of the rods
get closer together, allowing controlled tightening. Successful tying is shown for two
interesting cases: a “double coin” knot design, and the top of a shoelace knot.

1 Introduction

Knots are used for practical binding tasks (shoelaces, climbing knots, surgical
suturing) and decoration (ties and bow ties, gift wraps, pendants). This paper shows
an approach1 to tying a variety of knots automatically using simple control (pulling
the open ends of string) without sensing. We do not focus on a particular application
of knot tying, but rather on the underlying manipulation problem.

In the presented approach, a fixture first constrains the string so that simple actua-
tion can be used to loosely arrange the string into a shape with the desired topology
around a set of parallel rods. This outer arrangement fixture is then disassembled
to expose the string and the rods. These parallel rods form one end of a tightening
fixture that passively leads the string (in a controlled fashion) to a desired tightened
configurationwhen the ends of the string are pulled. Figure1a shows the arrangement

1 Some initial videos demonstrating the arrangement of several knots and tightening of the
shoelace unknot can be found at http://www.cs.dartmouth.edu/~harrisonwfw/knotTying.html.
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Fig. 1 Assembled and disassembled arrangement and tightening fixtures for the shoelace unknot.
The orange tube in subfigure (b) shows the shape of the string after arrangement but before tight-
ening. a Assembled fixture. b Disassembled fixture

fixture assembled around the tightening fixture. Figure1b shows how the six pieces
of the arrangement fixture (transparent yellow) may be disassembled to expose the
string and the tightening fixture (gray rods).

The basic idea of the arrangement fixture (without any capability for tightening)
was presented first in the thesis of coauthor Bell [10], and is explored experimentally
in an upcoming paper [11]. The primary contribution of the current paper is the
significant extension of this work to show a complete system for tightening as well
as arrangement, and proof-of-concept application to knots that are more complicated
than those previously explored.

The fixture-based approach admits reliable knot tying, and the paper will make
some arguments as to why the approach can be applied to a broad family of knots. In
fact, the approach can even be applied to “unknots” such as the top of a shoelace knot,
for which pulling on the ends of un-fixtured string would actually untie the (un)knot.
The paper will present a design process that allows a fixture to be designed for a
given knot, and will show examples of fixtures for both the double-coin decorative
knot, and a shoelace unknot.

Inmanipulation, we sometimes have the luxury of designing amechanical process
so that simple models are sufficient to describe the behavior we care about. This
principle drives the fixture design. We avoid modeling the string as a general (and
unpredictable) continuous 3D curve by first ensuring that the configuration of the
string achieves the desired topology using the arrangement fixture. Then the string
is pulled tight around the tightening fixture, and takes on an essentially polygonal
shape; this polygon may be computed by considering the shortest curve for the string
in a homotopy class enforced by the rods.

Undesired friction between strings might cause premature friction lock—high
friction at certain contacts that prevents further tightening of the knot. Our strategy
to avoid the necessity of modeling unpredictable string-string friction contacts is to
tighten knots in a controlled fashion using the fixture, so that string-string contacts
are delayed until they become necessary (and desired) in the tied configuration.
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Section2 will show the overall approach using the example of a shoelace unknot.
Section3 briefly examines mathematical models of knots and unknots; these models
are the basis for discussion of both arrangement and tightening fixture designs.

Because the goal knot configuration constrains the fixture design, the next three
sections work backwards through the tying process, starting with the goal knot con-
figuration. Section4 describes the design of tightening fixtures. Section5 discusses
separable arrangement fixtures. Although the knots studied in this paper are more
complex, the arrangement process is essentially the same as that presented in our
previous work on knot arrangement, which will appear in [11]. For this reason, our
description of knot arrangement with fixtures in Sect. 5 is brief. Rather, we focus on
showing how arrangement fixtures may be designed to embed the tightening fixture
as well as the string. The complete fixture system and the unified design process are
presented in Sect. 6 using a double coin knot as an example.

The physical implementation of fixtures is still not perfect; friction with the rods
can sometimes cause temporary jamming so that some sections of the string are not
under tension during tightening. Although this occasionally loose string has so far
not prevented successful tying for the example knots and unknots, it does violate our
model and assumptions. Section7 shoes how the capstan equations may be used to
study friction between string and disc objects (cross sections of rods in the tightening
fixture). A focus of future work is further improving the tightening fixture to ensure
more controlled tightening as the string slides along the fixture. More exhaustive
experimental work is also a goal for future work; our first fixtures serve only as a
proof of concept.

1.1 Related Work

To our knowledge, this is the first work on unified principles that allow the design of
fixtures for tying and tightening a broad family of knots. However, the work builds
strongly on work on knot-tying from a broad set of background areas. This section
provides only a brief survey; studies related to string manipulation and knot tying
are discussed in more detail in [11].

A brief introduction to mathematical knot theory may be found in [1, 2, 32,
40]. In particular, one central aspect of mathematical knot theory is the study of
knot invariants: properties that hold across a set of geometric curves that we might
consider to all represent the same knot. This study is particularly relevant to the
design of knot fixtures: controlling the geometric configuration of the string exactly
is hard, but achieving the correct knot topology may not be so difficult.

Work in the knot theory community also studies how to untie unknots [24–27]
such as the top of a shoelace knot. (Unknots will be discussed in more detail below.)
If we would like to achieve a particular geometric configuration of an unknot, we
must specifically prevent untying motions during reconfiguration of the string.
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The study of tightness of a knot is also a very interesting area of applied
mathematics and physics [9, 33, 37]. Recently, a rope length parameter has been
used to study the tightness of a knot in rope of a given thickness [6].

Engineers have designed many different machines to tie [16, 17, 42] and
tighten [41] different knots, but designs are typically complex, and are specific to
particular knots.

Properties of elastic rods are an area of traditional mechanics [31], and more
recently have been studied from the perspective of robot motion planning [35]. Flex-
ible needles have been applied to manipulate string [3, 4]. Multi-robot arm collabo-
ration has also been applied to string manipulation [29, 30].

The configuration of string wrapped around rods in our tightening fixtures may
be modeled as the shortest curve among point obstacles; algorithms to find such
curves have been studied in the computational geometry community [13, 18, 22, 23,
28]. In previous work, we optimized the lay out of the string in arrangement fixtures
using graph drawing algorithms [20, 43]. To find the tension along the string after
wrapping around frictional rods, the capstan equation [7, 21] may be of some use.

Although we are only beginning to understand approaches to tying knots with
fixtures, our approach to this problem draws inspiration from problems previously
studied in the context of manipulation and motion planning. Both the arrangement
fixture and the tightening fixture are used to cage [15, 38] the string (although in dif-
ferent ways), since exact control may not be possible. One could study the frictional
contact modes [8, 12, 34] between the string and the rods, or between string and
string. Or perhaps avoiding friction altogether would be wiser; adding low-friction
ball-bearings to areas inside the arrangement fixture and at locations along the tight-
ening fixtures might simplify tightening, using ideas like those explored by Furst
and Goldberg [19]. Restricting paths to certain homotopy classes becomes critical in
the fixture design, since precise control may not be possible; recent work by Bhat-
tacharya et al. [14] explores algorithms for generating such paths in the context of
motion planning. The focus on tight string recalls work on using minimum energy
configurations of flexible bodies for the purpose of motion planning [36, 39].

2 Example: Tightening the Shoelace Unknot

Figure2c shows the result of arranging and tightening the top of a shoelace knot
(which we will call a shoelace unknot) using a fixture designed for the purpose.

The tightening is accomplished in four stages. First, the fixture is assembled;
pressurized air pushes the string through the fixture to obtain the desired topology.
The configuration of the string around the rods is bounded by the (orange) tube shown
in Fig. 1b. The second step is to separate the arrangement fixture (yellow transparent
pieces in Fig. 1b) to expose the string around the rods in a loose configuration. The
third step is to push the string upwards along the parallel rods until it reaches the
base of the slanted section of the rods (Fig. 2b), using a horizontal plate with holes
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Fig. 2 The automation system for tightening, and the starting point for shoelace knot. a The fixture
system along with motors and arm grippers. b The starting configuration of the knot around the
tightening system. c The final configuration of the knot tightened using the system

(the complement of the projection of the rods on x-y plane). The fourth step is to pull
the string as the string slides along the rods towards the top until tightened (Fig. 2c).

The basic geometry of the fixturewas found using the design processwhichwill be
described in Sect. 6; further work by a human engineer using Solidworks thickened
the various tubes and rods to create the complete 3Dmodel of the fixture. The fixture
shown in Fig. 1a was then printed using an OBJET Eden 3D prototyping machine.

We used two Dynamixel MX-28 servo motors to pull the ends of the string.
Figure2a shows the placement of motors. During tightening, the tightening fixture
translates vertically, while the string remains in roughly the same plane as themotors.
The translation was achieved by using an Adept Cobra Robot Arm, though a simpler
system that provides one translation degree of freedom could replace the arm.

Small straight sections on the ends of two of the rods catch the two loops of the
shoelace unknot once they have reached the desired size. The string escapes from
the other, shorter, rods so the “center” of the shoelace unknot can be fully tightened.
We repeated the procedure ten times, and all trials successfully tightened a shoelace
unknot.

3 Mathematical Knots and Knot Diagrams

What is a knot? What types of knots can be arranged or tightened by fixtures?
Our general approach to designing fixtures is based on the idea of “knot diagrams”,
representations of knots developed in themathematical knot theory community. Con-
veniently, knot diagrams are planar, and show knots in loose, rather than tight, config-
urations.We therefore use knot diagramswith the desired geometry as a starting point
to design arrangement fixtures and place rods in the tightening fixtures. This section
describes mathematical models of knots, and the relationship to knot diagrams and
our fixtures.

A mathematical knot is an embedding of a circle in R
3 with no open ends. A

mathematical knot cannot be untied (the topology of the string cannot be changed)
without cutting the circle.

If we glue together the open ends of the shoelace tied in the previous section, we
get what is referred to as an unknot. Technically, an unknot is a circle or any of its
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(a) (b)

Fig. 3 Knot diagrams of unknots. a Shoelace unknot. b Culprit unknot, redrawn from [27]

ambient isotopies in R
3; informally, some moves can be applied to the unknot that

“untie” the unknot without causing self-intersection of the string and without cutting
the string.

A knot diagram is the regular projection of a knot (or unknot) to a plane with
broken lines indicating where one part of the knot under-crosses the other part.
We refer the points indicated by the broken lines as crossings. Figure3 shows knot
diagrams for the simple shoelace unknot, and for a more complicated unknot, the
culprit unknot studied by [27].

Although knot diagrams for a particular knot are not unique, Reidemeister
moves [5], corresponding to specific manipulations of string near the crossings,
can be used to transform between any pair of knot diagrams for a given knot type.
For an unknot, there always exists a sequence of Reidemeister moves that transforms
the knot diagram into a simple loop.

In contrast to mathematical knots, physical knots have open ends, but by immo-
bilizing the ends of string (in this paper, using the motors that tighten the string), a
given topology consistent with that of a mathematical knot can be maintained. (To
be precise, the graspers should be connected by some physical structure that forms
the remainder of the loop.) Arrangement fixtures, by arranging the string into a geo-
metric configuration with a desired sequence of crossings given by a knot diagram,
therefore provide a good starting point for forming a tightened knot.

The situation with unknots is more complicated. When you pull to untie your
shoelaces (Fig. 3a), two Reidemeister moves are in some sense physically performed
to remove some crossings. However, if you hold the two loops (“ears”) of the shoelace
knot in placewith your fingers (thus preventingReidemeistermoves fromhappening)
while pulling the open ends, you will prevent the shoelace from being untied, and in
fact, perhaps further tighten the central part of the knot. The embedded rods serve the
purpose of preventing Reidemeister moves for unknots; the rods allow a particular
desired topology of the string (around the rods) to be guaranteed even for unknots.

4 Controlled Tightening Using Rod Fixtures

We usually consider a knot “physically tied” only when the knot has been tightened
to the point that application of certain (perhaps bounded magnitude or constrained
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Fig. 4 Double coin knot. a
Input to the design process,
the desired geometry of a
double coin knot. b Rod
placement in cells

(a) (b)

direction) forces does not further change the location of any string-string contacts,
as measured along the string. Typically, we expect some friction lock to appear at
the end of the tightening process; such friction lock prevents further motion of the
contacts. The main idea we make use of is to build tightening fixtures that delay
string-string contact during tightening until the knot is “tight enough” to achieve the
desired friction lock by simply pulling on the endpoints.

Our tightening fixture includes a set of carefully arranged rods. Let us define a
cell of a knot diagram as an open bounded connected region of R2 enclosed by the
knot diagram; it is a subset of the complement of the knot diagram. For simplicity,
we place one rod in every cell; this is sufficient to prevent Reidemeister moves and
thus preserve the intended crossings, even for unknots.

The straight sections of the rods embedded in the arrangement fixture ensure
desired crossings. The tilted sections of rods allows controlled tightening, for the
subset of knots for which the desired final configuration is close to planar. We give
no formal definition of “close to planar”, but as an example, Fig. 4a shows a decorative
double coin knot that is nearly planar.

How should these tilted rods be designed? Let the final configuration of the knot
lie (approximately) in an x-y plane. Imagine also that the initial, looser configuration
of the string lies in the same x-y plane. Now let us consider how the string would
need to move for tightening within this single plane.

Between the initial and the final time, choose a continuous (w.r.t. time) family
of configurations of the string in the x-y plane. For our purposes, we choose the
initial configuration to be a linearly-scaled version of the final configuration, and
choose intermediate configurations based on linear interpolation. Place small disc-
shaped obstacles around the string so as to constrain the shape of the string to a
polygonwith approximately the correct shape (wewill discuss this detail in Sect. 4.1).
Figure5b shows such an initial configuration, and Fig. 5c shows a final configuration,
both constrained by disc obstacles. If we move the discs between initial and final
configuration while tightening the string, the string will be constrained to move to
the final configuration as well.

The motion of the string can now be described as a surface in (x, y, t) space-time;
the t = 0 and t = 1 slices of this surface correspond to initial and final configurations
of the string. Based on our previous assumption, each later slice can be achieved by
moving obstacles inwards (using the same linear transformation applied to the string)
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(a) (b) (c) (d)

Fig. 5 String tightening around set of rods. a Loose string around disc obstacles. b Tight around
disc obstacles. c Reconfiguration of discs. d Fixture to tie star shape

while pulling on the ends of the string to tighten, assuming no friction between string
and obstacles.

In space-time, themotionof the disc obstacles generates a set of tilted rods (“space-
time obstacles”), and we can build a physical model of these rods, by substituting
the z dimension for the time dimension. We can use the rods to tighten knots by
wrapping the string around the base of the rods (physically z = 0, corresponding to
t = 0 in space-time), and pull on the ends while moving the rods in the z direction.
Figure5d shows an example of such fixture to tighten the star shape.

4.1 Shortest Curves Around Point Obstacles

How should the rods be placed to guarantee the intended polygonal shape of the
string, with sufficient clearance between rods and string so that the arrangement
fixture can be assembled around both?

A simplified version of finding how string wraps around obstacles in the plane
has been studied in computational geometry—finding the shortest curve within a
homotopy class described by a set of point obstacles [13, 18, 22, 23, 28], given
the coordinates of the point obstacles and the polygonal curve that describes the
initial “loose” configuration of the curve in certain homotopy class. This section
uses shortest curves in a homotopy class to model the shape of the string as the string
is pulled around the tightening fixture.

Cross sections of rods are discs rather than point obstacles, and the radii of the
rods matters as the string approaches its tightest configuration. Therefore, we used a
set of point obstacles on a circle to approximate the shape of the disc cross-section to
compute how we expect string to wrap around the tightening fixture, and to inform
the design of the tightening fixture.

To compute shortest paths in a homotopy class around points, we used the algo-
rithm presented in [13]; because this algorithm was unfamiliar to us, and may be
unfamiliar to others in the robotics community, we outline it briefly below.
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(a) (b) (c) (d)

Fig. 6 The illustration of the search for shortest homotopy curve. a Polygonal input of a curve,
obstacles and x-monotone paths. b The case of p not updated. c Case of p gets updated. d Shortest
homotopy curve of example in (a)

The input to the algorithm is a (presumably loose) polygonal path around the point
obstacles. First, divide the polygonal curve into a set of x monotone paths where each
path has either non-decreasing x coordinates or non-increasing x coordinates, such
as segments ap1, p1 p2, p2 p3, p3b in Fig. 6a.

The first significant task of the algorithm is to find a canonical representa-
tion of each x monotone path, describing the relationship of each path to the
point obstacles. The canonical representation of the curve described in Fig. 6a is
1−, 2−, 3−, 4−, 5−, 6−, 6+, 5+, 4+, 3+, 2+, 2−, 3−, 3+ after some simplification,
where each point obstacles is labeled with k ∈ {1, 2, . . . , n}, with a + sign if it is
above (otherwise −) the corresponding monotone path.

For each monotone path π starting at p, we want to find the shortest admissible
curve from p to the end of π between U and L (let BU denote the points above π ,
and BL the points under π ; let U be the lower envelope of BU and L be the upper
envelope of BL ) such that the shortest curve is within the same homotopy class as π .

The basic idea is based on visibility, and we refer the area with apex at p and
between U and L as a funnel. If there exists a straight line between p and ui+1 (or
l j+1) in the funnel, then the shortest curve up to ui+1 (l j+1) will be a straight line,
as in Fig. 6b.

If pl j+1 (or pui+1) intersects with U or L , consider the funnel apex at p shown
in Fig. 6c. Find q1 ∈ U and q2 ∈ L such that all uk, k ≤ i are above or on pq1 and
all lk, k ≤ j are below or on pq2, as the example shown in Fig. 6c. If pl j+1 is above
pq2, then q1 (q2 if pui+1 is below pq1) becomes the new apex p, and the shortest
curve up to q1 (q2) is recorded. Repeat until the end of π , and apply the previous
procedure to all monotone paths. We have then found the shortest curve in the given
homotopy class.

5 Knot Arrangements with Fixtures

This section describes the approach to designing fixtures that arrange string into the
desired knot topology.
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5.1 Arranging Knots: Separable Four-Piece Fixtures

Bell’s thesis [10] proved that any knot can be arranged in such a way that a fixture
can be designed so that fixture may be disassembled in a very simple way to extract
the knot:

Theorem 1 Given any (mathematical) knot consisting of one or more strands of
string, and described by a Gauss code, a fixture can be constructed that loosely
arranges string into a (physical) knot with the same Gauss code, provided that the
endpoints of the string are connected together outside of the fixture. Furthermore,
this fixture can be cut into four pieces in such a way that all four pieces can be
removed by pure translation without colliding with the string.

Figure7 shows an example of a constructed fixture. Although we omit the proof
of the theorem, we summarize the approach, since we will need it to describe how to
build easily disassemble-able arrangement fixtures around rods. We assume that the
string has some non-zero thickness. First, make a cut in the knot diagram between
each pair of crossings, dividing the curve into sections that each contain a single
crossing, either “over” or “under”. Call the set of sections with over crossings the top
layer, and call the collection of sections with under crossings the bottom layer. Lift
the top layer vertically out of the page, in the z direction. Now connect the two layers
using additional vertical sections of string; call the layer containing these vertical
sections the middle layer.

Building an easily-separable fixture around this new curve is now straightforward.
Build a top piece that covers the top layer, a bottom piece under the bottom layer,
and surround the vertical sections by fixture material as well. The top and bottom
pieces may be removed from the string using pure translations (up and down respec-
tively), and the middle layer can be cut into two pieces and removed using sideways
translations.

We omit some details from Bell’s thesis [10]. Some rearrangement of the vertical
sections of curve is necessary to ensure that only two pieces are needed to extract the

Fig. 7 An example of a
four-piece arrangement
fixture for an overhand knot

Top piece

Bottom piece

Center pieces

Sketch
of knot
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middle layer of string (depending on the width of the string), and this rearrangement
impacts the layout of the sections of curve in the bottom and top layers. Further,
width of the string must be taken into account; this constrains the shape of the tube
surrounding the string.

5.2 Embedding a Tightening Fixture in an Arrangement
Fixture

Some modifications to the four-piece fixture described above allow arrangement of
string around a set of rigid rods, and simple disassembly to expose rods and string.
The middle layer of the four-piece fixture is cut into two pieces to allow the fixture
to be separated from vertical sections of string without interference. If vertical rods
are placed along this cut surface, the middle section of the fixture will be separable
without interfering with the rods. However, the rods are longer than the vertical
sections of string, and extend into the top and bottom layers of the fixture. To allow
separation of these sections, the cut in the middle layer may be extended into the top
and bottom layers; the fixture now has six pieces.

A side view of a six piece fixture is shown in Fig. 8. The separation sequence
is similar to that of the four-piece fixture, except that the top and bottom sections
require some sideways translation (to be removed from the rods) after the initial
upwards and downwards translations (which are used to separate from the string).

If there is a direction from which all rods and vertical string are visible, then a
cut surface can be computed to allow separation from both rods and vertical string.
The direction from which all vertical elements (rods and vertical string) can be seen
allows translation of a “front” piece of the fixture encasing the vertical elements
towards the viewer, and a “back” piece can be translated directly away from the

(a) (b)

(c)

Fig. 8 Disassembly sequence for arrangement fixture.aSide viewof arrangement fixture assembled
around tightening fixture. b Disassembly of top and bottom of arrangement fixture by vertical
translation. c Disassembled arrangement fixture and exposed string
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viewer; the union of these front and back pieces is the complement of the vertical
elements.

Let there be some desired visibility direction in the x-y plane; we can detect if
rods or string are visible by projecting their locations onto a line orthogonal to this
visibility direction, as shown in Fig. 10b.

What if there is no direction from which all vertical elements (rods and vertical
string sections) are visible? Since we are only concerned with attaining a desired
topology of the string around rods, we may slide the vertical elements in directions
parallel to the projection line until visibility from the projection line is achieved, as
shown in Fig. 10c.

There is a slight technical problem that we might be concerned about, however.
The apices of the parallel portions of the rods are the bases of the slanted portions
of the rods. Arbitrary placements of the parallel rods might lead to slanted sections
that intersect each other.

Fortunately, by careful design of the slanted sections, we can avoid this potential
problem. Consider the top, slanted-rod section of the fixture. Before taking into
account the need to move the parallel rods to eliminate occlusion, we might design
this top section such that the fixture enforces a radial scaling of the goal configuration
of the knot outwards to some less tight configuration. Since rays from a common
point (formed by the scaling of the knot down to size zero) do not intersect unless they
are coincident, there are no intersections between slanted rods using this approach.
In fact, perturbations of these rays to avoid occlusion between their bases can also
avoid intersection:

Proposition 1 Given a set of 3D points pi , i = 1, 2, . . . , n with same z coordinates,
there exist a set of points p′

i , i = 1, 2, . . . , n on x-y plane where x(p′
i ) �= x(p′

j ) for
i �= j such that the n line segments connecting each pi to p′

i do not intersect each
other.

Proof The set of points p′
i can be found in the following way. Let z(pi ) = c for all i ,

where z(∗) represents the z coordinates of a point and c is a positive constant. Choose
a value h > 0 representing the desired height of a radial projection center point above
all pi . Let this center point O have coordinates ( 1n

∑n
i=1 x(pi ),

1
n

∑n
i=1 y(pi ), c+h).

Then for any i , the point p′′
i is on the ray Opi with z(p′′

i ) = 0.
If y(p′′

i ) �= y(p′′
j ) for i �= j , choose any p′

i and p′
j such that y(p′

i ) = y(p′′
i )

and y(p′
j ) = y(p′

j ) (Fig. 9a). Denote the plane Pk as the plane that contains the line
y = y(p′′

k ) and ray Op′′
k for any k. Plane Pi and plane P j intersect at the line that

passes through O parallel to the x axis. We know z(pk) < z(O), k ∈ {1, 2, . . . , n}.
Choose p′

i and p′
j to have the same y coordinates as p′′

i and p′′
j respectively, they

belong to two different planes. Therefore, line segments pi p′
i and p j p′

j do not
intersect.

If y(p′′
i ) = y(p′′

j ), choose p′
i and p′

j such that sign(x(p′
i )−x(p′

j )) = sign(x(pi )−
x(p j )) (Fig. 9b), pi p′

i will not intersect p j p′
j .

Overall, we can easily enforce x(p′
i ) �= x(p′

j ) for i �= j , therefore we have found
p′

i . �
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(a) (b)

Fig. 9 Cases for proof of Proposition 1. a Slanted rod bases have different y coordinates. b Slanted
rod bases have the same y coordinates

Therefore, if we first radially scale all rods outwards from p′′
i , then move to p′

i to
guarantee visibility, the slanted rods connecting p′

i to pi for all i will not intersect
each other.

The proof assumes the rods are of zero radius, but if the cross sections of rods
are circles with radius r , and |y(p′

i ) − y(p′
j )| < r , the rods can still intersect. In this

case, we can find O ′ where z(pi ) < z(O ′) < z(O), such that the new p′′′
i on the ray

O ′ pi satisfying |y(p′′′
i ) − y(p′′

j )| > r . Using p′′′
i to replace p′′

i and finding new p′
i

resolves the problem.

6 Summary of the Design Process

Previous sections explored aspects of the design of fixtures; this section describes
the complete design process using the double coin knot as an example. The design
process is the reverse of the tying process: from the final desired configuration of the
knot, arrange rods, scale up the knot, and embed knot and rods in an arrangement
fixture, enforcing that all the vertical string segments and rods are visible from a
chosen direction.

We start with a photo of the knot in its desired configuration along with corre-
sponding crossing sequence (knot diagram), such as the double coin knot in Fig. 4a.
By hand, we mark the outline of the knot shape in the photo, roughly identifying the
geometric configuration of the knot and the centers of the cells. The centers of the
cells then form the top of the tightening fixture, as shown in Fig. 4b.

The next step is to choose an arbitrary direction along which to enforce the vis-
ibility property on all rods and vertical string elements. In Fig. 10, we chose the
original y = x line to be the axis onto which vertical elements are projected to
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Fig. 10 Thefixture design process. a Find the shortest curve around points guaranteeing aminimum
clearance from rods. b Based on the sequence of crossings, identify the vertical sections of string
(circles on the string), and the rods. Occlusions are shown by projecting rods and vertical string to
the chosen axis using dashed lines. c Remove occlusions. d Simplified layout of string around rod
positions, using computed vertical segment positions from (c)

determine visibility. For convenience, we then transform the coordinate system so
that the projection axis is the x-axis.

In the transformed coordinate system, find the shortest homotopy curve of the
string among given rods. We chose to use eight points to approximate each disc,
with some clearance to allow for the arrangement fixture to surround the rods. An
example is shown in Fig. 10a.

Along the shortest homotopy curve, based on the knot crossing information, iden-
tify all the vertical string segments (denoted as segment nodes in [10, 11]), as shown



Towards Arranging and Tightening Knots and Unknots with Fixtures 691

Fig. 11 The tightening fixture for the double coin knot and a knot tightened using this fixture. a
The tightening fixture for a double coin knot. b A double coin knot tightened using the fixture in
(a)

in Fig. 10b. (For convenience of the human designer, we also orthogonalize the tubes
for the string.)

Finally, remove occlusions using the procedure proposed in the proof of Propo-
sition 1. Figure10c shows the occlusion-removal procedure and Fig. 10d shows the
resulting layout of the tubes. Based on this layout, a human designer can model
the arrangement and tightening fixture in SolidWorks or any other 3D modeling
software. (This step is required because the layout, although it contains all of the
most interesting required information, is two-dimensional and not formatted for 3D
printing.)

The resulting tightening fixture for a double coin knot is shown in Fig. 11a. We
applied our tightening approach using the printed fixture, and tied the double coin
knot shown in Fig. 11b, which is similar to the configuration shown in Fig. 4a.

7 Analysis of Friction and Tension: Capstan Equations

Friction between rods and string can cause slackness in sections of string, violating
our “shortest path” model of the string among rods. This section discussions how
rod/string friction might be modeled using the well-known capstan equations, and
how to compute whether sticking is likely for a given geometric arrangement of rods.
This model of frictional contact might enable future designs to better avoid slackness
of the string.

Given the friction coefficient μ and forces T1 and T2m, with T1 > T2, applied
along two ends of the string, and the contact between string and rods span an angle of
φ, as shown in Fig. 12a. There exists an angle φint such that the following equations
hold:



692 W. Wang et al.

Fig. 12 Example of
applying capstan equation
around single disc and
multiple discs. a An
illustration of the capstan
equation. b Applying the
capstan equation to a
sequence of discs

(a) (b)

φint = log(T2/T1)/μ (1)

T (φ(t)) = T2, φ(t) ∈ [φint, φ] (2)

T (φ(t)) = T1 exp(−μφ(t)), φ(t) ∈ [0, φint] (3)

The region between 0 and φint is called the slip zone. Any of the three quantities T1,
T2 and φint can be derived if the other two are given. The string slips around the disc
if φint ≥ φ.

Consider a sequence of n circles, and a string wrapping around them in certain
order such that the contact between the string and the i th circle spans an angle of
φi , friction coefficient μ, the tensions along the n + 1 segments of the strings are
T1, T2, . . . , Tn+1, as shown in Fig. 12b.

We cannot know T2, T3, . . . , Tn if the system is static. However, if we know Tn+1,
we can compute a minimum value such that if T1 is larger than the value, we expect
the string to slip, removing slack. If the string is slipping, the slip zone of the i th
circle is no smaller than φi . Then, at the i th circle, the tension before contact Ti

and the tension after the contact Ti+1 satisfies Ti ≥ Ti+1 exp (μφi ). Then, we can
establish a relation between T1 and Tn+1:

T1 ≥ Tn+1 exp

(

μ

n∑

i=1

φi

)

. (4)

8 Conclusions and Future Work

This paper showed a process to design fixtures to arrange and tighten knots and
unknots. Examples included the double coin knot and shoelace unknot.

The mechanical implementation of the fixtures could be improved: less flexible
rods with smoother surfaces for better sliding, a device for automatically disassem-
bling the arrangement fixture, friction reduction inside the arrangement fixture using
ball bearings, and better control of the geometry of the string during tightening.Mov-
able parts in the tightening fixture may allow an even more controlled tightening.

We would like to expand the set of knots that can be tied. Any knot that can be
described by a knot diagram can be arranged by a sufficiently large arrangement
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fixture together with a feeding mechanism capable of inserting the string fully, but
only flat knots can be tightened using the tightening fixture. How can more general
knots be tightened? Can knots be tied around large structures, such as gift-wrap
boxes, or tied quickly enough to be used in medical applications?
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Asymptotically Optimal Feedback
Planning: FMM Meets Adaptive Mesh
Refinement

Dmitry S. Yershov and Emilio Frazzoli

Abstract The first asymptotically optimal feedback motion planning algorithm is
presented.Our algorithm is based on twowell-established numerical practices: (1) the
Fast Marching Method (FMM), which is a numerical Hamilton-Jacobi-Bellman
solver, and (2) the adaptive mesh refinement algorithm designed to improve the
resolution of a simplicial mesh and, consequently, reduce the numerical error. Using
the uniform mesh refinement, we show that the resulting sequence of numerical
solutions converges to the optimal one. According to the dynamic programming
principle, it is sufficient to refine the discretization within a small region around an
optimal trajectory in order to reduce the computational cost. Numerical experiments
confirm that our algorithm outperforms previous asymptotically optimal planning
algorithms, such as PRM* and RRT*, in that it uses fewer discretization points to
achieve similar quality approximate optimal paths.

Keywords Optimal planning · Feedback planning · Shortest path problem · Fast
marching method · Adaptive mesh refinement

1 Introduction

After decades of considerable research effort, the problem of optimal motion plan-
ning remains a challenging task in robotics. Even for an omnidirectional point robot
among polyhedral obstacles in 3D the optimal planning problem is already PSPACE-
hard [8]. There is no doubt that planning for an optimal path under general mathemat-
ical models, which usually include underactuated systems, kinodynamic constrains,
nonpolyhedral obstacles, or a combination of the above, is even harder. Recently, the
development of sampling-basedasymptotically optimal planners [16] led to aflurry of
related planning algorithms [15, 20, 28, 38]. Based on the rapidly-exploring random
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graph structure and its variations (RRT* and PRM*), these algorithms are guaranteed
to converge to an optimal solution. In this paper, we contribute to this recent interest in
asymptotically optimal planning and introduce a novel, but fundamentally different
approach to this problem.

Historically, much attention has been given to the shortest path problem among
polygonal obstacles in 2D. This problem admits a semianalytical solution, which
is computed using visibility graphs [29]. The time complexity of Dijkstra’s graph
search algorithm is O(N log(N ) + E) with respect to the number of nodes, N , and
the number of edges, E , of the visibility graph. For visibility graphs, E is propor-
tional to N 2 in the worst case. Thus, various algorithms with reduced asymptotic
running time of O(N log(N )) has been proposed [14, 22, 23]. In 3D, however, the
shortest path problem is computationally hard and visibility graphs can be used as
an approximation only [10, 25, 29].

Methods based on visibility graphs do not generalize to neither complexmodels of
motion nor nonpolygonal environments. Therefore, many approximate motion plan-
ning algorithms use reachability graphs instead. Commonly, Dijkstra’s algorithm is
used to search the shortest path within the reachability graph. Additionally, plethora
of fast heuristic-driven graph search algorithms have been developed. For example,
A* algorithm employs an admissible and consistent heuristic for restricting compu-
tations to a provably minimum number of nodes [13]. Other advanced graph search
algorithms for efficient planning and replanning in dynamic environments have been
proposed in [17, 18, 37].

Unfortunately, reachability-graph-based methods fail to converge to an optimal
solution. It has been proven, on the other hand, that numerical Hamilton-Jacobi-
Bellman (HJB) solvers converge to the optimal solution as the resolution of the
discretization point set increases [39]. However, it is usually assumed that a dis-
cretization is given to the solver as an input and the accuracy of the output is fixed.
Thus, this approach lacks asymptotic optimality.

Methods that use mesh refinement for improving numerical solution are well-
established in the areas of scientific computing and numerical analysis. An early
example of such numerical methods first appears in [2], in which a discrete finite
element solution is improved by subdividing a 2D Cartesian grid. Since then, mesh
refinement algorithms have matured significantly: they have been extended towards
non-Cartesian two- and three-dimensional meshes [6] and d-dimensional simplicial
complexes [21]. Recent developments in mesh refinement techniques are focused on
computing high-quality meshes [1, 4, 21, 27, 33], as degenerate simplices result in
ill-conditioned numerical discretizations.

In this paper, we present a novel asymptotically optimal feedback motion plan-
ning algorithm that combines the FMM HJB solver with the newly developed
characteristic-driven mesh refinement strategy. Compared to the previous graph-
based asymptotically optimal planning algorithms, our algorithm is built on fun-
damentally different principles. While RRG-based algorithms compute the one-
dimensional shortest path, our algorithm uses a simplicial discretization for comput-
ing the optimal feedback plan in the entire free space. As a drawback, our algorithm
requires the initial coarse mesh that captures the topology of the free space. It is
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difficult to compute such mesh in general, and cell decomposition algorithms may
be used for this purpose. Nevertheless, numerical experiments show that, compared
with RRT*, the FMM computes several orders of magnitude better quality solutions
using the same number of discretization points, which justifies computing the ini-
tial mesh at the first iteration. Finally, our algorithm is different from the previous
attempt to combine a Fast Marching HJB solver with RRT* presented in [15]. Pre-
viously proposed Fast Marching Trees (FMT*) algorithm uses a standard update
that computes the shortest distance to the neighboring nodes instead of considering
a provably accurate interpolation between these neighbors. Thus, in contrast to our
method, FMT* is ideologically closer to Dijkstra’s algorithm rather than the FMM.

2 Preliminaries

In this section, we formalize the shortest path planning problem borrowing termi-
nology from the optimal control theory and the theory of Hamilton-Jacobi-Bellman
partial differential equations (HJB PDE). At the end of this section, we present the
Fast Marching Method, a fast numerical HJB solver, and discuss its properties.

2.1 The Shortest Path Problem: Optimal Control Formulation

Let a d-dimensional Riemannian manifold X be the configuration space of a robot.
Configuration x ∈ X corresponds to A(x), a set occupied by the robot in theworld W
(usually 2Dor 3D). Static obstacles are present in W , and they occupy the obstacle set
O . Robot collisionswith obstacles correspond to a set of inadmissible configurations,
Xobs = {x ∈ X | A(x) ∩ O �= ∅}, which we call the configuration space obstacles.
The set of collision-free configurations is denoted Xfree = X \ Xobs and called the
free space.

The initial configuration of the robot is given as a point xinit in Xfree. Let the
goal set Xgoal be a subset of Xfree, which consists of all desired final configurations
of the robot. The robot moves freely in the world, and this motion corresponds to a
continuous trajectory in X . The shortest path problem is to find a rectifiable trajectory
between xinit and Xgoal, whose graph is entirely in Xfree, such that it is the shortest
among all such trajectories.

The problem of finding the shortest path is equivalent to the following minimum
time optimal control problem. First, letU (x) be the set of all unit vectors from Tx (Tx

is the tangent space of X at x). U (x) is called the local input set at x . Let the global
input set be defined as U = ⋃

x∈X U (x) ⊂ T X . Here, T X is a tangent bundle of X .
Second, we define robot motion using an ordinary differential equation (ODE)

with control:
˙̃x(t) = ũ(t) for all t > 0, and x̃(0) = xinit , (1)
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in which x̃ : [0, +∞) → X is a trajectory of a robot in the configuration space, and
ũ : [0, + ∞) → U such that ũ(t) ∈ U (x̃(t)) for all t ≥ 0 is an input signal. For all
ũ and xinit ∈ Xfree, let x̃(xinit, ũ) be a Filippov solution [12] of (1).

Finally, let t∗ = inf {t ≥ 0 | x̃(t) ∈ Xgoal}. We introduce the cost functional

J (x̃) =
{

t∗ if ∀t ≤ t∗ x(t) ∈ Xfree
+∞ otherwise

. (2)

In this setting, the optimal control problem is to find the optimal input signal ũ∗ for a
given initial position xinit such that the cost functional of the corresponding trajectory
is minimized. Formally,

ũ∗ = argmin
ũ

J (x̃(xinit, ũ)) . (3)

2.2 Feedback Control Model and Feedback Planning

We compute the optimal control ũ∗ using a feedback control model. In this model,
a feasible feedback control π : X → U satisfies π(x) ∈ U (x) and defines the
corresponding control signal as follows:

ũ(t) = π(x̃(t)) . (4)

By substituting (4) into (1), we find that, for all xinit ∈ Xfree and feasible π, the
corresponding trajectory x̃(xinit,π) is a solution of a regular ODE:

˙̃x(t) = π(x̃(t)) for all t > 0, and x̃(0) = xinit . (5)

In order to find the optimal feedback control, we introduce the optimal cost-to-go
function V : Xfree → [0, + ∞), which is equal to the minimum time to reach the
goal while traveling in Xfree from point x . Formally,

V (x) = min
π

J (x̃(x,π)) . (6)

The cost-to-go function satisfiesHJBPDE,which is derived fromBellman’s dynamic
programming principle. It reads

inf
u∈U (x)

〈∇V (x) , u〉x + 1 = 0 . (7)

Here, 〈· , ·〉x is a bilinear form between Tx and its dual, a cotangent space at x ∈ X .
If X = R

d , then 〈· , ·〉x is the scalar product of two vectors in R
d .

Once the optimal cost-to-go function is computed, the optimal feedback control
is given as the direction of the steepest descent of V :
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π∗(x) = argmin
u∈U (x)

〈∇V (x) , u〉x . (8)

This direction is called the local characteristic, and the optimal trajectory is the
characteristic curve of (7).

In Rd , the HJB equation is equivalent to the Eikonal equation

‖∇V (x)‖ = 1 , (9)

and the feedback function is

π∗(x) = −∇V (x) . (10)

For the sake of generality, however, we use (7) and (8) instead of (9) and (10).
In the next section, we discuss a numerical discretization of the HJB PDE using

a simplicial approximation of Xfree and present a fast numerical algorithm for com-
puting an approximation of the optimal cost-to-go function.

2.3 Fast Marching Method

The exact analytic solution of the HJB equation is rarely available. Thus, we must
resort to numerical algorithms that compute semianalytical approximations of the
optimal cost-to-go function. The Fast Marching Method (FMM), for example, com-
putes a piecewise linear approximation of V using a simplicial discretization of Xfree.
If the simplicial discretization is defined using N vertices, then the FMM terminates
in optimal O(N log(N )) time [36]. The detailed description of the FMM follows.

First, we introduce a simplicial discretization of Xfree. Let Xd = {xi }N
i=1 be a set

of discretization points in Xfree, which we call vertices. An abstract simplex τ is an
index set of its vertices. The collection of abstract simplices, T , is called an abstract
complex if (1) τ ′ ∈ T for all τ ′ ⊆ τ and τ ∈ T and (2) τ

⋂
τ ′ ∈ T for all τ , τ ′ ∈ T .

Each abstract simplex τ defines a geometric simplex, Xτ = conv({xi }i∈τ ) ⊂ Xfree.
Here, conv denotes a convex hull of a vertex set. A tuple, (Xd, T ) is called a simplicial
complex if, in addition to (1) and (2) above, it satisfies (3) Xτ

⋂
Xτ ′ = Xτ

⋂
τ ′ for

all τ , τ ′ ∈ T .
Second, using the definition of the simplicial complex, we introduce a piecewise

linear interpolation, V̂ , of the cost-to-go function:

V̂ (x) =
∑

i∈τ

V̂iαi (x) . (11)

In the above, τ is such that x ∈ Xτ , and {αi (x)}i∈τ is a unique set of positive
coefficients such that x = ∑

i∈τ xiαi (x) and
∑

i∈τ αi (x) = 1. Coefficients αi (x)
are called barycentric coordinates of x in Xτ . Note that V̂ (xi ) = V̂i for all i .
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In general, a piecewise linear function does not satisfy (7) at all points of Xfree.
Therefore, we restrict (7) to the vertices only:

min
τ∈St(i) inf

u∈Ui,τ
〈∇τ V̂ , u〉x + 1 = 0 . (12)

Here, St(i) (which is called a star of i) is a set of abstract simplices that contain
index i , ∇τ is the gradient operator constrained to the geometric representation Xτ ,
and Ui,τ is a subset of U that consists of all unit vectors with the origin at xi pointing
inside Xτ . In general, this discretization has positive coefficients, and it is monotone,
provided that simplicial discretization is acute [5]. It has been shown that monotone
and consistent discretization ofHJB equation converges to the viscosity solution [11].

When considered at all vertices, (12) defines a system of nonlinear equations with
respect to unknown values V̂i for all 1 ≤ i ≤ N . In contrast to traditional numerical
methods that solve such systems iteratively, the FMM exploits the monotonicity of
the discretization and computes V̂ = {V̂i }N

i=1 in optimal O(N log(N )) time [35].
The FMM is outlined in Algorithm 1.

Algorithm 1 parallels Dijkstra’s algorithm in that cost-to-go values are computed
in the increasing order. The difference between Dijkstra’s algorithm and the FMM
is in line 8. In the former,minloc is equal to the cost-to-go value at the neighbor vertex

Algorithm 1 Fast Marching Method
Input: (Xd, T ), Xgoal (a simplicial complex and a goal set)
Output: {V̂i }N

i=1 (an approximation of the cost-to-go function at {xi }N
i=1)

1: Initialize a priority queue P Q of indices i such that xi ∈ Xgoal

2: Set the priority key K̂i ← 0 for all i ∈ P Q
3: while P Q is not empty do
4: Pop j with the least key K̂ j from P Q

5: Set V̂ j ← K̂ j
6: for all τ ∈ St( j) do
7: for all i ∈ τ \ { j} do
8: V̂ ∗ ← minloc(i, τ )
9: if V̂ ∗ < K̂i then
10: K̂i ← V̂ ∗ and push i into P Q if i /∈ P Q
11: return {V̂i }N

i=1

plus the corresponding edge weight. In the latter, this function is defined as a solution
of the constrained minimization problem. This problem is equivalent to (12) and
formulated as follows:

V̂i = inf{α j : j∈τ\{i}}

{ ∑

j

α j V̂ j + dist
(
xi ,

∑

j

α j x j
)}

, (13)

subject to
α j ≥ 0 for all j ∈ τ \ {i} and

∑

j

α j = 1 . (14)
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Here, dist is a distance function on X . If in (13) the minimizing argument α j �= 0,
then we say that V̂i depends on V̂ j . Unlike in Dijkstra’s algorithm, V̂i may depend
on multiple V̂ j s in the FMM.

2.4 Numerical Error

As it holds for many numerical methods, (12) introduces the numerical error, defined
as the maximum difference between numerical and true solutions:

E = max
x∈Xfree

|V (x) − V̂ (x)| . (15)

Theorem 4 in [39] establishes the bound on E in terms of the resolution of a sim-
plicial mesh, h = max

τ∈T
max

x,x ′∈Xτ

dist(x, x ′). Here, we formulate this theorem without

proving it. A curious reader is referred to [39] for proof details.

Theorem 1 (GlobalErrorBound)For an approximate solution computed using (12),

E ≤ Ch (16)

for some C > 0, independent of h.

3 Accuracy-Improving Adaptive Mesh Refinement

In the previous section, we established the relation between the mesh resolution and
the numerical error. In this section, we introduce the concept of mesh refinement,
which, when combined with the FMM, results in an asymptotically optimal feedback
planning algorithm, that is, E tends to zero as the iteration number increases.

3.1 Overview of Mesh Refinement

In two-dimensions, the uniform mesh refinement generates a sequence of simplicial
meshes by splitting all triangles (2D simplices) using their middle lines into four
congruent triangles. The resolution of the generated meshes doubles at each refine-
ment step. According to Theorem1, the numerical error of the solution sequence
computed by the FMM on the generated meshes converges to zero.

A simple combination of the uniform refinement and the FMM yields an asymp-
totically optimal feedback planning algorithm. However, this combination is com-
putationally expensive, and it cannot be extended to higher dimensions. In [6], an
octasection-based subdivision has been proposed for tetrahedral meshes (simplicial
complexes in 3D), but d-dimensional implementations are not known.
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To circumvent the combinatorial complexity growth of the uniform refinement
method, adaptive mesh refinement algorithms have been proposed in the literature.
The idea of these algorithms is to improvemesh resolution in a region of high solution
variance and keep it low elsewhere in order to reduce the computational cost. In 2D,
for example, an intuitive adaptive refinement algorithm is to split the goal triangles
into four congruent triangles and bisect all adjacent triangles [3]. The latter process
is called the closure refinement, and it is necessary to ensure that the output of the
algorithm is a simplicial complex.

As it was discussed earlier, higher-dimensional extensions of the congruent split-
ting are unknown. However, a simpler bisection refinement has been introduced in
2-, 3-, and d-dimensional cases; see [4, 21, 33, 34], respectively. A typical bisection
refinement is executed in two stages: (1) refine goal simplices bisecting selected
edges and (2) apply the closure refinement.

Various edge-selection criteria for bisection refinement have been proposed in the
past. For example, the method of Maubach [21] selects previously unrefined edges
in the lexicographical order of their combinatorial representation. It has been shown
that, if the initial complex is a tessellation of the hypercube, then the number of
similarity classes among refined simplices is bounded from above. This property
guarantees that simplices do not degenerate with successive refinements, but it fails
to hold for general simplicial meshes [30].

In 2D, Mitchell proposed selecting the edge opposite the newly introduced vertex
at each refinement step [24]. This algorithm also guarantees an upper bound on the
number of similarity classes of refined triangles. Unfortunately, the extension of this
newest-vertex edge-selection strategy to high-dimensionalmeshes is unknown.How-
ever, this method is equivalent to Rivara’s four-triangle longest-edge splitting [32],
which, in turn, extends to higher dimensions.

Algorithm 2 Skeleton-Based Bisection Refinement
Input: (Xd, T ), (E, {κε}ε∈E ) (a simplicial complex and a set of marked edges)
Output: (Xd, T ) (a refined simplicial complex)
1: for all ε in E do
2: Let ε = (i, j)
3: Add xk = κεxi + (1 − κε)x j to Xd
4: for all τ in St(i)

⋂
St( j) do

5: Split τ into τ ′ and τ ′′ at xk , and replace τ with τ ′ and τ ′′ in T
6: return (Xd, T )

In [33], Rivara and Levin presented the longest-edge refinement algorithm for
three-dimensional simplicial meshes. Although no provable guarantees on mesh
quality are given, empirical evidence suggest that the refined tetrahedra do not degen-
erate in the limit of the infinite refinement.

The edge-selection method proposed in [1] avoids costly edge-length computa-
tions and relies on a marked simplex combinatorial data structure instead. Moreover,
it has been proven that the number of similarity classes of simplices is bounded
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by dd!2d−2, which in 3D is equal to 36. However, this bound increases super-
exponentially with the dimension number; thus, it can be considered infinite for
practical purposes in high dimensions.

By considering a dynamical system of sequentially refined triangles in hyperbolic
geometry, it was shown in [27] that trisection guarantees high-quality refinedmeshes;
whereas the n-sectionmethod for n ≥ 4 can produce degenerate triangles [26]. Other
advanced refinement strategies are discussed in [7, 9, 19].

In this paper, we use a skeleton-based edge-selection in a conjunction with
bisection refinement algorithms, as this combination demonstrates a good balance
between the computational complexity of the refinement algorithm [31] and empir-
ical mesh quality guarantees [30]. Moreover, this algorithm is easily generalized to
d-dimensional simplicial meshes.

3.2 Skeleton-Based Mesh Refinement

In Algorithm 2, we outline the skeleton-based bisection refinement algorithm. This
algorithm refines a given simplicial complex in-place by splitting simplices adjacent
to input edges according to their respective weights (also given as input).

Note that different order of skeleton edges results in different refined meshes.
Moreover, employing the adaptive refinement we may lose global optimality guar-
antees if the edge-selection algorithm erroneously assumes importance of one region
in Xfree over another. Thus, edge-selection algorithm plays an important role in the
refinement process. In the next section, we present a characteristic-driven edge selec-
tion algorithm.

3.3 Selecting Refinement Edges

Ideally, we would like to refine only those simplices, geometric representations of
which contain the shortest path. However, it is impossible for two reasons: (1) the
exact shortest path is unknown beforehand and (2) the interpolation requires accu-
rate computations outside of immediate vicinity of the shortest path; for example,
see Fig. 1. In this example, the dependency relation between approximate values of
the cost-to-go function requires that the refinement must be carried in the volume

Fig. 1 Local characteristic
(red arrows), approximate
cost-to-go function
dependencies (blue arrows),
and the shortest path (green
line) x init

X goal



704 D.S. Yershov and E. Frazzoli

of space, which is far away from the shortest path. However, the dynamic program-
ming principle dictates that values of the optimal cost-to-go function depend only on
its values along the characteristics curve (the optimal trajectory). Motivated by this
example, we introduce an edge-selection strategy that is aimed at reducing depen-
dency regions of the successive cost-to-go function approximations.

To this end, we introduce the two-step characteristic-driven edge selection
algorithm (see Algorithm 3), which computes the refinement skeleton based on local
characteristic direction and the dependency tree of the cost-to-go value at the initial
robot position.

During the first step, the algorithm finds the dependency tree of the cost-to-go
function rooted at xinit . This tree is an overestimation of the simplex set that contains
the shortest path. For all simplices in the dependency tree, the local characteristic is
computed (argminu∈U 〈∇τ V̂ , u〉x ), and the edge that is the closest to the intersection
of this characteristics with the face opposite to the origin of this characteristic is
selected. The splitting weight is such that the newly introduced vertex is in the
hyperplane spanned by the local characteristic and the remaining vertices of the
simplex, which are not on the selected edge. See Fig. 2a and lines 3–11 inAlgorithm 3
for details.

Algorithm 3 Characteristic-Driven Edge Selection

Input: (Xd, T ), V̂ , β1 ∈ [ 12 , 1], and β2 ∈ [ 12 , 1]
Output: E , {κε}ε∈E (a set of edges and weights marked for refinement)
1: Initialize E = ∅
2: Initialize vertex queue Qvertex ← τinit such that xinit ∈ Xτinit
3: while Qvertex is not empty do
4: Pop i from Qvertex
5: Find J and {α j } j∈J such that V̂i = ∑

j∈J
α j V̂ j + dist

(
xi ,

∑

j∈J
α j x j

)

6: Let j∗ and j∗∗ be such that α j∗ ≥ α j∗∗ ≥ α j for all j ∈ J \ { j∗, j∗∗}
7: if (1 − β1) ≤ α j∗/(α j∗ + α j∗∗ ) ≤ β1 then
8: E ← E ⋃{( j∗, j∗∗)} and κ( j∗, j∗∗) ← α j∗/(α j∗ + α j∗∗ )
9: for all j ∈ J do
10: if α j ≥ (1 − β2) then
11: Push j to Qvertex
12: Initialize simplex queue Qsimplex ← {τ ∈ T | ∃ε ∈ E such that ε ⊂ τ }
13: while Qsimplex is not empty do
14: Pop τ from Qsimplex
15: Find ε, the longest edge in τ
16: Let E ← E ⋃{ε} and κε ← 1/2
17: for all τ ′ that contain ε as edge, and τ ′ �= τ do
18: if ε is not the longest edge in τ ′ then
19: Push τ ′ to Qsimplex
20: Sort all newly introduced edges of E in the decreasing order of their lengths
21: return E and {κε}ε∈E

During the second step, for all simplices involved in the refinement, the algorithm
selects the longest edge to improve the quality of the refined mesh [33]; see Fig. 2b.
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Fig. 2 Characteristic-driven
mesh refinement algorithm.
a Splitting along the local
characteristic. b Successive
bisection splitting

(a) (b)

This longest-edge selection is done recursively until no new simplex is involved
(lines 13–19 of Algorithm 3).

Two parameters of the algorithm, β1 and β2, are introduced.We call them badness
parameters. The first parameter, β1, controls the maximum aspect ratio between the
longest and the shortest edges of the refined simplices. Ifβ1 = 1/2, thenour algorithm
is equivalent to the longest-edge bisection refinement. The second parameter, β2,
controls the dependency tree width. All dependencies are included if β2 = 1.

A rather straightforward combination of the FMM and the characteristic-driven
skeleton-based refinement strategy results in the asymptotically optimal planning
algorithm; see Algorithm 4 for details.

4 Experimental Results

To illustrate the performance of the proposed asymptotically optimal planning algo-
rithm, we consider several test cases, which are similar to those in [16]. Motivated
by nondegeneracy of trisection refinement algorithm [27], we chose β1 = 2/3. Also,
β2 = 0.9 in all test cases. Unfortunately, a visual comparison between the results of
our planning algorithm and the previous planners, for example, the PRM* or RRT*,
was virtually impossible due to significant scale difference in the numerical error,
which was consistently lower for the FMM.

Algorithm 4 Planning Algorithm
Input: The initial (coarse) simplicial complex (Xd, T ) and the goal set Xgoal
1: while true do
2: V̂ ← Fast Marching Method((Xd, T ), Xgoal)
3: (E, {κε}ε∈E ) ← Characteristic-Driven Edge Selection((Xd, T ), V̂ )
4: (Xd, T ) ← Execute Skeleton-Based Bisection Refinement((Xd, T ), (E, {κε}ε∈E ))
5: yield return V̂ and the corresponding feedback function to a controller

In the first four test cases, a robot is located at the vertex of a d-dimensional
hypercube for d between 2 and 5. The goal is at the vertex opposite the initial
position. Since the length of the shortest path is known, we compute the numerical
error with respect to the vertex number (Fig. 3a). Note that E is proportional to

√
N

in 2D, and the convergence rate decreases in higher dimensions.
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(a) (b)

(c) (d)

Fig. 3 Shortest path convergence in a d-dimensional hypercube without obstacles (a), and 2D, 3D,
and 4D hypercube with a hypercube obstacle of volume 0.5 at the center (b–d)

For the next three test cases, we add a hypercube obstacle in the middle of the
previously considered environment. The convergence of the shortest path length is
shown in Fig. 3b–d. In this case, however, we plot the actual cost because the optimal
solution is unknown.

Next, we compute the shortest path in 2D environments with and without obsta-
cles, which are similar to those in [16]. In both cases, the initial position is at the
center of the environment, and the goal set is the square region in the upper-right cor-
ner. For the environment without obstacles, the initial coarse simplicial discretization
is presented in Fig. 4a. In Fig. 4b, we show the mesh after five refinement steps using
uniform refinement algorithm. In Figs. 4c, d, the result of 15 steps of the longest-edge
bisection and characteristic-driven refinements are illustrated. In all cases, only sim-
plices for which the approximate cost-to-go function is computed are visible. Note
that adaptive refinement algorithms increase themesh resolution in the vicinity of the
optimal path.Moreover, characteristic-drivenmesh refinement focuses the expensive
computations tightly around the optimal path.

The convergence of the numerical shortest path is shown in Fig. 5, for the environ-
ment without obstacles, and in Fig. 6, for the environment with obstacles. Compared
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Fig. 4 Discretization mesh of a 2D environment without obstacles: a the initial coarse mesh, b
uniform refinement—5 steps, c longest-edge bisection—15 steps, d characteristic-driven—15 steps

Fig. 5 Convergence of the numerical shortest path in a 2D environment without obstacles

with Figs. 13 and 16 in [16], the solution computed by our algorithm on the initial
mesh with fewer than a hundred vertices is of the same quality as that computed
by RRT* using more than two thousand vertices, in the case without obstacles, and
six thousand vertices, in the case with obstacles. We attribute faster convergence of
the FMM to the use of the cost-to-go function interpolation, which allows the plan-
ning algorithm to choose the shortest path in the continuum of directions between
discretization points; whereas, RRT* is constrained to the shortest path on a tree.

Note that, in the case of no obstacles, characteristic-driven edge selection algo-
rithm outperforms the traditionally used longest-edge selection algorithm (Fig. 5).
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Fig. 6 Convergence of the numerical shortest path in a 2D environment with obstacles

Fig. 7 Discretizationmesh of a 2D environment with obstacles: a the initial coarsemesh, b uniform
refinement—5 steps, c longest-edge bisection—15 steps, d characteristic-driven—15 steps

In the environment with obstacles, however the convergence of characteristic-driven
refinement algorithm is similar to that of the longest-edge bisection refinement algo-
rithm (Fig. 6). This behavior is due to moderately cluttered environment constraining
the refinement process; see Fig. 7.
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5 Summary

Considered is the novel asymptotically optimal algorithm for the shortest path
problem among obstacles. Compared with the previous algorithms, our method
is build on fundamentally different principles: the Fast Marching HJB solver and
adaptive mesh refinement. Benefits of using our approach include provable error
bounds with respect to the mesh resolution, feedback control computations for stable
optimal trajectory executions, improved solution accuracy at a similar resolution of
discretization points. Numerical experiments show that, on the test cases considered
in [16], the numerical error is consistently lower for our algorithm compared to that
for the RRT*.We hope that our findings will fuel the interest in optimal motion plan-
ning further and promote the development of refinement strategies with provable
optimality guarantees.
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Online Task Planning and Control for Aerial
Robots with Fuel Constraints in Winds

Chanyeol Yoo, Robert Fitch and Salah Sukkarieh

Abstract Real-world applications of aerial robots must consider operational con-
straints such as fuel level during task planning. This paper presents an algorithm for
automatically synthesizing a continuous non-linear flight controller given a complex
temporal logic task specification that can include contingency planning rules. Our
method is a hybrid controller where fuel level is treated continuously in the low-level
and symbolically in the high-level. The low-level controller assumes the availability
of a set of point-estimates of wind velocity and builds a continuous interpolation
using Gaussian process regression. Fuel burn and aircraft dynamics are modelled
under physically realistic assumptions. Our algorithm is efficient andwe show empir-
ically that it is feasible for online execution and replanning. We present simulation
examples of navigation in a wind field and surveillance with fuel constraints.

1 Introduction

Autonomous aerial robots have real potential to replace human-piloted aircraft in
important applications such as cargo flights, surveillance for border protection, envi-
ronmental monitoring, and commercial aviation. In these applications, aerial robots
must not only be able to navigate autonomously but also must be able to execute
complex tasks that involve contingency planning and rules governing operation in
controlled airspace. Recent work has pioneered the application of formal methods
to automatically synthesise controllers for such complex tasks. We are interested
in efficient automatic synthesis of controllers for unmanned aerial vehicles (UAVs)
subject to fuel constraints.
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Fuel constraints are important for UAVs because violation can lead to catastrophic
failure.Wewould like to specify tasks that guarantee safe operation such as returning
to base when fuel level drops below a threshold, and ensuring that a suitable landing
site is reachable at all times in the event of an emergency. Important work in robotics
has explored hybrid controllers where rich tasks are specified as linear temporal logic
(LTL) formulas at a high-level discrete layer, and continuous controllers are designed
or synthesised that execute the high-level behaviours [3, 7, 16]. Fuel constraints
introduce a challenging case because it is undesirable to model such continuous
values discretely in the high-level [19], yet task specifications must be able to encode
behavioural goals with respect to these values. It is possible to treat this as a reactive
task, where change in fuel level is viewed as a change in the environment to which
the high-level controller must react. But synthesis of reactive controllers generally
is computationally expensive [12], limiting its potential for online execution.

Designing low-level controllers is also challenging in this case because UAV
dynamics depend on the gross weight, which decreases as fuel is burned (for non-
electrically powered UAVs). Further, the behaviour of the UAV strongly depends on
wind conditions such as tail winds and head winds. This optimal control problem,
known as Zermelo’s problem, is a two-point boundary value problem typically solved
using shooting methods.

In this paper we address these challenges and present efficient algorithms that
synthesise correct task-level behaviour from LTL formulas for a UAV under physi-
cally realistic assumptions. We define a reactive task-level controller that is coupled
to a low-level flight controller through operational state variables. The operational
state of the robot is modelled in continuous form in the flight control layer, and
also represented symbolically in the task layer. The task layer reacts to changes in
operational state, such as if the fuel level drops below a certain value, in a way that
satisfies the given LTL task specification.

The flight controller plans a path for the robot given wind velocity predictions
interpolated from point estimates using Gaussian process regression [10]. Change in
gross weight of the robot due to fuel burn over time is modelled analytically using
the well-known Breguet range equation. UAV dynamics are modelled using a set of
non-linear differential equations and solved numerically.

Reactive task-level synthesis is performed using a Büchi automaton, but not by
constructing a product of automata as is typical. This approach drastically improves
the efficiency of synthesis for the purpose of enabling online execution during flight.
The main limitation of this approach is that efficiency gain comes at the cost of
completeness. However, correctness at the task level is preserved.

We have implemented our algorithms and report results from two simulation
examples. The first example shows navigationwith obstacle avoidance and illustrates
how the wind field influences the trajectory. The second example shows how fuel
constraints are maintained during a persistent surveillance task, where the UAVmust
return to a base when fuel level drops below a given threshold. We report clock time
results that indicate the feasibility of our method in practice.
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The two main contributions of this work are our novel method of coupling the
continuous operational (fuel) state of the robot with discrete task-level synthesis,
and its efficient application to UAVs with a realistic model of wind effects on UAV
dynamics. To the best of our knowledge, this work is the first such application.

2 Related Work

Temporal logic is a class of logic that extends propositional or predicate logic with
temporal properties [1]. LTL is a widely used form of temporal logic that is suitable
in specifying linear time properties [14]. Unlike a formula in classical logic which
determines the truth value of a set of Boolean variables at a given time, an LTL
formula returns the truth value of an infinite trace (or sequence) of a set of Boolean
variables. Such expressivity allows for specifying a number of interesting behaviours
such as functional correctness, liveness, safety, fairness, reachability and real-time
properties. A system with a controller can be verified or model-checked [1] against
a given LTL formula to show the absence of error. Verification methods can also be
used to synthesise a controller that formally guarantees correct behaviour.

In robotics, temporal logic is important for task-level planning with missions that
can be specified with natural language [2, 6, 8, 20]. Temporal logic is expressive
enough to specify a number of tasks such as coverage, sequencing, conditioning and
avoidance [9].

The time complexity of synthesis is doubly-exponential in the size of the formula
in the general case [13], limiting its use in practice. There are a number of tech-
niques for faster synthesis by restricting the form of LTL formulas [4, 9, 17]. For
example in [9, 17], a restricted class of LTL called generalised reactivity(1) is used
to synthesise a reactive controller with polynomial time complexity.

Synthesised controllers are often executed in continuous space [3, 7, 16], typi-
cally with simple dynamics assuming no external factors such as wind. In [15, 18],
optimal controllers are synthesised to minimise a cost function in a weighted tran-
sition system, but also do not consider external disturbances such as wind. Other
work synthesises controllers that guarantee the execution of an LTL formula for a
class of dynamical systems [5], but does not consider the coupling between low-level
operational and task-level states of the robot. Our work considers this coupled case
with continuous execution under the influence of a continuous wind field assuming
realistic aircraft dynamics and fuel models.

3 Problem Formulation

Suppose we have a UAV in an environment with a complex mission such as
surveillance and sequencing under the influence of wind and fuel constraints. The
UAV is required to synthesise a task-level planner for the mission and a low-level
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controller for actuation. In this paper, we develop a two-layered online synthesis
algorithm which consists of discrete synthesis and continuous execution.

In discrete synthesis, the environment and the UAV dynamics are discretised and
wind vectors are approximated for each discrete state. The algorithm is to find a
sequence of discrete states satisfying the task-level mission specification. In particu-
lar, the sequenceminimises the fuel consumption, with the presence ofwind affecting
the fuel consumption. We present an efficient algorithm to plan at the task-level with
the given complex mission specification so that the planning can be done online. In
continuous execution, the sequence of discrete synthesis is realised with continuous
dynamics of the UAV and the influence of continuous wind. In this work, we focus
on a practical flight mission where the UAV is to start a landing procedure when the
fuel goes below a certain threshold. Therefore we have a mission of a form ‘If the
fuel level is above a threshold, mission φ is taken. If not, a landing procedure φe

starts’.
In this section,we introduceLTLandBüchi automata for the purpose of expressing

complex missions with natural language. We then state the fuel model of the UAV
and the interpolation methods for the wind field. Lastly the UAV dynamics and the
controller model are defined.

3.1 Linear Temporal Logic (LTL)

LTL is an extension of classical propositional logic that expresses and reasons about
the behaviour of systems over time [1]. An LTL formula φ can be an atomic propo-
sition a ∈ AP and can be formed with operators. The standard Boolean operators
such as negation (¬φ), conjunction (φ1 ∧φ2) and disjunction (φ1 ∨φ2) can be used.
The operators such as implication (φ1 ⇒ φ2) and equivalence (φ1 ⇔ φ2) can be
constructed. Temporal operators consist of in next (©φ) and until (φ1 U φ2). Addi-
tional operators such as in future (♦φ) and always (�φ) can be constructed from the
prior operators: ♦φ = true U φ and �ϕ = ¬♦¬ϕ.

LTL is used to express a variety of robotic tasks such as coverage, sequencing,
conditions and avoidance [9]. For example, ♦area1 ∧ ♦area2 ∧ ♦area3 denotes
that area1, area2 and area3 are reachable in any order (coverage), ♦(area1 ∧
♦(area2 ∧ ♦area3)) denotes that area1, area2 and area3 are reached in order
(sequencing), (area1 ⇒ ©area2) denotes that area2 will be visited immedi-
ately if currently in area1, and ¬dangerUarea1 denotes that there is no dan-
ger until reaching area1. More complex missions can be expressed with nesting,
conjunction/disjunction and negation of multiple LTL formulas as defined in the
syntax. For example, a surveillance mission can be written as �(♦area1 ∧ ♦area2)
which denotes that areas are visited infinitely often.
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Fig. 1 Constructed Büchi automaton of LTL formula �(♦a ∧ ♦b) is shown. Starting from initial
Büchi state q0, the accepting state q1 has to be visited infinitely often by the word ω of an infinite
length

3.2 Deterministic Büchi Automaton

Adeterministic Büchi automatonB is a tuple< Q, q0,Σ, δ, F >, where Q is a finite
set of states, q0 ∈ Q is an initial state, A ∈ Σ = 2AP is a set of input alphabets,
δ : Q ×Σ → Q is a deterministic transition relation and F ⊆ Q is a set of accepting
states.

In order to solve for the truth of an infinite sequence of states over an LTL for-
mula, an equivalent Büchi automaton is built which accepts all and only the infinite
sequences of wordsωwhereωi ∈ Σ satisfies the given formula. An infinite sequence
is said to be accepted by a Büchi automaton if and only if the accepting states are
visited infinitely often.

We define an additional function trans: q → 2Σ that returns a set of input
alphabets that allows a transition from state q to q ′ where q ′ �= q. Similarly
we define stay: q → 2Σ that returns a set of input alphabets such that q = q ′.
Finally we have allowed: q → 2Σ where allowed(q) = trans(q)

⋃
stay(q). Note

that trans(q)
⋂

stay(q) = ∅.
A Büchi automaton for an LTL formula�(♦a∧♦b) is shown in Fig. 1 where q0 is

an initial state and q1 is an accepting state. Any word (or sequence) of infinite length
that visits q1 would be an accepting word. For example, a word ω = ababab...

repeating ab is an accepting sequence of the formula since the accepting state q1 is
visited infinitely often.

3.3 Breguet Range Equation

Suppose a petrol-powered UAV is in operation at constant altitude and air speed,
subject to wind currents. Since fuel is consumed over time, the change in the mass
of the fuel affects the flight dynamics of the UAV significantly. The relationship
between the ground distance travelled and the mass of fuel is represented by the
Breguet Range equation

dg = vg · Ca · log Mi

M f
, (1)
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where dg is the ground distance travelled, vg is the ground velocity, and Mi and M f

are the initial and the final mass of the fuel respectively. We have Ca = Isp · L/D
where Isp is the specific impulse, and L/D is the lift-to-drag ratio.

With the presence of a tail wind, the ground velocity is re-written as vg = va +vw

where va is the air velocity and vw is the tail wind velocity. The mass after travelling
an infinitesimal ground distance (dx) or time (dt) is shown as

M f = Mi · exp
( −dx

(va + vw) · Ca

)

= Mi · exp
(−dt

Ca

)
. (2)

3.4 Wind Field Interpolation

We use Gaussian process regression to interpolate wind field values given a number
of observation points. The wind vector is assumed to be time-invariant and noise-
free [10]. We use the typical squared exponential covariance function k(x, x′) =
exp(− 1

2λ‖x − x′‖2) where λ is a length scale. Suppose we are interested in a wind
vector at a point x∗ with a number of observation points X and the corresponding
observed wind vectors Y. We have the following equation:

Vw(x∗) = K (x∗, X)[K (X, X)]−1Y, (3)

where K is the covariance matrix with components k(x, x′) for all x, x′ ∈ X . Note
that x and y dimensions are independent and share the same λ. The value of the length
scale is not optimised since it is not in the scope of this paper. Assuming that the wind
field is smooth and does not vary rapidly, a large value is suitable for the interpolation.
In particular, we assume that the wind field values are spatially correlated and that
the length scale is approximately the distance between two nearest observations.

Given the environment is discretised into a grid with a set of discrete states S, the
mean wind vector for each discrete state is

Vw[s] =
∫

x∈Xs
Vw(x) · dx

∏D
d=1 ‖Xd

s ‖ , (4)

where s ∈ S is a discrete state, Xs is the bounds for the cell s where ‖Xd
s ‖ is the

length of the cell in the d-dimension.
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3.5 UAV Dynamics and Controller Model

The UAV is assumed to maintain a constant altitude and a constant airspeed va .
Therefore the state vector for the UAV is X = [x, y, ψ]T where ψ is the heading
angle. The control input is u = ψ ′ ∈ U where U is a set of possible turn rates. If the
UAV is moving in a wind field represented with a function Vw(x, y) as interpolated
in Sect. 3.4, the dynamics of the UAV become

x ′(t) = va · cos(ψ(t)) + Vwx (x(t), y(t))

y′(t) = va · sin(ψ(t)) + Vwy(x(t), y(t)) (5)

ψ ′(t) = u(t) ∈ U

where Vwx and Vwy are the tail wind in the x and y axis respectively. Since the system
of differential equations is non-linear, we solve them numerically:

x[t + Δt] = (va · cos(ψ[t]) + Vwx (x[t], y[t])) · Δt + x[t]
y[t + Δt] = (va · sin(ψ[t]) + Vwy(x[t], y[t])) · Δt + y[t] (6)

ψ[t + Δt] = u[t] · Δt + ψ[t].

4 Controller Synthesis for Continuous Trajectories

4.1 Discrete Synthesis

As mentioned in Sect. 3, the normal flight mission is to be aborted when the fuel
level is below a threshold and a landing procedure should then begin. The mission
is expressed in LTL as:

(¬eα ⇒ φ) ∧ (eα ⇒ φe) (7)

where φ is an LTL formula for the normal flight mission, dland is a proposition to
avoid and gland is a proposition to reach in the landing procedure. The symbol e is a
signal produced by the low-level controller when the fuel goes below a threshold α

and φe = ¬dland U gland . Note that we solve for φ and φe separately. More details
about solving the formula are shown in Sect. 4.2.

We discretise a continuous-space environment into a set of discrete position
states S where Xs is the geometric size of each cell in the environment. For each
discrete state, we calculate the mean wind vector as in Eq. 4. Each discrete state is
labelled with symbolic propositions based on the mission.

We propose a greedy Büchi algorithm (GBA) to find a sequence of discrete states
that minimises fuel consumption. The algorithm is optimal in one Büchi horizon,
where n Büchi horizons refers to n transitions in Büchi states. The sequence is
minimum fuel consuming for one transition in the Büchi automaton.
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A Büchi automaton is generated from a given LTL formula φ. From a discrete
state s and Büchi state q, we find a sequence of discrete states that produces a finite
word ω to transit to the next Büchi state q ′. The sequence of discrete states generated
is optimal in the discrete space with respect to fuel consumption with mean wind
vectors. The advantage of our approach over the typical approaches [9, 15] of building
a product automaton is discussed in Sect. 4.3.

Consider an example environment shown in Fig. 2a and a Büchi automaton in
Fig. 2b of formula �(¬cUa) ∧ �(¬cUb) (i.e., ‘visit a and b infinitely often while
avoiding c’). From the Büchi automaton with initial state q0, the set of valid input
alphabets is expressed as a ∧ b, a ∧ ¬c ∧ ¬b and ¬a ∧ ¬c, where the first two
expressions allow transiting to the next available Büchi state (i.e. trans(q0) = a ∧
b ∨ a ∧ ¬c ∧ ¬b and stay(q0) = ¬a ∧ ¬c).

The problem is then reduced to a Markov Decision Problem (MDP) with
deterministic transition. Given a Büchi state q and a labelling function L : S → 2Σ ,
the discrete states satisfying L(s) ∈ trans(q) are to be reached while moving through
the states satisfying L(s) ∈ stay(q) while minimising fuel consumption. Solving the
MDP provides an optimal sequence to transit from the Büchi state q to another.
For example, starting from s3 and q0, the goal is to reach s1 while avoiding s4 with
minimum fuel consumption. One possible accepting sequence would be s3s6s5s2s1
where the produced word ∅∅∅∅a is accepted.

The mean wind vectors are computed as in Sect. 4. Suppose a transition is made
from a discrete state s to adjacent state s′ as shown in Fig. 3. Since the UAV ismoving
horizontally, the wind vectors affecting the movement in the x direction are denoted
as Vwx [s] and Vwx [s′]. Therefore, the fuel equation for travelling between the centres
of s and s′ from Eq. 2 can be re-written as

(a)

(b)

Fig. 2 a Simple example environment shown discretised into a 3 × 3 grid with continuous wind
vector field and mean wind vector for each discrete state (bold arrows). States s1, s9 and s4 are
labelledwith a, b and c respectively.bAdeterministic Büchi automaton of LTL formula�(¬cUa)∧
�(¬cUb) where a and b have to be visited infinitely often while avoiding c
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Fig. 3 A transition from discrete state s to s′ is shown with wind vectors Vw[s] and Vw[s′]. In
the approximation of fuel consumption, we assume that the UAV moves from centre of state s to
another. The UAV has a tail wind (i.e., same direction) when in state s and a head wind (i.e., opposite
direction) when in state s′

M1 = M0 · exp
(

− dg
(va ± Vwd [s]) · Ca

)
· exp

(
− dg

(va ± Vwd [s′]) · Ca

)

= M0 · exp
(

− dg
Ca

·
(

1

va ± Vwd [s] + 1

va ± Vwd [s′]
))

, (8)

where ±Vwd [s] is the tail wind in the direction of UAV movement. If the direction
of Vwd [s] is opposite to the UAV movement, then the value becomes negative. For
example, the wind vector in state s from Fig. 3 is positive since it is a tail wind
whereas the vector in state s′ is negative since it is blowing against the movement of
the UAV. In order to synthesise an optimal sequence given a discrete state s, Büchi
state q and a set of approximated wind vectors, we solve for the following equation
with value iteration:

F[s] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F[s′] · exp
(
− dg

Ca
·
(

1
va±Vwd [s] + 1

va±Vwd [s′]
))

if
⋃

L(s) ∈ stay(q)

1 if
⋃

L(s)
and q ′ /∈ Qseq\q

0 otherwise
(9)

where F[s] is the proportion of fuel remainingwhen entering the destination and q ′ is
a Büchi state in s′. Based on Eq. 9, we solve for F∗[s] = maxd∈D F[s] and π∗[s] =
argmaxd∈D F[s]where d ∈ D is a heading direction, π∗ is an optimal control policy
and Qseq is a set of visited Büchi states. Note that the set of Büchi states already
visited, Qseq , is not to be re-visited until reaching an accepting state F ⊆ Q. The
optimal sequence is calculated by following the control policy from an initial discrete
state. Pseudocode is listed as Algorithm 1.
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Algorithm 1 Synthesis of Optimal Sequence to Next Büchi State
function seq ← Get Sequence(s0, q0,B, Qseq )

1: ∀s ∈ S, F[s] ←
{
1 if

⋃
L(s) ∈ B.trans(q0) and q ′ /∈ Qseq\q

0 otherwise
2: repeat
3: F ← F
4: for all s ∈ B.stay(q0) do

5: {F[s], π [s]} ← maxd∈D F[s′] · exp(− dg
Ca

· (
1

va ± Vwd [s] + 1

va ± Vwd [s′] )
6: end for
7: until min(|F − F |) < ε

8: seq ← get sequence from s0 by following π

9: return seq

4.2 Continuous Execution

In order to solve the non-linear system of differential equations shown in Eq. 5,
we introduce two assumptions that allow us to find a sub-optimal but reasonable
solution. First, we assume a discrete number of available control inputs (turn rates)
U = {. . . ,−a2,−a1, 0, a1, a2, . . .} deg s−1. Second, the number of trajectories for
finding the best trajectory is bounded by a constant limit N .

Given an initial state of the UAV x = [x0, y0, ψ0]T at a discrete state s ∈ S
and the optimal sequence from discrete synthesis, we iteratively forward integrate
all available control inputs u ∈ U to create a set of candidate trajectories that reach
the boundary Xs of the current discrete state. After each control propagation, a
trajectory is pruned if the next discrete state is not the next state in the discrete
sequence. Since the number of candidate trajectories grows after each iteration, we
limit the number of those trajectories by selecting N least-fuel-consuming candidates
and prune all others. Therefore we have at most N trajectories as opposed to |U |K

where K is the total number of sequences throughout themission.After each iteration,
we select a trajectory with the least fuel consumption. If the fuel left is below the
specified threshold, then a new discrete sequence following a landing procedure
is synthesised. If not, each candidate trajectory starts a new iteration by executing
all control inputs. Once a trajectory reaches the end of the discrete sequence, the
next sequence is synthesised as shown in Sect. 4.1. The algorithm for following the
sequence is shown in Algorithm 2 where g ∈ G denotes a candidate trajectory with
the UAV position, discrete state, Büchi state and fuel level. The overall execution is
presented in Algorithm 3 where φ is an LTL formula for normal operation, φe is a
formula for landing procedure, and α is a fuel level threshold to execute the landing
procedure.

Suppose we have an example shown in Fig. 4 where the objective is to visit a
and b infinitely often while avoiding c. The initial candidate trajectory starts at a
state [0.5, 2.5, 30 deg]T in which the discrete state is s3. The initial sequence given
from the discrete synthesis is s3s6s5s2s1. Figure4a shows the execution of all possible
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Algorithm 2 Continuous Execution from Sequence of Discrete States
function Gnew ← ExecuteSequence(G0, seq, U, N )

1: G ← G0
2: for i ← 1 to seq.length − 1 do
3: s Next ← seq[i]
4: Gnew ← {∅}
5: for all g ∈ G do
6: for all u ∈ U do
7: gnew ← ExecuteControl I nput (g, u)

8: if gnew terminates at seq[i + 1] then
9: Gnew.add(gnew)

10: end if
11: Gnew ← N -best g ∈ Gnew
12: end for
13: end for
14: end for
15: return Gnew

Algorithm 3 Overall Execution
function g∗ ← Execute(x0, φ, φe, α, N )

1: Qseq ← ∅
2: B ← Construct Buchi Automaton(φ), Be ← Construct Buchi Automaton(φe)

3: g0 ← ini t (x0, s0 ← Get DiscreteState(x0), q0 ← B.q0, f uel0 ← 1)
4: G.add(g0), g∗ ← g0
5: repeat
6: if g∗. f uel ≥ α then
7: seq ← Get Sequence(g∗.s, g∗.q,B, Qseq )

8: G ← ExecuteSequence(G, seq, U, N )

9: g∗ ← argmin G. f uel
10: else
11: seqe ← Get Sequence(g∗.s,Be.q0,Be, Qseq )

12: G ← ExecuteSequence(G, seqe, U, N )

13: g∗ ← argmin G. f uel
14: end if
15: if g∗.q ∈ B.F then
16: Qseq ← ∅
17: else
18: Qseq .add(g∗.q)

19: end if
20: until g∗. f uel < α

21: return g∗

turn ratesU = {−6,−4,−2, 0, 2, 4, 6} deg s−1 until the trajectory hits the boundary
of the next discrete state. Note that the bold black line is the least-fuel-consuming
trajectory. Since s6 is preceded by s3 in the sequence given, all trajectories remain for
the next iteration. We select the best control action that minimises fuel consumption
and the best turn rate of −6 deg s−1 is found for the first discrete state s3. In the next
iteration in Fig. 4b, the candidate trajectories terminate at discrete state s5 where all
other trajectories terminating at other states are abandoned. Note that the number of
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Fig. 4 The UAV is to visit s1 and s9 infinitely often while avoiding s4. The optimal sequence
of discrete states is given prior to executing a continuous trajectory. The size of the environment
is 3000m × 3000m with 9 discrete states. The airspeed is 5ms−1 and the available turn rates
are {−6,−4,−2, 0, 2, 0, 6}deg s−1. The least fuel consuming trajectory is plotted with bold black
lines with candidate trajectories shown in red. The maximum number of candidate trajectories is
limited to 10. a i = 1, to reach s1. b i = 2, to reach s1. c i = 3, to reach s1. d i = 4, to reach s1.
e i = 5, to reach s9. f i = 6, to reach s9. g i = 7, to reach s9. h i = 8, to reach s9. i i = 28, to
reach s1

candidate trajectories is limited to 10 in this example. At the 5th iteration in Fig. 4e,
a new sequence is synthesised from the discrete synthesis after reaching the goal
discrete state with the target input alphabet a (a ∈ trans(q0)). From the 5th to 8th
iterations, the optimal sequence is s1s2s3s6s9. The trajectories at 28th iteration are
shown in Fig. 4i.
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4.3 Analysis

The time complexity of constructing a Büchi automaton B from an LTL formula φ

is O(2|φ|) [1]. The value iteration algorithm in Eq. 9, known to have the complex-
ity O(poly(|S|)) [11], is run to find an optimal sequence of discrete states for a
transition in the Büchi automaton. Note that poly(n)means ‘polynomial in n’. Since
transition to any visited Büchi state is prohibited before reaching an accepting state,
the maximum number of Büchi state transitions to reach an accepting state is |Q|−1
where Q is a set of Büchi states and |Q| < 2|φ|. The maximum number of candidate
trajectories in continuous execution is restricted to N . Therefore the overall time
complexity of solving for a single Büchi transition is O(poly(|S|) + |S| · |U | · N ).

The space complexity isO(|S|+ N · |U |+2|φ|). We need |S| space to solve value
iteration, N · |U | to find the best trajectory and 2|φ| to construct a Büchi automaton.
Note that typical synthesis algorithms require a construction of a product automata
with size O(|S| · 2|φ|) [15].

As GBA does not construct a product automaton, a locally optimal sequence of
discrete states can be acquired online as opposed to constructing a product automaton
and searching exhaustively. Synthesis for a single Büchi transition is O(poly(|S|)+
|S| · |U | · N ), so this synthesis can feasibly be performed during the execution of
the previous transition in a plan-as-you-go manner. Although the size of the Büchi
automaton is exponential in the size of a formula, the formula is often relatively
small compared to the size of the discrete state space. If formula size is assumed to
be constant, the space complexity is O(poly(|S|) + N · |U |).

5 Examples

In this section, we present examples with a petrol-powered UAV flying at fixed
airspeed and constant altitude. The size of the environment is 2000 × 2000m and
the wind field is interpolated as in Sect. 3.4. The environment is shown in Fig. 5
where ten wind observation points are shown with bold arrows. The environment is
discretised into a 10×10 grid. The airspeed of the UAV is 10ms−1, the set of control
inputs is U = {−4,−2, 0, 2, 4} deg s−1 and Ca is 0.001.

5.1 Reach Goal While Avoiding Danger
with Direction Constraint

We consider an initial scenario where the UAV is ‘to avoid danger regions until
reaching goal which has to be approached from runway region’. With no landing
procedure (i.e., α = 0), the mission specification is written in LTL as
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(a) (b)

Fig. 5 Wind vectors drawn on the environment sized 2000×2000m. The vector field is interpolated
with Gaussian process regression from 10 observation locations

(a) (b)

Fig. 6 Comparing two different algorithms in the same problem environment. The goal of the UAV
is avoid the danger regions while approaching the goal region from the runway region. a Uses GBA
to minimise fuel consumption with 15 discrete steps and b takes a path that minimises the number
of states in the sequence with 13 discrete steps. The amount of fuel left at mission completion is
78.249% (a) and 78.216% (b)

φ1 = ¬(goal ∨ danger) U (runway ∧ ©goal). (10)

The environment is labelled with symbolic propositions on the discrete posi-
tion states appropriately and the synthesis algorithm is executed starting from
[120m, 320m, 30 deg]T in Fig. 6. For the purpose of comparison, we demonstrate
two trajectories with different algorithms: one with GBA minimising consumption
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is shown in Fig. 6a and the other taking the sequence with the minimum number
of discrete states is shown in Fig. 6b. The numbers of discrete steps to accomplish
the mission are 15 and 13 steps respectively, however the proportions of fuel left
are 78.249 and 78.216%. The higher efficiency can be visually observed since the
trajectory with GBA follows the wind flow to minimise the effective air distance
whereas the other algorithm often goes against the wind. Note that the difference in
efficiency could be greater in larger environments.

5.2 Surveillance Mission

In this scenario, we demonstrate a surveillance mission where a number of locations
of interest must be visited infinitely often and a landing procedure begins when the
fuel goes below 20%. The LTL formula is written as

Fig. 7 A continuous execution of the surveillance mission encoded in Eq. 11 is shown where the
UAV visits three regions and begins to reach the landing zone when the fuel goes below 20%.
The sequence of discrete states between regions is optimal w.r.t. the fuel consumption based on the
approximated wind vector. The continuous trajectory follows the sequence by selecting the best
control action at each discrete state
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Table 1 Task-level synthesis time for different numbers of discrete states is shown for the problem
in Sect. 5.2

Number of states Average synthesis time (s) Average

Discrete Continuous Total Flight time (s)

100 0.151 28.806 28.957 108.595

400 0.941 58.065 59.006 224.525

2500 14.137 161.942 176.079 514.5

10,000 101.257 404.761 506.018 1124.8

40,000 777.445 1419.364 2196.809 2004.625

The size of the environment is enlarged while preserving the cell size (200 × 200m). Discrete
synthesis and continuous synthesis refer to synthesizing a state sequence for a single Büchi transition
and a continuous trajectory for the sequence. Average flight time refers to the average time taken to
complete one Büchi horizon

φ2 =
⎛

⎝¬e20% ⇒ �

⎛

⎝
Ng∧

i

♦goali

⎞

⎠

⎞

⎠ ∧ (e20% ⇒ ♦land), (11)

where the goal regions are at s33, s72 and s86, and the landing base is at s29. Figure7
shows the result of synthesis for this mission.

In Table1, we show the average clock time to perform synthesis with different
numbers of discrete states using a standard laptop computer. The environment is
divided into grids from 10×10 up to 100×100 while keeping the cell size the same
(200 × 200m). With a reasonably large number of discrete states such as listed in
Table1, we note that synthesis can be performed in a plan-as-you-go manner. In this
way, new plans are synthesised one after the other during execution. The UAV is only
required to wait for the initial synthesis, and as long as the total synthesis time shorter
than the flight time, the UAV does not wait for the completion of synthesis when
transiting to a new Büchi state. Updated wind estimates could also be incorporated
in the process.

6 Conclusion

This paper has presented an efficient synthesis algorithm for complex UAV tasks
involving constraints on the operational state of the robot under realistic physical
assumptions. We illustrated the behaviour of this algorithm through two examples
where the UAV performs navigation and surveillance tasks in a static continuous
wind field with fuel constraints. Our simulation results indicate that synthesis is fast
enough to allow for replanning during long-duration tasks where wind estimates
evolve over time.

The form of the Breuget range equation we presented assumes constant altitude,
temperature, and UAV velocity. However, this could easily be replaced with other
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forms of this equation that treat these parameters as variables. More sophisticated
models of UAV dynamics, such as point-mass models, could also be introduced for
future work, as well as guaranteed landing procedures.
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Pebble Motion on Graphs with Rotations:
Efficient Feasibility Tests and Planning
Algorithms

Jingjin Yu and Daniela Rus

Abstract We study the problem of planning paths for p distinguishable pebbles
(robots) residing on the vertices of an n-vertex connected graph with p ≤ n. A
pebble may move from a vertex to an adjacent one in a time step provided that it
does not collide with other pebbles. When p = n, the only collision free moves are
synchronous rotations of pebbles on disjoint cycles of the graph. We show that the
feasibility of such problems is intrinsically determined by the diameter of a (unique)
permutation group induced by the underlying graph. Roughly speaking, the diameter
of a group G is the minimum length of the generator product required to reach an
arbitrary element of G from the identity element. Through bounding the diameter of
this associated permutation group, which assumes a maximum value of O(n2), we
establish a linear time algorithm for deciding the feasibility of such problems and an
O(n3) algorithm for planning complete paths.

1 Introduction

In Sam Loyd’s 15-puzzle [10], a player arranges square blocks labeled 1–15, scram-
bled on a 4 × 4 board, to achieve a shuffled row major ordering of the blocks using
one empty swap cell (see, e.g., Fig. 1). Generalizing the grid-based board to an arbi-
trary connected graph over n vertices, the 15-puzzle becomes the problem of pebble
motion on graphs (PMG). Here, up to n − 1 uniquely labeled pebbles on the vertices
of the graph must be moved to some desired goal configuration, using unoccupied
(empty) vertices as swap spaces. Since the initial work by Kornhauser et al. [8], PMG
and its optimal variants has received significant attention in robotics [13, 18, 19]
and artificial intelligence [9, 14], among others. The connection between PMG and
multi-robot path planning is immediately clear, with potential applications towards
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Fig. 1 Two 15-puzzle
instances. a An unsolved
instance. In the next step,
one of the blocks 5, 6, 14
may move to the vacant cell,
leaving behind it another
vacant cell for the next
move. b The solved instance
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micro-fluidics [7], multi-robot path planning [13], andmodular robot reconfiguration
[12], to name a few.

As early as 1879, Story [15] observed that the parity of a 15-puzzle instance
decides whether it is feasible. Wilson [20] generalized this observation by showing
that, for 2-connected graphs (other than cycles and one special graph) with n vertices
and n−1 pebbles, the reachable configurations form an alternating (resp. symmetric)
group on n −1 letters when the graph is bipartite (resp. non-bipartite). An associated
planning algorithmwas also provided. Kornhauser et al. [8] improved the potentially
exponential time algorithm from [20] by giving an algorithm for PMG that runs in
O(n3) time. Auletta et al. [1] showed that deciding feasibility for PMG requires
linear time when the graph is a tree. Recently, the linear-time feasibility result was
extended to general graphs [6, 21]. Although not a focus of this paper, we note that
computing optimal plans for such problems is generally NP-complete [5, 11, 16, 22].

As evident from the techniques used in [8, 20], pebblemotion problems are closely
related to the structure of permutation groups. Fixing a graph and the number of
pebbles, and viewing the pebble moving operations as generators, all configurations
reachable from an initial configuration form a group that is isomorphic to a subgroup
of Sn, the symmetric group on n letters. Deciding whether a problem instance is
feasible is then equivalent to deciding whether the final configuration is reachable
from the initial configuration via generator products [15, 20]. Another interesting
problem in this domain is the study of the diameter of such groups, which is the
length of the longest minimal generator product required to reach a group element.
Driscoll and Furst [3, 4] showed that any group represented by generators that are
cycles of bounded degree has a diameter of O(n2) and such a generator sequence is
efficiently computable. For generators of unbounded size, Babai et al. [2] proved that
if one of the generators fixes at least 67% of the domain, then the resulting group has
a polynomial diameter. In contrast, groups with super polynomial diameters exist [3].

Somewhat surprisingly, a natural generalization of PMG allowing rotations of the
pebbles without empty swap vertices has not receivedmuch attention, possibly due to
its difficulty. As an example, in Fig. 2a, the pebbles labeled 3, 4, and 5 are allowed to
rotate clockwise along the (only) triangle to achieve the configuration in Fig. 2b. We
call this generalization the problem of pebble motion with rotations (PMR), a formal
definition of which will follow shortly. Synchronous rotations are important to have
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Fig. 2 Two configurations that can be turned into each other in a single synchronized move

in a multi-robot setting for at least two reasons. First, with communication, robots
are able to execute synchronous rotational moves easily. Disabling such moves thus
wastes robots’ capabilities. Second, allowing rotational moves could allow more
problem instances to be solved and could also significantly reduce the length of
plans (note that the length of a plan can never be increased by adding more modes
of motion).

In this paper, we employ a group theoretic approach to derive a linear time
algorithm for testing the feasibility of a given PMR instance. The algorithm also
implies a cubic time algorithm for computing full plans when a PMR instance is
feasible. Thus, we establish that PMR induces similar algorithmic complexity as
PMG does in the sense that planning and feasibility test take O(n3) and linear
time, respectively. Nevertheless, the algorithms for solving PMG and PMR have
significant differences due to the introduction of synchronous pebble rotations. By
delivering these algorithms for PMR, we also bring forth the contribution of pro-
viding a now fairly complete landscape over graph-based multi-robot path planning
problems.

We formally define PMG and PMR problems in Sect. 2. In Sect. 3, we look at the
groups generated by cyclic rotations of labeled pebbles, on graphs fully occupied by
pebbles. We show that such groups have O(n2) diameters. With this intermediate
result, we continue to show, in Sect. 4, that the feasibility test of the PMR problem can
be performed in O(|V |+|E |) time, which implies an O(n3) algorithm for computing
a feasible solution (the set of movements). We conclude the paper in Sect. 5.1

2 Pebble Motion Problems

Let G = (V, E) be a connected undirected graph with |V | = n. Let there be
a set p ≤ n pebbles, numbered 1, . . . , p, residing on distinct vertices of G. A
configuration of these pebbles is a sequence S = 〈s1, . . . , sp〉, in which si denotes
the vertex occupied by pebble i . A configuration can also be viewed as a bijective
map S : {1, . . . , p} → V (S) in which V (S) denotes the set of occupied vertices by
S. We allow two types of moves of pebbles. In a simple move, a pebble may move to

1See http://people.csail.mit.edu/jingjin/files/YuRus15STAR.pdf for non-essential proofs and other
details that were omitted.

http://people.csail.mit.edu/jingjin/files/YuRus15STAR.pdf
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an adjacent empty vertex. In a rotation, pebbles occupying all vertices of a cycle can
rotate simultaneously (clockwise or counterclockwise) such that each pebble moves
to the vertex previously occupied by its (clockwise or counterclockwise) neighbor.
Two configurations S and S′ are connected if there exists a sequence of moves that
takes S to S′. Let S and D be two pebble configurations on a given graph G, the
problem of pebble motion on graphs is defined as follows.

Problem 1 (Pebble Motion on Graphs (PMG)) Given (G, S, D), find a sequence of
simple moves that take S to D.

When G is a tree, PMG is also referred to as pebble motion on trees (PMT). In
this case, an instance is usually written as I = (T, S, D) with T being a tree. When
both simple moves and rotations are allowed, the resulting variant is the problem of
pebble motion with rotations.

Problem 2 (Pebble Motion with Rotation (PMR)) Given (G, S, D), find a sequence
of simple moves and rotations that takes S to D.

If G is a tree, then a PMR is simply a PMT. We note that it may be possible
to achieve additional efficiency by allowing multiple simple moves and rotations
(along disjoint cycles) to take place concurrently. For example, the configuration in
Fig. 2a can be taken to the configuration in Fig. 2b in a single concurrent move. A
full discussion of such moves (i.e., the optimality perspective) is beyond the scope
of this paper.

3 Graph Induced Group and the Upper
Bound on Its Diameter

3.1 Groups Generated by Cyclic Pebble Motions
and Their Diameters

A particularly important case of PMR is when p = n; we restrict our discussion
to this case in this section. When p = n, only synchronous rotations are possible.
Given two configurations S and S′ that are connected, they induce a permutation of
the pebbles, which is computable via σS,S′(i) = S−1(S′(i)) for each pebble i ; σS,S

is the identity element. Given an initial configuration S0, let S denote the set of all
configurations reachable from S0. It can be verified, using basic definitions of groups,
that the permutations σS0,Si over all Si ∈ S form a subgroup of Sn, the symmetric
group on n letters. Since this group is determined by the graph G, we denote it G.

Two cycles of G are disjoint if their vertex sets have empty intersection. When
p = n, each synchronous move corresponds to the rotations of pebbles along a
set of of disjoint cycles. Let C be the collection of all sets of disjoint cycles in G;
each C ∈ C is a unique set of disjoint cycles of G. Since the pebbles may rotate
clockwise or counterclockwise along a cycle ci ∈ C , each set of disjoint cycles C
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Fig. 3 For the graph above, the collection of sets of cycles are C = {{v1v2v3v4v5}, {v6v7v8v9v10},
{v1v2v3v4v5, v6v7v8v9v10}}

can take a configuration to 2|C| new configurations with one move. That is, each C
yields 2|C| generators of G. Let the set of all generators obtained this way be G . As
an example, the graph in Fig. 3 has two cycles, with |C | = 3 and |G | = 8 (note that
|G | = 2|C | does not hold in general). We make the simple observation that these
definitions yield a natural bijection between synchronous moves and elements of
G . As such, when a configuration S′ is reachable from a configuration S, we say
that the permutation σS,S′ ∈ G is reachable (from the identity) using products of
generators from G corresponding to the synchronous moves. We frequently invoke
this bijection between synchronous moves and generators without explicitly stating
so. Lastly, any element x ∈ G can be expressed as generator product g1g2 . . . gk in
which g1, . . . , gk ∈ G . Let kx be the minimum k such that x = g1g2 . . . gk . The
diameter of G, diam(G), is defined as the maximum kx over all x ∈ G.

3.2 Upper Bound over Group Diameters

Themain result to be established in this section is diam(G) = O(n2). To show this,G
is divided into classes based on its connectivity. When G is connected (1-connected)
but none of its subgraphs are 2-connected (i.e., G has no cycles), it is a tree. In this
case, no pebble can move. Another simple case is when G is a cycle, the simplest
2-connected graph. Then, it is clear that all elements of G are generated by a single
rotation.

Lemma 1 (Trees and Cycles) If G is a tree, then G ∼= {1}, the trivial group. If G is
a cycle, then G ∼= Z/n, the cyclic group of order n.

When G is connected but the removal of some vertex from G leaves two or more
components, it is separable. An important case here is when G is a set of cycles
sharing vertices so that no edge of G is on more than one cycle. Such graphs form
a subset of 2-edge-connected graphs. Figure4 gives an example with two cycles.
Following convention, An denotes the alternating group on n letters. For groups,
G1 ≥ G2 or G2 ≤ G1 denotes that G2 is a subgroup of G1. For two configurations
S and S′ over the same set of pebbles on the same graph, we say that they are cycle
similar if the following property holds. For any pebble a, let the sets of cycles (of
the underlying graph G) occupied by a in configurations S and S′ be CS and CS′ ,
respectively. Then CS ∩ CS′ �= ∅.

A key result of this section is the following.
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Fig. 4 Two cycles sharing
one common vertex. The
graph is separable at b

a1
a 2

a

b

cr

c 1
c 2

Theorem 1 (Cycles, Separable) If every edge of a separable graph G is on exactly
one cycle, then G ≥ An and diam(G) = O(n2).

Proof Given configurations S and D, we claim:

1. In O(n2) moves, D can be taken to some configuration D′ such that S and D′
are cycle similar. As an example, in Fig. 4, assuming the given configuration is
S, this step ensures that in configuration D′, pebbles ai ’s are all on the left cycle
and pebbles ci ’s are all on the right cycle. The pebble b may appear on either one
of the two cycles.

2. In O(n2) moves from D′, a configuration D′′ can be reached such that either
D′′ = S or D′′ and S differ by a transposition (group action). We require that the
transposition is fixed for a fixed S and involves two adjacent pebbles of S. Let S′
be the result of letting this transposition act on S.

These claims are proved in lemmas that follow. By these claims, an arbitrary D
can reach either S or S′. Therefore, all configurations (and consequently elements of
Sn) are partitioned into two equivalence classes based on mutual reachability. Since
the only subgroup of Sn of index 2 is An, this implies that G ≥ An.

When G ∼= An, any element of G is a product of generators from G with a length
of O(n2), proving diam(G) = O(n2). If G is not isomorphic to An, since the only
subgroups of Sn containing An are An and Sn itself, G ∼= Sn. This implies that An
has at most two cosets in G; denote the other coset of An as An

c, which also have
a diameter of O(n2) (to see this, note that any configuration D is reachable from
one of S, S′ in O(n2) moves). From the identity, all elements of An are reachable
using generator products of length O(n2). Since elements of An

c are now reachable
from elements of An, an element of An

c must be reachable from the identity using
a generator product of length O(n2) as well. Therefore, when G ∼= Sn, all elements
of G are reachable using generator products of length O(n2), yielding diam(G) =
O(n2). �

Before moving to the lemmas, we note that when G is separable and every edge of
G is on exactly one cycle, the edges of G can be partitioned into equivalence classes
based on the cycles they belong to. Because G is separable, every cycle must border
one or more cycles and at the same time, two cycles can share at most one vertex.
Such a graph is also called a cactus graph. Moreover, there exists a cycle that only
shares one vertex with other cycles. We call such a cycle a leaf cycle. An example
of a leaf cycle is given in Fig. 5.
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Fig. 5 The dual tree structure in a separable graph G with every edge on exactly one cycle. The
numbers represent distances of the cycles to the leaf cycle C , which in fact is the root of the tree

Given a cycle C ′ on G, it is of cycle distance dc to C if a vertex on C ′ needs to
travel through at least dc cycles to reach C . A neighboring cycle of C has distance 0
since they share a common vertex. Let C have a cycle distance of −1 by definition.
This induces a (dual) tree structure on the cycles when viewing them as vertices
joined by edges to neighbors (see, e.g., Fig. 5). Computing such a tree takes time
O(|V |+ |E |) because obtaining maximal 2-connected components takes linear time
[17]. The first claim in the proof of Theorem 1 can be stated as follows.

Lemma 2 (Initial Arrangement) Given a separable G with each edge on exactly
one cycle and configurations S and D, in O(n2) moves, a configuration that is cycle
similar to S is reachable from D.

Proof Note that a pebble may reside onmultiple cycles; this lemma only ensures that
each pebble gets moved to one of the cycles it belongs to in S. First we show that a
single pebble can be relocated to a cycle it belongs to in S in O(n) rotations, without
affecting pebbles that are previously arranged. When G is two cycles joined on a
common vertex (e.g., Fig. 4), without loss of generality, assume that we need to move
ai from the left cycle to the right cycle. This implies that some pebble c j (and possibly
b) does not belong to the right cycle in S. We note that the group G in this case has

four generators, g� =
(

a1 a2 . . . a� b
b a1 . . . a�−1 a�

)
, gr =

(
c1 c2 . . . cr b
c2 c3 . . . b c1

)
, which cor-

respond to clockwise rotations along the left and right cycles, respectively, and their
inverses, g−1

� and g−1
r . One can verify that the generator product g−i

� g− j
r gi

� exchanges
ai and c j between the two cycles without affecting the cycle membership of other
pebbles (see Fig. 6). For the general case in which a pebble needs to go through some
k cycles, denoting the generators as g1, . . . , gk , it is easy to verify that a product of the
form g−i1

1 g−i2
2 . . . gik

k . . . gi2
2 gi1

1 achieves what we need, with i1+· · ·+ ik < n. There
may be more than these 2k basic generators, but we do not need the other generators
for this proof. Therefore, at most 2n moves are needed to move one pebble to the
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Fig. 6 Illustration of the
vertex arrange algorithm for
two adjacent cycles

ai

c j

ai

c j

ai

c j

desired cycle. To avoid affecting pebbles that are previously arranged, wemay simply
fix a leaf cycle C and start with cycles based on their cycle distance to C in decreas-
ing order. At most 2n2 moves are required to arrange all n pebbles to the desired
cycles. �

Lemma 3 (Rearrangement) The pebbles arranged according to Lemma 2 can be
rearranged such that the resulting configuration is the same as S or differ from S
by a fixed transposition of two neighboring pebbles in S. Rearrangement requires
O(n2) moves.

Proof For a fixed G, let C be a leaf cycle and let C border other cycle(s) via vertex
v. In S, let a1 be the pebble occupying counterclockwise neighboring vertex of v on
the cycle C , and let a2 be the counterclockwise neighbor of a1 on C (again, see Fig. 5
for an illustration of this setup). The fixed transposition will be (a1 a2).

We rearrange pebbles tomatch the configuration S starting fromcycleswith higher
cycle distances to the leaf cycle C , using the neighboring cycle with smaller cycle
distance (such a cycle is unique). We show that the pebbles on the more distant cycle
can always be rearranged to occupy the vertex specified by S. Moreover, this can be
achieved using moves that only affect the ordering of two pebbles on the neighboring
cycle. Without loss of generality, we use the two cycle example from Fig. 4 and let
the right cycle be the more distant one. The generators g�, g−1

� , gr , and g−1
r from

previous lemma remain the same. To exchange two pebbles on the right cycle, for
example ci , c j , we may use the following generator product

g−2
� g−i

r g�g j−i
r g−1

� g− j+i
r g�g−i

r g�. (1)

Performing such exchanges iteratively, within 2n2 moves, all pebbles except those
on the leaf cycle C can be rearranged to occupy vertices specified by S. Reversing
the process, we can arrange all pebbles on C to occupy vertices specified by S,
using a neighboring cycle C ′, affecting the ordering of at most two pebbles on
C ′. Repeating this process again with C ′ using C as the neighboring cycle and
a1, a2 as the swapping pebbles, all pebbles except possibly a1, a2 occupy the vertices
specified by S. �

The above two lemmas complete the proof of Theorem 1. At this point, it is
easy to see that when G is separable with each edge on a single cycle, G ∼= Sn if
and only if G contains an even cycle, corresponding to the composition of an odd
number of transpositions. Otherwise, G ∼= An. We are left with the case in which G
is 2-connected but not a (single) cycle.
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Theorem 2 (2-connected, General) If G is 2-connected and not a cycle, G ∼= Sn
with diam(G) = O(n2).

CombiningTheorems 1 and 2 concludes the case for 2-edge-connected graphs that
are not single cycles; the case of general graph then follows. Since we will mention
“2-edge-connected component” fairly frequently, we abbreviate it to “TECC” except
in theorem statements. Also, we call each component of G after deleting all TECCs
a branch.

Proposition 1 (2-edge-connected) If G is 2-edge-connected and not a single cycle,
G ≥ An with diam(G) = O(n2).

Proof A 2-edge-connected graph G can be separated into 2-connected components
via splitting at articulating vertices. A (dual) tree structure, similar to that illustrated
in Fig. 5, can be built over these components. The two-step algorithm used in the
proof of Theorem 1, in combination with Theorem 2, can be applied to show that
G ≥ An and diam(G) = O(n2). �

After gathering all cases, we obtain the following main result for this section.

Theorem 3 (General Graph) Given an arbitrary connected, undirected, simple
graph G, diam(G) = O(n2).

Proof Pebbles on vertices of G that are not on any cycle are always immobile.
Deleting those vertices does not change G. After all such vertices are removed,
we are left with the TECCs of G. Denoting the associated groups of these compo-
nents {Gi }, G is the direct product of the Gi ’s. Since all Gi ’s have O(n2) diameter,
so does G. �

4 Linear Time Feasibility Test of PMR

We now describe a linear time algorithm for testing the feasibility for PMR, using a
proof strategy similar to that from [1] on PMT. We first restate a result form [1].

Theorem 4 (Theorem 3 in [1]) Given an instance (T, S, D) of PMT, in O(n) steps,
an instance (T, S′, D) of PMT can be computed such that S′, D contain the same
set of vertices and (T, S, S′) is feasible.

The following corollary is also obvious.

Corollary 1 Given an instance (T, S, D) of PMR, let (T, S′, D) be the new instance
obtained according to Theorem 4. Then (T, S, D) is feasible if and only if (T, S′, D)

is feasible.

By Theorem 4 and Corollary 1, reconfiguration can be performed on a PMR
instance I = (G, S, D) to get an equivalent instance I ′ = (G, S′, D) so that S′, D
have the same underlying vertex set (i.e., V (S′) = V (D)). To do this, find a spanning
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tree T of G. The O(n) time algorithm guaranteed by Theorem 4 can then compute
a desired instance (T, S′, D) with S′, D having the same set of vertices. Since the
moves taking (T, S, S′) is feasible, (G, S, S′) is feasible; therefore, (G, S, D) is
feasible if and only if (G, S′, D) is feasible. Given an instance I = (G, S, D) in
which S and D have the same underlying set, we call it the pebble permutation
with rotation problem or PPR. Given a PPR instance, we say that two pebbles are
equivalent if they can exchange locations with no net effect on the locations of other
pebbles. A set of pebbles are equivalent if every pair of pebbles from the set are
equivalent.

In testing the feasibility of a PPR instance I = (G, S, D), a simple but special
case is when G is a cycle. In this case, S and D induce natural cyclic orderings of
the pebbles. The following is then clear.

Lemma 4 Let I = (G, S, D) be an instance of PPR in which G is a cycle. Then I
is feasible if and only if si = d(i+k) mod p for some fixed natural number k.

When G is not a cycle, the feasibility test is partitioned into four main cases,
depending on the number of pebbles, p, with respect to the number of vertices of G.
It is assumed that G contains at least one TECC since otherwise G is a tree and the
problem is a PMT problem.

4.1 Feasibility Test of PPR When p = n

When p = n, all vertices are occupied by pebbles. Clearly, if a pebble is on a vertex
that does not belong to any cycle (i.e., a branch vertex), the pebble cannot move.
Therefore, I = (G, S, D) is feasible only if for every branch vertex v ∈ V (G),
S−1(v) = D−1(v). Furthermore, given any TECC C of G, S−1(C) = D−1(C)

must also hold, since pebbles cannot move out a TECC. If these conditions hold, the
feasibility of I is reduced to feasibilities of {(Ci , S|S−1(Ci )

, D|D−1(Ci )
)}, in which

Ci ’s are the TECCs of G and S|S−1(Ci )
denotes S restricted to the domain S−1(Ci );

same applies to D|D−1(Ci )
. More formally,

Proposition 2 Let I = (G, S, D) be an instance of PPR with p = n. Let {Ci }
be the set of 2-edge-connected components of G. Then I is feasible if and only if
the following holds: 1. for all v ∈ V (G\(∪i Ci )), S−1(v) = D−1(v), 2. for each Ci ,
S−1(Ci ) = D−1(Ci ), and 3. for each Ci , the PPR instance (Ci , S|S−1(Ci )

, D|D−1(Ci )
)

is feasible. Moreover, the feasibility test can be performed in linear time.

Proof FindingTECCs ofG can be done in O(|V |+|E |) time [17]. Checkingwhether
condition 1 holds takes linear time. For checking condition 2, for each Ci , we first
gather S−1(Ci ) and for each pebble in S−1(Ci ), mark the pebble as belonging to
Ci . We can then check whether the pebbles in D−1(Ci ) also belong to Ci in linear
time. For condition 3, deciding the feasibility of (Ci , S|S−1(Ci )

, D|D−1(Ci )
) can be

done using the results from Sect. 3. This check can performed as follows. 1. Check
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whether Ci is a cycle, which is true if and only if no vertex of Ci has degree more
than two. If this is the case, apply Lemma 4 to test the feasibility on Ci ; 2. Check
whether Ci is a cactus with no even cycle. We can verify whether Ci is a cactus as
follows: Using depth first search (DFS), detecting cycles of Ci . If Ci is a cactus, then
it should assume a “tree” structure shown in Fig. 5; the first cycle that is found must
be a leaf cycle. Deleting this cycle (without deleting the vertex that joins this cycle to
the rest of Ci ) from Ci yields another cactus. Repeating the process tells us whether
Ci is a cactus. As we are finding the cycles, we can check whether there is an even
cycle. If Ci is indeed a cactus with no even cycle, the possible configurations have
two equivalence classes. The subproblem is only infeasible if S|S−1(Ci )

, D|D−1(Ci )

fall into different equivalence classes, which can be checked by computing the parity
of the permutation σS,D , restricted to Ci , in linear time; 3. For all other types of Ci ,
the subproblem is feasible. �

4.2 Feasibility Test of PPR When p = n − 1

When p = n−1, nearly all PPR instances, in which G are 2-edge-connected graphs,
are feasible.

Lemma 5 Let I = (G, S, D) be an instance of PPR in which G is 2-edge-connected
and not a cycle. If p < n, then I is feasible.

Proof By Theorems 1 and 2, G ≥ An. That is, there are at most two equivalence
classes of configurations, with configurations from different classes differ by a trans-
position of neighboring pebbles. Since there is at least one empty vertex, viewing
that vertex as a “virtual” pebble that can be exchanged with a neighboring peb-
ble in one move, it is then clear that the two configuration classes collapse into
a single class. �

Lemma 6 Let I = (G, S, D) be an instance of PPR in which G, after deleting one
(or more) degree 1 vertex (vertices), is a 2-edge-connected graph. If p < n, then I
is feasible.

Proof Note that by degree 1 vertices, we mean that these vertices have degree 1 in
G. Let H be the 2-edge-connected graph after deleting all degree 1 vertices and let
v1, . . . , vk be the degree 1 vertices. Let the neighbor of vi in G be v′

i ∈ V (H). Since
v ∈ v1, . . . , vk has degree 1, it is attached to H via a single edge. Let Hi be the
subgraph of G after deleting all vertices in v1, . . . , vk except vi . Assume that v1 is
empty initially, we show next that all pebbles occupying H1 are equivalent. That is,
an arbitrary configuration of these pebbles can be achieved.

If H is cycle, the subroutine illustrated in Fig. 7 shows how an arbitrary configu-
ration of pebbles can be achieved for a triangle H , which directly generalizes to an
arbitrary sized cycle. This shows that all pebbles on H1 fall in the same equivalence
class. If H is not a cycle, we can move an arbitrary pebble j from H to v1. Lemma 5
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v

v1

Fig. 7 With one empty vertex, pebbles on a triangle can be arranged to achieve any desired con-
figuration. This generalizes to an arbitrary TECC

implies that all pebbles on H are equivalent. Since j is arbitrary, all pebbles on H1
are equivalent.

Having shown that all pebbles on H1 are equivalent, wemove an arbitrary pebble j
to v1 and empty vertex v2 (if there is a v2). Following the same procedure, all pebbles
on H2 are equivalent. Since j is arbitrary, all pebbles on H, v1, v2 are equivalent.
Inductively, all pebbles on G are equivalent. Therefore, an arbitrary instance I is
feasible. �

When there is a single empty vertex on G, it is clear that pebbles can be moved
so that the empty vertex is an arbitrary vertex of G. In particular, for any TECC H
of G, we can move the pebbles so that a vertex of H is empty. By Lemma 6, all
pebbles on H and its distance one neighboring vertices fall in the same equivalence
class. We now show that the feasibility of the case of p = n − 1 can be decided in
linear time.

Proposition 3 Let I = (G, S, D) be an instance of PPR in which p = n − 1 and
G is not a cycle. The feasibility of I can be decided in linear time.

Proof We start with pebble configuration S and group the pebbles into equivalence
classes. Without loss of generality, assume that S leaves a vertex of a TECC, say H ,
unoccupied. By Lemma 6, all pebbles on H and its distance 1 neighbors belong to
the same equivalence class, say hS,1. Now, check whether any pebble in hS,1 is on
some other TECC H ′ �= H . If that is the case, all pebbles on H ′ and its distance
1 neighbors are also equivalent and belong to hS,1. When no more pebbles can be
added to hS,1 this way, hS,1 is completely defined.

Let v be a vertex neighboring a vertex occupied by a pebble from hS,1 (v itself is
not occupied by a pebble in hS,1), if v is not a TECC vertex, the pebble currently on
v cannot be move to a TECC and therefore is not equivalent to any other pebble. The
pebble then gets its own equivalence class, say hS,2. If v belongs to a TECC, say Hv,
then all pebbles on Hv and all Hv’s distance 1 neighbors that are not yet classified
belong to hS,2; hS,2 is then expanded similarly to hS,1. At this point, the procedures
given so far apply to partition all pebbles into equivalence classes. It is not hard to see
the algorithm takes linear time to complete using breadth first or depth first search,
treating each TECC as a whole. As the start configuration S is being classified, the
same is done to D. In particular, if a set of pebbles of S belongs to an equivalence
class hS,i , then the pebbles of D occupying the same set of vertices get assigned to
the class hD,i . The instance I is feasible if and only if hS,i = hD,i for all i (this
can be done in linear time as we have shown in checking the second condition in
Proposition 2). �
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v1

v2

v3 v4

v5

v6
v7

v8

Fig. 8 An example of the case p = n − 1. The pebbles are put into 5 different equivalence classes,
distinguished by different colors

Figure8 provides an example of applying the above procedure to a given pebble
configuration, which partitions the pebbles into 5 equivalence classes.

4.3 Feasibility Test of PPR When p < N(T ECCs)

We denote by N (T ECCs) the number of vertices of all TECCs of G. An instance
is almost always feasible when p < N (T ECCs).

Theorem 5 Let I = (G, S, D) be an instance of PPR in which G is not a cycle. If
p < N (T ECCs), then I is feasible.

Proof Since the number of pebbles are not enough to occupy all TECC vertices, we
can update configuration S to a new one S′ such that all pebbles are on TECCvertices.
Repeating the same moves over the configuration D to get D′ (i.e., if we move a
pebble from vi to v j in the initial pebble configuration, we move the corresponding
pebble from vi to v j in the final pebble configuration). After this process is complete,
the updated start and final configurations again occupy the same set of vertices;
(G, S, D) is feasible if and only if the (G, S′, D′) is feasible. In the rest of the proof
we show that (G, S′, D′) is feasible.

Since not all TECC vertices are occupied in S′, at least one TECC, say Ci , has
an empty vertex. By Lamma 6, all pebbles on Ci are equivalent. Now let C j be
another TECC joined to Ci via a single branch (see Fig. 9 for an example). Since any
pebble on C j can be moved to vertex v j via a proper sequence of rotations, it is then
possible to exchange any pair of pebbles p1 on Ci and p2 on C j : move p2 to v j ,
empty vi , move p2 to vi , rotate p1 to vi , and move it to v j . Via induction, any pair of
pebbles on G can be exchanged, without affecting the current configuration of other
pebbles. Given this procedure, we can iteratively arrange each pebble i , starting from
pebble 1, by exchanging pebble i with some other pebble occupying i’s vertex in
D′. With up to p − 1 exchanges, all pebbles can be arranged to their desired final
configurations. �

Fig. 9 A graph with two
TECCs

vjCi
Cj

v i
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4.4 Feasibility Test of PPR When N(T ECCs) ≤ p < n − 1

For this last case, given a PPR instance, (G, S, D), we first move pebbles in S and
D so that vertices of all TECCs are occupied. To perform this in linear time, a
“fake” goal configuration D f is created with p pebbles such that all TECCs are full
occupied, in an arbitrary order. This is possible because N (T ECCs) ≤ p < n − 1.
Using a spanning tree T of G and apply Theorem 4 to (T, S, D f ), (T, D, D f ), we
get two new instances (T, S′, D f ), (T, D′, D f ) with the property that S′, D′, and
D f all occupy the same set of vertices and (T, S, S′), (T, D, D′) are both feasible.
Thus, we obtain a new PPR instance (G, S′, D′), which is feasible if and only if
(G, S, D) is, with the additional property that vertices of all TECCs are occupied.
For convenience, we call an instance (G, S, D) of PPR in which all TECC vertices
are occupied a rearranged pebble permutationproblem, orRPP.Note that this implies
p ≥ N (T ECCs).

Next, we contract G to get a skeleton tree, TG , by collapsing each TECC into
a composite vertex; other vertices and edges are left intact. For example, the graph
from Fig. 8 have the skeleton tree shown in Fig. 10. This procedure induces a natural
map fT that takes any subgraph H of G to fT (H) as a subgraph of TG (via mapping
all vertices belonging to the same TECC of G to a composite vertex of TG and non-
composite vertices ofG to non-composite vertices of T ). Given an instance (G, S, D)

of RPP with p < n − 1 pebbles, all pebbles on the same TECC are equivalent by
Lemma 6. This induces a problem instance (TG, S′, D′) in which all pebbles (in S
and D) on the same TECC of G are combined into a composite pebble (in S′ and
D′). Given two vertices u and v in a graph, u � v denotes a (shortest) path between
u and v. Such a path is unique when the graph is a tree. By all vertices on (resp. in)
u � v, we mean vertices of u � v including (resp. excluding) u and v. Lemma 6
from [1] can be extended to RPP as follows.

Lemma 7 Let (G, S, D) be an instance of RPP in which G is not a cycle and
N (T ECCs) ≤ p < n − 1. Let u, v, and w be vertices of G such that the path
between u and v and the path between v and w are not edge disjoint. Assume u and
v are occupied by pebbles and moves exist that take S to a new configuration in
which pebble S−1(u) is moved to v and S−1(v) is moved to w. Then S can be taken
to an configuration S′ in which S and S′ are the same except pebbles on u and v are
exchanged.

v1

v2

v3
v4

v5

v6
v7

v8
v1

v2

v3 v4

v5

v6 v7

v8

Fig. 10 The skeleton tree (on the right) after contracting the graph on the left (from Fig. 8); the
black dots are the composite vertices
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Lemma 7 leads to a generalized version of Theorem 4 from [1] to RPP, given below.
We omit the proof since it is nearly identical (we need extended versions of Corollary
1 and 2 from [1], which can be easily proved in the same way Lemma 7 is proved).

Theorem 6 An RPP instance, (G, S, D), in which G is not a cycle and N (T ECCs)
≤ p < n − 1, is feasible if and only if the individual exchanges between pebble i
and S−1(D(i)), 1 ≤ i ≤ p, can be performed using moves without affecting the
configurations of any other pebble.

By Theorem 6, if an instance of RPP, I = (G, S, D), is feasible, then pebbles i
and σS,D(i) = S−1(D(i)) can be exchanged with no net effect on other pebbles. This
enables a feasibility test of RPP problems (and therefore, PMR problems): vertices
occupied by pebbles are partitioned into equivalence classes such that two pebbles
can be exchanged if and only if the vertices occupied by them belong to the same
equivalence class. In fact, we apply the Mark algorithm from [1] on the skeleton
tree TG without any change at the pseudocode level (see [1] for the simple algorithm
description); the main difference is how to check whether two adjacent pebbles are
equivalent (Lemma 8 from [1]).

Before stating our version of the lemma, some notations are in order.Weworkwith
an arbitraryRPP instance I = (G, S, D) inwhichG is not a cycle and N (T ECCs) ≤
p < n − 1. Let I ′ = (TG, S′, D′) be the induced instance described earlier in which
TG is G’s skeleton tree. A fork vertex of TG is a vertex of degree at least 3 that is not
a composite vertex. F(u) is the set of connected components of TG after deleting
the vertex u. T (u, v) is the tree of F(u) containing the vertex v; T (u, v) is the rest of
F(u). For two vertices u, v ∈ V (TG), d(u, v) is the length of u � v. In the lemmas
that follow, only start configuration S′ is operated on; same procedure can be applied
to D. First we need a version of Corollary 3 from [1] to account for composite
vertices; we omit the essentially same proof but point out that although both fork and
composite vertices can help two pebbles switch locations, a composite vertex can do
so with one fewer empty vertex.

Lemma 8 Let p1 := S′−1(u), p2 := S′−1(v) for u, v ∈ V (TG) such that u � v
contains no other pebbles; all vertices on u � v are of degree 2. Let w be a composite
or fork vertex such that u is in w � v. The tree T (u, w) has no more than d(w, u)

(resp. d(w, u) + 1) empty vertices when w is a composite (resp. fork) vertex. Let w′
be the closest composite or fork vertex to v such that v is in w′ � u satisfying similar
properties as w. Then u and v are not equivalent.

Lemma 9 Let p1 := S′−1(u), p2 := S′−1(v) for some u, v ∈ V (TG) such that
u � v contains no other pebbles. Then p1, p2 are equivalent with respect to S′ if
and only if at least one of the following conditions holds:

1. There exists a fork vertex w in u � v such that both T (w, u), T (w, v) are not full
or at least one other tree of F(w) is not full.

2. Let w be a composite vertex such that u is in w � v and no other fork vertex or
composite vertex is in w � u. There exists such a w that T (u, w) has d(w, u)+1
empty vertices.
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3. Symmetric to 2 with u and v switched.
4. Let w be a fork vertex such that u is in w � v and no other fork vertex or composite

vertex is in w � u. There exists such a w that T (u, w) has d(w, u) + 2 empty
vertices.

5. Symmetric to 4 with u and v switched.
6. Vertex u is a fork vertex. Then at least two trees of F(u) has empty vertices or

there are at least two empty vertices outside T (u, v).
7. Symmetric to 6 with u and v switched.
8. Vertex u is a composite vertex. Then at least one tree of T (u, v) has an empty

vertex.
9. Symmetric to 8 with u and v switched.

Proof The proof is adopted from that of Lemma 8 from [1] with some repetitive
details omitted. Since the sufficiency of the conditions can be easily checked by con-
structing plans that exchange p1, p2, only necessity is shown here via contradiction.
Assume that u and v are exchangeable without configuration S satisfying any of the
conditions 1–9. First consider the case in which there is no fork vertex in u � v and
u and v are not fork or composite vertices; these assumptions forbids conditions 1
and 6–9. If conditions 2–5 do not hold, the condition from Lemma 8 is true, thus u
and v cannot be equivalent.

For the case in which no fork vertex exists in u � v but u or v (possibly both)
is a fork or composite vertex, the proof from Lemma 8 from [1] applies with little
change to show that u and v are not equivalent unless one of conditions 2–9 holds:
If conditions 2–5 do not hold, this means that p1, p2 must use u or v as a “hub” for
switching locations; traveling beyond distance 1 from u � v will not help u and v
to switch. On the other hand, if conditions 6–9 do not hold, u or v cannot serve as
the hub that enables u and v to switch. Furthermore, if conditions 6–9 do not hold,
reconfiguration of pebbles will not make conditions 2–5, previously invalid, become
valid.

This leaves the case in which conditions 2–9 do not hold, which means that u
and v cannot switch on T (u, v) nor T (v, u). Since there is no pebble in u � v, the
vertices in u � v cannot be composite vertices. The same proof from Lemma 8 from
[1] then shows that unless condition 1 is met, u and v cannot be equivalent. �

With Lemma 9, all criteria needed for the Mark algorithm from [1], in partic-
ular Observations 1–4, continue to hold on TG without change. Since Mark is not
changed, its running time is linear if decidingwhether two adjacent pebbles are equiv-
alent can be performed in (amortized) constant time. For this to hold, for an arbitrary
tree T (u, w), we need to knowwhether T (u, w) has 0, 1, 2 holes and whether the fork
or composite vertex of T (u, w) closest to u allows u and another vertex v in T (u, w)

to exchange (i.e., T (u, w) should have enough empty vertices). These data can be
precomputed in O(|V | + |E |) time using two depth firth traversals over the tree TG .
At this point, it is not hard to see that this linear decision algorithm easily turns into
an algorithm that computes a feasible solution to a PPR instance. Our complexity
analysis shows that a feasible solution can be computed in O(|E |) if a high level
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plan is required (computes a corresponding RPP instance, checks feasibility, and
outputs the permutation pairs for exchanges) and O(n3) if step by step output is
required (each exchange can be done in O(n2) moves produced by a fixed formula).
We summarize the main result of this section with the following theorem.

Theorem 7 The feasibility of PMR problems can be decided in linear time. More-
over, a plan for a feasible instance can be computed in O(n3) time.

5 Conclusion

In this paper, we proposed the problem of pebble motion on graphs with rotations
(PMR), a graph-basedmulti-robot path planning problem.Our formulation takes into
account natural, synchronous rotations of pebbles along fully occupied cycles of the
underlying graph. The inclusion of this important case, in conjunction with previous
studies of the problem that only allow pebbles to move to unoccupied vertices, paints
a fairly complete picture of graph-based multi-robot path planning problems. In our
systematic analysis of PMR, we show that, even for the fully constrained case in
which the number of pebbles equals the number of vertices, deciding the feasibility
of a PMR instance can be completed in linear time with respect to the size of the
underlying graph.Moreover, computing a full plan for all moving all pebbles requires
O(n3) time.
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