Springer Tracts in Advanced Robotics 107

H. Levent Akin

Nancy M. Amato

Volkan Isler

A. Frank van der Stappen Editors

| Selected Contributions of the Eleventh
International Workshop on the
Algorithmic Foundations of Robotics

' x5 ta r @ Springer

Springer Tracts in Advanced Robotics 107

Editors

Prof. Bruno Siciliano Prof. Oussama Khatib
Dipartimento di Ingegneria Elettrica Artificial Intelligence Laboratory
e Tecnologie dell’Informazione Department of Computer Science
Universita degli Studi di Napoli Stanford University

Federico 1II Stanford, CA 94305-9010

Via Claudio 21, 80125 Napoli USA

Italy E-mail: khatib@cs.stanford.edu

E-mail: siciliano@unina.it

Editorial Advisory Board

Oliver Brock, TU Berlin, Germany

Herman Bruyninckx, KU Leuven, Belgium

Raja Chatila, ISIR - UPMC & CNRS, France
Henrik Christensen, Georgia Tech, USA

Peter Corke, Queensland Univ. Technology, Australia
Paolo Dario, Scuola S. Anna Pisa, Italy

Riidiger Dillmann, Univ. Karlsruhe, Germany

Ken Goldberg, UC Berkeley, USA

John Hollerbach, Univ. Utah, USA

Makoto Kaneko, Osaka Univ., Japan

Lydia Kavraki, Rice Univ., USA

Vijay Kumar, Univ. Pennsylvania, USA

Sukhan Lee, Sungkyunkwan Univ., Korea

Frank Park, Seoul National Univ., Korea

Tim Salcudean, Univ. British Columbia, Canada
Roland Siegwart, ETH Zurich, Switzerland

Gaurav Sukhatme, Univ. Southern California, USA
Sebastian Thrun, Stanford Univ., USA

Yangsheng Xu, Chinese Univ. Hong Kong, PRC
Shin’ichi Yuta, Tsukuba Univ., Japan

More information about this series at http://www.springer.com/series/5208

STAR (Springer Tracts in Advanced Robotics) has been promoted cuopenm &

under the auspices of EURON (European Robotics Research Network) BOth TicsS

Network

w

http://www.springer.com/series/5208

H. Levent Akin - Nancy M. Amato
Volkan Isler - A. Frank van der Stappen
Editors

Algorithmic Foundations
of Robotics XI

Selected Contributions of the Eleventh
International Workshop on the Algorithmic
Foundations of Robotics

@ Springer

Editors

H. Levent Akin

Department of Computer Engineering
Bogazici University

Istanbul

Turkey

Nancy M. Amato

Department of Computer Science and
Engineering

Texas A&M University

College Station, TX

USA

Volkan Isler

Department of Computer Science and
Engineering

University of Minnesota

Minneapolis, MN

USA

A. Frank van der Stappen

Department of Information and Computing
Sciences

Utrecht University

Utrecht

The Netherlands

ISSN 1610-7438 ISSN 1610-742X (electronic)
Springer Tracts in Advanced Robotics

ISBN 978-3-319-16594-3 ISBN 978-3-319-16595-0 (eBook)
DOI 10.1007/978-3-319-16595-0

Library of Congress Control Number: 2015935204

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronments and is vigorously engaged in its new challenges. Interacting with,
assisting, serving, and exploring with humans, the emerging robots will increas-
ingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neurosci-
ences, virtual simulation, animation, surgery, and sensor networks among others. In
return, the challenges of the new emerging areas are proving an abundant source of
stimulation and insights into the field of robotics. It is indeed at the intersection of
disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical
research developments in robotics, our objective with this series is to promote more
exchanges and collaborations among the researchers in the community and con-
tribute to further advancements in this rapidly growing field.

Since its inception in 1994, the biennial Workshop Algorithmic Foundations of
Robotics (WAFR) has established some of the field’s most fundamental and lasting
contributions. The launching of STAR, WAFR, and several other thematic sym-
posia in robotics found an important platform for closer links and extended reach
within the robotics community.

This volume is the outcome of the WAFR eleventh edition hosted by Bogazici
University and is edited by Levent Akin, Nancy Amato, Volkan Isler, and Frank
van der Stappen. The book offers a valuable collection highlighting the cutting-edge
research in classical robotics problems (e.g., manipulation, motion, path, multi-
robot, and kinodynamic planning), geometric and topological computation in
robotics as well as novel applications such as informative path planning, active
sensing, and surgical planning.

vi Foreword

The contents of the 42 contributions represent a cross-section of the current state
of research from one particular aspect: algorithms, and how they are inspired by
classical disciplines, such as control theory, computational geometry and topology,
geometrical and physical modeling, reasoning under uncertainty, probabilistic
algorithms, game theory, and theoretical computer science. Validation of algo-
rithms, design concepts, or techniques is the common thread running through this
focused collection.

Rich in topics and authoritative contributors, WAFR culminates with this unique
reference on the current developments and new directions in the field of algorithmic
foundations. A very fine addition to the series!

Naples, Italy Bruno Siciliano
January 2015 STAR Editor

Preface

This is an exciting time for robotics. Governments across the world have recently
announced major robotics programs such as the National Robotics Initiative, the
DARPA Robotics Challenge in the U.S., and the European Commission’s euRo-
botics initiative. The demand for industrial automation is more than ever. Com-
panies like Google and Amazon have made significant robotics investments. There
is considerable start-up activity around robotics. New, more capable platforms
ranging from legged robots to aerial vehicles are being developed at a rapid pace. In
this environment, developing algorithms for robots (and automation systems in
general) so that they can operate in complex and unstructured environments has
become crucial. These algorithms have applications beyond physical robotic and
sensing systems as they are used for scientific inquiry in other disciplines such as
biology and neurosciences.

The Workshop on Algorithmic Foundations of Robotics (WAFR) is the premier
venue which showcases cutting-edge research in algorithmic robotics. The eleventh
WAFR, which was held at Bogazi¢i University in Istanbul, Turkey continued this
tradition. We received 83 very strong submissions. Each submission was assigned
to three members of the Program Committee (PC) which was composed of the
leading researchers in the field. Each PC member provided a review. After a dis-
cussion phase open to the entire PC, and the collection of additional reviews as
needed, 42 papers were selected for presentation at the workshop. WAFR took
place during August 3-5, 2014.

This volume of Springer Tracts in Advanced Robotics contains extended ver-
sions of these papers. These contributions highlight the cutting-edge research in
classical robotics problems (e.g., manipulation, motion, path, multi-robot, and
kinodynamic planning), geometric and topological computation in robotics as well
as novel applications such as informative path planning, active sensing, and surgical
planning. About half of the accepted papers have been forwarded for further review
for dedicated special issues of the International Journal of Robotics Research and
IEEE Transactions on Automation Science and Engineering.

In addition to paper presentations, WAFR 2014 featured three invited speakers:
Vijay Kumar gave a seminar on “Aerial Robot Swarms.” Cagatay Bagdogan’s topic

vii

viii Preface

was “Haptic Role Exchange and Negotiations for Human Robot Interaction.”
Oussama Khatib focused on “Working with the New Robots.”

We owe many thanks to all the authors for submitting such high quality work, all
the PC members and auxiliary reviewers for all of their hard work, and all WAFR
participants for making WAFR 2014 a success. We would like to express our
gratitude to Bogazici University’s Faculty of Engineering for the venue with
breathtaking views, and University of Minnesota’s Department of Computer Sci-
ence and Engineering for their support. Finally, we gratefully acknowledge travel
support by the United States National Science Foundation for student participants.

H. Levent Akin

Nancy M. Amato

Volkan Isler

A. Frank van der Stappen

Program Committee

Levent Akin, Bogazici University

Ron Alterovitz, University of North Carolina at Chapel Hill

Nancy Amato, Texas A&M University

Aaron Ames, Texas A&M University

Devin Balkcom, Dartmouth college

Kostas Bekris, Rutgers University

Oliver Brock, TU Berlin

Howie Choset, CMU

Juan Cortés, LAAS, CNRS; Université de Toulouse
Efi Fogel, Tel Aviv University

Emilio Frazzoli, Massachusetts Institute of Technology
Ken Goldberg, UC Berkeley

Stephen Guy, University of Minnesota

David Hsu, National University of Singapore

Seth Hutchinson, University of Illinois

Volkan Isler, University of Minnesota

Leslie Kaelbling, Massachusetts Institute of Technology
Sertac Karaman, Massachusetts Institute of Technology
Sven Koenig, University of Southern California

Vijay Kumar, University of Pennsylvania

Hanna Kurniawati, University of Queensland
Jyh-Ming Lien, George Mason University

Maxim Likhachev, Carnegie Mellon University

Ming Lin, UNC Chapel Hill

Sonia Martinez, UC San Diego

Marco Antonio Morales Aguirre, ITAM

Jason O’Kane, University of South Carolina

Songhwai Oh, Seoul National University

Elon Rimon, Technion

Sam Rodriguez, Texas A&M University

Nicholas Roy, Massachusetts Institute of Technology

ix

X Program Committee

Thierry Simeon, LAAS

Stephen Smith, University of Waterloo

Dezhen Song, Texas A&M University

Subhash Suri, University of California, Santa Barbara
Lydia Tapia, University of New Mexico

Jeff Trinkle, Rensselaer Polytechnic Institute

Frank van der Stappen, Utrecht University

Chee Yap, New York University

Additional Reviewers

Allen, Thomas
Amato, Nancy
Arslan, Oktay

Berenson, Dmitry
Best, Andrew
Boardman, Beth
Borum, Andy

Cappo, Ellen
Chaumette, Francois
Chitsaz, Hamidreza
Cohen, Benjamin
Cortes, Andres

Davoodi, Mansoor
De, Avik

Dear, Tony
Devaurs, Didier
Dobson, Andrew
Dogar, Mehmet R.
Dong, Jun

Gochev, Kalin
Godoy, Julio
Guerrero, Jose

Hauser, Kris
Hielsberg, Matthew
Hollinger, Geoffrey
Hollis, Brayden

xi

xii
Imeson, Frank

Jaklin, Norman

Kim, Soonkyum
Kimmel, Andrew
Knepper, Ross
Krontiris, Athanasios
Kumar, T.K. Satish
Kunz, Tobias
Kupcsik, Andras

Lee, Joseph

Li, Shuai

Li, Wen

Li, Yanbo
Lozano-Perez, Tomas
Lu, Yan

Macallister, Brian
Manor, Gil
Mansard, Nicolas
McMahon, Troy
Moll, Mark
Mount, David

Narain, Rahul

Narayanan, Venkatraman

Noori, Narges
Otte, Michael

Pan, Jia

Park, Chonhyon
Patil, Sachin
Perrin, Nicolas
Phillips, Mike
Plaku, Erion
Plonski, Patrick

Rangaprasad, Arun Srivatsan

Rodriguez, Sam
Rote, Giinter
Ruml, Wheeler

Salzman, Oren
Sanan, Sid

Additional Reviewers

Additional Reviewers xiii

Shome, Rahul
Singh, Surya

Sinnet, Ryan
Solovey, Kiril
Srinivasa, Siddhartha
Sun, Wen

Tedrake, Russ
Tesch, Matthew
Thiagarajan, P.S.
Tokekar, Pratap

Vo, Chris

Wagner, Glenn
Wilkie, David

Yershov, Dmitry

Zhang, Yunong
Zheng, Yu

Contents

Efficient Multi-robot Motion Planning for Unlabeled Discs
in Simple Polygons 1
Aviv Adler, Mark de Berg, Dan Halperin and Kiril Solovey

Navigation of Distinct Euclidean Particles via Hierarchical
Clustering 19
Omur Arslan, Dan P. Guralnik and Daniel E. Koditschek

Coalition Formation Games for Dynamic Multirobot Tasks. 37
Haluk Bayram and H. Isi1l Bozma

Active Control Strategies for Discovering and Localizing
Devices with Range-Only Sensors. 55
Benjamin Charrow, Nathan Michael and Vijay Kumar

Aggressive Moving Obstacle Avoidance Using a Stochastic

Reachable Set Based Potential Field 73
Hao-Tien Chiang, Nick Malone, Kendra Lesser,

Meeko Oishi and Lydia Tapia

Distributed Range-Based Relative Localization of Robot Swarms. 91
Alejandro Cornejo and Radhika Nagpal

Computing Large Convex Regions of Obstacle-Free Space
Through Semidefinite Programming. 109
Robin Deits and Russ Tedrake

A Region-Based Strategy for Collaborative Roadmap Construction . . . 125
Jory Denny, Read Sandstrdm, Nicole Julian and Nancy M. Amato

XV

http://dx.doi.org/10.1007/978-3-319-16595-0_1
http://dx.doi.org/10.1007/978-3-319-16595-0_1
http://dx.doi.org/10.1007/978-3-319-16595-0_2
http://dx.doi.org/10.1007/978-3-319-16595-0_2
http://dx.doi.org/10.1007/978-3-319-16595-0_3
http://dx.doi.org/10.1007/978-3-319-16595-0_4
http://dx.doi.org/10.1007/978-3-319-16595-0_4
http://dx.doi.org/10.1007/978-3-319-16595-0_5
http://dx.doi.org/10.1007/978-3-319-16595-0_5
http://dx.doi.org/10.1007/978-3-319-16595-0_6
http://dx.doi.org/10.1007/978-3-319-16595-0_7
http://dx.doi.org/10.1007/978-3-319-16595-0_7
http://dx.doi.org/10.1007/978-3-319-16595-0_8

XVi Contents

Efficient Sampling-Based Approaches to Optimal Path
Planning in Complex Cost Spaces. 143
Didier Devaurs, Thierry Siméon and Juan Cortés

Real-Time Predictive Modeling and Robust Avoidance

of Pedestrians with Uncertain, Changing Intentions 161
Sarah Ferguson, Brandon Luders, Robert C. Grande

and Jonathan P. How

FFRob: An Efficient Heuristic for Task and Motion Planning 179
Caelan Reed Garrett, Tomas Lozano-Pérez and Leslie Pack Kaelbling

Fast Nearest Neighbor Search in SE(3) for Sampling-Based
Motion Planning 197
Jeffrey Ichnowski and Ron Alterovitz

Trackability with Imprecise Localization 215
Kyle Klein and Subhash Suri

Kinodynamic RRTs with Fixed Time Step and Best-Input
Extension Are Not Probabilistically Complete. 233
Tobias Kunz and Mike Stilman

Featureless Motion Vector-Based Simultaneous Localization,
Planar Surface Extraction, and Moving Obstacle Tracking 245
Wen Li and Dezhen Song

Sparse Methods for Efficient Asymptotically Optimal
Kinodynamic Planning. 263
Yanbo Li, Zakary Littlefield and Kostas E. Bekris

Adaptive Informative Path Planning in Metric Spaces. 283
Zhan Wei Lim, David Hsu and Wee Sun Lee

The Feasible Transition Graph: Encoding Topology

and Manipulation Constraints for Multirobot Push-Planning. 301
Laura Lindzey, Ross A. Knepper, Howie Choset

and Siddhartha S. Srinivasa

Collision Prediction Among Rigid and Articulated Obstacles
with Unknown Motion. 319
Yanyan Lu, Zhonghua Xi and Jyh-Ming Lien

http://dx.doi.org/10.1007/978-3-319-16595-0_9
http://dx.doi.org/10.1007/978-3-319-16595-0_9
http://dx.doi.org/10.1007/978-3-319-16595-0_10
http://dx.doi.org/10.1007/978-3-319-16595-0_10
http://dx.doi.org/10.1007/978-3-319-16595-0_11
http://dx.doi.org/10.1007/978-3-319-16595-0_12
http://dx.doi.org/10.1007/978-3-319-16595-0_12
http://dx.doi.org/10.1007/978-3-319-16595-0_13
http://dx.doi.org/10.1007/978-3-319-16595-0_14
http://dx.doi.org/10.1007/978-3-319-16595-0_14
http://dx.doi.org/10.1007/978-3-319-16595-0_15
http://dx.doi.org/10.1007/978-3-319-16595-0_15
http://dx.doi.org/10.1007/978-3-319-16595-0_16
http://dx.doi.org/10.1007/978-3-319-16595-0_16
http://dx.doi.org/10.1007/978-3-319-16595-0_17
http://dx.doi.org/10.1007/978-3-319-16595-0_18
http://dx.doi.org/10.1007/978-3-319-16595-0_18
http://dx.doi.org/10.1007/978-3-319-16595-0_19
http://dx.doi.org/10.1007/978-3-319-16595-0_19

Contents xvii

Asymptotically Optimal Stochastic Motion Planning
with Temporal Goals. 335
Ryan Luna, Morteza Lahijanian, Mark Moll and Lydia E. Kavraki

Resolution-Exact Algorithms for Link Robots. 353
Zhongdi Luo, Yi-Jen Chiang, Jyh-Ming Lien and Chee Yap

Optimal Trajectories for Planar Rigid Bodies with Switching Costs. . . 371
Yu-Han Lyu and Devin Balkcom

Maximum-Reward Motion in a Stochastic Environment:
The Nonequilibrium Statistical Mechanics Perspective. 389
Fangchang Ma and Sertac Karaman

Optimal Path Planning in Cooperative Heterogeneous
Multi-robot Delivery Systems. 407
Neil Mathew, Stephen L. Smith and Steven L. Waslander

Composing Dynamical Systems to Realize Dynamic Robotic
Dancing e 425
Shishir Kolathaya, Wen-Loong Ma and Aaron D. Ames

The Lion and Man Game on Convex Terrains 443
Narges Noori and Volkan Isler

RRTX: Real-Time Motion Planning/Replanning for Environments
with Unpredictable Obstacles. 461
Michael Otte and Emilio Frazzoli

Orienting Parts with Shape Variation. 479
Fatemeh Panahi, Mansoor Davoodi and A. Frank van der Stappen

Smooth and Dynamically Stable Navigation of Multiple
Human-Like Robots 497
Chonhyon Park and Dinesh Manocha

Scaling up Gaussian Belief Space Planning Through

Covariance-Free Trajectory Optimization and Automatic

Differentiation. 515
Sachin Patil, Gregory Kahn, Michael Laskey, John Schulman,

Ken Goldberg and Pieter Abbeel

http://dx.doi.org/10.1007/978-3-319-16595-0_20
http://dx.doi.org/10.1007/978-3-319-16595-0_20
http://dx.doi.org/10.1007/978-3-319-16595-0_22
http://dx.doi.org/10.1007/978-3-319-16595-0_23
http://dx.doi.org/10.1007/978-3-319-16595-0_24
http://dx.doi.org/10.1007/978-3-319-16595-0_24
http://dx.doi.org/10.1007/978-3-319-16595-0_25
http://dx.doi.org/10.1007/978-3-319-16595-0_25
http://dx.doi.org/10.1007/978-3-319-16595-0_26
http://dx.doi.org/10.1007/978-3-319-16595-0_26
http://dx.doi.org/10.1007/978-3-319-16595-0_27
http://dx.doi.org/10.1007/978-3-319-16595-0_28
http://dx.doi.org/10.1007/978-3-319-16595-0_28
http://dx.doi.org/10.1007/978-3-319-16595-0_29
http://dx.doi.org/10.1007/978-3-319-16595-0_30
http://dx.doi.org/10.1007/978-3-319-16595-0_30
http://dx.doi.org/10.1007/978-3-319-16595-0_31
http://dx.doi.org/10.1007/978-3-319-16595-0_31
http://dx.doi.org/10.1007/978-3-319-16595-0_31

XVviii Contents

Planning Curvature and Torsion Constrained Ribbons
in 3D with Application to Intracavitary Brachytherapy............ 535
Sachin Patil, Jia Pan, Pieter Abbeel and Ken Goldberg

A Quadratic Programming Approach to Quasi-Static
Whole-Body Manipulation 553
Krishna Shankar, Joel W. Burdick and Nicolas H. Hudson

On-line Coverage of Planar Environments by a Battery
Powered Autonomous Mobile Robot. 571
Iddo Shnaps and Elon Rimon

Finding a Needle in an Exponential Haystack: Discrete

RRT for Exploration of Implicit Roadmaps in Multi-robot

Motion Planning 591
Kiril Solovey, Oren Salzman and Dan Halperin

Stochastic Extended LQR: Optimization-Based Motion Planning
Under Uncertainty. 609
Wen Sun, Jur van den Berg and Ron Alterovitz

An Approximation Algorithm for Time Optimal Multi-Robot
Routing. 627
Matthew Turpin, Nathan Michael and Vijay Kumar

Decidability of Robot Manipulation Planning: Three Disks
inthe Plane. 641
Marilena Vendittelli, Jean-Paul Laumond and Bud Mishra

A Topological Perspective on Cycling Robots for Full
Tree Coverage.ttt 659
Han Wang, Cheng Chen and Yuliy Baryshnikov

Towards Arranging and Tightening Knots and Unknots
with Fixtures. 677
Weifu Wang, Matthew P. Bell and Devin Balkcom

Asymptotically Optimal Feedback Planning: FMM Meets
Adaptive Mesh Refinement 695
Dmitry S. Yershov and Emilio Frazzoli

Online Task Planning and Control for Aerial Robots
with Fuel Constraints in Winds 711
Chanyeol Yoo, Robert Fitch and Salah Sukkarieh

http://dx.doi.org/10.1007/978-3-319-16595-0_32
http://dx.doi.org/10.1007/978-3-319-16595-0_32
http://dx.doi.org/10.1007/978-3-319-16595-0_33
http://dx.doi.org/10.1007/978-3-319-16595-0_33
http://dx.doi.org/10.1007/978-3-319-16595-0_34
http://dx.doi.org/10.1007/978-3-319-16595-0_34
http://dx.doi.org/10.1007/978-3-319-16595-0_35
http://dx.doi.org/10.1007/978-3-319-16595-0_35
http://dx.doi.org/10.1007/978-3-319-16595-0_35
http://dx.doi.org/10.1007/978-3-319-16595-0_36
http://dx.doi.org/10.1007/978-3-319-16595-0_36
http://dx.doi.org/10.1007/978-3-319-16595-0_37
http://dx.doi.org/10.1007/978-3-319-16595-0_37
http://dx.doi.org/10.1007/978-3-319-16595-0_38
http://dx.doi.org/10.1007/978-3-319-16595-0_38
http://dx.doi.org/10.1007/978-3-319-16595-0_39
http://dx.doi.org/10.1007/978-3-319-16595-0_39
http://dx.doi.org/10.1007/978-3-319-16595-0_40
http://dx.doi.org/10.1007/978-3-319-16595-0_40
http://dx.doi.org/10.1007/978-3-319-16595-0_41
http://dx.doi.org/10.1007/978-3-319-16595-0_41
http://dx.doi.org/10.1007/978-3-319-16595-0_42
http://dx.doi.org/10.1007/978-3-319-16595-0_42

Contents Xix

Pebble Motion on Graphs with Rotations: Efficient Feasibility

Tests and Planning Algorithms. 729
Jingjin Yu and Daniela Rus

Author Index 747

Subject Index 749

http://dx.doi.org/10.1007/978-3-319-16595-0_43
http://dx.doi.org/10.1007/978-3-319-16595-0_43

Efficient Multi-robot Motion Planning
for Unlabeled Discs in Simple Polygons

Aviv Adler, Mark de Berg, Dan Halperin and Kiril Solovey

Abstract We consider the following motion-planning problem: we are given m unit
discs in a simple polygon with n vertices, each at their own start position, and we
want to move the discs to a given set of m target positions. Contrary to the standard
(labeled) version of the problem, each disc is allowed to be moved to any target
position, as long as in the end every target position is occupied. We show that this
unlabeled version of the problem can be solved in O (n logn + mn + mz) time,
assuming that the start and target positions are at least some minimal distance from
each other. This is in sharp contrast to the standard (labeled) and more general multi-
robot motion planning problem for discs moving in a simple polygon, which is known
to be strongly NP-hard.

The work has been carried out in part during Aviv Adler’s visit to Tel Aviv University, enabled
by the generous Melvin M. Goldberg Fellowship for Research in Israel.

Work by D.H. and K.S. has been supported in part by the 7th Framework Programme for
Research of the European Commission, under FET-Open grant number 255827 (CGL—
Computational Geometry Learning), by the Israel Science Foundation (grant no. 1102/11), by
the German-Israeli Foundation (grant no. 1150-82.6/2011), and by the Hermann Minkowski—
Minerva Center for Geometry at Tel Aviv University.

A. Adler
Department of Mathematics, Princeton University, New Jersey, USA
e-mail: aatwo@princeton.edu

M. de Berg

Department of Mathematics and Computing Science, Tu Eindhoven,
Eindhoven, The Netherlands

e-mail: m.t.d.berg@tue.nl

D. Halperin - K. Solovey (X))

Blavatnik School of Computer Science, Tel-Aviv University,
Tel Aviv-Yafo, Israel

e-mail: kirilsol @post.tau.ac.il

D. Halperin
e-mail: danha@post.tau.ac.il

© Springer International Publishing Switzerland 2015 1
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_1

2 A. Adler et al.

1 Introduction

The multi-robot motion-planning problem is to plan the motions of several robots
operating in a common workspace. In its most basic form, the goal is to move
each robot from its start position to some designated target position, while avoiding
collision with obstacles in the environment and with other robots. Besides its obvious
relevance to robotics, the problem has various other applications, for example in the
design of computer games or crowd simulation. Multi-robot motion planning is a
natural extension of the single-robot motion planning problem, but it is much more
complex due to the high number of degrees of freedom that it entails, even when the
individual robots are as simple as discs.

Related work. One of the first occurrences of the multi-robot motion-planning prob-
lem in the computational-geometry literature can be found in the series of papers
on the Piano Movers’ Problem by Schwartz and Sharir. They first considered the
problem in a general setting [18] and then narrowed it down to the case of disc
robots moving amidst polygonal obstacles [19]. In the latter work an algorithm was
presented for the case of two and three robots, with running time of O(n®) and
O (n'3), respectively, where n is the complexity of the workspace. Later Yap [29]
used the retraction method to develop a more efficient algorithm, which runs in
O(nz) and 0(n3) time for the case of two and three robots, respectively. Several
years afterwards, Sharir and Sifrony [20] presented a general approach based on cell
decomposition, which is capable of dealing with various types of robot pairs and
which has a running time of O (n?). Moreover, several techniques that reduce the
effective number of degrees of freedom of the problem have been proposed [1, 26].

When the number of robots is no longer a fixed constant, the multi-robot motion-
planning problem becomes hard. Hopcroft et al. [8] showed that even in the relatively
simple setting of n rectangular robots moving in arectangular workspace, the problem
is already PSPACE-hard. Moreover, Spirakis and Yap [23] showed that the problem
is strongly NP-hard for disc robots in a simple polygon.

Inrecent years, multi-robot planning has attracted a great deal of attention from the
robotics community. This can be mainly attributed to two reasons. First, itis a problem
of practical importance. Second, the emergence of the sampling-based techniques,
which are relatively easy to implement, yet are highly effective. These techniques
attempt to capture the connectivity of the configuration space through random sam-
pling [9, 14]. Although sampling-based algorithms are usually incomplete—they
are not guaranteed to find a solution—they tend to be very efficient in practice.
Hence, they are considered the method-of-choice for motion-planning problems that
involve many degrees of freedom. While sampling-based tools for a single robot can
be applied directly to the multi-robot problem by considering the group of robots as
one large composite robot [17], there is a large body of work that attempts to exploit
the unique properties of the multi-robot problem [7, 16, 22, 24, 27, 28].

The aforementioned results deal exclusively with the classical formulation of the
multi-robot problem, where the robots are distinct and every robot is assigned a

Efficient Multi-robot Motion Planning for Unlabeled Discs in Simple Polygons 3

specific target position. The unlabeled variant of the problem, where all the robots
are assumed to be identical and thus interchangeable, was first considered by Kloder
and Hutchinson [11], who devised a sampling-based algorithm for the problem.
Recently a generalization of the unlabeled problem—the k-color motion-planning
problem—nhas been proposed, in which there are several groups of interchangeable
robots [21]. Turpin et al. [25] considered a special setting of the unlabeled problem
with disc robots, namely where the collection of free configurations surrounding
every start or target position is star-shaped. This condition allows them to devise an
efficient algorithm that computes a solution in which the maximum path length is
minimized. Unfortunately the star-shapedness condition is quite restrictive, and in
general it will not be satisfied.

Other related work includes papers that study the number of moves required to
move a set of discs between two sets of positions in an unbounded workspace, when a
move consists of sliding a single disc—see for example the paper by Bereg et al. [2]
which provides upper and lower bounds for the unlabeled case, or the paper by
Dumitrescu and Jiang [3] who show that deciding whether a collection of labeled
or unlabeled discs can be moved between two sets of positions within & steps is NP-
hard. Finally, we mention the problem of pebble motions on graphs, which can be
considered as a discrete variant of the multi-robot motion planning problem. In this
problem, pebbles need to be moved from one set of vertices of a graph to another,
while following a certain set of rules—see for example [4, 5, 12, 13, 15, 30].

Our contribution. Surprisingly, the unlabeled version of the multi-robot motion-
planning problem has hardly received any attention in the computational-geometry
literature. Indeed, we don’t know of any papers that solve the problem in an exact
and complete manner, except in a restricted setting studied by Turpin et al. [25] that
we mentioned above. We therefore study the following basic variant of the problem:
given m unit discs in a simple polygon with n vertices, each at their own start position,
and m target positions, find collision-free motions for the discs such that at the end of
the motions each disc occupies a target position. We make the additional assumption
that the given start and target positions are well-separated. More precisely, any two
of the given start and target positions should be at distance at least 4 from each other.
Notice that we only assume this extra separation between the robots in their static
initial and goal placements; we do not assume any extra separation (beyond non-
collision) between a robot and the obstacles, nor do we enforce any extra separation
between the robots during the motion. Even this basic version of the problem turns
out to have arich structure and poses several difficulties and interesting questions. We
believe that some separation is essential for the existence of an efficient algorithm,
and without this requirement the problem will become intractable (see Sect.7 for
further details).

By carefully examining the various properties of the problem we show how to
transform it into a discrete pebble-motion problem on graphs. A solution to the
pebble problem, which can be generated with rather straightforward techniques,
can then be transformed back into a solution to our continuous motion-planning
problem. We mention that a similar transformation was used in [21] in the context

4 A. Adler et al.

of a sampling-based method. Using this transformation we are able to devise an
efficient algorithm whose running time is O (n logn + mn + mz), where m is the
number of robots and 7 is the complexity of the workspace. To be precise, we show
that our algorithm runs in O (n log n 4+ m?) time, and the overall description length of
all the paths to be carried out by the robots has complexity O (mn +m?). As already
mentioned, this is in sharp contrast to the standard (labeled) and more general multi-
robot motion planning problem for discs moving in a simple polygon, which is known
to be strongly NP-hard [23].

2 Preliminaries

We consider the problem of m indistinguishable unit-disc robots moving in a simple
polygonal workspace W C R? with n edges. We define O £ R> \ W to be the
complement of the workspace, and we call O the obstacle space. Since our robots
are discs, a placement of a robot is uniquely specified by the location of its center.
Hence, we will sometimes refer to points x € W as configurations, and we will say
that a robot is at configuration x when its center is placed at the point x € W. For
given x € R? and r € R, we define D, (x) to be the open disc of radius r centered
at x.

‘We consider the unit-disc robots to be open sets. Thus a robot avoids collision with
the obstacle space if and only if its center is at distance at least 1 from O, that is, when
it is at a configuration located in the free space F £ {x € R?:Di(x)NO = @}. We
require the robots to avoid collisions with each other, so if a robot is at configuration x
then no other robot can be at a configuration y € Int(D>(x)); here Int(X) denotes
the interior of the set X. Furthermore, the notation 0(X) will be used to refer the
boundary of X. We call D, (x) the collision disc of the configuration x.

Besides the simple polygon W forming the workspace, we are also given sets S =
{s1,82,...,sm}and T = {t1, 12, ..., t,,} suchthat S, T C F. These are respectively
the sets of start and target configurations of our m identical disc robots. We assume
that the configurations in S and T are well-separated:

For any two distinct configurations x, y € S U T we have ||x — y|| > 4.

The problem is now to plan a collision-free motion for our m unit-disc robots such
that each of them starts at a configuration in S and ends at a configuration in 7. Since
the robots are indistinguishable (or: unlabeled), it does not matter which robot ends
up at which target configuration. Formally, we wish to find paths 7; : [0, 1] — F,
for 1 < i < m, such that ; (0) = s; and Ui": 1 mi (1) = T. Additionally, we require
that the robots do not collide with each other: for every 1 < i # j < m and every
£ € (0, 1), we require Dy (m;(§)) N Dy (7w;(§)) = ¥. Note that the requirement that
the robots do not collide with the obstacle space O is implied by the paths 7; being
inside the free space F.

Efficient Multi-robot Motion Planning for Unlabeled Discs in Simple Polygons 5

3 Basic Properties of the Free Space

Recall that the free space F C W is the set of configurations at which a robot does
not collide with the obstacle space. The free space may consist of multiple connected
components. We denote these components by Fi, ..., F,, where g is the total number
of components. Forany i € {1,2,...,q}, welet S; L2SNFandT; £ TN F;. We
assume from now on that |S;| = |T;| for all 1 < i < g—if this is not the case, then
the problem instance obviously has no solution—and we define m; £ |S;| = |T;| to
be the number of robots in F;.

Before we proceed, we need one more piece of notation. For any x € W, we
define obs(x), the obstacle set of x, as obs(x) £ {y € O : |lx — y|| < 1}. In other
words, obs(x) contains the points in the obstacle space overlapping with D (x). Note
that obs(x) = ¥ for x € F.

In the remainder of this section we prove several crucial properties of the free
space, which will allow us to transform our problem to a discrete pebble problem.
We start with some properties of individual components F;, and then consider the
interaction between robots in different components.

Properties of a single connected component of F. We start with a simple observation,
for which we provide a proof for completeness.

Lemma 1 Each component F; is simply connected.

Proof Suppose for a contradiction that F; contains a hole. Then Compl(F) £ R\ F,
the complement of the free space, has multiple connected components. One of these
is Co, the unbounded component containing O. Let C be another component of
Compl(F),andletx € C.Since x ¢ F,thereisapointy € O with |[x—y|| < 1.But
then ||x’—y|| < 1 forany pointx’ on the segment Xy, which implies xy C Compl(F)
and thus contradicts that C and Cp are different components.]

Now consider any x in R2. Recall that D, (x) denotes the collision disc of x, that is,
D> (x) is the set of all configurations y for which another robot placed at y collides
with a robot at x. We now define D*(x) to be the part of D;(x) that is in the same
free-space component as x, that is, D*(x) £ Dy (x) N F; where F; is the free-space
component such that x € F;.

The following three lemmas constitute the theoretical basis on which the correct-
ness and efficiency of our algorithm relies.

Lemma 2 For any x € F, the set D*(x) is connected.

Proof Assume for a contradiction that D*(x) is not connected. Let F; be the free-
space component containing x. Since by definition x € D*(x), we can find some
y € D*(x) that is in a different connected component of D*(x) from x. Since
y € D*(x) C D;(x), the distance between x and y is at most 2. Hence, any point
on the line segment Xy is within a distance of 1 of either x or y. Since x, y € F;, we
know that Xy C W, otherwise either x or y would not be in F. We also know that

6 A. Adler et al.

Fig. 1 a Anillustration of Lemma?2. The disc D, (x) is drawn in green. The closed curve A, which
consists of the curve 7" and the straight-line x'y’, is drawn in blue, and A represents the area that
is bounded by A. The disc K of radius 1 that touches x’, y’ is drawn in pink. Note that the area A*,
which is drawn in red, is contained in A. The dashed black lines represent 7 \ 7. b An illustration
of Lemma3, and in particular, the case where A} N A3 # #. For simplicity of presentation, we
assume that £; = X7y; and €, = X2y7

Xy ¢ Fj, since otherwise x and y would not be in different connected components
of D*(x). Because x, y € F;, by definition there exists a simple path 7 C F; from
x to y. Since the workspace is a polygon with finite description complexity, we may
assume that 7 has finite complexity as well, which implies that 7 N Xy is composed
of finitely many isolated points and closed segments. See Fig. 1a for an illustration.

We now define x’, y" as the points on m N Xy C D*(x) such that x’, y’ are in
different connected components of D*(x) and ||x” — y’|| is minimized given the first
condition. Let 7’ be the subpath of 7 joining x’ to y’. Notice that 7 N x"y’ = {x/, y'}.
Indeed, if there exists a point z € mNInt(x’y’), then z must be in a different connected
component of D*(x) than either x’ or y’, and ||x” — y’|| would not be the minimum.
Since 7 is a simple path, this means that A £ 7/ U xy is a simple closed curve. The
area enclosed by A (including \) will be referred to as A. We note that A C WV since
7 C F CWandx'y’ C Xy C W. This immediately implies that A C W, since W
is a simple polygon.

Let A* £ A\F. We claim that A* C Int(D,(x)), which implies that there exists
a path in F; from x’ to y’ that goes along O(A*) and is fully contained in D;(x).
But this contradicts that x” and y’ are in different components of D*(x) and, hence,
proves the lemma. It thus remains to prove the claim that A* C Int(D;(x)).

We note that for any point z € A* and any w € obs(z) we have zw N 7’ = @,
since 7’ C F. Furthermore, for any v € " we have ||[w —v|| > 1,and as x’, y’ € 7/
it follows that |jw — x’|| > 1 and ||w — y’|| > 1. Assume without loss of generality
that x’y’ is vertical and that locally A lies to the right of x’y’, as in Fig. la. Let K be
the circle of radius 1 that passes through x” and y’, and whose center lies to the left of
x’y’—such a circle always exists since ||x' — y'|| < |lx — y|| < 2. If ||x' — Y| =2

Efficient Multi-robot Motion Planning for Unlabeled Discs in Simple Polygons 7

then the center of the circle lies on x’y’.) We now let ¢ be the arc of this circle lying
to the right of x’y’; note that this is the shorter of the two arcs joining x” and y’ if they
are of different lengths. Then A* is a contained entirely within the area enclosed by
¢ and x'y’. Furthermore, A* C Int(A) U Int(x’y’) since 7/ C F. Therefore, since
x’y" is a subsegment of Xy and ¢ cannot cross d(D(x)), it follows that

A* C (Int(A) Unt(x'y")) NInt(D2(x)) C Int(Da(x)),

which proves the claim and finishes the proof of the lemma. (]

Interference between different connected components of F. Let F;, F; be two distinct
components of F, and let x € F; be such that D>(x) N F; # #. We then call x an
interference configuration from F; to F;, and define the interference set from F; to
Fjas I j L xeF :Dyx)N F; # (}. We also define the mutual interference
set of Fy, Fjas Ijj j) = I, j U I ;). Intuitively, an interference configuration from
F; to F; is a configuration for a robot in F; which could block a path in F;, and the
interference set is the set of all such points. The mutual interference set of F;, F; is
the set of all single-robot configurations in either component which might block a
valid single-robot path in the other component.

Lemma 3 For any mutual interference set Iy; j, and any two configurations x1, x2 €
Iii jy we have D2 (x1) N Dy (x2) # 0.

Proof The proof is similar in spirit to the proof of Lemma?2 albeit slightly more
involved. Assume for a contradiction that xy, x2 € Ij; j; and D2(x1) N Da(x2) = @.
By definition there exist y; € Ds(x1) and y» € Ds(xz) such that each pair
{x1, y1}, {x2, ¥2} contains one point in F; and one point in F;. As shown in the
proof for Lemma?2, the segments X7y, X2y, are entirely contained in V. We may
assume that X7y7 does not cross X2yz, since if it did the crossing point would be in
D> (x1)ND2(x2) and we would be done. Therefore, there exists a simple closed curve
A C W composed of the union of two simple curves 7;, 7; and two line segments
L1, £y such that m; C Fy and ; C Fj, and £ C X1y1,£2 C X2y2. Note that both
£1 and £» have one endpoint in F; and the other in F';; see Fig. 1b for an illustration.
The end points of £; consist of x/, y{, such that x1, x| and y;, y| belong to the same
connected components, and minimize the distance ||.x] — y{ || (€ is similarly defined).

We refer to the region enclosed by A (including \) as A. Because A C W and W
is a simple polygon, we know that A C W. Furthermore, since 7;, w; C F, for any
x € Int(A) and y € obs(x) (by definition, y € R*\W so y & A; thus, Xy N X #),
we know that Xy Nm; =Xy N7; = @. Thus, xy NInt(£;) # @ or xy NInt(£r) # ¥,
orboth. Let A* £ A\ F and denote by A7 the set of configurations x € A* for which
there exists y € obs(x) such that xy NInt(£1) # ¢J; the set A% is defined in a similar
manner, only that now Xy N Int(£2) # @. Note that A* = AT U A3.

We claim that A7 N A3 # (. Indeed, if A7 N A3 =) then there is a path from x; to
y1 along O(AY) that stays in A \ A* and, hence, stays in F, which would contradict
that x; € F; and y; € F; for i # j. Thus, there exists a point x* € A} N A3,

8 A. Adler et al.

We define the unit circles K1, K> whose boundaries lie on the endpoints of £1, £,
respectively, and whose centers are located outside A. Thus, we have AT C Kj
and A} C K. Hence, x* € K| N K. But this implies x* € D,(x1) N Da(x3), so
D> (x1) N Da(x2) # W, contradicting our initial assumption. O

The next lemma is a generalization of the previous one. Intuitively, instead of
considering a cycle of length 2 among interacting free-space components, we now
consider larger cycles.

Lemmad4 Let {¢(1), p(2),...,0h)} C {1,2,...,q}, and let x1,x2,...,xp be
points such that for all i, x; € L) pi+1)), where o(h + 1) = ¢(1). (Thus the
list is circular with respect to its index). Then there exists some i # j such that

Dy(x;) N Day(xj) # D

Proof This can be proved in a manner completely analogous to the proof of Lemma 3;
we will outline the proof here. We assume for a contradiction that D, (x;) "D (x;) =
¢ for all i # j. We can argue that we can construct a simple closed curve A C W
passing through Fy1y, Fi(2), - - ., Foeny (in that order), which is composed of simple
closed curves m; C Fy(;) and line segments £; C WV with endpoints in Fy;) and
Fy@i+1). We then consider the area A enclosed by A and note that A C W. Let
A* & A\ F.If there exists some simple curve 7* C A* connecting ¢; to ¢ ; for
some i # j, we can show that there exists some k such that D, (x;) N Da(xx) # @,
contradicting our assumption. Therefore no such 7* exists for any i # j. But this
means that there exists some simple path 7’ C A N F which joins 7; and 7 for some
i # j, which contradicts the fact that 7; and 7; belong to different components
of F. O

4 Algorithm for a Single Component

In this section we consider a single component F; of F. We present an algorithm that
solves the problem within F;, ignoring the possibility that robots in F; might collide
with robots in other components F;. In the next section we will show how to avoid
such collisions without changing the motion plans within the individual components.
Asbefore weset S; 2 SN F; and T; £ T N F;, and assume |S;| = |T;|.

The motion graph. The motion graph G; of F; is a graph whose vertices represent
start or target configurations, and whose edges represent “adjacencies” between these
configurations, as defined more precisely below.

Recall that for any x € F; we defined D*(x) £ D,(x) N F; as the part of the
collision disc of x inside F;, and recall from Lemma2 that D*(x) is connected.
Moreover, for any two distinct configurations x1, x; € S; U T; we have D*(x1) N
D*(xp) = @, because D> (x1) N Dy(x3) = @ by the assumption that the start and
target positions are well-separated. The vertices of our motion graph G; correspond
to the start and target configurations in S; U 7;. From now on, and with a slight

Efficient Multi-robot Motion Planning for Unlabeled Discs in Simple Polygons 9

abuse of notation we will not distinguish between configurations in S; U T; and their
corresponding vertices in G;.

Now consider F}* £ Fi\ (g SUT; D*(x), the complement of the collision discs
of the given start and target configurations in F;. This complement consists of several
connected components, which we denote by Fl.l, Fl.z, If the motion graph G;
contains an edge (x1, x2) then there is a component F f that is adjacent to both D*(x)
and D*(x;). In other words, two configurations x| and x; are connected in G; if there
is a path from x; to x that stays inside F; and does not cross the collision disc of
any other configuration x3 € S; U T;. Figure?2 illustrates the definition of G;. The
following observation summarizes the main property of the motion graph.

Observation 1 Suppose all robots in F; are located at a start or target configuration
in S; U T;, and let (x1, x2) be any edge in Gi. Then a robot located at x| can move
to xp without colliding with any of the other robots.

Remark. We could also work with the dual graph of the partitioning of F; into
cells induced by the collision discs. This dual graph would, in addition to vertices
representing start and target configurations, also have vertices for the regionss Fl.e.
For the pebble-motion problem discussed below it is easier to work with the graph
as we defined it. This graph may have many more edges, but in the implementation
of our algorithm described in Sect. 6 we avoid computing it explicitly.

The unlabeled pebble-motion problem. Using the motion graph G; we can view the
motion-planning problem within F; as a pebble-motion problem. (A similar approach
was taken in [21], where a sampling-based algorithm for multi-robot motion planning
produces multiple pebble problems by random sampling of the configuration space.)
To this end we represent a robot located at configuration x € S; U T; by a pebble on

(b)

Fig. 2 a A partition of a maximal connected component F. The start and target positions consist
of the elements S’ = {s1, 52, 83,54}, T’ = {t1, 12, 13, 14}, respectively, where the areas D*(s) for
s € § are drawn in green and D*(r) for t € T’ are drawn in purple. F* consists of the parts
F', F2, F3.b A motion graph of F

10 A. Adler et al.

the corresponding vertex in G;. The pebbles are indistinguishable, like the robots,
and they can move along the edges of the graph. At the start of the pebble-motion
problem for a graph with vertex set S; U T;, with |S;| = |T;|, there is a pebble on
every vertex x € S;. The goal is to move the pebbles such that each pebble ends up
in vertex in 7;, under the following conditions: (1) no two pebbles may occupy the
same vertex at the same time, and (2) pebbles can only halt at vertices, and (3) at
most one pebble may move (that is, be in transit along an edge) at any given time.
We call this problem the unlabeled pebble-motion problem. The following lemma
follows immediately from Observation 1.

Lemma 5 Any solution to the unlabeled pebble-motion problem on G; can be trans-
lated into a valid collision-free motion plan for the robots in Fj.

Kornhauser [12, Sect. 3, first lemma] proved that the unlabeled pebble-motion prob-
lem is, in fact, always solvable, and he gave an algorithm to find a solution. Since
he did not analyze the running time of his algorithm, we sketch the solution in the
proof of the lemma below.

Lemma 6 [12] For any graph G with vertex set S U T where |S| = |T|, there
exists a solution to the unlabeled pebble-motion problem. Moreover, a solution can

be found in O(|S|?) time.

Proof Let 7 be a spanning tree of G. The algorithm performs O(|S]|) phases. In
each phase, one or more pebbles may be moved and one leaf will be removed from
7, possibly with a pebble on it. After the phase ends, the algorithm continues with
the next phase on the modified tree 7¢, until all pebbles have been removed and the
problem has been solved. A phase proceeds as follows.

If there are leaves v that are target vertices then we select such a leaf v. If v does
not yet contain a pebble, we find a pebble closest to v in 7g—this can be done by a
simple breadth-first search—and move it to v along the shortest path in G. Note that
the vertices on the shortest path cannot contain other pebbles, since we took a closest
pebble. We now remove the leaf v, together with the pebble occupying it, and end
the phase. If all leaves in 7 are start vertices, then let v be such a leaf. If v is not
occupied by a pebble it can be removed from 7, and the phase ends. Otherwise a
pebble resides in v, which we move away, as follows. We find the closest unoccupied
vertex w to v of 7 and move all pebbles on this shortest path (including the pebble on
v) one step closer to w, in order of decreasing distance from w. After we evacuated v
we remove it from 7 to end the phase.

The algorithm produces paths of total length O (|S|?), and it can easily be imple-
mented to run in O(|S|?) time. Note that there are examples where £2(|S|?) moves
are required, for example when G is a single path with all starting positions in the
first half of the path and all target positions in the second half. (]

Lemma 7 Suppose we have an instance of our multi-robot path planning problem
where |S;| = |T;| for every component F; of the free space F. Then for each F; there
exists a motion plan I; that brings the robots in F; from S; to T;, such that they do
not collide with the obstacle space nor with the other robots in F;.

Efficient Multi-robot Motion Planning for Unlabeled Discs in Simple Polygons 11

5 Combining Single-Component Plans

We now consider possible interactions between robots contained in different
components F; and F; of F. As before, we assume that |S;| = |7;| for all i. We will
show that there exists a permutation o : {1,2,...,£} — {1,2, ..., £} such that we
can independently execute the single-component motion plans for each component
F; as long as we do so in the order Fy (1), Fy2), - .., Fo)-

To obtain this order, we define a directed graph representing the structure of F,
which we call the directed-interference forest G = (V, £), where the nodes in V
correspond to the components F;. We add the directed edge (F;, F;) to & if either
there exists a start position s € S such thats € I; j), or there exists a target position
t € T suchthatt € I ;). Foranyi € {1,2, ..., ¢}, we additionally define N*t@)to
be the set of indices of the vertices in the out-neighborhood of v;; similarly, N~ (i)
is defined as the set of indices of the vertices in the in-neighborhood of v;.

Note thatby Lemma 3 and since S, T are well separated, we cannot have more than
one start or target position in I{; ;. This implies that £ cannot contain both (v;, v;)
and (vj, v;). Lemma4 and the well-separatedness condition additionally imply that
G cannot have an undirected cycle. Thus, G is a directed forest.

We now produce the desired ordering using G. Consider F; € V, and suppose
that for all j € NT(i), every robot in F; is at a start position, and for all j €
N7 (i), every robot in F; is at a target position. Additionally, suppose that for all
j & NT(i) UN—(i), every robot in F; is at a start or target position. Then, by
the definition of G, no robot is at a configuration in Ij; j; for any j 7 i; thus any
motion plan for the robots in F;, such as the one described in Sect. 4, can be carried
out without being blocked by the robots not in F;. Hence, if we have an ordering
o:{L,2,...,£} — {1,2,...,£} such that for all (directed) edges (v;,v;) € &,
o i) < o71(J), where o~ ! is the inverse permutation of o, then we can execute
the motion plans for the robots in Fy (1), Fy2), - - ., Fy(e) in that order. Since G is a
directed forest such an ordering can be produced using topological sorting on the
vertices of G. Thus, combining this result with Lemma7 we obtain.

Theorem 1 Let there be a collection of m unlabeled unit-disc robots in a simple
polygonal workspace W C R?, with start and target configurations S, T that are
well-separated. Then if for every maximal connected component F; of F (where F
is the free space for a single unit-disc robot in W) |S N F;| = |T N F;|, there exists a
collision-free motion plan for these robots starting at S which terminates with every
position of T occupied by a robot.

6 Algorithmic Details

In this section we fill in a few missing details in the description of our algo-
rithm. Specifically, we present an efficient method for generating motion graphs
and describe a technique for generating configuration-space paths that correspond to

12 A. Adler et al.

edges in the motion graphs. Additionally, we consider the complexity of the various
subsets of F used throughout the algorithm.

Partitioning F. We analyze the combinatorial complexity of 7* £ F \ |, cgur D*
(x)and D £ (J o7 D* ().

Lemma 8 The combinatorial complexity of F* is O(m + n).

Proof We decompose the complement of the workspace polygon into O (n)
trapezoids—this is doable by standard vertical decomposition. We define a set X,
which consists of the trapezoids, and in addition a collection of O (m) unit discs that
are centered at the start and target positions. We now observe that the regions in X are
pairwise interior disjoint (and convex). Hence, it is known [10] that the complexity
of the union of the regions in X, each Minkowski-summed with a unit disc, is linear
in the number of regions plus the sum of the complexities of the original regions. As
the result of the Minkowski sum operation of X with a unit disc is the the area F*,
we conclude that that the complexity of F* is O (m + n). (I

Note that this upper bound still holds if we consider instead of F* the union of
F} 2 Fi\ UXES,‘UTi D*(x),forall 1 <i <gq.

Lemma 9 The combinatorial complexity of D £ Uyesur D*(x), is O(m + n).

Proof Denote by d £ {d|,d>, ...} the segments that define 9(ID). Additionally,
denote by f = {fi, fo,...} and f* £ {ff, f;,...} the segments that define
O(F), O(F™*), respectively. Note that 9(ID) consists of segments that are elements of
f, f* and in addition segments that are subsegments of the elements of f, denoted by
f' = 1{f], f3,-..}. Obviously the complexity of the segments of d, that are elements
of f or f*, is bounded by O (m + n). It might happen that the segments of f will
be split into many subsegments in f’. However, notice that whenever a segment of
f is split the endpoints of each subsegment consist of vertices of 9(F) or O(F™).
Moreover, exactly two segments in J(ID) share an endpoint. Thus, the complexity of
Dis O(m + n). O

Generating the motion graphs. We consider a specific component F' of F and con-
struct its motion graph G. Denote F* £ F \ Uxesurnr D* (x). Note that by the
analysis in Sect.5 we can ignore the influence of D, (x) on connected components
in F that do not contain x. We assume that F'* breaks into k& maximal connected
components F 1 .., Fk. The construction of G, along with the paths in F that cor-
respond to the edges of G, is carried out in two steps. First, for every F’ we generate
the portion of G, denoted by G, whose vertices represent start and target positions
that touch the boundary of F’. Then, we connect between the various parts of G.
We consider a specific connected component F! of F* and describe how the
respective portion of the motion graph, namely G, is generated. We split the start
and target positions that share a boundary with F into two subsets: B’ are those
positions for which the collision disc intersects the boundary of F and H' are those

Efficient Multi-robot Motion Planning for Unlabeled Discs in Simple Polygons 13

Fig.3 a Anillustration of a component F> of F* and the structures used for generating the relevant
portion of the motion graph. The boundary positions of F' 3 consist of B? := {s2, 11, 12, t4}, while
the hole positions consist of H3 := {s3, s4}. For every x € H? its boundary representative 3°(x) is
illustrated as a large black dot. A path between t; and 1, is illustrated in red. b The motion graph G3
induced by F3

positions for which the collision disc floats inside F. See Fig.3. We first handle the
positions in B'. Consider the outer boundary I™ of F* \ Uyesur D*(x). We argue
that each x € B' can contribute exactly one piece to I™*.

Lemma 10 Ifx € B’ then O(D>(x)) N O(F') consists of a single component.

Proof By contradiction, assume that the intersection consists of two maximal con-
nected components. Denote by y, y’ two configurations on the two components. As
F' consists of a single connected component of F there exists a path Tyy C F from
y to y'. Additionally, as y, y’, x belong to the same connected component of F there
exist two paths—r,, from x to y and 7.,/ from x to y’—that lie entirely in D*(x).
Thus, the area that is bounded by the three paths 7/, myy, Ty, contains a patch
of forbidden space, which contradicts the fact the our workspace is a simple
polygon. (]

For every x € B’ we arbitrarily select a representative point 3 (x) € d(Dz(x)) N
F'. We order the points ,6” () clockwise around I'?, and store them in a circular list
L. We now incorporate the remaining start and target positions H', namely those
positions x for which D, (x) N O(F) = @. Each position in H will be connected
either to I or to the boundary of a collision disc of another position in H' as
follows. For each x € H' we shoot a vertical ray upwards until it hits (F'). Denote
the point where the ray hits O(F?) by c. If ¢ € 9(D2(x")) for some x’ € H' | x’ # x
then an edge between x and x’ is added to G'. Otherwise, we let ﬁi (x) £ ¢ and
insert it into the circular list £’ representing the points 3’ (x) along I'* collected
so far. After all positions in H' have been handled in this manner, for each pair of
consecutive points 3 (x’), 8/ (x”) in £ (along I'’) we add an edge in G’ between
the vertices x’ and x”. (Notice that some of the positions x whose ! (x) appear in £’
belong to H'; for example s3 in Fig. 3.) Finally, the connection between portions of

14 A. Adler et al.

the motion graph that represent different parts of F* is achieved through positions
shared between two sets B', B/, fori # j.

Transforming graph edges into paths in the free space. There are three different types
of transformations depending on how the edge was created. Let (x, x) be an edge in
G;. Consider Fig. 3 for an illustration. (i) If both x and x’ belong to H I (see (54, 53)
in the figure) then the path simply consists of the two straight-line segments xc¢ and
cx’. For the remaining two cases we note that if either vertex, say x, is in B, then
part of the path is a simple curve connecting x to /3 (x) within D*(x) (see the red
curves from s1 and 1, in the figure). We denote this curve by d,. (i) x, x’ € B’ and the
points 3 (x) and 3 (x') are consecutive along I"? (see (t1, t2) in the figure). The path
corresponding to the edge (x, x’) in this case is a concatenation of three sub-paths:
d, the portion of I'! between (' (x) and 5 (x") (not passmg though the boundary
of any other collision disc), and 6. (iii) x € H' and x’ € B’ (see (s3, 52) in the

figure). The path is again a concatenation of three paths: the line segment x 3’ (x),
the portion of I"? between /3 (x) and 3’ (x’) (not passing though the boundary of any
other collision disc), and d,-.

Notice that for all path types above if a robot r moves from x to x’, x is not
occupied, and all other robots occupy positions only at S U T\ {x, x’}, r will not
collide with any other robot during the motion.

Complexity analysis. We provide complexity analysis of our algorithm and show that
asolution to the problem can be produced within O ((m + n) log(m + n) + mn—+ mz)
operations, which can be rewritten as O (n logn + mn + mz)

Recall that the pebble problem solver (Sect.4) operates in O (m) phases, where
in each phase a leaf node is removed from the spanning tree of G. We show, using
Lemmas 8 and 9, that each phase can be transformed into a set of movements for
the robots whose combinatorial complexity is O (m + n). The crucial observation is
that in one phase each edge of the motion graph is used at most once. Thus the set
of robot movements in one phase is bounded by the complexity of the movements
corresponding to all the edges in the graph together. These comprise O (m) line seg-
ments, portions of the boundaries I” I (whose complexity is O (m + n) by Lemma3),
and the paths J, inside the D*(x)’s (whose complexity is O (m + n) by Lemma9).
A path of the latter type, J,, might be traversed twice: once for reaching x and once
for leaving x. However asymptotically all the movements together have complexity
O(m +n).

We note that the cost of generating F, along with its partitions F* and D, is
bounded by O ((m + n) log(m + n)), due to [10]. We also note that deciding whether
a solution exists for a certain collection of start and target positions can be carried out
in O((m + n)logn) as follows. We first compute F in O (n logn) time, and within
the same time preprocess it for efficient point location. Then we query the resulting
structure with the m points in S U T, in O (logn) time each, and verify that in every
component F; of F it holds that |S;| # |T;|. Thus, we have the following theorem.

Efficient Multi-robot Motion Planning for Unlabeled Discs in Simple Polygons 15

Theorem 2 Let WV be asimple polygonwithn verticesandlet S = {s1,...,8n}, T =
{t1, ..., tn} be two sets of m points in V. Additionally, assume that for every two
distinct element x, x' of S U T it holds that || x — x'|| > 4. Then, given m unlabeled
unit disc robots, our algorithm can determine whether a path moving the m robots
from S to T existsin O ((m + n) logn) time. If a path exists the algorithm finds it in
o (n logn 4+ mn + mz) time.

7 Open Problems and Future Work

We have studied a basic variant of the multi-robot motion-planning problem, where
the goal is to find collision-free motions that bring a given set of indistinguishable unit
discs in a simple polygon to a given set of target positions. Under the condition that
the start and target positions are sufficiently separated from each other, we developed
an algorithm that solves the problem in time polynomial in the complexity of the
polygon as well as in the number of discs: quadratic in the number of robots and
near-linear in the complexity of the polygon. In this paper we considered a separation
distance of 4, but it would also be interesting to study the problem assuming a smaller
separation distance. While a separation distance of 4 ensures that the problem always
has a solution (assuming that each connected component contains the same number
of start and target positions), this does not have to be the case when the separation
distance is smaller, as shown in Fig.4. We would also like to mention that imposing
additional conditions on the input allows to devise an algorithm that also guarantees
optimality, in terms of path length, of the returned solution, as shown by Turpin
et al. [25] who also require that for every x € S U T, D*(x) will be star-shaped.
Our result should be contrasted with the labeled counterpart of the problem, which
is NP-hard [23]. In the NP-hardness proof the discs have different radii, however, and
there is no restriction on the separation of the start and target position. Thus one of
the main open questions resulting from our study is to settle the complexity of the

Fig. 4 It follows from our paper that when the start and goal positions are well separated, then
there is always a solution when each free-space component has the same number of start and goal
positions. However, it is not true when the separation condition is not met. In the given example,
which consists of two start positions (in green) and two target position (in purple), the two robots
cannot simulataneously reach the target positions as each robot blocks the other’s route

16 A. Adler et al.

unlabeled problem without this extra separation condition. It seems that in the general
unlabeled problem it is unavoidable to consider the coordination of robots in the joint
high-dimensional configuration space and thus we believe that the general unlabeled
problem is computationally intractable. We are investigating a possible connection
between the general unlabeled problem and a problem that was considered by Hearn
and Demaine [6], which is a variation of the unlabled pebble problem (Sect.4) with
the additional requirement that for every edge of the graph, at most one of its end
vertices will accommodate a pebble. In other words, for every placement of the
pebbles the occupied vertices must form an independent set. Hearn and Demaine
show that this problem is PSPACE-complete.

References

1. Aronov, B., de Berg, M., van der Stappen, A.F., Svestka, P., Vleugels, J.: Motion planning for
multiple robots. Discret. Comput. Geom. 22(4), 505-525 (1999)

2. Bereg, S., Dumitrescu, A., Pach, J.: Sliding disks in the plane. Int. J. Comput. Geom. Appl.
18(5), 373-387 (2008)

3. Dumitrescu, A., Jiang, M.: On reconfiguration of disks in the plane and related problems.
Comput. Geom.: Theory Appl. 46(3), 191-202 (2013)

4. Goldreich, O.: Shortest move-sequence in the generalized 15-puzzle is NP-hard. Manuscript,
Laboratory for Computer Science, MIT 1 (1984)

5. Goraly, G., Hassin, R.: Multi-color pebble motion on graphs. Algorithmica 58(3), 610-636
(2010)

6. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other prob-
lems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci.
343(1-2), 72-96 (2005)

7. Hirsch, S., Halperin, D.: Hybrid motion planning: coordinating two discs moving among polyg-
onal obstacles in the plane. In: Workshop on the Algorithmic Foundations of Robotics (WAFR),
pp- 239-255. Springer, New York (2002)

8. Hopcroft, J.E., Schwartz, J.T., Sharir, M.: On the complexity of motion planning for multiple
independent objects; PSPACE-hardness of the warehouseman’s problem. Int. J. Robot. Res.
3(4), 76-88 (1984)

9. Kavraki, L.E., §Vestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path
planning in high dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566-580
(1996)

10. Kedem, K., Livne, R., Pach, J., Sharir, M.: On the union of Jordan regions and collision-free
translational motion amidst polygonal obstacles. Discret. Comput. Geom. 1, 59-70 (1986)

11. Kloder, S., Hutchinson, S.: Path planning for permutation-invariant multi-robot formations. In:
ICRA, pp. 1797-1802 (2005)

12. Kornhauser, D.: Coordinating pebble motion on graphs, the diameter of permutation groups,
and applications. M.Sc. thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (1984)

13. Krontiris, A., Luna, R., Bekris, K.E.: From feasibility tests to path planners for multi-agent
pathfinding. In: Symposium on Combinatorial Search (2013)

14. Kuffner, J.J., Lavalle, S.M.: RRT-connect: an efficient approach to single-query path planning.
In: International Conference on Robotics and Automation (ICRA), pp. 995-1001 (2000)

15. Papadimitriou, C.H., Raghavan, P., Sudan, M., Tamaki, H.: Motion planning on a graph. In:
Foundations of Computer Science, pp. 511-520 (1994)

Efficient Multi-robot Motion Planning for Unlabeled Discs in Simple Polygons 17

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Salzman, O., Hemmer, M., Halperin, D.: On the power of manifold samples in exploring
configuration spaces and the dimensionality of narrow passages to appear, Workshop on the
Algorithmic Foundations of Robotics (WAFR) (2012)

Sanchez, G., Latombe, J.C.: Using a PRM planner to compare centralized and decoupled
planning for multi-robot systems. In: International Conference on Robotics and Automation
(ICRA) (2002)

Schwartz, J.T., Sharir, M.: On the piano movers problem: II. General techniques for computing
topological properties of real algebraic manifolds. Adv. Appl. Math. 4(3), 298-351 (1983)

. Schwartz, J.T., Sharir, M.: On the piano movers problem: III. Coordinating the motion of several

independent bodies. Int. J. Robot. Res. 2(3), 46-75 (1983)

Sharir, M., Sifrony, S.: Coordinated motion planning for two independent robots. Ann. Math.
Artif. Intell. 3(1), 107-130 (1991)

Solovey, K., Halperin, D.: k-color multi-robot motion planning. Int. J. Robot. Res. (2013, in
press (already appeared on-line))

Solovey, K., Salzman, O., Halperin, D.: Finding a needle in an exponential haystack: discrete
RRT for exploration of implicit roadmaps in multi-robot motion planning. CoRR 1305.2889
(2013)

Spirakis, P.G., Yap, C.K.: Strong NP-hardness of moving many discs. Inf. Process. Lett. 19(1),
55-59 (1984)

Svestka, P., Overmars, M.H.: Coordinated path planning for multiple robots. Robot. Auton.
Syst. 23, 125-152 (1998)

Turpin, M., Michael, N., Kumar, V.: Concurrent assignment and planning of trajectories for
large teams of interchangeable robots. In: International Conference on Robotics and Automa-
tion (ICRA), pp. 842-848 (2013)

van den Berg, J., Snoeyink, J., Lin, M.C., Manocha, D.: Centralized path planning for multiple
robots: optimal decoupling into sequential plans. In: Robotics: Science and Systems (RSS)
(2009)

Wagner, G., Choset, H.: M*: A complete multirobot path planning algorithm with performance
bounds. In: International Conference on Intelligent Robots and Systems (IROS), pp. 3260-3267
(2011)

Wagner, G., Kang, M., Choset, H.: Probabilistic path planning for multiple robots with subdi-
mensional expansion. In: International Conference on Robotics and Automation (ICRA), pp.
2886-2892 (2012)

Yap, C.K.: Coordinating the motion of several discs. Technical report, Courant Institute of
Mathematical Sciences, Michigan State University, New York (1984)

Yu, J., LaValle, S.M.: Distance optimal formation control on graphs with a tight convergence
time guarantee. In: IEEE International Conference on Decision and Control, pp. 4023-4028
(2012)

http://arxiv.org/abs/1305.2889

Navigation of Distinct Euclidean Particles
via Hierarchical Clustering

Omur Arslan, Dan P. Guralnik and Daniel E. Koditschek

Abstract We present a centralized online (completely reactive) hybrid navigation
algorithm for bringing a swarm of n perfectly sensed and actuated point particles
in Euclidean d space (for arbitrary n and d) to an arbitrary goal configuration with
the guarantee of no collisions along the way. Our construction entails a discrete
abstraction of configurations using cluster hierarchies, and relies upon two prior
recent constructions: (i) a family of hierarchy-preserving control policies and (ii)
an abstract discrete dynamical system for navigating through the space of cluster
hierarchies. Here, we relate the (combinatorial) topology of hierarchical clusters to
the (continuous) topology of configurations by constructing “portals”—open sets of
configurations supporting two adjacent hierarchies. The resulting online sequential
composition of hierarchy-invariant swarming followed by discrete selection of a
hierarchy “closer” to that of the destination along with its continuous instantiation via
an appropriate portal configuration yields a computationally effective construction
for the desired navigation policy.

Keywords Multi-agent coordination - Integrated planning and control - Swarm
robotics - Hierarchical formation

1 Introduction

This paper introduces the use of cluster hierarchies in vector field planners for coor-
dinated swarming. Hierarchical clustering offers an interesting means of ensemble
task encoding and control. It provides a formalism for precise yet flexible expres-

0. Arslan (X)) - D.P. Guralnik - D.E. Koditschek

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA
19104, USA

e-mail: omur @seas.upenn.edu

D.P. Guralnik
e-mail: guralnik @seas.upenn.edu

D.E. Koditschek
e-mail: kod @seas.upenn.edu

© Springer International Publishing Switzerland 2015 19
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_2

20 O. Arslan et al.

sion, relaxing local proximity relations while allowing the imposition of more global
requirements—and at whatever level of resolution may be appropriate to a given set of
goals in a given problem setting. Here, we take a fresh and, as it turns out, completely
successful look at what may be considered the simplest instance of a longstanding,
familiar, hard problem: coordinated motion planning of a configuration of multiple
bodies. Specifically, we address the case of fully actuated, first order point parti-
cles constrained only by the requirement to avoid self-intersection in their otherwise
free ambient Euclidean space, controlled by a centralized vector field planner that
has instantaneous, exact information about the location of each individual. Given a
desired, labeled, free configuration of this swarm, along with a labeled target hierar-
chy that goal configuration instantiates, we construct a hybrid controller guaranteed
to bring almost every initial free configuration to that destination with no collisions
along the way via a sequence of continuous controllers. The construction is compu-
tationally effective: the number of discrete transitions grows in the worst case with
the square of the number of particles; each successive discrete transition can be com-
puted reactively (i.e., as a function of the present configuration) in time that grows
linearly with the number of particles; and the formulae that define each successive
smooth vector field are rational functions (i.e. defined by quotients of polynomials
over the ambient space) entailing terms whose number grows quadratically with the
number of particles.

1.1 Background

We do not imagine that the hierarchy abstraction (nor any other) can budge the
intrinsic complexity of the coordinated motion planning problem. Beyond this “sim-
plest” (but non-trivial) problem, we suspect that systematic recourse to hierarchy can
likely also afford computationally effective solutions to more “realistic”’ problem
settings! —so long as they do not step across the line of intractability. For exam-
ple, whereas motion planning for finite disks in a polygonal environment is strongly
NP-hard [32], more relaxed versions entailing (perhaps partially) unlabeled speci-
fications have yielded interesting planners in the recent literature [1, 31, 34], and
we suspect that the cluster hierarchy abstraction may be usefully applicable to such
partially labeled settings.

Within the domain of reactive or vector field motion planning, it has proven
deceptively hard to determine exactly this line of intractability. Since the problem of
reactively navigating swarms of disks was first introduced to robotics [35, 36], most
research into dynamical coordination planners has embraced the navigation function
paradigm [28]. A recent review of this two decade old literature is provided by [33]
where a combination of intuitive and analytical results yields centralized planners for
achieving goal configurations specified up to rigid transformation. But moving thick
bodies in a compact workspace yields hard problems: even determining when and

'We will mention in the conclusion a few such extensions presently in progress.

Navigation of Distinct Euclidean Particles via Hierarchical Clustering 21

how the configuration space is connected entails an encounter with the ancient sphere
packing problem [7]; past reactive solutions have produced controllers with terms
growing super-exponentially in the number of disks even when the workspace is not
compact [14]; and we suspect that the (hard won) conditions sufficient for guarantee-
ing the correctness of the traditional navigation function constructions applied to this
problem [19] will turn out to imply as hinted in [7] that the resulting free space has
the same homotopy type as the “simple” problem we solve here. In sum, we believe
there is plenty of useful and challenging work to be done in such tractable settings—
with few agents [27]; in low dimensions [10]; and so on—and it seems likely that
the ability to specify organizational structure in the precise but flexible terms that
hierarchy permits will add a useful tool to the robot motion planner’s toolkit.

That a hierarchy of proximities might play a key role in the coordinated motion
planning had already been hinted at in early work on this problem [22, 23]. A
cover over the neighborhood of the configuration space boundary by cluster hierar-
chies (closely related to what we term “strata” here—see [5] and below) plays an
important role in the analysis of navigation functions for thickened disks operat-
ing with centralized control in a compact workspace [19]. Formulae incorporating
“relation verification” functions (again expressing properties of cluster hierarchies
closely related to our “strata”) that grow super-exponentially with the number of
disks appear directly in the decentralized controllers for the thickened disks in an
unbounded workspace proposed by [14]. Partial hierarchies that limit the combina-
torial growth of complexity have been explicitly applied algorithmically to organize
and simplify the systematic enumeration of cluster adjacencies in the configuration
space [6]. Thus, while the utility of hierarchies and expressions for manipulating
them are by no means new to this problem domain, we believe that the explicit
formal connection we make between the topology of configuration space [15] and
the topology of tree space [16] through the hierarchical clustering relation [18] is
entirely new.

1.2 Organization and Contributions of the Paper

Section 2 introduces some underlying technical concepts and suggests via abstractly
stated requirements that there are likely to be many alternative routes to the desired
result other than specific instances we recruit from some of our recent previous
work (Algorithm 1, constructing a hierarchy-preserving navigation scheme in the
configuration space [5]; and Algorithm 2, constructing a computationally effective
navigation scheme in the space of abstract clustering trees [4]). Section 3 presents
the new results that enable the central contribution of this paper, the HNC Algorithm
(Table 1). Namely, we show how to define and compute a “portal map” (17)—a com-
putationally effective geometric realization in the configuration space of the edges
of a graph over the space of abstract hierarchies (Theorem 1)—that will serve the
role of a dynamically computed “prepares graph” [9] for the sequentially composed
particle controllers whose correct recruitment solves the reactive motion planning

22 O. Arslan et al.

problem (Theorem2). Section4 presents illustrative simulations of this new hybrid
dynamical system. We conclude with a brief discussion of future work in Sect. 5.

2 General Framework

2.1 Background and Notation

Configuration Space Given an index set, J = [n] := {1, ...,n} C N, a configura-
tion, X = (X;);cy, 1s a labeled placement of |J| = n distinct Euclidean particles, X;.
We find it convenient to identify the configuration space [15] with the set of distinct
labelings, i.e., the injective mappings of J into RY,

Conf(Rd, J): ={xe(R")’(||x,-—x,|| £0, Vi ;éjeJ}. (1)

Cluster Hierarchies A rooted semi-labelled tree T over a fixed finite index set J,
illustrated in Fig. 1, is a directed acyclic graph G = (V;, E;), whose leaves, vertices
of degree one, are bijectively labeled by J and interior vertices all have out-degree at
least two; and all of whose edges in E; are directed away from a vertex designated
to be the root [8]. A rooted tree with all interior vertices of out-degree two is said
to be binary or, equivalently, non-degenerate, and all other trees are said to be
degenerate. In this paper BT ; denotes the set of rooted nondegenerate trees over
leaf set J.

A rooted semi-labelled tree 7 uniquely determines (and henceforth will be inter-
changeably used with) a cluster hierarchy [25]. By definition, all vertices of 7 can
be reached from the root through a directed path in 7. The cluster of a vertex v € V-
is defined to be the set of leaves reachable from v by a directed path in 7. Let C (1)
denote the set of all vertex clusters of 7.

T .- T,

*" " “root
® jnterior node
° leaf node ~ _
C)
.’ Y.’

(1,©) (i}
1 2 3 4 5 6 7 8 9 10 11 12 13 (a.B)

Fig. 1 (Left) Hierarchical relations: parent—Pr (1, 7), children—Ch (7, 7), and local complement
(sibling)—/~" of cluster I of a rooted binary tree, 7 € BT[i3). An interior node is referred by
its cluster, the list of leaves below it; for example, I = {4, 5, 6, 7}. (Right) An illustration of NNI
moves between binary trees: each arrow is labeled by a source tree and associated cluster defining
the move

Navigation of Distinct Euclidean Particles via Hierarchical Clustering 23

@) — , (©)3
2 N o6] —
A 9 ._1 2 3
0h . N e
T | E
2 ! i 1
ol b o 1 3 2
G4l : 0
2 0 2 4 6 W=
. 2 3 1
(b) =l+H
_9 Bl |
=+l
_3 O=m+m+m
1 6 3 5 2 4 ’3

Fig. 2 An illustration of a a configuration in Conf (RZ, [6]) and b its iterative 2-mean clustering
[30] hierarchy in BJ[s], where the dashed lines in (a) depict the separating hyperplanes between
clusters. ¢ The quotient space Conf(C, [3]) / ~, where for any X,y € Conf(C, [3]),x ~y <

%;%:11- = % Here, configurations are quotient out by translation, scale and rotation, and so
x; =0+4+0i,x = 1 4+ 0i and x3 € C\ {xy, X2}. Regions are colored according the associated

cluster hierarchies resulting from their iterative 2-mean clustering. For instance, any configuration
in the white region supports all hierarchies in BTJ|3;

For every cluster I € C(7) we recall the standard notion of parent (cluster)
Pr (1, 7) and lists of children Ch (1, 7) of I in 7. Additionally, we find it useful to
define the local complement (sibling) of cluster I € C(r)as ™" :=Pr (I, 7) \ I.

Configuration Hierarchies A hierarchical clustering® HC C Conf (Rd ,J)X‘B‘T 7 is
a relation from the configuration space Conf (]Rd ,J) to the abstract space of binary
hierarchies BTy [18], an example depicted in Fig. 2. Here, we will only be interested
in clustering methods that can classify all possible configurations (i.e. for which HC
assigns some tree to every configuration), and so we impose the condition:

Property 1 HC is a multi-function.

Most standard divisive and agglomerative hierarchical clusterings exhibit this prop-
erty, but generally fail to be functions because choices may be required between
different but equally valid cluster splitting or merging decisions [18].

Given such an HC, for any x € Con£ (R¢, J) and 7 € BT, we say X supports
if and only if (x, 7) € HC. The stratum associated with a binary hierarchy 7 € BT,
is the set of all configurations x € Conf (Rd, J) supporting the same tree 7 [5],

S(r) = {x c Conf(Rd, J) |(x,7) € HC} ,)

2 Although clustering algorithms generating degenerate hierarchies are available, many standard
hierarchical clustering methods return binary clustering trees as a default, thereby avoiding com-
mitment to some “optimal” number of clusters [18, 37].

24 O. Arslan et al.

and this yields a tree-indexed cover of the configuration space. For purposes of
illustration, we depict in Fig. 2c the strata of Conf (C, [3])—a space that represents
a swarm of three particles on the plane.

The restriction to binary trees precludes combinatorial tree degeneracy [8] and
we will avoid configuration degeneracy by imposing:

Property 2 Each stratum of HC includes an open subset of configurations, i.e. for
every T € BTy, S (1) # 0.3

Once again, most standard hierarchical clusterings respect this requirement: they
generally all agree (i.e. return the same result) and are robust to small perturbations
of a configuration whenever all its clusters are well separated [37].

Graphs on Trees Define the adjacency graph A; = (BT, € 4) to be the 1-skeleton
of the nerve [17] of the Conf (Rd, J)-cover induced by HC. That is to say, a pair of
hierarchies, o, 7 € BT, is connected with an edge in € 4 if and only if their strata
intersect, S (o) N & (1) # @. The adjacency graph is a central object of interest
in this paper; however, as Fig. 2c anticipates, HC strata generally have complicated
shapes, making it usually hard to compute the complete adjacency graph.

Fortunately, the computational biology literature [16] offers an alternative notion
of adjacency that turns out to be both feasible and nicely compatible with our needs,
yielding a computationally effective, fully connected subgraph of the adjacency
graph, A, as follows.

The Nearest Neighbor Interchange (NNI) move at a cluster A € C (o) on a binary
hierarchy o € BT}, as illustrated in Fig. 1, swaps cluster A with its parent’s sibling
C = Pr(A, 0)77 to yield another binary hierarchy 7 € BT, [26, 29]. Say that
o, T € BT ; are NNI-adjacent if and only if one can be obtained from the other by a
single NNI move. Moreover, define the NNI-graph N; = (BT 7, E) to have vertex
set BT 7, with two trees connected by an edge in 4y if and only if they are NNI-
adjacent. A central result of this paper will be to show how the NNI-graph yields a
computationally effective sub-graph of the adjacency graph (Theorem 1).

2.2 Closely Related Prior Work

Hierarchy-Invariant Control Policies For ease of exposition we restrict attention
to first order (completely actuated single integrator) particle dynamics, and we will

3Here, A denotes the interior of set A.

Navigation of Distinct Euclidean Particles via Hierarchical Clustering 25

be interested in smooth closed loop feedback laws (or hybrid controllers composed
from them) that result in complete flows,

X=f(x), 3)

where f : Conf(Rd, J) — (Rd)J is a vector field over Conf(Rd, J).4
Denote by ¢ the flow [2] on Con£ (R?, J) induced by the vector field, f.In [5]
we introduce the class of hierarchy-invariant vector fields,

Fuc(r) : = [f :conf(RY, 7) > (R")J W (Em) cém.r > 0], (@)

and use them to construct a hybrid controller that invariantly retracts almost all of a
stratum onto any designated interior goal configuration. Namely, working with the
2-means divisive hierarchical clustering method [30], HC2.means, given a hierarchy
7€BT; and an interior goal, yeé (1) we construct a pair of vector fields, fy, fsy) €
JFuc (1) with the following properties. The goal field, fy, has y as a point attractor
and includes in its basin a neighborhood of a suitably well separated and compactly
clustered “standard” exemplar, s (y) € & (7). The global field, f;(y) has s (y) as
a point attractor and includes in its basin a set &, (7) C & (7) that excludes at
most a zero measure subset of & (7). The formulae defining fj(y) and fy are both
rational functions (i.e. defined by quotients of polynomials over the ambient space)
entailing terms whose numbers, respectively, grow quadratically and linearly with
the number of particles. Using the standard “prepares” construction [9], wherein
initial application of control fy) is switched to fy upon reaching a suitably small
neighborhood of s (y), there results a deformation retraction [17], R; y, of (almost
all of) G, (7) onto {y}.

Key for purposes of the present application is the observation that any hierarchy-
invariant field f € Fyuc (7) must leave Conf(Rd ,J) invariant as well, and thus
avoids any self-collisions of the particles along the way. There are likely to be many
alternative approaches to such results, but for purposes of this paper we will simply
assume the availability of exactly such a prior construction that we summarize as
follows.

Algorithm 1 ([5]) Forany 7 € BT andy € & (7) associated with HC construct a
(possibly hybrid) quadratic, O (| J| 2), time computable control policy, f; y, using the
hierarchy invariant vector fields of Fyc (7) whose closed loop results in a retraction,
R; y, of &, (7) onto {y}, where & (1) \ &; (7) has zero measure.

Navigation in the Space of Binary Trees Whereas the controlled deformation retrac-
tion, Ry, above generates paths “through” the strata, we will also want to navigate
“across” them along the NNI-graph. In principle, this is a trivial matter since the

“ A long prior robotics literature motivates the utility of this fully actuated “generalized damper”
dynamical model [24], and provides methods for “lifts” to controllers for second order plants [20,
21] as well.

26 O. Arslan et al.

number of trees over a finite set of leaves is finite. In practice, the cardinality grows
super exponentially [8],

BT/ l=QIJ|-3)=2|J|-3)2|J|—-5)...3, (5)

for |J| > 2. Hence standard graph search algorithms, like the A* or Dijkstra’s
algorithm [11], become rapidly impracticable. In particular, computing the shortest
path (geodesic) in the NNI-graph is NP-complete [13].

Given a 7 € BT, we have recently developed in [4] an efficient recursive proce-
dure for endowing the NNI-graph with a directed edge structure whose paths all lead
to 7, and whose longest path (from the furthest possible initial hierarchy, o € BT ;)
is tightly bounded by % (JI =D (J| —2) for |J| = 2. We interpret that directed
NNI-graph as defining a deterministic discrete dynamical system in BT ; that recur-
sively generates paths toward the specified destination tree 7 € BTy from all other
trees in BTy by reducing a “discrete Lyapunov function” relative to that destination.
Given such a goal we show in [4] that the cost of computing an appropriate NNI move
from any other 0 € BTJ; toward an adjacent tree at a lower value of the Lyapunov
function is O (| J]).

In this paper, such a provably correct, computationally efficient and recursively
generated choice of next NNI moves will play the role of a discrete feedback policy
used to define the reset map of our hybrid dynamical system. Thus, we further require
the availability of such a construction, summarized as:

Algorithm 2 ([4]) Given any 7 € BT ; construct recursively a closed loop discrete
dynamical system in the NNI-graph, taking the form of a deterministic discrete
transition rule, g, with global attractor at 7 and longest trajectory of length O (| J |2)
endowed with a discrete Lyapunov function relative to which computing a descent
direction from any o € BT ; requires a computation of time O (|J|).

3 Hierarchical Navigation

The central technical result of this paper endows the strata of HCy.means [30] with a
complete prepares graph [9] via a computationally effective geometric realization of
the NNI-graph on trees.

Definition 1 The portal, Portal (o, 7), of a pair of hierarchies, o, 7 € BT, is
the set of all configurations supporting interior strata of both trees,

Portal (o,7) : = S (o)N & (7). (6)

Theorem 1 The NNI-graph N; = (BT, E) is a sub-graph of the HC_means adja-
cency graph Ay = (BT ;, € 4), and given an edge, (o, T) € EN C € 4, a geometric
realization via the map Port (s) : & (0) — Portal (o, 7) (17) can be computed
in linear, O (|J|), time with the number of leaves, |J|.

Navigation of Distinct Euclidean Particles via Hierarchical Clustering 27

Proof The relation between the tree graphs directly follows from Proposition 1. Fur-
ther, Port s, is shown in Proposition2 to be a retraction of & (o) into the set
of standard portal configurations in Portal (o, 7). Observe that by construction
Port(s,7) (17) only requires centroids of clusters of o, computable in linear time
by post-order traversal of o, and some associated cluster radii in (11)—(13), also
computable in linear time given cluster centroids. Thus, the result follows. (I

Before proceeding to the details of this construction, we summarize how it,
together with the constructions reviewed in Sect. 2, solve the centralized hierarchical
navigation problem.

3.1 Specification and Correctness of the Hierarchical
Navigation Control (HNC) Algorithm

Assume the selection of a goal configuration y € S (7) and a hierarchy 7 € BT
that y supports. Now, given (almost) any initial configuration x € & (o) for some
hierarchy o € BT that x supports, Table 1 presents the HNC algorithm.

Theorem 2 The HNC Algorithm in Table 1 defines a hybrid dynamical system whose
execution brings almost every initial configuration, x € Conf (Rd, J) in finite time

to an arbitrarily small neighborhood of 'y € S (1) with the guarantee of no collisions
along the way and with a computational cost no greater than O (|J|) at each discrete
transition.

Proof In the base case, (1) the conclusion follows from the construction of Algo-
rithm 1: the flow f- y keeps the state in & (7), approaches a neighborhood of y (which
is an asymptotically stable equilibrium state for that flow) in finite time.

In the inductive step, (a) The NNI transition rule g, guarantees a decrement in the
Lyapunov function after a transition from o to y (Algorithm 2), and a new local policy
[,z 1s automatically deployed with a local goal configuration z € Portal (o,)
found in (b). Recall from Algorithm?2 and Theorem 1 that the transition from o to y

Table 1 The HNC algorithm
For (almost) any initial x € & (0) and 0 € BT, and desired y € & (t)and 7 € BTy

1. (Hybrid Base Case) if x € & (7) then apply stratum-invariant dynamics, f; y (Algorithm 1)

2. (Hybrid Recursive Step) else

(a) invoke the NNI transition rule g, (Algorithm2) to propose an adjacent tree, v € BT,
with lowered discrete Lyapunov value

(b) Choose local configuration goal, z := Port (s,) (x) (17)

(c) Apply the stratum-invariant continuous controller f,, ; (Algorithm 1)

(d) If the trajectory enters S (7) then go to step 1; else, the trajectory must enter S (7y) in
finite time in which case terminate f, ,, reassign o < -y, and go to step (2a)

28 O. Arslan et al.

and the portal location z can be both computed in linear O (|J|) time. Next, the flow
fs.z 1n (c) is guaranteed to keep the state in S (o) and approach z € Portal (o,)
asymptotically from almost all initial configurations. If the base case is not triggered
in (d), then the state enters arbitrarily small neighborhoods of z and, hence, must
eventually reach Portal (o,) C & (v) in finite time, triggering a return to (2a).
Because the dynamical transitions g, initiated from any hierarchy in BJ; reaches 7
in finite steps (Algorithm 2), it must eventually trigger the base case. O

3.2 Hierarchical Portals

We now turn attention to construction of the crucial portal map (17) that effects the
geometric realization of the NNI-graph as required for Theorem 1, above. Throughout
the sequel, we confine our attention to 2-means divisive hierarchical clustering [30],
HC).means- We first detail our construction of the realization function, Port (17),
that takes an NNI-edge and returns a target configuration, and then verify that this
image does indeed lie in the interior of Portal (o, 7).

Hierarchical Strata of HCj means The open and closed strata of HC) peans can be
characterized respectively, by the intersection inverse images,> [5]

G m= (1 [\ni.(~0.0. 6@ = () [)nl.(—00.0l

1eC(r\{J} Il TeCr\{J} Tel

(7

of the scalar valued “separation” function, 7; ; - : Conf (Rd ,J) — RR. This function
returns the distance of agent i in cluster / € C (7) \ {J/} to the separating hyperplane
that is perpendicular to the separation vector, sy r (X), between centroids of com-
plementary clusters / and /™7 and passes through the midpoint, m; - (x), of their
centroids,®

e)= (xi —mp, (®) sp0 (), ®)
where

c(x|D)+c (x[177)
5)

1
c(x|I): :m Xi, sp-(x):=c(x|I7)—c(x|I), my(x):=

iel

(€))

Definition 2 Letx € Conf(Rd, J) and 7 € BT . Then cluster I of 7 is said to be
admissible (valid) forx if n; ; (x) < Oforalli € I.

SNote that for all 7 € BT, &, (1) € & (7).
SHere, AT denotes the transpose of A.

Navigation of Distinct Euclidean Particles via Hierarchical Clustering 29

Using this terminology, we observe from (7) that & (7) comprises the set of all
configurations in Conf (Rd, J) for which every cluster of 7 is admissible [5].

Portal Configurations A critical observation for the strata of HC2_means 18:

Proposition 1 The NNI-graph is a sub-graph of the adjacency graph, i.e. for any
pair (o, 7) of NNI-adjacent trees in BT j, Portal (o, 7) # @.

Proof The result directly follows from Corollary 1. ([

Throughout this section, the trees o, 7 € BT ; are NNI-adjacent and fixed, and
we therefore take the liberty of suppressing all mention of these trees wherever
convenient, for the sake of simplifying the presentation of our equations.

Since the trees o, 7 are NNI-adjacent, we may apply Lemma 1 from [4] to find
common disjoint clusters A, B, C suchthat {A U B} = C(0)\C(r)and {BU C} =
C (1) \ C (o). Note that the triplet {A, B, C} of the pair (o, 7) is unique. We call
{A, B, C} the NNI-triplet of the pair (o, 7). Since o and 7 are fixed throughout this
section, so willbe A, B,C and P := AU B UC.

We now introduce a set of useful notation and lemmas for characterizing a par-
ticular subset of Portal (o, 7). A relaxation on Definition 2 is:

Definition 3 Letx € (Rd)], 7€ BT ; and K C J. Then cluster I of 7 is said to be
partially admissible for x| K if n; 1 - (X) <Oforalli e I N K.

For a partition {/,} of cluster I € € (7), observe that cluster I of 7 is admissible for
x if and only if 7 is partially admissible for all x|7,,’s.

Definition 4 Letx € (Rd)j, Q €{A, B,C}, and for any H C R4 define

Yo (x, H): = [y c (Rd)J ‘VRE{A,B, C) c(yIR) = ¢ (x|R),Vi € O yieH].
(10)

The consensus ball By (x) of partial configuration x| Q is defined to be the largest
open ball® centered at ¢ (x|Q) so that for any y Yo (x, By (x)) and v € {o, 7}
every cluster D € {Q, Pr (Q, 7)} \ {P} of v are partially admissible for y| Q.

An explicit form of the radius rg (x) of By (x) can be obtained as [31°

ro (X): = min[—(c (X|Q)—mD’A,(x))T(SD~W’(X))

[sp~e0],

Ne(a,T), De[Q, Pr (Q,'y)}\{P}].
(11)

THere, we use Nilr: (Rd)J — R (8).
8In a metric space (X, d), the open ball B (x, r) centered at x with radius r € Rxq is the set of
points in X whose distance to x is less than r,i.e. B(x,r) ={ye X |d (x,y) < r}.

9Here, we set m =0forx =0.

30 O. Arslan et al.

Here, rg (x) < 0 means By (x) is empty. We will abuse the notion of the consensus
ball for a single tree, o, and its cluster, I € C (o) \ {J}, as the open ball centered at
¢ (x|I) with radius

Fl.o (X): = min [—(c &I —mp., (x))T(SD’U(X))‘D c {K €C (o) ’1 CKC J}]

Isp.s %) ”2
(12)
It is also convenient to have r (x) denote the centroidal radius of x € (Rd) J,
r(x) :=max[lx; —c). (13)
iel

Looking ahead toward Lemma 1, the sufficiency condition for the existence of
nontrivial consensus balls motivates:

Definition 5 We call x € (Rd)J a symmetric configuration associated with (o, 7)
if centroids of partial configurations x|A, x| B and x|C form an equilateral triangle.
The set of all symmetric configurations with respect to (o, 7) is denoted Sym (o, 7).

Lemma 1 ([3]) For any symmetric configuration X € Sym (o, T), the consensus
ball Bg (X) of each partial configuration of cluster Q € {A, B, C} always has a
nonempty interior, i.e. rg (X) > O—see Fig. 3.

Fig. 3 (Left) An illustration of a symmetric configuration X € Sym (o, 7), where the consensus
ball By (x) of partial configuration of cluster Q € {A, B, C} has a positive radius. (Right) Outer
Napoleon triangles A4 prcr and Ayvprer of Aapc and Ay prer, respectively, and Ayvprer is
referred to as the double outer triangle of A 4pc. Note that centroids of all triangles coincides, i.e.
c(Aagc) =c(Lapc) =c(Darprcr)

Navigation of Distinct Euclidean Particles via Hierarchical Clustering 31

In general, the geometric shape of Portal (o, 7) is very hard to characterize,as
suggested by Fig.2. Fortunately, Lemma 1 lets us point out an easily identifiable
open subset:

Definition 6 The standard portal StdPortal (o, 7) of the pair (o, 7) is the set of
all configurations x € &, (o) N Sym (o, 7) with the property that x| Q is contained
in the consensus ball By (x) for all Q € {A, B, C}.

Accordingly, using Lemma I, one can conclude that:

Corollary 1 stdpPortal (o,7) # 0, and StdPortal (o,7) C Portal (o,7).

Portal Transformations

Napoleon Triangles [12] We recall a theorem of geometry describing how to create an
equilateral triangle from an arbitrary triangle: construct, either all outer or all inner,
equilateral triangles at the sides of a triangle in the plane containing the triangle, and
so centroids of the constructed equilateral triangles form another equilateral triangle
in the same plane, known as the “Napoleon triangle” [12]—see Fig. 3. We will refer
to this construction as the Napoleon transformation, and we find it convenient to
define the double outer Napoleon triangle as the equilateral triangle resulting from
two concatenated outer Napoleon transformations of a triangle. Let NT : R3¢ — R34
denote the double outer Napolean transformation, see [3] for an explicit form of NT.

The NNI-triplet {A, B, C} defines an associated triangle with distinct vertices for
each configuration, A4 p,c : & (1) — Conf(RY, [3]),

T
App.c (X) :=[c(x|A),c(x|B).c(x|C)] . (14)
The double outer Napolean tranformation of A4 p ¢ (X) returns symmetric target
locations for ¢ (x|A), ¢ (x| B) and c (x|C), and the corresponding displacement of
c (x| P), denoted Nof £ 4 p ¢ : Conf(R?, J) — R, is given by the formula'®

Noffa pc(X) :=cX|P) =TI -NToA4 pc (X)), (15)

where I' := o [|Al,IB],ICl] ® Is € R?*3, and the vertices of the associated
equilateral triangle with compensated offset of ¢ (x| P) are

T
[ca.cB.cc] :=NTolapc(x)+13QNoffy g (X). (16)
Portal Maps Define a continuous map,

,if x € StdPortal (o, 1),

Port : & (o) > Sym(o,7) : X ~ [(Mrg o Scl o Ctr) (x), otherwise,

a7

10Here, 1, is the d x d identity matrix, and 1 is the R¥ column vector of all ones. Also, ® and -
denote the Kronecker product and the standard array product, respectively.

32 O. Arslan et al.

where

X; ,ifi g P,
Xi—c (X|Q)+cq,ifieQ, Qe{A, B, C},
(13)

Ctr : 6(0) —» Sym(o,7) : X —>

and c4, cp and c¢ are the new centroids of the corresponding partial configurations
(16). It is important to observe that Ctr keeps the barycenter of x| P fixed, and so
the rest of clusters ascending and disjoint with P are kept unchanged.

After obtaining a symmetric configuration in Sym (o, 7), based on Lemmal,
Scl : Sym(o,T) — Sym(o, T) scales each partial configuration, x|A, x|B and
x|C, to fit into the corresponding consensus ball, and then Mrg : Sym (o, 7) —
Sym (o, 7) scales x| P to merge with the rest of (unchanged) particles, x|J — P, to
simultaneously support both hierarchies o and 7,

rp,o (X)

Scl (x);=¢ (X P)

(xi —c (x| Q) +¢ (x|Q), Mrg (x);=(

(xi—c (x| P))+c (x| P),
(19)

ro (x)
r(x|Q)

foralli € Q and Q € (A, B, C); otherwise (i ¢ P), Scl (x); = Mrg (X); = X,
where ¢ € (0, 1) is a parameter describing the scale of each configuration with
respect to the consensus ball.

Proposition 2 ([3]) Port : G (¢) — StdPortal (o, 7) is a retraction.

4 Numerical Simulations

For the sake of clarity, we first illustrate the behavior of the hybrid system defined in
Sect. 3.1 for the case of four particles moving in a two dimensional ambient space.

In order to visualize in this simple setting the most complicated instance of
collision-free navigation and observe maximal number of transitions between local
controllers, we pick the initial, x, € & (71), and desired configurations, x* € é& (14),
where particles are evenly placed on the horizontal axis and left-to-right ordering of
their labels are (1, 2, 3, 4) and (3%, 1%, 4*, 2*), respectively, and their corresponding
clustering trees are 71 € BT[4) and 74 € BT 4y, see Fig. 4.

The resultant trajectory of each particle following the hybrid navigation planner
in Sect.3.1, the relative distance between each pair of particles and the sequence
of trees associated with visited hierarchical strata are shown in Fig.4. Here, notice
that when the swarm enters the domain of local controller associated with 7 at
x4 € & (11) N & (12)—shown by green dots in Fig.4, it already finds itself in the
domain of the following controller associated with 73, i.e. X, € & (73), but not still
in G (14). After a finite time navigating in & (73), the swarm enters the domain
of the goal controller fr, x» (Algorithm1) at x, € & (73) N & (74)—shown by red
dots in Fig.4, and f-, x+ asymptotically steers particles to the desired configuration

Navigation of Distinct Euclidean Particles via Hierarchical Clustering 33

(a) T T T T
1 2 3 4
@,
— —_ — i | —1-2
= 1-3
1234 1234 1324 1324 4 —
g —24
(b)15 z it
! —— z
05 1Q e
g 0f-ed FEAN ol 02| = 1
=~ _05 \ 2 \ 3 .. 4 E ;
0 H
- 0 05 1 15 2 25 3 35 4
-15
3 2 41 o 1 2 3 ts]
x [m]

Fig. 4 An illustrative navigation trajectory of the hybrid dynamics generated by the HNC algo-
rithm for 4 particles. a The sequence of trees associated with deployed local controllers during the
execution of the hybrid navigation controller. Here, the hybrid planner instantaneously switches
from the second controller to the next controller. b Trajectory of each particle colored according
the active local controller, where X, € & (71) N & (12) N & (73) and X, € & (73) N & (74) shown by
green and red dots, respectively, are portal configurations. (3) Pairwise distances between particles

x* € & (). Finally, note that the total number of binary trees over four leaves is
15; however, our hybrid navigation planner reactively deploys only 4 of them.

We now consider a similar, but slightly more complicated setting: a swarm of six
particles in a plane where agents are initially placed evenly on the horizontal axes
and switch their positions at the destination as shown in Fig. 5a, which is also used
in [33] as an example of complicated multi-agent arrangements. While steering the
swarm towards the goal, the hybrid navigation planner automatically deploys only 8
local controllers out of the family of 945 local controllers. The time evolution of the
swarm is illustrated in Fig. Sa.

Finally, to demonstrate the efficiency of the deployment policy of our hybrid
planner, we separately consider swarms of 8 and 16 particles in an ambient plane,
illustrated in Fig.5. The eight particles are initially located at the corner of two
squares whose centroids coincide and the perimeter of one is twice of the perimeter
of the other. At the destination, agents switch their locations as illustrated in Fig. 5b.
For sixteen particle case, agents are initially placed at the vertices of a 4 by 4 grid,
and their task is to switch their location as illustrated in Fig.5c. Although there
are a large number of local controllers for the case of swarms of 8 and 16 particles
(|3‘I[8] | > 10° and |B‘J'[15] | > 6x 10'3), our hybrid navigation planner only deploys
16 and 34 local controllers, respectively.

The number of potentially available local controllers for a swarm of n particles
(5) grows super exponentially with n. On the other hand, if agents have perfect
sensing and actuation modelled as in the present paper, the hybrid navigation planner
automatically deploys at most % (n — 1) (n — 2) local controllers [4], illustrating the
computational efficiency of our construction.

34 O. Arslan et al.

(@
3
2 ~
1] N L
£ 0 s Iog L L W
= T R A Ns
> -1 7,
2 N A :
3 hn
6 4 -2 0 2 4 6
1 2 3 4

tls]

O b W AW DD

o

D= NWwaEL DD WD
SNaD®

3 ’- T [3
325215109
y [m]

RS
I[m] 'J,54 35

Fig. 5 Example trajectories of the hybrid vector field planner for a 6, b 8 and ¢ 16 particles in a
planar ambient space. (Top) trajectory and (bottom) state-time curve of each agent. Each colored
time interval demonstrates the execution duration of an excited local controller. Dots correspond to
the portal configurations where transitions between local controllers occur at

5 Conclusion

In this paper, we introduce an online centralized hybrid vector field planner for nav-
igation in the configuration space of n distinct points in R?, using the hierarchy
invariant controllers of [5], the combinatorial tree navigation algorithm of [4], and
its “pullback” into the configuration space, Port (17). This last step comprises the
central contribution of the paper, revealing the relation between the combinatorial
NNI neighborhood of hierarchy trees and the intersection of their associated con-
figuration space strata. The new result, the HNC Algorithm, now affords provably
correct online reactive planing and execution of arbitrary reconfiguration in the space
of multiple, distinct, completely actuated first order particles in RY.

Work now in progress targets more practical settings in the field of robotics
including navigating around obstacles and handling thickened disk agents in compact
spaces. Another focus of ongoing work addresses the realization of tree space topol-
ogy via online, “cluster-local” computation that might afford a distributed version of
the current centralized framework.

Acknowledgments This work was supported in part by AFOSR under the CHASE MURI FA9550-
10-1-0567 and in part by ONR under the HUNT MURI N00014070829.

Navigation of Distinct Euclidean Particles via Hierarchical Clustering 35

References

11.

12.

13.

14.

15.
16.
17.
18.
19.
20.
21.

22.

23.

. Adler, A., de Berg, M., Halperin, D., Solovey, K.: Efficient multi-robot motion planning for

unlabeled discs in simple polygons. In: 30th European Workshop on Computational Geometry
(EuroCG 2014) (2013)

. Arnold, V.I.: Ordinary Differential Equations. MIT Press (1973)
. Arslan, O., Guralnik, D.P., Koditschek, D.E.: Navigation of distinct Euclidean particles via

hierarchical clustering (extended version). Technical report, University of Pennsylvania (2013).
http://kodlab.seas.upenn.edu/Omur/TechReport2013

. Arslan, O., Guralnik, D., Koditschek, D.E.: Discriminative measures for comparison of phylo-

genetic trees. Technical report, University of Pennsylvania (2013). http://arxiv.org/abs/1310.
5202

. Arslan, O., Guralnik, D.P., Koditschek, D.E.: Hierarchically clustered navigation of distinct

euclidean particles. In: 50th Annual Allerton Conference on Communication, Control, and
Computing (2012). http://kodlab.seas.upenn.edu/Main/Allerton2012

. Ayanian, N., Kumar, V., Koditschek, D.: Synthesis of controllers to create, maintain, and

reconfigure robot formations with communication constraints. In: Robotics Research. Springer
Tracts in Advanced Robotics, vol. 70, pp. 625-642 (2011)

. Baryshnikov, Y., Bubenik, P., Kahle, M.: Min-type Morse theory for configuration spaces of

hard spheres. International Mathematics Research Notices (2013)

. Billera, L.J., Holmes, S.P., Vogtmann, K.: Geometry of the space of phylogenetic trees. Adv.

Appl. Math. 27(4), 733-767 (2001)

. Burridge, R.R., Rizzi, A.A., Koditschek, D.E.: Sequential composition of dynamically dexter-

ous robot behaviors. Int. J. Robot. Res. 18(6), 534-555 (1999)

. Choi, Y.C., Ahn, H.S.: Formation control of quad-rotors in three dimension based on Euclidean

distance dynamics matrix. In: 2011 11th International Conference on Control, Automation and
Systems (ICCAS), pp. 1168-1173 (2011)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.
The MIT Press (2009)

Coxeter, H.S.M., Greitzer, S.L.: Geometry Revisited, vol. 19. Mathematical Association of
America (1996)

DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On distances between phylogenetic
trees. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
427-436. Society for Industrial and Applied Mathematics (1997)

Dimarogonas, D.V., Loizou, S.G., Kyriakopoulos, K.J., Zavlanos, M.M.: A feedback stabiliza-
tion and collision avoidance scheme for multiple independent non-point agents. Automatica
42(2), 229-243 (2006)

Fadell, E.R., Husseini, S.Y.: Geometry and Topology of Configuration Spaces. Springer (2001)
Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc. (2004)

Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)

Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Inc. (1988)

Karagoz, C.S., Bozma, H.I., Koditschek, D.E.: Coordinated motion of disk-shaped independent
robots in 2d workspaces. University Michigan, Ann Arbor, Technical report. CSE-TR-486-04,
February (2004)

Koditschek, D.E.: Adaptive techniques for mechanical systems. In: Proceedings of the 5Sth,
Yale Workshop on Adaptive Systems, May 1987, pp. 259-265 (1987)

Koditschek, D.E.: Some applications of natural motion control. J. Dyn. Syst., Meas., Control
113, 552-557 (1991)

Liu, Y.H., Kuroda, S., Naniwa, T., Noborio, H., Arimoto, S.: A practical algorithm for planning
collision-free coordinated motion of multiple mobile robots. In: Proceedings of the 1989 IEEE
International Conference on Robotics and Automation, pp. 1427-1432 (1989)

Liu, Y.H., Arimoto, S., Noborio, H.: New solid model HSM and its application to interference
detection between moving objects. J. Robot. Syst. 8(1), 39-54 (1991)

http://kodlab.seas.upenn.edu/Omur/TechReport2013
http://arxiv.org/abs/1310.5202
http://arxiv.org/abs/1310.5202
http://kodlab.seas.upenn.edu/Main/Allerton2012

36

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

O. Arslan et al.

Lozano-Perez, T., Mason, M.T., Taylor, R.H.: Automatic synthesis of fine-motion strategies
for robots. Int. J. Robot. Res. 3(1), 3-24 (1984)

Mirkin, B.: Mathematical Classification and Clustering. Kluwer Academic Publishers (1996)
Moore, G., Goodman, M., Barnabas, J.: An iterative approach from the standpoint of the
additive hypothesis to the dendrogram problem posed by molecular data sets. J. Theor. Biol.
38(3), 423-457 (1973)

Oh, K.K., Ahn, H.S.: Distance-based formation control using euclidean distance dynamics
matrix: three-agent case. In: American Control Conference (ACC), July 2011, pp. 4810-4815
(2011)

Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential functions. IEEE
Trans. Robot. Autom. 8(5), 501-518 (1992)

Robinson, D.: Comparison of labeled trees with valency three. J. Comb. Theory, Ser. B 11(2),
105-119 (1971)

Savaresi, S.M., Boley, D.L.: On the performance of bisecting k-means and PDDP. In: Pro-
ceedings of the First SIAM International Conference on Data Mining (ICDM 2001), pp. 1-14
(2001)

Solovey, K., Halperin, D.: k-color multi-robot motion planning. Int. J. Robot. Res. 33(1), 82-97
(2014)

Spirakis, P., Yap, C.K.: Strong np-hardness of moving many discs. Inf. Process. Lett. 19(1),
55-59 (1984)

Tanner, H., Boddu, A.: Multiagent navigation functions revisited. IEEE Trans. Robot. 28(6),
1346-1359 (2012)

Turpin, M., Michael, N., Kumar, V.: Concurrent assignment and planning of trajectories for
large teams of interchangeable robots. In: 2013 IEEE International Conference on Robotics
and Automation (ICRA), pp. 842-848, IEEE. (2013)

Whitcomb, L.L., Koditschek, D.E., Cabrera, J.B.D.: Toward the automatic control of robot
assembly tasks via potential functions: the case of 2-d sphere assemblies. In: Proceedings.,
1992 IEEE International Conference on Robotics and Automation, pp. 2186-2191 (1992)
Whitcomb, L.L., Koditschek, D.E.: Automatic assembly planning and control via potential
functions. In: Proceedings IROS91. IEEE/RSJ International Workshop on Intelligent Robots
and Systems 91, Intelligence for Mechanical Systems, pp. 17-23 (1991)

Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Mor-
gan Kaufmann (2005)

Coalition Formation Games for Dynamic
Multirobot Tasks

Haluk Bayram and H. Isil Bozma

Abstract This paper studies the problem of forming coalitions for dynamic tasks
in multirobot systems. As robots—either individually or in groups—encounter new
tasks for which individual or group resources do not suffice, robot coalitions that are
collectively capable of meeting these requirements need to be formed. We propose
an approach where such tasks are reported to a task coordinator that is responsible for
coalition formation. The novelty of this approach is that the process of determining
these coalitions is modeled as a coalition formation game where groups of robots
are evaluated with respect to resources and cost. As such, the resulting coalitions
are ensured so that no group of robots has a viable alternative to staying within
their assigned coalition. The newly determined coalitions are then conveyed to the
robots which then form the coalitions as instructed. As new tasks are encountered,
coalitions merge and split so that the resulting coalitions are capable of doing the
newly encountered tasks. Extensive simulations demonstrate the effectiveness of the
proposed approach in a wide range of tasks.

Keywords Dynamic tasks - Multirobot systems * Cooperative robots - Game theory

1 Introduction

In this paper, we consider the problem of coalition formation for dynamic multirobot
tasks that require a multitude of different resources (sensory information [1, 2],
computation [3], power or physical labor [4]) in order to be successfully completed.
For example, a data collection task will require different types of sensors which the
encountering robot may not all have. It will need to seek assistance from the other

H. Bayram (X)) - H.I. Bozma

Electrical and Electronics Engineering Department, Intelligent Systems Laboratory,
Bogazici University, Bebek, 34342 Istanbul, Turkey

e-mail: hbayram @boun.edu.tr

H.I. Bozma
e-mail: bozma@boun.edu.tr

© Springer International Publishing Switzerland 2015 37
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_3

38 H. Bayram and H.I. Bozma

robots. While the type of tasks and hence the required resources will vary depending
on the application, in all, assembling robot teams—commonly known as coalitions—
that are capable of doing these tasks needs to be addressed effectively. This is a
challenging problem. As tasks are dynamic, they are encountered at unpredictable
places or times which implies that the robot teams cannot be assigned a priori. If the
coalitions are formed with resources far surpassing the requirements, then it may not
be possible to accomplish other encountered tasks. Furthermore, robots’ locations
will need to be considered since choosing far away robots may lead to delays in the
tasks or unnecessary energy consumption. As this is known to be strongly NP-hard,
approximate solutions with an emphasis on computational feasibility and practical
applicability need to be developed [5].

In this paper, we consider this problem. The contribution of the paper is to propose
a novel approach—motivated by work in coalition formation games (CFGs) [6]. It
is assumed that each robot can participate in one task at a time and thus can be
a member of only one coalition. The proposed approach is an hybrid approach—
namely there is both decentralized and centralized decision-making. If a coalition
has sufficient resources for a newly encountered task, it proceeds with the task. In
case of excessive resources, some members are removed from the coalition in order
to make them available for other tasks while ensuring the coalition has still sufficient
resources. In case of insufficient resources, the task is reported to a task coordinator
that is responsible for assembling the capable coalitions. These coalitions are formed
via a CFG where groups of robots are evaluated together with respect to resource
requirements and cost of forming coalitions. This information is then conveyed to the
robots which then form the coalitions as instructed. As new tasks are encountered,
coalitions merge and split so that the resulting coalitions are capable of doing these
tasks. The advantage of this approach is that—differing from previous related work—
coalitions are optimal in the sense that no group of robots has a viable alternative to
staying within their assigned coalition as the resulting coalitions are ensured to be
Dy,p-stable.

The outline of this paper is as follows: First, related work is reviewed in Sect. 2.
Next, coalitions and tasks are formulated in Sect. 3. The task coordinator is explained
in Sect. 4 followed by a discussion of coalitional stability. Extensive simulations with
50 robots provide insight on performance in a range of multirobot tasks in Sect.S5.
The paper concludes with a brief summary along with future directions.

2 Related Literature

The robotics community has addressed coalition formation in multirobot task allo-
cation (MRTA) problems. In the taxonomy' of MRTA problems [7] it is an instance
of the ST-MR-IA problems. Most approaches assume that all the tasks are known

IThis taxonomy considers three orthogonal dimensions—namely single-task (ST) versus multi-
task robots (MT) depending on whether each robot is capable of executing single or multiple
tasks at the same time; single-robot tasks (SR) versus multi-robot tasks (MR) depending on whether a

Coalition Formation Games for Dynamic Multirobot Tasks 39

initially—in contrast to dynamic tasks. Due to the NP-hard nature of the problem,
many heuristic methods have been developed [7]. The ST-MR-IA problem is gen-
erally viewed as an instance of optimal assignment of a set of tasks to the robots
while taking their individual constraints into consideration. Optimality is defined
either with respect to an overall objective or a set of objective functions that encode
demands, resources and gains if possible [8, 9]. The decision-making varies from
being centralized to being distributed [10, 11]. For example, in [12], multi-agent task
allocation algorithm [13] is modified in order to accommodate the fact that resources
of a coalition are not collectively available to member robots and cannot be redistrib-
uted among them. An anytime algorithm is shown to have bounded solution with a
minimal search [14]. Improved solutions provide solutions in polynomial time in case
of robots of each type being indistinguishable with a fixed coalition population using
dynamic programming [15]. The problem is generalized by allowing coalitions to be
bounded by a fixed number via modifying the greedy iterative algorithm based on the
set partitioning problem. Two natural greedy heuristics are extended via a new greedy
heuristic that considers the expected loss of utility due to the assigned robots and
task as an offset and uses the offset utility for task assignment [16]. A greedy optimal
solution is proposed via a leader follower coalition method where coalition utility
is maximized for every assigned task [2]. In general, the efficiency of the resulting
solutions is easier to ensure and communication requirements are linear with respect
to the number of robots with no negotiation required. However, the computational
requirements become unpractical as the number of tasks and robots increases. Dis-
tributed approaches solve the constrained optimization problem in a decentralized
manner [17]. For example, in a class of problems known as distributed constraint
optimization problems, each robot or group controls one set of variables and together
they have the joint goal of maximizing a global objective function [9, 18]. One of the
most popular approaches that falls in this category is the market based strategy where
auctions can be conducted in a distributed manner such as regional opportunistic cen-
tralization [19-21]. The auction process may be split into task and robot auctions
as is done in the Double Round Auction approach [22]. However, the locality of
decisions may block idle, but remote robots coming to assistance. As such, while
distributed approaches are advantageous with respect to scalability, the efficiency
of the resulting solutions are harder to ensure while communication requirements
increase quadratically with the number of robots and special negotiation schemes are
required so as to decide when to terminate decision-making [23]. In practice, systems
may not conform to a strict centralized/decentralized dichotomy and may contain
both elements [24]. For example, centralized market based task allocation combines
the efficiency of a centralization (the auctioneer decides with overview of the situa-
tion) with the advantages of distributed approaches (much of the calculation is done
by the individual robots preparing their bids) [25] where a centralized auctioner is
responsible for the optimization of a global objective using either combinatorial [26]

(Footnote 1 continued)

task can be completed by a single robot or several robots (a coalition) and instantaneous assignment
(IA) versus time-extended assignment (TE) depending of whether only current tasks or future tasks
are considered.

40 H. Bayram and H.I. Bozma

or greedy [27] approaches. However, scalability issues (such as when to stop the
auction) arise as the number of robots increases [28, 29].

Coalition formation has also been addressed in multiagent systems where the goal
is to find a coalition structure that maximizes the sum of the values of the coalitions.
It is an instance of a set partition problem which is known to be a NP-Complete [30].
As the exorbitant number of coalition structures does not allow exhaustive search for
the optimal one, the focus has been on finding a coalition structure via a partial search
with guaranteed proximity to the optimum. It is shown that the number of coalition
structures that need to be searched for establishing a bound is required to be greater
than a calculated threshold [31] along with an algorithm that establishes a tight bound
within this minimal amount of search. In [13], a greedy heuristic is used to yield a
coalition structure that is provably within a bound—Iimiting the coalition sizes. This
approach is general as it can be applied in environments that are not necessarily
superadditive.? Such problems have also been considered within game theory [32,
33] so that the grand coalition is no longer optimal [34]. Since the addition of more
robots to a coalition increases interference between the robots and computational
cost, the multirobot systems fall into the non-superadditive category [35]. In CFGs,
the focus is obtaining stable partitions of the players which implies that players have
no incentive to change their coalitions. As such, stability is related to the type of
membership changes allowed. In hedonistic games where only one individual player
is allowed to change its coalition at a time, stability definitions vary from contractual
individual stability to individual stability to Nash stability [36]. In more general
settings, groups of players are allowed to change their coalitions simultaneously.
In this case, stability is related to the set of split and merge rules [6]. In all, a
comparison operator that orders the sets of coalitions is defined. This comparison
operator is either based on the coalition value that quantifies the worth of a coalition
or the individual players’ payoff [37]. The proposed approach is motivated by these
ideas where the process of finding optimal robot coalitions is modeled as a coalition
formation game—considering task related preferences such as resource satisfaction,
resource excessiveness and site proximity.

3 Multirobot Coalitions and Tasks

A multirobot system consists of asetof P = {1, ..., p} robots. We assume that each
robot i € P is uniquely identifiable. It is associated with a time-varying position
vector b; € R2. The robots are assumed to be heterogeneous, which implies that
they vary in their resources. Assuming there are N, different types of resources,
each robot i is also associated with a resource vector r; = [r;(1),...,r; (N,)]T with
ri(j) >0,j=1,..., N, where r;(j) € R=0 denotes the amount of jth resource
that robot i has. If robot i does not have any of resource j, then r;(j) = 0.

2Superadditivity implies that any two disjoint coalitions, when acting together, can get at least as
much as they can when acting separately.

Coalition Formation Games for Dynamic Multirobot Tasks 41

3.1 Coalitions and Resources

A coalition C, is anon-empty subset of P. A coalition with just one robot is referred to
as singleton coalition while the set P is known as the grand coalition. Each coalition
C. is associated with a set of resources with possible types of the resources known.
The resource vector is denoted R, = [R.(1), ..., Rc(Nr)]T with R.(j) > 0, j =
1, ..., N,.Itis assumed that resources are additive—namely R.(j) = ZkECC re(j).
Furthermore, each coalition has a leader (head). The leader coordinates the coalition.
The leader may change over time as the coalitions evolve. The rules for selecting
leader are as follows: First, the leader does not change unless it leaves the coalition.
Secondly, if the leader leaves the coalition or the coalition does not have a leader,
the robot with the smallest robot ID value becomes the coalition leader.

3.2 Tasks and Resources

As a robot or a coalition of robots is moving around the workspace, it will come
across a number of tasks. As these tasks are dynamic, there is no a priori information
regarding their spatial locations or when they are likely to encounter one. Once a task
T is encountered, the coalition leader records these tasks including the following:

e Required resources: 7 = [7'1, e, TNr] where ; € RZ0, i = 1,...,N, . Ifa
resource / is not required for the task 7', then 7 = 0.

Location of the task: b € R

Time of encounter: ¢, € RZY.

Time-out duration: Az, € R>Y. This indicates the maximum allowed waiting
period for getting the sufficient resources and starting with the task.

Time when the task starts being handled: #, € R>°.

Task duration: Azg € R>0.

Status of the task: s € {—1,07,0%, 17, 17, 1}

07 if task is waiting in the coalition

0T if task is waiting in the coordinator

1" if task is being handled

17 if a coalition is assigned, but task has not started yet
1 if task was completed

—1 if task could not be completed

When atask is initiated, s = 0~ —which indicates the task has been just encountered.
When resources are found to be insufficient, s = 01. The case s = 1~ indicates that
a coalition has been assigned, but all the coalition members have not reached to the
task site.

42 H. Bayram and H.I. Bozma

3.3 Coalition Value Function

The coalition value function v relates a given coalition C, with a given task 7 via
encoding resource sufficiency, resource excessiveness and members’ proximity to
task site. It is defined as:

1
N BRI v

where the term 5(C,, T') is comprised of three terms:

Ny o RN\ 3,
B(Ce, T):wl_z;fy<n—Rc(j)>+wz_Z;(1— s) +w3§ 200
Jj= J= 1ot

The first term measures whether the coalition has sufficient resources to complete the

0x<=0

task as y(x) = [2 . The second term indicates preferences for robots that

x“x>0
utilize their resources to a greater extent. The third term considers the proximities of
coalition members to the task site—as nearby free robots will be preferred where 9; 7
is the distance between robot i and the location of task 7' and the parameter py is a
normalizing factor for distance—usually taken to be the radius of the workspace. The
parameters w1, wy and w3 are relative weighting parameters of resource satisfaction,
resource excessiveness and site proximity, respectively with values set according to
particular preferences.

3.4 Handling Tasks

Each coalition has a task automaton for handling tasks that is coordinated by the
coalition leader. The task automaton is designed to have four states: ‘idle’, ‘han-
dling’, ‘succoring’ and ‘waiting’. These states are selected to reflect logical modes
of operation. Normally, the coalition is in idle state which indicates that the coalition
is not associated with or engaged in a task and thus is ready for new tasks. The
coalition goes into the handling state when it becomes engaged in a task and has the
sufficient resources for this task. The coalition goes into the waiting state if it has
encountered a task, but does not have the sufficient resources. Finally, the succoring
state indicates that a coalition has been assigned a task and is moving to the task site.
Given a certain state, the state transitions occur considering sufficiency of resources,
task site and time-out. The corresponding automaton is as shown in Fig. 1 with five
rules as follows:

Rule I: 1f the coalition is idle, has enough resources for this task—namely V7;, j =
l,..., Ny R:(j) > 7; and is at the task site, it goes into the handling state.

Coalition Formation Games for Dynamic Multirobot Tasks 43

Fig. 1 Task automaton of a no task

coalition &
no merge-request

handling
completed
apply splitting

robots outside task site

Rule 2: In the handling state, first, if the coalition has surplus of resources—namely
3j such that R.(j) — 7; > 0, then it splits as much as possible in order to maximize
coalition value v(C,, T). If the leader is taken out, the coalition then chooses the next
leader. The result is reported to the task coordinator—where the robots that leave the
coalition go into the idle state. When the task is completed, it reports task completion
to the task coordinator and goes back to the idle state.

Rule 3: If the coalition is idle, but does not have enough resources, then it reports
the task to the task coordinator and goes into the waiting state where it remains until
it hears back or time-out occurs. In case it is given sufficient resources (additional
members), then it goes either into the succoring state or the handling state depending
on whether all the members at the task site or not.

Rule 4: If the coalition is idle and is assigned a task, but is not at the task site, it then
goes into the succoring state where it starts moving to the task site. Upon all reaching
the task site, the state changes to handling.

Rule 5: If the coalition is not idle when it encounters a task, the coalition leader
informs the coordinator of this task.

4 Task Coordinator

The task coordinator’ is responsible for forming the robot coalitions capable of
performing encountered tasks. The coordinator maintains a list of reported tasks
which are waiting (either in the coalition or in the coordinator). Let this list be

3This may be one of the robots with the additional task of being a coordinator. As its processing is
relatively simple, in case of failure, another robot may easily assume this role.

44 H. Bayram and H.I. Bozma

denoted by 7 = [Tl, e, T”T] where nr is their total number. This list expands as
new tasks are reported and shrinks as tasks get assigned or timed-out.

The set of coalitions is defined by a time-varying set C(¢) = C*(t) UC'(t) where
C™(¢) denotes the coalitions (consisting of either a single robot or multiple robots)
that are currently engaged in a task while C’(¢) denotes the coalitions that are idle
or waiting comprised of member robots P’ C P. Periodically, the task coordinator
considers the current list of pending tasks 7, updates the set of coalitions C’(¢) in
order to assign coalitions to these tasks and informs the robots accordingly. Any
family of C' = {C Ly eees Cnc} of mutually disjoint coalitions is referred to as a
collection in P’. If UZ’;CC = P’ where nc is the number of coalitions, then C’ is
called a partition on P’ [6]. As such, in each update, the task coordinator needs to
find a partition C’ of P’ and the assignment of tasks to member coalitions so that
the pending tasks can be completed in a maximal manner. Note that depending on
the tasks encountered and robots’ resources, the newly formed partition C’ may vary
from being identical to being very different as compared to C’(r). Of course, it may
not be possible to find a coalition for each task or any of the pending tasks given
the currently available robots. The simplest approach to this problem is exhaustive
search of all the possible partitions. However, this number (the Bell number) is
exorbitant—even with a modest robot population size [31].

4.1 Coalition Formation Game (CFG)

In the proposed approach, the process of finding such a partition is modeled as a CFG.
The coordinator periodically starts a CFG—considering all the pending tasks 7. A
CFG starts with the current coalition structure as defined by the partition C’(¢) on
P’. There are two aspects in defining each game. First, two partitions are compared
using a predefined > comparison relation.

Definition 1 A comparison relation > is defined for comparing two collections A
and B that are partitions of the same set P’. If A B, then the partition A is preferred
to partition B.

Note that each comparison relation is used only to compare partitions of the same set
of players. Partitions of different sets of players are incomparable. As such, different
coalitions are allowed to interact—taking the decision to merge or split based on the
comparison relation . Various criteria can be used as comparison relation between
partitions [6]. An adequate individual value order that can be used is the Pareto order.
The Pareto order is defined as:

A>B & (A, T) > (B, T)VieP

Coalition Formation Games for Dynamic Multirobot Tasks 45

with at least one strict inequality (>) for one robot k € P’ and where the robot payoff
i (C, T) describes the overall utility a robot i € P’ receives for being in coalition
C. € C(¢) thatis associated with task 7". The robot payoff function is defined by the
coalition value function as:

@i(C,T) = pi(Ce, T) =v(Ce, T) @)

Secondly, the game evolution is based on two operations—called ‘merge’ and
‘split’—that allow to modify a partition C as follows [38]:

e Merge: Ifulecj >{Cq, ..., Ct}, then merge {Cy, ..., Cr} as Uﬁlej—namely
{C,....cuCc—U_ciuc.

e Split: If {Cy, ..., C¢} is a collection such that {Cy, ..., C¢} > u’;zlcj, then split
U';-:le as {Cy, ..., Cx}—namely u’;zlcj Uuc - {Cy,...,Ckr}ucC

The coordinator uses merge and split operations on the existing coalitions. With the
Pareto order, the task coordinator decides to merge or split coalitions only if at least
one coalition is able to strictly improve its individual value through this process
without decreasing the other coalitions’ value. Therefore, the merge operation by
Pareto order is a binding agreement among the robots to operate together if it is
beneficial for the tasks.

The task coordinator algorithm is as given in Algorithm 1. The main loop of
the algorithm consists of two consecutive loops for merge and split operations in
which only the coalitions in idle or waiting state are considered. The merge phase is
described in lines 2—12 of Algorithm 1. Here, the coordinator checks if a task T is
associated with a coalition or not by checking task status s. If s = 0, the coalition
that reported it has insufficient resources. The coordinator starts merge operations—
using this coalition. If there is no coalition associated with this task sk = 0h),
it determines the coalition C.. with the highest coalition value v(C., T¥)—namely
C. = argmaxc.ec V(Ce, TX). Then, it starts a merging phase so as to increase the
coalition value based on the Pareto order. The merge loop continues as long as there
is a change in the partition C’. After passing the merge loop, in the split loop (lines
13-20 of Algorithm 1), the assigned coalitions with excessive resource for their tasks
are split. In the split operation, one of the robots in the coalition is selected based
on the Pareto order such that the coalition without this selected robot has higher
coalition value. This loop continues as long as there is a change in the partition C’.
Merge-split operations are iteratively applied until all the coalitions associated with
all the tasks stabilize. Note that as a result, some tasks may be associated with empty
set—which implies that the coordinator cannot find a coalition capable of performing
that particular task.

46 H. Bayram and H.I. Bozma

Algorithm 1 Task coordinator automaton.

while change in partition C’, repeat do

l:

2 while change in partition C’, merge do

3 forall T8 € T | sk =0~ or s* = 0% do

4: if s = 0% then

5: Assign C. with the highest v(C,, T*)
6: end if

7 Find a coalition C; such that C. U Cy > C
8: if C4 ¢ ¢ then

9: C'=(C"-C))=Cyq,Cc=C.UCy, C'"=C"UC,
10: end if

11: end for

12: end while
13: while change in partition C’, split do

14: forall 7k € 7 | s* =0~ or s = 0% do
15: if a coalition C, is assigned to T* then
16: Findi € C, such that C, — {i} > C.
17: C.=C.,—{i},C'=C"U{i}

18: end if

19: end for

20: end while
21: end while

4.2 Convergence and Stability

There are two issues regarding the behavior of each CFG—namely whether the game
terminates and in case of convergence, the properties of the resulting partition. The
convergence of the CFG is ensured by the following theorem [6].

Theorem 1 Suppose that > is a comparison relation. Every iteration of the merge
and split operations terminates.

As each merge-split operation increases the values of the coalitions with an assigned
task, the process terminates.

The resulting partition C' = {C Ly eens C,,C} is evaluated with respect to the
stability of the coalition structure. Stability captures the idea that no robot or group
of robots (as defined) has an incentive to change the existing coalition structure [38].
Thus, it depends on the type of coalition membership changes allowed. Allowable
membership changes are defined by a defection function D that associates with
each partition C’ of P’ a group of collections in P’ such that robots can leave the
partition C’ by forming new and separate group of robots Ul.:1 P, divided according

toone P = {Py, ..., P;} of these collections. As such, different stability notions are
obtained by considering different defection functions.
A partition C' = {Cy, ..., C;} of P’ is D-stable if no group of robots is interested

in leaving C” when the robots who leave can only form the collections allowed by
D(C’) [6]. Mathematically, it is defined using the partition comparison relation & as:

Coalition Formation Games for Dynamic Multirobot Tasks 47

Definition 2 D-stability: A partition C’ is called D-stable if V P € D(C’) such that
P[C’] # P, P[C'] > P where P[C’] denotes the collection P in the frame of C’
defined as P[C'] = {C1 NUP,....Che NUY P} \ {#}.

The most general case is with a defection function D, that maps each partition C’
to the family D, (C’) of all collections in P’. As such, any group of robots can leave
C’ and create an arbitrary collection in P’. However, D,-stability is hard to attain as
it requires the value functions to be superadditive—a condition that will not hold in
many applications. An alternative definition is based on C’-homogeneity. A partition
0 ={01,..., 01} is C’-homogeneous if for each j € {1,...,1}, there exists i €
{1,...,nc} such that either Q; € C; or C; € Q; . Any C’-homogeneous partition
arises from C’ by allowing each coalition either to split into smaller coalitions or
to merge with other coalitions. With this definition, the defection function Dy, is
defined such that for each partition C’, Dy, (C’) is the family of all C’-homogeneous
partitions in P’. Theorem 2 as presented in [38] admits the following characterization
of Dyp-stability:

Theorem 2 ([38]) A partition C' = {Cl, R C,,C} of P" is Dy-stable if and only
if the following two conditions are satisfied:

1. No coalition has an incentive to split—namely Vi € {1, ..., nc} and for each
partition {Py, ..., P} of coalition C;, C' > C where C = (C' — C;) U {Pj}lj:1
2. No set of coalitions has an incentive to merge—namely¥L C {1, ..., nc} C'>C

where C = (C' — {Ci}ier) U{UjeL Ci).

This result implies that robots are allowed to leave the partition C’ only by means of
merges or splittings—albeit with multiple applications. With the value functions as
defined by Eqgs.2 and 1, the two conditions can equivalently be expressed as:

1. Vi € {l,...,k} and for each partition {Py, ..., P;} of coalition C;,v(C;) >
i v(P)
2. VL C{l,....nc} 2 ;e v(Ci) = v(U;ep Ci).

An immediate consequence of Theorem 2 is that a partition C” is Dj,,-stable if and
only if it is the outcome of the merge and split rules. As such, C” will be Dj,-stable.

5 Simulations

Extensive simulations have been conducted with p = 50 robots placed in a workspace
of radius 100m. The robots or coalitions—if formed—are assumed to be in a
patrolling mission in this workspace. The robots are cylinder shaped with radii 15 cm
and can move with maximum speed of 0.3 m/s. The simulation settings are as given in
Table 1. There are N, = 5 different resources. We assume that each robot is one of 10
types with either all low resources r; (j) € [1, 5] or all high 7; (j) € [6, 10]. The task
locations are generated dynamically via a Poisson process with parameter A tasks per

48 H. Bayram and H.I. Bozma

Table 1 Simulation settings

Parameter Value

Mission duration 60 min

Number of robot types 10

Number of resource types N, 5

Number of task types 10

Time-out duration Az, {1, 2} minutes

Task rate A {5, 10, 20} tasks per hour

Task resource 7; levels Low - [20, 25] and High - [45, 50] units
Robot resource r; (j) levels Low - [1, 5] and High - [6, 10] units
Task duration Azy {2, 4} minutes

Table 2 Sample mission scenario: Robots have low level of resources while tasks also require low
level resources

(a) Robots’ resources

Robot Resources
Type r(l) r(2) r(3) r4) r(5)
1 1 1 3 5 3
2 4 5 4 4 2
3 3 3 2 3 3
4 5 4 3 2 5
5 2 4 4 1 1
6 2 3 4 4 4
7 4 1 4 3 5
8 3 4 3 2 4
9 5 1 1 3 1
10 3 4 2 1 4
(b)Tasks’ resources
Task Resources
Type 71) 73 T4 Ts
1 20 21 21 21 25
2 20 24 21 22 23
3 22 20 21 21 21
4 25 21 20 21 25
5 24 23 24 23 20
6 24 23 24 25 25
7 24 23 20 23 23
8 23 25 23 20 24
9 22 25 20 23 21
10 24 22 21 25 23

49

Coalition Formation Games for Dynamic Multirobot Tasks

USTH H ‘M0 77 ‘TOA9] 90In0SAI 10Oy Y TOAJ] 2IN0SAI B, Y.L

6'8ST L0TT 7611 TEIT 0OTIT Ges L'18 6'0L 0'St 10t I'T¥ 005 YW
€6 ¥'6 06 ¥'6 L6 701 L6 L6 €01 011 40! 011 n
L6 81 L€l 49 9 L1 1'6 Le 61 S0 6¢ 6C W
L'16 Trrl 096 (49 618 L6TI 168 8¢l 869 $901 8L 8501 W H-H
6'ST¢ SLOE 9°00¢ 9°€LT €LLT v'¥LT 9'81¢ €T 0°0£¢ L0ET €181 88LI W
L ¢9 08 S9 €8 T8 €8 06 96 €01 8! 911 W
$'89 £0S 9'8L €79 L9S (R4 S¥9 0'8S ars 8¢ 9'6S LSy w
0'68 0'¢6 8Tl TLIT €9 €L 9°GL L06 v'Ly S9¢6 6'8S 7’89 W TH
0°SLT 1’161 Tl T9LL 8191 €991 $'86 €SIl 0011 I'LIT SSL $'S01 YW
L'ST 961 091 €91 891 1’81 L91 L'LT L6l (44 761 9'€C n
8L 19 LOT 66 06 6 I'L LS 79 (47 9'¢ 79 W
(Y1 8CST 8'GLI ¥'89C Levl ¥'€0T €yl 0'50¢T 0011 S6€El €011 SIvl W H-1
¥'TLT 6'LLT 65T 1'0€C 81T ¥'LTT L061 9991 ¥'IST 0°0%1 8THI 8¢0T YW
8 08 €8 T8 7’8 €6 ¥'6 4 701 L0T S'6 S01 n
9'€e 96T 8Ly ¥'0€ ¢'seT ' 8'8€ T LSl €l 1'¢¢ 'yl W
L8 €201 6'S0T 9'9C1 9'69 L'68 6'¢€8 ¥'50T1 S'LS 9°GL S'L9 €8 W T1
4 [4 ¥ C 1 [4 14 T ¥ C 1% 4 ivd TI-IL
4 I 4 I 4 I a
(114 01 S X

S)[nsaI uone[NuIS ¢ e

50 H. Bayram and H.I. Bozma

hour. The average number of tasks increases with increased A value—thus making
the overall mission more challenging. There are 10 different type of tasks—where
all 7; are either in the low [20, 25] range or high [45, 50]. A sample mission scenario
where robots have low resources while tasks encountered also require low resources
is shown in Table 2a, b. As such, the coalition populations capable of accomplishing
the encountered tasks are expected to vary between 2 and 20 robots. The parameters
of the coalition value function are set as w; = 1/3, wp = 1/3, and w3 = 1/3 in
order to give equal importance to resource satisfaction, resource excessiveness and
site proximity. The coordinator starts a CFG every 10s. It is assumed that the CFG
durations are negligible compared to this.

The missions are repeated 20 times—all starting at random initial locations
for each A\ € {5, 10, 20}, time-out duration At, € {1, 2} and handling duration
Aty € {2, 4} minutes. Hence, there are all together 240 missions that are conducted.
Note that time-out periods with 1 or 2min imply relatively fast response times for
successful task completion. Statistical results are as shown in Table 3. The results of
a mission are analyzed with respect to four performance measures:

M1—The number of completed tasks.

M,—The percentage of timed-out tasks:

M3z—Average number of coalitions.

M4—The number of times the coordinator makes coalition assignments.

First, it is observed that the number of completed tasks M varies roughly between
47 and 268 depending on At,, Atz, A and the level of resources as the percentage of
timed-out tasks M» varies between 0.5 to 78.6 %. With high Af,, low Af; and low
A values, the coalitions are able to complete many tasks they encounter. In contrast,
with low Az, high Az; and high A values, the tasks are likely to time out. Hence, with
the increase in time-out durations, the number of handled tasks increases. Average
number of coalitions decreases with the increase in A. This is because with the low A
values, there are less encountered tasks, so the need for coalition merging is lower. It
is interesting to observe that while the maximum of My is 360 with the coordinator
checking for waiting coalitions every 10s, in practice, M4 turns out to be much
lower. With lower A, the coalitions are able to handle their tasks without informing
the coordinator. The computational complexity of the coordinator’s decision making
is studied by computing the average iteration numbers of the CFGs in Table4. It is

Table 4 Average number of iterations (sum of merge and split iterations)

A 5 10 20
At,
Aty
TR-RR L-L
L-H
H-L 4
H-H 9 8 11 9 5
TR Task resource level, RR Robot resource level, L Low, H High

N N N

NI s
[USTHEEN [N SN AN
IRV N
wlo| & &

A~ || =
N R NN
wnl Wl s &~
[« SRV RV N B SR
AWl A~
QN W || NN
AW AW

51

Coalition Formation Games for Dynamic Multirobot Tasks

USTH H ‘40T 7 ‘TOA] 20IN0SAI 100y Y TOAS 90IN0SAI SB], Y.L

oL 6'6 9¢ el geee S8 6°LS €16 8Trl L'LT 06 6ClC €681 §6| 6T I'TTL T
(x4 6'6 96| 9¢¢El 0°6¢€C 98| v'SS €16| L'L8I 6'L1 12! 8'6IC| L9IT 6'8 9ve LT ¢Mm
€'L9 96 e I'Iet 6'CST L6 Y €66 899 0Ll 70 €yoc| 80vl 96| 9vl L001 M
09 L6 6T gocl LT 6 ¢8¢| Tl6| Tl 6°L1 'L §'80C| 8'L91 96| 07T¢C 6201 M
W W w w W 244 w W W W w W W W w w
H-H TH H-1 11| dd-dL

s1ojowered Sunys3om Jo s1091q S d[qBL

52 H. Bayram and H.I. Bozma

observed that the games converge after a small number of iterations, which implies
that game durations are negligible—as assumed.

We also investigate the effects of the weighting parameters. We consider four
alternative sets w!, w?,w3 and w* with parameter values set according to relative
preference of resource satisfaction, resource excessiveness and site proximity. The
set w! weighs each equally with w; = wy = w3 = 1/3. In the set w?, resource
satisfaction is relatively more important with wq = 2/3, w, = w3 = 1/3. Resource
excessiveness has a higher weight in the set w? with wy = 2/3 and w = w3 = 1/3.
Finally, in the set w?, site proximity has more priority with w3 = 2/3 and w; =
wy = 1/3. In these simulations, A, At,, and Az, are set to A = 10, At, = 1 min
and Ar; = 2min respectively. Statistical results are as shown in Table 5. The equal
weighting of the parameters gives the lowest value of time-out percentage M> when
both the levels of the task resource and robot resources are high. When resource
satisfaction is of higher priority, the time-out percentages decrease considerably
when the level of the task resource is low. If resource excessiveness is of higher
consideration, the time-out percentage is the lowest when the level of the task resource
is low and the level of the robot resources is high. In summary, task performance
measures can be programmed according to the relative weighting preferences of
these three considerations.

6 Conclusion

This paper considers dynamic multirobot tasks requiring a set of resources. As the
formation of robot teams endowed with sufficient resources is essential, the focus is
on effective coalition formation. In the proposed approach, a task coordinator deter-
mines the coalitions capable of accomplishing the reported and pending tasks. The
novelty of this approach is that the process of finding optimal coalitions is mod-
eled as a coalition formation game where groups of robots are evaluated together in
regards to each task’s required resources and cost of forming a coalition. The evalu-
ation considers resource satisfaction, resource excessiveness and site proximity with
weighting parameters that encode relative preferences. As new tasks are encoun-
tered, coalitions merge and split so that the resulting coalitions are capable of doing
these tasks. As such, the resulting coalitions are Dp,,-stable, which implies that no
group of robots has a viable alternative to staying within their assigned coalition.
Since the number of iterations for finding a suitable partition is considerably low, the
proposed approach can be applied on the real-time robotic applications. Currently,
we are working on implementing this approach on a heterogeneous team of mobile
robots for multirobot information gathering in patrolling missions.

Acknowledgments This work has been supported by TUBITAK Project 111E285 and Bogazici
University BAP Project 7222.

Coalition Formation Games for Dynamic Multirobot Tasks 53

References

10.

11.

12.

13.

17.

18.

19.

20.

21.

22.

. Tang, F., Parker, L.: ASyMTRe: automated synthesis of multi-robot task solutions through

software reconfiguration. In: IEEE International Conference on Robotics and Automation,
April 2005, pp. 1501-1508

. Chen, J., Sun, D.: Resource constrained multirobot task allocation based on leader-follower

coalition methodology. Int. J. Robot. Res. 30(12), 14231434 (2011)

. Hoeing, M., Dasgupta, P., Petrov, P., O’Hara, S.: Auction-based multi-robot task allocation in

comstar. In: International Joint Conference on Autonomous Agents and Multiagent Systems,
pp. 280:1-280:8 (2007)

. Bererton, C., Khosla, P.: An analysis of cooperative repair capabilities in a team of robots. In:

IEEE International Conference on Robotics and Automation, vol. 1, pp. 476-482 (2002)

. Korsah, G.A., Stentz, A., Dias, M.B.: A comprehensive taxonomy for multi-robot task alloca-

tion. Int. J. Robot. Res. 32(12), 1495-1512 (2013)

. Apt, K.R., Witzel, A.: A generic approach to coalition formation. Int. Game Theory Rev. 11(03),

347-367 (2009)

. Gerkey, B.P., Mataric, M.J.: A formal analysis and taxonomy of task allocation in multi-robot

systems. Int. J. Robot. Res. 23(9), 939-954 (2004)

. Lau, H.C.,Zhang, L.: Task allocation via multi-agent coalition formation: taxonomy, algorithms

and complexity. In: 15th IEEE International Conference on Tools with Artificial Intelligence,
pp. 346-350 (2003)

. Chapman, A.C., Rogers, A., Jennings, N.R., Leslie, D.S.: A unifying framework for iterative

approximate best-response algorithms for distributed constraint optimization problems. Knowl.
Eng. Rev. 26, 411-444 (2011)

Zhang, K., Collins Jr, E.G., Shi, D.: Centralized and distributed task allocation in multi-robot
teams via a stochastic clustering auction. ACM Trans. Auton. Adapt. Syst. 7(2), 21:1-21:22
(2012)

Parker, L.E.: Decision making as optimization in multi-robot teams. In: Ramanujam, R.,
Ramaswamy, S. (eds.) Proceedings of 8th International Conference on Distributed Computing
and Internet Technology. Springer Lecture Notes in Computer Science, vol. 7154, pp. 35-49
(2012)

Vig, L., Adams, J.A.: Multi-robot coalition formation. IEEE Trans. Robot. 22(4), 637-649
(2006)

Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell.
101, 165-200 (1998)

. Dang, V.D., Jennings, N.R.: Coalition structure generation in task-based settings. In: 17th

European Conference on Artificial Intelligence, pp. 210-214 (2006)

. Service, T., Adams, J.: Coalition formation for task allocation: theory and algorithms. Auton.

Agents Multi-Agent Syst. 22(2), 225-248 (2011)

. Zhang, Y., Parker, L.: Considering inter-task resource constraints in task allocation. Auton.

Agents Multi-Agent Syst. 26(3), 389-419 (2013)

Cao, Y., Fukunaga, A.S., Kahng, A.: Cooperative mobile robotics: antecedents and directions.
Auton. Robot. 4(1), 7-27 (1997)

Yokoo, M., Durfee, E., Ishida, T., Kuwabara, K.: The distributed constraint satisfaction problem:
formalization and algorithms. IEEE Trans. Knowl. Data Eng. 10(5), 673-685 (1998)

Gerkey, B., Mataric, M.: Sold!: auction methods for multirobot coordination. IEEE Trans.
Robot. Autom. 18(5), 758-768 (2002)

Bernardine Dias, M., Stentz, A.: Opportunistic optimization for market-based multirobot con-
trol. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp.
2714-2720 (2002)

Brunet, L., Choi, H.L., How, J.P.: Consensus-based auction approaches for decentralized task
assignment. In: AIAA Guidance, Navigation and Control Conference (2008)

Guerrero, J., Oliver, G.: Multi-robot coalition formation in real-time scenarios. Robot. Auton.
Syst. 60(10), 1295-1307 (2012)

54

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

H. Bayram and H.I. Bozma

Bayram, H., Bozma, H.1.: Decentralized network topologies in multirobot systems. Adv. Robot.
28(14), 967-982 (2014)

Wagner, T., Phelps, J., Guralnik, V.: Centralized vs. decentralized coordination: two application
case studies. In: Wagner, T.A. (ed.) An Application Science for Multi-Agent Systems, vol. 10,
pp. 41-75. Springer, New York (2004)

Parker, L.: Alliance: an architecture for fault tolerant multirobot cooperation. IEEE Trans.
Robot. Autom. 14(2), 220-240 (1998)

Vries, de, Vohra, R.V.: Combinatorial auctions: a survey. INFORMS J. Comput. 15(3), 284-309
(2003)

Koenig, S., Tovey, C., Lagoudakis, M., Markakis, V., Kempe, D., Keskinocak, P., Kleywegt, A.,
Meyerson, A., Jain, S.: The power of sequential single-item auctions for agent coordination.
In: National Conference on Artificial Intelligence, vol. 2, pp. 1625-1629. AIAA (2006)
Ducatelle, F., Forster, A., DiCaro, G.A., Gambardella, L.M.: Task allocation in robotic swarms:
new methods and comparisons. Technical Report IDSIA-01-09, Dalle Molle Institute for Arti-
ficial Intelligence, Lugano, Switzerland (2009)

Lerman, K., Jones, C., Galstyan, A., Mataric, M.J.: Analysis of dynamic task allocation in
multi-robot systems. Int. J. Robot. Res. 25(3), 225-241 (2006)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, New York (1979)

Sandholm, T., Larson, K., Andersson, M., Shehory, O., Tohm, F.: Coalition structure generation
with worst case guarantees. Artif. Intell. 111(12), 209-238 (1999)

Hajdukova, J.: Coalition formation games: a survey. Int. Game Theory Rev. 08(04), 613-641
(2006)

Saad, W., Han, Z., Debbah, M., Hjorungnes, A., Basar, T.: Coalitional game theory for com-
munication networks. IEEE Signal Proc. Mag. 26(5), 77-97 (2009)

Aumann, R., Dreze, J.: Cooperative games with coalition structures. Int. J. Game Theory 3(4),
217-237 (1974)

Vig, L.: Multi-robot coalition formation. Ph.D. thesis, Vanderbilt University (2006)
Bogomolnaia, A., Jackson, M.O.: The stability of hedonic coalition structures. Games Econ.
Behav. 38(2), 201-230 (2002)

Saad, W., Han, Z., Debbah, M., Hjrungnes, A.: Coalitional games for distributed collaborative
spectrum sensing in cognitive radio networks. In: IEEE INFOCOM, Rio de Janeiro (2009)
Apt, K.R., Radzik, T.: Stable partitions in coalitional games, pp. 1-8. Arxiv Preprint
arxiv:cs/0605132 (2006)

http://arxiv.org/abs/cs/0605132

Active Control Strategies for Discovering
and Localizing Devices with Range-Only
Sensors

Benjamin Charrow, Nathan Michael and Vijay Kumar

Abstract This paper addresses the problem of actively controlling robotic teams
with range-only sensors to (a) discover and (b) localize an unknown number of
devices. We develop separate information based objectives to achieve both goals, and
examine ways of combining them into a unified approach. Despite the computational
complexity of calculating these policies for multiple robots over long time horizons,
a series of approximations enable all calculations to be performed in polynomial
time. We demonstrate the tangible benefits of our approaches through a series of
simulations in complex indoor environments.

1 Introduction

In the near future, automated buildings will use a large numbers of devices for
a variety of services including power and water monitoring, building security, and
indoor localization for smart phones [1]. Effectively using and maintaining this many
devices will require knowing where each of them is located. A cost-effective way of
getting this information would be to equip each device with RF or audio based range-
only sensors [2, 3]. This approach could even work when sensors are embedded in a
building’s walls [4]. However, range-only sensors only provide limited information
about a device’s location and having humans localize all devices would be a time
consuming and error prone task. Motivated by these facts, we develop an automated
solution in which a team of mobile robots localizes a large and unknown number of
static (i.e., non-moving) devices.

B. Charrow (X)) - V. Kumar
GRASP Laboratory, University of Pennsylvania, Philadelphia, USA
e-mail: bcharrow @seas.upenn.edu

V. Kumar
e-mail: kumar@seas.upenn.edu

N. Michael
Robotics Institute, Carnegie Mellon University, Pittsburgh, USA
e-mail: nmichael @cmu.edu

© Springer International Publishing Switzerland 2015 55
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_4

56 B. Charrow et al.

Fig. 1 Problem overview. A
robotic team must discover
and localize an unknown
number of devices (shown as
beacons) using range-only
sensors. The team must
consider multiple trajectories
(black arrows) and the finite
range of their sensors
(orange circles)

There are three major components to this problem: (1) estimating the location
of discovered devices (2) estimating where undiscovered devices might be, and (3)
controlling the team to reduce the uncertainty of both estimates until the team is
confident that every device has been discovered and localized. Figure 1 illustrates
the complexity of these goals, and shows why the team must account for the lim-
ited information their sensors provide, as well as their limited mobility in office
environments.

Control policies that maximize mutual information to reduce the uncertainty of
estimates have been successfully applied in robotics when the variables of interest
are known a priori. Hollinger and Sukhatme [5] develop a sampling based strategy
for maximizing a variety of information metrics with strong asymptotic optimality
guarantees. Singh et al. [6] and Binney et al. [7] develop offline planning algorithms
that maximize mutual information for environmental monitoring. Hoffman and Tom-
lin [8] localize a single static device using a team of robots by maximizing mutual
information with a particle filter. Vander Hook et al. [9] develop a greedy algorithm
to localize a discovered device with a single bearing-only sensor, and provides a
lower bound on the time for any active control policy to localize it. In contrast to
these works, we develop online algorithms that reduce the uncertainty of position
estimates of devices and seek to discover all of them.

Research on multi-target tracking using binary measurement models also relates
to our approach. Dames and Kumar [10] consider a similar scenario, but assume mea-
surements have an unknown association requiring their control law to only consider
whether or not any measurement to any target will be received. Carpin et al. [11] use
a variable resolution binary filter to discover targets throughout an environment and
maximize mutual information to control an individual robot. Pursuit-evasion games
where a team must find or maintain visibility to targets [12] are also quite relevant.
While we model range-only sensors as binary when trying to discover devices, the
team must consider the geometric information range-only sensors provide in order
to accurately localize them.

The primary contribution of this paper is an approach for controlling a multi-robot
team to concurrently discover and localize an unknown number of devices using
noisy range-only sensors. This approach is based on a unified objective function
that connects actions the team makes to how the uncertainty of their estimates will

Active Control Strategies for Discovering and Localizing Devices ... 57

be reduced. To start, in Sect.2 we present a generic algorithm for reducing the
uncertainty of an estimate by maximizing mutual information. We then separately
address the problems of actively localizing discovered devices (Sect. 3) and actively
discovering devices (Sect. 4). In Sect. 5 we discuss how the team can simultaneously
localize and discover devices by creating a unified objective function that can be used
in the algorithm in Sect.2. We evaluate the performance of our approach in Sect.6
through a series of simulations and demonstrate that it outperforms two baseline
strategies with teams of up to 8 robots.

2 Preliminaries

2.1 Assumptions

In the problem we are considering a robotic team must localize all devices within
one floor of a modern building. We assume the building has a wireless network that
allows high bandwidth communication throughout the team at all times. This enables
us to adopt centralized estimation and control strategies where all measurements are
aggregated at a single robot who sends commands to the rest of the team. In situations
where the building’s network is only available in certain places, we could use the
approach proposed by Dames and Kumar [10]. We also assume that robot’s are
equipped with a map of the environment and are capable of localizing themselves
which is reasonable for an indoor office environments. While planning, we do not
account for uncertainty in the team’s position. We expect that incorporating this
uncertainty would not significantly affect the selected control actions as range-only
sensors typically have errors of a few meters [13] whereas robot localization solutions
are substantially more accurate. We further assume that each measurement has a
unique identifier (e.g., MAC address), which is typically the case for range-only
sensors that are designed for localization [2—4, 14].

Because we use a probabilistic approach, we assume that devices’ individual
positions are independent of each other, that measurements arrive at discrete time
steps, and that multiple measurements to a device are conditionally independent
given the device’s location [15].

2.2 Adaptive Sequential Information Planning

We are interested in a general control policy for a team of robots which maximizes
mutual information over a finite time horizon. This is difficult for two reasons. First,
the number of potential trajectories the team can follow grows exponentially in the
team’s size. Second, it is unclear how to select an appropriate time horizon over
which to plan. To address these issues we develop “Adaptive Sequential Information

58 B. Charrow et al.

Algorithm 1 Adaptive Sequential Information Planning (ASIP)

1: Tteration = 0 // Iteration counter
2: repeat

3: Iteration = Iteration + 1

4: T =t+1:t+ (T -Iteration) / Adapt end time of plan

5: C* = {} // Best team trajectory, C[r] is trajectory of robot r

6: Info* = 0.0 // Information resulting from current C*

7: for eachrobotr =1: R do

8: ‘P = Plan trajectories robot i can follow over T

9: C = C* x P // Trajectories for robots 1 : r; trajectories of 1 : r — 1 are fixed
10: Info, ¢* = max..cc MI[X;, Z-(c;)]// r’s best action given previous actions
11: if Info — Info* > MinRobotInfo then

12: C*[r] = ¢, Info* = Info

13: else

14: C*[r] = @ // r should do nothing; it can’t further reduce uncertainty of X’r
15: end if

16: end for

17: until Info* > MinTotallnfo or Iteration > MaxIteration

Planning” (ASIP, Algorithm 1) an algorithm that efficiently selects actions and adapts
the time horizon over which it plans.

Before describing ASIP in detail, we formalize a basic approach on which it builds.
Assume the team is trying to estimate some unknown quantity X. At time 7, the team

plans how it will move over the time interval T 2y + 1 :t+ T by considering a set
of trajectories C that they can follow. A trajectory for an individual robot is a discrete
sequence of poses ¢ = [¢;41,...,c7] where ¢ is the 2D pose of robot r at
time k. The team’s trajectories, C, is the Cartesian product of each robot’s individual
trajectories. As the team moves they will receive a random vector of measurements
Zr(cr) = [Zi+1(ct41), - - - Zi+7(Cr+7)], that each depend on the team’s location
at that point in time. Our objective is to select the trajectory ¢+ € C that maximizes
MI[X, Z-(c+)], the mutual information between the device’s estimate and future
measurements the team makes.

A major computational challenge of the basic approach is that the number of
trajectories for the team, |C|, grows exponentially in the team’s size. To address
this issue, ASIP sequentially optimizes mutual information over individual robot’s
trajectories given the trajectories of preceding robots. This approach is similar to the
“Sequential Information Planning” algorithm of Singh et al. [6]. For each robot r,
ASIP generates the trajectories it can follow (Algorithm 1, Line 8) and combines them
with trajectories the preceding robots have already selected (Line 9). This gives a set
of trajectories for robots 1 to r, but only robot r’s trajectory changes: all others are
fixed. ASIP then optimizes mutual information over this set of trajectories (Line 10),
and repeats until all robots have been considered. The advantage of this approach is
that robots still account for each others’ movements but mutual information is only
calculated O (RC) times, where R is the number of robots and C is the number of
trajectories per robot.

Active Control Strategies for Discovering and Localizing Devices ... 59

Another shortcoming of the basic approach is that it is difficult to determine the
time horizon, 7, that the team plans over. If it is too short, the team may get trapped in
low information regions, but making it too long will significantly affect computation
time. To balance these issues, ASIP adapts the horizon over which it plans. It does this
by requiring the team to decrease the uncertainty of their estimates by a sufficient
amount (MinTotallnfo on Line 17). If the team is unable to achieve this gain, it
increases the time horizon of the plan (Line 4). It is possible that there are no further
actions the team can take to reduce the uncertainty of their estimate. By including
a maximum time horizon over which the team can plan (MaxlIteration on Line 17),
ASIP ensures the team will eventually terminate.

Finally, because the team may be spread out over the environment, only some
members of the team may be able to decrease the uncertainty of the estimates over
the given horizon. ASIP identifies these robots by examining the change in mutual
information given a robot’s action (MinRobotInfo on Line 11). Robots that do not
reduce the uncertainty are not commanded anywhere (Line 14) freeing them for other
tasks. We discuss strategies for what to do with these robots when we discuss how
to simultaneously localize and discover devices in Sect. 5.

3 Actively Localizing Discovered Devices

This section describes a strategy for actively localizing a known number of devices
with prior estimates using range-only sensors. In previous work, we presented a
similar approach for localizing individual devices [13, 16]. In comparison, here we
model the finite range of the sensors.

3.1 Estimating Devices’ Locations

Because devices are independent of each other and measurements have a known
data association, we estimate the position of D different devices using separate
particle filters. Each filter uses a measurement model that accounts for noisy range
measurements, as well as the probability of a measurement being received.

Formally, the distribution over device d’s 2D position at time ¢ is approximated
as p(x? | z14) = ZIN=1 w;d(x? — ¥4) where §(-) is the Dirac delta function,)El.d is
the 2D position of the ith particle, w; is its weight, and z1.; are measurements the
team has made from time 1 to ¢ [15]. Devices are static, so we omit a time subscript
for them, but we do use a zero mean 2D Gaussian with a small fixed covariance for
the process model of the filter to avoid particle degeneracy problems.

At time ¢ the team receives a random vector of measurements z;, where z?’r is the
1-dimensional range measurement robot » makes to device d. If the distance from a
robot to a device is within the maximum range of the sensor, zmax, We assume that

60 B. Charrow et al.

with probability «y the robot receives a measurement of the true distance perturbed
by Gaussian noise. With probability 1 — -y, the robot does not detect the device,
and gets a measurement of zpax. Defining the true distance as s = [xd — ci|l, the
measurement model can be expressed as:

YN (z = 5,0%) + (1 = YN(Z — Zmax, Oax) S < Zmax
N(Z = Zmax, T otherwise

(D

" =z]x") = [

where o2 is the variance of the sensor and N (x — s 02) is the likelihood of x with
a Gaussian whose mean is y with covariance 2.

Real world sensors may return an error when they fail to measure the distance to
a device instead of zpax. To compensate for this behavior, a robot can incorporate
a “virtual” measurement of zm,x for each measurement error. Additionally, when a
sensor fails to make a measurement, it will not be perturbed by noise; o2, should
be 0, resulting in Dirac-deltas in (1) that are centered on zmax. However, this mea-
surement model would be difficult to work with analytically (e.g., the entropy would
become —o0). We have also encountered difficulties using small values for o2, as
this results in a rapid change in variance of particles that are close to zmax. Conse-
quently, we set 02, = o, which is a reasonable model: when a measurement of
Zmax 18 incorporated into the filter, particles that are less than zpy,x away from the
robot will decrease become less likely, while those that are farther away will become

more likely.

3.2 Calculating Mutual Information

To evaluate mutual information between the expected future location of discovered
devices and measurements the team will make, we use the particle representation
of the device’s position, p(x | z1;;) and the range-only measurement model (1), to
calculate the distribution over expected future measurements, p(z,). This approach,
which is covered in more detail in [8] or [16], results in a computationally intractable
problem that we address through a series of approximations.

The expression for mutual information between all devices and measurements for
a given team trajectory is:

D

MI[x, 27 (c7)] = iMI ESEEAED I A Y EEA R B

d=1 d=1

H[zf_] is the differential entropy of the measurements to device d, which is a way of
quantifying their uncertainty, and H[z;i_ | x4] is the conditional differential entropy,
which quantifies the uncertainty of measurements given the device’s true location.

Active Control Strategies for Discovering and Localizing Devices ... 61

We drop the measurements dependence on the team’s trajectory, ¢, for brevity. The
expression is a sum over devices because devices and their associated measurements
are pairwise independent, p(x, z-(cr)) = [, p(x4, zi) [17].

Calculating the entropy, H[zf_], is difficult because the distribution over future
measurements to device d is a Gaussian mixture model (GMM): p(zf_) = Z,N: 1 Wi

HT;{H Hle p(zf’r | x4 =)El.d) where w; is the weight of the ith particle in p(x?),

)?;i is its location, N is the number of particles, R is the number of robots, and 7T is
the time horizon of the plan (Sects.2.2 and 3.1). Unfortunately, p(z‘f’r | x?) is also

a GMM when the robot is in range of the device (1). Consequently, p(zf_) can be the
sum of products of GMMs, resulting in a GMM with a number of components that
is exponential in RT. We avoid this computational issue by approximating (1) with
the most likely component (i.e., the one with maximum weight) when calculating
entropy, making the number of components equal to RT. This is reasonable when the
probability of detection is high, which is typically the case for range-only sensors.
Despite this simplification, p(zf.) is still a GMM, whose entropy cannot be evaluated
analytically. We approximate it using the 2nd order Taylor-series approximation
developed by Huber et al. [18]. This approach has a time complexity of O(N?RT).

Using the conditional independence assumption, the conditional entropy is
H[zd | x1] = lezl w; ztj'gﬂ Zle H[z?‘r | x4 = %¢]. Re-applying the maxi-
mum likelihood estimate for detection, each term is the entropy of a 1-dimensional
Gaussian, which can be evaluated in constant time [17].

4 Discovering All Devices

In this section we present a method for actively controlling the team to discover all
devices. We achieve this by estimating the probability of an undiscovered device
being present at any point in the environment, and formulate another information
based control law to reduce the uncertainty of this estimate.

4.1 Estimating Locations of Undiscovered Devices

We form a probabilistic estimate of any undiscovered device existing at different
locations in the environment using a 2D occupancy grid. The grid, g, is made up of a
set of G different cells { g1 e, gG }, which are created by uniformly discretizing the
environment at a fixed resolution. Each cell is associated with a Bernoulli random
variable that represents the probability of any undiscovered device existing at that
point in the environment (i.e., g = 1 means an undiscovered device is present at cell
g"). Like occupancy grids that are used in mapping [15], because device’s locations
are independent of each other, we also assume the probability of undiscovered devices

62 B. Charrow et al.

being in different cells are independent of each other: p(g) = []; p(g !). When the
team starts, we initialize each cell in the environment with a uniform prior.

We update p(g) using the detection model for the sensors that the team carries.
We assume that each robot receives a binary measurement to each cell within the
maximum range of its sensor. A reading of 1 corresponds to an undiscovered device
being present, while a reading of 0 corresponds to no device being present. Letting
g;"" be the measurement robot r gets to cell g at time ¢ the measurement model is:

plg" =11d ==~ pg" =0lg=D)=1-x
Pl =11g=00=0 plg" =0]g =0)=1 3)

We model the probability of a false positive (i.e., the robot detects a new device is
present in a cell when there is no new device at the cell) as 0 because range-only
sensors with known association will not return a measurement to a device that does
not exist.

Real world range-only sensors will return a set of range measurements to devices
that are actually detected. Consequently, if at time ¢ robot r only receives measure-
ments to devices that have been previously observed, we treat that as a measurement
of q,i " = 0 for all cells within zmax. Alternatively, if robot r detects a new device,
we treat that as a measurement of ¢, = 1, and immediately initialize a new particle
filter to estimate its location.

Using this model with the standard occupancy grid filtering equations it is straight-
forward to determine the posterior probability of the occupancy grid given all detec-
tion measurements the team has made: p(g | g1:¢).

4.2 Active Device Discovery

To discover all devices, we maximize mutual information between the estimate of
undiscovered devices, g, and the expected future binary measurements the team
will make, g,. Similar to Sect.3.2, we use a series of approximations to achieve
computational tractability.

For these quantities, mutual information can be expressed as:

G

Milg. g,] = iMI ERAEDN AR AT 4

i=1 i=1

where g is the set of measurements that the team makes of grid cell i at any point in
time along the trajectory. Note that here g and g, are both discrete random variables,
meaning H[qﬁ_] is the discrete entropy and H[qﬁ. | g]’, as opposed to the differential
entropy used to quantify the uncertainty of continuous random variables in Sect. 3.2.

Active Control Strategies for Discovering and Localizing Devices ... 63

Equation (4) is a sum because cells and their associated measurements are indepen-
dent of other cells and measurements p(g, g-) = I1; p(g’ .47 _

As before, calculating the entropy, H[g.] = — > G Py = @)logplgr =) is
computationally difficult. While p(¢i. = §) can be evaluated by marginalizing over
the state:

Pai =) =pd =0pgi =419 =0+pg =Dpgi=Glgd =1 5

the sum in the entropy calculation is over all possible instantiations ¢. An individual
measurement is binary, so the number of terms grows exponentially in the number
of measurements at a cell.

To address this issue, we again approximate entropy. Fortunately, for binary detec-
tion measurements, there is relatively little gain in planning to make multiple observa-
tions of the same cell. This is because when the probability of detection is reasonably
high, even a single observation will substantially reduce the cell’s uncertainty. Con-
sequently, we calculate the information gain between all measurements and a cell as
the gain from the most informative measurement:

MI[g', g% (cr)] = max MI[¢', g] = max H[¢] — H [q | gi] ©)
9€4r qeqi

where ¢ is an individual measurement made by one robot at one point in time. The
inequality holds because mutual information increases monotonically with additional
measurements [17]. Equation (6) can be evaluated in O (QRT) where Q is the number
of cells one robot observes at a single time step.

5 Actively Localizing and Discovering All Devices

We propose several different active control strategies for localizing and discovering
all devices by using ASIP (Sect.2) with the objectives in Sects.3 and 4. We also
describe two baseline approaches that serve as a useful benchmark for our strategies.
For each approach, we are interested in (1) whether all devices will be discovered, (2)
whether all devices will be localized, (3) how long it takes to compute plans, and (4)
how long it takes to discover and localize all devices. We describe some theoretical
properties of points 1-3 for each algorithm. However, analyzing the completion
time is difficult given that the number of devices is unknown and the beliefs of the
devices’ positions evolve in complex ways as a function of many different parameters
of our model. Consequently, we evaluate this aspect through a series of simulations
described in Sect. 6.

64 B. Charrow et al.

5.1 Proposed Approaches

5.1.1 Switching Between Localization and Discovery

One approach to localizing and discovering all devices is to adopt a policy where
robots make forward progress on either task: each robot either tries to localize known
devices, or discover new ones. At each planning step, the team uses ASIP to maximize
the information gained about localized devices using (2). As described in Sect. 2.2,
it is possible that only some members of the team will be able to reduce the devices’
uncertainty over a given horizon. For robots that cannot help, the team again uses
ASIP, but this time maximizes the information gained about undiscovered devices
using (4). Table 1 compares the computational complexity of all approaches.

The team stops when information is 0 (MinTotallnfo in Algorithm 1), so this
approach will eventually discover all of the devices and localize them to the best of
their ability. This is because mutual information is O if and only if the two random
variables are independent. For the estimate of a device’s position, this would mean
p(x | zr,z14) = p(x | z11) and for a grid cell this would mean p(g | ¢+, q14) =
p(g | q1:1); inthese cases expected future measurements will not change the estimate.
In practice, mutual information will not reach 0 due to the team’s noisy estimates.
However, we have found that small positive cutoff values (e.g., MinTotallnfo = 0.1)
work well.

5.1.2 Combining Localization and Discovery

A general approach for devising a unified from control policy form multiple
information-theoretic objectives is to normalize them, and introduce a parameter
for trading off between the objectives [19]. Specifically, we propose using ASIP
with the objectives for localizing and discovering all devices:

o Mibved g,y Mgl
[, 2r) = amaxMI[x, Zr] = max MI[g, g-] ’

Table 1 Computational complexity of selecting a trajectory for the team to follow

Approach Complexity

Switching O(P|(DN?RT + QRT))
Combined O(PI(DN?RT + QRT))
Coverage O(IP|QRT)

Exhaustive O (max{R, W}*)

R is number of robots, D is number of devices, N is particles per device, | P| is number of trajectories
per robot, W is number of waypoints, T is length of horizon, and Q is number of grid cells within
the maximum range of the sensor

Active Control Strategies for Discovering and Localizing Devices ... 65

where the maximums are taken with respect to all actions the team considers over
the current planning horizon and 0 < o < 1 is the parameter that weighs the
relative importance of the two objectives. The normalization is necessary because
the information gains are not directly comparable: the reduction in uncertainty of the
devices location (a set of continuous random variables) can be substantially different
the reduction in uncertainty of undiscovered devices (a much larger set of Bernoulli
variables).

We have encountered two problems combining objectives this way. One is that
when one of the terms is small, its impact is substantially elevated by the normaliza-
tion. To address this issue, we drop a term if the absolute information drops below a
small threshold (e.g., 0.1). The other issue is that robots that do not contribute to the
change in objective are not given a separate task. Consequently, we modify ASIP so
that whenever any member of the team does not improve the objective, the planning
horizon is extended. This means the team may plan over longer horizons, but ensures
the whole team is used more efficiently.

‘We consider three different values of «. The first is « = 0.1, which we refer to
as “Discovery” because the team primarily seeks to discover unknown devices. The
opposite extreme is to heavily favor actions that reduce the uncertainty of discovered
device’s positions by setting « = 0.9, which we refer to as “Localization.” In between
these two extremes is o = 0.5, which we refer to as “Balanced.” Similar to task
switching, these approaches will continue making actions that reduce the uncertainty
of both estimates. Consequently, they will eventually discover all of the devices that
they can and localize them to the best of their ability.

5.2 Baseline Approaches

5.2.1 Coverage

A coverage based strategy is one that seeks to obtain at least one measurement
everywhere in the environment. We formulate this policy by setting o = 0 in (7).
While this approach will discover all devices, it will not necessarily localize all of
them given the limited information of range-only measurements.

5.2.2 Exhaustive

All of the previous approaches incorporated the uncertainty of discovered or undis-
covered devices in some way. A useful comparison is to ignore this uncertainty,
and have robots exhaustively gather measurements by visiting every location in the
environment. This approach may take longer, but should discover and localize all
devices.

66 B. Charrow et al.

There are many different ways to formulate this approach. Here, we manually
define a set of W waypoints that any member of the team must visit at least once.
Planning paths that minimize the total distance traveled by the entire team is a
variant of the multiple traveling salesman problem, and it is unlikely that an exact
polynomial time algorithm exists [20]. Instead, we use the nearest neighbor heuristic,
and at each planning step assign robots to unvisited waypoints such that the maximum
distance any robot travels is minimized. Calculating each assignment can be done in
O(max{R, W}*) time by repeatedly solving linear assignment problems using the
Hungarian algorithm [21].

6 Evaluation

In this section we evaluate the strategies in Sect. 5 and examine their ability to discover
and localize devices. To evaluate an approach, we measure the wall clock time—
including planning time—that it takes to be confident that all devices are discovered
and localized. We define discovery and localization as the bounding of the uncertainty
of each estimate. Formally, we define the discovery of all devices as an indicator
function that is 1 when the probability of an undiscovered device at any point in the
environment is below 0.05. Similarly, a device is localized when the variance of its
x and y position estimate both drop below 0.4 (i.e., a)% < 0.4 and 03 < 0.4). These
metrics enable reasonable comparisons between different strategies. If the team fails
to meet either of these requirements, we define the completion time as the point at
which the algorithm stops commanding the team.

We use a real time asynchronous simulator based on ROS. All code is written in
C++ and runs on an Intel Core i7 processor. To simulate the range sensors, we set a
maximum range of zmax = 7.0 m with a variance of % = 5.0 m? and a measurement
rate of Shz. We use a constant probability of detection, v = 0.9, though in general
it could change as a function of the team’s distance to a device or their line of sight
conditions. Each member of the team is considered to be a differential drive robot
with a maximum linear speed of 0.4 m/s. We use a resolution of 0.25 m for the
occupancy grid used to discover devices. To plan trajectories, we generate paths to
destinations that are within 10.0 m of each robot and discard endpoints that are within
1.0 m of each other. We also stop commanding the team when no trajectory under
60 m is above the minimum information threshold.

6.1 Corridor Environment

In our first simulation, we examine the ability of the information based strategies
to discover devices and determine that they cannot fully localize all of them. To
do this, we consider an environment where a single robot is in a narrow corridor

Active Control Strategies for Discovering and Localizing Devices ... 67

(a) (b)

Fig. 2 A single robot (orange arrow) is present in a corridor environment with two devices (black
x’s). Using the information based strategies, the robot discovers both devices and obtains the best
estimate it can for both of them. a Initial estimates. b Final estimates

with two devices. Because the corridor is narrow and the variance of measurements
is high, there are two valid hypotheses for one of the devices. Figure 2a shows the
initial setup; the orange circle indicates the robot’s maximum range and the black
x’s show the true locations of the devices. Each of the information based strategies
moves along the environment, and discovers both devices, with a final result similar
to Fig. 2. Particles are shown as teal dots, gray cells represent areas where the prob-
ability of an undiscovered device is 0.5, while clear cells indicate the probability is
close to 0. While the information gain never drops to exactly 0, in all our simulations
it eventually decreased below 0.1, resulting in every information based strategy suc-
cessfully terminating. This demonstrates the ability of these strategies to correctly
reason about the sensors they carry, and what effect their actions can have on the
position estimate of the devices.

6.2 Large Office Environment

To more completely evaluate the utility of information based strategies, we conduct
a larger scale simulation study in which teams of up to eight robots simultaneously
localize 40 different devices spread throughout a complex indoor environment. Due to
its interesting structure and widespread use in the robotics community, we conduct
this simulation in the Intel Research Lab using an occupancy grid generated by
Stachniss [22]. For each strategy, we ran 5 trials with teams of 2, 4, and 8 robots.
Figure 3 shows representative trajectories for each strategy with 2 robots and the
location of all 40 devices. The exhaustive strategy visits 71 distinct waypoints in every
room of the environment. In contrast, the coverage based strategy has the robots stay
in the corridors which is sufficient to observe all of the grid cells. The other strategies
follow trajectories in between these two extremes, and generally only enter rooms
when devices are present. Note that for the information based approaches, robots

68 B. Charrow et al.

(a) Exhaustive (b) Coverage
578 seconds, all devices localized 184 seconds, 15 devices not localized

" ”’?’ﬁi?ﬁ‘;ﬁi{

rE
TR
1 . g < I

(¢) Switching (d) Discovery
419 seconds, all devices localized 393 seconds, all devices localized

r"— ~

3

il

(e) Balanced (f) Localization
373 seconds, all devices localized 425 seconds, all devices localized

Fig. 3 The proposed approaches (c—f) outperform the baselines (a—b) by localizing all devices
faster. Solid lines show the team’s path and black x’s show device locations. The dashed orange
line shows the maximum range of the sensors at the team’s starting location (red dot)

Active Control Strategies for Discovering and Localizing Devices ... 69

naturally spread out, and did not repeatedly get stuck in an area, demonstrating they
did not get trapped in local minima and effectively extended their planning horizon
when necessary.

In every trial, each approach discovered all devices and obtained enough detection
measurements to determine that the probability of an undiscovered being present any-
where in the environment was below 0.05. Not surprisingly, the coverage approach
was the fastest to discover all devices. However, it often failed to localize all of
them, in many cases obtaining poor estimates for more than 8 devices. This failure
is caused by the coverage strategy not rewarding the team for reducing the uncer-
tainty of the devices position estimates. Localizing a device with range-only sensors
requires measurements that are either close to it or at multiple angles relative to it. If
these types of measurements are not rewarded, the team will not necessarily obtain
them, resulting in devices not being localized. All of the other approaches localized
all devices in every trial as they reward measurements that reduce the uncertainty of
devices’ positions.

Figure 4 shows the completion times of all approaches except coverage. We omit
the coverage approach’s completion time as it routinely failed to localize all devices.
Across all team sizes, the information based approaches generally performed better,
and never performed substantially worse, than the exhaustive approach. Overall, the
balanced strategy discovered and localized all devices the fastest, with an average
improvement of 25 % over exhaustive. We attribute balanced’s performance to its ten-
dency to gather every potentially useful measurement when it is in an area, meaning
it tends to not revisit areas. In contrast, the task switching and localization approaches
prioritize reducing the uncertainty of discovered devices. Consequently, they tend to
localize all devices quickly, but not fully reduce the uncertainty of grid cells, meaning
they must revisit parts of the environment (e.g., rooms without devices). The dis-
covery approach has the opposite issue: it quickly discovers all devices, but then has
to retraverse parts of the environment in order to localize them. For completeness,
the coverage approach took 184, 170 and 128 s to complete for teams of 2, 4, and 8
robots respectively.

The performance gains in Fig.4 are substantial given the density of devices
throughout the environment. Robots must move to many different areas, resulting
in actions closer to that of exhaustive sampling. In environments where the density

(a) (b) (©)
Exhaustive Exhaustive Exhaustive
Switching Switching Switching
Discovery Discovery Discovery
Localization Localization Localization
Balanced Balanced Balanced

0 200 400 600
Time (s)

0

100 200
Time (s)

300

100 200
Time (s)

300

Fig. 4 Time to localize all devices. In general, the balanced approach performed the best, outper-
forming the baseline exhaustive approach by ~25 %. a 2 robots, b 4 robots, ¢ 8 robots

70 B. Charrow et al.

Table 2 Average percent of time spent planning per trial

Robots Exhaustive | Switching | Localization | Balanced Discovery | Coverage
(%) (%) (%) (%) (%) (%)

2 35 32 3.8 4.7 44 52

4 6.7 4.7 6.5 5.8 72 14.2

8 17.8 12.4 18.5 22.6 39.0 14.0

Due to the series of approximations we use, the team’s performance is primarily dominated by
travel time

of devices was lower, we’d expect the information based strategies to outperform
exhaustive sampling even further, given that they reduce to the coverage strategy
when all discovered devices are localized.

Table 2 shows the percentage of time that the team spent planning. Overall, the
trial time was dominated by traveling places, demonstrating the computational effec-
tiveness of the series of approximations we use.

Finally, the completion times show that adding robots increase performance for
all strategies. The information based strategies absolute performance increase over
the exhaustive strategy also decreases. This highlights the fact that given unlimited
resources, active control strategies offer fewer gains. However, the data in this section
shows that with even with moderately sized teams, there is a clear benefit to using
informed strategies such as mutual information to select control actions.

7 Conclusion

We presented a variety of information based approaches for actively discovering and
localizing an unknown number of devices using range-only sensors. Through a series
of approximations and a sequential optimization technique, our approaches can be
calculated in time that is polynomial in all relevant variables. We compared our
approaches to two baseline strategies in a complex indoor environment, and found
that their gain in performance was substantial.

Acknowledgments This work was supported in part by NSF Grant 1138110 and the TerraSwarm
Research Center, one of six centers supported by the STARnet phase of the Focus Center Research
Program (FCRP) a Semiconductor Research Corporation program sponsored by MARCO and
DARPA. The first author was supported by a NDSEG fellowship from the Department of Defense.

References

1. Rowe, A., Berges, M.E., Bhatia, G., Goldman, E., Rajkumar, R., Garrett, J.H., Moura, J. M.F,,
Soibelman, L.: Sensor Andrew: large-scale campus-wide sensing and actuation. IBM J. Res.
Dev. 55, 6:1-6:14 (2011)

Active Control Strategies for Discovering and Localizing Devices ... 71

2.

12.
13.
14.

15.
16.

17.
18.

19.

20.

21.

22.

Lazik, P., Rowe, A.: Indoor pseudo-ranging of mobile devices using ultrasonic chirps. In: ACM
Conference on Embedded Network Sensor Systems, New York, USA, November 2012, p. 99
(2012)

. Patwari, N., Ash, J., Kyperountas, S., Hero III, A., Moses, R., Correal, N.: Locating the nodes:

cooperative localization in wireless sensor networks. IEEE Signal Process. Mag. 22(4), 54-69
(2005)

. Fu, K.: https://spqr.eecs.umich.edu/moo/apps/concrete/, March 2014
. Hollinger, G., Sukhatme, G.: Sampling-based motion planning for robotic information gather-

ing. In: Robotics: Science and Systems, Berlin, Germany, June 2013

. Singh, A., Krause, A., Guestrin, C., Kaiser, W.J.: Efficient informative sensing using multiple

robots. J. Al Res. 34(1), 707-755 (2009)

. Binney, J., Krause, A., Sukhatme, G.S.: Optimizing waypoints for monitoring spatiotemporal

phenomena. Int. J. Robot. Res. 32(8), 873-888 (2013)

. Hoffmann, G., Tomlin, C.: Mobile sensor network control using mutual information methods

and particle filters. IEEE Trans. Autom. Control 55(1), 32—47 (2010)

. Vander Hook, J., Tokekar, P, Isler, V.: Cautious greedy strategy for bearing-only active local-

ization: analysis and field experiments. J. Field Robot. 31(2), 296-318 (2014)

. Dames, P., Kumar, V.: Cooperative multi-target localization with noisy sensors. In: Proceedings

of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, May
2013

. Carpin, S., Burch, D., Chung, T.H.: Searching for multiple targets using probabilistic quadtrees.

In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
September 2011, pp. 45364543 (2011)

Chung, T., Hollinger, G., Isler, V.: Search and pursuit-evasion in mobile robotics. Auton. Robots
31(4), 299-316 (2011)

Charrow, B., Michael, N., Kumar, V.: Cooperative multi-robot estimation and control for radio
source localization. Int. J. Robot. Res. 33(4), 569-580 (2014)

http://www.nanotron.com/EN/PR _tools.php#03, January 2013

Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2008)
Charrow, B., Kumar, V., Michael, N.: Approximate representations for multi-robot control poli-
cies that maximize mutual information. In: Robotics: Science and Systems, Berlin, Germany,
June 2013

Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Online Library (2004)
Huber, M., Bailey, T., Durrant-Whyte, H., Hanebeck, U.: On entropy approximation for
gaussian mixture random vectors. In: Multisensor Fusion and Integration for Intelligent Sys-
tems, Seoul, Korea, August 2008, pp. 181-188 (2008)

Bourgault, F., Makarenko, A.A., Williams, S.B., Grocholsky, B., Durrant-Whyte, H.F.: Infor-
mation based adaptive robotic exploration. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots Systems (2002)

Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution
procedures. Omega 34(3), 209-219 (2006)

Sokkalingam, P., Aneja, Y.: Lexicographic bottleneck combinatorial problems. Oper. Res. Lett.
23(1), 27-33 (1998)

Intel Lab Occupancy Grid. http://www.informatik.uni-freiburg.de/stachnis/datasets, Septem-
ber 2013

https://spqr.eecs.umich.edu/moo/apps/concrete/
http://www.nanotron.com/EN/PR_tools.php#03
http://www.informatik.uni-freiburg.de/stachnis/datasets

Aggressive Moving Obstacle Avoidance
Using a Stochastic Reachable Set Based
Potential Field

Hao-Tien Chiang, Nick Malone, Kendra Lesser, Meeko Oishi
and Lydia Tapia

Abstract Identifying collision-free trajectories in environments with dynamic obsta-
cles is a significant challenge. However, many pertinent problems occur in dynamic
environments, e.g., flight coordination, satellite navigation, autonomous driving, and
household robotics. Stochastic reachable (SR) sets assure collision-free trajectories
with a certain likelihood in dynamic environments, but are infeasible for multiple
moving obstacles as the computation scales exponentially in the number of Degrees
of Freedom (DoF) of the relative robot-obstacle state space. Other methods, such as
artificial potential fields (APF), roadmap-based methods, and tree-based techniques
can scale well with the number of obstacles. However, these methods usually have
low success rates in environments with a large number of obstacles. In this paper, we
propose a method to integrate formal SR sets with ad-hoc APFs for multiple moving
obstacles. The success rate of this method is 30 % higher than two related methods
for moving obstacle avoidance, a roadmap-based technique that uses a SR bias and
an APF technique without a SR bias, reaching over 86 % success in an enclosed
space with 100 moving obstacles that ricochet off the walls.

H.-T. Chiang
Physics and Astronomy, University of New Mexico, 1919 Lomas Blvd NE,
Albuquerque, NM 87131, USA

N. Malone - L. Tapia ()

Computer Science, University of New Mexico, MSCO01 1130 1,
Albuquerque, NM 87131, USA

e-mail: tapia@cs.unm.edu

N. Malone
e-mail: nmalone @cs.unm.edu

K. Lesser - M. Oishi
Electrical and Computer Engineering, University of New Mexico, MSCO1 1100 1,
Albuquerque, NM 87131, USA

© Springer International Publishing Switzerland 2015 73
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_5

74 H.-T. Chiang et al.

1 Introduction

Motion planning consists of finding a collision-free path from some start position to
some goal position. In many applications, e.g., flight coordination, satellite naviga-
tion, and automated driving, the motion planning problem can be further complicated
by moving obstacles, i.e. obstacles whose position changes over time during the plan-
ning process. Successful identification of valid, collision-free paths in environments
with moving obstacles requires modification of the static planning problem to contin-
uously re-evaluate plans, thus dynamically identifying valid trajectories given current
and predicted obstacle positions.

Common approaches to solving the motion planning problem for dynamic obsta-
cles include APF methods [1-4], tree based planners [5, 6], Probabilistic Roadmap
Methods (PRMs) [7-10], and several variants which use heuristics [11, 12]. APF
methods create a potential landscape and use gradient descent for navigation, plan
locally, and can be dynamically reactive to unexpected obstacles. These methods
generate an artificial potential in the robot’s workspace, which repels the robot from
obstacles and attracts the robot to the goal [13]. APF methods suffer from several well
known drawbacks, most notably local minima traps and difficulty with narrow pas-
sages. However, recent work has improved upon and even eliminated some of these
issues [1, 14]. The work in [4] has extended APFs to moving obstacles by considering
the trajectories of the obstacles while computing the APF in a heuristic manner. In
this paper, we present a method to generate potential fields that incorporates formal
methods.

Stochastic reachability analysis provides offline verification of dynamical sys-
tems, to assess whether the state of the system will, with a certain likelihood, remain
within a desired subset of the state-space for some finite time, or avoid an unde-
sired subset of the state-space [15]. To solve problems in collision avoidance, the
region in the relative state-space which constitutes collision is defined as the set of
states the system should avoid [16, 17]. Unfortunately, the computation time for
stochastic reachable sets (SR sets) is exponential in the dimension of the continuous
state, hence assessment of collision probabilities with many simultaneously mov-
ing obstacles is not feasible. However, expensive SR sets can be computed offline
and the result queried online. In prior work [7], we integrated SR sets into roadmap
methods for dynamic path queries (SR-Query). We demonstrated highly successful
path identification in environments with several moving obstacles, as compared to
a roadmap-based approach that simply pruned invalid edges during dynamic path
queries [10]. However, SR-Query was susceptible to ambushes by moving obstacles,
due to limited reactivity and required navigation on the roadmap edges.

The method we propose here uses multiple SR sets, computed pairwise between
the robot and each dynamic obstacle, to generate an APF for each obstacle. We
then use the likelihood of collision with a given obstacle, computed a priori via the
SR sets, to construct the repulsion field around obstacles. The repulsion fields are
pre-computed offline and queried during the path planning phase. SR sets provide
an accurate depiction of the collision probabilities between a robot and a moving

Aggressive Moving Obstacle Avoidance ... 75

obstacle. In an environment with multiple obstacles, the intersection of multiple
SR sets clearly cannot provide a strict assurance of safety, since the reachable set
is computed for one dynamic obstacle in isolation. Despite this limitation, the SR
sets provide a more formal foundation for relating the collision probability to the
repulsion field than other ad-hoc methods [4, 18, 19] because SR sets are computed
based on relative robot-obstacle dynamics. While it is possible to use ad-hoc methods
to generate a comparable repulsive potential field, the SR computation is a formal
tool that more closely ties the repulsive potential field with the relative motion of the
obstacles and robot.

Combining formal and ad-hoc methods provides several advantages over existing
APF methods. First, the formal SR set provides an accurate representation of the
collision probabilities, which is used to produce potential gradients which accurately
reflect the collision probability. Second, the computation cost in low dimensionality
problems is lower than the roadmap method in [7]. Thus, the robot is more reactive
and less prone to being ambushed by fast moving obstacles. Finally, our approach
easily accommodates multiple obstacle scenarios, by combining multiple SR sets to
generate approximate collision avoidance probabilities with many moving obstacles
(which is impossible to compute through a single SR set that accounts for all obstacles
simultaneously).

We demonstrate our method computationally on scenarios with up to three hun-
dred stochastic dynamic obstacles. The APF with a SR bias can significantly improve
the ability of the potential field landscape to reflect the heading and motion of obsta-
cles. The success rate of our method is 30 % higher than two related methods for
moving obstacle avoidance: (1) our roadmap-based technique that uses a SR bias [7],
and (2) an APF technique without a SR bias; with over 86 % path success in an
environment with 300 moving obstacles that ricochet off the walls. In addition, the
common problem of local minima in APF is mitigated by a rapidly changing APF
landscape produced by rapidly moving obstacles. Videos of the APF with a SR bias
method can be viewed at https://www.cs.unm.edu/amprg/Research/DO/.

While our results demonstrate that the APF-SR method outperforms comparable
methods, we note two key limitations. First, the point-mass robot model is a simplifi-
cation of actual robot motion. However, methods such as [1, 14] exist, which extend
APF methods to non-point robots. A more realistic robot model can be easily incor-
porated into the SR set calculation, but with additional computational cost. Second,
we note that the SR set must be recalculated. One solution is to maintain a SR set
database and to then match obstacle motion to sets as [20] does with funnel libraries.
Neither of these limitations are insurmountable, and we maintain that the improved
performance of the APF-SR method as compared to other approaches merits its use
in many scenarios.

https://www.cs.unm.edu/amprg/Research/DO/

76 H.-T. Chiang et al.

2 Related Work

APFs are a common approach to solving the path planning problem due to their
simplicity, fast execution time, and applicability to several robotic problems, includ-
ing unmanned aerial vehicles [2, 3], robot soccer [21], and mobile robots [1, 14,
22, 23]. For example, a recent APF method assigns non uniform repulsive bubbles
around moving human obstacles to prevent robots from moving in front of a walking
human [4]. Recent work has extended the APF method to account for cases in which
the goal is not reachable due to obstacle proximity [1], and navigation in narrow
passages is required [14]. Other recent work has focused on modification of the
computation of the potential field through Fuzzy [23] and evolutionary [22] APFs.
Another branch of work on APFs utilizes the repulsive and attractive concepts of
APFs but also integrates another path planning method [24, 25]. For example, [24]
uses a user defined costmap to influence node placement in a Rapidly exploring Ran-
dom Tree (RRT) algorithm. The costmap dictates a repulsiveness or attractiveness
factor for every region. Similarly, Navigation Fields [25] assign a gradient which
agents follow and is used for crowd modeling.

A Hamilton-Jacobi-Bellman (HJB) formulation [26] allows for both a control
input and a disturbance input to model collision-avoidance scenarios [27, 28] for
motion planning. The result of these reachability calculations is a maximal set of
states within which collision between two objects is guaranteed (in the worst-case
scenario), also known as the reachable set. The set which assures collision avoidance
is the complement of the reachable set. In [29], reachable sets are calculated to
assure a robot safely reaches a target while avoiding a single obstacle, whose motion
is chosen to maximize collision, and the robot cannot modify its movements based
on subsequent observations. In [30], a similar approach is taken, but reachable sets
are computed iteratively so that the robot can modify its actions. In [20], multiple
obstacles that act as bounded, worst-case disturbances are avoided online, based on
precomputed invariant sets.

An alternative approach is to calculate a SR set that allows for obstacles whose
dynamics include stochastic processes. Discrete-time SR generates probabilistic
reachable sets [15], based on stochastic system dynamics. In [16], the desired target
set is known, but the undesired sets that the robot should avoid are random and must
be propagated over time. In [17], a two-player stochastic dynamical game is applied
to a target tracking application in which the target acts in opposition to the tracker.

3 Preliminaries

3.1 Obstacle Dynamics

We consider dynamic obstacles with one of two classes of trajectories with stochastic
velocities. Each obstacle is represented as a two-dimensional point mass with state

Aggressive Moving Obstacle Avoidance ... 71

x? = (x?, y°), that follows a straight-line or approximately constant-arc trajectory
with stochastic velocity w, a discrete random variable that takes on values in W
with probability distribution p(w). However, more complex dynamics, e.g., ones that
switch between straight-line and constant arc movements, can easily be incorporated.
The obstacle dynamics discretized via an Euler approximation with time step A are

o — 0
Xy =X, + Awy

1
Vi1 = aAw, M)
for straight-line movement, with speed w € ¥ and line slope o € R, and
x;l’H = x; + Ar (cos(w, (n + 1)) — cos(wyn)) ?)

Va1 = Yn + Ar (sin(wy (n + 1)) — sin(w,n))

for constant-arc movement, with angular speed w € WV, and radius » € R™. The
dynamics (2) approximate actual arc dynamics to maintain low dimensionality of
the relative coordinate frame used in the calculation of the SR set.

The dynamics of both types of obstacle can be generalized to the form X7 | =
X0 + Af°(wp, n) with f defined as appropriate by (1) or (2).

3.2 Relative Robot-Obstacle Dynamics

We consider two models for the robot: (1) a holonomic point-mass model with state
x" = (x", y"), and (2) a non-holonomic unicycle model with state X" = (x", y", 0").
The holonomic model is defined as

3)

with two-dimensional velocity control input u = (u*, u”). The non-holonomic uni-
cycle model is defined as

x" = u® cos(f)

v = u® sin(f) (@)

0" =u"”

with two-dimensional control input u = (u®, u™), such that u* is the speed and u™
is the angular velocity of the unicycle. Discretizing the robot dynamics (3) and (4)
with time step A results in

Xy =X, + Au. 5)

78 H.-T. Chiang et al.

for the holonomic model and

X1 = X, + Auy cos(6;)
yZH =y, + Au;, sin(0),) (6)
0, =0, + Auy

for the unicycle model. We can generalize the robot dynamics to X, | = X, +
Af" (uy, 6,) where 6, = 0 for the holonomic case.

A collision between the robot and the obstacle occurs when |X], — x| < € for
some n and small e. We construct a relative coordinate space that is fixed to the
obstacle, with the relative state defined as ¥ = X" — X, noting that for the unicycle
model, 8 = 6. Hence the dynamics of the robot relative to the obstacle are

)zn—ﬁ—l = Xp +Afr(un, en)_Afo(wnvn) (N
with f7(-) asin (5) and (6), f°(-) as in (1) and (2), and a collision is defined as
|Xn] < €. 3)

Equation (7) describes a dynamical system with state x € X', control input # € U that
is bounded, and stochastic disturbance w. Because X, is a function of a random
variable, it is also a random variable. Its transitions are governed by a stochastic
transition kernel, 7(X,+1 | X, un, 1), that represents the probability distribution of
Xn+1 conditioned on the known values X,,, u, at time step n.

3.3 SR for Collision Avoidance

We generate collision avoidance probabilities by formulating a SR problem with the
avoid set, K, defined as the set of states in which a collision is said to occur (8). To
avoid collision with the obstacle, the robot should remain within K, the complement
of K. The probability that the robot remains within K over N time steps, with initial
relative position Xg, can be calculated using dynamic programming [31], introduced
for the stochastic reachability problem in [15]. An abbreviated derivation for calcu-
lating the SR set follows, with details in [7]. As in [15], the SR set is generated via
dynamic programming, iterated backwards in time from time n = N to time n = 0.

VN () =1k (X))
Vp(X) = 11((1?)/ Va1 GNTE | &, u, n) d¥’ (10)
X

=1gX) Z ,::_1 ()E + Af"(u, 0) — Af°(w, n)) p(w). (11D
wew

Aggressive Moving Obstacle Avoidance ... 79

The value functions (9)—(11) make use of an indicator function 1k (x) that is equal
to 1 if x € K and equal to O otherwise. The value function V(;“ (Xp) at time n = 0
describes the probability of avoiding collision over N timesteps when starting in
some initial state Xo. The optimal control input u to avoid collision is determined by
evaluating

Vn*(i) = I;AHG%/)[(1x (%) z n*+1 ()Z + Af"(u,n) — Af°(w, n)) pw)s. (12)
wewW

Figure 1a shows the SR set for a straight-line obstacle with a point mass holonomic
robot. The peaks show a higher probability of collision when the robot is in line with
the obstacle’s trajectory. Intuitively, the closer the robot is to the obstacle, the higher

()5

@) 4 1
2 08 2
.

06
>0 >0

04
1 1
» 0.2 »
-3 0 -3

23 2 -1 0 1 2 3

-

X

0.9
0.8
0.7
0.6
1 0.5
0.4
0.3
0.2
0.1

3 2 4 0 1 2 3

Fig. 1 SR sets for the same straight-line obstacles at origin with width and height = 1. The color
represents probability of collision. a SR set with a holonomic robot. b Holonomic robot SR set after
convolution with a Gaussian (o = 0.15). ¢ SR set with the unicycle robot. d Unicycle robot SR set
after convolution with a Gaussian (o = 0.15)

80 H.-T. Chiang et al.

the probability of collision. On a single core of an Intel 3.40 GHz CORE i7-2600 CPU
with 8§ GB of RAM, the SR set in Fig. 1a took 1727.25 s to compute, over a horizon
of N = 30 steps, with time step of length A = 1 and a point mass holonomic robot.
We observed convergence in the stochastic reachable sets for N > 5 since the robot
and obstacle traveled sufficiently far apart within this time frame.

With a single obstacle, V(;‘ (Xp) in (12) is the maximum probability of avoiding
a collision, and a tight upper bound. For two obstacles with separately calculated
avoidance probabilities V(;k o1 (ié), V(;k ’2(23) (with relative position)Zé with respect to
obstacle 7), the probability of avoiding collision with both obstacles is

P[B N B>] < min {v(;“’l(;zg), v(;*’z()zo)] (13)

where B; corresponds to the event that the robot avoids collision with obstacle i. We
therefore examine each collision avoidance probability individually, and the mini-
mum over all obstacle robot pairs is the upper bound to the total collision avoidance
probability. While an upper bound provides no guarantee of safety, it can inform
which paths are more likely, relative to other paths, to avoid collision. Since our
focus is on finding paths with higher success rates, rather than theoretically guaran-
teed collision-free paths, the upper bound (13) is appropriate. Further discussion and
the derivation of (13) is in [7].

4 Methods

In this section, we present a novel method for integrating SR sets with APF methods.
To generate the obstacle gradients and the gradient to the goal with SR sets we
must first modify the SR sets to accommodate APF, incorporate the SR sets into the
gradient calculation, and then update the robot’s control law.

One hurdle in using SR sets to inform the potential field is the possibility of non-
smoothness in the optimal value for (12). In general, no guarantees of smoothness are
possible. In fact, we find a marked discontinuity in the part of the SR set corresponding
to a robot located just behind the obstacle (Fig. 1). Since APF methods use a gradient
as a warning that the robot is about to collide with an obstacle, we smooth the SR
set by convolving the set with a Gaussian with A'(= 0, 0%). Figure 1 shows the
original SR set (Fig. 1a) and the resulting set after convolution (Fig. 1b). As expected,
the discontinuity in Fig. 1a from O to 1 at the obstacle boundary is smoothed in Fig. 1b.

The main APF-SR algorithm, Algorithm 1, first updates the obstacle positions
via the updateObstacle function (Line 3). Then Algorithm 1 calculates the APF
gradient by summing the obstacle gradients, calculated in gefAPFGradient, and the
goal gradient (Lines 5-11), which is then used by calcControl to construct the control
input # (Line 12). Recall the APF gradient is the direction the robot should move in to
avoid obstacles and reach the goal. Finally, the control law for the robot is updated
with the control input u (Line 13).

Aggressive Moving Obstacle Avoidance ... 81

Algorithm 1 APF-SR

Input: obstacles O with precomputed smoothed SR sets, robot r

1: fort =0;1t < maxTime;t =t + A do
2: for Obstacle 0 € O do
3 updateObstacle(t,0,0.w,0.p(w))
4: end for

5: AP Fyector = (0,0)
6: for Obstacle 0 € O do

7 if dist(x%, X”) < d,nin then
8

n>-n

. AP Fyector = AP Fyector + O.getAPFGradient(ff,)
9: end if
10: end for

11: APPFyector = AP Fyecror+ goal-gradient
12: u = calcControl(AP Fyector)

130 X=X, +A4-f(ur1)

14: end for

The updateObstacle function (Algorithm 2) uses the same dynamics used to cal-
culate the SR sets. This algorithm updates the obstacle locations. At every sampling
instant (time 7" apart), Algorithm 2 evaluates a speed w of the obstacle, based on the
distribution p(w) of possible speeds (Lines 2-9), and updates the obstacle dynamics
with this speed (Line 10).

The APF gradient is calculated for all obstacles nearby the robot in the getAPF-
Gradient(x),) function. For every obstacle o, if o is within distance dy;, query the
potential field influence of o on the robot. This gradient is calculated by first finding
the smallest neighboring value, p; ;, in the SR set from the robot’s current relative
position. The gradient is then calculated by the 2nd order central finite difference
centered at p; ;. The gradient from each obstacle is then summed together to produce
a final gradient due to the obstacles. The goal-gradient is a small magnitude vector
that constantly points toward the goal. The goal-gradient and the gradient due to the
obstacles are summed together to get the final APF gradient, denoted APFyector -

After the APFyecror is calculated, the control input u is calculated by the
calcControl(APF ec1or) function. For the holonomic case u = APFyector. How-
ever, for the non-holonomic case a heading and speed must be extracted from the
APF yect0r to construct u = (u®, u™). This is done by first setting ™ to the maximum
turn rate in the direction of the APF .oy, then setting u® to the maximum speed in
the direction of the APF¢ct0r- The maximum speed of the unicycle is the same as the
maximum speed used in the SR calculation. Finally, u is used to update the control
law for the robot.

82 H.-T. Chiang et al.

Algorithm 2 updateObstacle

Input: Time step n, sample interval 7. obstacle o, velocities w € W = {wl, wy, ..., wnw},
probabilities p(w)

1: if mod(n, T/A) == 0 then

2: s =rand(0,1)

3. forindex =0;index < nw;index++ do
4 if s < p(w)[index] then

5: o.w = wlindex]

6 break

7 end if

8: end for

9: end if

10: X, =%, + A flo.w, ty)

5 Experiments

We present three experiments of increasing difficulty. The first experiment (Sect.5.1),
evaluates the APF-SR method on 50 moving obstacles, with two different trajecto-
ries (straight-line and constant-arc) and a holonomic point robot. The second exper-
iment (Sect.5.2), shows the relationship between the number of obstacles, 50-300,
and success rate for the proposed method, with a holonomic robot and ricocheting
straight-line obstacles. When the ricocheting obstacles reach the environment bound-
ary, they bounce off the wall with simple friction free reflective behavior (and do
not leave the planning area). Finally, Sect.5.3 evaluates the APF-SR method with
a non-holonomic unicycle robot with 100 ricocheting straight-line obstacles. Note
that since the SR calculation is computed once for each type of obstacle and robot
dynamics, the offline computation time is not affected by the number of obstacles.
Our APF-SR method is compared to three methods: a simple Gaussian method
with A/ (0, 0.152) [32], the same Gaussian method with A/ (0, 0.452), and a roadmap
based method (SR-Query) which also uses SR sets [7]. The Gaussian methods wrap
a Gaussian potential field around the moving obstacle. The two Gaussian methods
demonstrate that increasing the standard deviation can increase the success of the
Gaussian method, but at the expense of making some paths infeasible due to the large
repulsion area. The final method, SR-Query, builds a roadmap in the workspace by
sampling valid configurations (nodes) and connecting these nodes with valid tran-
sitions (edges) thus constructing a graph. The SR-Query method updates the edge
weights by querying the SR set of each moving obstacle which overlap with the
roadmap. The edge is then assigned the worst probability of collision and a graph
search algorithm is used to find the path with the lowest probability of collision. The
robot travels along the edges and can only replan when it reaches a node. For the
comparisons shown, the SR-Query uses a roadmap created by a uniform cell decom-
position in the workspace, with 500 nodes and edges between all 8 cell neighbors.

Aggressive Moving Obstacle Avoidance ... 83

For the APF-SR experiments, the SR set was convolved with a Gaussian with
o = 0.15. The o of the smoothing Gaussian has the same value as the smaller
Gaussian comparison method (Gaussian o = 0.15) to eliminate the smoothing done
to the SR set as possible bias for APF-SR’s success. The value 0 = 0.15 worked
well since larger values destroyed the shape of the SR set and smaller values did
not provide enough smoothing. The value was chosen empirically by comparing
0 =0.05,0 =0.45and o = 0.15.

To generate the SR sets, the obstacles must have a known probabilistic veloc-
ity distribution. For all the experiments, the straight-line obstacles have stochas-
tic velocities, w = {0.1, 0.2, 0.5, 0.7}, with corresponding probabilities p(w) =
{0.3,0.2, 0.3, 0.3}. Experiments with obstacles traveling along constant-arc trajec-
tories have w = {%&, %6 99 12} and p(w) = {0.2,0.2,0.3, 0.3} with radii 30,
40 and 50.

In Sects. 5.1 and 5.2, the robot is holonomic with a maximum velocity of 0.36 units
per second. In Sect. 5.3, the robot is a unicycle with a maximum velocity of 0.36 m/s
and maximum turn rate of % rad/s. The other critical parameters are d,;;, = 3m, the
goal-gradient is a vector with magnitude 0.1 in the direction of the goal, the robot
makes a decision and moves every A = (.01 s, and the obstacle sampling interval
isT = 1s.

5.1 Comparison of Holonomic Robot with Line
and Arc Obstacles

The environmental setup is constant between all three methods. However, because
the obstacles have stochastic velocity, multiple trials (100) are conducted and mean
results presented. Each method is run with the same random seed. In these experi-
ments, there are 25 constant-line obstacles and 25 constant-arc obstacles with sto-
chastic velocities. Figure2a shows the initial locations of the obstacles, as well as
the start location (S) and goal location (G) of the robot.

Figure 2b shows the percentage of trials which reach the goal without collision.
The APF-SR method has the highest success rate (95 %); much higher than the next
highest success rate (75 %) via the Gaussian method with o = 0.45. Hence, incorpo-
rating the formal SR set methods into the ad-hoc APF method provides a significant
advantage. This advantage originates from the fact that the APF-SR method provides
information about an obstacle’s dynamics, enabling the robot to avoid an obstacle’s
path while maneuvering around all obstacles.

Of further interest is that the SR-Query method only achieves a 74 % success
rate in this experiment. This is because the robot using the SR-Query method is
ambushed by obstacles while traversing an edge in the roadmap [7]. Recall that the
SR-Query method only makes path planning decisions at nodes and is therefore
vulnerable while traversing edges. However, the proposed APF-SR method does not
suffer from this particular problem, making the proposed method more reactive to

84 H.-T. Chiang et al.

60
50f " G
40 &
Q
30 g
> 20 0
9]
10 . 8
- S
0 e 9]
-10
-20
-20 0 20 40 60 APF-SR Gaussian Gaussian SR-Query
X 0c=0.15 0©0=045
(a) 50 Obstacle Environment (b) Success Rate
20
— APF-SR 50 = Gaussian ¢ = .15
Gaussian ¢ = .15 45 Guassian ¢ = .45 '
- - Guassian ¢ = .45 40 || —APF-sR !
15 H- - -SR-Query ~ - SR-Query :
[0}
o
% -~
5 10 \\‘ X
() \; \
(@) \
5 R

0
0 10 20 30 40 50 60 70 80 90 100
Path Completion (%)

30 40 50

(¢) Clearance (d) Example Paths

Fig. 2 50 Obstacle Comparison: a The environment at t = 0. The obstacles start outside the
environment boundaries and move towards the robot. b Percentage of trials which reach the goal
without collision. ¢ Distance from the nearest obstacle over the coarse of the trial. d Example of
the paths for a single stochastic trial. The start is marked with a S and the goal with a G. Gaussian
methods do not reach to goal due to a collision

the moving obstacles. The APF-SR method makes path planning decisions at every
timestep, while the SR-Query method only replans at nodes in the roadmap [7].

Figure 2c evaluates a second metric, clearance, which we define as the distance
from the robot to the nearest obstacle averaged over all trials. The paths are nor-
malized for comparison. The clearance of the APF-SR method is comparable to the
clearance of the other methods. However, the shape of the potential field provides a
more informed path through the obstacles. Figure 2d shows the difference in example
paths for the four methods. The difference in the decisions can be seen in the yellow
circle where the two Gaussian methods collide and stop. The Gaussian ¢ = 0.15
method makes a slight turn to avoid the obstacle and is then hit. While the Gaussian
o = 0.45 method makes a slightly more pronounced turn, it is still hit. However, the
APF-SR method makes a much steeper turn due to the shape of the potential field,
successfully avoids the moving obstacle, and reaches the goal.

Aggressive Moving Obstacle Avoidance ... 85

5.2 Holonomic Robot with Ricocheting Line Obstacles

We compare the Gaussian method and the APF-SR method in challenging envi-
ronments with 100 straight-line obstacles. Unlike in the previous experiment, the
straight-line obstacles may ricochet off the walls defined in the 50 by 50 environ-
ment. This increases the difficulty of the problem as all obstacles are always present
in the planning region. Figures 2a and 3a show the difference between the 50 obstacle
and 100 obstacle experimental environments.

Figure 3b shows that the APF-SR method has a success rate of 86 %, while the
Gaussians have a success rate of at most 56 %, for 100 obstacles. As expected, the
success rate is lower than in the 50 obstacle experiment.

Since the clearances shown in Fig. 3¢ for each of the three methods are comparable,
the shape of the APF allows the robot to take more informed paths through the

60 1
—o—APF-SR
50 — - G 0.9 * Gaussian ¢ = .15
LT . = 08 -0~ Guassian ¢ = .45
40 - - . o i
LN) -: e :' 9&; 0.7
30 LI . et . s 0.6 R
> 20 el st T o5
" - “an [}
. 4
10) 8 0 .
0 : S 0.3 vl
s 0 0.2 - S
-10 0.1 Te .
—20 0 -
-20 0 20 40 60 50 100 150 200 250 300
X Number of Obstacles
(a) 100 Obstacle Environment (b) Success Rate
6 —APF-SR 50 m— Gaussian ¢ = .15 (g
Gaussian ¢ = .15, 45 Guassian ¢ = .45,
5 - - Guassian ¢ = .45 40 —— APF-SR
'\ 35
g 4 30
8 4 X 25
@
o 20
O 2 15
10
1 P e
0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50
Path Completion (%) Y
(c) Clearance (d) Example Paths

Fig. 3 50-300 Ricocheting Obstacles: a The 100 Obstacle environment at time ¢t = 0. b Success
rate with increasing number of obstacles. ¢ Distance from the nearest obstacle normalized over the
path (100 Obstacles). d Example of the paths for a single stochastic obstacle run. The start is marked
with ‘S’ and the goal with ‘G’. Gaussian-method paths do not reach to goal due to a collision

86 H.-T. Chiang et al.

——APF-SR
6 i Gaussian ¢ = .15
<> | - - Guassian ¢ = .45
o~ 5 I
2 o 4
©
[} —
@ g °
Q 29
g O 2
n
1
0
APF-SR Gaussian Gaussian 0 10 20 30 40 50 60 70 80 90 100
o=.15 o= .45 Path Completion (%)
(a) Success Rate (b) Clearance
50 == Gaussian ¢ = .15 é’
45 Guassian ¢ = .45
40 —— APF-SR
35
30
X 25
20
15
10
5
0

0 10 20 30 40 50
Y
(¢) Example Paths

Fig. 4 100 Obstacles with Unicycle Robot: a Percentage of trials which reach the goal without
collision. b Distance from the nearest obstacle normalized over the path. ¢ Paths example. The start
is marked with a S and the goal with a G. The paths for the Gaussian methods do not reach to goal
due to a collision

obstacles. Figure 3d shows the path differences, particularly evident inside the yellow
circle, where the three methods follow very different paths. The APF-SR method
takes the most evasive action and successfully avoids collision, whereas the other
two methods fail.

As the number of obstacles increases from 50 to 300 (Fig.3b), the success rate
decreases, as expected. However, the APF-SR method decreases at a slower rate and
still has approximately 75 % success rate with 200 obstacles, whereas the Gaussian
methods have less than 25 % success rate. By incorporating the SR sets, the APF-SR
method can better avoid large numbers of obstacles. Further, the online execution
of the APF-SR method is fast, scaling linearly with the number of obstacles. On a
single core of an Intel 3.40 GHz CORE i7-2600 CPU with 8 GB of RAM, execution
time is 0.0168 ms per step for the 50 obstacle environment, and 0.0247 ms per step
for the 100 obstacle environment.

Aggressive Moving Obstacle Avoidance ... 87

5.3 Non-holonomic Unicycle

In this experiment, the robot is modeled as a non-holonomic unicycle (4) and the
obstacles follow straight-line trajectories. The robot can only turn at a rate of 3 rad/s,
which makes the problem more difficult than the holonomic case. We also note that
this problem cannot be solved with the SR-Query method presented in [7] without
path modification for the non-holonomic constraints.

Figure 4a compares the APF-SR method and the Gaussian methods. The APF-SR
method performs approximately 50 % better than the next highest Gaussian method.
Thus, the SR set allows the APF-SR method to make significantly better path planning
decisions.

Figure 4b shows that clearance is comparable across all methods, indicating that
the APF-SR method’s repulsion fields produce more informed paths. Figure 4c shows
an example of these paths for a single run. These paths differ more than the paths in the
previous experiments. This is due to the limited ability of the robot to turn, and thus
early differences in decisions result in large path differences later. For example, in
the yellow circle in Fig. 4c, the APF-SR method diverges from the Gaussian method
early on due to the shape of the potential field constructed with the SR sets. These
paths are more erratic than the holonomic robot’s paths because the robot’s turning
ability is limited and hence the robot must take more dramatic evasive motions to
avoid the obstacles. The sharp direction changes are due to the unicycle changing
velocity from positive to negative (or vice versa), which creates a sharp reversal.

6 Conclusion

The incorporation of the formal SR sets into the ad-hoc APF method provides the
APF with a more accurate representation of the relative robot-obstacle dynamics,
which leads to an increased success rate during path planning. The APF-SR method
has a success rate at least 30 % higher than other methods used for comparison. We
also showed that this gain was due not to increased clearance from the obstacles, but
rather to more informed path planning. The SR set informs the APF-SR algorithm
of the direction and velocity of the obstacle, which is used to generate a repulsive
potential that reflects the probability of collision. Hence the APF-SR algorithm can
make informed planning decisions in the presence of multiple moving obstacles.

Acknowledgments Chiang, Lesser, and Oishi are supported in part by National Science Founda-
tion (NSF) Career Award CMMI-1254990 and NSF Award CPS-1329878. Tapia and Malone are
supported in part by the National Institutes of Health (NIH) Grant P20GM110907 to the Center for
Evolutionary and Theoretical Immunology.

88

H.-T. Chiang et al.

References

11.

13.

14.

15.

16.

17.

18.

19.

20.

. Ge, S.S., Cui, Y.J.: New potential functions for mobile robot path planning. IEEE Trans. Robot.

Autom. 16(5), 615-620 (2000)

. Cetin, O., Kurnaz, S., Kaynak, O., Temeltas, H.: Potential field-based navigation task for

autonomous flight control of unmanned aerial vehicles. Int. J. Autom. Control 5(1), 1-21
(2011)

. Khuswendi, T., Hindersah, H., Adiprawita, W.: UAV path planning using potential field and

modified receding horizon a* 3d algorithm. In: International Conference on Electrical Engi-
neering and Informatics (ICEEI), pp. 1-6 (2011)

. Lam, C.P,, Chou, C.T., Chiang, K.H., Fu, L.C.: Human-centered robot navigation towards a

harmoniously human-robot coexisting environment. IEEE Trans. Robot. 27(1), 99-112 (2011)

. Lee, H.C., Yaniss, T., Lee, B.H.: Grafting: a path replanning technique for rapidly-exploring

random trees in dynamic environments. Adv. Robot. 26(18), 2145-2168 (2012)

. Narayanan, V., Phillips, M., Likhachev, M.: Anytime safe interval path planning for dynamic

environments. In: Proceedings of IEEE International Conference on Intelligent Robots and
Systems (IROS), pp. 47084715 (2012)

. Malone, N., Lesser, K., Oishi, M., Tapia, L.: Stochastic reachability based motion planning for

multiple moving obstacle avoidance. In: Hybrid Systems: Computation and Control, HSCC,
pp- 51-60 (2014)

. Van Den Berg, J., Ferguson, D., Kuffner, J.: Anytime path planning and replanning in dynamic

environments. In: Proceedings IEEE International Conference on Robotics and Automation
(ICRA), pp. 2366-2371 (2006)

. Rodriguez, S., Lien, J.M., Amato, N.M.: A framework for planning motion in environments

with moving obstacles. In: Proceedings IEEE International Conference on Intelligent Robots
and Systems (IROS) (2007)

. Jaillet, L., Simeon, T.: A PRM-based motion planner for dynamically changing environments.

In: Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS)
(2004)

Al-Hmouz, R., Gulrez, T., Al-Jumaily, A.: Probabilistic road maps with obstacle avoidance in
cluttered dynamic environment. In: IEEE Intelligent Sensors, Sensor Networks and Information
Processing Conference, pp. 241-245 (2004)

. Bohlin, R., Kavraki, L.E.: Path planning using Lazy PRM. In: Proceedings of IEEE International

Conference on Robotics and Automation (ICRA), pp. 521-528 (2000)

Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot.
Res. 5(1), 90-98 (1986)

Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Path planning for autonomous vehicles in
unknown semi-structured environments. Int. J. Robot. Res. 29(5), 485-501 (2010)

Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and safety for con-
trolled discrete time stochastic hybrid systems. Automatica 44, 2724-2734 (2008)

Summers, S., Kamgarpour, M., Lygeros, J., Tomlin, C.: A stochastic reach-avoid problem with
random obstacles. In: Proceedings of International Conference Hybrid Systems: Computation
and Control (HSCC), pp. 251-260 (2011)

Kamgarpour, M., Ding, J., Summers, S., Abate, A., Lygeros, J., Tomlin, C.: Discrete time
stochastic hybrid dynamical games: verification and controller synthesis. In: IEEE Conference
on Decision and Control, pp. 6122-6127 (2011)

Valavanis, K.P., Hebert, T., Kolluru, R., Tsourveloudis, N.: Mobile robot navigation in 2-d
dynamic environments using an electrostatic potential field. IEEE Trans. Sys., Man, Cybern.
30(2), 187-196 (2000)

Ge, S.S., Cui, Y.J.: Dynamic motion planning for mobile robots using potential field method.
Autom. Robots 13(3), 207-222 (2002)

Majumdar, A., Tedrake, R.: Robust online motion planning with regions of finite time invari-
ance. In: Algorithmic Foundations of Robotics, pp. 543-558. Springer (2013)

Aggressive Moving Obstacle Avoidance ... 89

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

Weijun, S., Rui, M., Chongchong, Y.: A study on soccer robot path planning with fuzzy artificial
potential field. In: International Conference on Computing, Control and Industrial Engineering,
vol. 1, June 2010, pp. 386-390

Vadakkepat, P., Tan, K.C., Ming-Liang, W.: Evolutionary artificial potential fields and their
application in real time robot path planning. In: IEEE Congress on Evolutionary Computation,
vol. 1, pp. 256-263 (2000)

Song, Q., Liu, L.: Mobile robot path planning based on dynamic fuzzy artificial potential field
method. Int. J. Hybrid Inf. Technol. 5(4), 85-94 (2012)

Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space
costmaps. IEEE Trans. Robot. 26(4), 635-646 (2010)

Patil, S., Van Den Berg, J., Curtis, S., Lin, M.C., Manocha, D.: Directing crowd simulations
using navigation fields. Trans. Vis. Comput. Graph. 17(2), 244-254 (2011)

Mitchell, 1., Bayen, A., Tomlin, C.: A time-dependent Hamilton-Jacobi formulation of reach-
able sets for continuous dynamic games. Trans. Autom. Control 50(7), 947-957 (2005)
Margellos, K., Lygeros, J.: Hamilton-Jacobi formulation for reach-avoid problems with an
application to air traffic management. American Control Conference, pp. 3045-3050 (2010)
Gillula, J.H., Hoffmann, G.M., Haomiao, H., Vitus, M.P., Tomlin, C.J.: Applications of hybrid
reachability analysis to robotic aerial vehicles. Int. J. Robot. Res. (2011) 335-354

Takei, R., Huang, H., Ding, J., Tomlin, C.: Time-optimal multi-stage motion planning with
guaranteed collision avoidance via an open-loop game formulation. In: Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), pp. 323-329 (2012)

Ding, J., Li, E., Huang, H., Tomlin, C.: Reachability-based synthesis of feedback policies for
motion planning under bounded disturbances. In: Proceedings of IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 2160-2165 (2011)

Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Sci. 1 (2005)

Massari, M., Giardini, G., Bernelli-Zazzera, F.: Autonomous navigation system for planetary
exploration rover based on artificial potential fields. In: Dynamics and Control of Systems and
Structures in Space (DCSSS), pp. 153-162 (2004)

Distributed Range-Based Relative
Localization of Robot Swarms

Alejandro Cornejo and Radhika Nagpal

Abstract This paper studies the problem of having mobile robots in a multi-robot
system maintain an estimate of the relative position and relative orientation of near-
by robots in the environment. This problem is studied in the context of large swarms
of simple robots which are capable of measuring only the distance to near-by robots.
We compare two distributed localization algorithms with different trade-offs between
their computational complexity and their coordination requirements. The first algo-
rithm does not require the robots to coordinate their motion. It relies on a non-linear
least squares based strategy to allow robots to compute the relative pose of near-
by robots. The second algorithm borrows tools from distributed computing theory
to coordinate which robots must remain stationary and which robots are allowed to
move. This coordination allows the robots to use standard trilateration techniques to
compute the relative pose of near-by robots. Both algorithms are analyzed theoreti-
cally and validated through simulations.

1 Introduction

Most tasks which can be performed effectively by a group of robots require the
robots to have some information about the relative positions and orientations of
other nearby robots. For example in flocking [1] robots use the relative orientation of
its neighbors to control their own heading and the relative position of its neighbors to
ensure collision avoidance and group cohesion, in formation control [2] robots control
their own position as a function of the relative position of their neighbors to reach a
desired configuration, and in mapping [3] robots use the relative position and relative
orientation of their neighbors to interpret and fuse the information collected by other
robots. However, most of the existing work on localization requires landmarks with
known positions on the environment, addresses localization of a single robot, requires
complex computations, or relies on expensive sensors. Many environments of interest

A. Cornejo (X)) - R. Nagpal

School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA 02138, USA

e-mail: acornejo @csail.mit.edu

© Springer International Publishing Switzerland 2015 91
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_6

92 A. Cornejo and R. Nagpal

prevent the use of landmarks, and in swarm platforms, computation is limited and
large or costly sensors are not available.

We study the problem of having each robot in a multi-robot system compute the
relative pose (position and orientation) of close-by robots relying only on distance
estimates to close-by robots. This paper studies and compares algorithms which
are appropriate for large populations of cheap and simple robots. The algorithms
described in this paper are fully distributed, and the computations performed at each
robot rely only on information available in its local neighborhood. This problem is
ongoing, since for any mobile robot, the set of close-by robots and their relative pose
changes throughout the execution.

We consider a general problem formulation which does not require explicit control
over the motions performed by the robots. Specifically, the first algorithm we consider
places no restrictions on the motion whatsoever. The second algorithm coordinates
which robots are stationary and which robots are mobile, rotating robots between
these roles in a fair and distributed fashion. This allows composing solutions to
this problem with motion-control algorithms and implement different higher-level
behaviors. Furthermore, we study this problem in a robot swarm setting, which
imposes stringent sensor and computational restrictions on the solutions.

In a typical swarm platform, the communication, computation and sensing capa-
bilities of individual robots are fairly limited. The communication limitations of the
individual robots in a swarm platform rule out any strategy that requires collecting
large amounts of data at hub locations, and yet, the simplicity of the individual robots
demand some form of cooperation. Moreover, the computational constraints of indi-
vidual robots exclude the possibility of storing and updating complex models of the
world or other robots.

Therefore, to fully exploit the potential of a robot swarm platform, it is paramount
to use decentralized strategies that allow individual robots to coordinate locally to
complete global tasks. This is akin to the behavior observed in swarms of insects,
which collectively perform a number of complex tasks which are unsurmountable by
asingle individual, all while relying on fairly primitive forms of local communication.

1.1 Related Work

For the most part, existing work on multi-robot localization requires either stationary
landmarks in the environment or the ability for the robots to measure something
other than just the distance to their neighbors. More importantly, most of the existing
localization algorithms are tailored for small groups of capable robots, and place an
emphasis on detailed error models to prevent drift over time. We briefly describe
some of the more relevant works in the paragraphs below. In contrast, this paper
addresses the problem of providing relative localization service for large groups of
very simple robots which can only sense the distance of close-by robots. In this
setting drift of the estimates is less of a concern, since the information is meant to
be used for simple position control, and not to perform path integration over longer

Distributed Range-Based Relative Localization of Robot Swarms 93

time intervals. Concretely our goal is to allow robots to approximate the relative pose
of their neighbors using only a couple of communication rounds and performing as
little computation as possible.

The problem of localization using distance-only sensors has received a lot of
attention, most of it focusing on landmark- or anchor-based localization. Using only
connectivity information to stationary landmarks with known positions [4], it is
possible to approximate the position of mobile nodes. When distance measurements
to the landmarks with known positions are available (for example, via ultrasound) the
Cricket Location-Support System is able to localize mobile nodes within predefined
regions, and extending a similar setup it has been show how to obtain finer grained
position information [5]. The more general case of fixed stationary landmarks with
unknown initial positions has also been considered in the literature [6, 7].

The robust quadrilaterals algorithm [8], which is based on rigidity theory, is one
of the few landmark-free localization methods that relies only on distance sensing
between robots, and is the closest in spirit to the present work. However, the robust
quadrilaterals algorithm was designed primarily for static sensor networks and can-
not recover the relative orientation of the robots. More recently, global optimal solu-
tions to this problem have also been proposed [9] which formulate localization as a
weighted least squares estimation problem, and present algorithms in the same spirit
to the first algorithm described in this paper.

There is also a large body of work on the problem of cooperative localization.
One of the earliest works on cooperative localization [10] required bearing and
(optionally) range-sensors and advocated for an approach where robots are divided
into a group that is allowed to move and use odometry, and another group which plays
the role of stationary landmarks. The work in [11] described a similar approach using
range-sensors but requiring global all-to-all communication and sensing towards the
landmarks. Both of these approaches neglect the distributed coordination problem
of selecting which robots play the role of stationary beacons and which robots are
allowed to move.

In the context of simultaneous localization and mapping, a Monte-Carlo Localiza-
tion (MCL) approach shown to boost the accuracy of localization through cooperation
of two or more robots [12]. Extended Kalman-Filters (EKF) have also been used with
a similar effect [13]. Both of these works considered robots that have sensors capable
of measuring the angle and distance to other robots, as well as sensors to sense the
environment.

The MCL and EKF approaches have been subsequently extended and improved in
recent works. For example [14] extended the EKF approach described in [13] to con-
sider weaker forms of sensors, including distance-only sensing, and [15] described
how to reduce the amount of state and communication required. The computational
complexity of the EKF was further reduced in [16], and a communication-bandwidth
aware solution was described in [17]. Similarly novel techniques to reduce the compu-
tational costs of the MCL approach have been proposed, for example [18] described
a clustering technique to minimize the amount of state and communication required.

94 A. Cornejo and R. Nagpal

2 System Model

Let V be a collection of robots deployed in a planar environment. The pose (aka
kinematic state) of robot u € V at time ¢t € R is described by a tuple pose,, =
(Pu;» du,) Where p,, € R? represents the position of robot u at time ¢, and ¢,, €
[0, 27) represents the orientation of robot u at time f. Robots do not know their
position or orientation.

Each robot has its own local coordinate system which changes as a function of
its pose. Specifically, at time ¢ the local coordinate system of robot u has the origin
at its own position p,, and has the x-axis aligned with its own orientation ¢,,. All
sensing at a robot is recorded in its local coordinate system (cf. Fig. 1).

For 6 € [0, 27) let Ry and v (f) denote rotation matrix of # and a unit vector of
angle 0. The position of robot w at time ¢’ in the local coordinate system of robot
u at time ¢ is defined as pu,, lu, = R-g,, (Pw, — Pu)) = | Puy = Pus || Oyl
and the orientation of robot w at time ¢’ in the local coordinate system of robot u at
time ¢ is defined as ¢y, [y, = Quw, — Pu,. Hence the pose of robot w at time t" in the
local coordinate system of robot u at time 7 is described by the tuple posey,, |, =
<pw,/ lus» Pw,s |u,)-

The communication graph at time ¢ is a directed graph G, = (V, E;), where
E; C V x V asaset of directed edges such that («, v) € E; if and only if a message
sent by robot u at time ¢ is received by robot v. The neighbors of robot u at time
t are the set of robots from which u can receive a message at time ¢, denoted by
Nuy = {v] (v u) € Eq.

For simplicity and ease of exposition, it is assumed that computation, commu-
nication and sensing proceeds in synchronous lock-step rounds {1, 2, ...}. In prac-
tice synchronizers [19] can be used to simulate perfect synchrony in any partially
synchronous system. If robot u receives a message from robot w at round i then
robot u can identify the message originated from w, and estimate the distance
| P = pu || = diw, w).!

Robots are capable of using odometry to estimate their pose change between
rounds in their own local coordinate system. Specifically atround j arobotu € V can
estimate its translation change py, |,; with respect to round i < j and its orientation
change ¢, |, i with respect to round i < j. It is assumed that odometry estimates are
reliable over intervals of two or three rounds (i.e. i >= j — 3), but suffer from drift
over longer time intervals.

2.1 Problem Formulation

Formally, the problem statement requires that at every round i, each robot u computes
the relative pose posey,|,; of every neighboring robot w € N,,. Robots can only

1 Many swarm of platforms, including the Kilobots [20], use the same hardware (i.e., infrared
transceivers) as a cost-effective way to implement both communication and sensing.

Distributed Range-Based Relative Localization of Robot Swarms 95

Fig. 1 In a global
coordinate system u is
pointing right and w is N e
pointing down. In robot u’s "\qbut wat
local coordinate system R N
robot py, is in front of robot Y
Du,»andinrobot w’slocal AT TTTTTTC K
coordinate system robot p,, DPuy Pw, '
is to the right of robot p,,,

perceive each other through distance sensing. For a robot u to compute the pose of a
neighboring robot w at a particular round, it must rely on the distance measurements
and communication graph in the previous rounds, as well as the odometry estimates
of u and w in previous rounds.

The algorithms considered do not require controlling the motion performed by
each robot; the first algorithm imposes no constraints, and the second algorithm
requires only to coordinate when robots can move, but not the motion they execute.
This allows these algorithms to be run concurrently with any motion control algo-
rithm. Moreover, the algorithms are tailored for large swarms of simple robots, and
as such the size of the messages or the computation requirements do not depend on
global parameters such as the size or diameter of the network.

3 Localization Without Coordination

This section describes a distributed localization algorithm that requires no motion
coordination between robots and uses minimal communication. Each robot localizes
its neighbors by finding the solution to a system of non-linear equations. For sim-
plicity, this section assumes that distance sensing and odometry estimation is perfect
(e.g. noiseless); a similar treatment is possible if considering zero-mean Gaussian
noise. Section 5 describes how the results presented here can be easily extended to
handle noisy measurements.

Consider any pair of robots a and b for a contiguous interval of rounds / C N. To
simplify notation let p, i—b;y = Db, — Pa; denote the vector, in the global coordinate
system, that starts at p,; and ends at pj,.

Observing Fig. 2 it is easy to see that starting at p,, (and in general starting at any
Pa; forsome j < k) there are at least two ways to arrive to py, . For instance, by first
traversing a dotted line and then a solid line or vice versa. Indeed, this holds since
by definition for all j < k we have:

Paj—ai + Pap—b, = Paj—by = Paj—b; + DPbj— by - (D

96 A. Cornejo and R. Nagpal

Q Pv;

Paj_1—bp_1

Fig. 2 Robota and b inrounds I = {i, ..., k}

For j = k equation (1) is vacuously true and for j < k it represents a constraint
on the relative pose of robots a and b in terms of quantities that individual robots
can either sense or compute. Next, we massage the previous equation to represent a
constraint on the relative pose in terms of known quantities.

paj%ak - ij»bk + Par—b, = Pujabj
_Raﬁak Paj |ak + R¢bk Pb; |bk + R¢ak Pby. |ak = R¢a]- Pb; |aj
Pajlag + Ry, lo Poj b + Pylay = Roy, —p, Pbjla;

= ”pbj la ”

Hpa,» la. + Ry, 1o, Pj b + Phylag

| = Payla + Ry Pyl + i@, 00O L) | = dja. b) @

Dissecting equation (2); d(a, b) and di(a, b) are known and correspond to the
estimated distance between robot a and b at round j and k respectively; pqlq, and
Pb; b, are also known, and correspond to the odometry estimates from round j
to round & taken by robot a and b respectively; finally ¢, |4, and 8, |4, are both
unknown and correspond to the relative position and orientation of robot b at round
k in the local coordinate system of robot a at round k.

Considering equation (2) over a series of rounds yields a non-linear system that,
if well-behaved, allows a robot to estimate the relative pose of another. To avoid an
undetermined system we require at least two equations, since there are two unknowns.

Distributed Range-Based Relative Localization of Robot Swarms 97

In practice we observed that even when the measurements are noisy, the additional
information provided by the overconstrained system does not provide improvements
to merit the additional computational cost, even when the measurements are noisy.
The following distributed algorithm leverages the constraints captured by a system
of § > 2 equations to allow every robot to compute the relative pose of its neighbors.

Algorithm 1 Localization without Coordination
1: for each robot u € V and every round k € {1, ...} do
2: broadcast (pu,_ lu;. Pue_y lue)

3 receive (pu, L, Gy luy) for w € Ny,

4 I =1{k—90,k}

5: foreachw € ()¢ Ny; do

6

7

8

integrate odometry py |u; , Qu; lu; for j € 1
find Gy |y » uy |y, such that (2) holds Vj e 1

poseu, < (di W)Y Buglu): duglue)

At each round of Algorithm 1 every robot sends a constant amount of information
(its odometry measurements for that round) and therefore its message complexity
is O(1). The computational complexity of Algorithm 1 is dominated by solving the
system of non-linear equations (line 7), which can be done by numerical methods [21]
in O(c72) where ¢ is the desired accuracy.

Regardless of the choice of § there are motion patterns for which any algorithm
that does not enforce a very strict motion coordination (which includes Algorithm 1,
which enforces no motion coordination) cannot recover the relative pose of neighbor-
ing robots. These motions are referred to as degenerate, and are described next (see
Fig.3). First, if during § rounds two robots follow a linear trajectory, then the relative

(b)
(a)
Pu;
Pwiqq
Puiyq
Pw; o

Fig. 3 Due to generate motions yellow (/ight gray) robot cannot fully resolve the relative position
of green (dark gray) robot. a Flip ambiguity. b Rotation ambiguity

98 A. Cornejo and R. Nagpal

pose between these robots can only be recovered up to a flip ambiguity. Second,
if during d rounds one robot follows a displaced version of the trajectory followed
by another robot, then it is possible to infer the relative orientation of the robots,
but a rotation ambiguity prevents the recovery of the relative position. A degenerate
motion can be a flip ambiguity, a rotation ambiguity, or a combination of both (cf.
Fig. 3).

Fortunately degenerate motions are rare. More precisely degenerate motions are
a set of measure zero (for example, this implies that if the motions are random, then
with probability 1 they are not degenerate). This can be shown to be a consequence of
the generic rigidity of a triangular prism in Euclidean 2-space, see [22] for a thorough
treatment of rigidity. The next theorem formalizes the properties of the algorithm
(all proofs were omitted due to lack of space).

Theorem 1 If at round i, robots u and w have been neighbors for a contiguous
interval of 6 or more rounds, and perform non-degenerate motions, then at round i
Algorithm I computes posey, |y; at u and posey, |, at w.

4 Localization with Coordination

This section describes a distributed localization algorithm that uses a simple
stop/move motion coordinate scheme, and requires communication proportional to
the number of neighbors. Using the aforementioned motion coordination scheme
allows robots to compute the relative pose of neighboring robots through trilateration.

By collecting multiple distance estimates a moving robot can use trilateration to
compute the relative position of a stationary robot; as before standard techniques can
be used to extend this to the case of zero-mean noise, briefly detailed in Sect. 5. Two
such distance estimates already suffice to allow the moving robot to compute the
relative position of a stationary robot up to a flip ambiguity (i.e., a reflection along
the line that passes through the coordinates at which the measurements were taken).

Consider two neighboring robots # and w where from round £ — 1 to round &
robot # moves while robot w remains stationary (see Fig.4). Robot u can compute
the relative position py, |,, of robot w at round & up to a flip ambiguity, relying only
on the distance measurements to robot w at round k& — 1 and round k, and its own
odometry for round k. Specifically the cosine law yields the following.

euk = ” Duy |”k ” Qyy = A(puk_| |uk)

Cay +df G, w) — df (u, w)
_1 P U, k—=1\"
_ 3
By lu, = cos (20y, di(u, w) ©
dE(u, w) +df_ (u, w) — €3
_1 [4 (u, k=11 “k
_ 4
Yyl = €Os (2di (u, wydg—1(u, w) @

awkluk = Oy F+ ﬁwk |uk)

Distributed Range-Based Relative Localization of Robot Swarms 99

-------- v
A%
Bwk ’uk\
\
\

euk dk (u7 w)

\
\

Puy, 4

Fig. 4 Moving robot (green/dark gray) uses trilateration to compute the relative position of sta-
tionary robot (yellow/light gray) up to a flip ambiguity

auk |wk = ouk_l |wk + Ywy |uk (6)

In order for robot u to fully determine the relative pose of robot w at round
k (ignoring the flip ambiguity) it remains only to compute ¢y, |4, . Observe that
given knowledge of 0, |, , robot u can leverage Eq. 6 to compute 6y, |,,, using the
correction term 7y, |, computed through the cosine law. The following identity can
be leveraged to easily recover ¢y, |, using 6y, |y, and Oy, |y,

(b“k'wk = owk|uk - euk|wk +m (mOd 271-) (7)

Summing up, if robot # moves from round k — 1 to round k while robot w remains
stationary, then using dx—1(u, w), di(u, w) and p,, |4, robot u can compute the
relative position of robot w at time k. If knowledge of 8, |y, is available robot u
can also compute the relative orientation of robot w at time k. Both the position and
orientation are correct up to a flip ambiguity.

A robot can resolve the flip ambiguity in position and orientation by repeating
the above procedure and checking for consistency of the predicted position and
orientation. We refer to motions which preserve symmetry and therefore prevent the
flip ambiguity from being resolved (for instance, collinear motions) as degenerate
(cf. Fig.5).

Observe that the distance measurements between a stationary robot and a moving
robot are invariant to rotations of the moving robot around the stationary robot (cf.
Fig.6). This prevents a stationary robot from recovering the relative position of a
moving neighbor using any number of distance estimates.

100 A. Cornejo and R. Nagpal

z !
. Duiis 'Pujyo

Fig. 5 Moving robot (yellow/light gray) localizing a stationary robot (green/dark gray) using dis-
tance measurements (dashed lines) and odometry (solid arrows). a Flip ambiguity. b Unambiguous

Fig. 6 Stationary robot (yellow) cannot compute the relative position of the moving robot (green),
since all distance measurements (dashed lines) are invariant to rotations around the stationary robot

Howeyver, in order for robot u to recover the orientation of robot w, robot w—which
remains stationary fromround k—1 to round k—must compute 0, lw, | = Qu_ Iy
and communicate it to robot u by round k.

Therefore, in order to leverage the previous trilateration procedure requires coor-
dinating the motion of the robots in a manner that gives every robot a chance to move
and ensures that when a robot is moving its neighbors remain stationary. Formally,
a motion-schedule is an algorithm that at each round classifies every robots as being
either mobile or stationary. A motion-schedule is well-formed if at every round i the
set of robots classified as mobile define an independent set of the communication
graph G; (i.e. no two mobile robots are neighbors). The length of a motion-schedule
is the maximum number of rounds that any robot must wait before it is classified as
mobile. A motion-schedule is valid if it is well-formed and has finite length.

The validity of a motion-schedule ensures that mobile robots can use trilateration
to compute the relative positions of all its neighbors, and having a motion-schedule of
finite length guarantees every robot gets a chance to move. The next subsection pro-
vides a description of a distributed algorithm that produces a valid motion-schedule.
Algorithm 2 describes a distributed localization algorithm that leverages a valid
motion-schedule and trilateration.

Distributed Range-Based Relative Localization of Robot Swarms 101

At each round of Algorithm 2 every robot sends a message containing its own
odometry estimates and ®,,_,, which is the set of previous position estimates (one
for each of its neighbor), and therefore its message complexity is O(A). Mobile
robots use trilateration to compute the relative position and relative orientation of
its neighbors, and when possible stationary robots update the relative position and
orientation of mobile robots using the received odometry estimates. In either case,
the amount of computation spent by Algorithm 2 to localize each robot is constant.

Theorem 2 (Assuming a valid motion-schedule) If at round i, robots u and w have
been neighbors for a contiguous set of rounds during which robot u performed a
non-degenerate motion, then at round i Algorithm 2 computes posey, |, at u.

Algorithm 2 Localization with Coordination

[h]

1: Oy <~ 0OVYueV

2: for each robot u € V and every round k € {1, ...} do
3 broadcaSt (Puk,l |uk ’ (bu/\v,[|uk ’ @uk,1>

4: receive (pwk_| |wk s d)wk—l |wk7 @ltk—l) forw € Nuk
5: if state = mobile then
6.
7
8

O < {ka |u; through Eq. (4_5)}

Guy iy < use Eq. (6-7) Yw € Ny,

: use previous state resolve flip in @,
9: else
10: update @y, through ¢y, 1 luy, Puy_; lwy

1 posenlu < (e,)0 @), buylug) Yo € Noy

12: state <— MOTION-SCHEDULER
13: if state = mobile then

14: move according to MOTION-CONTROLLER
15: else
16: remain stationary

4.1 Motion Scheduling

As a straw-man distributed algorithm that requires no communication and outputs
a valid motion-schedule, consider an algorithm that assigns a single mobile robot
to each round, in a round robin fashion (i.e. at round i let robot k = i mod n be
mobile and let the remaining n — 1 robots be stationary). Although the motion-
schedule produced by such an algorithm is valid, it is not suited for a swarm setting,
since it exhibits no parallelism and the time required for a robot to move is linear on
the number of robots.

102 A. Cornejo and R. Nagpal

Finding a motion-schedule that maximizes the number of mobile robots at any
particular round is tantamount to finding a maximum independent set (aka MaxIS) of
the communication graph, which is NP-hard. Similarly, finding a motion-schedule
with minimal length implies finding a vertex-coloring with fewest colors of the
communication graph, which is also NP-hard.

Algorithm 3 describes a motion-schedule with the more modest property of having
the set of moving robots at each round define a maximal independent set (aka MIS)
of the communication graph. Once a robot is classified as being mobile, it does not
participate on subsequent MIS computations, until each of its neighbors has also
been classified as mobile. Given these properties, it is not hard to show that for any
robot u and a round k, the number of rounds until robot u is classified as mobile is
bounded by the number of neighbors of robot u at round k.

Theorem 3 Algorithm 3 defines a valid motion-schedule with length A + 1.

The description of Algorithm 3 utilizes a distributed MIS algorithm as a subroutine
(line 4 in the pseudo-code). However, it should be noted that the problem of finding
an MIS with a distributed algorithm is a fundamental symmetry breaking problem
and is far from trivial. Fortunately, the MIS problem has been studied extensively by
the distributed computing community, and extremely efficient solutions have been
proposed under a variety of communication models [23-25]. The classic solution [23]
requires O (log n) communication rounds and every node uses a total of O (logn) [26]
bits of communication. For a wireless network settings, it is known [24] how to find
an MIS exchanging at most O (log* n)? bits. Due to lack of space, for the purposes
of this paper it should suffice to know that it is possible to implement a distributed
MIS protocol in the lower communication layers without significant overhead.

Algorithm 3 Motion-Scheduler

[h]
1: if Yw € N, state,, = inactive then
2: state,, <— compete

3: if state, = compete then

4: if u is selected in distributed MIS then
5: state, <— inactive

6: output mobile

7: output stationary

2The iterated logarithm function counts the number of times the logarithm is applied to the argument
before the result is less or equal to 1. It is an extremely slowly growing function, for instance the
iterated logarithm of the number of atoms in the universe is less than 5.

Distributed Range-Based Relative Localization of Robot Swarms 103

5 Algorithm Evaluation

This section evaluates the performance of the proposed localization algorithms con-
sidering that both the distance measurements and the odometry estimates are subject
to noise. We use a simulator environment tailored to closely resemble the physical
characteristics of the Kilobot swarm platform.

Specifically we assume the distance measurements of each robot are subject to
independent zero-mean Gaussian noise with variance o4 and the odometry estimates
is subject to two independent sources of noise; the orientation component is subject to
zero-mean Gaussian noise with variance o, and the translation component is subject
to a two-dimensional symmetric zero-mean Gaussian noise with variance oy,. We do
not use the standard noise assumptions on the odometry model, since our odometry
model is modeling the noise present in the external overhead computer vision system
used to provide odometry on the Kilobot swarm platform (the stick-slip locomotion
used by the Kilobot swarm produces movements that depend on the imperfections
of the surface underneath each robot, so they cannot have odometry built-in).

Algorithm 1 relied on finding a zero in a non-linear system of equations con-
structed using the distance estimates and odometry estimates pertinent to that robot.
When these estimates are subject to noise, the corresponding non-linear system is
no longer guaranteed to have a zero. To cope with noisy measurements it suffices
to instead look for the point that minimizes the mean-squared error. This incurs in
no additional computational overhead, since it can be accomplished using the same
numerical methods used in the noiseless case.

The length of each simulation trial is 20 rounds of 6 s (2min). A total of 50 trials
were carried out for each different combination of noise parameters. In each trial, 20
robots are deployed randomly in a region of 10m x 10m, and at each round each
robot is allowed to perform a motion with a random orientation change between
[—7/4, m/4] and a translation change which is normally distributed with a mean of
3m and a variance of 0.5m. The length of each trial is 20 rounds of 6 s (2min). The
plots below (cf. Figs.7 and 8) show the mean squared error (MSE) in the computed
position (blue) and orientation (red) over 50 random trials for various different noise
parameters. Since to initialize the position and orientation estimates Algorithm 2
requires at least three rounds, the first three rounds of every trial were discarded.

Not surprisingly the results produced by Algorithm 1 are sensitive to errors in all
axis, although it is slightly more robust to errors in the translation odometry than in
the distance sensing. Furthermore, the relative orientation estimate was consistently
more tolerant to noise than the position estimate. As it would be expected, for all
the different noise settings, increasing the parameter ¢ from 2 to 3 consistently
reduced the MSE in both position and orientation produced by Algorithm 1. However,
increasing J also increases the computational costs of the algorithm and only gives
diminishing returns.

Algorithm 2 is evaluated with the same parameters as Algorithm 1 with one
exception; to keep the number of motions per trial for Algorithm 1 and Algorithm 2
roughly the same, the length of the trial was doubled to 40 rounds, since at each

104

3.0 ! '
25

MSE

0.0
0.000 0.005 0.010 0.015 0.020

04

3.0 ' '
25
20
15}

MSE

1.0
0.5 |

0.0 . . .
0.000 0.005 0.010 0.015 0.020

04

MSE

MSE

3.0
25
2.0
15
1.0
0.5

3.0
25
2.0
15
1.0
0.5

0.0 i " .
0.000 0.005 0.010 0.015 0.020

O-O

MSE

MSE

A. Cornejo and R. Nagpal

3.0
25
2.0
15
1.0
0.5

0.0
0.000 0.005 0.010 0.015 0.020

3.0
25
2.0
15
1.0
0.5

0.0 " . .
0.000 0.005 0.010 0.015 0.020

Try

]

Ozy

Fig. 7 Each plot shows MSE of the position (blue) and orientation (red) as a function of one
component of the variance X. The vertical axis goes from 0 to 7. From /eft to right, each column
shows the MSE as a function of 04, 0, and oy y. The top row shows the results with § = 2 and the

bottom row for § =3

30 ' '
2.5
2.0
15}

MSE

10

0.5

0.0
0.000 0.005 0.010 0.015 0.020

r

MSE

3.0
2.5
2.0
15
1.0
0.5

0.0
0.000 0.005 0.010 0.015 0.020

0o

MSE

3.0
2.5
2.0
15
1.0
0.5

0.0
0.000 0.005 0.010 0.015 0.020

Uzy

Fig. 8 Plots show MSE of the position (blue) and orientation (red) as a function of one component
of the variance X. The vertical axis goes from O to 7. From left to right, each column shows the
MSE as a function of o4, 0, and oy y

round, for every pair of nodes, only one of them will be mobile and the other will

remain stationary.

The pose estimates produced by Algorithm 2 are for the most part equally affected
by noise in either of the dimension. As it was the case with Algorithm 1, the relative
orientation estimate was consistently more tolerant to noise than the position estimate.
Overall compared to Algorithm 1, the results show that Algorithm 2 is in all respects
less sensitive to noise. This, together with its computational simplicity, make it more
suitable for implementation on the Kilobot platform.

Distributed Range-Based Relative Localization of Robot Swarms 105

5.1 Motion Control and Localization

Here we explore the feasibility of composing existing motion control algorithms with
the proposed localization algorithms. For its simplicity we consider the canonical
problem of flocking [1]. Informally, flocking describes an emergent behavior of a
collection of agents with no central coordination that move cohesively despite having
no common a priori sense of direction.

Flocking behavior has received a lot of attention in the scientific community.
Vicsek et al. [27] studied flocking from a physics perspective through simulations
and focused on the emergence of alignment in self-driven particle systems. Flocking
has also been studied from a control theoretic perspective, for example in [28, 29],
where the emphasis is on the robustness of the eventual alignment process despite
the local and unpredictable nature of the communication.

We study a flocking behavior where each robot aligns its heading with its neighbors
and avoids colliding with close by neighbors. Namely, at each round every robot
steers its own orientation to the average orientation of its neighbors, adjusting its
speed to avoid getting to close to any of its neighbors. It has been shown [28, 29]
that under very mild assumptions this converges to a state where all robots share the
same orientation.

Figure 9 shows the results of the described average-based flocking algorithm when
combined with Algorithm 1 to provide relative orientation estimates. Initially the first
rounds the robots move erratically while the position and orientation estimates are
initialized, and soon after the orientations of all the robots converge. Increasing the
error in the distance sensing and odometry measurements is translated in greater
inaccuracy in the resulting relative orientation estimates, which affects the resulting
flocking state.

Before the swarm reaches the steady state the distance measurements can be used
to localize, and localization becomes impossible only when adjustments are no longer
needed and the swarm is in steady state.

Fig. 9 Final configuration of 6 robots after four 40 round runs of a flocking algorithm composed
with Algorithm 1. From left to right the variance of all noise parameters was increased with same
starting configuration

106 A. Cornejo and R. Nagpal

6 Conclusions and Future Work

We considered two distributed algorithms to solve the relative localization problem
tailored for swarms of simple robots. The algorithms have different communication
and computational requirements, as well as different robustness to sensing errors.
Specifically, having greater communication and coordination allows us to reduce the
required computational complexity and increase the robustness to sensing errors. In
future work, we hope to further study whether this trade-off is inherent to the problem
or not.

We are currently implementing the described algorithms on the Kilobot swarm
platform. The Kilobot platform has no floating point unit and limited program mem-
ory (30k), as well as very limited bandwidth (24 bytes per second). Thus, even
simple algorithms require careful tuning and optimization of all parameters in order
to be implemented on the Kilobots. We are also investigating algorithms with fewer
communication requirements.

References

1. Turgut, A., etal.: Self-organized flocking in mobile robot swarms. Swarm Intell. 2(2-4), 97-120
(2008)

2. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. Trans. Robot.
Autom. (TRA) 14(6), 926-939 (1998)

3. Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applica-
tions to multi-robot and 3D mapping. In: International Conference on Robotics and Automation
(ICRA), vol. 1, pp. 321-328 (2000)

4. Luo, J., Zhang, Q.: Relative distance based localization for mobile sensor networks. In: Global
Telecommunications Conference (GlobeCom), pp. 1076-1080 (2007)

5. Savvides, A., Han, C., Strivastava, M.: Dynamic fine-grained localization in ad-hoc networks
of sensors. In: International Conference on Mobile Computing and Networking (MobiCom),
pp- 166-179 (2001)

6. Djugash, J., et al.: Range-only slam for robots operating cooperatively with sensor networks.
In: International Conference on Robotics and Automation (ICRA), pp. 2078-2084 (2006)

7. Olson, E., Leonard, J., Teller, S.: Robust range-only beacon localization. IEEE J. Ocean. Eng.
31(4), 949-958 (2006)

8. Moore, D., et al.: Robust distributed network localization with noisy range measurements.
In: International Conference on Embedded Networked Sensor Systems (SenSys), pp. 50-61
(2004)

9. Trawny, N., Roumeliotis, S.I.: On the global optimum of planar, range-based robot-to-robot
relative pose estimation. In: International Conference on Robotics and Automation (ICRA),
pp. 3200-3206. IEEE (2010)

10. Kurazume, R., Nagata, S., Hirose, S.: Cooperative positioning with multiple robots. In: Inter-
national Conference on Robotics and Automation (ICRA), vol. 2, pp. 1250-1257 (1994)

11. Navarro-Serment, L., Paredis, P., Khosla, C.: A beacon system for the localization of distributed
robotic teams. In: International Conference on Field and Service Robotics (FSR), vol. 6 (1999)

12. Fox,D.,etal.: A probabilistic approach to collaborative multi-robot localization. Auton. Robots
8(3), 325-344 (2000)

Distributed Range-Based Relative Localization of Robot Swarms 107

13.

14.

15.

16.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

Roumeliotis, S.I., Bekey, G.A.: Collective localization: a distributed Kalman filter approach to
localization of groups of mobile robots. In: International Conference on Robotics and Automa-
tion (ICRA), vol. 3, pp. 2958-2965 (2000)

Martinelli, A., Pont, F., Siegwart, R.: Multi-robot localization using relative observations. In:
International Conference on Robotics and Automation (ICRA), pp. 2797-2802 (2005)
Leung, K.Y.K., Barfoot, T.D., Liu, H.H.T.: Decentralized localization of sparsely-
communicating robot networks: a centralized-equivalent approach. IEEE Trans. Robot. 26(1)
(2010)

Carrillo-Arce, L.C., et al.: Decentralized multi-robot cooperative localization using covariance
intersection. In: Intelligent Robots and Systems (IROS), pp. 1412-1417 (2013)

. Nerurkar, E.D., Roumeliotis, S.I.. A communication-bandwidth-aware hybrid estimation

framework for multi-robot cooperative localization. In: Intelligent Robots and Systems (IROS),
pp. 1418-1425 (2013)

Prorok, A., Bahr, A., Martinoli, A.: Low-cost collaborative localization for large-scale multi-
robot systems. In: International Conference on Robotics and Automation (ICRA), pp. 4236—
4241 (2012)

Awerbuch, B.: Complexity of network synchronization. J. ACM (JACM) 32(4), 804—823 (1985)
Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective
behaviors. In: International Conference on Robotics and Automation (ICRA), pp. 3293-3298
(2012)

Ueda, K., Yamashita, N.: On a global complexity bound Levenberg-Marquardt method. J.
Optim. Theory Appl. 147(3), 443-453 (2010)

Servatius, B., Servatius, H.: Generic and abstract rigidity (1999)

Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J.
Comput. 15, 1036-1053 (1986)

Schneider, J., Wattenhofer, R.: A log-star maximal independent set algorithm for growth-
bounded graphs. In: International Symposium on Principles of Distributed Computing (PODC)
(2008)

Afek, Y., etal.: Beeping a maximal independent set. In: International Symposium on Distributed
Computing (DISC), pp. 32-50 (2011)

Métivier, Y., et al.: An optimal bit complexity randomized distributed MIS algorithm. In:
Colloquim on Structural Information and Communication Complexity (SIROCCO) (2009)
Vicsek, T., et al.: Novel type of phase transition in a system of self-driven pinproceedings.
Phys. Rev. Lett. 75(6), 1226 (1995)

Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans.
Autom. Control 51(3), 401-420 (2006)

Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using
nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988—1001 (2003)

Computing Large Convex Regions
of Obstacle-Free Space Through
Semidefinite Programming

Robin Deits and Russ Tedrake

Abstract This paper presents IRIS (Iterative Regional Inflation by Semidefinite pro-
gramming), a new method for quickly computing large polytopic and ellipsoidal
regions of obstacle-free space through a series of convex optimizations. These regions
can be used, for example, to efficiently optimize an objective over collision-free posi-
tions in space for a robot manipulator. The algorithm alternates between two convex
optimizations: (1) a quadratic program that generates a set of hyperplanes to separate
a convex region of space from the set of obstacles and (2) a semidefinite program that
finds a maximum-volume ellipsoid inside the polytope intersection of the obstacle-
free half-spaces defined by those hyperplanes. Both the hyperplanes and the ellip-
soid are refined over several iterations to monotonically increase the volume of the
inscribed ellipsoid, resulting in a large polytope and ellipsoid of obstacle-free space.
Practical applications of the algorithm are presented in 2D and 3D, and extensions
to N-dimensional configuration spaces are discussed. Experiments demonstrate that
the algorithm has a computation time which is linear in the number of obstacles,
and our MATLAB [18] implementation converges in seconds for environments with
millions of obstacles.

1 Introduction

This work was originally motivated by the problem of planning footsteps for a bipedal
robot on rough terrain. We consider areas where the robot cannot safely step as
obstacles, and we plan whole-body walking motions of the robot by optimizing
over the space of safe foot positions. Planning around obstacles generally introduces
non-convex constraints, which typically can only be solved with weak or probabilistic
notions of optimality and completeness. In practice, we want a real-time footstep
planner that we can trust to find a locally-good path if it exists.

R. Deits () - R. Tedrake
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
e-mail: rdeits @csail.mit.edu

R. Tedrake
e-mail: russt@csail.mit.edu

© Springer International Publishing Switzerland 2015 109
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_7

110 R. Deits and R. Tedrake

One approach to combat the non-convexity of the constraints is to divide the
obstacle-free region of space into a minimal discrete set of (possibly overlapping)
convex regions, but this subdivision is nontrivial. For this work, we assume a con-
figuration space consisting of a bounded region in IR” which contains polyhedral
obstacles. When n = 2, we can think of the free space as a polygon with polygonal
holes. Even for this simple case, the problem of partitioning the free space into a
minimum number of convex parts is NP-hard [13]. Additionally, searching for the
minimum number of convex regions may not be the correct problem to solve; we
may be willing to give up having a complete cover of the space in order to reduce
the number of convex pieces.

In our bipedal robot application, we expect that a human operator or a higher-level
planning algorithm can provide helpful guidance about the general area into which
the robot should step. If, for example, the operator were to select one or more seed
points in space, indicating possible areas into which the robot could step, we would
like to find large, convex, obstacle-free regions near those selected points in space so
that we can perform an efficient convex optimization of the precise step locations.

A concrete example may be helpful here. Figure 1a shows a simple rectangular
region with two rectangular obstacles. The obstacle-free region can be minimally
decomposed into two non-overlapping convex regions, as shown in Fig. 1b. However,
running our algorithm once using the green point as a seed results in a single larger
region around the point of interest while maintaining convexity, as shown in Fig. lc.
Additional runs of the algorithm, seeded from the remaining obstacle-free space,
could fill the remaining space if desired. Figure 2 shows the same approach applied
to real terrain map data captured from an Atlas humanoid robot, using the software
developed by Team MIT for the DARPA Robotics Challenge [5].

Our approach, as described in Sect. 3, begins with an initial guess, defined as a
point in IR”. We construct an initial ellipsoid, consisting of a unit ball centered on the
selected point. We then iterate through the obstacles, for each obstacle generating a
hyperplane which is tangent to the obstacle and separates it from the ellipsoid. These
hyperplanes then define a set of linear constraints, whose intersection is a polytope.

\\\\\\\\\\\\\\\\\

Obstacles
Starting point /

//////1//////1//////
IIIIIIIIIIIIIIIIII

/

-

Fig. 1 A simple 2D environment with two rectangular obstacles and a point of interest (left). The
minimal non-overlapping convex decomposition of the obstacle-free space produces two polygonal
regions (center), while our algorithm produces a larger convex region about the point of interest
and an inscribed ellipsoidal region (right)

Computing Large Convex Regions of Obstacle-Free ... 111

Fig. 2 A visualization of an Atlas humanoid standing in front of a set of tilted steps, as seen in the
DARPA Robotics Challenge 2014 trials [5], with two convex regions of safe terrain displayed (blue
ellipses and red polytopes). The green circles indicate two points chosen by a human operator for
possible locations of the next footstep. To compute the safe regions, we construct a grid of height
values from LIDAR scans, check the steepness of the terrain at every point on the grid, and convert
any cells with steepness above a threshold into obstacles. We then run the IRIS algorithm with these
obstacles starting from the user-selected points

We can then find a maximal ellipsoid in that polytope, then use this ellipsoid to
define a new set of separating hyperplanes, and thus a new polytope. We choose our
method of generating the separating hyperplanes so that the ellipsoid volume will
never decrease between iterations. We can repeat this procedure until the ellipsoid’s
rate of growth falls below some threshold, at which point we return the polytope and
inscribed ellipsoid. Examples of this procedure in 2D and 3D can be seen in Figs. 3
and 4, respectively.

The IRIS algorithm presented here assumes that the obstacles themselves are con-
vex, which is an important limitation. However, existing algorithms for approximate
or exact convex decomposition can be easily used to segment the obstacles into con-
vex pieces before running our algorithm [12, 17], and the favorable performance
of our algorithm for large numbers of obstacles means that the decomposition of
the obstacles need not be minimal. It is also important to note that the algorithm as
written here does not guarantee that the initial point in space provided by the user
will be contained in the final ellipsoid or polytope. In the experiments presented in
Fig.5, the point was contained in the final hull 95 % of the time. If this condition is
required by the application, then the algorithm can be terminated early should the
region found ever cease to include the start point.

R. Deits and R. Tedrake

~ Polytope intersection

~, . .
Starting point

Fig. 3 A demonstration of the IRIS algorithm in a planar environment consisting of 20 uniformly
randomly placed convex obstacles and a square boundary. Each row above shows one complete
iteration of the algorithm: on the left, the hyperplanes are generated, and their polytope intersection
is computed. On the right, the ellipse is inflated inside the polytope. After three iterations, the ellipse
has ceased to grow, and the algorithm has converged

Computing Large Convex Regions of Obstacle-Free ... 113

Fig. 4 An example of generating a large convex region in configuration space. A 2D environment
containing 10 square obstacles was generated, and the configuration space obstacles for a rod-
shaped robot in that environment were built by dividing the orientations of the robot into 10 bins
and constructing a convex body for each range of orientations [15]. The top two rows show the
first two iterations of the algorithm, generating the separating planes on the left and generating
the ellipsoid on the right. The obstacles are shown in black, the polyhedral intersection of the
hyperplanes in red, and the ellipsoid in purple. At the bottom left are the final ellipsoid and polytope
after convergence, and at the bottom right is the original 2D environment with 50 configurations of
the robot uniformly sampled from the obstacle-free polytope

114 R. Deits and R. Tedrake

—_— Total time —e— Time computing ellipses
- - - Time computing planes Slope = 1 reference
) Timing Analysis (2D) Timing Analysis (3D)
10? S L B AL B L B R LLLL B L 102 S AL B AL SR B L B AL
10" E 10 E E
= R . R .
g 10°F 3 W0E
§ R . R
H o107t g E 107" E
=] R . R
SR EE U E
1077 ¢ 5 1077 F E
10~% L1 L-’m.ml ERETT R NI R RTTTTY MR ERTEIT 1074 L I"‘vx FRRTTT R RATTTY EARRUTTIY MRS TTITY AR RRTIT M |
100 102 10° 10* 10° 109 0t 10> 10* 10* 10° 10°
Number of Obstacles Number of Obstacles
. LA BLLLLALLL IR L B R Rl AL | ILLLALLLL BLLLALLLL B AL B N AL B R RLLL
g 12 -1 12 -1
£
5]
5 8[| 8| |
2
Rt
5 4l | 4t |
g
& 0 11U 11| 11U 11| I 0 11| 11U 11| 11U 11|
100 102 10° 10* 10° 108 0t 10 10* 10* 10° 10°
Number of Obstacles Number of Obstacles

Fig. 5 Timing results of 1200 runs of the IRIS algorithm implemented in MATLAB on an Intel
i7 processor at 2.5 GHz with 8§ Gb of RAM. In each of the 2D and 3D cases, we generated 100
environments at 6 logarithmically spaced numbers of obstacles between 10! and 10°. Obstacles
were uniformly randomly placed in each environment. Total time required to converge to a single
convex region is shown above, along with the breakdown of time spent computing the separating
hyperplanes and time spent finding the maximal ellipsoid. These plots demonstrate the empirically
linear scaling of computation time with number of obstacles: time spent computing planes increases
linearly with obstacle count, approaching a slope of 1 on this log-log plot, while time spent finding the
ellipsoid is nearly constant. Below, we show the number of iterations of the algorithm (each iteration
consists of finding the entire set of hyperplanes and the maximal ellipsoid) before convergence to
a relative change in ellipsoid volume of less than 2 %. Error bars are all one standard deviation

In the remainder of this paper, we discuss the precise formulation of the algorithm
and its relationship to existing approaches. We demonstrate the algorithm in 2D
and 3D cases and discuss its application in N-dimensional configuration spaces.
Finally, we show that the algorithm is practical for extremely cluttered environments,
demonstrating that we can compute a convex region in an environment containing
one million obstacles in just a few seconds, as shown in Fig.5.

Computing Large Convex Regions of Obstacle-Free ... 115

2 Related Work

There are a variety of algorithms for approximate or approximately minimal convex
decompositions, most of which focus on creating a convex or nearly convex cover of
some space. Lien proposes an algorithm for segmenting non-convex polygons con-
taining polygonal holes into a small number of pieces, each of which is allowed some
small degree of concavity [12]. Similarly, Mamou’s approach converts a triangulated
3D mesh into a set of approximately convex pieces by iteratively clustering faces of
the mesh together according to heuristics based on convexity and aspect ratio [17].
Liu’s approach [14], on the other hand, is applicable in spaces of arbitrary dimension
and relies on an integer linear programming formulation to compute a set of cuts
which divide the obstacle into approximately convex pieces. These approaches are
not well suited to convex optimization over obstacle-free space: we require convex
regions, and taking the convex hull of the approximately convex pieces may result
in regions which intersect the obstacle set.

There also exist polynomial-time approximation algorithms for approximately
minimal convex covers. Eidenbenz describes an algorithm which computes a nearly-
minimal set of overlapping convex pieces for a polygon with holes [4]. Their method
achieves a number of pieces within an error bound which is logarithmic in the number
of vertices, but it requires running time of O (n* logn), where n is the number of
vertices in the polygon. Feng also describes an approach that divides an input polygon
with holes into pieces, which can be convex if desired, and generates a tree structure
of adjacent pieces [6]. This is a promising approach, but their algorithm as presented
is not applicable beyond the 2D case.

Convex decompositions which do not attempt to find the minimum number of seg-
ments have also been used: Demyen’s approach involves triangulating the entire free
space by connecting all mutually visible vertices on the obstacles, then performing
path search among the triangulated regions [3]. Finally, Sarmiento produces convex
polytopic regions in N dimensions by sampling points in free space and checking
visibility from a set of “guard” positions [22]. This work produces results which
appear to be the most similar to ours, but requires as input a set of samples which
cover the workspace. Instead, we focus on creating a single, large, convex region
in some local area, allowing later optimizations to be run inside this region without
further consideration given to the positions of obstacles.

Fischer solves a similar problem of finding a single maximal convex polygon in
a discrete environment [7] in polynomial time. His problem formulation consists of
a set of points which are labeled as positive or negative, with the goal being to find
a convex polygon of maximal area which has vertices only on positive points and
which contains no negative points on its boundary or interior. This is a restricted
form of our task, but it is one which can be solved to optimality with effort which is
polynomial in the number of points in the set.

116 R. Deits and R. Tedrake

The problem of finding obstacle-free regions is also relevant in structural biology,
in which a user might wish to find the void volumes enclosed by a molecular structure
represented as a collection of solid spheres. For example, Sastry performs a search
over the vertices of the Voronoi cells containing the spherical molecules to find the
connected cavities, but these cavities are not necessarily convex [23]. Luchnikov
extends this notion of searching for (non-convex) voids over the Vornoi network to
non-spherical objects [16].

3 Technical Approach

3.1 Proposed Algorithm

Our algorithm searches for both an ellipsoid and a set of hyperplanes which separate
it from the obstacles. We choose to represent the ellipsoid as an image of the unit
ball: £(C,d) = {x = Cx +d | ||x]| < 1} and we represent the set of hyperplanes as
linear constraints: P = {x | Ax < b}. We have chosen this definition of the ellipsoid
because it makes maximization of the ellipsoid volume straightforward: volume of
the ellipsoid is proportional to the log of the determinant of C, which is a concave
function of C [2] and can therefore be efficiently maximized. In searching both for
the ellipsoidal region and the hyperplanes which separate it from the obstacles, we
are attempting to solve the following nonconvex optimization problem:

maximize logdetC

A,b,C.d
subject to aijk > b; forall pointsvg €Y, forj=1,..., N (1)
sup @, (C¥+d) <b; Vi=[l,...,N]
Ixl<1

where a; are the rows of A, b; are the elements of b, ¢; is the set of points in the
convex obstacle j, and N is the number of obstacles. The constraint that aTvk >bj
for all points vy € {; forces all of the points in obstacle ?; to lie on one side of the
plane defined by a;.rx = b;. The second constraint ensures that all x = Cx +d
where [|X|| < 1 fall on the other side of that plane. Satisfying these constraints for
every obstacle j ensures that the ellipsoid is completely separated from the obstacles.
Rather than solving this directly, we will alternate between searching for the planes
defining the linear constraints a; and b; and searching for the maximal ellipsoid
which satisfies those constraints. The general outline of the IRIS procedure is given
in Algorithm 1.

Computing Large Convex Regions of Obstacle-Free ... 117

Algorithm 1 Given an initial point g and list of obstacles O, find an obstacle-
free polytopic region P defined by Ax < b and inscribed ellipsoid £ =
{Cx+d||x|| <1} such that £ € P and P intersects O only on its boundary.
Subroutine SEPARATINGHYPERPLANES is expanded in Algorithm 2, and subroutine
INSCRIBEDELLIPSOID is described in Sect. 3.4
Co < €lyxn
do < qo
i <0
repeat
(Ajt+1, bi+1) < SEPARATINGHYPERPLANES(C;, d;, O)
(Ci4+1,di+1) < INSCRIBEDELLIPSOID(A; 11, bi+1)
i <—i+1
until (det C; —detC;_y) /det C;_| < tolerance
return (A,’, b,‘, Cl’, d,')

3.2 Initializing the Algorithm

The IRIS algorithm begins with an initial point in space, which we will label as g.
The formal algorithm described here requires g to be in the obstacle-free space, but
in practice we can sometimes recover from a seed point which is inside an obstacle by
reversing the orientation of one or more of the separating hyperplanes. We initialize
the algorithm with an arbitrarily small sphere around qo by setting dy < qo and
Co < €l,xn.

3.3 Finding Separating Hyperplanes

We attempt to find separating hyperplanes which will allow for further expansion
of the ellipsoid while still ensuring that the interior of the ellipsoid never intersects
the interior of any obstacle. Conceptually, the procedure for finding the separating
hyperplanes involves finding planes that intersect the boundaries of the obstacles and
that are tangent to uniform expansions of the ellipsoid. Given an ellipsoid £(C, d) =
{Cx +d | ||Ix|| < 1}, we define a uniform expansion of £ as

Ea={Cx+d||Xl| <a} forsomea > 1 2)

To find the closest point on an obstacle ?; to the ellipsoid, we can search over
values of «

a* =argmin «
o

subject to EaNy #£O 3)

118 R. Deits and R. Tedrake

We label the point of intersection between &+ and {; as x*. We can then compute
a hyperplane, a! x = b, with a ;7 € R" and b; € R which is tangent to £y« and
which passes through x*. This hyperplane separates £y« and !}, and, since £ C &,
for @ > 1, it also separates £ from ;. We choose the sign of a; and b; such that
aI.Tx > b for every x € {;.

" Using this procedure, we can find for every obstacle a plane which separates it
from the ellipsoid at every iteration. In practice, we perform several optimizations
to allow for efficient computation with very large numbers of obstacles, and we are

generally able to avoid computing a new plane for every single obstacle.

Finding the Closest Point to the Ellipse. Rather than actually searching over values
of « as in (3), we can instead simplify the problem of finding a separating plane to a
single least-distance programming problem, which we can solve very efficiently.

Let £(C, d) be our ellipsoid and let v; 1, v;2,..., v, be the vertices of the
convex obstacle ;. Our ellipsoid is defined as an image of the unit ball in IR":
E ={Cx +d | ||x|| < 1}, so we construct the inverse of this image map:

Ellipse space Ball space

E={Cx+d|lxl =1} E={feR" ||| <1}

j = ConvexHull(vj 1, ..., vjm) tj = ConvexHull(vj 1, ..., Vjm)
Vjk = Cﬁj’k +d 17_,‘,1(= C_l(vj.k —d)

_ We now need only to find the closest point to the origin on the transformed obstacle
!j, then apply the Cx + d map once more to find the closest point to the ellipse on
!j. We can construct the problem of finding this point as:

arg min ||)Z||2
xeR", welR™
subject to [f)j,l Vj2 ... f)j,m] w=Xx

m
Zw,-:l

i=1

w; >0

“4)

in which we search for the point X which is a convex combination of the v; ; and
which is closest to the origin. As written, this is a quadratic program, but it can be
transformed into a least-distance programming instance and solved very efficiently as
a least-squares problem with nonnegativity constraints [11]. In our implementation,
we achieved the best performance by solving the original quadratic program in (4)
using a task-specific solver generated by the CVXGEN tools [19]. The CVXGEN

Computing Large Convex Regions of Obstacle-Free ... 119

solver is able to compute the closest point for a typical obstacle with 8§ vertices in 3
dimensions in under 20 s on an Intel i7. We have also had success with the standard
commercial QP solvers Mosek [21] and Gurobi [9], but both required upwards of 1
ms for similar problems.

This optimization yields a point x*. Applying the original map gives x* = Cx* +
d, which is the point on obstacle {; closest to the ellipsoid.
Finding the Tangent Plane. The simplest way to find the tangent plane to the
ellipsoid is to consider the inverse representation of £ as

&= {x l—ad)TC ' T(x—d) < 1} (5)

We can find a vector normal to the surface of the ellipse by computing the gradient
of the ellipsoid’s barrier function at x*:

aj =V, [(x —)Tc e T(x — d)]

x (6)
=2c"'c T (x* = d).

Once we have a;, we can trivially find b}, since the plane passes through x*:

.
bj:ajx*. @)

Removing Redundant Planes. In an environment with very many obstacles, most
of the separating hyperplanes found using the above procedure turn out to be unnec-
essary for ensuring that the ellipsoid is obstacle-free. This can be seen in Fig. 3, in
which at every iteration just 4 or 5 planes are required to completely separate the
ellipse from all 20 obstacles. By eliminating redundant planes, we can dramatically
improve the efficiency of the ellipsoid maximization step.

For a given obstacle ! ; we compute a; and b such that a}—x > bjforallx € ;. We

can then search through all other obstacles }, k # j and check whether a| v > b j
also holds for every point v € ;. Since the obstacles are required to be polyhedral, we
need only to check the inequality at the vertices of each ;. If it holds, then obstacle
) is also separated from £ by the hyperplane in question, so we can skip computing
a separating hyperplane for obstacle . To improve this further, we can start with the
obstacle containing the closest vertex to the ellipse, since a hyperplane separating
that obstacle from the ellipse will likely also separate many more distant obstacles,
and then work outward until all obstacles have been separated from £ by some plane.
This procedure is detailed in Algorithm 2.

120 R. Deits and R. Tedrake

Algorithm 2 Given matrix C and d defining an ellipse &, as in Algorithm 1, and
a set of convex obstacles O, find A and b defining a set of hyperplanes which are
tangent to the uniform expansion of £ and with {x € R" | Ax < b} N O = @. Sub-
routines CLOSESTOBSTACLE, CLOSESTPOINTONOBSTACLE, and TANGENTPLANE are
described in Sect.3.3
function SEPARATINGHYPERPLANES(C, d, O)
Oexcluded «— g
Oremaining ~ 0
i <1
while Oremaining 7& @ do
¥* < CLOSESTOBSTACLE(C, d, Oremaining)
x* <« CLOSESTPOINTONOBSTACLE(C, d, 1*)
(a;j, bj) < TANGENTPLANE(C, d, x*)
for all; € Oremaining do
if a[.Tx_,- > b; Vxj € then

Oremaining <~ Oremaining \ U
Oexcluded < Oexcluded Y U
end if
end for
i <—i+1
end while
alT by
A« a; , b« b2

return (A, b)
end function

3.4 Computing the Inscribed Ellipsoid

The problem of computing an ellipsoid of maximum volume inscribed in a polytope
is well studied, and efficient practical algorithms for solving it can be easily found.
We represent the inscribed ellipsoid as an image of the unit ball:

E={Cx+d|lx]| =1} ®)

with the volume of the ellipsoid proportional to the determinant of C [2]. The
problem of finding the maximum volume ellipse contained in the polytope P =
{x € R" | Ax < b} can be expressed as

maximize logdet C
C.d

subject to sup(aiTC)Z)—i—ade <b; Vi=]l,...,N] 9)

lxl=<1

C>0

Computing Large Convex Regions of Obstacle-Free ... 121
as stated by Boyd [2], where the a; and b; are the rows and elements, respectively,
of A and b and A € RY*", The constraints can be rewritten without mention of %,

yielding:

maximize logdetC
C,d

subjectto |aTC| +al < b¥i=11,...,N] (10)

Cc>0

which is a convex optimization [2]. Khachiyan and Todd describe an approxima-
tion algorithm to solve this problem through a sequence of convex optimizations
with linear constraints with a guaranteed convergence to within a given relative
error from the maximum possible ellipsoid volume [10]. Ben-Tal and Nemirovski,
meanwhile, present a method for computing the ellipsoid through a semidefinite
and conic quadratically constrained optimization [1], and we use this approach, as
implemented by Mosek [20], in our code. We have also successfully used CVX, a
tool for specifying and solving convex problems [8], to solve (10), but we found that
the Mosek implementation was at least an order of magnitude faster, primarily due
to the overhead of constructing the problem in CVX.

3.5 Convergence

The IRIS algorithm makes no guarantee of finding the largest possible ellipsoid in
the environment, but it still provides some assurance of convergence. Since our
separating hyperplanes are, by construction, tangent to an expanded ellipsoid &,
for some o > 1, the original ellipsoid £ will always be contained in the feasible
set of Ax < b. Additionally, because the ellipsoid maximization SDP is a convex
optimization which is solved to its global maximum, it must be true that the volume
of the ellipsoid produced no less than the volume of £. If this were not the case,
then £ would be a feasible solution with larger volume, which contradicts global
optimality of the SDP. As long as the environment is bounded on all sides, there is
an upper limit on the volume of the ellipsoid, corresponding to the whole volume
of the environment. Since the ellipsoid volume is bounded above and monotonically
increasing, it will converge to a final value, although we do not currently make any
claims about how many iterations this will require.

122 R. Deits and R. Tedrake

4 Results

We implemented the proposed algorithm in MATLAB [18], using CVXGEN [19] to
solve each least-distance QP and Mosek [20] to solve each maximal-ellipsoid SDP.
Given a list of convex obstacles, a boundary around the environment, and a starting
point, the implemented algorithm rapidly finds a large convex region and its inscribed
ellipsoid. A simple 2D example of the results can be seen in Fig. 3. The algorithm is
also equally applicable in 3D, or in the 3D representation of the configuration space
of a 3-degree of freedom robot. Such an application is shown in Fig.4, in which a
convex region of configuration space for a rod-shaped robot in the plane is found
and sampled. The algorithm also extends without modification to higher dimensions.
Figure 6 shows a 3D slice of the output of the IRIS procedure in 4 dimensions, and
the algorithm can also be run in higher-dimensional configuration spaces, assuming
that the N-dimensional configuration space obstacles can be generated.

A major advantage of this algorithm is the efficiency with which it can handle
extremely cluttered environments. Computing each separating hyperplane requires
work which is linear in the number of obstacles, since each obstacle must be checked
against the newly found hyperplane to determine if it is also excluded, as in Sect. 3.3.
The total number of planes required to exclude all the obstacles, however, turns out
to be nearly constant in practice. This means that the entire hyperplane computa-
tion step requires nearly linear time in the number of obstacles. Additionally, since
each hyperplane found creates one constraint for the ellipsoid maximization step,
the constant number of hyperplanes means that the ellipsoid maximization requires
approximately constant time as the number of obstacles increases. We demonstrate
this by running the algorithm in 2D and 3D for 10 to 1,000,000 obstacles and dis-
playing the linear increase in computation time in Fig.5.

~05

xg 95 ~, " 1

Fig. 6 An example of the output of the algorithm in 4-dimensional space. We generated 4-
dimensional obstacles consisting of uniformly random points centered on uniformly randomly
chosen locations in [—1, 1]*. The figure shows the 3-dimensional intersection with the x4 = 0
plane of the obstacles and the polytope produced by the IRIS algorithm

Computing Large Convex Regions of Obstacle-Free ... 123

5 Conclusion

We have demonstrated a new algorithm for finding large regions of obstacle-free
space in a cluttered environment. These regions can be rapidly computed and then
used later to aid some future optimization problem, such as the problem of planning
robot footstep locations while avoiding obstacles.

Our immediate future plans are to apply this algorithm to footstep planning for
a real humanoid robot. We will allow the user to select a point in space on a terrain
map, compute an obstacle free region, and find a footstep position which optimizes
reachability and stability within that region. We are also interested in exploring other
applications of this algorithm to problems beyond footstep planning, in which one
or more convex regions are preferable to a large set of non-convex constraints.

6 Source Code and Animations

A development version of the IRIS implementation can be found on GitHub at https://
github.com/rdeits/iris-distro. It includes all of the algorithms presented in this paper,
as well as animations of IRIS running in 2D, 3D, and 4D.

Acknowledgments This work was supported by the Fannie and John Hertz Foundation and by MIT
CSAIL. The authors also wish to thank the members of the Robot Locomotion Group at CSAIL for
their advice and help.

References

1. Ben-Tal, A., Nemirovski, A.: More examples of CQ-representable functions/sets. Lectures
on Modern Convex Optimization: Analysis. Algorithms and Engineering Applications, pp.
105-110. MPS-SIAM Series on Optimization, SIAM, Philadelphia, PA (2001)

2. Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cambridge
(2004)

3. Demyen, D., Buro, M.: Efficient triangulation-based pathfinding. AAAI 6, 942-947 (2006).
http://www.aaai.org/Papers/ AAAI/2006/ AAAI06-148.pdf

4. Eidenbenz, S.J., Widmayer, P.: An approximation algorithm for minimum convex cover with
logarithmic performance guarantee. SIAM J. Comput. 32(3), 654-670 (2003). http://epubs.
siam.org/doi/abs/10.1137/S0097539702405139

5. Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., Perez
D’ Arpino, C., Deits, R., DiCicco, M., Fourie, D., Koolen, T., Marion, P., Posa, M., Valen-
zuela, A., Yu, K.T., Shah, J., lagnemma, K., Tedrake, R., Teller, S.: An architecture for online
affordance-based perception and whole-body planning. J. Field Robot. (2014). http://dspace.
mit.edu/handle/1721.1/85690

6. Feng, H.Y.F,, Pavlidis, T.: Decomposition of polygons into simpler components: feature gen-
eration for syntactic pattern recognition. IEEE Trans. Comput. 100(6), 636-650 (1975). http://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1672869

https://github.com/rdeits/iris-distro
https://github.com/rdeits/iris-distro
http://www.aaai.org/Papers/AAAI/2006/AAAI06-148.pdf
http://epubs.siam.org/doi/abs/10.1137/S0097539702405139
http://epubs.siam.org/doi/abs/10.1137/S0097539702405139
http://dspace.mit.edu/handle/1721.1/85690
http://dspace.mit.edu/handle/1721.1/85690
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1672869
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1672869

124 R. Deits and R. Tedrake

7. Fischer, P.: Finding maximum convex polygons. In: sik, Z. (ed.) Fundamentals of Computation
Theory. Lecture Notes in Computer Science, vol. 710, pp. 234-243. Springer, Berlin (1993).
http://link.springer.com/chapter/10.1007/3-540-57163-9_19

8. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1
(2014). http://cvxr.com/cvx

9. Gurobi Optimization Inc: Gurobi optimizer reference manual (2014). http://www.gurobi.com/

10. Khachiyan, L.G., Todd, M.J.: On the complexity of approximating the maximal inscribed
ellipsoid for a polytope. Math. Program. 61(1-3), 137-159 (1993). http://link.springer.com/
article/10.1007/BF01582144

11. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. SIAM, Philadelphia (1995)

12. Lien, J.M., Amato, N.M.: Approximate convex decomposition of polygons. In: Proceedings
of the Twentieth annual symposium on Computational Geometry, pp. 17-26 (2004). http://dl.
acm.org/citation.cfm?id=997823

13. Lingas, A.: The power of non-rectilinear holes. In: Nielsen, M., Schmidt, E.M. (eds.) Automata,
Languages and Programming. Lecture Notes in Computer Science, vol. 140, pp. 369-383.
Springer, Berlin (1982). http://link.springer.com/chapter/10.1007/BFb0012784

14. Liu, H., Liu, W., Latecki, L.: Convex shape decomposition. In: 2010 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 97-104 (2010)

15. Lozano-Perez, T.: Spatial planning: a configuration space approach. IEEE Trans. Comput (2),
108-120 (1983). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1676196

16. Luchnikov, V.A., Medvedev, N.N., Oger, L., Troadec, J.P.: Voronoi-delaunay analysis of voids
in systems of nonspherical particles. Phys. Rev. E 59(6), 7205 (1999). http://pre.aps.org/
abstract/PRE/v59/i6/p7205_1

17. Mamou, K., Ghorbel, F.: A simple and efficient approach for 3d mesh approximate convex
decomposition. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp.
3501-3504 (2009)

18. MATLAB: version 8.2.0.701 (R2013b). The MathWorks Inc., Natick, MA (2013)

19. Mattingley, J., Boyd, S.: CVXGEN: Code generation for convex optimization (2013). http://
cvxgen.com/docs/index.html

20. Mosek ApS: Inner and outer lowner-john ellipsoids (2014). http://docs.mosek.com/7.0/
matlabfusion/Inner_and_outer_L_wner-John_Ellipsoids.html

21. Mosek ApS: The MOSEK optimization software (2014). http://www.mosek.com/

22. Sarmiento, A., Murrieta-Cid, R., Hutchinson, S.: A sample-based convex cover for rapidly find-
ing an object in a 3-d environment. In: Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, (ICRA 2005). pp. 3486-3491. IEEE (2005). http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=1570649

23. Sastry, S., Corti, D.S., Debenedetti, P.G., Stillinger, F.H.: Statistical geometry of particle pack-
ings.i.algorithm for exact determination of connectivity, volume, and surface areas of void
space in monodisperse and polydisperse sphere packings. Phys. Rev. E 56(5), 5524-5532
(1997). http://link.aps.org/doi/10.1103/PhysRevE.56.5524

http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/3-540-57163-9_19
http://cvxr.com/cvx
http://www.gurobi.com/
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/BF01582144
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/BF01582144
http://dl.acm.org/citation.cfm?id=997823
http://dl.acm.org/citation.cfm?id=997823
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/BFb0012784
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1676196
http://pre.aps.org/abstract/PRE/v59/i6/p7205_1
http://pre.aps.org/abstract/PRE/v59/i6/p7205_1
http://cvxgen.com/docs/index.html
http://cvxgen.com/docs/index.html
http://docs.mosek.com/7.0/matlabfusion/Inner_and_outer_L_wner-John_Ellipsoids.html
http://docs.mosek.com/7.0/matlabfusion/Inner_and_outer_L_wner-John_Ellipsoids.html
http://www.mosek.com/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1570649
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1570649
http://link.aps.org/doi/10.1103/PhysRevE.56.5524

A Region-Based Strategy for Collaborative
Roadmap Construction

Jory Denny, Read Sandstrom, Nicole Julian and Nancy M. Amato

Abstract Motion planning has seen much attention over the past two decades. A
great deal of progress has been made in sampling-based planning, whereby a plan-
ner builds an approximate representation of the planning space. While these planners
have demonstrated success in many scenarios, there are still difficult problems where
they lack robustness or efficiency, e.g., certain types of narrow spaces. Conversely,
human intuition can often determine an approximate solution to these problems quite
effectively, but humans lack the speed and precision necessary to perform the cor-
responding low-level tasks (such as collision checking) in a timely manner. In this
work, we introduce a novel strategy called Region Steering in which the user and
a PRM planner work cooperatively to map the space while maintaining the proba-
bilistic completeness property of the PRM planner. Region Steering utilizes two-way
communication to integrate the strengths of both the user and the planner, thereby
overcoming the weaknesses inherent to relying on either one alone. In one commu-
nication direction, a user can input regions, or bounding volumes in the workspace,
to bias sampling towards or away from these areas. In the other direction, the plan-
ner displays its progress to the user and colors the regions based on their perceived
usefulness. We demonstrate that Region Steering provides roadmap customizability,
reduced mapping time, and smaller roadmap sizes compared with fully automated
PRMs, e.g., Gaussian PRM.

J. Denny (X)) - R. Sandstrom - N. Julian - N.M. Amato

Parasol Lab, Department of Computer Science and Engineering,
Texas A&M University, College Station, TX, USA

e-mail: jdenny @cse.tamu.edu

R. Sandstrom
e-mail: readamus @cse.tamu.edu

N. Julian
e-mail: nvjulian@cse.tamu.edu

N.M. Amato
e-mail: amato @cse.tamu.edu

© Springer International Publishing Switzerland 2015 125
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_8

126 J. Denny et al.

1 Introduction

Planning valid (e.g., collision-free) motions for movable objects (robots) is a difficult
problem with broad applications to robotics, bioinformatics [1], gaming/virtual real-
ity [2], automated assembly [3], and other areas. Despite the importance of motion
planning, it is computationally intractable to design complete planners for high
(often >5) dimensional systems [4].

Much attention has turned to sampling-based planners [5, 6] which address this
complexity by building an approximate model of the planning space through, often
randomized, sampling of robotic configurations. Despite advances in the develop-
ment of fully automated planners, certain scenarios such as narrow passages remain
problematic or even unsolvable with these approaches [7]. Human-assisted planners
could help to remedy this, as approximate solutions to some problems are easily dis-
covered by human intuition [8]. In situations where a fully automatic planner might
not efficiently and/or reliably find a solution, a user can guide the planner by pro-
viding a nearly valid trajectory or other such hints [3]. In these systems, the human
often performs a global scene analysis of the workspace, while the machine handles
high-precision tasks such as collision detection and low level path-finding [9-11].

However, most human-assisted planners either limit the user’s interaction with
the planner (e.g., through one-time subgoal specifications) or limit the planner’s
automation (e.g., through only localized collision avoidance) with one-way interac-
tion. More recent work, I-RRT (Interactive-Rapidly-exploring Random Tree) [12],
attempts to bridge this gap. In I-RRT, the user controls a virtual avatar (represent-
ing the robot) which biases the growth direction of the planner. However, I-RRT is
designed for single-query scenarios, requires continuous user action, and constrains
the interface to one which can fully control the avatar.

We introduce a collaborative roadmap construction strategy, called Region Steer-
ing, that allows the user to steer a Probabilistic RoadMap (PRM) [5] planner
towards/away from designated regions of the workspace. Region Steering allows
the user to direct the planner by defining regions of the workspace on which to focus
or ignore. These regions are then used to bias the configuration space sampling of
the PRM. Region Steering maintains the probabilistic completeness of the under-
lying planner. Additionally, Region Steering provides live feedback to the user: it
displays not only the roadmap, but also the perceived usefulness of each region. The
user can modify, add, or delete regions dynamically to effectively steer the roadmap
toward environment coverage faster than was possible by the automated planner
alone. Region Steering also identifies regions where connecting the roadmap is dif-
ficult so that the user can provide better assistance by specifying attraction regions
in these areas. The specific contributions of our work are as follows:

e A collaborative strategy, Region Steering, in which a user specifies and manipulates
workspace regions to steer a PRM towards/away from vital areas.

e Experimental analysis of our method in a variety of environments showing both
improved mapping efficiency and roadmap customizability compared with fully
automatic planners.

A Region-Based Strategy for Collaborative Roadmap Construction 127

Region Steering offers a novel interactive system for multi-query planning that
requires only intermittent user action on a standard computer interface, e.g., a mouse.
Finally, we note that the goal of this work is to verify the feasibility of our scheme and
to understand how these hints and cooperation affect the planner. We have therefore
left the analysis and optimization of the user interface to future work.

2 Preliminaries and Related Work

In this section, we outline preliminaries and present a selection of related work that
is most relevant to our proposed collaborative planner.

Preliminaries. A robot is a movable object whose position and orientation can
be described by n parameters, or degrees of freedom (DOFs), each corresponding to
an object component (e.g., object positions, object orientations, link angles, and/or
link displacements). Hence, a robot’s placement, or configuration, can be uniquely
described by a point (x1, x2, ..., X,) (Where x; is the ith DOF) in an n-dimensional
space called the configuration space (Cspace) [13]. The subset of all feasible config-
urations is the free space (Cfr.), while the union of all infeasible configurations is
the obstacle space (Copsi). Thus, the motion planning problem is that of finding a
continuous trajectory in Cge. from a given start configuration to a goal configura-
tion. In general, it is infeasible to compute explicit C,p5; boundaries [4], but we can
often determine the validity of a configuration quite efficiently, e.g., by performing
a collision detection (CD) test in the workspace, the robot’s natural space.

Sampling-based Motion Planning. One methodology of addressing the com-
plexity of motion planning is sampling-based methods [5, 6] which solve motion
planning problems by creating an approximate mapping of C... They can typically be
categorized into graph-based approaches such as Probabilistic RoadMaps (PRMs) [5]
or tree-based approaches such as Rapidly-exploring Random Trees (RRTs) [6]. While
they improve over deterministic techniques, sampling-based approaches struggle
with discovering narrow passages [7].

Probabilistic RoadMaps (PRMs). PRMs construct a map of Cg by first randomly
sampling valid configurations. Nearby samples are then connected by validating
simple paths between them, which form the edges of the map. Finally, start and goal
configurations are connected to the roadmap and a graph search, e.g., A*, is used to
extract a solution path.

To improve the mapping of narrow passages, some PRM variants attempt to map
Copst surfaces [14—17], by intelligently biasing or filtering sampling toward the Cypg
boundary. Though this and the previous PRM variants have shown success, there are
many problems where they perform inefficiently or simply fail to generate a solution.

Region-informed Sampling-based Motion Planners. Some improvements to PRMs
use information gain or learning techniques to guide sampling to specific regions of
the environment. Feature Sensitive Motion Planning [18, 19] subdivides the space
into regions, individually plans in each region, and merges them together. It was
designed to help map heterogeneous environments. However, these methods do not

128 J. Denny et al.

easily accommodate roadmap customization as the user has no way to control the
regions.

Human-assisted Planning. Although human-assisted motion planning has been
studied for the last two decades, there is still relatively little work in this area, and no
cooperative planner has achieved widespread use. In many approaches, the human
performs global scene analysis of the workspace, while the machine handles high-
precision tasks such as collision detection. In [3, 8] the user can specify configurations
which are critical to finding a collision-free path, while the planner performs collision
checking and path-finding between sub-goals. In [20], the user is responsible for
controlling an arm’s linkage while the machine takes care of the wrist. The user sets
a number of sub-goals and finds a path between any two adjacent sub-goals using
a best-first search, while the machine examines the neighbors and chooses the first
collision free path found. In [10], when the operator uses a haptic probe to designate
the desired speed and the rate of turn for the robot, the machine performs close range
obstacle avoidance and provides force feedback to the operator. Another approach
investigates the idea of converting workspace into Cypgce [9, 21]. In this way, the robot
can be represented as a point, which is easier for humans to visualize and control.
Since Cypace is typically of higher dimension, the strategy explores interfaces that
show the user various slices of Cypqce. Human-assisted motion planning has also been
explored for dynamic environments. For example, in [11], the human can intervene
and handle events such as unexpected obstacles; afterward, the machine can resume
control without any re-planning.

A truly two-way planning approach, Interactive-RRT (I-RRT) [12] allows the user
to control an avatar representing the robot in a virtual representation of the workspace.
The algorithm biases tree growth by the avatar’s position and provides online feed-
back to the user through a haptic device and/or node coloring. This approach, how-
ever, is limited to single-query scenarios, requires the user to continuously provide
input throughout the planning process, and is constrained to interfaces which can
fully control the robot avatar. Another interactive approach using RRTs [22] intro-
duces relaxation of collision constraints to overcome difficulties in virtual assem-
bly/disassembly problems. Rough paths are retracted by a randomized method and
then connected via a bidirectional RRT.

Teleoperation. A related but distinct field is teleoperation. The primary goal of
teleoperation is to create a stable, closed-loop interaction between an operator and a
robot that provides the user with a sense of presence-at-a-distance [23]. Teleoperation
focuses on capturing a user’s mechanical skills directly, which differs from the high-
level, detached nature of human-assisted planning. Nonetheless, both seek to provide
a form of two-way communication, referred to as bilateral control in teleoperation
literature. A recent work in teleoperation [24] notes that this form of interaction can
be burdensome on the user, e.g., in situations with cyclic or repetitive motions, and
takes steps to provide the robot with greater autonomy so that the user need only
provide global guidance rather than direct control.

A Region-Based Strategy for Collaborative Roadmap Construction 129

3 Collaborative Roadmap Construction: Region Steering

In this work, we propose a simple collaborative strategy for PRM construction
in which a user specifies and manipulates workspace regions to steer a planner
towards/away from important areas. During the mapping process, the user can
observe the current state of the roadmap and see where the planner is having trouble
connecting nodes. To guide the map construction, the user can then create attract
regions in difficult areas. Attract regions bias node sampling in the workspace area
they define, which focuses node creation where it is most needed. The user can also
specify avoid regions, which conversely prevent node creation within the specified
area. These can be employed to customize the resulting roadmap by steering nodes
around undesirable or dangerous areas. We reiterate that our goal in this work is
to understand what information is useful to the planner in our strategy, and not to
evaluate the user experience.

Example. Figure 1 shows a simple example to illustrate the general progression of
our algorithm in a 2D environment with large obstacles and a few narrow passages. In
this example, we create a map-construction query to represent our desired coverage of
the space with start and goal configurations. The user begins by specifying particular
regions to influence the sampler, as shown in Fig. 1a. The user specifies two attract
regions (green) in areas that will be difficult for the planner (e.g., a long, narrow
passage), as well as one avoid region (striped). The avoid region exemplifies the
customizability aspect of our strategy. Though the planner would be likely to sample
successfully in that wider passage, the user indicates a desire to avoid that area,
perhaps due to environmental considerations not available to the planner.

Over time, the planner identifies one of the attract regions as unproductive and
changes its color to red, as shown in Fig. 1b. In contrast, the other attract region,
within the narrow passage, has proven to be useful and remains green. The avoid
region behaves as a virtual obstacle and remains devoid of samples. The user modifies
the unproductive region (Fig. Ic) by moving it into the narrow passage containing
the goal and then resizing it accordingly.

Fig.1 Example scenario. a User pre-specifies one avoid and two attract regions. b An attract region
is shaded red to indicate declining usefulness. ¢ User responds by moving the region to a more
productive location. d The resulting roadmap

130 J. Denny et al.

(a)

(Pxas pylezz)

(Px1sPy

Fig. 2 Parameterization of AABB and BS regions. AABB regions (a) are specified by two points,
while BS regions (b) are specified by a point and a radius

By exchanging cooperative feedback, the planner and user have discovered the
difficult regions of the environment in which to focus node creation. The roadmap
can thus be completed and connected efficiently (Fig. 1d).

Definitions. We define a region as a bounding volume in the workspace. In our
system, we currently implement bounding spheres (BS) and axis-aligned bounding
boxes (AABB) as shown in Fig.2; however, our planner is not restricted to these
forms of boundaries.

Regions are allowed to overlap and are classified as attract, avoid, or proposed.
Attract regions are used to bias the planner toward a region, whereas avoid regions act
as virtual obstacles that the planner must avoid. If avoid and attract regions overlap,
the avoid regions take precedence meaning that no samples will lie there. Proposed
regions are those that have been recommended by the planner but have not yet been
handled by the user. Attract regions are initially colored green but gradually change
to red as the planner deems them ineffective, avoid regions are colored dark gray,
and proposed regions are colored blue.

3.1 Collaboration Strategy

In this section, we describe a strategy for enabling a user to collaborate with an
automated planner, as shown in Algorithm 1. Given an environment and a sampling
technique, e.g., OBPRM [14], our strategy begins by allowing the user to input
regions prior to planning. After this, the planner begins mapping the space. Until
the sampler is done, e.g., samples n nodes or has ¢ % of coverage, we randomly
determine an attract region in which to focus sampling, generate a sample ¢ within
that region, and connect ¢ to the roadmap. After this, we provide feedback to the
user: first, if that node likely lies in a narrow or difficult space, we recommend a
new region based upon ¢ to the user. Second, we update the region’s usefulness and
alter the color of the region to show the estimated density of samples in the region’s

A Region-Based Strategy for Collaborative Roadmap Construction 131

free space. Lastly, we update the display of the roadmap so that the user can view
the roadmap and connected components in real-time. If g lies within an avoidance
region, we do not add ¢ to the roadmap. We provide further algorithmic details below.

Algorithm 1 Region Steering

Input: Environment e, Sampler s

Output: Roadmap g

1: while —done do

2: r < SELECTREGION(e.regions)

3: g < s.SAMPLE(r)

4: if g € a,Va € e.avoidRegions then
5 g.ADDANDCONNECT(q)

6: if ISDIFFICULTNODE(g) then
7
8
9

e¢.RECOMMENDREGION(gq)
g.UPDATEMAP()
¢ .UPDATEREGIONS ()
10: return g

We adopt a simple strategy for selecting regions. First, we consider the entire
workspace as an attract region so that we can retain the probabilistic completeness
of the underlying PRM approach we use. Then, we uniformly at random select a
region from the attract regions e.regions. We limit sampling of positional degrees
of freedom to this workspace region, and require the robot located at the sampled
configuration to lie entirely inside the workspace region selected. If the sampler
is unable to generate a configuration, we continue on with the next iteration of the
main loop of the planner. If samples repeatedly cannot be found within the region, we
gradually change the region’s color from green to red to indicate its ineffectiveness.

Assuming a sample gets added to the roadmap, ISDIFFICULTNODE will return
true if the number of successful connections is less than some threshold, i.e., one
successful connection. In this case, we insert a proposed region as a boundary around
the difficult node into the scene. If the user does not handle this region within a certain
amount of time, we remove it from the scene as the user likely thinks this region is
unimportant. Note the user can add these regions back at any time they desire.

To guide the user’s manipulation of the regions, we color the regions based upon
their perceived usefulness u to the planner by setting the region’s RGB value to be
(1 —u, u, 0). In this manner, the region is green when it is most useful and red when
it is least productive. We base the usefulness on the approximated density d of the
successful samples within the region in Cp,:

J= n N n _n+f
B ,Uv(cfreemr) U«(r)n_’i B u(r)’

where n is the number of successful samples, f is the number of failed sampling
attempts, and (. (r) is the volume of the region r. Essentially, we are loosely approxi-
mating the ratio of successful samples to the volume of Cp, covered by r. We define

132 J. Denny et al.

usefulness by: u = exp_dz, which allows us to have a smooth transition from useful
to unproductive region coloring. Our choice in metric is a monotonically decreasing
function over time motivated by the fact that too many samples in C,ps do not add
anything to the roadmap and too many samples in Cp. create oversampling and
again do not greatly help the planning process. In UPDATEMAP, we simply update
the display of the roadmap to the user. Nodes in the same connected component are
displayed with the same color so that the user can easily determine whether two
nodes are connected.

Region Steering also allows the user to customize the roadmap by specifying
avoid regions. Avoid regions act like virtual obstacles and block the sampler from
generating nodes within them. By blocking out unwanted workspace areas, the user
can easily and intuitively steer the planner toward producing a desirable roadmap. For
example, suppose our system is used to plan motions for a robot surveying an area.
The user can alter the roadmap by specifying dangerous areas as avoid regions that
the robot must evade. This flexibility offers an efficient means for handling transient
or previously unknown hazards as the roadmap can be modified without needing to
conduct further sampling.

3.2 User Input

In our collaborative system, we allow various forms of input to manipulate the regions
in an online and interactive fashion. First, the user can pre-provide regions to the plan-
ner before planning begins. Second, the user can add, delete, move, and resize regions
during the planning process. Finally, the user can optionally handle the regions which
are recommended by the system. All of these options are constructed to avoid the
need for continuous interaction: the user can provide as much or as little input as
desired.

We use simple mouse input to accommodate the various forms of interaction.
Based upon where the user clicks, we can project the 2D window coordinate
w = (wy, wy) to a 3D plane defined by a point p = (py, py, p;) and a normal
n = (ny,ny,n;). We use this operation to allow intuitive region definition and
manipulation. We outline all of the operations on regions below:

Addition. When adding a region, the user can click in the scene to define a
vertex of the bounding volume and drag the mouse to size appropriately. In planar
environments, the mouse position is projected directly onto the environment plane.
For volumetric environments, the mouse position is projected onto the plane defined
by a pointp = cczT)pos + d * camy;, and a direction n = —camy;,, where cang;
is the position of the camera, W is the direction the camera is facing in the
scene, and d is a displacement distance (typically ' /3 of the environment’s bounding
radius). For example, to add an AABB region, the user clicks the scene, which defines
a single vertex, and then drags the mouse to size the box and define a second, opposite
vertex to complete the AABB (shown in Fig. 2).

A Region-Based Strategy for Collaborative Roadmap Construction 133

Deletion. The user can select any region at any given point in time. If the user
selects a region, it can be ordered for deletion. Selection is based upon projecting
the mouse position into the scene to identify the object it hits first.

Manipulation. Manipulation is a bit more difficult. All regions can be translated
and resized in the scene. When translating, we allow for two motions. If the user
left-clicks the selected region, we translate on the plane defined by p = ¢ and
n = —camg;,, where ¢ is the center of the region. If the user right-clicks the selected
region, then we translate in and out along camy;,. To resize a given region, the user
highlights the edge of the region and resizes via click-and-drag. For example, with
AABB regions, selecting an edge allows manipulation for two of three dimensions
at any given time, or for BS regions, the radius can be manipulated by selecting the
boundary of the projected sphere. When a region is manipulated, the numbers of
successful and failed sampling attempts are reset so that the region’s effectiveness
and coloring can be recomputed.

Recommendation processing. When the user sees a recommended region, which
isinitially proposed, the user can ignore the region completely, delete it, or manipulate
it and commit it as either an attract or an avoid region. Thus, these regions do not
affect the planner until they are handled by the user.

3.3 Probabilistic Completeness

Region Steering is probabilistically complete because we retain the entire workspace
as an attract region, assuming that the underlying sampler is probabilistically com-
plete. As this region has a probability of being selected, if the underlying sampler
guarantees asymptotically complete coverage of the space, then our planner main-
tains the same property. We note that if the user creates avoid regions that prevent
solving the query, we cannot detect that through sampling-based planning alone.
This does not change the probabilistic completeness of the planner as the underlying
planning problem becomes unsolvable.

4 Experimental Analysis

In this section, we compare Region Steering with other common PRM techniques
and [-RRT [12]. We show how our strategy leverages the information provided by
the user to improve roadmap construction time and provide customized output in a
variety of scenarios. We do not claim that the user interface is optimal or intuitive:
it is merely sufficient for the user to communicate with the planner and allows us
to study the usefulness of two-way collaboration with PRMs. We leave analysis and
development of an improved interface to future work.

134 J. Denny et al.

4.1 Setup

In our experiments, we study the impact of Region Steering on PRM sampling
techniques by comparing its performance with Basic PRM (referred to as Uni-
form) [5], OBPRM [14], and Gaussian PRM [15] (referred to as Gaussian), and
I-RRT [12]. These methods were all implemented in a C++- motion planning library
developed in the Parasol Lab at Texas A&M University. It uses a distributed graph
data structure from the Standard Template Adaptive Parallel Library (STAPL) [25],
a C++ library designed for parallel computing. Our strategy is not restricted to any
underlying sampling technique: we use Uniform in these experiments, but any sam-
pler can be used. As such, we believe it is fair to compare against other samplers
which bias sampling for narrow and cluttered environments, such as OBPRM and
Gaussian PRM. For Gaussian PRM, we configure the d value of the Gaussian dis-
tribution to twice the robot radius for the environment, which provided consistent
results. Though there may be better d values, we believe that this maintains a fair
basis of comparison. I-RRT’s parameters were selected based on recommendations
in [12]. We test Region Steering with both AABB regions, referred to RS-AABB,
and BS regions, referred to as RS-BS. Additionally, we test Region Steering using
both one-way and two-way interaction to demonstrate the benefit of two-way col-
laboration. In the one-way tests, all regions are input prior to the PRM execution:
the user is not allowed to alter any regions during mapping. In the two-way tests,
the user is allowed to add, alter, and delete regions during roadmap construction as
they see fit. All methods use Euclidean distance, straight-line local planning, and a
k = 10-closest neighbor connection strategy.

All experiments were run on Dell Optiplex 780 computers running Fedora 17 with
Intel Core 2 Quad CPU 2.83 GHz processors with the GNU gcc compiler version
4.7. Each planner is run until either an example query is solved or a roadmap size of
10,000 nodes is reached. The user-guided executions were performed by graduate
students studying motion planning. In order to minimize the impact of user variance,
the users were allowed to practice with the system until they developed consistent
performance. Consequently, one- and two-way strategies did not vary significantly
across trials and in many cases differed primarily in greater care taken in region
creation for one-way tests and ability to delete unproductive regions in two-way tests.
However, it should be noted that in practicing with the system the users were able
to receive feedback from the planner on their one-way strategies; no such feedback
would be available in a true one-way system. The one-way tests thus represent the
idealized performance of a user who knows an effective strategy a priori.

The example construction query is designed to verify complete coverage of the
environment such that if the query can be solved using the roadmap, then the roadmap
sufficiently covers Cp.. Failing to solve the query indicates that there are areas that
are disconnected or not covered in the roadmap. Thus, the roadmaps constructed by
Region Steering are reusable for multi-query use: after the initial query, subsequent
queries can be solved with minimal or no further sampling. We report the number
of successful completions, the number of nodes in the final roadmap produced, the

A Region-Based Strategy for Collaborative Roadmap Construction 135

time required for initial user input (for our collaborative region strategy), and the
time needed to build the map. All experiments are run with 10 trials, and the metrics
reported are averages of the successful runs.

Environments are shown in Fig. 3. Construction queries are shown in start con-

figuration (red) and goal configuration (blue) pairs.

InHeterogeneous (Fig.3a), a simple 2DOF robot must traverse a series of clut-
tered regions and narrow passages from the bottom to the top of the environment.
In FloorPlan (Fig.3b), a 3DOF mobile robot must traverse through a cluttered
apartment from a living room to a bedroom. This environment is representative
of a possible robotic assisted-living platform for retirement communities, upon
which the floor plan is based.

In Hook (Fig.3c), an 8DOF free-flying robot with three articulated links must
maneuver through a wall with a small hole.

In LTunnel [26] (Fig.3d), an L-shaped, free-flying robot must traverse two dif-
ficult narrow passages to get from the left side of the environment to the right.
Inwalls [26] (Fig.3e), a simple stick-like robot must traverse a series of narrow
passages (walls with holes) from one end of the environment to the other.

We only compare against I-RRT in the Heterogeneous environment because this

is the only robot fully controllable by our interface, a mouse with 2DOF.

D

2
7~
b

(b) (©

(e)
LT

Fig.3 Various environments for experimental analysis. All queries require traversal through narrow
passages between the start (red) and goal (blue) configurations. a Heterogeneous. b FloorPlan. ¢
Hook. d LTunnel. e Walls

136 J. Denny et al.

4.2 Roadmap Construction Comparison

In our first experiment, we compare the mapping efficiency of Region Steering with
other PRMs: Table 1 shows the success rates of the various methods in the environ-
ments, Fig.4a displays the number of nodes in the final roadmap produced in each
environment, and Fig. 4b presents the time required by each method. In FloorPlan,
Uniform and Gaussian had normalized times of 6.786 and 1.755, respectively, and
were cut-off to better show the data.

Table 1 Success rates for the various PRMs in the test environments

Planner Heterogeneous (%) | FloorPlan (%) | Hook (%) | LTunnel (%) | Walls (%)
Uniform 30 50 80 0 0
OBPRM 70 100 100 30 100
Gaussian 90 80 90 0 100
I-RRT 100 — - — —
RS-AABB-1way | 100 100 100 100 100
RS-BS-1way 100 100 100 20 100
RS-AABB-2way | 100 100 100 100 100
RS-BS-2way 100 100 100 100 100

(a)
g Uniform
3 1 OBPRM [
Z Gaussian
o IRRT 3
,{‘J 0.1 RS-AABB-1way I
= RS-BS-1way HH
® RS-AABB-2way HEI
g 0.01 RS-BS-2way [
2

Heterogeneous FloorPlan Hook LTunnel Walls

(b)
GE) 1.6 Uniform
= 1.4 OBPRM [
- 1.2 Gaussian
D 1 IRRT [
N o8 RS-AABB-1way HE
© 0.6 RS-BS-1way HH
1S 0.4 RS-AABB-2way
[e]) RS-BS-2way [
z 0-3

Heterogeneous FloorPlan Hook LTunnel Walls

Fig. 4 a Number of nodes and b time required by each method to solve the construction query,
normalized to OBPRM. For the Region Steering methods in (b), the upper portion of the bar
represents the user’s pre-specification time, while the lower portion represents the time taken by
the automated planner after pre-specification

A Region-Based Strategy for Collaborative Roadmap Construction 137

Performance. Our experiments demonstrate that Region Steering offers more
reliable and efficient roadmap creation compared to the tested automatic methods.
The user’s input improves the number of successful construction attempts to 100 %
across all environments (in the intended two-way case). By examining the planner
feedback, the user can identify workspace areas where the planner is unable to sam-
ple or connect nodes to the map, and then intervene by creating an attract region
to bias sampling in those areas. This allows the collaborative strategy to focus sys-
tem resources on difficult regions and provides greater robustness to sampling-based
randomness compared to the automatic methods. Additionally, Region Steering typ-
ically improves construction efficiency in terms of both the number of nodes and
the total time required to build the map (even with the overhead of collecting initial
user input): Region Steering’s running time improved on the fastest automatic plan-
ners by a minimum of 46 % in Walls and a maximum of 91 % in Hook. I-RRT’s
performance is comparable to Region Steering, which performed slightly better in
Heterogeneous. We also note that if the number of queries to solve were greater,
the difference between the methods would be more pronounced as Region Steering
can reuse the computed roadmap. By taking advantage of the user’s intuitive global
analysis of the scene, Region Steering can focus sampling in difficult areas between
the connected components of a roadmap and, thus, achieve higher connectivity and
reduced planning time. In turn, the reciprocal feedback given to the user—including
showing the roadmap and connected components, visualizing a region’s usefulness,
and recommending specific regions—can guide the user toward achieving these ends.

One- versus Two-Way Communication. In three of the environments (Floor-
Plan, Hook, and Walls), the user strategies for one-way communication were very
similar to their two-way counterparts. While the ability to correct input errors and
delete unproductive regions contributed to performance, it was not the dominating
factor in these cases. Conversely, the user strategies differed significantly in the
other two environments (Heterogeneous and LTunnel). In these environments, the
two-way strategies relied on the ability to modify the regions in order to map the
space efficiently. For example, in Heterogeneous the user would typically begin with
a large region in the center and modify it as the system provided feedback to make
it smaller and more focused on areas that were not yet connected. This approach
is not possible in one-way planning, and performance in that environment suffered
from the inability to re-target the PRM’s focus. In LTunnel, the two-way strategy for
boxes achieved better performance than its one-way counterpart by simply deleting
attract regions once a single CC had broken through. The one-way spheres case for
this environment was far more dramatic because it was too difficult for the user to
precisely specify spherical regions that conservatively estimated the box-like tunnel.
In the two-way case, the user could roughly estimate the regions required and then
modify those that failed to contribute to the roadmap. The inability to make such
adjustments prevented the user from building this map consistently with spherical
regions. This implies that two-way interaction provides significant benefits when the
workspace area of interest is shaped differently than the planning region.

Region Shape. Our data shows that the user specification time for BS regions
is generally less than that of AABB regions, but the planning time for BS regions

138 J. Denny et al.

is generally greater than for AABB regions. This suggests a trade-off between the
ease of a region’s manipulability and its effectiveness. However, the total mapping
time does not seem to differ significantly. Furthermore, from our experience, differ-
ent users prefer different region types depending on the environment and situation.
While the one-way/two-way comparison hints that some of this disparity is related
to how well a planning region fits the workspace area of interest, we leave the full
investigation of these choices to a future user study.

4.3 Roadmap Customization

In this experiment, we illustrate roadmap customization through Region Steering.
The user is tasked with requiring creation of a roadmap which avoids a specific area.
We test this in the two environments shown in Fig. 5. Bui1ding is an office building
in which several homotopically equivalent paths exist for a 2D omni-directional
robot. The avoidance region shown in dark gray represents some area of danger
(such as a fire or collapsed portion of the building) that the robot should avoid.
Helicopter is a 3D cityscape that is traversed by a flying robot with 3 DOFs. In
this environment, we require the robot to avoid flying through an open architecture of
abuilding (again shown as a dark gray region). The construction query is designed so
that there are at least two homotopically distinct paths from start to goal and at least
one of them passes through the avoid region. We show the percentage of roadmaps
who’s shortest path successfully avoids the region for our Region Steering compared
to Uniform. Ten trials were completed, and the successful percentages of ‘safe’ maps
are shown in Table 2.

As we can see, our strategy is successfully able to avoid the regions that might be
traversed by an automatically planned path. Additionally, the roadmaps created by

(a)

L

H-[:_@ ‘
gy =

Fig.5 aBuildingandbHelicopter environments used toillustrate roadmap customizability.
Avoidance regions are shown in dark gray and queries are shown as red/blue pairs

A Region-Based Strategy for Collaborative Roadmap Construction 139

Table 2 Percentage of maps with shortest paths correctly steering away from the avoidance regions

Environment Uniform (%) Region steering (%)
Building 20 100
Helicopter 50 100

Region Steering contain no nodes in the avoid region, while the successful roadmaps
created by Uniform simply did not use their nodes in the avoid region for their
shortest path. We would like to emphasize that although it is possible to design these
constraints into the problem specification, our strategy allows online customization
during roadmap construction. This as-needed specification makes Region Steering
well suited to handling newly discovered or temporary constraints without needing
to alter the environment description. These simple tools enable a user to customize
solutions for a variety of scenarios with minimal operational burden.

5 Conclusion

In this paper, we introduce Region Steering, a collaborative planning approach
for PRM techniques. In one direction of interaction, the planner displays mapping
progress, colors regions based on their perceived usefulness, and recommends regions
based on difficult nodes. In the other direction, a user can manipulate, add, and delete
regions to guide sampling. Our experiments show that Region Steering provides
increased robustness and customizability compared to fully automated methods.

In the future, we plan to perform a user study to evaluate the effectiveness of the
interface. We are specifically interested in discerning what type of interactions lead
to effective cooperation between the user and the underlying planner. In addition, we
plan to extend our technique to fixed-base manipulators, which will likely provide an
opportunity to develop additional collaboration strategies for a variety of applications.

Acknowledgments This research supported in part by NSF awards CNS-0551685, CCF-0833199,
CCF-0830753, I1S-0916053, 11S-0917266, EFRI-1240483, R1-1217991, by NIH NCI R25 CA0903
01-11, by Chevron, IBM, Intel, Oracle/Sun and by Award KUS-C1-016-04, made by King Abdullah
University of Science and Technology (KAUST). J. Denny supported in part by an NSF Graduate
Research Fellowship.

References

1. Singh, A.P,, Latombe, J.C., Brutlag, D.L.: A motion planning approach to flexible ligand
binding. In: International Conference on Intelligent Systems for Molecular Biology (ISMB),
pp. 252-261 (1999)

140

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

J. Denny et al.

Lien, J.M., Pratt, E.: Interactive planning for shepherd motion. In: The AAAI Spring Sympo-
sium, March 2009

Bayazit, O.B., Song, G., Amato, N.M.: Enhancing randomized motion planners: exploring
with haptic hints. In: Proceedings of IEEE International Conference on Robotics Automation
(ICRA), pp. 529-536 (2000)

. Reif, J.H.: Complexity of the mover’s problem and generalizations. In: Proceedings of IEEE

Symposium Foundations of Computer Science (FOCS), San Juan, Puerto Rico, October 1979,
pp. 421-427

. Kavraki, L.E., gvestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path

planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566—580
(1996)

. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5),

378-400 (2001)

. Hsu, D., Latombe, J.C., Kurniawati, H.: On the probabilistic foundations of probabilistic

roadmap planning. Int. J. Robot. Res. 25, 627-643 (2006)

. Hwang, Y., Cho, K., Lee, S., Park, S., Kang, S.: Human computer cooperation in interactive

motion planning. In: Proceedings of IEEE International Conference on Advanced Robotics
(ICAR), pp. 571-576 (1997)

. Ivanisevic, 1., Lumelsky, V.J.: Configuration space as a means for augmenting human perfor-

mance in teleoperation tasks. IEEE Trans. Syst., Man, Cybern., Part B: Cybern. 30(3), 471-484
(2000)

Lee, S., Sukhatme, G., Kim, G.J., Park, C.M.: Haptic teleoperation of a mobile robot: a user
study. Presence: Teleoper. Virtual Environ. 14(3), 345-365 (2005)

Guo, C., Tarn, T., Xi, N., Bejczy, A.: Fusion of human and machine intelligence for telero-
botic systems. In: Proceedings of IEEE International Conference on Robotics and Automation
(ICRA), pp. 3110-3115 (1995)

Taix, M., Flavigné, D., Ferré, E.: Human interaction with motion planning algorithm. J. Intell.
Robot. Syst. 67(3—4), 285-306 (2012)

Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among poly-
hedral obstacles. Commun. ACM 22(10), 560-570 (1979)

Amato, N.M., Bayazit, O.B., Dale, L.K., Jones, C., Vallejo, D.: OBPRM: an obstacle-based
PRM for 3d workspaces. In: Proceedings of the Third Workshop on the Algorithmic Founda-
tions of Robotics (WAFR’98), pp. 155-168. A. K. Peters, Ltd., Natick (1998)

Boor, V., Overmars, M.H., van der Stappen, A.F.: The Gaussian sampling strategy for proba-
bilistic roadmap planners. Proc. IEEE Int. Conf. Robot. Autom. (ICRA) 2, 1018-1023 (1999)
Hsu, D., Jiang, T., Reif, J., Sun, Z.: Bridge test for sampling narrow passages with probabilistic
roadmap planners. In: Proceedings of IEEE International Conference on Robotics Automation
(ICRA), pp. 4420-4426 (2003)

Denny, J., Amato, N.M.: Toggle PRM: a coordinated mapping of C-free and C-obstacle in
arbitrary dimension. In: Algorithmic Foundations of Robotics X. (WAFR’12) of Springer Tracts
in Advanced Robotics, vol. 86, pp. 297-312. Springer, Berlin/Heidelberg (2013)

Morales, M., Tapia, L., Pearce, R., Rodriguez, S., Amato, N.M.: A machine learning approach
for feature-sensitive motion planning. In: Algorithmic Foundations of Robotics VI. (WAFR’04)
Springer Tracts in Advanced Robotics, pp. 361-376. Springer, Berlin/Heidelberg (2005)

. Berg, J., Overmars, M.: Using workspace information as a guid to non-uniform sampling in

probabilistic roadmap planners. Int. J. Robot. Res. 24(12), 1055-1072 (2005)

Ivanisevic, I., Lumelsky, V.: Human augmentation in teleoperation of arm manipulators in an
environment with obstacles. In: Proceedings IEEE International Conference on Robotics and
Automation (ICRA), pp. 1994-1999 (2000)

Ivanisevic, I., Lumelsky, V.: Augmenting human performance in motion planning tasks- the
configuration space approach. In: Proceedings on IEEE International Conference on Robotics
and Automation (ICRA), pp. 2649-2654 (2001)

Yan, Y., Poirson, E., Bennis, F.: Integrating user to minimize assembly path planning time
in plm. In: Product Lifecycle Management for Society. IFIP Advances in Information and
Communication Technology, vol. 409, pp. 471-480. Springer, Berlin Heidelberg (2013)

A Region-Based Strategy for Collaborative Roadmap Construction 141

23. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: an historical survey. Automatica 42,
2035-2057 (2006)

24. Masone, C., Franchi, A., Bulthoff, H.H., Giordano, P.R.: Interactive planning of persistent tra-
jectories for human-assisted navigation of mobile robots. In: Proceedings of IEEE International
Conference on Intelligent Robots and Systems (IROS), pp. 2641-2648 (2012)

25. Buss, A., Harshvardhan, Papadopoulos, 1., Pearce, O., Smith, T., Tanase, G., Thomas, N., Xu,
X., Bianco, M., Amato, N.M., Rauchwerger, L.: STAPL: Standard template adaptive parallel
library, pp. 1-10, ACM, New York, NY, USA (2010)

26. Amato, N.M.: Motion planning benchmarks http://parasol.tamu.edu/groups/amatogroup/
benchmarks/

http://parasol.tamu.edu/groups/amatogroup/benchmarks/
http://parasol.tamu.edu/groups/amatogroup/benchmarks/

Efficient Sampling-Based Approaches
to Optimal Path Planning in Complex
Cost Spaces

Didier Devaurs, Thierry Siméon and Juan Cortés

Abstract Sampling-based algorithms for path planning have achieved great success
during the last 15 years, thanks to their ability to efficiently solve complex high-
dimensional problems. However, standard versions of these algorithms cannot guar-
antee optimality or even high-quality for the produced paths. In recent years, variants
of these methods, taking cost criteria into account during the exploration process,
have been proposed to compute high-quality paths (such as T-RRT), some even
guaranteeing asymptotic optimality (such as RRT*). In this paper, we propose two
new sampling-based approaches that combine the underlying principles of RRT*
and T-RRT. These algorithms, called T-RRT* and AT-RRT, offer probabilistic com-
pleteness and asymptotic optimality guarantees. Results presented on several classes
of problems show that they converge faster than RRT* toward the optimal path,
especially when the topology of the search space is complex and/or when its dimen-
sionality is high.

Keywords Optimal path planning *+ Anytime path planning - Cost space path
planning - Sampling-based path planning

1 Introduction

Robot path-planning methods have traditionally focused on solving the feasible path
planning problem, i.e. on finding a collision-free path for a robot moving in a com-
plex environment. This relies on a classical framework abstracting the workspace

D. Devaurs (X)) - T. Siméon - J. Cortés
CNRS, LAAS, 7 Avenue du Colonel Roche, Toulouse 31400, France
e-mail: devaurs@laas.fr

D. Devaurs - T. Siméon - J. Cortés
Univ de Toulouse, LAAS, Toulouse 31400, France

T. Siméon

e-mail: nic @laas.fr

J. Cortés

e-mail: jcortes @laas.fr

© Springer International Publishing Switzerland 2015 143
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_9

144 D. Devaurs et al.

of a robot system into a configuration space. In many application fields, however,
generating feasible solution paths might not be sufficient. It may be required to obtain
a high-quality solution path with respect to a given cost criterion, i.e. a low-cost path.
One might even be looking for the optimal solution path with respect to this cost
criterion, i.e. the path minimizing the cost. This amounts to solving an optimal path
planning problem.

The first cost criterion to be considered was path length [4, 10, 11, 14, 15]. More
interesting problems can be addressed with more sophisticated criteria, based on the
definition of a cost function over the configuration space, which is then referred to as
a cost space. Early work in cost-space path planning only involved discrete, coarse-
grained cost functions [5, 10]. Our work focuses on continuous cost functions, which
is more challenging. As an example, in outdoor navigation problems, the cost of a
configuration can be the elevation of the position of the robot within a 2-D terrain.
When high-clearance paths are desirable, the cost of a configuration can be the
inverse of the distance between the robot and the closest obstacle [2, 7]. Even more
complex cost functions can appear in robotic problems [1, 13] and structural-biology
problems [8].

When applied to the optimal path planning problem, classical grid-based methods,
such as A* or D*, can compute resolution-optimal solution paths [16]. However, these
methods are limited to problems involving low-dimensional spaces that can be dis-
cretized without leading to a combinatorial explosion. On the other hand, sampling-
based algorithms, such as the Rapidly-exploring Random Tree (RRT) [12], have been
successful at solving complex path-planning problems in high-dimensional spaces.
Besides, they are conceptually simple and achieve probabilistic completeness. Nev-
ertheless, these algorithms originally targeted feasible path planning, and usually
produce sub-optimal solutions. Smoothing methods can be used to improve solution
paths in a post-processing phase [6], but they often provide only local improvement,
and offer no guarantee of convergence toward the global optimum. With the aim
of taking a configuration-cost function into account during the space exploration,
a variant of RRT called the Transition-based RRT (T-RRT) was proposed [7]. It
extends RRT by integrating a Metropolis-like transition test favoring the exploration
of low-cost regions of the space. It has been successfully applied to diverse robotic
problems [1, 2, 7] and structural-biology problems [8], but it offers no optimality
guarantee. Another variant of RRT, called RRT*, was devised to solve the optimal
path planning problem [10]. RRT* has been shown to guarantee asymptotic optimal-
ity, and has been applied to various robotic problems [9-11]. However, it has been
suggested that RRT* might converge slowly in high-dimensional spaces [2]. Finally,
more recent approaches focus on asymptotic near-optimality [4, 14].

In this paper, we combine two approaches, namely RRT* and T-RRT, to devise new
algorithms inheriting their respective strengths. The first algorithm, called Transition-
based RRT* (T-RRT¥*), consists of integrating the transition test of T-RRT into
RRT*. The motivation is to favor the exploration of low-cost regions of the space,
while maintaining the asymptotic properties of RRT*. The second algorithm, called
Anytime T-RRT (AT-RRT), consists of enhancing T-RRT with an anytime behavior
enabled by the integration of a procedure adding useful cycles (based on the path-cost

Efficient Sampling-Based Approaches to Optimal Path Planning ... 145

criterion) to the graph built over the space [15]. The motivation is to quickly obtain
a first high-quality solution-path and, then, carry on the exploration for the solution
to continually improve and converge toward the optimal path.

In what follows, we present a simple formulation of the feasible and optimal
path planning problems (Sect.2). Then, we describe T-RRT* and AT-RRT in greater
details (Sect.3); we prove that both algorithms are probabilistically complete and
asymptotically optimal (Sect.4). Finally, we evaluate T-RRT* and AT-RRT on sev-
eral path planning problems, and show that they converge toward the optimal path
faster than RRT* (Sect.5). Thanks to the filtering properties of the transition test
they include, T-RRT* and AT-RRT can efficiently solve difficult problems featuring
complex cost spaces, on which RRT* converges very slowly. We present several such
examples, illustrating various aspects that make a path planning problem difficult to
solve. (1) If the problem features a large-scale workspace, even in low dimension,
favoring low-cost regions avoids wasting time exploring the whole space. (2) If the
space features several homotopic classes between which it is difficult to jump, even
in low dimension, using the transition test can bias the search toward the class con-
taining the optimal path and avoid being trapped in a sub-optimal class. (3) If the
problem is high-dimensional, it is inherently complex because the search space is
intrinsically large and can potentially contain many homotopic classes.

2 Problem Formulation

2.1 Feasible Path Planning

The classical formulation of the path planning problem relies on abstracting the
workspace of a robotic system into a configuration space C, also called C-space. A
configurationq € C describes the position and volume occupied by the robotic system
in the workspace. The subset of C containing the configurations inducing collisions
with some obstacles in the workspace is denoted Copst- Assuming that its complement
in C is an open set, we denote by Cryee the set ¢l (C \ Copst) of configurations producing
no collision, where c/() denotes the closure of a set. Given an initial configuration
Ginit € Crree and a goal configuration ggoal € Cree, @ path planning problem can be
defined as a triplet (C, ginit, goal)- A path over the C-space is a continuous function
7w : [0, 1] — C. It is said to be collision-free if for all t € [0, 1], w(¢) € Ciree, i.€.
7 : [0,1] = Cpee. Let IT denote the set of all paths over C and ITfe the set of
collision-free paths in I1. The feasible path planning problem is classically defined
as follows:

Definition 1 (Feasible path planning) Given a path planning problem (C, ginit,
qgoal), find a path m € ITfee such that 7(0) = ginic and 7(1) = ggoul, if One exists, or
report failure otherwise.

146 D. Devaurs et al.

Let ITf,s denote the set of paths in [Tge satisfying this feasibility condition.
Among the path planning problems having a solution, the analysis we present requires
to focus on problems satisfying the robust feasibility property [10]. Several algo-
rithms have been proposed in the robotics community to solve the feasible path
planning problem. Among them, sampling-based approaches are not complete, but
satisfy a property called probabilistic completeness, that can be interpreted as a notion
of “almost-sure” success.

Definition 2 (Probabilistic completeness) An algorithm A is probabilistically com-
plete if, for any robustly feasible path planning problem (C, Ginit, ggoal), the proba-
bility that .4 fails to return a solution when one exists decays to zero as the running
time of A approaches infinity.

The analysis we present in Sect. 4 is based on the fact that T-RRT and RRT* have
been shown to be probabilistically complete [7, 10].

2.2 Optimal Path Planning

Letc : C — R, denote a continuous cost function associating to each configuration
of the C-space a positive cost value. Being enriched with this function, C is referred
to as a cost space, and we talk about cost-space path planning. When exploring a
cost space, instead of only looking for a feasible solution path, one might search for
a high-quality path with respect to a given path-cost criterion. Let ¢ : ITgree — R
denote this cost criterion, associating to each collision-free path a positive cost value.
It can be defined in several ways, the most common being to consider the integral
of the cost along a path. As a discrete approximation of the integral of the cost with
constant step size 0 = % (where n is the number of subdivisions of the path), the cost
of a path 7 can be defined as

cp(m) = m Zc (77 (%)) . 10

k=1

As an alternative, the mechanical work of a path can be defined as the sum of the
positive cost variations along the path, which can be interpreted as summing the
“forces” acting against the motion. It has been shown that the mechanical work can
assess path quality better than the integral of the cost in many situations [7]. As a
discrete approximation of the mechanical work with constant step size 6 = %, the
cost of a path 7 can be defined as

Cp(ﬁ)=]§max[0, c(w(g))—c(ﬂ(kzl))] . (MW)

Efficient Sampling-Based Approaches to Optimal Path Planning ... 147

We could consider other criteria to evaluate path quality, such as the maximal cost
along the path, or the average cost. In the case of feasible planning, path length could
be considered. However, this is not a good choice when planning in a cost space
because this criterion ignores the costs of the configurations along the path. Which
criterion is the most suited depends on the planning problem and on the characteristics
of its expected optimal solution. Comparing cost criteria is out of the scope of this
paper. We use both IC and MW not to limit ourselves to a single criterion, which
could bias the interpretation of the results.
The optimal path planning problem can now be defined as follows:

Definition 3 (Optimal path planning) Given a path planning problem (C, ginit, ggoal)»
a continuous configuration-cost function ¢ : C — R, and a monotonic, bounded
path-cost criterion ¢, : ITgee — Ry, find a path 7 € [Tgey such that cp(7%) =
min{cp(7) | ™ € Ifeys} if one exists, or report failure otherwise.

With these notations, an optimal path planning problem is defined as a quintuplet
(C, ginit> Ggoal, ¢, cp). If it admits a solution 7*, then 7* is called the optimal path.
Note that the analysis we present requires to focus on optimal path planning problems
admitting a robustly optimal solution [10]. In the context of optimal path planning, the
evaluation of a sampling-based algorithm should be based not only on probabilistic
completeness, but also on the concept of asymptotic optimality. This property can be
interpreted as a notion of “almost-sure” convergence toward the optimal path, and
has been defined as follows [10]:

Definition 4 (Asymptotic optimality) An algorithm A is asymptotically optimal if,
for any optimal path planning problem (C, ginit, ggoal, ¢, ¢p) admitting a robustly
optimal solution path with finite cost ¢* € R, the cost of the solution path produced
by A (this cost being infinite if no solution is available yet) decreases toward ¢* as
the running time of A approaches infinity.

The analysis in Sect.4 is based on the asymptotic optimality of RRT* [10].

3 Algorithms

The Rapidly-exploring Random Tree (RRT) [12] is a popular sampling-based algo-
rithm that can solve the feasible path planning problem. Starting from the initial
configuration giyit, RRT iteratively builds a tree 7 on the C-space. At each iteration,
a configuration grynq is randomly sampled in C, and an extension toward grand is
attempted, starting from its nearest neighbor, gpear, in 7 . If the extension succeeds, a
new configuration gpew is added to 7', and connected by an edge to gpe,r- The criteria
on when to stop the exploration can be reaching the goal configuration ggoa1, a given
number of nodes in 7', a given number of iterations, or a given running time.
Several algorithms have been devised as extensions of RRT to explore cost spaces.
Among them, the Transition-based RRT (T-RRT) consists of integrating in RRT a

148 D. Devaurs et al.

transition test that favors the exploration of low-cost regions of C [7]. This transition
test is used to accept or reject the move from gpear t0 gnew based on their respec-
tive costs. Even though it yields high-quality (i.e. low-cost) paths when solving the
feasible path planning problem on a cost space, T-RRT offers no guarantee to solve
the optimal path planning problem. The other variant of RRT we consider here,
named RRT*, has been specifically developed to solve the optimal path planning
problem [10]. In RRT*, instead of being linked to gnear, gnew 1s linked to the con-
figuration (among its neighbors in C) minimizing the cost of the path in 7 between
@init and gney. Furthermore, if, as a parent in 7, gpew allows one of its neighbors
in C to be connected to giyj¢ via a lower-cost path than the one currently available,
some rewiring is performed in 7. By deciding how to create and remove edges of
7T based on the costs of the paths between gj,ir and every node in 7, RRT* enables
the cost of the solution extracted from 7 to decrease with time. However, despite its
asymptotic-optimality guarantees, RRT* may converge slowly in high-dimensional
spaces [2].

In this work, we combine the beneficial concepts underlying these extensions
of RRT: (1) the filtering properties of the transition test in T-RRT, favoring the
creation of new nodes in low-cost regions of C, and (2) the cost-based management
of edges in RRT*, allowing the cost of the solution path to decrease with time. We
do this in two different ways, by proposing an extension to RRT* named Transition-
based RRT* (T-RRT#*) and an extension to T-RRT named Anytime T-RRT (AT-RRT).
Both algorithms can solve the optimal path planning problem and offer asymptotic-
optimality guarantees (cf. Sect.4). They allow us to efficiently explore complex cost
spaces, yielding high-quality solution paths that improve with time in an anytime
fashion.

3.1 Transition-Based RRT* (T-RRT%*)

The pseudo-code of T-RRT* is shown in Algorithm 1. T-RRT* extends RRT* by
integrating the transition test (line 6) originally developed for T-RRT [7]. This tran-
sition test is used to accept or reject the move from gpear t0 gnew based on their
respective costs. If the move is accepted, T-RRT* behaves exactly like RRT*. First,
a new node is created in G to store gpew (line 7). Then, a search in G is performed
to compute the set Qnear Of configurations contained in a neighborhood of gpey of
radius ~y (log(n) / n)'/4 (line 9). As defined for RRT*, this radius depends on the
dimension d of C, on a constant -y derived from the volume of Cgee, and on the num-
ber n of nodes in G [10]. This dependency on n ensures that the radius decreases as
G grows. The next step of the algorithm consists of finding the configuration gp;, in
Onear Y {@near} to which gpey should be connected (line 10): the parent of gpey is cho-
sen as the configuration via which the path between gini; and gnew has minimal cost.
This is done by computing, for all g, € Onear Y {¢near}, the cost CP(an) + ¢ (ﬂ'g),
where wg is the path between gipj; and ¢y, in G, and 7rg is the path between ¢, and
¢new in C. Finally, since the addition of a new node in G potentially leads to the
appearance of new paths having lower costs than those currently in G, some rewiring

Efficient Sampling-Based Approaches to Optimal Path Planning ... 149

Algorithm 1: Transition-based RRT* (T-RRT*)

input : the optimal path planning problem (C, Ginit, ggoal» €, Cp), the dimension d
of the C-space, and the y constant derived from the volume of Cgree [10]
output: the graph G
G < initGraph(gini)
while not stoppingCriteria(g) do
Grand < sampleRandomConfiguration(C)
Gnear < findNearestNeighbor(G, grand)
Gnew < extend(¢near » Grand)
if gnew 7 null and transitionTest(G, ¢(gnear), €(¢new)) then
addNewNode(G, gnew)
n < numberOfNodes(G)
Onear < nearestNeighbors(F, gnew , v (log(n) / n)l /d)
Gpar < parentMinimizingCostFromInit(gnew > gnear » Onear » Cp)
addNewEdge(G, qpar » Gnew)
foreach g, € Qpear do
T < pathInSpace(gnew s ¢n)
if costFromInit(gnew) + ¢p(m) < costFromInit(gs) and
isCollisionFree(n) then
15 L removeEdge(G, parent(qn), ¢n)

o X TN AR W N

-
W N =S

16 addNewEdge(G, gnew » ¢n)

17 return G

Algorithm 2: transitionTest (G, ¢;, ¢j)

input : the current temperature 7" and its increase rate Ty,
output: true if the transition is accepted, false otherwise

1 if ¢j < ¢; then return True

2 if exp(—(cj —¢j) /T) > 0.5 then

3 L T « T /2(i—¢)/costRange(9) . return True

4

else
5 L T < T 2T ;. return False

might be performed (lines 12—16). For each ¢, € Qpear, if the cost of the path going
from ginit t0 gn via gnew 1s lower than the cost of the current path between gjyi; and
¢n In G, gnew becomes the new parent of ¢, in G.

The transitionTest involved in the T-RRT* algorithm is presented in Algo-
rithm 2. The transition between two configurations is evaluated on the basis of their
costs ¢j and ¢j, ¢j being the cost of the source configuration and c;j the cost of the target
configuration. A downhill move (¢; < ¢;) in the cost landscape is always accepted.
An uphill move is accepted or rejected based on the probability exp(—(¢j —¢j) / T)
that decreases exponentially with the cost variation ¢j — ¢;. In that case, the level
of selectivity of the transition test is controlled by the temperature T, which is an
adaptive parameter of the algorithm. Low temperatures limit the expansion to gentle
slopes of the cost landscape, and high temperatures enable it to climb steep slopes.

150 D. Devaurs et al.

After each accepted uphill move, T is decreased to avoid over-exploring high-cost
regions: it is divided by 2(Gi—¢)/costRange(¥) where costRange(G) is the cost
difference between the highest-cost and the lowest-cost configurations stored in the
nodes of G. After each rejected uphill move, T is increased to facilitate the exploration
and avoid being trapped in a local minimum of the cost landscape: it is multiplied
by 2Tnte where Tre € (0, 1] is the temperature increase rate.

3.2 Anytime Transition-Based RRT (AT-RRT)

AT-RRT, whose pseudo-code is presented in Algorithm 3, also features the
transitionTest (line 6), and extends T-RRT by offering an anytime behavior.
Before any feasible path is found between ginit and ggoa1, AT-RRT behaves exactly
like T-RRT. As opposed to T-RRT, however, after a solution path is found, the explo-
ration is allowed to continue and a cycle-addition procedure is activated (lines 9—10).
This leads to the creation in G of new paths that can be of higher quality than the
one found so far. This procedure is based on the notion of useful cycles, as described
in [15].

The addUsefulCycles procedure is presented in Algorithm 4. When a new
configuration gyey, is added to G, we consider all configurations in G, within a neigh-
borhood of gnew, as potential candidate targets for new edges. The radius of this
neighborhood depends on the dimension d of C and on a constant «y derived from
the volume of Ciee, as is done for RRT* [10]. This radius also decreases with the
number n of nodes in G. Within the candidate set Qpear, We are interested in the
configurations that are “close” to gpew in C, but “far” from gpey in G, not in terms of
distance but of path cost. For each candidate g, € Qnear, if the cost of the local path
s between gnew and g, in C is less than the cost of the lowest-cost path 7, between
gnew and ¢y in G, and if 7y is collision-free, we add an edge to G between gpey and
¢n, thus creating a useful cycle.

4 Analysis

We now review the properties of T-RRT* and AT-RRT, in terms of probabilistic
completeness and asymptotic optimality (cf. Sect.2). It has already been proven
that T-RRT and RRT* are probabilistically complete [7, 10]. In the case of T-RRT,
this property is directly derived from the probabilistic completeness of RRT, despite
the integration of the transition test. A similar reasoning allows us to state that
T-RRT* is probabilistically complete, thanks to the probabilistic completeness of
RRT*. Furthermore, as AT-RRT behaves like T-RRT before a solution path is found,
it satisfies the same properties.

Theorem 1 (Probabilistic completeness) The T-RRT* and AT-RRT algorithms are
probabilistically complete.

Efficient Sampling-Based Approaches to Optimal Path Planning ... 151

Algorithm 3: Anytime Transition-based RRT (AT-RRT)

input : the optimal path planning problem (C, ginit, ggoal: €, Cp)
output: the graph G
G < initGraph(giit)
while not stoppingCriteria(g) do
Grand < sampleRandomConfiguration(C)
Gnear < findNearestNeighbor(G, ¢rand)
Gnew < extend(¢near » Grand)
if gnew 7# null and transitionTest(G, ¢(¢near), €(¢new)) then
addNewNode(G, gnew)
addNewEdge(G, ¢near » gnew)
if solutionPathExists(G, ginit, ggoal) then
L addUsefulCycles(d, gnew > Cp)

o XN R W N

—
=

11 return G

Algorithm 4: addUsefulCycles (G, gnew » ¢p)

input: the dimension d of the C-space
the y constant derived from the volume of Cyee (as in RRT* [10])
1 n < numberOfNodes(G)
2 Qpear < nearestNeighbors(G, gnew , v (log(n) / n)! /‘1)
3 foreach ¢, € Qpear do
4 g < pathInGraph(g, gnew > ¢n)
Ty < pathInSpace(gnew > gn)
if cp(ms) < ¢p(me) and isCollisionFree(ns) then
| addNewEdge(G, gnew » ¢n)

N A

Let us assume in the sequel that the constant involved in T-RRT* and AT-RRT,
and originally introduced in RRT¥*, satisfies

1 1
IN? (p(Crree) N ¥
=2 () (M5) ®

where d is the dimension of C, (4 is the volume of the unit ball in the d-dimensional
Euclidean space, and 1() is an operator measuring volumes. Under this assumption,
RRT* has proven to be asymptotically optimal [10].

The only difference between T-RRT* and RRT* is the presence of a transition
test filtering configurations based on their costs. The consequence of applying such
rejection sampling is that the samples cannot be assumed to be drawn from a uniform
distribution on C. Even though the asymptotic optimality of RRT* was proven under
a “uniform distribution” assumption, this result can be extended to any continuous
probability distribution with density bounded away from zero [10]. As the probability
of a sample to be accepted by the transition test is never zero, the samples drawn by
T-RRT* follow such distribution. Therefore, T-RRT* is also asymptotically optimal.

152 D. Devaurs et al.

Let us recall that the interesting properties of RRT* come from its ability to replace
existing edges in G by new edges enabling lower-cost paths to appear. This allows
the cost of the solution path produced by RRT* to decrease with time. Furthermore,
the “almost-sure” convergence toward the optimal solution path is ensured by the
fact that the cost-based decisions on connections are made for configurations within
neighborhoods of radii based on a value of v satisfying (1). The lower bound on v
expressed in (1) is the minimal value allowing RRT* to be asymptotically optimal.
Keeping in mind that increasing the value of v raises the computational cost of
an iteration of RRT* (because of the increased number of neighbors to consider),
this lower bound represents the optimal tradeoff between efficiency and asymptotic
optimality.

Clearly, AT-RRT and T-RRT* use the same procedure to create and filter nodes,
based on the extension mechanism of RRT and on the transition test of T-RRT. The
difference between them lies in the management of edges. In AT-RRT, no edge is
removed, thus leading to the creation of cycles, but this has no impact on the current
analysis. The main point is that, in both algorithms, alternative paths are created
based on cost improvement. Where they differ is on the criterion that an edge has
to satisfy to be considered useful in terms of cost improvement. In T-RRT*, this
criterion is based on whether an edge allows a configuration to be connected to gipi
via a path in G having minimal cost. In AT-RRT, this criterion is based on whether an
edge allows two configurations to be connected via a path in C whose cost is lower
than the costs of the existing paths in G. It is clear that both criteria achieve the same
goal: they both allow the cost of the solution path to decrease with time. Finally, as
the cost-based decisions on the addition of useful cycles happen in neighborhoods
of radii based on a value of + satisfying (1), AT-RRT is also asymptotically optimal.

Theorem 2 (Asymptotic optimality) The T-RRT* and AT-RRT algorithms are asy-
mptotically optimal.

5 Evaluation

5.1 Path Planning Problems

We have evaluated T-RRT* and AT-RRT on several optimal path-planning prob-
lems that differ in terms of C-space dimensionality, geometrical complexity and
configuration-cost function type. The Stones problem (illustrated in Fig.1) is a
2-degrees-of-freedom (DoFs) example in which a disk has to go through a space
cluttered with rectangular-shaped obstacles. The objective is to maximize clearance,
so the cost function ¢ associates to each position of the disk the inverse of the distance
between the disk and the closest obstacle.

The Inspection problem deals with industrial inspection in a dense environment,
and involves an aerial robot, as shown in Fig. 2. The featured quadrotor is modeled
as a 3-DoFs sphere (i.e. a free-flying sphere) representing the security zone around

Efficient Sampling-Based Approaches to Optimal Path Planning ... 153

Fig. 1 Stones problem: 2-DoFs disk moving among rectangular obstacles, while maximizing its
clearance. Top row graphs built by AT-RRT (left) and T-RRT* (right) after aruntime of 0.5 s. Bottom
row solution paths produced by T-RRT* when minimizing IC (left) or MW (right) after a runtime
of 10s. Paths produced by AT-RRT are similar

path portion

Fig. 2 Inspection problem: quadrotor (whose close-up is shown in yellow) inspecting an oil-rig
(top left). The cost function is based on the clearance of the 3-DoFs safety sphere around the
quadrotor. Right column: paths produced by AT-RRT when minimizing IC (fop) or MW (bottom),
after a running time of 10s. The cost profiles of the two paths are also shown (bottom left). Paths
produced by T-RRT* are similar

it. Assuming that motions are performed quasi-statically, we restrict the problem to
planning in position (controllability issues lie outside the scope of this paper). For
safety reasons, the quadrotor has to move in this environment trying to maximize

154 D. Devaurs et al.

clearance for the security sphere. The specificity of this problem is its large-scale
workspace.

The Transport problem features aerial robots, and deals with the collaborative
transport of objects, as shown in Fig. 3. Two quadrotors have to carry an H-looking
object and go through one of two holes in a wall. The robotic system comprises
the quadrotors themselves (and not safety spheres around them), the 3-R planar
manipulator arms attached below them, and the carried object. A configuration of
this system is defined by the position and orientation of the object in space, and
the relative positions of the quadrotors with respect to the object. This problem
is restricted to planning in position for the quadrotors because of the quasi-static
assumption made on their motions. We consider a planar version of the problem,
thus disregarding translations along the Y axis and rotations around the X and Z
axes. Besides, the revolute joints of the arms are passive DoFs in constraints related
to the closure of the kinematic chain. Therefore, the system can be described with 7
DoFs: 3 DoFs for the object (two translations along the X and Z axes, and a rotation
around the Y axis) and 2 DoFs for each quadrotor (two translations along the X
and Z axes). In this example, different cost functions can be defined. The notion of
clearance could be considered, but we will use a cost function based on the notion
of “balance” in our experiments. Assuming the initial configuration is stable, the
idea is to maintain it as much as possible, while allowing a complete freedom of
movement for the object with respect to the translations along the X and Z axes. To
achieve that, the cost of a configuration is defined as the sum of the differences to the
initial values for the rotation of the object and the translations of the quadrotors. The
specificity of the Transport problem lies in the fact that it features two very distinct
homotopic classes. The two holes in the wall constitute narrow passages of similar
difficulty in terms of purely geometrical planning: despite being wider, the lower
hole is partly obstructed by the second wall. However, when planning in the cost
space with the clearance-based cost function, paths going through the lower hole are
favored because it is larger than the other one. On the contrary, when planning in the
cost space with the balance-based cost function, paths going through the upper hole

Fig. 3 Transport problem: the two quadrotors have to transport an object and go through one of
the holes in the wall, while maintaining the balance of the whole system. Both images show an
intermediate and the final configurations along paths obtained after 50s. Left: path produced by
T-RRT* when minimizing MW. Paths produced when minimizing IC, and paths produced by AT-
RRT are similar. Right: path produced by RRT* when minimizing IC. Paths produced when mini-
mizing MW are similar

Efficient Sampling-Based Approaches to Optimal Path Planning ... 155

Fig.4 Selected configurations along paths produced by AT-RRT when minimizing IC (left) or MW
(right), after a running time of 100's, on the Snake problem. A snake-like object has to move among
rectangular obstacles. The cost function favors straight configurations, and regular over irregular
coiling. T-RRT* provides similar results

are favored because going through the lower one requires the robotic system to tilt
sharply.

The Snake problem (illustrated in Fig. 4) involves a snake-like object constituted of
10 identical cylinders between which 9 revolute joints are defined. We also consider
two translations and a rotation in the planar workspace, which adds up to 12 DoFs.
The cost function is defined as the sum of the absolute differences between the angular
values of consecutive revolute joints, added to the absolute value of the first revolute
joint. The objective is to favor a straight configuration of the robot, or configurations
in which all revolute joints have the same value, which correspond to a regular coiling
of the robot. This problem enables us to analyze the behavior of the algorithms in
higher dimension.

5.2 Settings

Before using T-RRT* and AT-RRT, their parameters have to be set. Following [2],
Trate is set to 0.1 and 7 is initialized to 10~°. Finding a good value for happens
to be a real issue. As already mentioned, the lower bound for v expressed in (1)
is the optimal value with respect to the tradeoff between efficiency and asymptotic
optimality. However, computing this value requires to estimate the volume of Cree.
This is possible in low-dimensional spaces when the robotic system and the obstacles
are represented with simple geometric models, but this is not realistic otherwise. To

ensure that +y satisfies (1), we set:
1
1 n(C)\?
B 1+_) (_) . @
! (d Ca

On the Stones and Inspection problems, since C is an Euclidean space, its volume
can easily be computed using the validity interval of every DoF. However, this is not

=

156 D. Devaurs et al.

straightforward on the Transport and Snake problems because of the revolute joints.
For a DoF corresponding to such joint, its angular range is multiplied by the length
of the associated rigid body.

T-RRT* and AT-RRT have been implemented in the motion planning platform
Move3D. To fairly assess them, no smoothing is performed on the solution paths.
Values of IC and MW are averaged over 100 runs. Results have been obtained on an
Intel Core i5 processor at 2.6 GHz with 8 GB of memory.

5.3 Results

T-RRT* and AT-RRT build graphs over C in different ways because they involve
different strategies to create (and potentially remove) edges. This is illustrated in
Fig. 1 on the Stones problem. The upper left figure clearly shows the cycles created
by AT-RRT, and the redundancy in paths. As can been seen in the upper right figure,
the tree built by T-RRT* is much sparser, because high-cost edges are removed. The
numerical results we present show that these differences in behavior do not create
significant differences in performance. Also, the solution paths produced by the two
algorithms usually look very similar.

Differences in solution paths are mainly due to the choice of the cost criterion: IC
or MW. This is clearly visible in Figs. I and 2. Minimizing IC tends to favor shorter
paths along which the maximal cost can be quite high (as shown by Fig. 2, bottom
left), and minimizing MW sometimes produces strangely convoluted paths. Another
drawback of MW (not illustrated here) is that, if the cost of gjn;; is high, MW can
be low even for paths going through high-cost configurations. A better cost criterion
could probably be defined by combining IC and MW, but this goes beyond the scope
of this paper. Note that, on some problems, such as Transport, the choice of the cost
criterion has little impact on the results.

To evaluate the performance of T-RRT* and AT-RRT, we analyze the evolution
over time of the costs of the solution paths they produce. As a reference, we compare
both algorithms to RRT* [10]. To obtain the best results with RRT*, we use the
conditional activation and branch-and-bound heuristics when they are beneficial.
The conditional activation heuristic consists of planning with a regular RRT until the
first solution is found, and only then activating the procedures specific to RRT* [9].
The branch-and-bound heuristic consists of trimming the nodes in G that cannot
allow finding paths with costs lower than that of the current solution path, which
is assessed using a cost-to-go function [11]. Both heuristics are beneficial on the
Transport and Snake problems.

Numerical results obtained on the four path planning problems (each one being
tested with a given pair (ginit, ggoa) Of configurations) are reported in Fig. 5 for IC,
and Fig.6 for MW. They clearly show that T-RRT* and AT-RRT converge faster
than RRT* toward the optimum. Even on a problem as simple as Stones, if only little
time is available, T-RRT* and AT-RRT yield better-quality solutions than RRT*. But,
given enough time, all algorithms produce paths of similar quality. When the size

Efficient Sampling-Based Approaches to Optimal Path Planning ... 157

85 35
Stones —#—RRT* Inspection —#=RRT*
80 =&—T-RRT* 30 —4—T-RRT*
——AT-RRT

75 4

70 A

65

60 ry

55 T T T T i

0 10 20 30 40 50
t(s) t(s)
100 90
Transport Snake

80 Y 80 | ®m—ro — = i
70

60 —B—RRT*

0 60 - —&—T-RRT*
50 4 == AT-RRT

20 40 | e—

0 ; 7 y ’ * 30 T - - -
0 20 40 60 80 100 0 20 40 60 80 100
t(s) t(s)

Fig. 5 Evolution over time of the costs (IC) of the solution paths produced by RRT*, T-RRT* and
AT-RRT, on the four path planning problems

6 10
Stones —#=RRT* Inspection —#=RRT*
5 —&—T-RRT* 8 —&—T-RRT*
——AT-RRT —4—AT-RRT
4 6
3 4
2 2
1 - — N - : : *
0 10 20 30 40 50 0 10 20 30 40 50
t(s) t(s)
—-RRT* ?
T t
ranspor e TRRT g Snake
——AT-RRT = —
7 4
6 8- RRT*
—i—T-RRT*
5 | ——AT-RRT
4 g N
o e, : ‘ 3 ‘ T :
0 20 40 60 80 100 0 20 40 60 80 100
t(s) t(s)

Fig. 6 Evolution over time of the costs (MW) of the solution paths produced by RRT*, T-RRT*
and AT-RRT, on the four path planning problems

158 D. Devaurs et al.

of the workspace is larger, as in the Inspection problem, the dominance of T-RRT*
and AT-RRT is even clearer. It appears that the filtering properties of the transition
test help focus the search on the most relevant (i.e. low-cost) parts of the workspace:
graphs produced by RRT* contain numerous nodes in high-cost regions of the space,
contrary to graphs produced by T-RRT* or AT-RRT (not shown here due to space
limitations). When the problem is even more complex, as is the case of Transport,
the weaknesses of RRT* start to translate into a very low rate of convergence. Thanks
to the transition test, the search performed by T-RRT* or AT-RRT is usually guided
toward the homotopic class containing the optimal path (i.e. the upper hole, when
using the balance-based cost function, as shown by Fig. 3, left). On the contrary, the
first solution produced by RRT* can belong to any of the two homotopic classes;
if it is found in the sub-optimal one (i.e. the lower hole), RRT* gets stuck in this
class and into optimizing a low-quality solution (as shown by Fig. 3, right). Finally,
on high-dimensional problems, such as Snake, RRT* usually converges very slowly.
Looking at Figs.5 and 6, one may think that this is also the case for T-RRT* and
AT-RRT. To check that, we have let all algorithms run for 12h while minimizing
MW. We have obtained solutions of costs 3.42, 2.41 and 2.24 for RRT*, T-RRT*
and AT-RRT respectively. Looking at Fig. 6, it means that, after 100s, T-RRT* and
AT-RRT are already close to the optimum, contrary to RRT*.

Finally, to assess whether what we observe is consistent across the domains cor-
responding to the four path planning problems, we have evaluated the algorithms on
instances of these problems involving different pairs (ginit, ggoa) Of configurations.
The results we have obtained (not presented here due to space limitations) are similar
to what we report above.

6 Conclusion

In this paper, we have proposed two novel sampling-based algorithms to solve the
optimal path planning problem, by combining the underlying principles of T-RRT and
RRT#*, the goal being to benefit from their respective strengths while overcoming their
weaknesses. On the positive side, T-RRT can efficiently explore a cost space thanks
to the filtering properties of its transition test, and RRT* is asymptotically optimal.
On the negative side, T-RRT is not asymptotically optimal, and RRT* may converge
slowly on complex cost spaces. The two hybrid methods are: (1) the Transition-
based RRT* (T-RRT¥*), which is an extension of RRT* integrating the transition test
of T-RRT, and (2) the Anytime T-RRT (AT-RRT), which is an extension of T-RRT
integrating a useful-cycle addition procedure. We have proven that T-RRT* and
AT-RRT are both probabilistically complete and asymptotically optimal. We have
evaluated them on several optimal path-planning problems featuring complex cost
spaces, and compared them to RRT*. Results show that they converge faster than
RRT* toward the optimal path, sometimes orders of magnitude faster.

Results tend to show that AT-RRT performs slightly better than T-RRT*. As future
work, it would be interesting to analyze further how the two algorithms behave, to

Efficient Sampling-Based Approaches to Optimal Path Planning ... 159

pinpoint which strategy works best at solving particular classes of optimal path
planning problems. Disregarding computational performance, a clear advantage of
AT-RRT over T-RRT* is that it can easily be extended into a multiple-tree algorithm,
similar to the Multi T-RRT [3]. Another interesting aspect of AT-RRT is that it builds
a graph containing cycles, therefore providing alternative paths over the space. This
could be leveraged when path replanning is required due to errors in the model or
moving obstacles.

Acknowledgments This work has been partially supported by the European Community under
Contract ICT 287617 “ARCAS”. The authors would like to thank Sertac Karaman for helpful
discussions on the RRT* algorithm.

References

1. Berenson, D., Siméon, T., Srinivasa, S.: Addressing cost-space chasms in manipulation plan-
ning. In: IEEE ICRA, pp. 4561-4568 (2011)

2. Devaurs, D., Siméon, T., Cortés, J.: Enhancing the transition-based RRT to deal with complex
cost spaces. In: IEEE ICRA, pp. 41054110 (2013)

3. Devaurs, D., Siméon, T., Cortés, J.: A multi-tree extension of the transition-based RRT: appli-
cation to ordering-and-pathfinding problems in continuous cost spaces. In: IEEE/RSJ IROS
(2014)

4. Dobson, A., Bekris, K.: Sparse roadmap spanners for asymptotically near-optimal motion
planning. Int. J. Robot. Res. 33(1), 18-47 (2014)

5. Ferguson, D., Stentz, A.: Anytime RRTs. In: IEEE/RSJ IROS, pp. 5369-5375 (2006)

6. Geraerts, R., Overmars, M.: Creating high-quality paths for motion planning. Int. J. Robot.
Res. 26(8), 845-863 (2007)

7. Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space
costmaps. IEEE Trans. Robot. 26(4), 635-646 (2010)

8. Jaillet, L., Corcho, F., Pérez, J.J., Cortés, J.: Randomized tree construction algorithm to explore
energy landscapes. J. Comput. Chem. 32(16), 3464-3474 (2011)

9. Jeon, J., Karaman, S., Frazzoli, E.: Anytime computation of time-optimal off-road vehicle
maneuvers using the RRT*. In: IEEE CDC, pp. 3276-3282 (2011)

10. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J.
Robot. Res. 30(7), 846-894 (2011)

11. Karaman, S., Walter, M., Perez, A., Frazzoli, E., Teller, S.: Anytime motion planning using the
RRT*. In: IEEE ICRA, pp. 1478-1483 (2011)

12. LaValle, S., Kuffner, J.: Rapidly-exploring random trees: progress and prospects. Algorithmic
and Computational Robotics: New Directions, pp. 293-308. A. K. Peters, Wellesley, Massa-
chusetts (2001)

13. Manubens, M., Devaurs, D., Ros, L., Cortés, J.: Motion planning for 6-D manipulation with
aerial towed-cable systems. In: RSS (2013)

14. Marble, J., Bekris, K.: Asymptotically near-optimal planning with probabilistic roadmap span-
ners. IEEE Trans. Robot. 29(2), 432-444 (2013)

15. Nieuwenhuisen, D., Overmars, M.: Useful cycles in probabilistic roadmap graphs. In: IEEE
ICRA, pp. 446-452 (2004)

16. Stentz, A.: Optimal and efficient path planning for partially-known environments. In: IEEE
ICRA, pp. 3310-3317 (1994)

Real-Time Predictive Modeling and Robust
Avoidance of Pedestrians with Uncertain,
Changing Intentions

Sarah Ferguson, Brandon Luders, Robert C. Grande
and Jonathan P. How

Abstract To plan safe trajectories in urban environments, autonomous vehicles must
be able to quickly assess the future intentions of dynamic agents. Pedestrians are par-
ticularly challenging to model, as their motion patterns are often uncertain and/or
unknown a priori. This paper presents a novel changepoint detection and cluster-
ing algorithm that, when coupled with offline unsupervised learning of a Gaussian
process mixture model (DPGP), enables quick detection of changes in intent and
online learning of motion patterns not seen in prior training data. The resulting
long-term movement predictions demonstrate improved accuracy relative to offline
learning alone, in terms of both intent and trajectory prediction. By embedding these
predictions within a chance-constrained motion planner, trajectories which are prob-
abilistically safe to pedestrian motions can be identified in real-time. Hardware exper-
iments demonstrate that this approach can accurately predict motion patterns from
onboard sensor/perception data and facilitate robust navigation within a dynamic
environment.

Keywords Pedestrian modeling - Intent prediction + Gaussian processes * Proba-
bilistic path planning + Autonomous vehicles

1 Introduction

Autonomous vehicles operating in urban environments must be able to quickly assess
the future behavior of nearby agents in order to plan safe trajectories. A major chal-
lenge in navigating such environments is the limited ability to accurately anticipate
the intents of dynamic agents, as their internal state is not directly observable. Due to
the inherent structure of urban environments, drivers and pedestrians tend to exhibit

S. Ferguson (X)) - B. Luders - R.C. Grande - J.P. How

Aerospace Controls Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

e-mail: skfergus @mit.edu

B. Luders
e-mail: luders @mit.edu

© Springer International Publishing Switzerland 2015 161
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_10

162 S. Ferguson et al.

a common set of mobility patterns, which are constrained by the environment and
directly observable via state estimates.

The objective of this work is to learn these motion patterns such that they can
be used to predict future trajectories, and use them to plan safe paths that avoid
future collisions in such structured environments. While existing probabilistic plan-
ning frameworks can readily admit dynamic agents with uncertain future trajectory
distributions [1], these agents typically demonstrate complex motion patterns that
make modeling future motion and quantifying uncertainty difficult.

Dynamic agents exhibit uncertainty in both their intent and the trajectory motion
pattern associated with each intent. Pedestrians present particular technical chal-
lenges in the generation of long-term predictions due to their agility and relatively
unrestricted dynamic and inertial constraints. Specifically, pedestrians may demon-
strate many unique behaviors, some of which may not have been previously observed,
and can perform instantaneous changes in motion behavior following changes in
intent.

This paper addresses these challenges by proposing a modeling framework that
accurately predicts the future behavior of agile agents, such that an autonomous vehi-
cle can identify safe trajectories that avoid collision at current and future time steps.
Such a framework must be able to learn new behaviors online, update predictions
in the presence of changes in intent, and converge to the correct intent prediction
as more observations are gathered—capabilities not currently present in existing
algorithms.

1.1 Related Work

The preferred approach in the literature, also used here, assumes that factors influ-
encing pedestrian motion (such as internal state and intent) are reflected in their tra-
jectories. These data-driven approaches learn typical motion patterns from observed
training trajectories to enable predictions of future state.

The most common approaches are based on the Markov property, including hidden
Markov models, in which the hidden state is pedestrian intent [4, 14, 22]; growing
hidden Markov models to allow for online learning [21]; and partially observable
Markov decision processes to choose actions based on a distribution over pedestrian
intents [2]. Because the future state prediction depends only on the current state, these
approaches are quick to react to changes in intent. However, for relatively infrequent
changes in intent, the Markov assumption can be overly restrictive as it prevents
these algorithms from becoming more certain of pedestrian intent with additional
observations.

Gaussian process (GP) approaches have been demonstrated to be well-suited for
modeling pedestrian motion patterns, as they perform well with noisy observations
and have closed-form predictive uncertainty [6, 7, 13, 19]. Additionally, recent work
using GP mixture models enables predictions that account for both intent and tra-
jectory uncertainty [1]. Both sets of approaches use the entire observed trajectory

Real-Time Predictive Modeling and Robust Avoidance of Pedestrians ... 163

in the prediction of future state, such that certainty in demonstrated intent tends
to converge over time. Therefore, when changes in intent occur, these approaches
are much slower to detect a change than Markov-based approaches. Additionally,
existing GP classification approaches are too slow for online learning of previously
unobserved behavior patterns.

The weakness of most of these approaches is that uncertainty in intent is not typ-
ically considered; instead, the maximum likelihood trajectory prediction is used for
motion planning. Bandyopadhyay et al. [2] model a distribution over possible pedes-
trian intents using a variant of the Partially Observable Markov Decision Process
(POMDP), but use a simple model for trajectory prediction that assumes pedestri-
ans approximately follow the shortest path to their goals. Aoude et al. [1] consider
uncertainty in both intent and trajectory, with a GP model for trajectory prediction;
however, predictions are slow to recognize changes in intent, and online learning of
new behaviors is not possible.

This paper proposes a novel changepoint detection and clustering algorithm which
retains the trajectory prediction accuracy of existing GP approaches while expanding
their capabilities. Coupled with offline unsupervised learning of a Gaussian process
mixture model (DPGP) [13], this approach enables quick detection of changes in
intent and online learning of motion patterns not seen in prior training data. The
resulting long-term movement predictions demonstrate improved accuracy relative
to offline learning alone in both intent and trajectory prediction. These predictions can
also be used within a chance-constrained motion planner [16] to identify probabilis-
tically safe trajectories in real-time. In experimental results, the proposed algorithm
is used to predict the motion of pedestrians and other dynamic agents detected from
a variety of onboard and external sensors, enabling an autonomous rover to safely
navigate the environment.

2 Preliminaries
2.1 Motion Patterns and Modeling

GP mixture models are used in this work to model motion patterns. Although GPs
have a significant mathematical and computational cost, they generalize well to
regions of sparse data while avoiding the problem of over fitting in regions of dense
data. This section introduces the motion model, which has been previously presented
by Aoude et al. [1].

AA trgjectory is represented as a set of observed locations (xi, yi), (xfl, yfl), ceey
(x ’L,. , y’L), where L' is the total length of the trajectory ¢* of agenti. A motion pattern
is defined as a mapping from each location (x’, y’) to a distribution over trajectory
Ax Ay
At At

Here the GP serves as a non-parametric form of interpolation between discrete
trajectory measurements. Given an observed (x, y) location, the GP predicts the

derivatives () resulting in a velocity flow-field in x—y space.

164 S. Ferguson et al.

trajectory derivatives at that location. The standard squared exponential covariance
function describes the correlation between trajectory derivatives at two points (x, y)

and (x’, y"). The mean trajectory derivative functions E[AA—"[', AA—):] = ux(x,y) and

E [AA—y:, AA—yti] = py(x, y) are implicitly initialized to zero for all xy locations.
The motion model is defined as a finite mixture of GP motion patterns weighted by
their probabilities. The finite mixture model probability of the ith observed trajectory

s

M
py = pbyp'ih)),)

j=1

where b; is the jth motion pattern and p(b;) is its prior probability. The number of
motion patterns M can be learned offline [13] or can be incremented as new behavior
patterns are identified online, as in this work.

Future pedestrian trajectories are predicted for each motion pattern using the
approaches of Deisenroth et al. [5] and Girard et al. [8]. These provide a fast, analytic
GP approximation specifying possible future pedestrian locations, while incorporat-
ing uncertainty in previous predictions at each time step.

2.2 Batch Learning of Motion Patterns

It is expected that observed pedestrian trajectories will demonstrate a variety of
qualitatively different behaviors. These behavior motion patterns are learned from
an input set of unlabeled trajectories by DPGP, a Bayesian nonparametric clustering
algorithm that automatically determines the most likely number of clusters [13]. This
section reviews the DPGP algorithm, which is used in this work to cluster observed
pedestrian trajectories into representative motion patterns in batch.

The DPGP algorithm models motion patterns as Gaussian processes weighted by
Dirichlet process (DP) mixture weights. The DP mixture model allows for a poten-
tially unbounded number of motion patterns, where the concentration parameter «
controls the probability of new cluster formation. A smaller « enforces the expecta-
tion that there are a few motion patterns that pedestrians tend to exhibit; therefore,
trajectories are more likely to fit existing clusters than to form new ones.

The prior probability that trajectory ¢/ has an assignment z; to an existing motion
pattern b; is

nj

— 2
N—-1+a« @

p(zi = jlz—i,a) =

where z_; refers to the motion pattern assignments for the remaining trajectories,
n; is the number of trajectories currently assigned to b;, and N is the total number
of trajectories. The probability that trajectory #* will be assigned to a new motion
pattern is

Real-Time Predictive Modeling and Robust Avoidance of Pedestrians ... 165

(07

=M+ 1z, 0) = ——,
p(zi b= T

3)
where M is the total number of motion patterns. '

The probability of cluster assignment for trajectory t' is obtained from the DP
prior and probability of motion pattern b; given t'. Specifically, the probability that
trajectory #* will be assigned to an existing motion pattern is

_ i GP oGP e nj
pi —J|t’,oz,9x’j,0y’j)o<p(t'|b])<N_1+a), “4)

and the probability that trajectory ¢/ will be assigned to a new motion pattern is
_ j i1, 79GP 9GP @
pzi=M+ 1", o) oc/p(t’lbj)déxyjdﬁy,j (N 1T a) , (5)

Because exact inference over the space of GPs and DPs is intractable, samples
are drawn from this posterior distribution using Gibbs sampling. At each iteration,
the DP hyperparameter « is resampled and the GP hyperparameters for the j behav-

P

ior patterns Hgl; , 0;7 ; are set to their maximum likelihood values given the current

trajectory clustering. For each trajectory, the assignment z; is drawn from (4)—(5).

2.3 Motion Planning

Motion planning for autonomous vehicles is executed via chance-constrained rapidly-
exploring random trees (CC-RRT), which can efficiently identify trajectories with
guaranteed minimum bounds on constraint satisfaction probability under internal
and/or external uncertainty [16]. The primary objective is to plan and execute a
motion plan directing the vehicle to reach some goal region, while ensuring non-
convex state constraints x; € A&, are probabilistically satisfied. This is represented
via path-wise and time-step-wise chance constraints

IP(/\xfeXl)zap, P(x € X) = 6. Vi, (©)
t

respectively, where P(-) denotes probability, /\ represents a conjunction over the
indexed constraints, and dy, § p € (0.5, 1] are chosen by the user. The feasible state
space A} consists of a convex environment containing multiple convex, polytopic
obstacles to be avoided. It is assumed that the shape and orientation of these obstacles
is known, but their placement may be uncertain and/or dynamic.

The CC-RRT algorithm samples a tree of dynamically and probabilistically
feasible trajectories through the environment, rooted at the vehicle’s current state. All
trajectories added to the tree must satisfy (6), which CC-RRT evaluates by leveraging

166 S. Ferguson et al.

the trajectory-wise constraint checking of sampling-based algorithms to efficiently
compute risk bounds [16].

In this work, detected pedestrians are modeled as dynamic obstacles, with both
intent and trajectory uncertainty as represented by (1). This model provides a like-
lihood and time-parameterized uncertainty distribution for each behavior of each
pedestrian obstacle. The CC-RRT formulation can also guarantee probabilistically
robust avoidance of dynamic obstacles with uncertain intentions [1], making it suit-
able for robust avoidance of pedestrian models.

3 Changepoint Detection

To effectively anticipate the motion of pedestrians, this paper proposes a framework
which can perform online classification of observed trajectories, in addition to learn-
ing common pedestrian trajectories from batch data. Because agile dynamic agents
such as pedestrians may exhibit new behaviors or mid-trajectory changes in intent,
this problem is framed in the context of changepoint detection.

Algorithm 1 Changepoint Detection [9]

: Input: Set of points S, Working model GP,,
2l =log p(S | GPy)
: Create new GP GPg from S
1l =log p(S | GPs)
: Calculate LRT L; (y) = m% (h—=1)
: Calculate average of last m LRT:
Lm = % le:ifm Lj(y)
7: Calculate average of LRT after changepoint:
Lss = ﬁ 23;771 Lj(y)
8i=i+1
9: return L,, — Lss > 1

AN N AW —

This work utilizes a variation of the generalized likelihood test (GLR) [3] to per-
form changepoint detection. The basic GLR algorithm detects changes by comparing
a windowed subset of data to a null hypothesis. If the maximum likelihood statistics
of the windowed subset differ from the null hypothesis significantly, the algorithm
returns that a changepoint has occurred [9].

The proposed changepoint detection algorithm is given in Algorithm 1. At each
time step, given Gaussian process GP,,, the algorithm creates a new GP (GPg) with
the same hyperparameters, but using a windowed data subset S of size mg (lines
2-4). Although mg is domain specific, the algorithm is fairly robust to its selection;
mg ~ 10 — 20 has been found to work well for most applications. The algorithm
returns true if S is determined to fit the working model GP,,, and false (indicating a
changepoint) otherwise.

Real-Time Predictive Modeling and Robust Avoidance of Pedestrians ... 167

The algorithm then calculates the joint likelihood of the set having been generated
from the current GP model (the null hypothesis Hp) and the new GPgs (Hj). At each
step, the normalized log-likelihood ratio test (LRT) is computed as

1
L(y) = m—(logP(S | Hi) —log P(S | Ho)). (N
N
For a GP, the log likelihood of a subset of points can be evaluated in closed form as

1 _
log P(y | %,0) = =2(y = peNTEL (v =) —log [Zex 2+ C, (8)

where £(x) is the mean prediction of the GP and
Tor =K, x) +wil — KX,)" (KX, X) +w, DK (X, x) ©)

is the predictive variance of the GP plus the measurement noise. The first term of the
log-likelihood accounts for the deviation of points from the mean, while the second
accounts for the relative certainty (variance) in the prediction.

Algorithm 1 uses the LRT to determine if the maximum likelihood statistics (mean
and variance) of GPg differ significantly from the null hypothesis. In particular, the
average over the last m LRT values (line 6) is compared to the nominal LRT values
seen up until this point (line 7). If the difference of these two values exceeds some
value 7, the algorithm returns false, indicating that this generating model does not
fit the data.

In practice, the LRT may have some offset value due to modeling error. To handle
this, rather than making a decision on a single LRT, the last m LRT’s are averaged
and compared to the average LRT values seen since the last changepoint. Looking
at the difference between the last m values and the average LRT values makes the
algorithm robust to this problem.

The LRT algorithm is quite robust in practice, based on the following intuition.
If the points in S are anomalous simply because of output noise, then the new GP
model created from these points will on average be similar to the current model.
Additionally, the joint likelihood given the new model will not be substantially dif-
ferent from that of the current model. However, if the points are anomalous because
they are drawn from a new process, then the resulting GP model will on average be
substantially different from the current model, yielding a higher joint likelihood of
these points.

4 Changepoint-DPGP

The previous section discussed changepoint detection, which must be distinguished
from changes in intent. A changepoint occurs when observed data better fits a new
behavior model than the current model to which it is being compared; a change in

168 S. Ferguson et al.

intent refers to an actual change in agent behavior. The Changepoint-DPGP algorithm
seeks to identify new behaviors online and detect changes in intent given typical
pedestrian behaviors learned from batch data. The key idea behind this algorithm
is to perform online classification of a sliding window of trajectory segments, and
detect changepoints or new behavior models according to changes in the current
behavior classification.

The Changepoint-DPGP algorithm is detailed in Algorithm 2. The algorithm
begins with an initial set of learned behavior motion models GP, obtained from
running the DPGP algorithm on batch training data. As new data points are received,
they are added to a sliding window S of length m;. After creating a new model GPg
from the points in S, the LRT is computed for GPg and for each model GP; in the
current model set GP. This process determines if the points in S are statistically
similar to those in the model GP;, subject to the predetermined threshold 7.

In order to detect changepoints, the algorithm maintains the set of models M that
the points of S fit into at each time step, representative of the current classification
of those points. Because the behavior patterns may overlap, a single classification
cannot be guaranteed, necessitating the model set. Changepoints occur when the
classification changes, i.e. when the current classification M, and previous classi-
fication M;_ share no common models. The current classification is reset at each
timestep to be the intersection of the current and previous classification sets, provided
the current classification is not empty.

Algorithm 2 Changepoint-DPGP

1: Input: Set of previous behavior models GP = {GP, ..., GPy}
2: while Input/Output (x;, y;) available do

3: Add (x/, y)to S

4: Call Algorithm 3

5. if M,_; N M; = & then # Change in intent detected
6: Reinitialize priors

7: endif

8: if M; = @ then # New behavior detected
9: Initialize new model GP,,

10: else

11: Predict according to Sect.2.1

12: end if

13: if M, # @ then

14: M = M1 N M,

15: endif

16: end while

17: if GP,, is initialized then

18: Add (xq.7, yo.T) to GPy,

19: Add GP, to set of current models GP
20: end if

Real-Time Predictive Modeling and Robust Avoidance of Pedestrians ... 169

Algorithm 3 Compare to Current Models

1: Input: Set of current behavior models GP = {GPy, ..., GPy}
2: Initialize representative model set M,
3: for Each GP; € GP do

4. Call Algorithm 1 with inputs S, GP;
5: if Algorithm I returns true then

6: Add GPj to M,

7: endif

8: end for

To illustrate this method, consider the set of four behavior patterns in Fig. 1b: blue
(B), green (G), red (R), and teal (T). A pedestrian following pattern G would initially
yield M; = {B, G}. Once the pedestrian enters the center area, their classification
becomes M; = {G}. An intent change should not be detected at this stage, as
the pedestrian is committing to pattern G rather than exhibiting a new behavior.
However, if the pedestrian then switched to pattern T, this would represent a change in
intent. The classification for three successive timesteps would become M;_, = {G},
M;—1 ={G, T}, M, = {T}; no changepoint would be detected if 7, was not reset.

The predictive component of this algorithm is decoupled from classification. In
general, the future state distribution is computed as described in Sect.2. However,
if at any point M, is empty, this indicates that the current model set GP is not
representative for the points in S, so a new behavior must be created. The algorithm
waits until the entire new trajectory has been observed to create the new behavior
pattern, generating predictions according to a simple velocity propagation model
(i.e. propagating mean predicted position along current velocity vector with linearly-
increasing covariance) until the model set becomes representative. In practice, any
reasonable predictive model can be used at this stage.

If the training data contains trajectories with changes in intent, DPGP will learn
unique behavior patterns for each trajectory containing such changes, as the entire
trajectory is considered for classification. To obtain a representative set of behavior

(a)

Fig.1 Environment setup and pedestrian data for crosswalk experiments. a Environment for cross-
walk experiments. Rover starts in foreground, while pedestrian follows one of four possible behav-
iors (red). Velodyne location is marked with green arrow. b Training pedestrian trajectories collected
by Velodyne lidar and resulting DPGP velocity flow fields for each behavior (separated by color)

170 S. Ferguson et al.

patterns, the Changepoint-DPGP algorithm can be used offline to reclassify these
trajectories by segmenting them at the location of the change in intent. Algorithm 2
is first called with G’P containing those behavior patterns with more than ky,;, trajec-
tories and data (x;, y,) from trajectories in the behavior patterns not in GP. At the end
of Algorithm 2, the trajectory segment seen since the last changepoint is classified
into the most likely behavior pattern. Likewise, if the online data contains trajectories
with changes in intent, the predictive distribution will be slow to recognize it, as the
prior p(b;) relies on the entire observed trajectory. Therefore, if a change in intent
is detected, the prior probabilities are reinitialized.

Because the predictive distribution for each obstacle is dependent only on the
current position and learned behavior models, the predictions can be efficiently par-
allelized, though computational resources may be a limiting factor. (In this work, the
motion planning complexity scales linearly in both the number of dynamic agents
and behaviors [1].)

5 Results

This section presents experimental results which evaluate Changepoint-DPGP on
real-world problem domains of varying complexity. The prediction results demon-
strate that prior observations of pedestrian motion can be used to learn representa-
tive behavior models. These models are applied to real-time observations to make
accurate, long-term predictions of complex motion behavior, beyond what could be
predicted from the observations themselves. The planner is then demonstrated to
select safe paths which are risk-aware with respect to possible pedestrian intentions,
their likelihood, and their risk of interaction with the host vehicle.

5.1 Pedestrian Crosswalk

Consider the scenario in Fig. 1, in which an autonomous rover travels along a street
flanked by two sidewalks and must safely pass through a pedestrian crosswalk. Pedes-
trians have four possible behaviors (red) corresponding to which sidewalk they are
traversing, and whether they choose to use the crosswalk.

A Pioneer 3-AT rover is used as the autonomous vehicle in all experiments. Its
payload includes a SICK LMS-291 lidar for onboard pedestrian detection and an Intel
Core i5 laptop with 6GB RAM for computation. The online perception, planning,
and control algorithms described in this paper are executed on this laptop via the
Robotic Operating System (ROS) [18]. Dynamic obstacle detections and autonomous
vehicle state are fed to a real-time, multi-threaded Java application, which executes
CC-RRT to generate safe paths. A pure pursuit controller [15] generates acceleration
commands to follow these path waypoints. High-fidelity localization is provided via
motion-capture cameras [11].

Real-Time Predictive Modeling and Robust Avoidance of Pedestrians ... 171

Three trajectory prediction algorithms are evaluated in this experiment:
Changepoint-DPGP, DPGP, and a goal-directed approach using hidden Markov mod-
els (HMM). The hidden states of the HMM are pedestrian goals, learned via Bayesian
nonparametric inverse reinforcement learning with an approximation to the action
likelihood specifying that pedestrians head directly towards goal locations [17]. This
motion model assumes that each pedestrians head directly toward their intended goal
at some preferred speed with an uncertainty distribution over heading and velocity,
as used by [2, 10, 12] among others.

Unless otherwise noted, all three algorithms were trained on five trajectories from
each of the four behavior patterns in Fig. la. Each trajectory was collected from a
Velodyne HDL-32E lidar at the location marked in green in Fig. 1a as a pedestrian
moved through the environment. Pedestrians are identified from the raw Velodyne
returns both offline and online using Euclidean clustering [20]. Figure 1b shows the
training trajectories used in this experiment.

Figure 2 considers the baseline case in which no mid-trajectory changes in intent
or previously unobserved behavior patterns are present. Each algorithm is tested on
five trajectories from the four behavior patterns. Figure2a displays the probability
each algorithm has assigned to the correct motion pattern given the observation
trajectory, averaged across all 20 trials as a function of time elapsed. The likelihoods
of each motion pattern serve as the intent prediction for the GP-based approaches,
with the prior probability initialized to the fraction of training trajectories for each
motion pattern. Figure2b displays the root mean square (RMS) error between the
true pedestrian position and the mean predicted position, averaged across all 20 trials.

The Markov property prevents the HMM approach from converging to the correct
motion pattern, as the observations of current state alone are not sufficient in the case
of noisy observations (Fig.2a). As a result, its RMS error tends to increase over
time. On the other hand, both GP approaches exhibit convergence in the probability
of the correct motion pattern as new observations are made, which improves RMS
predictive error as well. The performance of Changepoint-DPGP and DPGP is very
similar, as is expected in the absence of changepoints and new behaviors.

[—cP-DPGP - DPGP = =HMM| (b) —CP-DPGP "~ DPGP = =HMM)|

—_—
=]
—

Probability of correct
motion pattern

0 5 10 15 20 0 5 10 15 20
Time (sec) Time (sec)

Fig. 2 Prediction accuracy of each algorithm for the baseline case of the pedestrian crosswalk
scenario. All results are averaged over 20 trials as a function of time elapsed, with error bars
representing standard deviation. a Probability of correct motion pattern. b RMS predictive error

172 S. Ferguson et al.
(a) [—CP-DPGP - DPGP ==HMM| [—cP-DPGP - DPGP ==HMM)|
kst
2
5 E
S
°8
£2c
=0 i
T8 A
SE :
o £]
0 P s -
0 5 10 15 10 25

Time (sec) Time (sec)

Fig. 3 Prediction accuracy of each algorithm for pedestrian crosswalk scenario, subject to pedes-
trian change in intentions at time = 18 s. a Probability of correct motion pattern. b RMS predictive
error

Next, each algorithm is tested on five trajectories which demonstrate a change
in pedestrian intentions. In these trajectories, the pedestrian begins to traverse the
crosswalk, but reverses direction after 18 s. Figure 3 shows the evolution of the correct
likelihood and RMS error for each algorithm in this scenario, averaged across the
trajectories. Both DPGP and Changepoint-DPGP converge on the correct behavior
prior to the intent change (Fig. 3a), while HMM performance is relatively unchanged
compared to Fig.2b due to only considering the current state. As the change in
pedestrian intention takes place, both GP-based algorithms initially drop to zero
probability. Because DPGP relies on the entire observation history, its predictions
are slow to recognize the change, leading to worse performance. On the other hand,
Changepoint-DPGP is able to selectively update the observation history considered
in the likelihood computation given changes in intent, enabling it to achieve better
accuracy than DPGP (Fig.3a). As a result, Changepoint-DPGP yields the lowest
average trajectory-wide RMS error of all algorithms tested (Fig. 3b).

Changepoint-DPGP also demonstrates the best relative prediction accuracy when
considering anomalous/new behavior patterns. In this scenario, algorithms are trained
on only three of the four possible behaviors (red, blue, green in Fig. 1b), then tested
on five trajectories from the fourth behavior (teal in Fig. 1b). The teal behavior devi-
ates from the previously-observed red behavior approximately 9 s into the trajectory.
When the new pedestrian behavior is demonstrated, the RMS error of both HMM
and DPGP begins to steadily increase (Fig.4). Conversely, Changepoint-DPGP suc-
cessfully identifies the new behavior and reclassifies subsequent trajectories. Thus it
exhibits behavior similar to the baseline case, in which predictive error decreases as
the probability of the correct motion pattern converges.

Finally, experiments have demonstrated that predictive results from the proposed
Changepoint-DPGP algorithm enable the autonomous rover (Fig.5) to safely avoid
collision in closed-loop. For dynamic obstacles in this and subsequent experiments,

Real-Time Predictive Modeling and Robust Avoidance of Pedestrians ... 173

Fig. 4 .RMS error for ——CP-DPGP DPGP = =HMM
pedestrian crosswalk

scenario, subject to
trajectories not observed in 1.6 -
training data

RMS error (m)
o
(4]

0 5 10 15
Time (sec)

Changepoint-DPGP provides a likelihood and time-parameterized uncertainty dis-
tribution for each possible behavior, which are used by CC-RRT (Sect. 2.3) for robust
motion planning. Figure 6 gives snapshots of a representative interaction between a
pedestrian and the autonomous rover. Initially, the planner generates a path directly
to the goal, as the pedestrian is projected to remain on the sidewalk (Fig. 6, left). Once
the predictions indicate that the pedestrian is likely to cross, the planner adjusts its
plan to terminate prior to the crosswalk (Fig. 6, center). As the pedestrian begins to
cross (Fig. 6, right), the rover comes to a stop, waiting for the crosswalk to clear
before safely proceeding to the goal.

Fig. 5 Rover used in closed-loop motion planning experiments

174 S. Ferguson et al.

Fig. 6 Moving rover (brown) planning a path (orange) to avoid predicted future behavior (blue
darker shades indicate higher likelihoods) of pedestrian (magenta) traversing crosswalk

5.2 Dynamic Vehicles

In these experiments, the autonomous rover must safely navigate around one or more
small iRobot Create vehicles with multiple and/or previously-unobserved behavior
patterns. The planner provides the rover with a fixed sequence of goal waypoints
to reach, one goal at a time, located at the four corners of the testing environment.
The robots exhibit one of four cyclical, counter-clockwise motion patterns within
the testbed (Fig. 7, first snapshot).

First, consider Fig.7, an online learning scenario for a single dynamic robot in
which only behavior 1 has been previously observed. After 8 s, Changepoint-DPGP
recognizes that the robot is executing a new behavior (here, behavior 3), and predic-
tions are generated assuming that the robot will continue at its current velocity with
increased, linearly-scaling uncertainty. The planner modifies its path to reflect this
shift at 25 and 36s.

After 92 s, the algorithm has learned the entire observed trajectory as a new behav-
ior. As the robot begins its second cycle, it still assigns the highest likelihood to the
known behavior (behavior 1), based on the prior distribution of observed training
and test trajectories still favoring this behavior. However, the new behavior is now
included as an additional behavior prediction. By 97 s, the algorithm is confident that
the robot is executing the newly-learned behavior, and shifts its likelihoods accord-
ingly. Using this updated prediction, the planner knows expects the robot to turn
before intersecting with the autonomous rover’s planned path, and thus continues to
execute the current path unimpeded. A video of a similar online-learning experiment
is located at http://acl.mit.edu/videos/ferguson-sm/video6.mov.

Figure 8 demonstrates an interaction between the rover and two robots executing
behaviors 1-3. Initially, the planner identifies a direct route to the goal (Fig. 8a).
However, as the far robot approaches, its predicted behavior distribution begins to
intersect the rover’s path, causing the portion near the goal to be pruned as too risky
(Fig. 8b). The planner identifies a new path which maintains a larger standoff from

http://acl.mit.edu/videos/ferguson-sm/video6.mov

Real-Time Predictive Modeling and Robust Avoidance of Pedestrians ... 175

Fig. 7 Moving rover (brown) planning a path (orange) to avoid predicted future behavior (blue
darker shades indicate higher likelihoods) of single dynamic robot (magenta) and reach a sequence
of goal regions (green)

the far robot (Fig. 8c), becoming more conservative once that robot is predicted to
follow behavior 2 (Fig. 8d). A video of the entire experiment is located at http://acl.
mit.edu/videos/ferguson-sm/videoS.mov.

http://acl.mit.edu/videos/ferguson-sm/video5.mov
http://acl.mit.edu/videos/ferguson-sm/video5.mov

176 S. Ferguson et al.

Fig. 8 Moving rover planning paths around 2 dynamic robots; here the planning environment is
being partially projected onto the floor (path = green, goal = yellow)

6 Conclusions

This paper has developed a real-time framework for long-term trajectory prediction
androbust collision avoidance for pedestrians, even when exhibiting previously unob-
served behaviors or changes in intent. A key contribution is the Changepoint-DPGP
algorithm, which uses a non-Bayesian likelihood ratio test to learn new GP behavior
patterns online and quickly detect and react to changepoints. As demonstrated in real-
time simulation results, these capabilities significantly improve prediction accuracy
relative to existing methods. Hardware results show that the framework can accu-
rately predict motion patterns of dynamic agents and perform robust navigation using
this method. Future work will investigate these algorithms in more complex envi-
ronments with additional pedestrians, including modeling of interactions between
autonomous vehicles and the environment/pedestrians.

Acknowledgments Research supported by Ford Motor Company (James McBride, Ford Project
Manager) and The Boeing Company.

References

1. Aoude, G.S., Luders, B.D., Joseph, J.M., Roy, N., How, J.P.: Probabilistically safe motion
planning to avoid dynamic obstacles with uncertain motion patterns. Auton. Robots 35(1),
51-76 (2013)

2. Bandyopadhyay, T., Jie, C.Z., Hsu, D., Ang Jr, M.H., Rus, D., Frazzoli, E.: Intention-aware
pedestrian avoidance. Experimental Robotics, pp. 963-977. Springer, New York (2013)

3. Basseville, M., Nikiforov, I.V.: Detection of abrupt changes: theory and applications. J. R. Stat.
Soc.-Ser. A Stat. Soc. 158(1), 185 (1995)

Real-Time Predictive Modeling and Robust Avoidance of Pedestrians ... 177

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Bennewitz, M., Burgard, W., Cielniak, G., Thrun, S.: Learning motion patterns of people for
compliant robot motion. Int. J. Robot. Res. 24(1), 31-48 (2005)

Deisenroth, M.P., Huber, M.F., Hanebeck, U.D.: Analytic moment-based Gaussian process
filtering. In: Bouttou, L., Littman, M. (eds.) International Conference on Machine Learning
(ICML), June 2009, pp. 225-232. Omnipress, Montreal, Canada (2009)

. Ellis, D., Sommerlade, E., Reid, I.: Modelling pedestrian trajectory patterns with gaussian

processes. In: IEEE International Conference on Computer Vision, pp. 1229-1234 (2009)

. Fulgenzi, C., Tay, C., Spalanzani, A., Laugier, C.: Probabilistic navigation in dynamic environ-

ment using rapidly-exploring random trees and gaussian processes. In: IEEE/RS]J International
Conference on Intelligent Robots and Systems (IROS), September 2008, pp. 1056-1062. Nice,
France (2008)

. Girard, A., Rasmussen, C.E., Quintero-Candela, J., Murray-smith, R.: Gaussian process priors

with uncertain inputs—application to multiple-step ahead time series forecasting. In: Advances
in Neural Information Processing Systems, pp. 529-536. MIT Press, Cambridge (2003)

. Grande, R.C.: Computationally efficient Gaussian process changepoint detection and regres-

sion. Master’s thesis, Massachusetts Institute of Technology, Department of Aeronautics and
Astronautics, Cambridge, MA, June 2014

Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282
(1995)

How, J.P.,, Bethke, B., Frank, A., Dale, D., Vian, J.: Real-time indoor autonomous vehicle test
environment. IEEE Control Syst. Mag. 28(2), 51-64 (2008)

Ikeda, T., Chigodo, Y., Rea, D., Zanlungo, F., Shiomi, M., Kanda, T.: Modeling and prediction
of pedestrian behavior based on the sub-goal concept. In: Robotics: Science and Systems (2012)
Joseph, J., Doshi-Velez, F., Huang, A.S., Roy, N.: A Bayesian nonparametric approach to
modeling motion patterns. Auton. Robots 31(4), 383-400 (2011)

Kelley, R., Nicolescu, M., Tavakkoli, A., King, C., Bebis, G.: Understanding human inten-
tions via hidden markov models in autonomous mobile robots. In: ACM/IEEE International
Conference on Human-Robot Interaction, pp. 367-374 (2008)

Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E., How, J.P.: Motion planning in com-
plex environments using closed-loop prediction. In: AIAA Guidance, Navigation, and Control
Conference (GNC), August 2008, Honolulu, HI (2008) (AIAA-2008-7166)

Luders, B., Kothari, M., How, J.P.: Chance constrained RRT for probabilistic robustness to
environmental uncertainty. In: AIAA Guidance, Navigation, and Control Conference (GNC),
August 2010, Toronto, Canada (2010) (AIAA-2010-8160)

Michini, B., Cutler, M., How, J.P.: Scalable reward learning from demonstration. In: IEEE
International Conference on Robotics and Automation (ICRA) (2013)

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.: ROS:
an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3
(2009)

Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press,
Cambridge (2005)

Rusu, R.B., Cousins, S.: 3dis here: Point cloud library (PCL). In: IEEE International Conference
on Robotics and Automation, pp. 1-4 (2011)

Vasquez, D., Fraichard, T., Laugier, C.: Incremental learning of statistical motion patterns with
growing hidden markov models. IEEE Trans. Intell. Transp. Syst. 10(3), 403-416 (2009)
Zhu, Q.: Hidden markov model for dynamic obstacle avoidance of mobile robot navigation.
IEEE Trans. Robot. Autom. 7(3), 390-397 (1991)

FFRob: An Efficient Heuristic for Task
and Motion Planning

Caelan Reed Garrett, Tomas Lozano-Pérez and Leslie Pack Kaelbling

Abstract Manipulation problems involving many objects present substantial
challenges for motion planning algorithms due to the high dimensionality and multi-
modality of the search space. Symbolic task planners can efficiently construct plans
involving many entities but cannot incorporate the constraints from geometry and
kinematics. In this paper, we show how to extend the heuristic ideas from one of the
most successful symbolic planners in recent years, the FastForward (FF) planner, to
motion planning, and to compute it efficiently. We use a multi-query roadmap struc-
ture that can be conditionalized to model different placements of movable objects.
The resulting tightly integrated planner is simple and performs efficiently in a col-
lection of tasks involving manipulation of many objects.

1 Introduction

Mobile manipulation robots are physically capable of solving complex problems
involving moving many objects to achieve an ultimate goal. Mobile bases with one
or more arms are becoming available and increasingly affordable while RGBD sen-
sors are providing unprecedented sensory bandwidth and accuracy. However, these
new capabilities are placing an increasing strain on existing methods for program-
ming robots. Traditional motion-planning algorithms that find paths between fully
specified configurations cannot address problems in which the configuration space
of interest is not just that of the robot but the configuration space of a kitchen, for
example, and the goal is to make dinner and clean the kitchen. We almost certainly
do not want to choose whether to get the frying pan or the steak next by sampling
configurations of the robot and kitchen and testing for paths between them.

C.R. Garrett (X)) - T. Lozano-Pérez - L.P. Kaelbling
Massachusetts Institute of Technology CSAIL, Cambridge, MA, USA
e-mail: caelan@MIT.EDU

T. Lozano-Pérez
e-mail: tlp@mit.edu

L.P. Kaelbling
e-mail: Ipk @csail.mit.edu

© Springer International Publishing Switzerland 2015 179
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_11

180 C.R. Garrett et al.

Researchers in artificial intelligence planning have been tackling problems that
require long sequences of actions and large discrete state spaces and have had some
notable success in recent years. However, these symbolic “task-level” planners do not
naturally encompass the detailed geometric and kinematic considerations that motion
planning requires. The original Shakey/STRIPS robot system [1, 2], from which many
of these symbolic planners evolved, managed to plan for an actual robot by working
in a domain where all legal symbolic plans were effectively executable. This required
the ability to represent symbolically a sufficient set of conditions to guarantee the
success of the steps in the plan. This is not generally possible in realistic manipulation
domains because the geometrical and kinematic constraints are significant.

Consider a simple table-top manipulation domain where a variety of objects are
placed on a table and the robot’s task is to collect some subset of the objects and pack
them in a box, or use them to make a meal, or put them away in their storage bins.
The basic robot operations are to pick up an object and place it somewhere else; in
addition, the robot can move its base in order to reach a distant object. Note that, in
general, to reach some object, we will have to move other objects out of the way.
Which objects need moving depends on their shapes, the shape of the robot, where the
robot’s base is placed and what path it follows to the object. When an object is moved,
the choice of where to place it requires similar considerations. The key observation
is that constructing a valid symbolic plan requires access to a characterization of
the connectivity of the underlying free configuration space (for the robot and all
the movable objects). We cannot efficiently maintain this connectivity with a set of
static assertions updated by STRIPS operators; determining how the connectivity of
the underlying free space changes requires geometric computation.

A natural extension to the classic symbolic planning paradigm is to introduce
“computed predicates” (also know as “semantic attachments”); that is, predicates
whose truth value is established not via assertion but by calling an external program
that operates on a geometric representation of the state. A motion planner can serve
to implement such a predicate, determining the reachability of one configuration
from another. This approach is currently being pursued, for example, by Dornhege
etal. [3, 4], as a way of combining symbolic task-level planners with motion planners
to get a planner that can exploit the abstraction strengths of the first and the geometric
strengths of the second. A difficulty with this approach, however, is that calling a
motion planner is generally expensive. This leads to a desire to minimize the set
of object placements considered, and, very importantly, to avoid calling the motion
planner during heuristic evaluation. Considering only a sparse set of placements may
limit the generality of the planner, while avoiding calling the motion planner in the
heuristic leads to a heuristic that is uninformed about geometric considerations and
may result in considerable inefficiency due to backtracking during the search for a
plan.

An alternative approach to integrating task and motion planning has been to start
with a motion planner and use a symbolic planner to provide heuristic guidance to
the motion planner, for example in the work of Cambon et al. [5]. However, since
the task-level planner is ignoring geometry, its value as a heuristic is quite limited.

FFRob: An Efficient Heuristic for Task ... 181

In this paper we show how to obtain a fully integrated task and motion planner
using a search in which the heuristic takes geometric information into account. We
show an extension of the heuristic used in the FastForward (FF) [6] planning system
to the FFRob heuristic, which integrates reachability in the robot configuration space
with reachability in the symbolic state space. Both the search and the computation
of the FFRob heuristic exploit a roadmap [7] data structure that allows multiple
motion-planning queries on the closely related problems that arise during the search
to be solved efficiently.

2 Related Work

There have been a number of approaches to integrated task and motion planning
in recent years. The pioneering Asymov system of Cambon et al. [5] conducts an
interleaved search at the symbolic and geometric levels. They carefully consider
the consequences of using non-terminating probabilistic algorithms for the geomet-
ric planning, allocating computation time among the multiple geometric planning
problems that are generated by the symbolic planner. The process can be viewed as
using the task planner to guide the motion planning search. The work of Plaku and
Hager [8] is similar in approach.

The work of Erdem et al. [9], is similar in approach to Dornhege et al. [3], aug-
menting a task planner that is based on explicit causal reasoning with the ability to
check for the existence of paths for the robot.

Pandey et al. [10] and de Silva et al. [11] use HTNs instead of generative task
planning. Their system can backtrack over choices made by the geometric module,
allowing more freedom to the geometric planning than in the approach of Dornhege
et al. [3]. In addition, they use a cascaded approach to computing difficult applica-
bility conditions: they first test quick-to-evaluate approximations of accessibility
predicates, so that the planning is only attempted in situations in which it might
plausibly succeed.

Lagriffoul et al. [12] also integrate the symbolic and geometric search. They
generate a set of approximate linear constraints imposed by the program under con-
sideration, e.g., from grasp and placement choices, and use linear programming to
compute a valid assignment or determine one does not exist. This method is particu-
larly successful in domains such as stacking objects in which constraints from many
steps of the plan affect geometric choices.

In the HPN approach of Kaelbling and Lozano-Pérez [13], a regression-based
symbolic planner uses generators, which perform fast approximate motion planning,
to select geometric parameters, such as configurations and paths, for the actions.
Reasoning backward using regression allows the goal to significantly bias the actions
that are considered. This type of backward chaining to identify relevant actions is
also present in work on navigation among movable obstacles. The work of Stilman
and Kuffner, and Stilman et al. [14, 15] also plans backwards from the final goal

182 C.R. Garrett et al.

and uses swept volumes to determine, recursively, which additional objects must be
moved and to constrain the system from placing other objects into those volumes.

Srivastava et al. [16, 17] offer a novel control structure that avoids comput-
ing expensive precondition values in many cases by assuming a favorable default
valuation of the precondition elements; if those default valuations prove to be
erroneous, then it is discovered in the process of performing geometric planning
to instantiate the associated geometric operator. In that case, symbolic planning is
repeated. This approach requires the ability to diagnose why a motion plan is not
possible in a given state, which can be challenging, in general. Empirically, their
approach is the only one of which we are aware whose performance is competitive
with our FFRob method.

All of these approaches, although they have varying degrees of integration of
the symbolic and geometric planning, generally lack a true integrated heuristic that
allows the geometric details to affect the focus of the symbolic planning. In this
paper, we develop such a heuristic, provide methods for computing it efficiently, and
show that it results in a significant computational savings.

3 Problem Formulation

When we seek to apply the techniques of symbolic planning to domains that involve
robot motions, object poses and grasps, we are confronted with a series of technical
problems. In this section, we begin by discussing those problems and our solutions
to them, and end with a formal problem specification.

‘We might naturally wish to encode robot operations that pick up and place objects
in the style of traditional Al planning operator descriptions such as:

PICK(Cy, O, G, P, C3):

pre: HandEmpty, Pose(O, P), RobotConf(C), CanGrasp(O, P, G, C»), Reachable(Cy, C2)
add: Holding(O, G), RobotConf(C>)
delete: HandEmpty, RobotConf(Cy)

PLACE(Cy, O, G, P, C3):

pre: Holding(O, G), RobotConf(C1), CanGrasp(O, P, G, C2), Reachable(Cy, C3)
add: HandEmpty, Pose(O, P), RobotConf(C;)
delete: Holding(O, G), RobotConf(C1)

In these operations, the C, P, and G variables range over robot configurations, object
poses, and grasps, respectively. These are high-dimensional continuous quantities,
which means that there are infinitely many possible instantiations of each of these
operators. We address this problem by sampling finitely many values for each of these
variable domains during a pre-processing phase. The sampling is problem-driven,
but may turn out to be inadequate to support a solution. If this happens, it is possible
to add samples and re-attempt planning, although that was not done in the empirical
results reported in this paper.

FFRob: An Efficient Heuristic for Task ... 183

Even with finite domains for all the variables, there is a difficulty with explicitly
listing all of the positive and negative effects of each operation. The operations of
picking up or placing an object may affect a large number of Reachable literals: pick-
ing up an object changes the “shape” of the robot and therefore what configurations
it may move between; placing an object changes the free configuration space of the
robot. Even more significant, which Reachable literals are affected can depend on
the poses of all the other objects (for example, removing any one or two of three
obstacles may not render a configuration beyond the obstacles reachable). Encoding
this conditional effect structure in typical form in the preconditions of the opera-
tors would essentially require us to write one operator description for each possible
configuration of movable objects.

We address this problem by maintaining a state representation that consists of both
a list of true literals and a data structure, called details, that captures the geometric
state in a way that allows the truth value of any of those literals to be computed on
demand. This is a version of the semantic attachments strategy [3].

The last difficulty is in computing the answers to queries in the details, especially
about reachability, which requires finding free paths between robot configurations in
the context of many different configurations of the objects. We address this problem
by using a conditional roadmap data structure called a conditional reachability graph,
related to a PRM [7], for answering all reachability queries, and lazily computing
answers on demand and caching results to speed future queries.

More formally, a state is a tuple (L, D), where L is a set of literals and D is a
domain-dependent detailed representation. A literal is a predicate applied to argu-
ments, which may optionally have an attached test, which maps the arguments and
state into a Boolean value. A literal holds in a state if it is explicitly represented in
the state’s literal set, or its test evaluates to true in the state:

HOLDS(l,s) =1 € s.L or [.test(s) .
A goal is a set of literals; a state satisfies a goal if all of the literals in the goal hold
in the state:
SATISFIES(s, I') = VI € I'. HOLDS(l, 5) .
An operator is a tuple (@, €pos, €neg, f) Where ¢ is a set of literals representing
a conjunctive precondition, e, is a set of literals to be added to the resulting state,
eneg 18 a set of literals to be deleted from the resulting state, and f is a function
that maps the detailed state from before the operator is executed to the detailed state
afterwards. Thus, the successor of state s under operator a is defined
SUCCESSOR(s, a) = (s.L U a.epos \ a.eneg, a.f(s)) .

An operator is applicable in a state if all of its preconditions hold in that state:

APPLICABLE(a, s) = VI € a.¢p. HOLDS(L, ¢) .

184 C.R. Garrett et al.

An operator schema is an operator with typed variables, standing for the set of
operators arising from all instantiations of the variables over the appropriate type
domains.

Our general formulation has broader applicability, but in this paper we restrict
our attention to a concrete domain in which a mobile-manipulation robot can move,
grasp rigid objects, and place them on a surface. To formalize this domain, we use
literals of the following forms:

e RobotConf(C): the robot is in configuration C, where C is a specification of the
pose of the base as well as joint angles of the arm;

e Pose(O, P):object O is atpose P, where P is a four-dimensional pose (x, y, z, 6),
assuming that the object is resting on a stable face on a horizontal surface;

e Holding(O, G): the robot is holding object O with grasp G, where G specifies a
transform between the robot’s hand and the object;

e HandEmpty: the robot is not holding any object;

e /n(0O, R): the object O is placed in such a way that it is completely contained in
aregion of space R; and

e Reachable(C1, C>): there is a collision-free path between robot configurations C
and C3, considering the positions of all fixed and movable objects as well as any
object the robot might be holding and the grasp in which it is held.

The details of a state consist of the configuration of the robot, the poses of all the
objects, and what object is being held in what grasp.

Two of these literals have tests. The first, In, has a simple geometric test, to see
if object O, at the pose specified in this state, is completely contained in region R.
The test for Reachable is more difficult to compute; it will be the subject of the next
section.

4 Conditional Reachability Graph

In the mobile manipulation domain, the details contain a conditional reachability
graph (CRG), which is a partial representation of the connectivity of the space of
sampled configurations, conditioned on the placements of movable objects as well
as on what is in the robot’s hand. It is similar in spirit to the roadmaps of Leven and
Hutchinson [18] in that it is designed to support solving multiple motion-planning
queries in closely related environments. The CRG has three components:

e Poses: For each object o, a set of possible stable poses.

e Nodes: A set of robot configurations, ¢;, each annotated with a (possibly empty)
set {{g, 0, p)} where g is a grasp, o an object, and p a pose, meaning that if the
robot is at the configuration c¢;, and object o is at pose p, then the robot’s hand will
be related to the object by the transform associated with grasp g.

e Edges: A set of pairs of nodes, with configurations c; and ¢, annotated with an
initially empty set of validation conditions of the form (A, g, o, p, b), where b is a

FFRob: An Efficient Heuristic for Task ... 185

Boolean value that is TRUE if the robot moving from ¢ to ¢, along a simple path
(using linear interpolation or some other fixed interpolator) while holding object
h in grasp g will not collide with object o if it is placed at pose p, and FALSE
otherwise.

The validation conditions on the edges are not pre-computed; they will be computed
lazily, on demand, and cached in this data structure. Note that some of the collision-
checking to compute the annotations can be shared, e.g. the same robot base location
may be used for multiple configurations and grasps.

Constructing the CRG The CRG is initialized in a pre-processing phase, which con-
centrates on obtaining a useful set of sampled object poses and robot configurations.
Object poses are useful if they are initial poses, or satisfy a goal condition, or pro-
vide places to put objects out of the way. Robot configurations are useful if they
allow objects, when placed in useful poses, to be grasped (and thus either picked
from or placed at those poses) or if they enable connections to other useful poses via
direct paths. We assume that the following components are specified: a workspace
W, which is a volume of space that the robot must remain inside; a placement region
T, which is a set of static planar surfaces upon which objects may be placed (such
as tables and floor, but not (for now) the tops of other objects); a set O of fixed
(immovable) objects; a set O,, of movable objects; and a vector of parameters 6 that
specify the size of the CRG. It depends, in addition, on the start state s and goal I".
We assume that each object 0 € O,, has been annotated with a set of feasible grasps.
The parameter vector consists of a number n,, of desired sample poses per object
(type); a number n;; of grasp configurations per grasp; a number 7, of configura-
tions near each grasp configuration; a number n,. of RRT iterations for connecting
configurations, and a number k specifying a desired degree of connectivity.
The CONSTRUCTCRG procedure is outlined below.

CONSTRUCTCRG(W, T, 5, I", Of, Oy, 0) :

1 N = {s.details.robotConf} U {robot configuration in I"}

2 foroe O,

3 P, = {s.details.pose(0)} U {pose of 0 in "}

4 fori € {1,...,0.n,):

5 P,.add(SAMPLEOBJPOSE(o.shape, T))

6 for g € o.grasps:

7 for j € {1,...,0.nit}: N.add(SAMPLEIK (g, o, p), (g, 0, p))
8 for j € {1,...,0.n,}: N.add(SAMPLECONFNEAR(g, ()))
9 E={}
10 forn; € N:
11 for n, € NEARESTNEIGHBORS (711, k, N):
12 if CFREEPATH(n1.c, na.c, Oy): E.add(ny, n2)

13 N, E = CONNECTTREES(N, E, W, 0.n.)
14 return (P, N, E)

We begin by initializing the set of nodes N to contain the initial robot configuration
and the configuration specified in the goal, if any. Then, for each object, we generate

186 C.R. Garrett et al.

a set of sample poses, including its initial pose and goal pose, if any, as well as
poses sampled on the object placement surfaces. For each object pose and possible
grasp of the object, we use the SAMPLEIK procedure to sample one or more robot
configurations that satisfy the kinematic constraints that the object be grasped. We
sample additional configurations with the hand near the grasp configuration to aid
maneuvering among the objects. We then add edges between the k nearest neighbors
of each configuration, if a path generated by linear interpolation or another simple
fixed interpolator is free of collisions with fixed objects. At this point we generally
have a forest of trees of configurations. Finally, we attempt to connect the trees using
an RRT algorithm as in the sampling-based roadmap of trees [19].

To test whether this set of poses and configurations is plausible, we use it to
compute a heuristic value of the starting state, as described in Sect. 5. If it is infinite,
meaning that the goal is unreachable even under extremely optimistic assumptions,
then we return to this procedure and draw a new set of samples.

Querying the CRG Now that we have a CRG we can use it to compute the test for the
Reachable literal, as shown in REACHABLETEST below.

REACHABLETEST(c1, ¢3, D, CRG) :

1 for (o, p) € D.objects:
2 for e € CRG.E:
if not (D.heldObj, D.grasp, o, p, %) € e.valid:
p = CFREEPATH(e.n.c, e.ny.c, 0@ p, D.heldObj, D.grasp)
e.valid.add({D.heldObj, D .grasp, o, p, (p | = None)))
6 G = {e € CRG.E | Y(0, p) € D.objects. {D.heldObj, D.grasp, o, p, True) € e.valid}
7 return REACHABLEINGRAPH(c, ¢3, G)

B~ W

The main part of the test is in lines 6-7: we construct a subgraph of the CRG that
consists only of the edges that are valid given the object that the robot is holding
and the current placements of the movable objects and search in that graph to see if
configuration c; is reachable from cy. Lines 1-5 check to be sure that the relevant
validity conditions have been computed and computes them if they have not. The
procedure CFREEPATH(c1, ¢2, obst, o, g) performs collision checking on a straight-
line, or other simply interpolated path, between configurations ¢ and ¢y, with a
single obstacle obst and object o held in grasp g.

In addition, the CRG is used to implement APPLICABLEOPS(s, £2, CRG), which
efficiently determines which operator schema instances in 2 are applicable in a
given state s. For each schema, we begin by binding variables that have preconditions
specifying the robot configuration, object poses, the currently grasped object and/or
the grasp to their values in state s. We consider all bindings of variables referring to
objects that are not being grasped. For a pick operation, P is specified in the current
state, so we consider all bindings of G and C» such that (C», (G, O, P)) € CRG.N.
For a place operation, G is specified in the current state, so we consider all bindings
of P and Cj3 such that (Cy, (G, O, P)) € CRG.N.

FFRob: An Efficient Heuristic for Task ... 187

5 Planning Algorithms

A planning problem, I1, is specified by (s, I', O, T, W, §2), where s is the initial
state, including literals and details, I” is the goal, O is a set of objects, T is a set of
placement surfaces, W is the workspace volume, and §2 is a set of operator schemas.

PLAN, shown below, is a generic heuristic search procedure. Depending on the
behavior of the EXTRACT procedure, it can implement any standard search control
structure, including depth-first, breadth-first, uniform cost, best-first, A*, and hill-
climbing. Critical to many of these strategies is a heuristic function, which maps a
state in the search to an estimate of the cost to reach a goal state from that state.
Many modern domain-independent search heuristics are based on a relaxed plan
graph (RPG). In the following section, we show how to use the CRG to compute the
relaxed plan graph efficiently.

PLAN(/1, EXTRACT, HEURISTIC, 6)
(s, ,O, T, W,) =11
CRG = CONSTRUCTCRG(W, T, s, I, O, 0)
def H(s): HEURISTIC(RPG(s, I, CRG, £2))
g = QUEUE(SEARCHNODE(s, 0, H(s), None))
while not g.empty():
n = EXTRACT(q)
if SATISFIES(n.s, I"): return n.path
for a € APPLICABLEOPS(n.5, §2, CRG):
s’ = SUCCESSOR(n1.s, a)
q .push(SEARCHNODE(s', n.cost + 1, H(s"), n))

SO O 00 IO\ N AW =

—_—

Computing the relaxed plan graph In classical symbolic planning, a plan graph is a
sequence of alternating layers of literals and actions. The first layer consists of all
literals that are true in the starting state. Action layer i contains all operators whose
preconditions are present and simultaneously achievable in literal layer i. Literal
layer i + 1 contains all literals that are possibly achievable after i actions, together
with a network of mutual exclusion relations that indicates in which combinations
those literals might possibly be true. This graph is the basis for GraphPlan [20] and
related planning algorithms.

The relaxed plan graph is a simplified plan graph, without mutual exclusion
conditions; it is constructed by ignoring the negative effects of the actions. From
the RPG, many heuristics can be computed. For example, the Hagq heuristic [21]
returns the sum of the levels at which each of the literals in the goal appears. It
is optimistic, in the sense that if the mutual exclusion conditions were taken into
account, it might take more steps to achieve each individual goal from the starting
state; it is also pessimistic, in the sense that the actions necessary to achieve multiple
goal fluents might be “shared”. An admissible heuristic, Hyax [21], is obtained by
taking the maximum of the levels of the goal literals, rather than the sum; but it is
found in practice to offer weaker guidance. An alternative is the FF heuristic [6],

188 C.R. Garrett et al.

which performs an efficient backward-chaining pass in the plan graph to determine
how many actions, if they could be performed in parallel without deletions, would
be necessary to achieve the goal and uses that as the heuristic value. An important
advantage of the FF heuristic is that it does not over-count actions if one action
achieves multiple effects, and it enables additional heuristic strategies that are based
on helpful actions. We use a version of the helpful-action strategy that reduces the
choice of the next action to those that are in the first level of the relaxed plan, and
find that it improves search performance.

In order to use heuristics derived from the RPG we have to show how it can be
efficiently computed when the add lists of the operators are incomplete and the
truth values of some literals are computed from the CRG in the details. We present a
method for computing the RPG that is specialized for mobile manipulation problems.
It constitutes a further relaxation of the RPG which allows literals to appear earlier
in the structure than they would in an RPG for a traditional symbolic domain. This
is necessary, because the highly conditional effects of actions on Reachable literals
makes them intractable to compute exactly. The consequence of the further relaxation
is that the Haqq and Hyax heuristics computed from this structure have less heuristic
force. However, in Sect. 5 we describe a method for computing a version of Hpp that
recovers the effectiveness of the original.

The intuition behind this computation is that, as we move forward in computing
the plan graph, we consider the positive results of all possible actions to be available.
In terms of reachability, we are removing geometric constraints from the details; we
do so by removing an object from the universe when it is first picked up and never
putting it back, and by assuming the hand remains empty (if it was not already) after
the first place action. Recall that, in APPLICABLE and SATISFIES, the HOLDS procedure
is used to see if a literal is true in a state. It first tests to see if it is contained in the
literal set of the state; this set becomes increasingly larger as the RPG is computed.
If the literal is not there, then it is tested with respect to the CRG in the details, which
becomes increasingly less constrained as objects are removed.

Importantly, since the geometric tests on the CRG are cached, the worst-case
number of geometric tests for planning with and without the heuristic is the same. In
practice, computing the RPG for the heuristic is quite fast, and using it substantially
reduces the number of states that need to be explored.

RELAXEDPLANGRAPH, shown below, outlines the algorithm in more detail. In the
second part of line 1, in a standard implementation we would generate all possible
instantiations of all actions. However, because of the special properties of reachabil-
ity, we are able to abstract away from the particular configuration the robot is in when
an action occurs; thus, we consider all possible bindings of the non-configuration
variables in each operator, but we only consider binding the starting configuration
variable to the actual current starting configuration and leave the resulting configu-
ration variable free. In line 2, we initialize hState, which is a pseudo-state containing
all literals that are possibly true at the layer we are operating on, and a set of details
that specifies which objects remain as constraints on the robot’s motion at this layer.
In line 6, we ask whether a operator schema with all but the resulting configuration
variable bound is applicable in the heuristic state. We only seek a single resulting

FFRob: An Efficient Heuristic for Task ... 189

configuration that satisfies the preconditions of op in hState; even though many such
configurations might exist, each of them will ultimately affect the resulting AState
in the same way. Lines 7-9 constitute the standard computation of the RPG. In lines
10-11 we perform domain-specific updates to the detailed world model: if there is
any way to pick up an object, then we assume it is completely removed from the
domain for the rest of the computation of the RPG; if there is any way to put down the
currently held object, then we assume that there is no object in the hand, when doing
any further computations of reachability in the CRG. Line 14 creates a new hState,
which consists of all literals possibly achievable up to this level and the details with
possibly more objects removed.

RELAXEDPLANGRAPH(s, I, CRG, §2) :

1 D = s.D; ops = ALLNONCONFBINDINGS(£2)

2 literals = [] ; actions = [] ; hState = s

3 while True

4 layerActions = { } ; layerLiterals = { }

5 for op € ops:

6 if APPLICABLE(op, hState):

7 layerActions.add(op)

8 layerLiterals.union(op.e)

9 ops.remove(op)
10 if op.type = pick: D.objects.remove(op.obj)
11 if op.type = place: D.heldObj = None
12 literals.append(layerLiterals)
13 actions.append(layerActions)
14 hState = (|, literals;, D)
15 if SATISFIES (hState, I'): return (literals, actions)
16 if layerActions = { }: return None

There is one last consideration: the strategy shown above does not make the depen-
dencies of Reachable literals at level i on actions from level i — 1 explicit; the truth
of those literals is encoded implicitly in the details of the 4State. We employ a simple
bookkeeping strategy to maintain a causal connection between actions and literals,
which will enable a modified version of the FF heuristic to perform the backward
pass to find a parallel plan. We observe that, in the relaxed plan, once an object is
picked, it is effectively removed from the domain. So, we add an extra positive effect
literal, Picked(o) to the positive effects set of the pick action, just when it is used in
the heuristic computation.

The FFRob heuristic The FF heuristic operates by extracting a relaxed plan from the
RPG and returning the number of actions it contains. A relaxed plan P constructed
for starting state s and set of goal literals G consists of a set of actions that has the
following properties: (1) For each literal [€ G there is an action a € P such that
I € a.epos and (2) For each action a € P and each literal [€ a.¢, either [€ s or
there exists an action a’ € P such that/ € a.epos.

190 C.R. Garrett et al.

That is, the set of actions in the relaxed plan collectively achieve the goal as
well as all of the preconditions of the actions in the set that are not satisfied in
the initial state. It would be ideal to find the shortest linear plan that satisfied these
conditions, however that is NP-hard [6]. Instead, the plan extraction procedure works
backwards, starting with the set of literals in the goal G. For each literal [€ G, it
seeks the “cheapest” action a* that can achieve it; that is,

*

a® =arg min ZLZ(Z) ,

lea.
{allea epox} lead

where L£(/) is the index of the lowest layer containing / (which is itself a quick
estimate of the difficulty of achieving [.)

The minimizing a* is added to the relaxed plan, / and any other literals achieved
by a* are removed from the goal set, and the preconditions a*.¢ are added to the
goal set unless they are contained in s. This process continues until the goal set is
empty.

The RPG computed as in Sect.5 does not immediately support this computation,
because the Picked fluents that are positive results of Pick actions do not match the
Reachable fluents that appear in preconditions. In general, there may be many ways
to render a robot configuration reachable, by removing different combinations of
obstacles. Determining the smallest such set is known as the minimum constraint
removal problem [22]. Hauser shows it is NP-Hard in the discrete case and provides
a greedy algorithm that is optimal if obstacles must not be entered more than once.
We have extended this method to handle the case in which objects are weighted; in
our case, by the level in the RPG at which they can be picked. The weighted MCR
algorithm attempts to find a set of obstacles with a minimal sum of weights that
makes a configuration reachable.

So, any action precondition of the form Reachable(c) is replaced by the set of
preconditions Picked(o) for all objects o in the solution to the weighted MCR problem
for configuration c¢. This represents the (approximately) least cost way to make ¢
accessible. Having carried out this step, we can use the standard FF method for
extracting a relaxed plan. The FFRob heuristic returns the number of actions in this
relaxed plan.

Geometric biases It frequently happens that multiple states have the same heuristic
value; in such cases, we break ties using geometric biases. These three biases do not
affect the overall correctness or completeness of the algorithm. Intuitively, the idea
is to select actions that maximize the reachability of configurations in the domain
from the current state.

e Choose actions that leave the largest number of configurations corresponding to
placements of objects in their goal poses or regions available. This captures the
idea that blocking goal regions should be avoided if possible. This is useful because
although a heuristic will report when a placement is immediately bad, i.e., already
blocking future goals, it will not convey information that the placement may pre-
vent two necessary placements later in the search because it was out in the open.

FFRob: An Efficient Heuristic for Task ... 191

This is because the relaxed plan assumed that a free placement exists, despite
objects being placed there, because it does not model negative effects of actions.
e Choose actions that leave the largest total number of configurations corresponding
to placements reachable; this ensures that all placements are as tight as possible
against the edge of the reachable space.
e If neither of the previous biases breaks the tie, then select actions that maximize
the total number of reachable configurations.

These biases experimentally prove to be helpful in giving the search additional
guidance in this domain, especially in combination with enforced hill climbing
search, which lacks backtracking to undo bad decisions.

6 Results

We have experimented with various versions of this algorithm, differing in the defi-
nition of the heuristic, on a variety of tasks; we report the results in this section.

The search strategy in all of our experiments is enforced hill-climbing [6], in which
a single path through the state space is explored, always moving to the unvisited
successor state with the smallest heuristic value, with ties broken using geometric
biases. This search strategy is known not to be complete, but we have found it to be
very effective in our domains. If the hill-climbing search were to reach a dead end,
one could restart the search (as is done in FastForward), using the best-first strategy
or weighted A*, which are complete. However, even with a complete search and no
helpful-action heuristic, the overall planner is not probabilistically complete, since
it is limited to the initial set of sample poses and configurations.

The parameters governing the creation of the CRG are: n, € [25 — 50] (the
number of placements for each object); this varies with the size of the placement
regions; n;z = 1 (number of robot configurations for each grasp); n, = 1 (number
of additional robot configurations near each grasp); n, = 250 (number of RRT
iterations); k = 4 (number of nearest neighbors).

In our experiments, we generate an initial CRG using these parameters during
pre-processing and then test whether the value of the heuristic at the initial state is
finite. If it is not, we discard it and try again, with the same parameters. Very few
retries were necessary to find a CRG with finite heuristic value. This condition was
effective: in every case in our experiments, the CRG contained a valid plan.

The following versions of the planner are compared in the experiments:

1. No H: The heuristic always returns 0.

2. Hgp: This is the original heuristic in FF, based only on the symbolic literals,
completely ignoring the reachability conditions when computing the heuristic.
Helpful actions are not used.

3. Haggr: This is a version of the original Hagq heuristic that returns the sum of the
levels of the RPG at which the goal literals are first found. This makes use of the

192 C.R. Garrett et al.

CRG to reason about reachability. It does not build a relaxed plan and, therefore,
does not have helpful actions.

4. Hrrr ua: This computes the RPG, does a backward scan to find a relaxed plan
and computes helpful actions based on that plan.

5. Hrrrp: Like Hppr but using geometric biases to break ties and without using
helpful actions.

6. HrrrB HA: Like Hrpr but using geometric biases to break ties and using helpful
actions.

We tested our algorithm on 6 different fasks, in which the goals were conjunctions
of In(O;, R;) for some subset of the objects (the ones not colored red). Other objects
were moved as necessary to achieve these goals. The last three tasks are shown in
Fig. 1; the first three are tasks are simpler variations on task 3 (Fig. 1a). The table
below shows the results of running the algorithms in each of the tasks.

T| Pre| No H Hrr Haddr Hprr, HA HrrrB Hpprp, HA
t [mls t |mls t |m|s t |mls t |m|s [t |[m]s
0|21 [265|35[48719(102(72| 6123| 41|19| 536 6| 5| 78| 7| 5| 87| 2| 0|23
1(25 |300| 0]63407|283|17|14300| 162|55({2042| 3| O 8| 1611|153 4| 1(49
2129 [300] 0[50903(300(0| 8947{300| 0f3052| 5| 1 12 17{13|114| 7| 2|32
3123 (300 0[39509|300| 0| 4849|300 O|1767| 83|19| 464| 99(43|523|13| 1|69
4130 |300| 0]23920({300(O 1574|300| 0] 1028|300 0|1274| 18| 3| 20| 16| 3|20
5(51 [300] O 9422|300 0| 1533{300| O 592{300| 1| 272|106|17| 32(99| 14|32

Each entry in the table reports median time (t) (in gray), median absolute deviation,
MAD, of the times (m), and states (s) expanded. Each task also incurs a pre-processing
time for building the roadmap; this is reported (in seconds) in the Pre column of the
table. The median-based robust statistics are used instead of the usual mean and
standard deviation since the data has outliers. Entries with a median time of 300
and MAD of 0 did not successfully complete any of the simulations. There were 20
simulations per task for the first two heuristics and 120 simulations per task for the
others. Running times are from a Python implementation running on a 2.6 GHz Intel
Core i7.

As can be clearly seen, especially in the number of expanded states, exploiting
geometric information in the heuristic produces substantial improvements. Introduc-
ing geometric biases to settle ties helps in the most cluttered of the examples.

Conclusion We have shown how to combine data structures for multi-query motion
planning algorithms with the search and heuristic ideas from the FF planning system
to produce a deeply integrated task and motion planning system. The integrated
heuristic in this system is quite effective in focusing the search based on geometric
information at relatively low cost.

FFRob: An Efficient Heuristic for Task ... 193

(a)

(b)

Fig. 1 The initial and final state in three of the tasks (3, 4, 5) in the experiments. a Median 18
actions. b Median 20 actions. ¢ Median 32 actions

194 C.R. Garrett et al.

Acknowledgments This work was supported in part by the NSF under Grant No. 019868, in part
by ONR MURI grant N00014-09-1-1051, in part by AFOSR grant AOARD-104135 and in part by
Singapore Ministry of Education under a grant to the Singapore-MIT International Design Center.

References

1. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving to
problem solving. Artif. Intell. 2, 189-208 (1971)

2. Nilsson, N.J.: Shakey the Robot. Technical Report 323. Artificial Intelligence Center. SRI
International. Menlo Park, California (1984)

3. Dornhege, C., Eyerich, P., Keller, T., Triig, S., Brenner, M., Nebel, B.: Semantic attachments for
domain-independent planning systems. In: International Conference on Automated Planning
and Scheduling (ICAPS), pp. 114-121. AAAI Press (2009)

4. Dornhege, C., Hertle, A., Nebel, B.: Lazy evaluation and subsumption caching for search-based
integrated task and motion planning. In: IROS Workshop on Al-based Robotics (2013)

5. Cambon, S., Alami, R., Gravot, F.: A hybrid approach to intricate motion, manipulation and
task planning. Int. J. Robot. Res. 28, 104-126 (2009)

6. Hoffmann, J., Nebel, B.: The FF planning system: fast plan generation through heuristic search.
J. Artif. Intell. Res. (JAIR) 14, 253-302 (2001)

7. Kavraki, L.E., Svestka, P.,, Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566580
(1996)

8. Plaku, E., Hager, G.: Sampling-based motion planning with symbolic, geometric, and differ-
ential constraints. In: IEEE International Conference on Robotics and Automation (ICRA)
(2010)

9. Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., Uras, T.: Combining high-level causal
reasoning with low-level geometric reasoning and motion planning for robotic manipulation.
In: IEEE International Conference on Robotics and Automation (ICRA) (2011)

10. Pandey, A.K., Saut, J.P., Sidobre, D., Alami, R.: Towards planning human-robot interac-
tive manipulation tasks: task dependent and human oriented autonomous selection of grasp
and placement. In: RAS/EMBS International Conference on Biomedical Robotics and Bio-
mechatronics (2012)

11. de Silva, L., Pandey, A.K., Gharbi, M., Alami, R.: Towards combining HTN planning and
geometric task planning. In: RSS Workshop on Combined Robot Motion Planning and Al
Planning for Practical Applications (2013)

12. Lagriffoul, F., Dimitrov, D., Saffiotti, A., Karlsson, L.: Constraint propagation on interval
bounds for dealing with geometric backtracking. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2012)

13. Kaelbling, L.P., Lozano-Perez, T.: Hierarchical planning in the now. In: IEEE Conference on
Robotics and Automation (ICRA) (2011)

14. Stilman, M., Kuffner, J.J.: Planning among movable obstacles with artificial constraints. In:
‘Workshop on Algorithmic Foundations of Robotics (WAFR) (2006)

15. Stilman, M., Schamburek, J.U., Kuftner, J.J., Asfour, T.: Manipulation planning among movable
obstacles. In: IEEE International Conference on Robotics and Automation (ICRA) (2007)

16. Srivastava, S., Riano, L., Russell, S., Abbeel, P.: Using classical planners for tasks with contin-
uous operators in robotics. In: ICAPS Workshop on Planning and Robotics (PlanRob) (2013)

17. Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., Abbeel, P.: Combined task and motion
planning through an extensible planner-independent interface layer. In: IEEE Conference on
Robotics and Automation (ICRA) (2014)

18. Leven, P, Hutchinson, S.: A framework for real-time path planning in changing environments.
Int. J. Robot. Res. 21(12), 999-1030 (2002)

FFRob: An Efficient Heuristic for Task ... 195

19. Plaku, E., Bekris, K.E., Chen, B.Y., Ladd, A.M., Kavraki, L.E.: Sampling-based roadmap of
trees for parallel motion planning. IEEE Trans. Robot. 21(4), 597-608 (2005)

20. Blum, A., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell. 90(1-2),
281-300 (1997)

21. Bonet, B., Geffner, H.: Planning as heuristic search. Artif. Intell. 129(1), 5-33 (2001)

22. Hauser, K.: The minimum constraint removal problem with three robotics applications. Int. J.
Robot. Res. 33(1), 5-17 (2014)

Fast Nearest Neighbor Search in SE(3)
for Sampling-Based Motion Planning

Jeffrey Ichnowski and Ron Alterovitz

Abstract Nearest neighbor searching is a fundamental building block of most
sampling-based motion planners. We present a novel method for fast exact near-
est neighbor searching in SE (3)—the 6 dimensional space that represents rotations
and translations in 3 dimensions. SE(3) is commonly used when planning the mo-
tions of rigid body robots. Our approach starts by projecting a 4-dimensional cube
onto the 3-sphere that is created by the unit quaternion representation of rotations
in the rotational group SO(3). We then use 4 kd-trees to efficiently partition the
projected faces (and their negatives). We propose efficient methods to handle the
recursion pruning checks that arise with this kd-tree splitting approach, discuss split-
ting strategies that support dynamic data sets, and extend this approach to SE(3)
by incorporating translations. We integrate our approach into RRT and RRT* and
demonstrate the fast performance and efficient scaling of our nearest neighbor search
as the tree size increases.

1 Introduction

Nearest neighbor searching is a critical component of commonly used motion
planners. Sampling-based methods, such as probabilistic roadmaps (PRM), rapidly
exploring random trees (RRT), and RRT* [1, 2], create a motion plan by building a
graph in which vertices represent collision-free robot configurations and edges rep-
resent motions between configurations. To build the graph, these motion planners
repeatedly sample robot configurations and search for nearest neighbor configura-
tions already in the graph to identify promising collision-free motions.

Because nearest neighbor search is a fundamental building block of most sampling-
based motion planners, speeding up nearest neighbor searching will accelerate many
commonly used planners. This is especially true for asymptotically optimal motion

J. Ichnowski (X)) - R. Alterovitz
University of North Carolina at Chapel Hill, Chapel Hill, USA
e-mail: jeffi@cs.unc.edu

R. Alterovitz
e-mail: ron@cs.unc.edu

© Springer International Publishing Switzerland 2015 197
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_12

198 J. Ichnowski and R. Alterovitz

planners, which typically require a large number of samples to compute high-quality
plans. As the number of samples in the motion planning graph rises, nearest neigh-
bor search time grows logarithmically (or at worst linearly). As the samples fill the
space, the expected distance between samples shrinks, and correspondingly reduces
the time required for collision detection. Collision detection typically dominates
computation time in early iterations, but as the number of iterations rises, nearest
neighbor search will dominate the overall computation—increasing the importance
of fast nearest neighbor searches.

We introduce a fast, scalable exact nearest neighbor search method for robots
modeled as rigid bodies. Many motion planning problems involve rigid bodies, from
the classic piano mover problem to planning for aerial vehicles. A planner can rep-
resent the configuration of a rigid body in 3D by its 6 degrees of freedom: three
translational (e.g., x, y, z) and three rotational (e.g., yaw, pitch, roll). The group
of all rotations in 3D Euclidean space is the special orthogonal group SO(3). The
combination of SO(3) with Euclidean translation in space is the special Euclidean
group SE(3).

Our approach uses a set of kd-trees specialized for nearest neighbor searches in
SO(3) and SE (3) for dynamic data sets. A kd-tree is a binary space partitioning tree
data structure that successively splits space by axis-aligned planes. It is particularly
well suited for nearest neighbor searches in Minkowski distance (e.g., Euclidean)
real-vector spaces. However, standard axis-aligned partitioning approaches that apply
to real-vector spaces do not directly apply to rotational spaces due to their curved
and wrap-around nature.

In this paper, we describe a novel way of partitioning SO(3) space to create a kd-
tree search structure for SO(3) and by extension SE (3). Our approach can be viewed
as projecting the surface of a 4-dimensional cube onto a 3-sphere (the surface of
a 4-dimensional sphere), and subsequently partitioning the projected faces of the
cube. The 3-sphere arises from representing rotations as 4-dimensional vectors of
unit quaternions. The projection and partitioning we describe has two important
benefits: (1) the dimensionality of the rotation space is reduced from its 4-dimensional
quaternion representation to 3 (its actual degrees of freedom), and (2) the splitting
hyperplanes efficiently partition space allowing the kd-tree search to check fewer
kd-tree nodes. We propose efficient methods to handle the recursion pruning checks
that arise with this kd-tree splitting approach, and also discuss splitting strategies that
support dynamic data sets. Our approach for creating rotational splits enables our
kd-tree implementation to achieve fast nearest neighbor search times for dynamic
data sets.

We demonstrate the speed of our nearest neighbor search approach on scenarios
in OMPL [3] and demonstrate a significant speedup compared to state-of-the-art
nearest neighbor search methods for SO(3) and SE(3).

Fast Nearest Neighbor Search in SE(3) for Sampling-Based Motion Planning 199

2 Related Work

Nearest neighbor searching is a critical component in sampling-based motion
planners [1]. These planners use nearest neighbor search data structures to find and
connect configurations in order to compute a motion plan.

Spatial partitioning trees such as the kd-tree [4-6], quadtrees and higher dimen-
sional variants [7], and vp-trees [8] can efficiently handle exact nearest neighbor
searching in lower dimensions. These structures generally perform well on data in
a Euclidean metric space, but because of their partitioning mechanism (e.g., axis-
aligned splits), they do not readily adapt to the rotational group SO(3). Kd-trees have
a static construction that can guarantee a perfectly balanced tree for a fixed (non-
dynamic) data set. Bentley showed how to do a static-to-dynamic conversion [9]
that maintains the benefits of the balanced structure produced by static construction,
while adding the ability to dynamically update the structure without significant loss
of asymptotic performance.

Yershova and LaValle [10] showed how to extend kd-trees to handle R', S,
SO(3), and the Cartesian product of any number of these spaces. Similar to kd-
trees built for R™, they split SO(3) using rectilinear axis-aligned planes created by a
quaternion representation of the rotations [11]. Although performing well in many
cases, rectilinear splits produce inefficient partitions of SO(3) near the corners of the
partitions. Our method eschews rectilinear splits in favor of splits along rotational
axes, resulting in splits that more uniformly partition SO(3).

Non-Euclidean spaces, including SO(3), can be searched by general metric space
nearest neighbor search data structures such as GNAT [12], cover-trees [13], and
M-trees [14]. These data structures generally perform better than linear searching.
However, except for rare pathological cases, these methods are usually outperformed
by kd-trees in practice [10].

Nearest neighbor searching is often a performance bottleneck of sampling-
based motion planning, particularly when the dimensionality of the space increases
[15, 16]. It is sometimes desirable in such cases to sacrifice accuracy for speed by
using approximate methods [15-19]. These methods can dramatically reduce com-
putation time for nearest neighbor searches, but it is unclear if the proofs of optimality
for asymptotically optimal motion planners hold when using approximate searches.
Our focus is on exact searches, though we believe that some approximate kd-tree
speedups can be applied to our method.

3 Problem Definition

Let C be the configuration space of the robot. For a rigid-body robot, the configuration
space is C = R™ if the robot can translate in m dimensions, C = SO(3) = P? if the
robot can freely rotate in 3 dimensions, and C = SE(3) = R3 P3 if the robot can
freely translate and rotate in 3 dimensions. Let q € C denote a configuration of the

200 J. Ichnowski and R. Alterovitz

robot. When C = R, q is an m-dimensional real vector. When C = P3, we define q
as a 4-dimensional real vector in the form (a, b, c, d) representing the components
of a unit quaternion q = a + bi + c¢j + dk. We use the notation q [x] to represent
the x component of a configuration q.

Computation of nearest neighbors depends on the chosen distance metric. Let
DIST (qi, q2) be the distance between two configurations. For brevity, we will focus
on a few commonly used distance functions, which are included in OMPL [3]. We
only consider exact functions, and approximate versions are left to future work. In
R™ we use the Euclidean (L?) distance:

m 1/2
DISTRn (q1, q2) = (Z(ql[i] — Q2[i])2)

i=1

In P3 we use a distance of the shorter of the two angles subtended along the great
arc between the rotations [3, 10, 11]. This metric is akin to a straight-line distance
in Euclidean space mapped on a 3-sphere:

DISTp3(q1,q2) = cos™! lq1 - q2] = cos™!

> alilqlil

i€fa,b,c,d}
In R3 P3, we use the weighted sum of the R3 and P3 distances [3]:

DISTRrmp3(q1, q2) = a DISTrn(qi, q2) + DISTp3(q1, q2).

where a > 0 is a user-specified weighting factor. We assume the distance function
is symmetric, i.e., DIST (q1, q2) = DIST (q2, q1), and define DIST (q, &) = oo.

We apply our approach to solve three variants of the nearest neighbor search
problem commonly used in sampling-based motion planning. Let q denote a set of
n configurations {q; ...q} C C. Given a configuration qsearch, the nearest neighbor
search problem is to find the q; € Q with the minimum DIST (Qgearch, qi)- In the
k-nearest neighbors variant, where k is a positive integer, the objective is to find a
set of k configurations in Q nearest to Qsearch. In the nearest neighbors in radius r
search, where r is a positive real number, the objective is to find all configurations
in Q with DIST (Qsearch, ¢i) < -

Sampling-based motion planners make many calls to the above functions when
computing a motion plan. Depending on the planner, the set of nodes Q is either a
static data set that is constant for each query or Q is a dynamic data set that changes
between queries. Our objective is to achieve efficiency and scalability for all the
above variants of the nearest neighbor search problem for static and dynamic data
sets in SO(3) and SE(3).

Fast Nearest Neighbor Search in SE(3) for Sampling-Based Motion Planning 201

4 Method

A kd-tree is a binary tree in which each branch node splits space by an axis-aligned
hyperplane, and each child’s subtree contains only configurations from one side of
the hyperplane. In a real vector metric space, such as Euclidean space, it is common
for each split to be defined by an axis-aligned hyperplane, though other formulations
are possible [6]. For performance reasons it is often desirable for the splits to evenly
partition the space, making median or mean splits good choices [20]. We will describe
these methods and how to apply our SO(3) partition scheme to them.

In our method, we eschew rectilinear axis-aligned splits in favor of partitions that
curve with the manifold of SO(3) space. The set of all unit quaternion representations
of rotations in SO(3) forms the surface of a 4-dimensional sphere (a 3-sphere). We
partition this space by projecting the surface of a 4-dimensional cube onto the surface
of the 3-sphere. Because of the double-coverage property in which a quaternion and
its negative represent the same rotation [11], half of the projected surface volumes are
redundant, and we build kd-trees by subdividing 4 of the projected surface volumes.
Similar projections are used in [21] to generate deterministic samples in SO(3), and in
[22] to create a minimum spanning tree on a recursive octree subdivision of SO(3).
When subdividing the surface volumes into kd-trees, we apply a novel approach
in which the partitioning hyperplanes pass through the center of the 3-sphere, and
thus radially divide space. These partitions are curved, and thus standard kd-tree
approaches that apply to real-vector spaces must be adapted to maintain consistency
with the great arc distance metric we use for SO(3). In Fig. 1, we depict a lower
dimensional analog consisting of a 3-dimensional cube projected onto a 2-sphere,
with only one of the projected cube surfaces subdivided into a kd-tree.

Fig. 1 A kd-tree projected
onto the surface of a
2-sphere. An axis-orthogonal
cube is projected into a
sphere. Each face of the cube
is a separately computed
kd-tree; however, for
illustrative purposes, we
show the kd-tree of only one
of the faces. In our method
we extend the analogy to
4-dimensional space for use
with quaternions

202 J. Ichnowski and R. Alterovitz

4.1 Projected Volume Partitioning of SO(3)

In the projection of the surface of a 4D cube onto the surface of a 3-sphere we label
each of the projected 3D surface volumes by the axis on which they are aligned, thus
a, b, c,and d. Any configuration whose quaternion is in a negative volume (e.g., —a,
—b, —c, or —d) is inverted.

The advantage of using this projection is two-fold: (1) we reduce the dimensional-
ity of the rotation representation from a 4-dimensional quaternion to a 3-dimensional
position on the projected volume, and (2) it allows radially aligned splitting hyper-
planes that more uniformly divide the curved manifold. There is, however, a small
cost for these benefits. The projection leads to building 4 kd-trees, although asymp-
totically the cost is at worst a constant factor.

To determine in which projected volume a quaternion q lies, we find its component
of greatest magnitude. Thus:

proj_volume (q) = argmax |q[{]]|
i€a,b,c,d

If 0 is the angle between the unit quaternions ¢ and n, then ¢ - n = cos 6. We use
this property and represent bounding and splitting hyperplanes by their normals n.
Determining on which side a quaternion q lies is a matter of evaluating the sign of
the dot product—positive values are on one side, negative values are on the other,
and a dot product of 0 lies on the hyperplane.

We will focus our discussion on the projected a-volume, with the other volumes
(b, ¢, and d) being permutations on it. The normals bounding the 6 sides of the
projected a-volume are the unit quaternions normalized from:

1,0,0) (—1,1,0,0) b-axis bounds

1,0,1,0) (-1,0,1,0) c-axis bounds
(—=1,0,0,1) d-axis bounds

We observe that within the projected a-volume, the a component of the hyperplane
normals varies between +/0.5 and —+/0.5 (after normalizing), the axis component
varies between /0.5 at the boundaries to 1 at @ = 0, and the other components are
always zero. The bounds for the b, ¢, and d projected volumes follow similarly.

Solving for n in q - n = 0, we can determine the normal of the axis-aligned
hyperplane that passes through the quaternion . We define axisnormye) axis(q) as
the axis-aligned normal within a projected volume for quaternion q. The a-volume
definitions are:

axisnormy yol,p-axis(q) = normalize(—q[b], q[a], 0, 0)
axisnormg.yol,c-axis(q) = normalize(—q[cl, 0, q[a], 0)

axisnormy.vold-axis(q) = normalize(—qld], 0,0, q[a]),

Fast Nearest Neighbor Search in SE(3) for Sampling-Based Motion Planning 203

where normalize(q) normalizes its input vector to a unit quaternion. From the
axisnorm we define an angle of rotation about the axis. The angle is computed as
the arctangent of the normal’s volume component over the normal’s axis component,
thus for example, q’s angle about the b-axis in the a-volume is tan~! (—q[a]/q[b]).
This angle forms the basis for a relative ordering around an axis, and can be
shortcut by comparing the volume component alone, as qila] < qzla] <=
tan~ ' (—qi[al/qi[b]) > tan~! (—qa[al/qa[b)).

4.2 Static KD-Tree

In a static nearest neighbor problem, in which Q does not change, we can use an effi-
cient one-time kd-tree construction that allows for well balanced trees. Algorithm 1
outlines a static construction method for kd-trees on real-vector spaces.

The algorithm works as follows. First it checks if there is only one configuration,
and if so it returns a leaf node with the single configuration (lines 1-2). Other-
wise the set of configurations is partitioned into two subsets to create a branch.
CHOOSE_PARTITION_AXIS (Q) in line 4 chooses the axis of the partition. A
number of policies for choosing the axis are possible, e.g., splitting along the axis
of greatest extent. Then, PARTITION (Q, axis) (line 5) splits Q along the axis
into the partially ordered set Q' such that Vq; € Q' 1,1 : qi[axis] < split and
Vq; € Q' p @ qjlaxis] > split. Thus a median split chooses m = n/2.

Algorithm 1 BuildKDTree (Q)

Require: Q is a set of configurations of sizen > 0
1: if Q has 1 configuration then

2: return leaf node with Q;

3: else

4: axis < CHOOSE_PARTITION_AXIS (Q)
5: (Q' split m) < PARTITION(Q, axis)
6.

7

8

left < BuildkDTree (Q'| m_1)
right < BuildkDTree (Q'y 4)
return branch node with split on (axis, split) and children (left right)

The PARTITION function is implemented efficiently either by using a partial-
sort algorithm, or sorting along each axis before building the tree. Assuming median
splits, Bui1dKDTree builds a kd-tree in O (nlogn) time using a partial-sort algo-
rithm.

In our SO(3) projection, we define an axis comparison that allows us to find the
minimum and maximum along each projected axis, and to perform the partial sort
required for a median partition. The axis comparison is the relative ordering of each
quaternion’s axisnorm angle for that volume and projection.

The minimum and maximum extent along each axis is the quaternion for which all
others are not-less-than or not-greater-than, respectively, any other quaternion in the

204 J. Ichnowski and R. Alterovitz

set. The angle of the arc subtending the minimum and maximum axisnorm values
is the axis’s extent. Thus, if we define N as the set of all ax i snorm values for Q in the
a-volume and along the b-axis therein: N, p, = {axi SNOTYMy_yol, p-axis(q) : q € Q} ,
then the minimum and maximum axisnorm along the b-axis is:

Npin = argmin n;j[a] Npax = argmax njfal
n;eN, p njeN, p

and the angle of extent is cos ™! [Npmin - Nmax |- After computing the angle of extent
for all axes in the volume, we select the greatest of them and that becomes our axis
of greatest extent.

4.3 Dynamic KD-Tree

Sampling-based motion planners, such as RRT and RRT*, generate and potentially
add a random configuration to the dataset at every iteration. For these algorithms, the
nearest neighbor searching structure must be dynamic—that is, it must support fast
insertions and removals interleaved with searches. In [9], Bentley and Saxe show that
one approach is to perform a “static-to-dynamic conversion”. Their method builds
multiple static kd-trees of varying sizes in a manner in which the amortized insertion
time is O (log? n) and the expected query time is O (log?). In the text that follows,
we describe our implementation for modifying the kd-tree to a dynamic structure,
and we compare the approaches in Sect. 5.

Algorithm 2 DynamicKDInsert (q)

1: n < &kdroot
2: (Chins Cmax) < volume bounds
3: for depth =0 — oo do

4: (axis,split) < KD_SPLIT (Cpin, Cmax, depth)
5. if n = @ then

6: *n < new node with (axis, split, q)

7 return

8: if qlaxis] < split then

9: n <« & (xnjefr)

10: Chaxlaxis] < split

11: else

12: n<& (*l’lrigh[)

13: Chinlaxis] < split

The kd-tree may also be easily modified into a dynamic structure by allowing
children to be added to the leaves of the structure, and embedding a configuration
in each tree node. When building such a dynamic kd-tree, the algorithm does not
have the complete dataset, and thus cannot perform a balanced construction like the
median partitioning in Sect.4.2. Instead, it chooses splits based upon an estimate of

Fast Nearest Neighbor Search in SE(3) for Sampling-Based Motion Planning 205

what is likely to be the nature of the dataset. When values are inserted in random
order into a binary tree, Knuth [23, pp. 430—431] shows that well-balanced trees
are common, with insertions requiring about 2 In n comparisons, and the worst-case
O (n) is rare. In our experiments, we observe results suggesting that the generated
trees are indeed well-balanced across a variety of scenarios. In the results section,
we split at the midpoint of the bounding box. A few possible choices that empirically
work well with sampling-based motion planners are: (1) split at the midpoint of the
bounding box implied by the configuration space and the prior splits, (2) split at the
hyperplane defined by the point being added, or (3) an interpolated combination of
the two.

DynamicKDInsert (Algorithm 2) adds a configuration into a dynamic kd-tree.
In this formulation, each node in the kd-tree contains a configuration, an axis and split
value, and two (possibly empty) child nodes. Given the bounding box of the volume
and a depth in the tree, the KD_SPLIT function (line 4) generates a splitting axis and
value. In Euclidean space, KD_SPLIT can generate a midpoint split along the axis of
greatest extent by choosing the axis that maximizes Cpax[axis] — Cpinlaxis],
and the split value of (Cpin[axis] + Chax[axis])/2.

In our SO(3) projection, the axis of greatest extent is computed from the angle
between ¢pip and cmax, Where cpin and cpax are an axis’s bounding hyperplane
normals from Cpjp and Cpax. An interpolated split is computed using a spherical
linear interpolation [11] between the bounds:

sin 0 sin(1 — ¢)6 _1
Csplit = cmini_ + Cmax———— where) = cos™" |€min - Cmax|

né né

A split at the midpoint (¢ = 0.5) simplifies to ¢pmig = (Cmin + €max)/ (2 cos %).

Algorithm 3 DynamicKDSearch (q, n depth Cuin, Cimax, Qnearests S a)

1: if n = @ then

2: return Qnearest

3: if DIST (q,qn) < DIST (q, Qnearcst) then

4 Qpearest < qn /1 qy is the configuration associated with n
5: (axis, split) < KD_SPLIT (Cuin, Cmax, depth)

6: (C/mins C/max) < (Cmins Crmax)

7: C'minlaxis] < C'max[axis] < split

8: if qlaxis] < split then

9: Quearest < DynamicKkDSearch (q,nleﬁ, depth + 1, Ciin, C'max: Gnearest, S:)
10: else

11: Qpearest < DynamicKDSearch (q,nrighta depth + 1, C'min, Cmax. nearests S, a)
12: slaxis] <« split

13: alaxis] < 1

14: if PARTIAL_DIST(q,Ss, a) < DIST (q, Qnearest) then

15: if q[axis] < split then

16: Qnearest < DynamicKDSearch (q, uighi, depth + 1, C'min, Cmax, Gnearest: S, a)
17: else
18: Qnearest < DynamicKDSearch (q, niest, depth + 1, Cmins € max > Qnearest» S» a)

19: return Qpearest

206 J. Ichnowski and R. Alterovitz

If instead we wish to split at the hyperplane that intersects the point being inserted,
we use the axisnorm to define the hyperplane’s normal. Furthermore, we may
combine variations by interpolating between several options.

4.4 Kd-Tree Search

In Algorithm 3, we present an algorithm of searching for a nearest neighbor config-
uration ¢ in the dynamic kd-tree defined in Sect.4.3. The search begins with n as
the root of the kd-tree, a depth of 0, Cinin and Cyax as the root volume bounds, an
empty Qnearest, and the split vectors s = a = 0.

The search proceeds recursively, following the child node on the side of the
splitting hyperplane on which q resides (lines 8—11). Upon return from recursion,
the search algorithm checks if it is possible that the other child tree could contain a
configuration closer to q than the nearest one. This check is performed against the
bounding box created by the splitting hyperplanes of the ancestor nodes traversed to
reach the current one. It is essentially the bounding box defined by C’in and C’yax.
However, a full bounding box distance check is unnecessary—only the distance
between the point and the bounds closest to the point are necessary. This distance is
computed by the PARTTIAL_DIST function, and is depicted in Fig. 2.

PARTIAL_DIST(q,s,a) (line 14) computes the distance between a config-
uration q and the corner of a volume defined by s and a. The components of
s are the split axis values between the current region and the region in which
q resides. The components of a are 1 for each axis which is defined in s and 0
otherwise. This results in the PARTTAL_DIST definition for the L2 distance metric:

1
PARTIAL_DIST;: (q,S,a) = (Zj-izl (qi — si)2ai)
The partial distance metric must return a distance less than or equal to the closest

possible configuration in the node’s region. A poorly bound partial distance (e.g.
PARTIAL_DIST = 0) is valid, however search performance will suffer, dropping

A ‘B A JB
c D c
*q °q
(a) single axis (b) double axis

Fig. 2 A kd-tree search for q determining if it should traverse the second node. The search checks
if it is possible for any configuration in the region contained within the node to have a point closer
than the one already found. In a, the search computes the distance between q and region A—this
is a 1-dimensional L? distance between q and the hyperplane that splits regions A and C. In b,
the search computes the distance between q and region B—and it computes a 2-dimensional L?>
distance. Our method extends this computation to the curved projection on a 3-sphere

Fast Nearest Neighbor Search in SE(3) for Sampling-Based Motion Planning 207

to O(n) in the worst case. Thus a tightly bound PARTIAL_DIST is critical to
performance.

The PARTIAL_DIST function in our projected volume mapping of SO(3) is the
distance between a configuration q and a volume defined by hyperplanes partitioning
aunit 3-sphere, and is complicated by the curvature of the space. For this function to
be tightly bounded, it must take into account that the volume defined by the bounds
on our projected manifold are curved (see Fig. 1). When only 1 hyperplane is defined
(i.e., the first split in SO(3)), the distance is the angle between a configuration and a
great circle defined by a splitting hyperplane’s normal ngp;¢ and its intersection with
the unit 3-sphere. This distance is:

PARTIAL_DISTpsp , = sin™!(q - ngpiie)
When 2 of the 3 axes are split, the distance is the angle between the configuration
and an ellipse. The ellipse results from projecting the line defined by the two splitting
hyperplanes onto a unit 3-sphere. If the split axis values are the normals ny, and n¢

in the projected a volume, and thus the d-axis is not yet split, the partial distance is:

PARTIAL_DISTp3 = mincos™! |q - ell(ny, N, w)]
w

[np,nc

where e11 is an ellipsoid parameterized by the normals ny, and n., and varied over w:

2 2
ell(np, ng,w) = | w, —wnb[a], —wnC[a] , :I:\/l —w? - (wnb[a]) — (wnC[a])
np[0] nc[c] np[D] nec]
The distance is minimized at w = //n(v? — nqial) where

2 2
~ = qla] — q[b]nb[a] ~le] nlal D=1+ (nb[a]) N (nb[a]) ‘

ny[b] ncfc]’ ny[b] n[c]

When all three axes are split (e.g., the b, ¢, and d axes in the a projected volume),
the distance is the angle between the configuration and the corner of the hyperplane
bounded volume defined by the 3 axes. If the split axis values are the normals ny,
n¢, and nq (in the projected a volume), the partial distance is:

—1
PARTTAL_DIST p3jn, nong = €08 |q - Geomner|

where: (comer = Normalize (1, —

myla] ncla] _nd[a])
ny[b]" nclc]” ngld]

Each of these PARTIAL_DIST functions for P3 successively provide a tighter
bound, and thus prunes recursion better.

208 J. Ichnowski and R. Alterovitz

Each query in the SO(3) subspace must search up to 4 kd-trees of the projected
volumes on the 3-sphere. The projected volume in which the query configuration
lies we call the primary volume, and the remaining 3 volumes are the secondary
volumes. The search begins by finding the nearest configuration in the kd-tree in the
primary volume. The search continues in each of the remaining secondary volumes
only if it is possible for a point within its associated volume to be closer than the
nearest point found so far. For this check, the partial distance is computed between
the query configuration and the two hyperplanes that separate the primary and each
of the secondary volumes. There are two hyperplanes due to the curved nature of the
manifold and the double-coverage property of quaternions. Since a closer point could
lie near either boundary between the volumes, we must compare to the minimum of
the two partial distances, thus:

min (PARTIAL_DISTp3, (q), PARTIAL_DISTp3p, ()

where ngp and ny, are the normals of the two hyperplanes separating the volumes a
and b.

4.5 Nearest, k-Nearest, and Nearest in Radius r Searches

Algorithm 3 implements the nearest neighbor search. We extend it to k-nearest neigh-
bor search by replacing qpearest With a priority queue. The priority queue contains
up to k configurations and is ordered based upon distance from ¢, with the top being
the farthest of the contained configurations from q. The queue starts empty, and until
the queue contains k configurations, the algorithm adds all visited configurations to
the queue. From then on, DIST(q, Qnearest) (lines 3 and 14) is the distance between
q and the top of the priority queue. When the search finds a configuration closer than
the top of the queue, it removes the top and adds the closer configuration to the queue
(line 4). Thus the priority queue always contains the k nearest configurations visited.
To search for nearest neighbors in radius 7, Qpearest in Algorithm 3 is a result
set. Distance comparisons on lines 3 and 14 treat DIST((, (nearest) = 7. When the
algorithm finds a configuration closer than r, it adds it to the result set in line 4.

5 Results

We evaluate our method for nearest neighbor searches in four scenarios: (1) uniform
random rotations in SO(3), (2) uniform random rotations and translations in SE (3),
(3) configurations generated by RRT [24] solving the “Twistycool” motion planning
scenario in OMPL [3], and (4) configurations generated by RRT* [2] solving the
“Home” motion planning scenario in OMPL [3]. We compare four methods for
nearest neighbor searching: (1) “dynamic” is a dynamic kd-tree using our method

Fast Nearest Neighbor Search in SE(3) for Sampling-Based Motion Planning 209

and midpoint splits, (2) “static” is a static-to-dynamic conversion [9] of a median-
split kd-tree using our method, (3) “rectilinear” is a static-to-dynamic conversion of
a median-split kd-tree using rectangular splits [10] on SO(3), and (4) “GNAT” is a
Geometric Near-neighbor Access Tree [12]. All runs are computed on a computer
with two Intel X5670 2.93 GHz 6-core Westmere processors, though multi-core
capabilities are not used.

5.1 Random SO(3) Scenario

In the Random SO(3) scenario, we generated uniformly distributed random con-
figurations in SO(3) and compute nearest neighbors for random configurations. We
compute the average search time and the average number of distance computations
performed to search a nearest neighbor data structure of size n. We vary n from 100 to
1000000 configurations, and plot the result in Fig. 3. The average nearest neighbor
search time in Fig. 3a shows an order of magnitude performance benefit when using
our method. The number of distance computations in Fig.3b is a rough metric for
how much of the data structure each method is able to prune from the search. The
performance gain in Fig. 3b gives insight into the reasons for the performance gains
shown in Fig. 3a.

0.12 : = 10 ‘
—~ dynamic =] dynamic —— f
v . .
£ 0.10 static Z gl static ——— i
2 008 rectilinear % rectilinear ——
g 008r 2 o6l GNAT —— i
§ 0.06 L 3 linear
b S 4
o 0.04 | 2
gl) =)
5 0.02 / S 2
:
0.00 I | Z 0 T s T
10> 100 10t 100 10° 10° 10° 10* 10° 10°
configurations in nearest-neighbor configurations in nearest-neighbor
search data-structure search data-structure
(a) nearest neighbor search time (b) distance checks

Fig. 3 Comparison of nearest neighbor search time and distance checks plotted with increasing
configuration count in the searched dataset. In a we plot the average time to compute a single nearest
neighbor for a random point. In b we track the average number of distance computations performed
by a search

210 J. Ichnowski and R. Alterovitz

5.2 Random SE (3) Scenario

In this scenario, we build nearest neighbor search structures with random configu-
rations generated in SE(3). Using DISTRm p3, we evaluate performance for v = 1
and 10 in Fig. 4. For small o, the SO(3) component of a configuration is given more
weight, and thus provides for greater differentiation of our method. In Fig.4a, we
observe a 2 to 5x improvement in performance between our method and the recti-
linear method, and an order of magnitude performance improvement over GNAT. As
« increases, more weight is given to the translation component, so our SO(3) splits
have less impact on performance. Hence, our improvement drops, but is still 2 to 3 x
faster than rectilinear, and 8 x faster than GNAT.

5.3 RRT on the Twistycool Scenario

We evaluate the impact of our method in the “Twistycool” motion planning scenario,
using OMPL for both the scenario and the RRT planner. The Twistycool puzzle,
shown in Fig.5a, is a motion planning problem in which a rigid-body object (the
robot) must move through a narrow passage in a wall that separates the start and
goal configurations. At each iteration, the RRT motion planner computes a nearest
neighbor for a random sample against all samples it has already added to its motion
planning tree. We have adjusted the relative weighting « for translation and rotation
from its default, such that each component has approximately the same impact on
the weighted distance metric.

2.0 : 2.0 :
= dynamic —— = dynamic ——
g static —— g static ——
o 15F rectilinear —— o I5F rectilinear ——
£ GNAT —— 5 GNAT ——
Jg 10l linear g 10l linear i
2 2
9] 9]
%’ 0.5 + %’ 0.5 + e
[[
> >
< <
0.0 0.0
10* 10° 10* 10° 10° 10* 10° 10* 10° 10°
configurations in nearest-neighbor configurations in nearest-neighbor
search data-structure search data-structure
(a) search times (a = 1) (b) search times (a = 10)

Fig. 4 Comparison of nearest neighbor search time for random configurations in SE(3). In a and
b the translation space is bounded to a unit cube, and the translation distance is weighted 1 and 10
respectively. In a the SO(3) component of a configuration is given more weigh, and thus has more
impact on each search

Fast Nearest Neighbor Search in SE(3) for Sampling-Based Motion Planning 211

1.0 ‘
= dynamic ——
g 08 L static ——
:1E> rectilinear ——
£ o6l GNAT ——
—gé linear
8 04
o
2
5 021
z
0.0 !
10? 10° 10* 10°
configurations in nearest-neighbor
search data-structure
(a) Twistycool scenario (b) RRT nearest neighbor search times

Fig. 5 Twistycool scenario and RRT nearest neighbor search times. The scenario in a requires the
red robot to move from its starting configuration on the left, through a narrow passage in the wall,
to its goal configuration on the right. The average time per nearest neighbor search is plotted in (b)

As we see in Fig. 5b, the performance of our method with the dynamic kd-tree
is more than 5x faster than GNAT and rectilinear split kd-trees. This matches our
expectations formed by the uniform random scenario results, and shows little degra-
dation with the non-uniform dataset created by this motion planning problem.

5.4 RRT* on the Home Scenario

We ran the “Home” scenario using the RRT* motion planner included in OMPL. As
shown in Fig. 6a, the motion planner computes a plan that moves a table from one
room to another while avoiding obstacles. The RRT* planner incrementally expands
a motion planning tree, while “rewiring” it towards optimality as it goes. In each
iteration RRT#* finds an extension point using a nearest neighbor search, and then
rewires a small neighborhood after a k-nearest neighbor search. Unlike RRT, we
can allow RRT* to continue for as many iterations as desired, and get incrementally
better results. As with the RRT scenario, we proportionally scale « so that the SO(3)
and translation components have approximately equivalent impact on the distance
metric. As shown in Fig. 6b, our method in both variants outperforms GNAT and
rectilinear splits by roughly a factor of 3. In these results we observe also that the
median split of “static” and the midpoint split of “dynamic” perform equally well,
and the main differentiating factor between the kd-tree methods is thus the SO(3)
partitioning.

212 J. Ichnowski and R. Alterovitz

1.0 :
= dynamic ——
E o8} static ———
E rectilinear ———
£ o6l GNAT ——
=
2
8 04
(5]
g
5 02
>
<

0.0 ¢

10° 10° 10* 10°
configurations in nearest-neighbor
search data-structure
(a) Home scenario (b) RRT* nearest neighbor search times

Fig. 6 Home scenario and RRT* nearest neighbor search times. In the scenario in a, the motion
planner must find a path that moves the red table “robot” from its starting configuration in the lower
right room to the goal configuration in the upper right. The average time for nearest neighbor search
is plotted in (b)

6 Conclusion

We presented a method for efficient nearest neighbor searching in SO(3) space and
by extension SE(3), using a kd-tree with a novel approach to creating hyperplanes
that divide rotational space. Our partitioning approach provides two key benefits:
(1) it reduces the dimensionality of the rotation representation from 4-dimensional
quaternion vector to match its 3 degrees of freedom, and (2) creates an efficient par-
titioning of the curved manifold of the rotational group. We integrated our approach
into RRT and RRT* and demonstrated the fast performance and efficient scaling of
our nearest neighbor search as the tree size increases.

In future and ongoing work, we view our approach as something that should
augment or work well in tandem with existing nearest neighbor search algorithms and
implementations. We are looking to adapt our approach to include the approximate
nearest neighbor kd-trees of the Fast Library for Approximate Nearest Neighbors
(FLANN) [19] and contribute an implementation to OMPL.

Acknowledgments This research was supported in part by the National Science Foundation (NSF)
through awards 1IS-1117127 and IIS-1149965.

References

1. Choset, H., Lynch, K.M., Hutchinson, S.A., Kantor, G.A., Burgard, W., Kavraki, L.E., Thrun, S.:
Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge
(2005)

2. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J.
Robot. Res. 30(7), 846-894 (2011)

Fast Nearest Neighbor Search in SE(3) for Sampling-Based Motion Planning 213

15.

16.

17.

18.

19.

20.

21.

Sucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom.
Mag. 19(4), 72-82 (2012)

Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun.
ACM 18(9), 509-517 (1975)

Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic
expected time. ACM Trans. Math. Softw. (TOMS) 3(3), 209-226 (1977)

Sproull, R.F.: Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica
6(1-6), 579-589 (1991)

Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval on composite keys. Acta
Inform. 4(1), 1-9 (1974)

Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric
spaces. In: Proceedings of the ACM-SIAM Symposium Discrete Algorithms (1993)

Bentley, J.L., Saxe, J.B.: Decomposable searching problems I. Static-to-dynamic transforma-
tion. J. Algorithms 1(4), 301-358 (1980)

Yershova, A., LaValle, S.M.: Improving motion-planning algorithms by efficient nearest-
neighbor searching. IEEE Trans. Robot. 23(1), 151-157 (2007)

. Shoemake, K.: Animating rotation with quaternion curves. Proc. ACM SIGGRAPH 19(3),

245-254 (1985)
Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of the International
Conference Very Large Databases (1995)

. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: Proceedings

of the International Conference Machine Learning, pp. 97-104. ACM (2006)

Ciaccia, P, Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in
metric spaces. In: Proceedings of the International Conference Very Large Databases, p. 426
(1997)

Indyk, P.: Nearest neighbors in high-dimensional spaces. Handbook of Discrete and Compu-
tational Geometry, 2nd edn. Chapman and Hall/CRC, New York (2004)

Plaku, E., Kavraki, L.E.: Quantitative analysis of nearest-neighbors search in high-dimensional
sampling-based motion planning. Algorithmic Foundation of Robotics VII, pp. 3—18. Springer,
New York (2008)

Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for
approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891-923 (1998)
Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest neighbor
in high dimensional spaces. SIAM J. Comput. 30(2), 457-474 (2000)

Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configu-
ration. In: International Conference Computer Vision Theory and Application (VISSAPP), pp.
331-340. INSTICC Press (2009)

Mount, D.M.: ANN programming manual. Technical report Department of Computer Science,
University of Maryland (1998)

Yershova, A., LaValle, S.M.: Deterministic sampling methods for spheres and SO(3). In: Pro-
ceedings of the IEEE International Conference Robotics and Automation, pp. 3974-3980
(2004)

214 J. Ichnowski and R. Alterovitz

22. Nowakiewicz, M.: Mst-based method for 6d of rigid body motion planning in narrow passages.
In: Proceedings of the IEEE/RSJ International Conference Intelligent Robots and Systems
(IROS), pp. 5380-5385. IEEE (2010)

23. Knuth, D.E.: The art of computer programming. Sorting and Searching, 2nd edn. Addison
Wesley Longman Publishing Co., Inc., Redwood (1998)

24. LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: progress and prospects. In: Don-
ald, B.R. (ed.) Algorithmic and Computational Robotics: New Directions, pp. 293-308. AK
Peters, Natick (2001)

Trackability with Imprecise Localization

Kyle Klein and Subhash Suri

Abstract Imagine a tracking agent P who wants to follow a moving target Q in
d-dimensional Euclidean space. The tracker has access to a noisy location sensor
that reports an estimate Q(t) of the target’s true location Q(f) at time ¢, where
10() — O®)|| represents the sensor’s localization error. We study the limits of
tracking performance under this kind of sensing imprecision. In particular, (1) what
is P’s best strategy to follow Q if both P and Q can move with equal speed, (2) at
what rate does the distance || Q(¢) — P (¢)|| grow under worst-case localization noise,
(3) if P wants to keep Q within a prescribed distance L, how much faster does it
need to move, and (4) what is the effect of obstacles on the tracking performance, etc.
Under a relative error model of noise, we are able to prove upper and lower bounds
for the worst-case tracking performance, both with or without obstacles. We also
provide simulation results on real and synthetic data to illustrate trackability under
imprecise localization.

1 Introduction

The problem of tracking a single known target is a classical one with a long
history in artificial intelligence, robotics, computational geometry, graph theory
and control systems. The underlying motivation is that many robotic applications
including search-and-rescue, surveillance, reconnaissance and environmental mon-
itoring have components that are best modeled as a tracking problem. The prob-
lem is often formulated as a pursuit-evasion game, with colorful names such as

This research was supported in part by the National Science Foundation grants I1IS-0904501,
CNS-1035917, CCF-1161495, and the National Science Foundation Graduate esearch Fellow-
ship under Grant No. DGE-1144085.

K. Klein (X)) - S. Suri
University of California, Santa Barbara, CA 93106, USA
e-mail: kyleklein@cs.ucsb.edu

S. Suri
e-mail: suri@cs.ucsb.edu

© Springer International Publishing Switzerland 2015 215
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_13

216 K. Klein and S. Suri

Man-and-the-Lion, Cops-and-Robbers, Hunter-and-Rabbit, Homicidal Chauffeur,
and Princess-and-Monster [1, 2, 4, 8]. Visibility-based pursuit evasion [7, 20], in
particular, has been a topic of great interest, in part due to its simple but realistic
model: a team of pursuers is tasked with locating a single adversarial evader in an
geometric environment with polygonal obstacles where pursuers learn the evader’s
position only when the latter is in their line-of-sight. After two decades of research,
tight bounds are known for detection or capture of the evader for many basic formu-
lations of the problem [3, 7, 11], although the topic remains a rich subject of ongoing
research [12, 15].

Most theoretical analyses of tracking, however, assume an idealized sensing
model, ignoring the fact that all location sensing is noisy and imprecise in prac-
tice: the target’s position is rarely known with complete and error-free precision.
Although some papers have explored models to incorporate practical limitations of
idealized visibility including angular visibility [10], beam sensing [17], field-of-view
sensors [6], and range-bounded visibility [5], the topic of sensing noise or impreci-
sion has largely been handled heuristically or through probabilistic techniques such
as Kalman filters [9, 14, 19, 21]. One exception is [18], where Rote investigates a
tracking problem under the absolute error model: in this model, the target’s position
is always known to lie within distance 1 of its true location, regardless of its distance
from the tracker. The analysis in [18] shows that, under this noise model, the distance
between the tracker and the target can grow at the rate of @ ('/3), where ¢ is the time
parameter. Our model, by comparison, deals with a more severe form of noise, with
imprecision proportional to the distance from the tracker. Kuntsevich et al. [13] also
have considered this relative error model but with important differences: (1) they
approach the problem from a control-theory perspective with the goal of bounding
the time needed by the tracker to capture the target, and (2) only consider trackabil-
ity in unobstructed plane. Our approach is combinatorial, we analyze the worst-case
tracking performance as a function of the localization precision parameter A, and
consider environments with and without obstacles.

Motivation and the Problem Statement. This paper takes a small step towards
bridging the gap between theory and practice of trackability, and analyzes the effect
of noisy sensing. In particular, we consider a tracking agent P who wants to follow a
moving target Q in d-dimensional Euclidean space using a noisy location sensor. For
simplicity, we analyze the problem in two dimensions, but the results easily extend to
d dimensions, as discussed in Sect. 5. We use the notation Q(¢) and P (¢) to denote the
(true) positions of the target and the tracker at time 7. We adopt a simple but realistic
model of relative error in sensing noise: the localization error is proportional to the
true distance between the tracker and the target. More precisely, the localization error
is upper bounded as || Q(t) — Q(t)|| < %||P(t) — Q(1)|| at all times 7, where A > 1
is the quality measure of localization precision. Thus, the closer the target, smaller
the error, and a larger A means better localization accuracy, while A = 1 represents
the completely noisy case when the target can be anywhere within a disk of radius
[|P(t)— Q(t)|| around Q(t). It is important to note that the parameter X is used only
for the analysis, and is not part of information revealed to the tracker. In other words,

Trackability with Imprecise Localization 217

the tracker only observes the approximate location Q(1), and not the uncertainty disk
containing the target. The relative error model is intuitively simple (farther the object,
larger the measurement error) and captures the realism of many sensors: for instance,
the resolution error in camera-based tracking systems is proportional to the target’s
distance, and in network-based tracking, latency causes a proportionate localization
uncertainty because of target’s movement before the signal is received by the tracker.

We study the tracking problem as a game between two players, the tracker P and
the target Q, which is played in continuous time and space: that is, each player is
able to instantaneously observe and react to other’s position, and the environment is
the two-dimensional plane, with or without polygonal obstacles. Both the target and
the tracker can move with equal speed, which we normalize to one, without loss of
generality. With the unit-speed assumption, the following holds, for all times #; < #,:

[1Q(t2) = Q)| < |2 — 1], [|P(r2) — P(t)| < 12 — 1]

_ Under the relative localization error model, the reported location of the target
Q(t) always satisfies the following bound, where A is the accuracy parameter:

[[P(1) — Q)

Q@) — QI = X

We measure the tracking performance by analyzing the distance function between
the target and the tracker, namely, D (1) = d(P(t), Q(t)), over time, with D (0) being
the distance at the beginning of the game. Under error-free localization, the distance
remains bounded as D(t) < D(0). We analyze how ||D(t) — D(0)|| grows under
the relative error model, as a function of A. Our main results are as follows.

Our Results. We first consider trackability in the unobstructed plane, and prove that
the obvious simple-minded strategy “always move towards the observed location of
the target” not only achieves a bounded error rate, but in fact that rate is the best
possible in the worst-case. More specifically, the greedy strategy achieves D(f) <
D(0)+1/)\?, meaning that the target’s distance from the tracker can grow maximally
at the rate of 0()\’2), the inverse quadratic function of the localization parameter.
We also prove this rate to be worst-case optimal by presenting a strategy for the
target that ensures that, under the relative error model, it can increase its distance as
D(t) = D(0) + 2(t/3).

We then extend this analysis to environments with polygonal obstacles, and show
that the tracker can increase its distance by £2(¢) in time ¢ for any finite A. This is
unsurprising because two points within a small margin of sensing error can be far
apart in free-space, thereby fooling the tracker into “blind alleys.” More surprisingly,
however, if we adopt a localization error that is proportional to the geodesic distance
(and not the Euclidean distance) between the target and the tracker, then the distance
increases at a rate of @ (A~1). This bound is also tight within a constant factor: the
tracker can maintain a distance of D(¢) < D(0) + O(¢/)) by the greedy strategy,
while the target has a strategy to ensure that the distance function grows as at least
D(t) = D(0) + 2(¢/)).

218 K. Klein and S. Suri

Our analysis also helps answer some other questions related to tracking
performance. For instance, a natural way to achieve good tracking performance in
the presence of noisy sensing is to let the tracker move at a faster speed than the
target. Then, what is the minimum speedup necessary for the tracker to reach the
target (or, keep within a certain distance of it)? We derive upper and lower bounds
for this speedup function, which are within a constant factor of each other as long as
A > 2. All of our results extend easily to d dimensions, for d > 2.

2 Tracking in the Unobstructed Plane

We begin with the simple setting in which a tracking agent P wants to follow a
moving target Q in the two-dimensional plane without any obstacles. We show
that the trivial “aim for the target’s observed location” achieves essentially the best
possible worst-case performance. We first prove the upper bound on the derivative
D'(t) of the distance function D(¢), and then describe an adversary’s strategy that
matches this upper bound.

2.1 Tracker’s Strategy and the Upper Bound

Our tracker uses the following obvious algorithm, whose performance is analyzed
in Theorem 1 below.

GREEDYTRACK. Attime ¢, the tracker P moves directly towards the target’s observed
location Q(t).

Theorem 1 By using GREEDYTRACK, the tracker can ensure that D(t) < D(0) +
O(t/\?), forallt > 0.

Proof Consider the true and the observed positions of the target, namely Q(7) and
Q(1), respectively, at time ¢, and let v be the angle formed by them at P(z). See
Fig. 1. Consider an arbitrarily small time period A¢ during which P moves towards

Fig. 1 Proof of Theorem 1

Trackability with Imprecise Localization 219

Q(t) and Q(¢) moves away from P (z). We want to compute the derivative of the
distance function, given as Eq. (1).

ron v D@+ A1) — D)
D = Jim =7 "

The new distance between the target and the tracker is given by bc in Fig. 1. In the
triangle abc, we have ab = At siny and ac = D(t) + At — At cos y. We, therefore,
can bound D(t + At) as follows (elementary algebraic details are omitted from this
extended abstract):

D(t + At) = (At siny)2 + (D(t) + At — At cos)2

2
< D(t) + (A (1 + At/D())(1 — cos) @

Returning to Eq. (1), we get

D'(1) lim b@+4n - D) < lim (14 Az/D(t))(1 —cos~) 1 —cos
= 1 1 — — —
At—0 At T At—0 7 "
Finally, since sin~y < %, weget D'(r) <1—,/1— %, which simplifies by the
Taylor series expansion:

, 1 1 1 1 1
Dty <l1-\l-5—-5—" 22_/\2+W+“.§V

This completes the proof that D(¢) < D(0) + ¢/ A2, U

2.2 Target’s Strategy and the Lower Bound

We now show that this bound is asymptotically tight, by demonstrating a strategy
for the target to grow its distance from the tracker at the rate of D(t) > D(0) +
£2(t/)\2), for all + > 0. We think of the target as an adversary who can choose its
observed location at any time subject only to the constraints of the error bound:
10t — Q)| < %(HP(t) — Q()|]). (Recall that the tracker only observes the
location Q(t), and has no direct knowledge of either the parameter A or the distance
[|P(t) — Q(1)]]. Those quantities are only used in the analysis. However, the lower
bound holds even if the tracker knows the uncertainty disk, namely, the localization
error 3 (I1P(1) — Q(I).)

In order to analyze the lower bound, we divide the time into phases, and show
that the distance from the tracker increases by a multiplicative factor in each phase,
resulting in a growth rate of §2(1 4+ A~2). If the ith phase begins at time 7;, then we

220 K. Klein and S. Suri

letd; = ||Q(t;) — P(t;)|| denote the distance between the target and the tracker at
t;. During the ith phase, the target maintains the following invariant for a constant
0 < a < 1 to be chosen later.

Gap Invariant. Throughout the ith phase, the target moves along a path Q(¢) such
that ||Q(7) — P(1)|| = ad;, for all times 7, and all reported locations satisfy || Q(7) —
QM| < ad; /.

See Fig.2(i) for an illustration. Consider the isosceles triangle with vertices at
Q(t;), g, and qp, whose base g,qp 1s perpendicular to the line P (t;) Q(¢;). The equal
sides of the triangle have length 2d;, the base has length 2ad; /), and let g, be the
midpoint of the base. The target’s strategy is to move from Q(%;) to either g, or g,
and report its location (1) at the closest point on the line Q(t;)q.; i.e. at all times,
Q(t) is the perpendicular projection of Q(#) onto the line Q(#;)g.. By the symmetric
construction, and the choice of the points g, and ¢, the tracker cannot tell whether
the target is moving to g, or gp. Thus, any deterministic tracker makes an incorrect
choice in one of the two possible scenarios. For the worst-case performance bound,
we can equivalently assume that the target non-deterministically guesses the tracker’s
intention, and moves to the better of the two possible locations, g, or gp. The tracker
makes this choice based on whether the tracker is on or below the line Q(#;)q., or
not. In the former case, the target moves to g,, and to to g, otherwise. The ith phase
terminates when the target reaches either g, or g, and the next phase begins. (We
note that, after i phases, there are 21 possible choices made by the tracker, reflected
in whether it is above or below the line Q(#;)q. at the conclusion of each phases. For
each of these possible “worlds” there is a corresponding deterministic strategy of
the target that “fools” the tracker in every phase, resulting in the maximum distance
increase.) There is one subtle point worth mentioning here. It is possible that during
the phase, the distance between the players may shrink if the tracker temporarily
moves towards the same final location as the target—however, our Gap Invariant
ensures that that the target’s noisy location remains within the permissible error
bound throughout the phase. The following lemma shows that this simple strategy of
the target can maintain the Gap Invariant for any choice of o < 0.927. Due to space
constraints, the proof of the following lemma is omitted from this extended abstract.

® 2d. qa
P<ti> di Q(t7 : a)(\ilq’
adlde
Qdi A b
qa
@ 2= ;
S i - Mg,
P(t;) d; Q(t:) d; P(tis1)

Fig. 2 Target’s strategy during the ith phase (i), and proofs of Lemmas 1 and 2 (ii)

Trackability with Imprecise Localization 221

Lemma 1 The target can maintain the Gap Invariant for any o < 0.927.

The preceding lemma shows that our construction satisfies the Gap Invariant, and
so we can now lower bound the distance growth during a single phase. Due to space
constraints, the proof of the following lemma is omitted from this extended abstract.

Lemma 2 Atthe start of phasei+1, we haved;+1 > d;i\/1 + %, where o« = 0.927
is an absolute constant.

We can now prove the main result of this section.

Theorem 2 Under the relative error localization model, a target can increase its
distance from an equally fast tracker at the rate of 2(\~?). In other words, the target
can ensure that D(t) > D(0) + .Q(t//\z) after any phase ending at time t.

Proof The target follows the phase strategy, where that after the ith phase that lasts

. . . . 2
2d; time units, the distance between the tracker and the target is at least d;,/ 1 + %
Therefore, the distance increases during the ith phase by at least the following mul-
tiplicative factor (using a Taylor series expansion):

diyJ1+ 25 — d; I+ 25 -1 ol ot |
= > —_— e — = Q J—
2d; 2 T 4X2 16)M ()\2)

3 Trackability with a Faster Tracker

The results of the previous section establish bounds on the relative advantage avail-
able to the target by the localization imprecision. Its distance from the tracker can
grow at the rate of @ (\~2) with time. A tracking system can employ a number of
different strategies to compensate for this disadvantage. In this section, we explore
one such natural mechanism: allow the tracker to move at a faster speed than the
target. A natural question then is: what is the minimum speedup necessary to cancel
out the localization noise as a function of A? We give bounds on the necessary and
sufficient speedups, which match up to small constant factors as long as A > 2. The
general form of the speedup function is (1 — %)_1/ 2. The following theorem proves
the sufficiency condition.

Theorem 3 Suppose the target moves with speed one, and the tracker has speed

o= where X is the localization precision parameter. Then, the tracker can

1
1-1/72°
maintain D(t) < D(0), for all timest > 0.

222 K. Klein and S. Suri

Proof Our analysis closely follows the proof of Theorem1, and calculates the
increase in the distance during time Az. During this time, the tracker is able to
move oAt, while the target can move at most Az. We can then calculate dis-
tance at time ¢ + Ar from the triangle abc (Fig.1), where ab = oAt sin~y and
ac = D(t) + At — 0 At cos 7, as follows (due to space constraints we omit the full
algebraic simplification):

D(t + At) = /(o At siny)? + (D(t) + At — 0 At cos)2

< D(t) + 02 At?)2D(1) — At?/2D(t) + Ar(1 + At/ D(1))(1 — o cos)
(3)

This allows us to bound D’ () < 1—o cosy, from which it follows that D'(r) < 0
as long as o > /ﬁ. |

We now show that if A > 2, this is the minimum speedup necessary as a function
of A\, up to a small constant factor. We use the phase-based strategy of Theorem 2,
however, the value of a determined by Lemma is not sufficient to maintain the
Gap Invariant in this case because of the higher speed of the tracker. Instead, the
following lemma gives the sufficient choice of a.. Due to space constraints the proof
of the following lemma is omitted from this extended abstract.

Lemma3 Ler A > 2 and let o < 0.68 be a constant. Then, the Gap Invariant can

be maintained in any phase as long as 0 < = 11//\2,

We can now prove a lower bound on the increase in the distance during the ith
phase. Due to space constraints the proof of the following lemma is omitted from
this extended abstract.

Lemmad If\ > 2 a <0.68 andoc < (1 — 1/X\)"Y2 then at the start of the
i + 1 phase, we have di 11 > di\/(20 — 3)%> + a2(0 — 1/2) /N2, where a = 0.68 is
an absolute constant.

Remark The preceding lemma can be used to calculate the maximum tracker speed
for which the target can still force a non-negative distance for a specific A (algebraic
derivation is omitted due to space constraints):

2 e Y
_\/_84_204?_'_(12 (j//\)2+12 (Z//\
- 2

g

“4)

As) gets large, the upper and lower bound are within a constant factor of each
other. Indeed, with a more careful choice of «, we can show that the upper and lower
bounds are within a factor of 5.32 (as opposed to 10.23 for the above simple analysis)
of each other for A > 2, but we omit those details from this extended abstract.

Trackability with Imprecise Localization 223

4 Tracking in the Presence of Obstacles

The presence of obstacles makes the tracking problem considerably harder under the
localization noise. The following simple example (Fig.3) shows that the target can
grow its distance from the tracker as D(t) > D(0) + ¢, for any finite value of \. The
obstacle consists of a single U-shaped non-convex polygon. Initially, the target is at
distance D (0) from the tracker, and the “width” of the obstacle is less than D(0)/2\,
so that the localization error is unable to distinguish between a target moving inside
the U channel, or around its outer boundary. One can show that no matter how the
tracker pursues, its distance from the target can grow linearly with time.

Path Proportionate Error. In order to get around this impossibility of tracking, we
propose a path proportionate error measure, where the localization error is pro-
portional to the shortest path distance between the target and the tracker, and not
the Euclidean distance as used before. That is, the tracking signal and the physical
movement of the agents follow the same path metric. Formally, the localization error
at time ¢ always obeys the following bound:

d(P(1), Q1))

d(Q@), (1) < s

We show that the best tracking performance in this model is D(t) = D(0) +
O(t/N); that is the distance grows linearly with 1/, as opposed to the inverse
quadratic function for the unobstructed case.

4.1 Tracking Upper Bound

The tracker’s strategy in this case is also greedy, except now the tracker makes short-
term commitments in phases, instead of continuously changing its path towards the
new observed location. In particular, for each phase, the tracker fixes its goal as the
observed position of the target at the start of the phase, moves along the shortest
path to this goal, and then begins the next phase.

Algorithm 1 (MODIFIEDGREEDY) The initial phase begins at time ¢+ = 0. During
the ith phase, which begins at time #;, the tracker moves along the shortest path to
the observed location of the target at #;, namely, Q(t,-). When tracker reaches Q(t,-),
the ith phase ends, and the next phase begins.

The upper bound on the tracking performance is given by the following theorem.

Fig. 3 Impossibility of P D(0) % P4 T
tracking among obstacles - ----=-

224 K. Klein and S. Suri

Theorem 4 Using MODIFIEDGREEDY, the tracker can ensure that D(t) < D(0) +
o(t/N).

Proof First note that because d(O@), 0(1;)) < D(;) /A, it follows that t; 1 — t; =
D(t;) +xD(t;), where _Tl <x < % Thus, the target’s progress during the ith phase
is upper bounded as d(Q(t;), Q(ti+1)) < D(#;) + xD(t;). Next, by applying the
triangle inequality, the distance between P and Q at the beginning of phase #;41 is
upper bounded as

d(P(ti+1), Q(tit1)) = d(Q(t), Q(ti41))
<d(Q(%), Q1)) +d(Q(t), Qti+1))
- D(t)

+ D(t;) + xD(t;)

Finally, the upper bound on the rate of distance increase is

d(P(it1), QUit1)) —d(P(), Q) _ D) + D&)/A +xD(#) — D(t:)

tig1 — - D) +xD()
1I/A+x 2
= <
I+x — A+1

where the final inequality uses the fact that the minimum value occurs when x = 1/\.
Thus, during each phase the distance between the tracker and the target increases by

at most a factor of AL-H’ giving the bound D(¢) < D(0) + 0(%). O

4.2 Tracking Lower Bound

Our final result is to prove that the trackability achieved by MODIFIEDGREEDY is
essentially optimal. In particular, we construct an environment with polygonal obsta-
cles and a movement strategy for the target that ensures D(z) > D(0)+£2(¢/)\). The
construction of the polygonal environment is somewhat complicated and requires a
carefully designed set of obstacles. The main schema of the construction is shown
in Fig.4, where each edge of the “tree-like” diagram corresponds to a “channel”
bounded by obstacles, and each face corresponds to a “gadget” consisting of a group
of carefully constructed obstacles, with the outer face occupied entire by a single
large obstacle.

As in the proof of Theorem 2, the target moves either to top or the bottom point of
the gadget during a phase, depending on the tracker’s location. The gadget construc-
tion is such that the movement of the target along either path is indistinguishable to
the tracker because both paths are satisfied by a common set of observed locations
throughout the path. Thus, by invoking the earlier equivalence principle, we may as
well assume that the target knows the tracker’s choices. If the target moves to the
top, then the next phase occurs in the top gadget, otherwise the bottom, and so on.

Trackability with Imprecise Localization 225

Fig.4 A high level schema for the lower bound construction. The numbers next to the edges denote
the “path length” in the corresponding channels

(i) (ii)
/6/. .
N (1 A+ %\)dq‘ qa
L %
() ,‘.“g a0,
‘
W .
2\
® (713

Fig. 5 The channel construction in (i). In ii the shortest paths between nodes on the center path
have length f—j\, and the remaining all have length %

To realize the geometric scheme of Fig. 4, we replace each edge of the graph with
a channel as shown in Fig. 5i. The desired edge length can be realized by adding any
number of arbitrarily skinny bends such that the length of the shortest path through
each channel equals the edge length. Each face is replaced with a set of obstacles,
called a gadget, see Fig.5ii for an abstract illustration. The jagged line between
each pair of nodes corresponds to a channel such that shortest path through that
channel has the given length. The target will move along the shortest path through
either the top or bottom channel while reporting its location in the center channel.
Meanwhile, the channels connecting the top and bottom to the center will guarantee
that d(Q(1), Q(1)) < 1d(Q(1), P(t)) at all times ¢ during a phase.

Gadget Construction and its Properties. We now describe the construction of our
gadgets and establish the geometric properties needed for the correctness of our lower
bound. Each gadget is constructed out of two building blocks, the bent channels seen
in Fig. 51, and intersections depicted in Fig. 6i. Each intersection has the property
that the shortest path between any two of the points among a, b and ¢ has length
24§, where 0 can be made arbitrarily close to 0. Thus we can construct a channel that
branches into two channels such that the path length through the intersection is the

226 K. Klein and S. Suri

Fig. 6 In i an example intersection such that the shortest path between any pair of a b and ¢ has
length 24. In ii an example gadget construction, where each triangle corresponds to an intersection
with corners representing the points a b and c. The horizontal channels have length % between
each pair of vertical dashed lines, except for the initial distance before the first line (which can be
made arbitrarily small), and the remaining spillover distance after the last dashed line

same regardless of the branch chosen. In Fig. 6ii, we depict the construction of a
gadget using only intersections (triangles) and channels (jagged lines).

As in the lower bound for the unobstructed case, the target starts the phase at Q(#;),
and moves to g, or g, while the observed location of the targets moves along the
shortest path from Q(t;) to q.. In particular, let I1,, I1., and IT; denote the shortest
paths from Q(#;) to g4, q. and g respectively. The following lemma establishes
several properties needed for the feasibility of the target’s strategy.

Lemma 5 We can construct a gadget for each phase i such that (1) I1,, I1. and
ITy have length (1 + %)di and (2) for any point x. at distance € along Il., the
corresponding points xq and xp distance £ along I, and Iy, respectively, satisfy
d(xe, xq) < F andd(xc,xb) < —i.

Proof By construction, the shortest path in each channel between the dashed lines in
Fig. 6ii has length f—j\, and therefore this construction can be extended until I7,, I1,
and [T, have length exactly (1 + %)d,'. Next, by the symmetry of the construction,
we need only show that d(x., x,) < d;/\. We ignore the case where x, lies in the
channels before the first dashed lines, as the length of such channels can be made
arbitrarily small to guarantee that d (x,, x.) < d;/\. The maximum distance between
X4 and x, then occurs when x, lies at the midpoint between two intersections in the
top channel. However, in this case one can easily verify that the following holds:

d; d; d; d;
d =4 ——2 204 — —26420+ — —5=—
(x¢y Xq) + 5 J+ 5+2,\ + +4)\) 3

O

Gap Invariant and the Proof of the Lower Bound. We now formulate the invariant
maintained by the target so that its motion is valid under our (path proportionate)
localization error and achieves the desired lower bound.

SP-Gap Invariant. Throughout the i th phase, the target moves along a path Q(7) such
that D(¢) > d; for all times ¢, and all reported locations satisfy d(Q(¢), Q(t)) <

Trackability with Imprecise Localization 227

Lemma 6 For the duration of phase i, SP-Gap Invariant is maintained.

Proof Whether Q moves along I1, or I, they are both shortest paths (and this
cannot be shortcut by P), implying that D(¢) > d; for the duration of the phase.
Without loss of generality, suppose Q chooses I1,. Then, after time ¢, both the target
and its observed position have moved a distance of ¢ along I1, and I1,, respectively.
Therefore, by Lemma5, we have d(Q(¢), o)) < %. O

We can prove our lower bound.

Theorem S The target’s strategy guarantees that after each phase ending at time t,
the distance function satisfies D(t) > D(0) + .Q(%).

Proof The proof is by induction on the phase i. The basis of the induction is i = 0.
Since the localization error makes target’s top and bottom paths indistinguishable
to the tracker, the target can ensure that at the end of phase O the target is on the
side of I, that is opposite P. Without loss of generality, suppose that that target has
reached ¢g,. Then the best case for P is if it moved dy‘) along I1., which achieves
D(n) = D(0) + 5.

Now assume by induction that after phase i — 1 ends at time #;, we have
D(t;) = D(tji—1) + D(ti—1)/2)\ = d;. Suppose now that P has yet to reach the
gadget corresponding to phase i when Q has finished phase i at time #;41. Then
necessarily D(t;1+1) > d; + d; /), as that is the length 1, and IT,. Otherwise if P
has moved into the gadget, then the inequality D(¢;) > d; ensures that the clos-
est the target can be to the tracker is if P has moved < along I1., which implies
D(ti41) > D(t) + 552

Thus, in a round with duration (1 + %)d,-, the distance increases by at least d; /2.
Thus, in the ith phase, the distance increases by a factor of at least

>

d/2x 11
(I+Ddi 221 +%) 242X

Thus, at the end of any phase, we have the inequality D(¢) > D(0) + £2(¢/)),
which completes the lower bound. (I

5 Extension to Higher Dimensions

Our analysis of trackability was carried out for 2-dimensional Euclidean plane, but
the results generalize easily to d dimensions. Indeed, in the unobstructed case, our
analysis of the upper bound only makes use of the triangle inequality: the region
of interest is the triangle formed by P(¢), Q(t), and O(1), and the target Q moves
directly away from P. Thus, within an arbitrarily small time interval Az, P and Q are
moving within the two-dimensional plane of the triangle P (¢) Q(¢) Q(t). The upper

228 K. Klein and S. Suri

bound analysis therefore extend to any dimension d > 2. The same reasoning also
holds in the presence of obstacles. Finally, the lower bound construction of d = 2
immediately implies that the trackability lower bound holds in all dimensions d > 2.

6 Simulation Results

In our first simulation, we use a GPS trace of a hike available from [16]. Using the
scale of the GPS coordinate system, the total length of the trace is 0.51, and we place
the tracker at an initial distance of 0.014 away from the target (Fig.7), so that their
initial separation is about 2.5 % of the entire trajectory length. During the simulation,
the target follows the GPS trace, the tracker moves directly toward the current reported
location of the target, and they both have the same speed. The localization error for
this simulation is set to A = 3, a fairly high level of imprecision. At each instant, the
revealed location Q of the target makes the largest allowable angle (deviation) from
the P(Q()) line. In our simulation, we consistently chose O tobe the rightward point
of tangency. However, results were similar or better if is chosen using some other
rule such as, leftward point, or randomly chosen between left and right. In Fig. 7 we
depict the paths followed by the players and observe that despite the initial distance
between P and Q, and the large localization error, the tracker P quickly reduces its
distance to Q. In fact, the gap continues to shrink, becoming almost zero, after only
about 1/4 of the trace. The right hand figure zooms into the initial portion of the
trajectory to more clearly show the tracking path.

Our second simulation uses a synthetic trajectory to force a worst-case (adver-
sarial) tracking behavior: instead of moving along a fixed path, the target Q always
moves directly away from P. The tracker moves directly toward the observed loca-
tion Q, which as in the previous simulation is chosen as the rightward point of
tangency at maximum distance from Q. The error parameter is again set to A = 3
and the simulation begins with P positioned at the origin and Q at the point (10, 10).

(ii)

Fig. 7 i shows the trajectories of P, Q, and Q. ii shows a zoomed-in view to illustrate the quick
tracking convergence

Trackability with Imprecise Localization 229

Fig. 8 Paths taken by P, O, T T T T T T
and Q take in a worst case
simulation

The result is shown in Fig. 8. Essentially, P always moves to the right of Q’s true
location, and as a result Q moves further to the left at each step. This results in a
spiralling trajectory in which the distance between P and Q is increasing by approx-
imately 0.05 per time unit.

In another variation of this simulation, the initial conditions are the same, except
that Q is chosen uniformly at random among all possible locations of Q. In this case,
we found that the distance between tracker and target grows only by about 0.005 per
time unit, namely, an order of magnitude better than the adversarial target of the first
simulation.

Finally, Fig. 9 graphs the increase in distance over time for this simulation setup.
The curves labeled upper and lower bounds show the theoretical limits established in
Sect.2. SIM WORST and SIM RANDOM show the results for the spiralling simulation,
both with the worst-case target trajectory and the random target trajectory. We observe
that in the worst case where Q is always chosen at the maximum possible distance

Fig. 9 Growth in distance 250 r T | |
over time for simulations and Upper Bound ——
proved bounds Lower Bound --s-- !
200 Sim Worst -z }
Sim Random --#- 7
150 = 4
N
Q 100 3
x**/X/X’
50 E
o -y
O - |
500 1500 2500 3500

230 K. Klein and S. Suri

from Q, the distance growth is very close to our upper bound, but if Q is chosen
randomly, the distance increase is about half of the theoretical (adversarial) lower
bound.

7 Conclusion

Our paper is an attempt to formally study the worst-case impact of noisy localization
on the performance of tracking systems. We analyzed a simple, but fundamental,
problem where a tracker wants to pursue a target but the tracker’s location sensor can
measure the target’s position only approximately, with a relative error parameterized
by quantity A. We prove upper and lower bound on the tracking performance as
a function of this localization parameter A\. A few surprising consequences of our
results are (1) that the naive strategy of “always move to the observed location”
is asymptotically optimal, (2) the tracking error has a nice analytic form, showing
an inverse quadratic dependence on A, and (3) under the natural “path proportional
error’for environments with obstacles, the trackability has qualitatively a different
dependence of the form £2(1/\).

Compared to often-used heuristics such as Kalman filters, our work offers a more
theoretical perspective for analyzing motion and localization errors in the presence
of inevitable noise, which may be especially useful in situations where worst-case
bounds are important, such as adversarial tracking or surveillance. In addition to
improving the constant factors in our bounds, it will also be interesting to study the
noisy sensing model for other more complex settings.

References

1. Aigner, M., Fromme, M.: A game of cops and robbers. Discret. Appl. Math. 8(1), 1-12 (1984)

2. Alpern, S., Fokkink, R., Lindelauf, R., Olsder, G.-J.: The “princess and monster” game on an
interval. SIAM J. Control Optim. 47(3), 1178-1190 (2008)

3. Bhadauria, D., Klein, K., Isler, V., Suri, S.: Capturing an evader in polygonal environments
with obstacles: the full visibility case. Int. J. Robot. Res. 31(10), 1176-1189 (2012)

4. Bopardikar, S.D., Bullo, F., Hespanha, J.P.: A cooperative homicidal chauffeur game. In: 46th
IEEE Conference on Decision and Control, pp. 4857-4862 (2007)

5. Bopardikar, S.D., Bullo, F., Hespanha, J.P.: On discrete-time pursuit-evasion games with sens-
ing limitations. IEEE ToR 24(6), 1429-1439 (2008)

6. Gerkey, B.P,, Thrun, S., Geoffrey, G.J.: Visibility-based pursuit-evasion with limited field of
view. Int. J. Robot. Res. 25(4), 299-315 (2006)

7. Guibas, L.J., Latombe, J.-C., LaValle, S.M., Lin, D., Motwani, R.: Visibility-based pursuit-
evasion in a polygonal environment. Int. J. Comput. Geom. Appl. 9(5), 471-494 (1999)

8. Isler, V., Karnad, N.: The role of information in the cop-robber game. TCS 399(3), 179-190
(2008)

9. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME—].
Basic Eng. 82, 35-45 (1960)

Trackability with Imprecise Localization 231

10.

11.

12.

13.

15.

16.
17.

20.

21.

Karnad, N., Isler, V.: Bearing-only pursuit. In: Proceedings IEEE International Conference on
Robotics and Automation (2008)

Klein, K., Suri, S.: Capture bounds for visibility-based pursuit evasion. In: Proceedings of
the 29th Symposium on Computational Geometry, SOCG’13, pp. 329-338. ACM, New York,
(2013)

Klein, K., Suri, S.: Pursuit evasion on polyhedral surfaces. In: Proceedings of 24th International
Conference on Algorithms and Computation (ISAAC) (2013)

Kuntsevich, V.M., Kuntsevich, A.V.: Analysis of the pursuit-evasion process for moving plants
under uncertain observation errors dependent on states. In: Proceedings of the 15th International
Federation of Automatic Control (2002)

. Liao, L., Fox, D., Hightower, J., Kautz, H., Schulz, D.: Voronoi tracking: location estimation

using sparse and noisy sensor data. In: Proceedings of International Conference on Intelligent
Robots and Systems (IROS) (2003)

Noori, N., Isler, V.: Lion and man with visibility in monotone polygons. Int. J. Robot. Res. 86,
263-278 (2013)

OpenStreetMap GPS trace. http://www.openstreetmap.org/user/filot/traces/ 1657587 (2014)
Park, S.-M., Lee, J.-H., Chwa, K.-Y.: Visibility-based pursuit-evasion in a polygonal region by
a searcher. In: Proceedings of ICALP, pp. 281-290 (2001)

. Rote, G.: Pursuit-evasion with imprecise target location. In: Proceedings of 14th ACM-SIAM

Symposium on Discrete Algorithms, pp. 747-753 (2003)

. Sheng, X., Hu, Y.-H., Ramanathan, P.: Distributed particle filter with GMM approximation for

multiple targets localization and tracking in wireless sensor network. In: Proceedings of the
4th International Symposium on Information Processing in Sensor Networks (2005)

Suzuki, I., Yamashita, M.: Searching for a mobile intruder in a polygonal region. SIAM 1J.
Comput. 21, 863-888 (1992)

Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots.
Artif. Intell. 128(1-2), 99-141 (2001)

http://www.openstreetmap.org/user/filot/traces/1657587

Kinodynamic RRTSs with Fixed Time Step
and Best-Input Extension Are Not
Probabilistically Complete

Tobias Kunz and Mike Stilman

Abstract RRTs are a popular method for kinodynamic planning that many consider
to be probabilistically complete. However, different variations of the RRT algorithm
exist and not all of them are probabilistically complete. The tree can be extended
using a fixed or variable time step. The input can be chosen randomly or the best
input can be chosen such that the new child node is as close as possible to the sampled
state according to the used distance metric. It has been shown that for finite input
sets an RRT using a fixed step size with a randomly selected input is probabilistically
complete. However, this variant is uncommon since it is less efficient. We prove that
the most common variant of choosing the best input in combination with a fixed time
step is not probabilistically complete.

1 Introduction

Rapidly-Exploring Random Trees (RRTs) as introduced by LaValle and Kuffner
[11, 13, 15-17] are a popular method for geometric and kinodynamic planning.
Many, e.g. [4, 5, 7], consider RRTs to be a synonym for probabilistic completeness.
However, this is not necessarily the case. Kinodynamic RRTs [13, 15-17] only have
the property of probabilistic completeness under a set of assumptions, which depend
on implementation details that are left open by the RRT algorithm. These details
govern how the time step and the input are chosen to extend the tree from the selected
node. While it has been shown that the RRT algorithm for kinodynamic planning
is probabilistically complete with a fixed time step and a random control input [16,
17], we now describe that the most commonly used variant is not probabilistically
complete in the general case. This variant uses a fixed time step and chooses the best
control input for the extension of the tree from the selected node. This variant is for
example used in [1, 2, 4, 6, 8, 18].

Even though we prove this variant to not be probabilistically complete in general,
it could potentially be made probabilistically complete by introducing additional

T. Kunz (<) - M. Stilman
Georgia Institute of Technology, Atlanta, GA 30332, USA
e-mail: tobias @gatech.edu

© Springer International Publishing Switzerland 2015 233
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_14

234 T. Kunz and M. Stilman

requirements on the system dynamics and/or the used distance metric. In fact, one
of the goals of this paper is to spur further research on the exact conditions under
which RRTs are probabilistically complete.

1.1 Problem Formulation

In this analysis, consider a system with differential constraints given as
X =fx.u) (D

with state x € X and inputu € U.

The set of all collision-free states is given as Xgee & AX'. An initial state xijn;; €
Xfree and a goal set Xgoa1 C Afree are given. We want to find a duration 7' and an
input trajectory u(¢) such that the differential constraints of Eq. 1 are satisfied for
all 0 <t < T, the trajectory is collision free with x(¢) € Xfee forall0 <t < T,
x(0) = xinit and x(T) € Xgoal-

1.2 Kinodynamic RRT Algorithm

A distance function p : X x X — [0, 0c0) is given, which establishes a concept of
closeness between states and is used by the RRT algorithm to extend the tree. Most
commonly the Euclidean distance is used.

Algorithm 1 shows the construction of an RRT. Lavalle and Kuffner introduced
different variants of the RRT algorithm. All RRT variants grow a tree from Xjuj; by
sampling the state space (line 4) and then selecting the node in the tree closest to the
sampled state according to the provided distance function (line 5). This is visualized
in Fig. 1a. The NewState function (line 6) extends the tree from the selected node by
applying some input # € U for some time step Ar. Variants of the RRT algorithm
differ in how At and u are chosen.

Algorithm 1: BuildRRT (Xipnir, Xgoal)

V < {xinith
E <0
while V N Xgou = ¥ do
Xrand <— SampleState();
Xnear < NearestNeighbor(V, Xrang);
(Xnew, Unew, At) < NewState(Xnear, Xrand)s
if CollisionFree (X ear, Xnew, Unew, At) then
V < VU {xpew};
E < E U {(Xpear, Xnew: Unew, AD};
return (V, E);

o XA R W N

-
=)

Kinodynamic RRTs with Fixed Time Step ... 235

@ o (b)

Linit ®)Lnew
® Lrand 3 ® Lrand

Linit

Fig. 1 Visualization of best-input RRT variant. The shown system is a double integrator with
X1 = x3, X2 = u and finite input set ¢{. a Select nearest node. b Select best input

Early work on RRTs [13, 15] used a fixed time step At and chose the best input
u. Each input u is associated with a successor state, in which the system will end up
when applying the input for a fixed time A¢ from the current node. “Best input” refers
to the input whose successor state is closest to the sampled state. This is visualized
in Fig. 1b and formalized in Algorithm 2.

Algorithm 2: NewState(Xnear, Xrand)
(using fixed time step and best-input extension)

1 Upew < arg minugu{p(SimUlate(xneara u, At), Xrand)};
2 Xpew < Simulate(Xnear, Unew, At) ;
3 return (Xpew, Unew, At);

The Simulate function used in Algorithm 2 returns a successor state by simulating
the system forward by a given time step At using a given constant input u. Le. it
returns x (At), such that the differential equation X = f(x(¢), u) with the initial
condition x (0) = Xpeqr 18 satisfied.

If U is finite, the best input in line 1 of Algorithm 2 can be chosen by forward
simulating all inputs and evaluating all resulting successor states. If {{ is continuous,
this is not possible. Instead an analytical method must be used for an exact solution.
However, often the best input is approximated instead by choosing the best one out
of a finite number of sampled inputs.

Later, [16, 17] generalized the RRT algorithm and gave choices for the imple-
mentation of the NewState function. The time step Az can either be fixed or variable
and either the best or a random input u can be chosen. Algorithm 1 is general enough
to allow all these variations. However, when the time step is fixed, the algorithm and
data structures can be simplified by leaving out Az.

236 T. Kunz and M. Stilman

Table 1 Probabil%stic Fixed Af Variable Af
completeness of different
kinodynamic RRT variants

Random u Probabilistically | ?
complete (if U
finite) [16, 17]
Bestu Not ?
probabilistically
complete [this
paper]

1.3 Probabilistic Completeness of Kinodynamic RRTs

An algorithm is probabilistically complete if the probability that an existing solution
is found converges to 1 as the number of iterations grows to infinity [14].

It has been shown in [16, 17] that if I/ is finite, A¢ is fixed and u is chosen
at random, the RRT algorithm is probabilistically complete. However, choosing u
randomly may not result in the RRT exploring the state space rapidly.

In contrast, the preliminary RRT variant introduced in [13, 15] also uses a fixed
time step At but chooses the best input u. The very first paper on RRTs [13] but none
of the later papers [15-17] claimed this variant to be “probabilistically complete
under very general conditions”. We show that this variant is not probabilistically
complete.

Restricting the RRT to a fixed time step renders the algorithm unable to find
solutions that do not consist of Az long segments of constant input. However, even
if a solution with Az long segments of constant input exists, the RRT with best-input
extension might never find it.

This section up until here is summarized in Table 1.

As mentioned in Sect. 1.2 the best input out of a continuous input set is often
approximated in practice by sampling a finite set of inputs and choosing the best
input out of the finite set. This approximation may render the RRT algorithm proba-
bilistically complete because of the added randomness. However, an algorithm that
is probabilistically complete only thanks to approximation errors is likely to not be
very efficient.

1.4 RRTs Using Steering Methods

A steering method is able to exactly connect any two states x1, X € X with [|x; —
x2|| < € for some € > 0 while ignoring obstacles. Computationally efficient steering
methods are not available for general dynamical systems. They are only available for
a few simple systems, e.g. Dubin’s car [3, 14] and a set of double integrators [12]. A
steering method in combination with a collision checker yields what is called a local
planner in the probabilistic roadmap literature [10].

Kinodynamic RRTs with Fixed Time Step ... 237

To be generally applicable, kinodynamic RRTs as introduced in [13, 15-17] do
not require a steering method. Instead, they only rely on an incremental simulator
that can simulate the system forward for a given input and time step. However,
there are RRT algorithms that make use of a steering method. These are not the
topic of this paper. However, we want to briefly mention them in this section to
make the differences clear and to emphasize that the negative result on probabilistic
completeness presented in this paper does not apply to those.

A steering method usually returns a trajectory that minimizes some cost, e.g.
time. When using a steering method, the distance function used by the RRT is also
based on this steering method by defining the distance as the optimal cost to move
between two states ignoring obstacles. Karaman and Frazzoli [9] proved that an
RRT* using an optimal steering method in combination with a distance function
based on that steering method is probabilistically complete. Since an RRT* uses the
same vertices as an RRT, the RRT algorithm is also probabilistically complete under
these assumptions.

Geometric RRT planners [11] that use a Euclidean distance function and connect
configurations with a straight line in configuration space can also be viewed as using
a steering method and fit into the framework assumed in [9]. The straight line is
the trajectory that minimizes path length and the distance function returns that path
length.

Whereas RRT planners using steering methods have been most successful in
practice and come with guarantees on probabilistic completeness, not requiring a
steering method was one of the selling points when the RRT was initially introduced.

2 Proof

We demonstrate that a kinodynamic RRT with fixed time steps and best-input exten-
sion is not generally probabilistically complete. The proof uses a counter example.

The RRT variant we are considering here selects both the node and the input by
evaluating closeness to the sampled state according to the provided distance metric p.
In order for a node to get selected it must be the closest one to the sample. The same
goes for the input: In order to be selected, the successor state resulting from the input
must be the closest one to the sample among all the successor states resulting from
applying inputs from the current node. Even though for every node and for every
input there exist states such that the considered node or the considered successor state
is closest, in order for a specific input to be selected for extension from a specific
node, more is required: (1) The specific node must be the closest to the sample and
(2) among all the successor states resulting from applying inputs from the specific
node, the state resulting from the specific input must be the closest. We provide an
example case in which there is no state that could be sampled that satisfies both
requirements.

The system used as counter example is described in Sect.2.1. In Sect.2.2
we present a possible intermediate tree and in Sect.2.4 we demonstrate that the

238 T. Kunz and M. Stilman

considered RRT variant cannot explore the full reachable state space from that
intermediate tree because there exists a node and an input such that no sampled
state results in selecting both of them. Section2.3 provides some background of
Voronoi regions, which are used in the proof in Sect.2.4.

2.1 Counter Example

Consider the following system with a 2-dimensional state vector [x1, x2], a scalar
input # and no obstacles.

Xl=u (2)
f=u’-3 (3)
with |u] <1 “4)
Linit
o t=20

\\/ t= At
T2
Lxl

t=2At

t=3At

Fig. 2 States reachable from x;jpj

Kinodynamic RRTs with Fixed Time Step ... 239

Note that —4 < xp < —2 and thus the system is always moving in negative
direction along the x» axis. The set of possible successor states after a time step of
At from the current state is a segment of a parabola. Figure 2 shows the set of states
reachable within 3A¢ from some initial state xjn;; assuming constant input during a
fixed time step At.

Observe that the system being restricted to always move in the negative direction
of the x, axis makes it impossible to revisit an earlier state. Also, all states att = At
and r = 2 At are only reachable at one specific point in time.

Our counter example uses a Euclidean distance for the RRT algorithm.

2.2 Intermediate Tree

A probabilistically complete algorithm must be able to explore the whole reachable
space from any intermediate tree that the algorithm might produce. Figure 3 shows
what the RRT could look like after two extensions from the initial state. The new

Linit
t=20
Lq ® Ty
t= At
X2
1
t=2At
t = 3At

Fig. 3 RRT after two extensions. Gray areas of the state space are never explored

240 T. Kunz and M. Stilman

nodes x, and x,, sit at the ends of the parabola segment that represents the reachable
space at time At.

If the algorithm was probabilistically complete, it would still be able to explore
the whole reachable space. However, we show that given this tree configuration, the
RRT is never going to explore the state space areas shown in gray, even though they
are reachable by the system. The parabola segment at t = At is never explored
except its endpoints. The unexplored space att = 2A¢ and t = 3 At is just the result
of the unexplored parabola segment at t = At, since getting there requires moving
through a state in the interior of the parabola segment. Also, note that the unexplored
space at t = 2At and t = 3 Ar does not play a role for our proof, since the inability
of the RRT to explore the interior of the parabola segment is enough for it to not be
probabilistically complete. Part of the unexplored space att = 3 At could potentially
still be explored at t+ = 4 At, since it overlaps with the reachable space at t = 4 At,
which is not shown in the figure.

2.3 Background: Voronoi Regions

Even though Voronoi regions are a well-known concept, we are going to review them
in this section since our proof in the next section uses the less common concept of a
Voronoi region of an infinite set of points instead of only Voronoi regions of single
points.

Consider k subsets §; C X withi = 1...ksuchthatVi # j : 5 NS; = 0.
The sets S; are called sifes. The Voronoi region of site S; is the set of all points that
is closer to S; according to our distance metric p than to any other site. Or more
formally

Vor($) ={x e X |Ipe S Vj=1...kVg e S;: p(x,p) <px, @)} (1)

Note that in the common case all sites S; only contain a single point, but we are
also going to make use of a site S; containing infinitely many points. Also note that
Vor(S;) does not only depend on S; buton all S; with j = 1...k. A Voronoi diagram
is a tuple (Vor(S;))ieq1...x) of all the k Voronoi regions.

2.4 Non-exploration of Parabola Segment

We now look closeratr = At to determine why the interior of the parabola segment is
not explored by the RRT algorithm. As mentioned in Sect. 2.1, because the example
system is constrained to always move in negative x, direction, the states on the
parabola segment can only be reached at time t = At. Thus, the parabola segment
can only be explored by extending the tree from the root node.

Kinodynamic RRTs with Fixed Time Step ... 241

Fig. 4 Voronoi diagram of
the three tree nodes, i.e. of
the three Voronoi sites

S1 = {Xinit}, S2 = {x,} and
S3 = {xp}. The root node’s
Voronoi region is shaded
with lines

VOI"({:Ztinit})

Vor({za}) Vor({z»})

To extend the tree to the parabola segment, the random sample of the RRT algo-
rithm must fall in the Voronoi region of the root node. The Voronoi regions of the
three tree nodes (which are the Voronoi sites here) are shown in Fig.4. The root
node’s Voronoi region is shaded with lines.

Now assume the RRT samples somewhere in the root node’s Voronoi region and
thus selects the root node as the nearest neighbor for extension. The next step is to
choose the input to use to extend the tree from the root node. The RRT variant we
are considering chooses the input such that the distance of the new child node to the
sampled state is minimized. Similar to the way the closest node to the sample gets
picked by the RRT algorithm, now the closest successor state of the selected node
gets picked. We will now look at Voronoi regions of different successor states of the
root node. We consider three sites and their Voronoi regions. Two sites are defined
to be the two end points of the parabola segment and the third site is the entire rest,
the interior, of the parabola segment. Note that the latter Voronoi site consists of
infinitely many states. The three Voronoi regions of those sites are shown in Fig. 5.
The Voronoi region of the interior of the parabola segment is shaded with dots.

For the RRT to explore the interior of the parabola segment, the sampled state
must lie in both, the Voronoi region of the root node and the Voronoi region of the
interior of the parabola segment. However, as Fig. 6 shows, the two Voronoi regions
don’t overlap. Thus, the RRT cannot explore the interior of the parabola segment and
the algorithm is not probabilistically complete.

Fig. 5 Voronoi diagram of
the successor states of the
root node. Three Voronoi
sites are considered: the two
endpoints of the parabola
segment, S| = {x,} and

S = {xp}, and its interior
S3 = I. The Voronoi region
of the interior / of the
parabola segment is shaded
with dots

Vor({za}) Vor({x})

242 T. Kunz and M. Stilman

Fig. 6 Combining the two
Voronoi diagrams from
Figs.4 and 5: Voronoi
regions of the root node
(lines) and the interior of the
parabola segment (dots).
They do not overlap

Linit

Fig. 7 Points within the root - ~~
node’s Voronoi region are
closer to either one of the
endpoints of the parabola
segment than to its interior

Figure 7 provides a slightly different illustration of the same fact that every sample
in the root node’s Voronoi region is closer to one of the endpoints of the parabola
segment than to its interior. The figure shows three exemplary points within the root
node’s Voronoi region. The dashed circles around them show that the closest point
on the parabola segment is always one of the endpoints.

2.5 Discrete Inputs

Above proof can easily be extended to the discrete case. For example we can replace
the entire interior of the parabola by a single input that leads to a state in the cen-
ter of the parabola segment. This means Eq.4 is replaced by u € {—1, 0, 1}. The
voronoi regions for this discrete counter example are shown in Fig. 8. Similarly to
the continuous case, the zero-input state shown in gray will never be explored.

However, in the discrete-input case the RRT algorithm can be easily adapted to be
probabilistically complete by making sure that no input is applied to the same node
twice [14]. This forces the RRT to eventually try to expand all inputs of a node. This
adaption is not possible in the continuous-input case.

Kinodynamic RRTs with Fixed Time Step ... 243

Fig. 8 Discrete case:
Voronoi regions of the root
node (/ines) and the
zero-input state (dots)

Linit

To @ @ Ty

3 Conclusion

We showed that a common variant of kinodynamic RRTs is not probabilistically
complete. This contradicts general perception that RRTs are inherently probabilisti-
cally complete. Instead, probabilistic completeness depends on the implementation
details of the RRT, the specific problem and/or the chosen distance metric. Whether
the RRT variant considered here can be made probabilistically complete by introduc-
ing constraints on the problem or distance metric is left open for further research. The
question whether kinodynamic RRTs with a variable time step are probabilistically
complete is also left open.

Even though RRTs were initially designed for not requiring a steering method,
the finding in this paper provides an argument for using RRTs with a steering method
as we do in [12].

Acknowledgments This paper is dedicated to the memory of Mike Stilman. This work was sup-
ported in part by ONR grant N0O0014-14-1-0120.

References

1. Bhatia, A., Frazzoli, E.: Incremental search methods for reachability analysis of continuous
and hybrid systems. In: Alur, R., Pappas, G. (eds.) Hybrid Systems: Computation and Control.
Lecture Notes in Computer Science, vol. 2993, pp. 142-156. Springer (2004)

2. Cheng, P., LaValle, S.: Resolution complete rapidly-exploring random trees. In: IEEE Interna-
tional Conference on Robotics and Automation (2002)

3. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with
prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497-516 (1957)

4. Esposito, J.M., Kim, J., Kumar, V.: Adaptive RRTs for validating hybrid robotic control systems.
In: Algorithmic Foundations of Robotics VI, pp. 107-121. Springer (2005)

5. Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for agile autonomous vehi-
cles. J. Guid. Control Dyn. 25(1), 116-129 (2002)

6. Glassman, E., Tedrake, R.: A quadratic regulator-based heuristic for rapidly exploring state
space. In: IEEE International Conference on Robotics and Automation (2010)

7. Goerzen, C.,Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective
of autonomous UAV guidance. J. Intell. Robot. Syst. 57(1-4), 65-100 (2010)

244 T. Kunz and M. Stilman

8. Kalisiak, M., van de Panne, M.: RRT-blossom: RRT with a local flood-fill behavior. In: IEEE
International Conference on Robotics and Automation (2006)

9. Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using incremental sampling-
based methods. In: IEEE Conference on Decision and Control (2010)

10. Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566-580 (1996)

11. Kuftner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning.
In: IEEE International Conference on Robotics and Automation (2000)

12. Kunz, T., Stilman, M.: Probabilistically complete kinodynamic planning for robot manipulators
with acceleration limits. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (2014)

13. LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Technical Report
98-11, Computer Science Department, Iowa State University (1998)

14. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

15. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. In: IEEE International Con-
ference on Robotics and Automation (1999)

16. LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: progress and prospects. In: Algo-
rithmic and Computational Robotics: New Directions 2000 WAFR, pp. 293-308 (2000)

17. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5),
378-400 (2001)

18. Petti, S., Fraichard, T.: Safe motion planning in dynamic environments. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (2005)

Featureless Motion Vector-Based
Simultaneous Localization, Planar Surface
Extraction, and Moving Obstacle Tracking

Wen Li and Dezhen Song

Abstract Motion vectors (MVs) characterize the movement of pixel blocks in video
streams and are readily available. MVs not only allow us to avoid expensive feature
transform and correspondence computations but also provide the motion information
for both the environment and moving obstacles. This enables us to develop a new
framework that is capable of simultaneous localization, scene mapping, and moving
obstacle tracking. This method first extracts planes from MVs and their correspond-
ing pixel macro blocks (MBs) using properties of plane-induced homographies. We
then classify MBs as stationary or moving using geometric constraints on MVs.
Planes are labeled as part of the stationary scene or moving obstacles using MB vot-
ing. Therefore, we can establish planes as observations for extended Kalman filters
(EKFs) for both the stationary scene and moving objects. We have implemented the
proposed method. The results show that the proposed method can establish plane-
based rectilinear scene structure and detect moving objects while achieving similar
localization accuracy of 1-Point EKF. More specifically, the system detects moving
obstacles at a true positive rate of 96.6 % with a relative absolution trajectory error
of no more than 2.53 %.

1 Introduction

For most mobile robots in GPS-challenged environments, simultaneous localization
and mapping (SLAM) and obstacle avoidance are two critical navigation function-
alities. They are often handled separately because SLAM usually views moving
obstacles as noises in the environment whereas obstacle avoidance only concerns

This work was supported in part by the National Science Foundation under IIS-1318638 and
NRI-1426752.

W. Li () - D. Song

Department of Computer Science and Engineering,

Texas A&M University, College Station, TX 77843, USA
e-mail: wli@cse.tamu.edu

D. Song
e-mail: dzsong@cse.tamu.edu

© Springer International Publishing Switzerland 2015 245
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_15

246 W. Li and D. Song

the relative motion between the robot and obstacles. This artificial separation was
mostly due to the limitation of existing methods. Both SLAM results and obstacle
motion information should be considered together when planning robot trajectories
in real applications. In fact, the artificial separation can lead to problems such as
synchronization or redundant processing of information, which are not desirable for
time, power, and computation constrained mobile robots.

Motion vectors (MVs) characterize the movement of pixel blocks in video streams,
which are readily available. With a monocular camera as the only sensor, we have
employed MVs from video streams to create a new featureless SLAM method
for visual navigation [14]. However, the method assumes a stationary environment
despite that MVs encode motion information for both the environment and moving
objects.

Here we show that MVs allow us to develop a new algorithm that is capable of
performing the SLAM task and obstacle tracking in a single framework by simultane-
ous localization, planar surface extraction, and tracking of moving objects. Assuming
a quasi-rectilinear urban environment, this method first extracts planes from MVs
and their corresponding pixel macro blocks (MBs). We classify MBs as station-
ary or moving. These steps are based on geometric constraints and properties of
plane-induced homographies under random sample consensus (RANSAC) frame-
work. Planes are labeled as part of the stationary scene or moving obstacles using an
MB voting process. This allows us to establish planes as observations for extended
Kalman filters (EKFs) for both the stationary scene and moving objects. We have
implemented the proposed method and compared it with the state-of-the-art 1-Point
EKEF [4]. The results show that the proposed method achieves similar localization
accuracy. The relative absolute error is less than 2.53 %. At the same time, our method
can directly provide plane-based rectilinear scene structure, which is a higher level of
scene understanding, and is capable of detecting moving obstacles at a true positive
rate of 96.6 %.

2 Related Work

Our work relates to vision-based SLAM (vSLAM) with a monocular camera. The
general goal of vSLAM is to estimate the robot pose and reconstruct the 3D envi-
ronment, while the robot travels in the environment. In a regular vSLAM approach,
the environment is represented by a collection of landmarks, and cameras are used
as the only sensors to provide observations for landmarks.

Depending upon landmarks/features, existing works for monocular vSLAM can
be classified into different categories. Feature points have been well studied and are
the most commonly used landmarks. A comprehensive study of different point detec-
tors is provided in [11], where features like Harris corner, smallest univalue segment
assimilating nucleus (SUSAN), scale invariant feature transform (SIFT), and speeded
up robust features (SURF) are compared in aspects of stability and discover rates.
Low level features like edgelets [6] and lines [13] are also studied, and combined

Featureless Motion Vector-Based Simultaneous Localization ... 247

for better performance. Recently, high-level features like 3D lines and planes [9, 10,
15-17, 20, 25] are introduced to vSLAM works to construct hierarchical environ-
ment representations, and semantic features such as vertical and horizontal lines [8]
also attract attentions. All of these works require feature transform, which is often
computationally expensive.

For many vSLAM works, acommon assumption is that the environment is station-
ary. This assumption becomes invalid when a robot navigates in an urban environment
with moving vehicles and pedestrians. In recent years, vSLAM in dynamic environ-
ments receives increasing research attention. In existing methods, this problem is
separated as a vSLAM in a stationary environment and a 3D visual tracking problem
for each moving object [22, 23]. Our work is similar to these works in that we use
multiple filters to track stationary and moving objects separately. However, exist-
ing methods do not perform motion separation and only work when the stationary
landmarks are fixed or the moving objects’ templates are given. To integrate motion
separation with vSLAM, Zhou et al. [26] propose a multi-camera based approach
using multiple views to triangulate points and compare the reprojection error between
frames to differentiate stationary and moving points. For a monocular camera, the
triangulation approach is not applicable within a single frame. Therefore, our work
relies on an MV-based motion segmentation method using adjacent frames.

The motion separation in our work relates to motion-based object detection in
monocular vision. Many existing MV-based object detection approaches require a
stationary background [1, 7, 19, 24]. Assuming that MBs on an object have the same
motion, different clustering methods, such as expectation-maximization (EM) [1] and
mean-shift [19], are used to classify foreground M Vs into different regions. With the
given object regions, the tracking can be performed by searching along all M Vs in the
object region [7]. However, these methods do not apply to our problem because the
background is not stationary in our videos, and the object motion on images cannot
be approximated by affine motion. Similar to MVs, optical flows (OFs) enable many
motion-based object-detection work [3, 5, 18]. When a camera moves, OFs are used
to detect a single dominant plane with the homography constraint [18]. When the
dominating plane is the ground plane in [3], an OF model for the ground plane
movement is estimated according to the camera motion where all mis-matchings to
the model are detected as obstacles. Considering the low accuracy of MVs, we also
use planes as landmarks in our work. However, the camera motion is unknown in
our model.

3 Problem Formulation

3.1 System Overview and Introduction to Motion Vectors

Figure 1 shows that the proposed system consists of three parts: the plane extrac-
tion and camera motion estimation (top), the stationary scene filter (middle), and the

248 W. Li and D. Song

v Plane Extraction and
Camera Motion Estimation

CFk—>k—l
Initial Estimation ! .
> . 2kl MB Labelin
v of Camera Motion —R@—p» £

v; * Cskﬂk—l" "Cdkakrl v

Initial Plane kaak’l‘ Plane Labeling E& 1T | Plane Re-estimation,
Extraction e J _k>kIT 1 Observation Extraction
Cm'l-k_’k" K 3 koK1
2 Tlis g » tia
k—k-1
** * % gy Stationary Scene Filter
Hsk-1 isc ok
EKF Delete Lost Discover »| EKF Update ~ Hs,
Predict Planes Moving Planes
L >
Plane
+* * Management
Hidk-1| EKF Delete Lost Discover Hidk
Predict Planes EKF Update Stationary Planes ™

Moving Object Filter

Fig. 1 System diagram. The * represents the output of plane labeling, which is also the input to
three sub-blocks below

moving object filter (bottom). The plane extraction and camera motion estimation
takes M Vs as input and outputs labeled stationary/moving planes and the estimated
camera motion between the adjacent frames. The extracted stationary planes and
camera motion information are fed into the stationary scene filter to perform local-
ization and mapping tasks. The extracted moving planes are entered to the moving
object filter for tracking. Since moving and stationary planes are not permanent in
applications (e.g. a moving car may come to a stop), a plane management module
is introduced to allow us to add, remove, verify, and/or re-label them according to
EKEF outputs.

Filtered M Vs are the input to the entire system. Let us briefly introduce M Vs here.
Detailed description and the filtering process can be found in [14]. Moving Picture
Experts Group (MPEG) stands for a class of video compression algorithms that are
the most popular in use today. To achieve compression, each frame is partitioned
into MBs in MPEG-1/2/4 standards (e.g. MPEG-2 codec uses 16 x 16-pixel MB).
During encoding, block matching is performed to find similar MBs in reference
frames. An MV is then established to represent a 2D shift of an MB with respect
to (w.r.t) the reference frame. Depending on group of picture structure in different
MPEG protocols, raw MVs may point to multiple future or past reference frames.
It is worth noting that MVs are often noisy or missing due to the fact that MVs are
computed purely based on the similarity of MBs. The similarity could be corrupted
by occlusion, lighting, and large perspective changes or tricked by repetitive patterns.

Comparing with optical flows, MVs are readily available. However, MVs are
sparser in spatial resolution but denser in temporal dimension. In [14], we have
showed how to exploit this characteristic to reduce noise in MVs, which results in

Featureless Motion Vector-Based Simultaneous Localization ... 249

the filtered MVs. Actually, filtered MVs represent the set of corresponding MBs
between key frames k and k — 1, and are denoted by

CH=hl— (g o x§), (1)

where x; indicates the center of the MB in reference frame k and x;_1 shows its
corresponding position in reference frame k — 1.

3.2 Problem Definition

To formulate the problem, we assume the urban scene can be approximated using
planes: stationary or moving. A set of stationary planes is a good representation of
quasi-rectilinear urban environments and always exists in sight. Moving planes can
approximate vehicle exteriors. We assume that there are more stationary planes than
moving objects. We also assume that moving planes follow pure translation in the
short duration of observation. The intrinsic camera matrix K is constant and known
through pre-calibration. All 3D coordinate systems are right-handed coordinates, and
common notations are defined as follows:

e Coordinate systems: {®y} is a camera coordinate system (CCS) at frame k. For
each CCS, its origin locates at the camera optical center, z-axis coincides with the
optical axis and points to the forward direction of the camera, its x-axis and y-
axis are parallel to the horizontal and vertical directions of the CCD sensor plane,
respectively. The world coordinate system (WCS) {W} coincides with {®¢}. To
differentiate variables in CCS and WCS, a superscription k means the variable
is in {@y} or its corresponding image coordinate system, while no superscription
is default for {W}. In addition, a superscription k — k — 1 means from {®;} to
{Pi—1}

e Image coordinate system: x € P? is the homogeneous representation of an image
coordinate where P2 is 2D projective space.

e 3D planes: ™ = [n", d]" represents a 3D plane, where n € R? is the plane normal
vector and d is the plane depth. 7+ = nr/d is the inhomogeneous form.

e Subscripts: k is the time/frame index. To distinguish stationary scene and moving
objects, a subscript s stands for stationary and d represents dynamically moving.
For example, 7r; x is a stationary plane at frame k.

e cr(xk—1, Xk, F) denotes the Sampson’s error (p. 287 in [12]) for fundamental
matrix F, where x;{rkaq = 0. eg(xg_1, xr, H) denotes the Sampson’s error
(p- 99 in [12]) for homography matrix H, where x;_1 = Hxy.

With the notations defined, we formulate the problem as below:

Problem 1 Given the set of MVs, Ck—~k—1, up to time/frame k, estimate camera
rotation Ry from {W} to {®;} and camera location £; in {W} for each frame &,
identify/label MBs for each plane, and reconstruct stationary and moving planes.

250 W. Li and D. Song

To solve this problem, we begin with planar surface extraction and camera motion
estimation (top box in Fig. 1).

4 Planar Surface Extraction and Camera Motion Estimation

Since MVs are often too noisy to be used directly, we exploit the coplanar property
of MBs in each adjacent key frame pair to filter MVs. We estimate camera motion
first and then use the motion information to label MBs by identifying whether they
belong to stationary scene or moving objects. This allows us to establish planes as
observations for the later EKF-based approach.

4.1 Initial Estimation of Camera Motion

With the input MVs C*~*=1 defined in (1), let us estimate camera motion between
two adjacent frames. The correct MV for the stationary scene across adjacent frames
should conform the relation

x§)TF=k=1y =0,)

where F¥~* =1 ig the fundamental matrix between the two frames. We first obtain
an initial F*~*~1 using normalized 8-point algorithm under RANSAC framework
g p g

(p. 281 in [12]). This gives the inlier correspondence set for Fk—k-=1.
Ck—>k—1 . Ck*)k*l}
F :)

3)

. NT pk—k—1
={xr1 < x| FF78 7 xll < ep.xpm1 < x €

where €7 is an error threshold and || - || represents the 2 norm. This verification filters
out many non-static MBs and noisy MVs that do not move along the epipolar line,
such as the black arrows in Fig. 2a.
The fundamental matrix can be parameterized by camera rotation and translation
as follows:
Fk—)k—l — K_T[tk—ﬂ(_l]ka_)k_lK_l (4)

where R¥~k~1 i the camera rotation matrix from {Pr} to {Pr_1}, th=k=1 i the
camera translation from {®;} to {®;_} measured in {P;}, and [-]« stands for the
skew-symmetric matrix representation of the cross product.

Therefore, by minimizing Sampson’s error on set C/fﬁk*l using Levenberg-
Marquardt algorithm:
. c k—k—1
min E ep(xp_1, x5, F , 5
Rk—>k—]’tk—>k—l F(k=1 k) ()

Xp_1oX], GC’;_’k_l

we obtain an initial estimation of camera motion between adjacent frames.

Featureless Motion Vector-Based Simultaneous Localization ... 251

@ (b)

-9--®-

0

Fig. 2 Illustration of the MB labeling process (best viewed in color). The white dot and lines are
the epipole and epipolar lines, respectively. Arrows indicate the movement of MBs between two
adjacent frames. a MV direction constraint illustration: The camera motion is voted to be “forward”,
and red MBs are labeled stationary MBs, green and black MBs are moving MBs, and blue MBs
are detected to be on the plane at infinity. b MV magnitude constraint illustration. Red arrows
are labeled stationary, and the green arrows are moving. The red dashed line illustrates the fitted
relationship between ||x}_,x{ || and |lex{ || along the white epipolar line

4.2 MB Labeling for Stationary and Moving Objects

Before estimating planes, we need to properly classify MBs that belong to moving
objects or the stationary scene. The simple verification in (3) cannot filter out all
MBs on moving objects from the stationary background. If a vehicle moves along the
epipolar line, then the corresponding MBs also satisfy (3). This happens frequently
when a vehicle is in front of the camera and moves in the same direction with the
camera on a straight road. The green arrows on the vehicle in Fig.2a show a sample
case. Since there are two cases: passing vehicles from the same direction of camera
motion and approaching vehicles in the opposite direction, we verify the direction
and magnitude of the MVs to identify them, respectively.

MYV direction constraint: For a passing vehicle on a straight road, the MVs of the
vehicle move along the epipolar line in an opposite direction with the background
(e.g. the green arrows in Fig.2a). If we know the camera moving direction, these
MYVs can be detected by checking direction consistency. Therefore, we start with
detecting the camera moving direction. Since we know camera rotation from (5) and
are only interested in camera translation, we can remove the effect of camera rotation
first. This is done by projecting xx_1 to x; _,

X =sKRHHIK "y (6)

where s is a scalar. After the projection, the displacement between x)_, and x{,
is caused by pure camera translation for stationary MBs. According to epipolar
geometry (p. 247 in [12]), when the camera performs a pure translation, the epipole
e should be a fixed point, and all stationary MBs should appear to move along lines

252 W. Li and D. Song

radiating from the epipole (see Fig.2a). The colored dots in the figure are x)_, and
the arrows point to x{, an illustration of MVs.

If the camera moves forward along its optical axis, vectors ex)_, and x_,x{
should be in the same direction, as the red arrows in the highlighted circle shown in

Fig. 2a. If the camera moves backward, ex; _, and x;_,x} should be in the opposite

—_— —_—
direction. Denote the absolute angle between exg{_ , and x;(_ 1 X as a. Of course, the
perfect collinear relationship may not hold due to noises in the system. « is always
somewhere between 0 and 180°. We examine each MV x;_| < xz € C”f,—’k N
its «v is less than 90°, a vote of “forward” is assigned, otherwise a “backward” vote
is assigned. Then the camera moving direction is obtained as the majority direction
from all inlier correspondences. Figure2a shows the camera moving direction is
voted as “forward" because most of the MBs move away from the epipole. With the
detected camera moving direction, we can identify MBs belonging to passing vehicles
easily. However, this would not work for vehicles approaching the camera along the
direction parallel to camera motion vector. The MVs on the approaching vehicles
also move along the epipolar line and share the same direction as the background
motion. For such cases, we need to verify the magnitude of MVs.

MYV magnitude constraint: The additional motion introduced by the object results
in sudden changes of MV magnitude along the epipolar line. To detect this type
of moving objects, we start with computing the magnitude of MVs after remov-

—
ing camera rotation. Denote the MV magnitude of x;_; < xj as ||x;<71x,i||, and

—
the Euclidean distance between the MB and the epipole as ||ex}||. From projective
geometry we know that closer objects have larger displacements under the same cam-

e]
era motion. Therefore, along one epipolar line, ||x)_, x| should gradually increase
as |lex]|l increases. For each epipolar line, we approximate the 2D relationship

—

—
between ||x)_,x{|l and [lex] | using RANSAC-based line fitting. An example of the
fitted relationship is shown by the dashed line at the bottom of Fig.2b. Therefore,

= . : . . -—
for a given |lex| on the epipolar line, a predicted MV magnitude [|x}_,x{| can
be obtained from the fitted relationship (dashed circles in Fig.2b). If the difference

—~—

— T
between ||x;_,x{ | and [x;_, x| is greater than a threshold e, we consider the
corresponding MB is potentially moving. In the example shown in Fig. 2b, the green
MBs have magnitudes much greater than the expected red dashed line, and are thus
labeled as moving MBs.

With the above constraints, we can label every MB and partition the set C
into a stationary correspondence set Cé‘”k’l and a moving correspondence set
CE7E=1 where Ck=k=1 | ch=k=1 = ch=k-1,

k—k—1

Definition 1 (MB Labeling) An MV x| < x € C*=>k=1 and its correspond-
ing MBs are labeled as stationary x;_| < x{ € C;‘”k’l, if the following three
conditions are all satisfied:

Featureless Motion Vector-Based Simultaneous Localization ... 253
; k—k—1
(1) xr_q <—>x;eCF R

(2) a < 90° if camera moves forward or o > 90° if camera moves backward,

3 Mlxg_yxgll = Il xplll < e

Otherwise, the MB belongs to moving objects: x;—1 <> x € ij_’k_l.
In Fig. 2a, the MBs on building facades are labeled as stationary with red arrows
whereas the MBs on the vehicle are labeled as moving.

4.3 Initial Plane Extraction and Labeling

With the labeled MB correspondences, we are able to extract planar regions. Since
MBs in the plane at infinity 7 have very low signal-to-noise ratio for camera
translation estimation, they should be removed before plane extraction for better
accuracy. Denote the set of correspondences in 7o as Coo,

CEM = gy o x$ X — x5 < em, xkm1 < x5 e CER ()

where ¢, is the motion threshold. Figure 2a shows the detected 7, in blue arrows.

On the rest of correspondences Ck~*~1\ Ck>k=1 RANSAC is applied iteratively
to extract all possible planes. To extract one plane, four correspondences are sam-
pled, and a homography H is obtained using normalized direct linear transformation
(p- 109 in [12]). Then, all correspondence resulting in an error below a given thresh-
old: [|xx—1 —AHx}|| < €y, islabeled as an inlier to the plane. In each RANSAC itera-
tion, one largest plane is extracted, and its inliers are removed before next RANSAC
iteration. This iterative RANSAC procedure can be replaced by J-linkage [21] if
needed.

Thenasetof planes, [T¥*~! = (%X, i € T}isinitially constructed from {®;}. We
use Z to denote the index set for planes, and i € 7 is the ith plane. For each extracted
plane ﬁ'i‘ , we denote its corresponding MV set as Cﬁ;’k_l. Thus, | Cﬁ?k_l -

i€l
Ck—=k-1 \C’go_)k ~1. To perform tracking and improve plane estimation, all planes need
to be labeled as either stationary or moving. With the MB labeling result C¥~*~1
and quk ! the plane labeling is determined by the result of a majority voting of
labeled MBs.

Definition 2 (Plane Labeling) A plane frf-‘ e IT*7*=1andits corresponding MV set

k—k—1 . ~k k—k—1 . . k—k—1 k—k—1
Cp; arelabeledasstationary 7r; ;andC; "', respectively, if |C]; N Cs
| > |Cf§?k71 N Csﬁkfl |. Otherwise, they are labeled as moving objects, frf.‘!d and
CE=E=1 respectively.

254 W. Li and D. Song
After the labeling step, the set of all planes IT*~*~1 is partitioned into
_ - k—k—1
pk=k=1 — Hsk—>k 1 U ek,)

where I'IS‘"”"’1 {7r s} is the set of stationary planes and [T k—k=1

denotes the set of movmg planes.

= (7f,)

4.4 Plane Re-Estimation and Observation Extraction

With the labeled planes, we can refine all estimations and prepare observations for
EKFs. We start with the stationary scene and the camera motion. For a stationary
plane 7"1 s» the correspondences xx—1 < X} Ci_l:k ! conform to homography
relation:

Xp_| = Hkak X6 = K (R 1)1, 5 + £57K— 1()]K_lxk, 9)
where H¥7*=1 is the homography matrix introduced by the plane, I3x3 is a
3-dimensional identity matrix. Therefore, for the stationary scene, the observations
of relative camera motion and stationary plane equations can be estimated by mini-
mizing the total errors of fundamental relationship in all stationary correspondences
and homography relationship in all planar correspondences:

k—k—1 gk Ifnlinls k—k—1 Z EF(xk*l’xi’Fk_)k_l)
Rk=k=1 gh—k=1 7k o pk—
s s Xpo xS ECk~>k 1
k—k—1
+>. > en(xi—1. xf, H 7 (10)
Iy 1<—>xkeC7’f?vk 1

k—k—1 k—k—1
F H

where and
Rk%k*] tk%kfl

are from (4) and (9), respectively. The resulting optimal
and %ﬁ s s are inputs to the stationary EKF in the next section.
For a moving plane ﬁ'f-‘, 4> denote its translation as ¢4. If we back shift the plane by

—t4, then a homography relationship can be established for x;_; < xj € Ci_l’g n

ij—)k*l — K(Rk—>k—l)—l[13x3 + (tk—>k—1 ti(;k 1)(7‘_‘rfd)T]K—1’ (11)

Therefore, a moving plane is estimated by minimizing the following,

omin > epCuenxp HETED (12)
t‘)
i d id xk—lexk C{(r—;ll; 1

Featureless Motion Vector-Based Simultaneous Localization ... 255
where Hik%k ~1 s from (11) with the estimated camera motion from (10). The
resulting optimal plane equations and translations are inputs to the individual moving
object filters later.

5 EKF-Based Localization and Tracking

With the planes and camera motions extracted for adjacent key frame pairs, we can
feed them as observations to EKFs for global robot localization, stationary plane
mapping, and moving object tracking. As Fig. 1 shows, the robot localization and
stationary plane mapping are handled by one single EKF below.

Camera Localization and Static Scene Mapping: Based on stationary planes,
this part is similar to the traditional visual SLAM problem. Following an EKF frame-
work, we define the state vector p;, for the EKF filter as follows:

T T T LT TT
ll/syk:[...,ﬂi’s’k,...,rk,tk,rk,tk] B (13)

which includes the plane equations in {W}, the y-x-z Euler angles r; for camera
rotation from {W} to {®;}, the camera location ¢ in {W}, camera motion velocity
t in {W}, and the angular velocity of the camera 7 in {®y}. Since stationary planes
are segmented as observations, the problem is reduced to the same problem in [14].
We can employ the same EKF design in [14].

Moving Object Tracking: Similarly, this step is also handled using EKF (the
bottom part of Fig. 1). Moving objects are considered to move independently w.r.t
to the camera and each other. We employ one EKF to track each moving object
individually. In each EKF, one global plane equation and one velocity vector are
tracked. Here, we assume the motion of moving plane follows a constant linear
velocity in {W} without rotation, which is usually true for pedestrians or vehicles
appearing in the camera view for a short period of time. The state vector for a single
moving plane filter becomes

T T T
Biagk =T 40 Viaxl 14

where v; 4k is the velocity of the ith objectin { W}. The state transition for the moving
object i is straightforward:

- - -T
I Tidk = Tidk—1/(1 — T 44 _1Vidk—1T) (15)
Vidk = Vidk-1

where 7 is the time interval. The observations for the moving object filters are the
estimated plane equations in {®;}, and the observation function is the transform
between coordinate systems given the camera rotation and translation:

kT o kok 1 TT | RO Fjan/ A+ 7] 00
; = . t. - 10 b4 N 1
sk =) Ui)] |:_7'R(rk)_1vi,d,k 1o

256 W. Li and D. Song

Plane Management: Apart from removal of planes that are no longer in the sight
from the corresponding EKFs, plane labels are not permanent as a moving object
may come to a stop or a parked vehicle may start moving. Since each plane has a
stationary/moving label, plane label exchange happens when the label of an existing
plane is not consistent with the outcome of the EKF. A moving plane’s label will
also be changed to stationary if its velocity is close to zero. When a plane changes
its label, the corresponding state variables are moved from previous EKF filter to the
EKEF corresponding to the new label, with an initialized velocity if necessary. For
each newly discovered plane, its parameters are added into the corresponding EKF
according to its label.

6 Experiments

We have implemented the proposed system using C/C++ in Cygwin environment
under Microsoft Windows 7. To test the performance of the method, evaluation is
conducted in the following three aspects: the localization error, the stationary plane
estimation error, and the detection of moving planes.

6.1 Localization Evaluation

Dataset: We perform the evaluation using the Malaga urban dataset [2] which pro-
vides stereo videos from vehicle driving in a dense urban area. The video frame
rate is 20 fps. Images with a resolution of 1024 x 768 are rectified and the intrinsic
camera matrix after rectification is provided. Ground truth data are collected using
multiple sensors including GPS, IMU, and laser range finder. Since we assume the
scene is quasi-rectilinear with many static planes, two typical urban scenes from the
data set are used in the experiment. Since our method is monocular, we only use
the images from the left camera in the dataset. Sample thumbnails of frames in the
experiment are shown in Fig. 3. The lengths (i.e. travel distance) of the two sequences
are provided in Table 1.

Metric: The localization result is compared with GPS data. The GPS data is
sampled once per second, and the image time stamps are aligned according to the
GPS clock. The errors are measured using the absolute trajectory error (ATE) [4].
We define the GPS coordinate system by {G} and the camera position in {G} as f,?.
For the estimated camera position ¢ in {W}, a similarity transformation (rotation
RW=C translation W= and scale s) is applied to transform the position to the
GPS coordinate th = sRW=0¢, + tW =G The rotation, translation and scale are
obtained via a non-linear optimization that minimizes the total error between the GPS

~G . .

data ¢, and the transformed estimation result th. Therefore, the ATE for a frame k
. -G

is defined as ex = ||th —t .

Featureless Motion Vector-Based Simultaneous Localization ... 257

(a)

Fig. 3 Trajectories and sample frame thumbnails. a and ¢ are the camera trajectories in the two
sequences, measured in meters. Black lines are the GPS ground truth, red solid lines are the estimated
trajectories using our method and the blue dashed lines are trajectories estimated using [4]. b and
d are the sample image frames in the two sequences

Table 1 Localization results using the Malaga dataset

Length (m) # frames Method Mean ATE Max ATE (m) | % over
(m) distance

Seq 1

201.08 497 Our method | 2.87 6.33 1.43
1-Point EKF | 1.99 3.67 0.99

Seq 2

133.76 318 Our method | 3.38 4.99 2.53
1-Point EKF | 9.08 12.30 6.80

Comparison: We compare our result with the popular 1-Point EKF [4] since
both methods are EKF-based. The 1-point EKF [4] approach uses feature points
as landmarks. Their system is tested under long distance trajectories with robust
performance. The code for 1-Point EKF is acquired from the authors’ website and is
directly run in Matlab on our testing dataset. Table 1 shows the mean and maximum
ATE for each sequence for both methods. The results show that the mean ATEs of our

258 W. Li and D. Song

method are below 3.5 m for both sequences and are below 3 % of the overall trajectory
length, which is comparable to [4]. In the first sequence, the vehicle travels on amostly
straight road, with occasional lane changes. In this case, our method and [4] perform
similar, with [4] slightly better. In the second sequence, the vehicle starts from straight
driving and experiences curved road later. In this case, our method outperforms [4]
over Sm in average. This experiment confirms that MV-based featureless navigation
method is feasible.

6.2 Stationary Plane Estimation

To evaluate plane mapping accuracy, we compare our method with our previous
work [14] which is referred as SLAPSE method since it only performs localization
and plane mapping without ability of tracking moving objects. We use the dataset
from [14] for comparison where ground truth is computed by points measured using
a laser distance measurer with =1 mm accuracy. The reason that we do not use the
Malaga urban dataset here is because there is no ground truth data for planes. Similar
to [14], we only consider the planes that appear in more than 3 continuous frames.
The same error functions in [14] for plane depth and angles are used:

1 ko Gk 1 kT Ak
€ = —— |di, —d,|, and ¢, = —— | arccos((m;)" - n;)|,
Eli N; ZI‘.; i,k ik n Zi N; Z; i,k ik

' (7)
where N; is the number of frames plane i appears, and " stands for the ground truth.
The number of planes extracted in the site and the estimation errors are shown in
Table 2. The comparison results show our method improves the estimation of scene
planes in both depth and orientation accuracy.

6.3 Moving Object Detection

To evaluate the performance of moving object detection, the test is focused on the
plane labeling algorithm as the EKF-based tracking performance is determined by
the labeling correctness. A dataset of 64 video clips are manually collected from
the Internet, such as YouTube. All video clips are recorded by cameras mounted on
vehicles driving in urban environments. The frame rates vary between 23 and 30 fps,

Table 2 Static plane Method

el # planes €4 (M) €, (degs.)
estimation results

Our method |5 0.55 6.80
SLAPSE 5 0.61 7.07

Featureless Motion Vector-Based Simultaneous Localization ... 259

(a) (b) © (@)

Fig. 4 Detected moving objects are highlighted with red rectangles

and the image resolution is between 640 x 360 and 1024 x 768. From all videos, there
are a total of 88 moving vehicles that are manually identified, and their bounding
box in each frame in annotated as ground truth. Note that the vehicles parking at red
light or curbside are not labeled as moving objects, and the vehicles that are very far
are not labeled because they are not objects of interest for collision avoidance.

Then the plane extraction and labeling method in Sect.4 is applied to extract
stationary and moving planes. Among 88 labeled moving objects, 85 are detected and
labeled as moving planes, and the detection rate is 96.6 %. Among the 3 failure cases,
2 cases are caused by lack of correct MVs on the vehicles. This situation happens
when the vehicle is too texture-less and has a color either similar to the ground or with
large saturation. Another 1 case happens because the vehicle is relatively stationary
to the camera, thus the MVs on it are not distinguishable from those on the infinite
plane. The right most vehicle in Fig. 2b shows an example of this situation. Actually,
due to the zero relative speed, that vehicle is not a concern for collision avoidance
purpose.

Figure 4 shows some examples of the detected moving planes in a bounding box.
The detection of moving object helps to separate outliers and wrong MVs that influ-
ence the static localization and mapping results.

7 Conclusion and Future Work

We presented a new algorithm that is capable of performing SLAM task and obsta-
cle tracking using M'Vs as inputs. This algorithm simultaneously localizes the robot,
establishes scene understanding through planar surface extraction, and tracks moving
objects. To achieve this, we first extracted planes from MVs and their correspond-
ing pixel MBs. We labeled MBs as either stationary or moving using geometric
constraints and properties of plane-induced homographies. Similarly, planes were
also labeled as either stationary or moving using an MB voting process. This allows

260 W. Li and D. Song

us to establish planes as observations for extended Kalman filters (EKFs) for both
stationary scene mapping and moving object tracking. We implemented the pro-
posed method and compared it with the state-of-the-art 1-point EKF. The results
showed that the proposed method achieved similar localization accuracy. However,
our method can directly provide plane-based rectilinear scene structure, which is a
higher level of scene understanding, and is capable of detection moving obstacles at
a true positive rate of 96.6 %.

In the future, we plan to adopt a local bundle adjustment approach to further
improve localization accuracy. We will combine M Vs with appearance data to estab-
lish higher level scene mapping. Fusing with other sensors such as depth or inertial
sensors is also under consideration.

Acknowledgments Thanks for Y. Lu, J. Lee, M. Hielsberg, X. Wang, Y. Liu, S. Jacob, P. Peelen,
Z. Gui, and M. Jiang for their inputs and contributions to the NetBot Laboratory, Texas A&M
University.

References

1. Babu, R., Ramakrishnan, K.: Compressed domain motion segmentation for video object extrac-
tion. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pp- IV-3788-1V-3791 (2002)

2. Blanco-Claraco, J., Nas, EM.D., Gozalez-Jimenez, J.: The malaga urban dataset: high-rate
stereo and lidars in a realistic urban scenario. Int. J. Robot. Res. (IJRR) (2013) doi:10.1177/
0278364913507326

3. Braillon, C., Pradalier, C., Crowley, J., Laugier, C.: Real-time moving obstacle detection using
optical flow methods. In: IEEE Intelligent Vehicles Symposium, pp. 466—471. Tokyo, Japan
(2006)

4. Civera,J., Grasa, O., Davison, A., Montiel, J.: 1-point RANSAC for extended Kalman filtering:
application to real-time structure from motion and visual odometry. J. Field Robot. 27(5), 609—
631 (2010)

5. Denman, S., Fookes, C., Sridharan, S.: Improved simultaneous computation of motion detection
and optical flow for object tracking. In: Digital Image Computing: Techniques and Applications,
pp- 175-182 (2009)

6. Eade, E., Drummond, T.: Edge landmarks in monocular slam. In: British Machine Vision
Conference (BMVC), pp. 7-16, Sept 2006

7. Favalli, L., Mecocci, A., Moschetti, F.: Object tracking for retrieval applications in MPEG-2.
IEEE Trans. Circuits Syst. Video Technol. 10(3), 427432 (2000)

8. Flint, A., Mei, C., Reid, I., Murray, D.: Growing semantically meaningful models for visual
slam. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 467—474. San
Francisco, CA, June 2010

9. Gee, A., Chekhlov, D., Mayol, W., Calway, A.: Discovering planes and collapsing the state
space in visual slam. In: BMVC, pp. 1-10 (2007)

10. Gee, A., Chekhlov, D., Calway, A., Mayol-Cuevas, W.: Discovering higher level structure in
visual slam. IEEE Trans. Robot. 24(5), 980-990 (2008)

11. Gil, A., Mozos, O., Ballesta, M., Reinoso, O.: A comparative evaluation of interest point
detectors and local descriptors for visual slam. Mach. Vis. Appl. 21(6), 905-920 (2010)

12. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge Univer-
sity Press, Cambridge (2003)

http://dx.doi.org/10.1177/0278364913507326
http://dx.doi.org/10.1177/0278364913507326

Featureless Motion Vector-Based Simultaneous Localization ... 261

13.

14.

15.

16.

17.

20.

21.

22.

23.

24.

25.

26.

Jeong, W., Lee, K.: Visual slam with line and corner features. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. Beijing, China, Oct 2006

Li, W., Song, D.: Toward featureless visual navigation: Simultaneous localization and planar
surface extraction using motion vectors in video streams. In: IEEE International Conference
on Robotics and Automation. Hong Kong, China, May 2014

Li,H., Song, D., Lu, Y., Liu, J.: A two-view based multilayer feature graph for robot navigation.
In: IEEE International Conference on Robotics and Automation (ICRA). St. Paul, Minnesota,
May 2012

Lu, Y., Song, D., Xu, Y., Perera, A., Oh, S.: Automatic building exterior mapping using mul-
tilayer feature graphs. In: IEEE International Conference on Automation Scienece and Engi-
neering. Madison, Wisconsin, Aug 2013

Lu, Y., Song, D., Yi, J.: High level landmark-based visual navigation using unsupervised geo-
metric constraints in local bundle adjustment. In: IEEE International Conference on Robotics
and Automation. Hong Kong, China, May 2014

. Ohnishi, N., Imiya, A.: Dominant plane detection from optical flow for robot navigation. Pattern

Recognit. Lett. 27, 1009-1021 (2006)

. Park, S., Lee, J.: Object tracking in MPEG compressed video using mean-shift algorithm. In:

Proceedings of the 2003 Joint Conference of the Fourth International Conference on Infor-
mation, Communications and Signal Processing, 2003 and Fourth Pacific Rim Conference on
Multimedia, vol. 2, pp. 748-752 (2003)

Pietzsch, T.: Planar features for visual slam. In: KI 2008: Advances in Artificial Intelligence,
pp. 119-126. Kaiserslautern, Germany, Sept 2008

Toldo, R., Fusiello, A.: Robust multiple structures estimation with J-linkage. In: European
Conference on Computer Vision, pp. 537-547 (2008)

Wang, Y., Lin, M., Ju, R.: Visual slam and moving-object detection for a small-size humanoid
robot. Int. J. Adv. Robot. Syst. 7(2), 133-138 (2010)

Wangsiripitak, S., Murray, D.: Avoiding moving outliers in visual slam by tracking moving
objects. In: IEEE International Conference on Robotics and Automation. Kobe, Japan, May
2009

Yokoyama, T., Iwasaki, T., Watanabe, T.: Motion vector based moving object detection and
tracking in the MPEG compressed domain. In: Seventh International Workshop on Content-
based Multimedia Indexing, pp. 201-206 (2009)

Zhang, J., Song, D.: Error aware monocular visual odometry using vertical line pairs for small
robots in urban areas. In: Special Track on Physically Grounded AI (PGALI), the Twenty-Fourth
AAAI Conference on Artificial Intelligence (AAAI-10). Atlanta, Georgia, USA, July 2010
Zou, D., Tan, P.: Coslam: collaborative visual slam in dynamic environments. IEEE Trans.
Pattern Anal. Mach. Intell. 35(2), 354-366 (2013)

Sparse Methods for Efficient Asymptotically
Optimal Kinodynamic Planning

Yanbo Li, Zakary Littlefield and Kostas E. Bekris

Abstract This work describes STABLE SPARSE RRT (SST), an algorithm that
(a) provably provides asymptotic (near-)optimality for kinodynamic planning with-
out access to a steering function, (b) maintains only a sparse set of samples, (c)
converges fast to high-quality paths and (d) achieves competitive running time to
RRT, which provides only probabilistic completeness. SST addresses the limitation
of RRT*, which requires a steering function for asymptotic optimality. This issue has
motivated recent variations of RRT*, which either work for a limiting set of systems
or exhibit increased computational cost. This paper provides formal arguments for
the properties of the proposed algorithm. To the best of the authors’” knowledge, this
is the first sparse data structure that provides such desirable guarantees for a wide
set of systems under a reasonable set of assumptions. Simulations for a variety of
benchmarks, including physically simulated ones, confirm the argued properties of
the approach.

1 Introduction and Background

Sampling-based motion planners can quickly provide feasible motions for many
system types. Tree-based methods, such as RRT [16], EST [9] and variants [5, 24—
26, 29, 30] exhibit good performance in terms of feasibility and have been used
to optimize paths over costmaps [11]. Nevertheless, RRT converges to suboptimal
solutions almost surely [14, 22]. This motivated the development of RRT*, which

Yanbo Li is associated with Cerner Corporation.
Zakary Littlefield is supported by a NASA Space Technology Research Fellowship.

Y. Li - Z. Littlefield - K.E. Bekris (<)
Rutgers University, New Jersey, NJ, USA
e-mail: kostas.bekris @cs.rutgers.edu

Y. Li
e-mail: yanbo.li@cerner.com

Z. Littlefield
e-mail: zwl2 @cs.rutgers.edu

© Springer International Publishing Switzerland 2015 263
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_16

264 Y. Lietal.

achieves asymptotic optimality, given access to a steering function [14]. A steering
function optimally connects two states ignoring obstacles while satisfying motion
constraints. Due to RRT*’s desirable properties, many efforts focused on applying
it in the kinodynamic domain by developing steering functions for specific systems
[12] or linearizing the dynamics [8, 32]. Developing a steering function is not always
easy and linearization is valid only locally. This motivates methods that rely little on
the system dynamics and work even for complex physically simulated systems [7].

The computational cost of tree sampling-based planners methods is asymptoti-
cally dominated by the nearest neighbor queries, which depend on the number of
vertices. In practice, the cost also depends on the number of propagations per itera-
tion, which may correspond to numerical integration or a physics engine call. These
operations are expensive and algorithms need to minimize them. Such considerations
have led in methods that aim to speed up the performance of asymptotically optimal
solutions [1, 2, 10, 23, 27].

A promising approach to make sampling-based planners more efficient is to main-
tain a sparse data structure. Many of the existing approaches along this direction
focus on sparse roadmaps [6, 20, 28, 31] and provide near-optimality guarantees.
Near-optimality has been shown in the context of heuristic search to provide signifi-
cant computational benefits [18]. Tree data structures can also benefit from sparsity.
By maintaining a small set of nodes, the nearest neighbor queries can be performed
more efficiently. The authors have recently proposed an RRT variant, called SPARSE
RRT, which maintained a sparse tree representation. It was shown empirically—but
not formally—that it provides good running time, good quality paths and has low
space requirements [19]. Most importantly, it does not require a steering function,
but instead relies only on forward propagation. SPARSE RRT provides sparsity by
creating regions of a certain radius around high path quality nodes, where only the
high-quality node is stored.

This work extends SPARSE RRT [19] so that it is possible to argue formal prop-
erties for kinodynamic planning, since this was difficult for the original method.
Specifically, nodes are eventually removed almost surely within a region of an opti-
mum path, which makes it difficult to reason about asymptotic properties. A new,
modified version of the algorithm is proposed in this work, which is referred to as
STABLE SPARSE RRT,or SST. A finite set of witness samples, which corresponds
to a “hard-core” point process [21], is built in the state space so as to guarantee that
a node of the tree will always exist in the vicinity of every witness and the path cost
over time of such nodes improves. The method provides the following properties
without access to a steering function:

Probabilistic J-robust completeness and asymptotic near-optimality.
Fast convergence to good quality solutions.

Low space overhead by building a sparse data structure.

Lower asymptotic time complexity than RRT.

Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning 265

Table 1 Comparison of RRT, RRT*and SST (SST*)

RRT RRT* SST/SST*

Provably suboptimal Asymp. optimal Asymp. near-opt./asym. opt.

Forward propagation Steering function Forward propagation

Single propagation Many steering calls Single propagation

1 NN Query (O(log N)) I NN + 1 K-Query (O(log N)) | 1 NN + 1 K-Query (Bounded
time complexity/(O(log N)))

Asymp. all samples Asymp. all samples Sparse/Asymp. all samples

Minimal Minimal Desired clearance / Minimal

The proposed SST and SST* methods minimize computation cost and space requirements while
providing asymptotic near-optimality. From top to bottom each row compares the following prop-
erties: optimality guarantees, propagation method, number of propagations per iteration, type of
nearest neighbor query, number of nodes (sparsity), and number of input parameters

SST extends to an asymptotically optimal variant, SST*, which gradually relaxes the
sparsification to eventually include all samples as nodes in the tree. Table 1 compares
the proposed methods relative to RRT and RRT*.

Due to the space limitations, many of the formal arguments regarding the prop-
erties of SST are available in an extended version of this work [17].

2 Problem Formulation and Notation

This paper considers time invariant dynamical systems of the form:
x(@) = f(x(@),u(t)), wherex(t) € X, and u(t) e U (D)

Let Xy € X denote the obstacle-free space and assume that X C R". It should
be sufficient if X is only diffeomorphic to a Euclidean space so that distances can
be easily defined locally. Next, define a J-robust trajectory to be a trajectory 7w with
minimum clearance from obstacles, i.e.,V xops € X\ Xy 1 min(||7(t) —xops||) = 6.
This work focuses on the following problem:

Definition 1 (6 -Robustly Feasible Motion Planning) Given that a §-robust trajectory
exists that connects an initial state xo € Xy toa goalregion X € Xy for adynamical
system that follows Eq. 1, find a solution trajectory 7 : [0, #;] — Xy, for which
7(0) = xp and 7(t;) € Xg.

Finding a trajectory 7 corresponds to computing controls u(¢) that generate 7. Tra-
jectory 7 does not have to be §-robust. The authors reason first about a variation of
the traditional probabilistic completeness property, which explicitly incorporates the
clearance value 9.

266 Y. Lietal.

Definition 2 (Probabilistic §-Robust Completeness) Let H,f‘LG denote the set of
trajectories discovered by an algorithm ALG at iteration n. Algorithm ALG is prob-
abilistically §-robustly complete, if, for any J-robustly feasible motion planning
problem (f, X ¢, xo, Xg, 6) the following holds:

liminf P(3 7 € [TALG : 7 solution to (f, Xy, x0, Xg, 0)) = 1

n—oo

In the above definition, P(Z) corresponds to the probability of event Z. This paper
also argues about the following property relating to path quality:

Definition 3 (Asymptotic §-Robust Near-Optimality) Let ¢* denote the minimum
cost over all solution trajectories for a d-robust feasible motion planning problem
(f, Xy, x0,Xg,). Let Y,;“LG denote a random variable that represents the minimum
cost value among all solutions returned by algorithm ALG at iteration n. ALG is
asymptotically J-robustly near-optimal if:

]P’({limsqu,f‘LG <(l+4+a-d)- c*}) =1

n—oo

for some known parameter o > O.

Definitions 2 and 3 correspond to weaker versions of probabilistic completeness
and asymptotic near-optimality. This work will first describe a method that provides
these weaker properties and then leverage the approach so as to achieve the original,
more desirable properties. In addition, Definitions 2 and 3 make intuitive sense in
real-world applications where clearance from obstacles is desirable.

3 Algorithmic Description

Algorithm 1 details STABLE SPARSE RRT (SST), an adaptation of the previously
proposed SPARSE RRT so as to achieve formal guarantees [19]. The main idea is
that within a neighborhood region only the node with the best path cost from the
root is considered in nearest neighbor queries and for expansion. This allows for the
removal of nodes that do not contribute to good quality paths.

SST receives as input the typical parameters of kinodynamic planners (state space
X, control space U, initial state xo, propagation time T},,p, and number of iterations
N). Furthermore, two new parameters are required, d, and &, which correspond to
radii that are used in different distance metric queries. The authors found that §,, > &
worked well in practice. For analysis purposes, these two parameters need to satisfy
the constraint 4 > &, + 26; where 4 is the clearance of a j-robust trajectory that
exists in the space.

Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning 267

Algorithm 1: SST(X, U, x0, Tprop, N, 6y, 55)

1i<0; // Iteration counter
2 Vactive <= {x0}s Vinactive <= 9,V <= Vacrive U Vinactive 5 // Node sets
3E«~0,G={V,E}; // Initialize graph
4 sg < xg, so.-rep = xp, S < {so}; // Initialize witness set
5 whilei ++ < N do

6 Ssample <—Sample(X) ; // Uniform sampling in state space
7 Xnearest eBeStNear(vactive,Ssample» 0v) s // Return the BestNear node
8 Xpew < MonteCarlo-Prop(Xuearests Us Tprop) s // Propagate forward
9 if CollisionFree(X,carest — Xnew) then

10 Snew < Nearest(S, Xpew) // Get the nearest witness to Xuew
11 if dist (Xpew, Spew) > 05 then

12 S <« SU {Xpew} s // Add a new witness that 1is xuew
13 Snew <~ Xnews

14 Snew-rep < NULL;

15 Xpeer <= Spew-Tep // Get current represented node
16 if Xpeer == NULL or cost(xpew) < COSYXpeer) then

17 Vactive < Vactive \ {xpeer} 5 // Removing old rep
18 Vinactive <~ Vinactive) {xpeer}; // Making old rep inactive
19 Snew-I'épP <= Xnew ; // Assign the new rep
20 Vactive <= Vactive U {Xnew}, E <= E U {Xnearest — Xnew) // Grow G
21 while TsLeaf (xpeer) and xpeer € Vipacrive do

22 Xparent Fparent(xpeer);

23 E <« EN\ {Xparent = Xpeer} s // Remove from G
24 Vinactive <= Vinactive \ {Xpeer} s // Remove from inactive set
25 Xpeer <= Xparent // Recurse to parent if inactive
26 return G;

SST begins by initializing two vertex sets V,siye and Vi,gerive (Line 2). The
union of these sets corresponds to the set of tree nodes. The two subsets are treated
differently by nearest neighbors queries, which will be discussed shortly. Next, the set
of witness nodes S is initialized to contain the start node xo (Line 4). The algorithm
maintains the invariant that within the neighborhood of radius d; around any s € S,
there is always one state in V.. This state in V4. is called the representative
of the witness s. Representatives can change over time but only as long as their cost
from the root decreases. To add new nodes to the tree, an approach similar to the
framework of sampling-based kinodynamic planning [9, 16] is used, but with some
modifications inspired from analysis.

First, a state is sampled in the state space (Line 6). Then an operation called
BestNear [19, 30] determines which existing node in V., Will be selected for
propagation (Line 7). To achieve this, a neighborhood of size 4, is explored around
the randomly sampled point Sy p;e . For every node that exists in that neighborhood,
path cost values from the root are compared and the best path cost node Xxjeqress 1S
returned. If no nodes exist within the neighborhood, the nearest node is returned. This

268 Y. Lietal.

has been shown to have good properties for path quality, and will be more formally
explored in the analysis section.

After selecting Xpeqrest, the method calls MonteCarlo-Prop to generate X ey
(Line 8), which forward simulates the system using a random piecewise-constant
control for a random duration. It can be shown that this random propagation has good
asymptotic properties, argued in the analysis section. Given the newly propagated
trajectory is collision-free, the method determines the closest witness $y¢, to node
Xnew (Lines 9-10). If the closest witness is outside the d; radius, a new witness in the
set S is created that corresponds to X, (Lines 11-14). This computation requires
access to a distance function dist (-, -) in the state space. In practice, this distance
can be computed in a lower-dimensional task space T.

Finally, after the closest witness s,.,, has been found, the representative x pe., Of
Snew and the new node x;.,, are compared (Line 16). The comparison is performed
using the function cost(-), which is the cost of the trajectory from xg to that node
in the tree. If X,y has a better cost or xpe.r is NULL (which is the case when
Xnew 18 outside the d; radius of the closest witness), the witness s,,¢,, Will forget
about its old representative x p..» and now it will be represented by x;¢, (Lines 17—
20). Subsequently, the old node x ¢, will be removed from V ;. and added to
Vinactive, thereby removing it from any nearest neighbor queries. One can think of
the V;,acrive S€t as consisting of nodes that no longer themselves provide good paths,
but may provide connectivity to children nodes in V. that may be the best in
their respective neighborhoods. After manipulating the vertex sets, an optimization
step can be taken that involves removing needless nodes in the tree (Lines 21-25).
These correspond to leaf nodes that are in the V;;4sive- They can be removed in a
recursive manner. The addition and removal of nodes in the two vertex sets V ctive
and V;,4crive 18 an important part of making SST computationally efficient, and is
illustrated in Fig. 1.

SST is a modification of SPARSE RRT that makes use of the “witness” set of
nodes. Including the set of witnesses allows for regions in the state space to have arep-
resentative node, regardless of the pruning process of the tree. While SPARSE RRT
performed well experimentally, when exploring the theoretical guarantees that the

y ey y - £ : Vactive
" Xinit T Xe " Xinit

TiXg !
> ; — 7 ; - ;
P o U U y- U L‘/ Xa P 4 U
y P P Vinactive
e -

s &

Fig. 1 Relation between S and the V sets. a A tree and a trajectory X;,;; — x; — X, where x, is
the representative of s; b The algorithm extends X;,;; — x5 where x;, has better cost than x,. x, is
moved from V,¢tive t0 Vinacrive- € The representative of s is now x;, (Lines 21-25 of Algorithm 1).
The trajectory X, — x, in Vipacrive is pruned

Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning 269

algorithm could provide, difficulties arose when reasoning about probabilistic com-
pleteness and asymptotic optimality. The main issue was that in execution, nodes are
potentially deleted frequently and unpredictably, which meant that some asymptotic
behaviors are difficult to determine.

4 Analysis

This section discusses the properties of SST and describes a schedule for reducing
parameters d; and J, over time to achieve asymptotic optimality.

Assumption 1 The assumptions used by the analysis include the following:

e The dynamics of Eq.1 are Lipschitz continuous in states and controls, have
bounded second derivatives, and the system is Small-Time Locally Accessible
(STLA) [4].

e The cost function is considered by this work to be the duration of a trajectory. Thus,
the cost function is Lipschitz continuous w.r.t. states, additive, and monotonic.

e The robustly feasible motion planning problem admits robustly feasible trajectories
that are generated by piecewise constant control functions.

This set of assumptions define the widest set of systems for which asymptotic opti-
mality has been shown without access to a BVP solver.

A key part of the analysis is concerned with examining a §-robust optimal path.
To facilitate this, a covering ball sequence is defined over such a path.

Definition 4 (Covering Balls) Given a trajectory 7(t): [0, T¢pq] — Xy, clearance
d € R and time step T, the set of covering balls B(r(¢), &, T) is defined as a set of
M + 1 balls {Bs(xo), Bs(x1), ..., Bs(xpr)} of radius §, such that Bs(xs) is centered
atx; = 7(iT) ¥ i € [0, M], where M = Ted,

For an example of a covering ball sequence, see Fig.2. This construction gives
rise to the following definition:

Definition 5 (§-Similar Trajectories) Trajectories 7,m’ are d-similar if for a contin-
uous scaling function o : [0,] — [0, ¢'], it is true: 7' (o (¢)) € Bs(w(t)).

Fig. 2 A set of covering
balls B(7w*(¢), 6, T) around
the optimal path 7*

uration =

270 Y. Lietal.

Lemma 1 (Existence of J-Similar Trajectories) Let there be a trajectory 7 satisfying
Eq. 1. Then there exists a positive value 0o, such that:¥ 6 € (0, oo, V x(, € Bs(m(0)),
and N x| € Bs(n(t)), there exists a 6-similar trajectory 7', so that: (i) 7' (0) = x,
and 7' (1') = x].

Lemma 1, which can be argued given the assumptions, helps to show that a
d-similar trajectory to a d-robust optimal one can be generated. If such a §-similar
trajectory is found, then from the assumptions of Lipschitz continuity and the cost
function characteristics, a bound on the path quality can also be drawn.

4.1 Probabilistic 5-Robust Completeness

The proof begins by constructing a sequence of balls B(7*, §, T) that cover the
d-robust optimal path 7* (see Fig.2), which is guaranteed to exist by the problem
definition. Let B (x;") denote the i-th ball in the sequence centered around state x;* on
m*. The first thing to show is that if a trajectory reaches one of these balls, there will
always be a node in the ball with equal or better cost in future iterations. Lemma 2
explains this result.

Lemma 2 Let . = 6 — 0y, — 205 > 0. If a state x € Vyerive is generated at iteration
ns.t x € Bs, (x;"), then for every iteration n' > n, there is a state x' € Vycrive SO
that x" € B(5_s,)(x}") and cost(x') < cost(x).

Proof Given x is a node, there is a witness point s located near x. As in Fig. 3a, the
witness s can be located, in the worst case, at distance J; away from the boundary
of By, (x7) if x € By, (x}). Note that x can be removed from V¢jy. by SST in later
iterations. In fact, x almost surely will be removed, if x # xo. When x is removed,
there could be no state in the ball B;_ (x/"). In this case, the selection procedure has no
chance to return any state within this ball. The sample s will not be deleted, however.
A node x’ representing s will always exist in Vgsipe and x” will not leave the ball

Fig. 3 A visualization of the relationship between the different radii used in the analysis of SST

Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning 271

Bs, (s). SST guarantees that the cost of x” will never increase, i.e. cost(x”) < cost(x).
In addition, x” has to exist inside Bs_s, (x') = Bs, 425, (x]). O

Lemma 3 lower bounds the probability of selecting x” € Bs_;, (xi*), which exists.

Lemma 3 Assuming uniform sampling in the Sample function of Alg. 1, if §, +
26; < 6 and if 3 x € Vaerive 5.1. X € Bs,(x]') at iteration n, then the probability that
BestNear selects for propagation a node x' € B;s(x}) can be lower bounded by a
positive constant vy for every n’ > n.

Proof BestNear performs uniform random sampling in X to generate s pe and
examines the ball Bs, (Ssample) to find the node with the best path. In order for a node
in Bs(x}") to be returned, the sample needs to be in B5_s, (x]"). If the sample is outside
this ball, then a node not in B;(x;*) can be considered, and therefore may be selected.
See Fig.3a. Next, consider the size of the intersection of Bs_s, (x}*) and a ball of
radius d, that is entirely enclosed in B; (x;"). Let x, denote the center of this ball.
This intersection, shown in Fig. 3b, represents the area that a sample can be generated
to return a state from ball Bs_s, (x;). In the worst case, the center of ball By, (xy)
could be on the border of Bs_s, (x}) as in Fig. 3b. Then, the probability of sampling

a state in this region is: v = inf P({x’ returned by BestNear : x’ € B(;(x;k)}) =

Bs_s, (xF) N Bs, (xy
1Bs-sy S&;f) 20 This is the smallest region that guarantees selection of a node

in Bs(x;). (]

Given the assumptions of STLA, the Lipschitz continuity of X, U, and bounded
second order derivatives of the system equation, it can be shown that the probability
of propagating from one ball to another using MonteCarlo-Prop is positive.

Lemma 4 Given a trajectory of duration T, the success probability for function
MonteCarlo-Prop to generate a d-similar trajectory to ™ when called from an
input state X prop € Bs (Tr(xl.tl)) and for a propagation duration Tyrop > T to the
ball Bs, (7 (x}")) is lower bounded by a positive value ps_.s5, > 0.

At this point, lower bounds on both the probability of selecting a node and the
probability of generating a trajectory that ends in the next ball of the sequence have
been argued. Based on these lower bounds, the following can be shown:

Theorem 1 If §, + 265 < 0, then STABLE SPARSE RRT is probabilistically
&-robustly complete.

Proof As in Fig.2, consider the sequence B(7*,T,0) over the optimal path 7* for
0 > &y + 205. A specific ball Bs(x}) can be seen in Fig.3a. Lemma 2 shows that
nodes will continue to exist in Bs, (x;k), if one was generated. Lemma 3 shows there
is a positive probability that nodes in Bs_s, (xi*) can be selected. Lemma 4 argues
that MonteCarlo-Prop has a positive probability ps_, 5, of generating a trajectory

into the next ball Bs, (x7',).

272 Y. Lietal.

Let AE") denote the event that at the n-th iteration, the algorithm generates one
trajectory 7 such that m(0) € Bs(x] ;) and 7(Tena) € By, (x;), meaning 7 is J-

similar to x;"_l , xl.*. Let E l.(”) denote the event that from iteration 1 to n, the algorithm

generates at least one such trajectory. Then, the event = F l.(") is the event the algorithm
fails to generate any near-optimal trajectory inside Bs_s, (xl?“) after n iterations, which
only happens when all n iterations fail, i.e.,

n—1
P(—E") = P=A") - P(=AP|-4") - L PAM () -4 @
j=1

The probability that —-A(") happens given ﬂ" ! —-A(j) is equivalent to the prob-
ability of failing to generate a trajectory to the B(; (x _1) plus the probability that a
trajectory has been generated to By, (x7_,), but fails to generate a new trajectory to

x
Bs, (x]),i.e.,

P(—A"| ﬂ —AD) = P(=E")) + P(E"™)) - P({fails to propagate to Bs, (x)})
Jj=1

<P—E") +PED)A —ypsos) < 1 —PE™) - ypss, 3)

Using Egs.2 and 3,

P(E™) > 1 H(l ~PEL) ps-s.) “)

For the base case,]P’(E(()j)) = 1 because x is always in B, (xo). Then, consider event
E from iteration 1 to n using Eq.4,

n
PEM) 2 1= [] = 7psms) = 1= (1 = 1p5s)" =
Jj=1

lim P(E™) > 1 — lim (1 —ypsos)' =1-0=1
n—>oo n—>oo

The same result needs to be shown for E;'; (") . Set y(") [Tj=1 (1 =B El.(i)1) .
YPs—6,)- The logarithm of yl.(") behaves as follows,

Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning 273

n n
logy!" =log [T(1 = P(E) - yps—s) = D log(l = P(E,) - 1ps—s,))
| e

<Z —P(E{)) - Ypsss, = —Piss, ZIP’(E(”]) 5)
. =

From the inductive assumption that, IP’(Ei(j)) converges to 1 as j — oo, then
limy— o0 1 P(EY)) = co. Then,

hm 10gy+1 < —YPs—6, l1m ZIP’(E(J)) = —00 hm lerl =0
j=1

Using Eq. (4), with lim,,_, oo yl.(j_)l = 0, it can be shown that:

lim P(E"Y) =1- lim y=1-0=1.

n— 00 +1 =

4.2 Asympotic Near-Optimality

The proof of asymptotic J-robust near-optimality follows directly from Theo-
rem 1, the Lipschitz continuity, additivity, and monotonicity of the cost function
(Assumption 1). The completeness proof is already examining the generation of a
near optimal trajectory, but the bound on the cost needs to be calculated.

Theorem 2 If §, + 26y < 0, then STABLE SPARSE RRT is asymptotically J-
robustly near-optimal.

Proof Let x!_,, x; denote the 0-similar trajectory segment generated by SST where
x/_, € Bs,(x}_,) of the optimal path and x; € B;_, (x]"). Lemma 4 guarantees that
the probability of generating it by MonteCarlo-Prop can be lower bounded as
Ps—s,- Then from the definition of J-similar trajectories and Lipschitz continuity of

the cost function (K is the Lipschitz constant for X):

cost(x;_; — x;) <cost(x} | = x)+ Ky -6 (6)
Lemma 3 guarantees that when x; exists in Bs_s, (xi*), then x; , returned by the
BestNear function with least bound -, must have equal or less cost, i.e. xlf can be
the same state as x; or a different state with smaller or equal cost:

cost(x]) < cost(x;) (7

Consider Bs(x}), as illustrated in Fig. 4, according to (6) and (7),

274 Y. Lietal.

Fig. 4 Sequence of covering
balls over an optimal
trajectory 7* and
nodes/edges generated by
SST

cost(xg — x}) < cost(Xo — x1) < cost(xg — x{) + K, -

Assume this is true for k segments, then: cost(xg — x,’c) < cost(xg —> x,f)—i—k~Kx -0.
Consider the cost of the trajectory with k 4 1 segments:

cost(m) < cost(Xop = Xk+1) = cost(ﬁ) + cost(m)
< cost(xoTx,’:) +k-Ky-0+ cost(m)
< cost(xoTx,f) +k-Ky- -0+ cost(m) + Ky -6
= cost(m) +*k+1)-Ki-6

By induction, this holds for all k.
Since the largest k = -, and the cost of the trajectory is its duration,

cost(xg — x;) K 6—(1—|—Kx6) N
" Tk K, -5=

cost(xg — xk) < cost(xo — xk) T “Cy

Recall from Theorem 1, event Ey implies event {Y557 < (1 + ad)c}}.

2)

P(E") =P({r" <

Asn — oo, Theorem 1 guarantees thatif § > &, +24;, E;, (%) almost surely happens.
: SST) — 1 mY _
P({timsup Y557 < (1 + }) = lim P(E") =1 .

n—oo

Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning 275
4.3 Time Complexity Arguments

Now consider the convergence rate for SST, i.e. the iterations needed to return
a near-optimal trajectory with a certain probability. Specifically, the convergence
rate depends on the difficulty level of the kinodynamic planning problem which is
measured by the probability ps_, s, of successfully generating a d-similar trajectory
segment connecting two covering balls.

Theorem 3 For a §-robust optimal trajectory consisting of k > 0 segments, and a

Jixed ps—;, > 0, the iterations N, _,; for SST to generate a near-optimal solution
1 k
l—e=b yps—oe”

with probability greater than 1 — e~ can be bounded by: n <

Theorem 3 argues that in order to achieve at least 1 — e~! & 63.21 % probability
for SST to generate a near-optimal trajectory, the needed iterations can be upper
bounded. This bound is in the same order as the expected number of iterations for
RRT toreturn a solution [16]. The iteration bound for RRT to return a feasible solution
with probability of at least 1 —e~! is shown as %, where k is the number of trajectory
segments of the solution and p is the minimum probability to select a vertex in the
“attraction sequence”. Probability p corresponds to the same concept of 7, in this
paper. RRT models the Extend procedure with an additional assumption such that
generating a connection edge between consecutive “attraction wells” shall succeed
in one shot. Here, the Extend function corresponds to MonteCarlo-Prop, which
generates connection edges with probability at least ps_.s. Therefore, the expected
iteration bound for RRT is in the form of O(ﬁ).

In contrast to RRT* which employs a steering function, the proposed algorithm
involves no such functions. All operations for the proposed algorithm are well under-
stood. Therefore, it is possible to evaluate the overall computational cost needed for
SST. The proof for Lemmas 5 and 6 are included in an extended version of this
work [17].

Lemma 5 Forak segment optimal trajectory with § clearance, the expected running
time for SST to return a near-optimal solution with 1 — e~ probability can be

evaluated as, (’)(67‘1 . L)
YPs—6c
The benefit of SST is that the per iteration cost ends up being lower than that of
RRT, while a certain form of optimality guarantees can be provided.

Lemma 6 For a k segments trajectory with 6 clearance, the expected running time
for the RRT algorithm to return a solution with 1 — e~ probability can be evaluated

as O((575=) - Gog(5-E—=)).

Yrrt P5—§ Yrrt P5—§

k/Vrrt p5—5-10g(k /Vrre P5—5)

O Lztlizd . L___). The first term 2£L£26=3 ig g finite value which is shown
YPS—b¢ — 108 Yrrt P5—6 YPs—b¢

in [17]. In addition, the second term converges to 0 as ps_.s decreases to O.

Comparing Lemmas 5 and 6 by quotient, (’)(U=) =

276 Y. Lietal.

Therefore, the expected time complexity of SST is indeed smaller than the expected
time complexity of RRT for sufficiently difficult kinodynamic problems. This is
mainly because SST keeps a sparse data structure so that the cost of all near neighbor
queries, which is asymptotically the most expensive operation in these algorithms,
can be bounded by a constant. But this is noticeable only for difficult problems where
ps—s s 1s sufficiently small. Practically, RRT, perhaps, is still the fastest algorithm to
return the first feasible trajectory.

4.4 Space Requirements Arguments

A fairly simple fact is stated formally in Lemma 7.

Lemma 7 For any two distinct witnesses of SST s1,5y € S, where s1 # s7, the
distance between them is at least s, e.g., Vs1, 52 € S : ||s1 — s2]| > J.

It can then be shown that S can be bounded if X s is bounded.

Corollary 1 IfXy is bounded, the number of points of the set S and nodes in'V ¢ ve
is always finite, i.e. AM € O~ : |S| = |Vactivel < M.

The size of V;j4crive cannot be easily bounded, but if pruning is performed as in the
algorithm, the size of V;;4.rive 1S manageable.

Generating the set S corresponds to a variant of Poisson Disk Sampling,
ak.a. Naive Dart-Throwing with the difference that the sampling does not
strictly follow a Poisson Distribution. Related research refers to such
processes as Matérn Type III point processes [21]. This literature can be uti-
lized to improve the distribution of §, i.e., improve its discrepancy and dispersion.
In kinematic planning, there have been demonstrations of quasi-random sampling
for generating low discrepancy points [15]. The requirement for § is that it has to
be evenly distributed such that each Voronoi cell can be bounded by a hyper ball.
Therefore, SST can take advantage of deterministic sampling. In addition, “hard-
core” point process contributions can be employed for kinodynamic planning by
generating S offline, and then running SST.

4.5 Asymptotically Optimal Variant

Now consider the SST* algorithm shown in Algorithm 2. It provides a schedule to
shrink the parameters of SST. It appropriately merges solving an infinite sequence
of d-robust motion planning problems. It can be proven that SST* is probabilistically
complete and asymptotically optimal. This is done by leveraging decreasing J; and
&, values determined by the scaling parameter £ € (0, 1)) and the decreasing ¢ of
the J-robust trajectories that are admitted by SST.

Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning 277

Algorithm 2: SST*(X,U,x0,Tprop,0s,0:0v,0,E)

1j<«0;K <« ko;

2 05 < 05,05 0y < 51/,0;

3 while true do

4 SST (X, U, x0, Tprop» K, 6, 05);

5 5s<_£'5s;6v(_€'6v;j<_j+l;
6 | K < (1+1logj) & @rwtbi ko,

Theorem 4 SST* is probabilistically complete and is asymptotically optimal.

When the § clearance is arbitrarily small, the arguments outlined in Theorems
1 and 2 still hold. The drawback with starting with this arbitrarily small § is that
SST will not be able to take advantage of sparsity. SST* is able to take advantage
of intermediate results, returning near-optimal results quickly, and progressively
increasing the number of nodes allowed for nearest neighbor queries, and thereby
providing an asymptotically optimal solution.

5 Evaluation

In order to evaluate the proposed method, a set of experiments involving several
different systems have been conducted. The proposed algorithm, SST, is compared
against RRT as a baseline and also with another common algorithm: (a) if a steering
function is available, a comparison with RRT* is conducted, (b) if RRT* cannot be
used, a comparison with a heuristic alternative based on a “shooting” function is
utilized [13].

The shooting function is numerically approximating a steering function but
doesn’t connect two states exactly. To alleviate this problem, when a rewire is per-
formed, entire subtrees are resimulated with the new end state that is close to the
original state. The overall results show that SST can provide consistently improving
path quality given more iterations as RRT* does for kinematic systems, achieve run-
ning time equivalent (if not better) than RRT, and maintain a small number of nodes,
all while using a very simple random propagation primitive.

Figure5 details the various setups that the algorithms have been evaluated on.
As a baseline, a kinematic point system is used. This allows a direct comparison of
results with RRT* given that a steering function is easily created. SST still makes
use of random propagation in this case, but good behavior is shown in the following
sections.

Evaluation was also conducted on pendulum-like systems, which include a single
link pendulum, a two-link passive-active acrobot system, and a cart-pole system. In
addition, a quadrotor system is considered, where distances are taken in a task space.

278 Y. Lietal.

2-Dim 2 Dim
Goal _
[
Point
System . Pendulum
4-Dim 4-Dim Goal
. | B
Restricted
i to Line . Goal
Two-link
Cart-Pole Acrobot
12-Dim —
5 Rigid Body Physically
Simulated Car
Quadrotor

Fig. 5 The benchmarks considered in the experiments. Each experiment is averaged over 50 runs
for each algorithm

These systems have simple state update equations, but are nonlinear. No steering
function is used in these experiments.

One of the more interesting applications of SST is in the domain of planning
for physically-simulated systems [3]. SST is able to provide improving path quality
given enough time and keeps the number of forward propagations to one per iteration.
In this setup, the computational cost of propagation overtakes the cost of nearest

Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning 279

neighbor queries. Nearest neighbor queries become the bottleneck in problems like
the kinematic point where propagation and collision checking are cheap. In this
respect, SST is specially suited to plan for physically-simulated systems.

5.1 Quality of Solution Trajectories

In Fig. 6, the average solution quality to nodes in each tree is shown. This average is
a measure of the quality of trajectories that have explored the space being searched.
In every case, SST is able to improve quality over time, even in the case of the
physically-simulated car. RRT will increase this average over time because it chooses
suboptimal nodes and further propagates them.

5.2 Time Efficiency

Figure 7 shows time versus iterations plots for each of the systems. The graphs show
the amount of time it took to achieve a number of iterations. The running time of SST
is always comparable or better than RRT. RRT™* has a higher time cost per iteration
as expected. Initially SST is slightly slower than RRT for the kinematic point, but
becomes increasingly more efficient later on. This is explained by Lemmas 5 and
6, since SST has better running time than RRT given the sparse data structure. For
physically-simulated systems, the computational cost is dominated by the forward
propagation, where both RRT and SST perform the same amount.

Average Sclution Length (5} v.5. Berations (Simple Pendubam) Averags Sclution Length (8) v.s. Becations (Can-Pole)
L 4 g

"

Average Soksicn Length
Avecage Sohsion Length ()

Avernge Sohution Length (3) ¥ 5 Nerations (Poirt System)
2 i X g 15
RAT
RAT*

% &— 887

RAT 13
Shootrsg Variass
2 85T

ART
Shootineg Variart
£— 88T

pa==E

Avernge Soksion Length (5)

Borations - Horasons x10° Horations 10"

__ Average Soksion Length (s) v.s. lerations (Two-Unk Acroboty _ Average Solution Lengih {s) v.5. Berations (Cuadrolor) Average Sohution Length {x) v.5. Rerations [Physically-Simulated Car)
2 10 B X 2 80r
) RAT £ RAT | £ RAT |
5 Shooting Variant [¥ @ Shooting Variart | g w0 55T
&8 ¥ 55T J
g gl g’
2
ki 3 3 .
- " £ 5L £ ok
- 2 7 g % x

o

Recations x10’ Neratons

Nerations w10’

Fig. 6 The average cost to each node in the tree for each algorithm (RRT, RRT* or the shooting
approach, and SST)

280 Y. Lietal.

Tiene (8] v.6. hevations (Poim Systen) Tiena (8] v.6. Revations (Simpie Perduium) Tirmse (3} v.5. Reeations (Can-Pole}
1000 [2000 B
AAT li RRT |
Shooting Variant 1500 oo« Shooting Variant |
& ko — 85T | = B— 55T
g g 50 g % 1000 e
[[ot E et
% 500+ peie ™
. R
sheeestasenEannBRESRENRmEEEeEa PR e e i .
1 2 3 4 5 o 1 2 3 4 5
Haratons <18 Eorations w0’
Tima (s} v.5. Hierascns [Two-Link Acrobot) Tiema (5] v.5. Borations {Quadrotor) Tima 5] v.5, heraticns (Physically-Simulaied Cazy
1500 - i 5000 . 15000 - i
RAT RRT
| Shaoting Var =~ Shoating Variant |
i1 —E— 88T g W0 —&— 887 z
; i ;
i B)
2

Fig. 7 The amount of time needed for each algorithm (RRT, RRT* or the shooting approach, and
SST)

5.3 Space Efficiency

One of the major gains of using SST is in the smaller number of nodes that are
needed in the data structure. Figure 8 shows the number of nodes stored by each of
the algorithms. The number of nodes is significantly lower in SST, even when also
considering the witness set S. The sparse data structure of SST makes the memory
requirements quite small, in contrast to RRT and RRT*, which don’t perform any
pruning operations. In the case of the shooting variant, sometimes the inaccuracy of
shooting will cause collisions to occur in resimulated trees, pruning them from the
tree. This however can lead to losing solution trajectories.

x10" MNodesvs Berations {Point System) %10° MNodes s Herations (Simpie Pendulum) 10" Nodes v.s. Rerations (Cart-Poie)
& Br ar
Rt R S e A BN
RAT RAT ! | RAT .
4l “eee RAT ol Shooting Varan 3 <=~ Shooting Vaslant
§ —s—s887 | g s8T § | —s—sst
Ll 2 | B
2 e 2 3
e 1} L
. S S s e)
aSoopappoaponnar | pesRosameaEes
[1 2 F 4 5 o 1 z 3 4 5 [1 2 3 4]
herations 10" Revaticns. <1 Eerations 10
x 10" Modes v.s. Rerasions (Two-Link Acrobet) x10° Modes v.s. Rerations (Quackotoe) x 150065 v.5, Iteeations (Physically-Simutated Car)
LT 6 6
ART | [RAT ART
| - Shocting Variand [ol = Shooting Variant Al -G S8T
§ | 58T | 5 | —8—sar J g o= 2
2t g K 2t
CEOCCEEEHEEEEEEEEEEs PreCles
o 1 2 3 4 -3 a 1 2 a3 4 5
heratians 10 Iesaticrs. T Rarazons %10

Fig. 8 Number of nodes in the tree (RRT, RRT™ or the shooting approach, and SST)

Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning 281

6 Discussion

The focus in motion planning has recently shifted towards methods with formal guar-
antees in terms of path quality. Achieving this objective for systems with dynamics
has generally required specialized steering functions [8, 12, 32]. The proposed SST
method does not require a steering function but still minimizes the length of the
solution trajectory over time. Theoretical analysis and simulated experiments indi-
cate that the running time and space requirements of SST are better even than RRT,
which can quickly provide feasible trajectories.

With regard to memory and in contrast to other tree planners, SST builds a sparse
data structure. Instead of requiring an infinite number of states, SST keeps a set
of finite witnesses for given input parameters. This is reminiscent of grid-based
approaches. Nevertheless, SST still provides benefits over such solutions. The grid
points in grid-based methods are usually fixed and fully specified upon initialization.
The solution trajectories have to go through these grid points. In SST, however, the
trajectories can change dynamically, are adaptive to the underlying characteristic of
the environment (e.g., presence of obstacles) and do not have to go through the static
witnesses. Furthermore, SST is an incremental method. It will only asymptotically
require the same set of samples as a grid-based technique and a solution is found
fast in practice. Improvements, such as branch-and-bound, can further reduce space
requirements.

By removing the requirement for a steering function, SST is well suited to solve
problems in other domains where steering functions are difficult to construct. One of
these areas is planning under uncertainty, where planning is performed in belief space.
It is typically not possible to compute a steering function in this domain, but forward
propagation can be used to update a probability distribution. It is also important to
evaluate the effectiveness of the approach on real systems with significant dynamics,
high-dimensional state spaces, in cluttered spaces and the effects of contacts in the
properties of the method.

References

1. Akgun, B., Stilman, M.: Sampling heuristics for optimal motion planning in high dimensions.
In: IROS (2011)

2. Arslan, O., Tsiotras, P.: Use of relaxation methods in sampling-based algorithms for optimal
motion planning. In: ICRA (2013)

3. Bullet Physics Engine. http://bulletphysics.org

4. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.:
Principles of Robot Motion. The MIT Press (2005)

5. Denny, J., Morales, M.M., Rodriguez, S., Amato, N.M.: Adapting RRT growth for heteroge-
neous environments. In: IROS, Tokyo, Japan (2013)

6. Dobson, A., Bekris, K.: Sparse roadmap spanners for asymptotically near-optimal motion
planning (2013)

7. Gayle,R., Segars, W., Lin, M.C., Manocha, D.: Path planning for deformable robots in complex
environments. In: Robotics: Science and Systems (2005)

http://bulletphysics.org

282

8.

9.

10.

11.

12.

13.

14.

15.

16.
17.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Y. Lietal.

Goretkin, G., Perez, A., Platt, R., Konidaris, G.: Optimal sampling-based planning for linear-
quadratic kinodynamic systems. In: ICRA (2013)

Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion planning with
moving obstacles. [JRR 21(3), 233-255 (2002)

Islam, F., Nasir, J., Malik, U., Ayaz, Y., Hasan, O.: RRT*-Smart: rapid convergence implemen-
tation of RRT* towards optimal solution. In: ICMA (2012)

Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space
costmaps. IEEE TRO 26(4), 635-646 (2010)

Jeon, J.H., Cowlagi, R., Peters, S., Karaman, S., Frazzoli, E., Tsiotras, P., lagnemma, K.: Opti-
mal motion planning with the half-car dynamical model for autonomous high-speed driving.
In: ACC (2013)

Jeon, J.H., Karaman, S., Frazzoli, E.: Anytime Computation of time-optimal off-road vehicle
maneuvers using the RRTx. In: CDC (2011)

Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. IJRR 30(7),
846-894 (2011)

LaValle, S.M., Branicky, M.S.: On the relationship between classical grid search and proba-
bilistic roadmaps. In: WAFR. Nice, France (2002)

LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. IJRR 20(5), 378—400 (2001)
Li, Y., Littlefield, Z., Bekris, K.: Asymptotically optimal sampling-based kinodynamic planning
((submitted: 10 July 2014)). http://arxiv.org/abs/1407.2896

. Likhachev, M., Gordon, G.J., Thrun, S.: ARA*: Anytime A* with provable bounds on sub-

optimality. In: NIPS (2004)

. Littlefield, Z., Li, Y., Bekris, K.: Efficient sampling-based motion planning with asymptotic

near-optimality guarantees with dynamics. In: IROS (2013)

Marble, J.D., Bekris, K.: Asymptotically near-optimal planning with probabilistic roadmap
spanners (2013)

Matérn, B.: Spatial Variation 2nd edn. vol. 36 of Lecture Notes in Statistics, vol. 36. Springer,
New York (1986)

Nechushtan, O., Raveh, B., Halperin, D.: Sampling-diagrams automata: a tool for analyzing
path quality in tree planners. In: WAFR (2010)

Papadopoulos, G., Kurniawati, H., Patrikalakis, N.M.: Asymptotically optimal inspection plan-
ning using systems with differential constraints. In: ICRA (2013)

Plaku, E., Kavraki, L.E., Vardi, M.Y.: Motion planning with dynamics by a synergistic combi-
nation of layers of planning. IEEE TRO 26(3), 469482 (2010)

Rickert, M., Brock, O., Knoll, A.: Balancing exploration and exploitation in motion planning.
In: ICRA (2008)

Rodriguez, S., Tang, X., Lien, J.M., Amato, N.M.: An obstacle-based rapidly-exploring random
tree. In: ICRA (2005)

Salzman, O., Halperin, D.: Asymptotically near-optimal RRT for fast, high-quality, motion
planning. Techenical Report, Tel Aviv University (2013)

Shaharabani, D., Salzman, O., Agarwal, P., Halperin, D.: Sparsification of motion-planning
roadmaps by edge contraction. In: ICRA (2013)

Shkolnik, A., Walter, M., Tedrake, R.: Reachability-guided sampling for planning under dif-
ferential constraints. In: ICRA (2009)

Urmson, C., Simmons, R.: Approaches for heuristically biasing RRT growth. In: IROS, pp.
1178-1183 (2003)

Wang, W., Balkcom, D., Chakrabarti, A.: A fast streaming spanner algorithm for incrementally
constructing sparse roadmaps. In: IROS (2013)

Webb, D., van Den Berg, J.: Kinodynamic RRT*: asymptotically optimal motion planning for
robots with linear differential constraints. In: ICRA (2013)

http://arxiv.org/abs/1407.2896

Adaptive Informative Path Planning
in Metric Spaces

Zhan Wei Lim, David Hsu and Wee Sun Lee

Abstract In contrast to classic robot motion planning, informative path planning
(IPP) seeks a path for a robot to sense the world and gain information. In adap-
tive IPP, the robot chooses the next sensing location using all information acquired
so far. The goal is to minimize the robot’s travel cost required to identify a true
hypothesis. Adaptive IPP is NP-hard. This paper presents Recursive Adaptive Iden-
tification (RAId), a new polynomial-time approximation algorithm for adaptive IPP.
We prove a polylogarithmic approximation bound when the robot travels in a met-
ric space. Furthermore, our experiments suggest that RAId is efficient in practice
and provides good approximate solutions for several distinct robot planning tasks.
Although RAId is designed primarily for noiseless observations, a simple extension
allows it to handle some tasks with noisy observations.

1 Introduction

Path planning usually seeks a collision-free path for a robot to reach a physical
location. In contrast, informative path planning (IPP) seeks a path for the robot to
sense the world and gain information:

e An unmanned aerial vehicle (UAV) searches a disaster region to pinpoint the
location of survivors.

e A mobile manipulator moves around and senses an object with laser range
finders [18] or tactile sensors [13] in order to estimate the object pose for grasping.

e An autonomous underwater vehicle inspects a ship hull for the presence of
explosive devices [10].

Z.W. Lim (X) - D. Hsu - W.S. Lee
National University of Singapore, Singapore 117417, Singapore
e-mail: zhanweiz@gmail.com

D. Hsu
e-mail: dyhsu@comp.nus.edu.sg

W.S. Lee
e-mail: leews @comp.nus.edu.sg

© Springer International Publishing Switzerland 2015 283
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_17

284 Z.W. Lim et al.

In all these tasks, the robot has a set of hypotheses on the underlying state of the
world—the location of survivors, the pose of an object, etc.—and must move to dif-
ferent locations in order to sense and eventually identify the true hypothesis. Each
sensing operation provides new information, which enables the robot to act more
effectively in the future. To acquire this information, the robot, however, must move
around and incur movement cost, in addition to sensing cost. This paper presents
a practical algorithm, recursive adaptive identification (RAld), which computes a
near-optimal path for the robot to identify the true hypothesis with minimum move-
ment cost.

IPP contains, as a special case, the well-studied optimal decision tree (ODT)
problem, which basically has a single location with all sensing operations. Unfortu-
nately, ODT, even with noiseless sensing, is not only NP-hard, but also NP-hard to
approximate within a factor of (logn), where # is the total number of hypotheses [2].

There are two general classes of algorithms for IPP, nonadaptive and adaptive.
In nonadaptive planning, we compute a sequence of sensing operations in advance.
A robot executes these operation in order, regardless of the outcomes of operations
executed earlier. In adaptive planning, we choose, in each step, new sensing oper-
ations conditioned on the outcomes of sensing operations executed earlier. This is
clearly more powerful. RAId belongs to the second class.

RAId takes a divide-and-conquer approach, somewhat similar to binary search.
Each recursive step of binary search chooses a single most discriminating query
that prunes half of all hypotheses. RAId shares the basic idea, but is more complex.
There are two main difficulties. First, we cannot choose sensing locations one at a
time in isolation, because different locations provide different sensing information
and moving to a location affects future choices. Second, when choosing multiple
sensing locations together, we must consider not only information gain, but also
movement cost. Each recursive step of RAId constructs a near-optimal adaptive plan
that traverses a subset of sensing locations, by solving a group Steiner problem [1].
The traversal terminates when the robot encounters an “informative” observation,
which guarantees to eliminate a significant fraction of existing hypotheses.

In the following, Sect. 2 briefly surveys related work. Section 3 defines informative
path planning and presents RAId. Section4 analyzes the performance of the algo-
rithm. Section 5 compares RAId with two widely used greedy algorithms. Although
our algorithm is designed primarily for noiseless observations, Sect. 6 presents an
extension of RAId to handle some tasks with noisy observations. Finally, Sect.7
discusses limitations of this work and directions for future research.

2 Related Work

IPP is important to robotics and various related fields. The importance and the dif-
ficulty in efficiently computing optimal solutions for IPP have attracted significant
interest in recent years. One idea is to choose a set of “informative” sensing loca-
tions and then construct a minimum-cost tour to traverse them [11]. Another idea is

Adaptive Informative Path Planning in Metric Spaces 285

to search for a plan over a finite horizon [10]. Although these heuristic algorithms
may work well in practice, they do not provide any theoretical performance guaran-
tee. The NAIVE algorithm replans in each step, using a nonadaptive IPP algorithm,
in order to achieve adaptivity [20]. It guarantees near-optimal performance when
the adaptivity gap is small, in other words, when adaptive planning does not have
significant advantage over nonadaptive planning. Unfortunately the adaptive gap can
be exponentially large even for very simple problems [10]. This is unsurprising in
light of the well-known benefit of acting adaptively [4, 7]. Furthermore, to achieve
nontrivial performance bound, NAIVE requires explicit construction of a submodu-
lar function with the locality property [20]. This is not always easy or possible. One
strength of NAIVE is its ability to handle noisy observations. Our current work makes
the assumption of noiseless observations, though we are extending the algorithm to
handle noisy observations (Sect. 6).

IPP is closely related to the adaptive traveling salesman (ATSP) problem [9]. In
contrast to the standard TSP, the traveling salesman here services only a subset of
locations with requests, but does not know this subset initially. When the salesman
arrives at a location, he finds out whether there is a request there. The goal is to find an
adaptive strategy for the salesman to service all requests and minimize the expected
cost of traveling. IPP contains ATSP as a special case. Each hypothesis represents a
subset of locations with requests. Each “sensing” operation is binary and answers the
query whether the current location has a service request or not. RAId has its root in
the isolation algorithm for ATSP [9]. To provide the theoretical performance bound,
the isolation algorithm uses linear programming in the inner loop to solve the group
Steiner problem. This is impractical. RAId solves the more general IPP problem,
which allows arbitrary hypothesis space and non-binary sensing. To solve the group
Steiner problem, it uses a combinatorial approximation algorithm [1] that is far more
effective in practice.

Our IPP algorithm contains three key elements: information gathering, robot
movement cost, and adaptivity. It touches on several important research topics, which
contain one or two, but not all three elements. If we focus on information gather-
ing only and ignore robot movement cost, IPP becomes sensor placement, view
planning, or ODT, which admits efficient solutions through, e.g., submodular opti-
mization, in both non-adaptive [15] and adaptive settings [7, 13]. If we account for
movement cost, there are several nonadaptive algorithms with performance guarantee
(e.g., [12, 19]).

Although active localization [6] and simultaneous localization and mapping
(SLAM) [5] bear some similarity to IPP, they are in fact different, because IPP
assumes that the robot location is fully observable. Reducing active localization or
SLAM to IPP incurs significant representational and computational cost.

IPP, as well as other information-gathering tasks mentioned above, can all be
modeled as partially observable Markov decision processes (POMDPs) [14], which
provide a general framework for planning under uncertainty. However, solving large-
scale POMDP models near-optimally remains a challenge, despite the dramatic
progress in recent years [16, 17, 21]. The underlying structure of IPP allows simpler
and more efficient solutions.

286 Z.W. Lim et al.

3 Informative Path Planning

Formally an IPP problem is specified as a tuple Z = (X, d, H, p, O, Z,r). First, X
is a finite set of sensing locations, with associated distance metric d(x, x") for any
x,x" € X.Next, H is a finite set of hypotheses, and p(h) specifies the prior probabil-
ity of hypothesis & € H occurring. We also have a finite set of observations O and a
set of observation functions Z = {Z, | x € X}, with one observation function Z, for
each location location x. For generality, we define the observation functions proba-
bilistically: Zy (h, 0) = p(o|x, h). For noiseless observations, Zy (h, o) is either 1 or
0. We say that an observation o and a hypothesis 4 are consistent, if Z,(h,0) = 1. In
this work, we focus mainly on the noiseless case. Finally, r is the robot’s start location.
To simplify the presentation, we assume r ¢ X, because either r provides no useful
sensing information or the robot has already visited r and acquired the information.

In adaptive planning, the solution is a policy 7, which can be represented as a
tree. Each node of the policy tree is labeled with a sensing location x € X, and each
edge is labeled with an observation o € O (Fig.1). To execute such a policy, the
robot starts by moving to the location at the root of the policy tree and receives an
observation o. It then follows the edge labeled with o and moves to the next location
at the child node. The process continues until the robot identifies the true hypothesis.
Thus every path in the policy tree of 7 uniquely identifies a hypothesis h € H. Let
C(m, h) denote the total cost of traversing this path. Our goal is to find a policy
that identifies the true hypothesis by taking observations at the chosen locations and
minimizes the expected cost of traveling.

We now state the problem formally:

Problem 1 Given an IPP problem Z = (X, d, H, p, O, Z, r), compute an adaptive
policy 7 that minimizes the expected cost

C(m)=EgC(m, h) = Z C(m, h)p(h). @9)
heH

Fig. 1 A policy tree with sensing locations {A, B, C, D}, observations {0, 1}, hypotheses
{h1, ha, ..., hs}. With noiseless observations, every path in a policy tree from the root to a leaf
uniquely identifies a hypothesis. Suppose that a robot follows the shaded path o. Then a hypothesis
h is consistent with all observations received along o if and only if / belongs to the subtree rooted
at the node D

Adaptive Informative Path Planning in Metric Spaces 287

We assume without loss of generality that in the worst case, the true hypothesis can
be identified by visiting all locations in X.

RAId is a recursive divide-and-conquer algorithm. In each recursive step, it con-
structs a near-optimal adaptive plan to traverse a subset of sensing locations in X
and eliminates inconsistent hypotheses using the observations received. The traver-
sal terminates when the robot receives an “informative” observation that reduces
the probability of the current hypothesis set H by a half. RAId then recurses on the
remaining hypotheses, until identifying the true hypothesis. A sketch of the algorithm
is shown in Algorithm 1.

To generate such a traversal, RAId solves a group Steiner problem. A group
Steiner problem is defined by two elements. One is an edge-weighted graph G =
(V, E, Wg). The other is a collection of groups V = {V1, Va, ..., V;;} with corre-
sponding group-weights Wy, = {v1, 12, ..., vy }. Each group V; contains a subset
of vertices in V. A subgraph of G covers a group V; € V if the subgraph con-
tains at least one vertex in V;. The usual goal of a group Steiner problem is to
find a minimum-edge-weight tree that covers a sub-collection of groups with total
group-weight at least v, for some given constant v. In Algorithm 1, the procedure
GROUPSTEINERTOUR(V, E, Wg,V, Wy,) computes a group Steiner four, i.e., a
cycle in a graph-theoretic sense, instead of a tree.

Algorithm 1 RAId

1: procedure RAId(X,d, H, p, O, Z, 1)
2: if |H| = 1 then

3 return H.

4: else

5: V<« min(O.S, 1 — maxpey p(h)).

6 T < GROUPSTEINERTOUR(X, X X X, d, {Xn}nen, p, v),
where 7 = (xg, x1,...,x;) and xg = x; = r.

7 (H,r) < EXECUTEPLAN(T, H, r).

8: Renormalize the probability p(h) for all h € H so that Zhe g ph) =1

9: RAId(X,d, H, p, O, Z,1)

10: procedure EXECUTEPLAN(T, H, r)

11 i« 1.

12: repeat

13: r o< Xxj.

14: Visit location r and receive observation o.

15: Remove from H all hypotheses inconsistent with o.

16: i< i+1.

17: untilo € 2, ori =1t.
18: r o< X;.

19: Move to location r.
20: return (H,r).

288 Z.W. Lim et al.

For IPP, the graph in the group Steiner problem is the complete graph over X,
and the edge-weight between two vertices x and x’ is d(x, x”).

A key step in our construction is to define the groups. Let H, , € H be the
subset of hypotheses consistent with observation o at x. We define the informative
observation set at x:

2y = {0 | p(Hx,o) = 05} . (2)

By definition, H, , has small probability (less than 0.5), and H\Hy ,, the set of
hypotheses inconsistent with o, has large probability (greater than 0.5). As a result,
upon receiving o, each recursive step of RAId prunes all inconsistent hypotheses
H\H, , and reduces the probability of remaining consistent hypotheses by at least
a half (see Lemma 1). In this sense, each observation o € §2, is informative. Let 0}
be the most likely observation at x: of = arg max,.p(Hy,,). It is interesting to
observe that

o — 0 if p(HX,O;) <0.5forallo € O,
Tl o\{or} otherwise.

Now we define one group for each hypothesis & € H:
Xp={x€X|Zc(h,0) =1 forsome o € §2,}, 3)

which contains all locations having informative observations consistent with /. The
group-weight for Xy is simply p(h).

Finally, we set the target v = min (0.5, 1 — maxep p(h)). RAId guarantees that
by traversing such a group Steiner tour, the robot will prune inconsistent hypotheses
with total probability at least v. It would be desirable, but is not possible to simply set
v = 0.5. If the true hypothesis has high probability, RAId may not be able to achieve
substantial pruning, as the remaining hypotheses have small total probability.

GROUPSTEINERTOUR first solves for a group Steiner tree 7" using a greedy approx-
imation algorithm [1] and then applies Christofides’ metric TSP approximation
algorithm [3] to the vertex set of T in order to generate a tour. Both approxima-
tion algorithms rely critically on the the metric property of the edge weight d.

RAId is an online algorithm, which interleaves planning and plan execution. It
plans a tour (Algorithm 1, line 6). The robot then traverses the locations on the tour
(Algorithm 1, line 7). At each location, the robot prunes all hypotheses inconsistent
with the received observation. It ends the traversal and returns to the start location,
after receiving an observation in the informative observation space or exhausting the
tour. RAId guarantees that the traversal either reduces the probability of consistent
hypotheses by a half or identifies the true hypothesis (see Lemma 1).

Adaptive Informative Path Planning in Metric Spaces 289

4 Analysis

Our analysis consists of two main steps. In the first step, we analyze a variant of IPP,
called rooted IPP, in which the robot must return to the start location r in the end.
Our main idea is to show that each group Steiner tour computed enables the robot
to either prune inconsistent hypotheses with probability at least 0.5 or identify the
true hypothesis (Lemma 1). Furthermore, the robot traversing such a tour incurs a
cost not more than twice the expected cost of an optimal policy (Lemmas 2 and 3).
By bounding the number of recursive calls to RAId, we then obtain a result on its
performance for rooted IPP (Theorem 1). In the second step, we exploit this result
to bound the performance of RAId for IPP itself (Theorem 2).
We consider only rooted IPP for Lemmas 1-4 and Theorem 1.

Lemma 1 Let H' C H be the set of remaining hypotheses after a single recursive
call to RAId. Then, either p(H') < 0.50r |H'| = 1.

Proof In each recursive call to RAId, the robot follows a group Steiner tour 7. If
it receives an observation o € 2, at some location x on 7, then the robot returns
to r immediately (Algorithm 1, line 19) and p(H') = p(H,,) < 0.5 by definition
of £2,. Otherwise, the robot visits every location x on 7 and receives at every x
an observation o} ¢ 2. Consider x € X for some x on 7 and & € H. If the
robot receives the observation o} ¢ £2, at x, then A is inconsistent with o} by the
definition of X, and is pruned. Since the target of our group Steiner problem is v,
the pruned hypotheses has probability at least v, and the remaining hypothesis set
H’ has probability at most 1 — v. If there is a single hypothesis #* with p(h*) >
0.5, then A* must be the only remaining hypothesis. Otherwise, p(H') < 1 — v
<0.5.]

Next, we bound the edge-weight of an optimal group Steiner tour.

Lemma 2 Let 7 be an optimal policy for a rooted IPP problem I. Let W* be the
total edge-weight of an optimal group Steiner tour for T. Then W* < 2C (7*).

Proof First, we extract a path o from an optimal policy tree 7* and use o to construct
a feasible, but not necessarily optimal solution o to the group Steiner problem for
7. Next, we show that the optimal policy traverses o with probability at least 0.5.
This allows us to bound the total edge-weight of o, and thus that of an optimal group
Steiner tour by the cost of the optimal policy. Let (7, x1, x2, ..., r) be a path in the
optimal policy tree 77* such that every edge following a node x; in the path is labeled
with the most likely observation 0;. = arg max,.o p(Hy, o). For any subpath ¢,
Hy ={h € H| Zy(h, oj[_) = 1 for all x; in ¢} is the set of hypotheses consistent
with the observations received at all locations in ¢. Let 0 = (r, x1, x2, ..., x5) be
the shortest subpath of (r, x1, x2, ..., r) such that p(H,) < 1 — v, where the length
of o is measured in the number of nodes in the path.

We now show that the tour oy = (r, x1, x2, ..., X5, r) is a feasible solution to the
group Steiner tour problem. The key issue is to determine the total group-weight of

290 Z.W. Lim et al.

X, the collection of groups covered by x1, x2, ..., xs. At each location x; on o, the
robot receives an observation of.. If a hypothesis 2 € H is inconsistent with o5,
then /1 must be consistent with some o # o0y, i.e., Zy, (h, 0) = 1 for o € £2,,. Then
x; € X, by definition. In other words, x; covers X, if & is inconsistent with oj,_ at x;,
and X = {X;, | Zy, (h, oj{.) = 0 for some x; in ¢}. Since p(H,) < 1 — v, the total
group-weight of X must be least v. This proves that oy is a feasible group Steiner tour.

Now consider the subpath ¢’ = (r, x1, x2, ..., xs—1). We have p(H,") > 1 — v,
as o is the shortest path with p(H,) < 1 — v. To bound the expected cost of the
optimal policy 7%,

C") =D pC* 1) = 3 p()C(x*, h).

heH heH,

For any h € H,, the path that leads to % in the optimal policy tree 7* must contain
o as a subpath. Thus,

C(r) = D phwioy) = (1 = vyw(o) = (1 =)W,
heH,

where w(oy) is the total edge-weight of the tour o;. Rearranging the inequality above,
we get

1
w* < -5 C(m*) < 2C(r").
—v
(]

Lemma 3 [f RAld computes an optimal group Steiner tour, then the robot travels a
path with cost at most 2C (7*) in each recursive step of RAId.

Proof In each recursive step of RAId, the robot travels a path whose cost is bounded
by the total edge-weight of the group Steiner tour computed. The conclusion then
follows directly from Lemma 2. (]

Before moving to our first theorem, we need to connect a rooted IPP problem to
its subproblems, as RAId is recursive.

Lemma 4 Suppose that ©* is an optimal policy for a rooted IPP problem T with
hypothesis set H and prior probability distribution p. Let {Hy, Ha, ..., H,} be a
partition of H, and let 7' be an optimal policy for the subproblem I; with hypothesis
set H; and prior probability distribution p;, where p;(h) = p(h)/p(H;) for each
h € H;. Then we have

> p(H)C(rF) < C(™).

i=1

Proof For each subproblem Z;, we can construct a feasible policy 7; for Z; from the
optimal policy 7* for Z. Consider the policy tree 7. Every path from the root of 7*

Adaptive Informative Path Planning in Metric Spaces 291

to a leaf uniquely identifies a hypothesis &z € H. So we choose the policy tree 7; as
the subtree of 7* that consists of all the paths leading to hypotheses in H;. Clearly
m; is feasible, as it identifies all the relevant hypotheses. Then,

> p(H)C(x}) < > p(H;)C ()

i=1 i=1

- h
<> oy S % L Clmh)
i=1 heH,

= Z p(h)C(7*, h) = C(1¥).
heH
O

We are now ready to bound the performance of RAId for rooted IPP, under an
assumption.

Theorem 1 Let 7 denote the policy that RAId computes for a rooted IPP problem.
If RAId computes an optimal group Steiner tour in each step, then

C(m) = 2(log (1/8) + 1) C(7),

where C () is the expected cost of RAId and § = mingcy p(h).

Proof By Lemma 1, if a recursive step of RAId does not terminate, it reduces the
probability of consistent hypotheses by a factor of 1/2. For any 7 € H, the number
of recursive steps required is then at most log(1/§) + 1.

We now complete the proof by induction on the number of recursive calls to
RAId. For the base case of k = 1 call, C(7) < 2C(x*) by Lemma 3. Assume that
C(m) < 2(k — 1)C(7*) when there are at most k — 1 recursive calls. Now consider
the induction step of & calls. The first recursive call partitions the hypothesis set
H into a collection of mutually exclusive subsets, Hy, Ha, ..., H,. Let Z; be the
subproblem with hypothesis set H; and optimal policy #, fori = 1,2, ..., n. After
the first recursive call, it takes at most k additional calls for each Z;. In the first call,
the robot incurs a cost at most 2C (7*) by Lemma 3. For each Z;, the robot incurs a
cost at most 2(k — 1)C(7}") in the remaining k — 1 calls, by the induction hypothesis.
Putting together this with Lemma 4, we conclude that the robot incurs a total cost of
at most 2kC (*) when there are k calls. O

Finally, we use Theorem 1 to analyze the performance of RAId on IPP rather than
rooted IPP. To start, we argue that a rooted IPP solution provides a good approximate
solution for IPP.

Lemma 5 An a-approximation algorithm for rooted IPP is a 2a-approximation
algorithm for IPP.

292 Z.W. Lim et al.

Proof Let C* and C} be the expected cost of an optimal policy for an IPP problem
T and for a corresponding rooted IPP problem Z;, respectively. Since any policy
for Z can be turned into a policy for Z; by retracing the solution path back to the
start location, we have C < 2C*. An a-approximation algorithm for rooted IPP
computes a policy 7 for 7, with expected cost Cr(m) < aC}. It then follows that
Ci(m) < aC} < 2aC* and this algorithm provides a 2a-approximation to the
optimal solution of Z. O

To obtain our main result, we need to address two remaining issues. First,
Theorem 1 assumes that RAId computes an optimal group Steiner tour. This is,
however, not achievable in polynomial time under standard assumptions. RAId uses
a polynomial-time greedy algorithm [1] that computes a group Steiner tree 7" with
a guaranteed approximation factor. It then applies Christofides’ metric TSP algo-
rithm [3] to the vertex set of T and generates a tour, instead of traversing T directly,
because Christofides algorithm provides a guaranteed 3 /2-approximation to the opti-
mal TSP tour. Second, the greedy group Steiner approximation algorithm assumes
integer group-weights. To apply this algorithm and obtain the approximation bound,
we assume that the prior probabilities are coded in non-negative integers. We remove
the renormalization step (Algorithm 1, line 8) and make other minor changes accord-
ingly. Normalization of probabilities is not necessary for RAId. It only simplifies
presentation.

Theorem 2 Let7 = (X, d, H, p, O, Z,r) bean IPP problem. Assume that the prior
probability distribution p is represented as non-negative integers with 3, .y p(h) =
P. Let § = minyey p(h)/P. For any constant ¢ > 0, RAId computes a pol-
icy m for T in polynomial time such that C(mw) € 0((10g|X|)2+6 log P log(1/6)
C(m*)).

Proof In the group Steiner problem for 7, the vertex set is X. The greedy
approximation in RAId computes an a-approximation 7T to the optimal group Steiner
tree T* [1], with o € 0((log|X|)2+6 log P). The total edge-weight of an opti-
mal group Steiner tree, w(7™*), must be less than that of an optimal group Steiner
tour, W*, as we can remove any edge from a tour and turn it into a tree. Thus,
w(T) < aw(T*) < aW*. Applying Christofides’ metric TSP to the vertices of
T produces a tour 7, which has weight w(7) < 2w(T), using an argument similar
to that in [3]. It then follows that w(7) < 2aW?*. In other words, RAId obtains
a 2a-approximation to the optimal group Steiner tour. Putting this together with
Theorem 1 and Lemma 5, we get the desired approximation bound. The algorithm
clearly runs in polynomial time. (]

IPPis an NP-hard optimization problem. RAId provides a polylogarithmic approx-
imation algorithm that runs in polynomial time. We further show in the next section
that RAId works well in practice.

Adaptive Informative Path Planning in Metric Spaces 293

5 Implementation and Experiments

It is probably unsurprising that the robot actually does not need to return to the start
position, line 18—19) in each recursive step (Algorithm 1). This is mainly to simplify
the analysis. For the experiments, we implemented a RAId variant without these two
lines.

For comparison, we also implemented two greedy algorithms. The first one,
Information gain (IG), is widely used in practice. Let Q denote that random vari-
able that represents the true hypothesis. Suppose that the robot is currently located
at x. If it receives observation o at the next location x’, the information gain is
H(Q) — H(Q|x’, 0), where H denotes the Shannon entropy. Entropy measures the
uncertainty in a random variable. Reducing entropy is the same as gaining informa-
tion. IG always chooses the next location to maximize the expected information gain
in a greedy manner:

max > 3" (H(Q) ~ H(Q | '.0)) plol’, i) p(h).

heH oe0

To account for robot movement cost, one simple way is to maximize information
gain per unit movement cost (IG-Cost), again in a greedy manner:

H —-H ’, p
ma z z Q) (Q1x',0) p(olx’,) p(h).

/
heH 0e0 d(x, x")

We implemented all three algorithms in the Clojure language and compared their
performance in simulation (Table 1). For each test case, we ran the algorithms on
every hypothesis in H and calculated the average policy cost weighted by the prior
probabilities. Although cost is our main performance measure, we also recorded
total planning time for completeness (Table 1). The running times were obtained on

Table 1 Performance comparison

|X| | |[H| | |0] | Cost Time (s)
1G 1G-Cost | RAId | IG IG-Cost | RAId
2-Star (d =10,n=5) | 37| 32 2 253 329 19.0 | 0.03 | 0.03 0.13
2-Star (d=10,n=6) | 70 | 64 2 279| 223 21.0| 0.10 | 0.12 0.34
2-Star (d =53,n=6) | 70| 64 2| 102.1| 62.0 64.0| 0.13 | 0.75 1.07
2-Star (d =53,n=7) | 135 | 128 2| 1024 | 1274 69.4| 040 | 5.58 1.22
2-Star (d = 53,n = 8) | 264 | 256 2| 1009 | 257.7 68.0| 1.39 | 3.35 4.96
Grasping 170 | 144 | 154 | 28229 | 839.9 690.1 | 2.39 | 4.14 6.43
UAV Search 128 | 64 2 97.2 | 142.7 7471 045 | 2.54 7.23

“Cost” is the average cost of a computed policy over all hypotheses. “Time” is the average total
planning time, excluding the time for plan execution

294 Z.W. Lim et al.

a computer server with an Intel Xeon 2.4 GHz processor. Overall, RAId takes longer
computation time than the two greedy algorithms, but produces much better policies.
Although our implementation is not optimized as a result of the implementation
language, the running times, which are on the order of seconds for these moderate-
scale test problems, are adequate for a range of online robot planning tasks.

5.1 2-Star Graph

We start with a simple example to gain some understanding of the main issues. There
are a total of 2" possible hypotheses H = {0, 1, 2, ..., 2" —1}, with equal probability
of occurring. Each hypothesis 4 € H is coded in its binary representation.

To identify the true hypothesis, the robot visits the nodes in a graph consisting
of two connected stars (Fig.2). One star has center b, and n peripheral nodes
bo, by, ..., b,—1. The other star has center sy» and 2" peripheral nodes sg, i, ...,
son_1. There is an edge connecting the two centers nodes, with edge-weight d. The
weight for an edge between a center and a connected peripheral node is 1. The set X
contains only the peripheral nodes and not the two centers, b, and s», which only
serve the purpose of connecting the peripheral nodes. The robot is initially located
at sg.

Ateachnode b; in X, the robot receives observation 1 if the i th bit of a hypothesis /&
is 1, and receives 0 otherwise. At each node s; in X, the robot receives observation 1 if
h = i, and receives 0 otherwise. Clearly the b-nodes provide much more informative
observations than the s-nodes. The observations at b-nodes behave like binary search,
while the observations at s-nodes behave like sequential search. Since the robot starts
at so, the main issue is to decide whether to pay the high cost of traversing the inter-
star edge in order to benefit from the more informative observations at the b-nodes.
Unfortunately, even in this very simple example, the issue cannot be resolved locally.

RAId has the best or close to the lowest cost in all instances (Table 1). IG-Cost
reasons about cost, but it is unable to decide optimally whether to jump to b-nodes
or stay on s-nodes. When d = 10, IG-Cost transits to the b-nodes because it is not
deterred by distance. However, it turns out to be profitable to jump to b-nodes only
when n = 6. Hence, IG-Cost performs worse in n = 5. When we increase distance
d to 53, IG-Cost is misled by the greedy local analysis and decides to stay at the
s-nodes simply because it is cheaper to reach them. Its performance degrades quickly

Fig. 2 The 2-star graph b S2

51

AN
< P

1
bn— 1 Sa2n—1

2\ /-
bs N b n/ 55
/ \
bs S6

Adaptive Informative Path Planning in Metric Spaces 295

as the number of hypotheses increases. In fact, I[G-Cost’s regret, measured against the
optimal solution, increases exponentially, as n increases. Interestingly, IG sometimes
performs better than IG-Cost. This is, however, coincidence. By completely ignoring
the movement cost, IG naturally moves the b-nodes, which provide more informative
observations.

5.2 Grasping a Cup

There are two cups on the table, one with a handle and one without. A robot arm
needs to lift the cup with a handle by grasping on the handle (Fig.3). Using an
external camera placed on the left side of the table, the robot can accurately sense
the positions of the two cups. However, due to occlusion, it is uncertain which cup
has a handle and where the handle is.

Each hypothesis (x, #) has two parameters: « is a binary value that indicates
which cup has a handle, and 6 is the cup’s orientation, which determines the handle
location. The handle must face away from the camera. So those hypotheses have
higher prior probabilities.

The robot arm has a single-beam laser range finder mounted at its the wrist. The
range finder reports the (discretized) distance to the nearest object in the direction
that the range finder is facing.

We sample seven wrist positions x1, X2, ..., x7 around the cups (Fig.3). At each
position, the robot can pan the range finder in the plane parallel to the tabletop.
Panning by a fixed amount incurs a cost of 4. Moving the wrist from one position to
another incurs a higher cost: the distance between the current position and the target

Fig. 3 Grasp the cup with a handle. The figure shows the side view and the fop view of the same
robot configuration with the robot hand on the right side of the table

296 Z.W. Lim et al.

position, scaled up by a factor of 15. The robot arm starts at wrist position x; on the
left side of the table.

RAId again has the lowest cost. Under RAId, the robot moves progressively from
X1 to x7 and pans the range finder at each position to take observations. This is a
good strategy, because it avoids excessive robot arm movement, which incurs high
cost. IG-Cost does not perform as well here. The robot moves to xg in the first step,
because it expects to see the handle from there with high probability according to
the prior. However, with small probability, the cup is oriented so that the handle is
not visible from x¢. In this case, the robot must pay a high cost to travel back to the
other positions. It turns out that on the average, the aggressive move to x¢ does not
pay off. This example clearly shows the weakness of greedy strategies, which do not
plan multiple steps ahead. IG performs very poorly, because it completely ignores the
difference in action costs and moves the robot arm excessively between the various
wrist positions in order to seek sometimes minor additional information gain.

5.3 UAV Search

A UAV searches for a stationary target in an area modeled as an 8 x 8 grid (Fig.4)
and must identify the grid cell that contains the target. Initially the target lies in any
of the cells with equal probabilities.

The UAV can operate at two different altitudes. At the high altitude, it uses a
long range sensor that determines whether the 3 x 3 grid around its current location
contains the target. At the low altitude, the UAV uses a more accurate short-range
sensor that determines whether the current grid cell contains the target. Some grid
cells are not visible from the high altitude because of occlusion, and the UAV must
descend to the low altitude in order to search these cells.

Thelong range sensor
detects the target in
the 3 x 3 area.

h =10

Theshort range sensor
detects the target in
the grid cell at the
current UAV location.

true target location
Fig. 4 Search for a stationary target in an 8 x 8 grid. At the high altitude, the long-range sensor
provides no information in the area shaded in gray, due to occlusion. The red curve indicates one
sample path generated by RAId

Adaptive Informative Path Planning in Metric Spaces 297

The UAV starts at the low altitude. We use the Manhattan distance between two
grid cells as the basis of calculating the movement cost. The cost of flying between
two adjacent cells at the high altitude is 1. The corresponding cost at the low altitude
is 4. The cost to move between high and low altitudes is 10.

One may think that the optimal strategy is for the UAV to rise to the high altitude,
search and locate the target in a 3 x 3 area, and finally descend to the low altitude
in order to localize the target precisely. RAId, however, does not always do this,
because the cost of descending is high. Figure 4 shows a sample run of RAId. After
identifying the 3 x 3 area, the UAV stays at the high altitude. It moves around in
the neighborhood and fuses the observations received to localize the target precisely
without descending.

IG-Cost does not perform well, again because it does not plan multiple steps
ahead. It fails to recognize that although the cost of climbing to the high altitude
seems high in one step, the cost can be amortized over many future high-altitude
observations, which are more informative. Under IG-Cost, the UAV always stays on
the low altitude and does not climb up.

6 Noisy Observations

Although RAId is designed for noiseless observations, we now describe a simple
extension, Noisy RAId , to handle noisy observations. Our strategy is first to create a
noiseless IPP problem Z’ = (X, d, H', ¢/, O, Z’, r) from the original noisy one Z =
(X,d, H, p, O, Z,r), by associating a hypothesis with observations. For noiseless
observations, each hypothesis / has a unique observation vector (01, 02, ..., 0x|),
where Z,, (h, ox;) = 1 for each location x; € X. This one-to-one relationship allows
us to represent a hypothesis by its associated observation vector. The hypothesis
space H is then simply a set of points in O!X|. For noisy observations, the one-to-
one relationship no longer holds, but the intuition of associating hypotheses with
their observation vectors remains valid.

Formally we set H' = O'*|. For a hypothesis h’ = (01, 02, ..., 0y in H', the
prior probability of 4’ is the probability of observing A’ if the robot visits all loca-
| X|

tions in X: p'(h') = > ey p(h) [1;2} Zx, (h, 0;). Finally, the observation function
Z,.(h',0)=1ifo=o0;.
Noisy RAId applies RAId to Z’ with three changes:

e For computational efficiency, we sample a set of n hypotheses from H' in each
recursive step of RAId and use it an approximate representation of H'.

e Although 7 is transformed into Z’, our goal is still to acquire information on
the original hypothesis space H. We maintain a probability distribution over H.
Initially, b = p. Because of noise, we cannot use an observation to eliminate a

298 Z.W. Lim et al.

Table 2 The performance of noisy RAId on the UAV search task with noisy observations

Noise Cost

n =128 n =192 n =320
0.01 110.1 104.6 106.1
0.05 131.9 135.5 131.3

Noise level o means that the high-altitude sensor reports a false observation with probability o, and
n is the number of samples

hypothesis # € H, but we can update their probabilities using the Bayes rule.
Suppose that the robot receives a new observation o at location x. We replace
Algorithm 1, line 15 with

b(h) <~ nZx(h,o0)b(h) forevery h € H,

where 7 is a normalization constant.
e Finally, we terminate RAId if the most likely hypothesis A* = arg max; b (h)
has probability greater than or equal to a given constant v € (0, 1]).

Under the assumption of noiseless observations, Noisy RAId reverts back RAId. To
see this, note that in the first change, we may exhaustively sample every hypothesis
in H and make H' = H. In the second change, Z, (h, o) is either 1 or 0. Bayesian
update is then equivalent to hypothesis elimination. In the third change, we sety = 1.

We performed preliminary experiments to evaluate this idea on the UAV Search
task (Sect.5.3) with two different noise levels for the high-altitude sensor. The ter-
mination condition y was set to 0.99. We evaluated multiple settings with different
numbers of samples. For each setting, we run one trial for every hypothesis h € H
and averaged performance statistics. The results, reported in Table 2, are promising.
Although the size of H' is 2'%3, the algorithm identifies the true hypothesis correctly
for every trial with only a few hundred samples in all settings. In other words, it
always identifies the correct hypothesis according to the ground truth. In general, the
robot’s travel cost increases with noisy observations, as expected. With more sam-
ples, we expect the algorithm to compute a better policy with lower cost. However,
the trend in the data is not definitive. Either a small number of samples is sufficient
in this case to produce a near-optimal policy or a much larger number of samples is
needed for significant improvement. Further investigation is required.

7 Conclusion

RAId is a new algorithm for the NP-hard informative path planning problem.
We show that it computes a polylogarithmic approximation to the optimal solu-
tion in polynomial time, when the robot travels in a metric space. Furthermore,
our experiments demonstrate that RAId is efficient in practice and provide good

Adaptive Informative Path Planning in Metric Spaces 299

approximate solutions for several distinct robot planning tasks. Although RAId is
designed primarily for noiseless observations, a simple extension allows it to handle
some tasks with noisy observations. However, theoretical guarantees for RAId no
longer hold when there are noisy observations. Our simple extension to RAId may
benefit from borrowing ideas from algorithms for noisy Bayesian active learning
such as [8].

To expand the use of RAId, there are two main challenges. One is to develop a
principled and practical treatment of noisy observations with performance guarantee.
The other is scalability. Currently, RAId uses a “flat” representation, which explicitly
enumerates every possible hypothesis. Hierarchical or factored representations will
be needed in order to scale up to very large hypothesis spaces.

Acknowledgments This work is supported in part by A*STAR grant R-252-506-001-305, MoE
AcRF grant 2010-T2-2-071, National Research Foundation Singapore through the SMART IRG
research program (Subaward Agreement No. 41), and the US Air Force Research Laboratory under
agreement number FA2386-12-1-4031.

References

1. Calinescu, G., Zelikovsky, A.: The polymatroid Steiner problems. J. Comb. Optim. 9(3),
281-294 (2005)

2. Chakaravarthy, V., Pandit, V., Roy, S., Awasthi, P., Mohania, M.: Decision trees for entity
identification: approximation algorithms and hardness results. In: Proceedings of the ACM
Symposium on Principles of Database Systems (2007)

3. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon Univer-
sity (1976)

4. Dean, B., Goemans, M., Vondrdk, J.: Approximating the stochastic knapsack problem: the
benefit of adaptivity. In: Proceedings of the IEEE Symposium on Foundations of Computer
Science. pp. 208-217 (2004)

5. Feder, H., Leonard, J., Smith, C.: Adaptive mobile robot navigation and mapping. Int. J. Robot.
Res. 18(7), 650-668 (1999)

6. Fox, D., Burgard, W., Thrun, S.: Active Markov localization for mobile robots. Robot. Auton.
Syst. 25(3), 195-207 (1998)

7. Golovin, D., Krause, A.: Adaptive submodularity: theory and applications in active learning
and stochastic optimization. J. Artif. Intell. Res. 42(1), 427-486 (2011)

8. Golovin, D., Krause, A., Ray, D.: Near-optimal Bayesian active learning with noisy observa-
tions. NIPS 10, 766-774 (2010)

9. Gupta, A., Nagarajan, V., Ravi, R.: Approximation algorithms for optimal decision trees and
adaptive TSP problems. In: Proceedings of the International Conference on Automata, Lan-
guages and Programming. LNCS, vol. 6198, pp. 690-701. Springer (2010)

10. Hollinger, G., Mitra, U., Sukhatme, G.: Active classification: theory and application to
underwater inspection. In: Proceedings of the International Symposium on Robotics Research.
Springer (2011)

11. Hollinger, G., Englot, B., Hover, ES., Mitra, U., Sukhatme, G.S.: Active planning for
underwater inspection and the benefit of adaptivity. Int. J. Robot. Res. 32(1), 3—18 (2013)

12. Hollinger, G., Singh, S., Djugash, J., Kehagias, A.: Efficient multi-robot search for a moving
target. Int. J. Robot. Res. 28(2), 201-219 (2009)

300

13.

14.

15.

16.

17.

18.

20.

21.

Z.W. Lim et al.

Javdani, S., Klingensmith, M., Bagnell, J., Pollard, N., Srinivasa, S.: Efficient touch based
localization through submodularity. In: Proceedings of the IEEE International Conference on
Robotics and Automation (2013)

Kaelbling, L., Littman, M., Cassandra, A.: Planning and acting in partially observable stochastic
domains. Artif, Intell. 101(1-2), 99-134 (1998)

Krause, A., Guestrin, C.: Optimal value of information in graphical models. J. Artif. Intell.
Res. 35, 557-591 (2009)

Kurniawati, H., Hsu, D., Lee, W.: SARSOP: efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In: Proceedings of the Robotics: Science
and Systems (2008)

Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime algorithm for
POMDPs. In: Proceedings of the International Joint Conference on Artificial Intelligence.
pp- 477-484 (2003)

Platt Jr, R., Kaelbling, L., Lozano-Perez, T., Tedrake, R.: Simultaneous localization and
grasping as a belief space control problem. In: Proceedings of the International Symposium on
Robotics Research (2011)

. Singh, A., Krause, A., Guestrin, C., Kaiser, W.: Efficient informative sensing using multiple

robots. J. Artif. Intell. Res. 34(2), 707-755 (2009)

Singh, A., Krause, A., Kaiser, W.: Nonmyopic adaptive informative path planning for multiple
robots. In: Proceedings of the International Joint Conference on Artificial Intelligence (2009)
Smith, T., Simmons, R.: Point-based POMDP algorithms: improved analysis and
implementation. In: Proceedings of the Uncertainty in Artificial Intelligence (2005)

The Feasible Transition Graph: Encoding
Topology and Manipulation Constraints
for Multirobot Push-Planning

Laura Lindzey, Ross A. Knepper, Howie Choset
and Siddhartha S. Srinivasa

Abstract Planning for multirobot manipulation in dense clutter becomes particularly
challenging as the motion of the manipulated object causes the connectivity of the
robots’ free space to change. This paper introduces a data structure, the Feasible
Transition Graph (FTG), and algorithms that solve such complex motion planning
problems. We define an equivalence relation over object configurations based on
the robots’ free space connectivity. Within an equivalence class, the homogeneous
multirobot motion planning problem is straightforward, which allows us to decouple
the problems of composing feasible object motions and planning paths for individual
robots. The FTG captures transitions among the equivalence classes and encodes con-
straints that must be satisfied for the robots to manipulate the object. From this data
structure, we readily derive a complete planner to coordinate such motion. Finally,
we show how to construct the FTG in some sample environments and discuss future
adaptations to general environments.

1 Introduction

Much research has focused on manipulating objects using groups of small general-
purpose robots, rather than the traditional large single-purpose machines in a context

L. Lindzey ()
University of Texas at Austin, 1 University Station, Austin, TX 78712, USA
e-mail: lindzey @utexas.edu

R.A. Knepper

Computer Science Department, Cornell University, Gates Hall 352,
Ithica, NY 14853, USA

e-mail: rak @csail.mit.edu

H. Choset - S.S. Srinivasa
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA
e-mail: howie@cs.cmu.edu

S.S. Srinivasa
e-mail: siddh@cs.cmu.edu

© Springer International Publishing Switzerland 2015 301
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_18

302 L. Lindzey et al.

such as manufacturing [1-5]. There are a number of scenarios in factories and ware-
houses for which using a team of robots can save time or even perform a task that
was impossible with a single robot. Examples include maneuvering a cargo pallet in
an area packed with boxes and performing precision assembly of large products like
airplanes.

In the first example, in a cluttered environment, transporting a bulky object can be
quite awkward. Consider a forklift trying to make a 90° turn among tight corridors.
It may be more efficient to set down the load, reposition, and then drive in the new
direction. However, this repositioning could be physically infeasible due to the load
blocking a lone forklift’s free space or logistically infeasible given the time required
to drive around other obstacles. In these cases, an additional forklift must already be
in position to efficiently pick up and transport the load.

In the second example, we observe that current strategies for manufacturing large
objects require factory fixtures called jigs. The goal is to have teams of robots replace
the jigs and carry large parts in and around the assembly area, bringing them into
contact when the assembly operation calls for it. This would allow the manufacturing
plant to become operational more quickly as well as be more flexible for reusing
the infrastructure for other tasks. However, this will require robots that are able to
maneuver large objects in a busy, cluttered factory floor.

One key challenge of these scenarios is that they require reasoning about how the
manipulated object’s location affects the manipulating robots’ ability to move freely.
They share that requirement with the multirobot object manipulation domain, which
considers a class of problems where a group of mobile robots must work together to
move an object from a start to a goal configuration (detailed in Sect. 3).

Consider cluttered environments such as in Fig. 1, with several robots pushing a
large object in a maze-like environment. The motions of robots and the object are

Robot

Movable Object
Obstacle

Robot’s C—obstacle

Object’s C—obstacle

Fig. 1 Example environment for object pushing. The same color scheme is used throughout the
paper

The Feasible Transition Graph ... 303

coupled both by obstruction and by rules for manipulating the object. In this paper,
we explore the following questions:

P1—Existence: Given start and goal configurations for the object, does a feasible
plan exist for the robots to move the object?

P2—Synthesis: Find a plan to move the object from a start to a goal location for
given initial robot locations.

P3—Optimization: What is the minimum number of robots required to push the
object between two specific positions? What is the path-length-optimal feasible
object path between two specific positions?

P4—Minimalism: What is the minimum number of robots required to perform
any feasible object path in the environment?

We introduce a novel representation, the Feasible Transition Graph, and algorithms
operating upon it that allow us to answer the above questions. We then discuss an
implementation that solves these problems for a few simple types of environment
and manipulation models.

We achieve these results by reformulating object pushing as a constrained mini-
mization problem with constraints derived from two properties of the environment
(Sect.4). First, we require that robots obey the semantics of pushing, which we
term manipulation constraints. These constraints determine how robots are able to
maneuver the object. Next, as the object’s motion changes the connectivity of the
robots’ free space, we require that each robot must move deliberately among merg-
ing and splitting connected components. We call this conservation of robots. These
two properties induce constraints on the number of robots occupying each connected
component.

We organize these constraints in a graph-like structure called the Feasible Transi-
tion Graph (Sect. 7), which makes it possible to solve multirobot planning problems
(P1, P2, P3) with a graph search (Sect. 5). General minimum sufficient robots prob-
lems (P4) require an optimization over this graph (Sect. 6).

In the multirobot object pushing domain, even simple scenarios reveal much com-
plexity. The FTG provides an abstraction that simplifies this complexity. A key future
challenge is to tractably construct such graphs for complex, higher-dimensional prob-
lems (Sect. 8).

2 Related Work

Approaches to manipulation planning often consider a set of alternating transit and
transfer actions. This makes it difficult to apply typical motion planning algorithms.
Under some conditions, the manipulation planning problem can be split into two
steps: first choosing a path for the object, and then finding robot paths that cause
the object to follow that path [6]. This decomposition is similar to the division of
multi-arm manipulation problems into transit and transfer tasks by [7]. Our work
focuses exclusively on what is required to find a feasible object path, instead of on

304 L. Lindzey et al.

solving the navigation problem for individual robots. Once a path for the object has
been found, it imposes a set of constraints on individual robot positions, from which
motions can be easily computed. Robot paths that obey these constraints can be found
using existing multirobot planning algorithms [8, 9].

Our multirobot manipulation task in clutter is closely related to navigation among
movable obstacles. They both require reasoning about manipulating an object whose
motion changes the connectivity of the robot’s free configuration space [6, 10]. In
this work, we use the observation that for determining whether a given manipulation
action is feasible it is sufficient to explicitly track which portions of the robot’s
configuration space are occupied.

Significant previous work has focused on the mechanics of object pushing and the
problem of how a team of robots can cause an object to follow a predetermined path.
Lynch and Mason investigated the controllability of point- and line-contact pushing
[11, 12]. More recently, [13] investigated how to compute paths for a team of robots
to push an object along a given path among obstacles.

Caging is a common method for solving the multirobot object pushing problem.
Rather than alternating transit and transfer actions, robot actions are chosen such
that they approach the goal while obeying constraints guaranteeing that the object
remain caged. This approach has resulted in complete algorithms for obstacle free
environments [14], and moderately cluttered environments [15-17]. However, we
consider environments with narrow passages where it is not physically possible to
cage an object.

Definitions
O = {0}, obstacles Pg,, Pr path of R;, set of robot paths
R = {R;}, robots Py, Py path for M, set of all such paths
M manipulated object Fuy, Fy feasible path for M, set of all such paths
EC equivalence class Q‘}’;W (gm) free configuration space of robot R with M at gy,
EG equivalence graph Qﬁ ““ free configuration space of M
FTG feasible transition graph N(Q) number of connected components in space Q
C(n;) constramt§ on n; e FTG N(gu) shorthand for N (QRrge(KIM)) for qu € Q]{/;ee
my; number of robots in «; . .
A(n;) possible assignments of robots for n; € EG
«; i-th connected component of QRME (gm) for qu € «

3 Definitions and Problem Statement

Assume the workspace is a closed, bounded subset of R?, populated by obstacles
O = {O;}. Identical robots R = {R;} cooperate to manipulate the movable object
M, and are able to perform two types of actions within this environment: transit
actions, where they move within a connected component of their free configura-
tion space; and transfer actions, where they maneuver M. A solution for the object
manipulation problem consists of a path for M from a start configuration gz, ni; to a

The Feasible Transition Graph ... 305

goal configuration ¢y goq and a set of robot trajectories PR = {Pg,, Pg,, ...} that
cooperate to move M along this path.

We consider the case of homogeneous robots, and define Q’;gee(qM) to be the free
configuration space formed by any robot R; moving among O with M at position
qm- Q’Le ¢ is the free configuration space formed by M moving among obstacles O.

Let the continuous function Py, : [0, 1] — Q’;r; “bea path for the object, and the set
of all such paths be Py;.

In order to tractably reason about all possible object paths, we define an equiv-
alence relation on object positions gy such that any path can be broken down into
a series of actions transitioning among equivalence classes (ECs). We say that two
object configurations gy,; and gy, j are equivalent if there exists a continuous path
p € Py parametrized by s € [0, 1], with p(0) = gum,; and p(1) = g, along
which N (p(s)) is held constant. Each EC « is associated with a set of connected
components {«], @2, ...}, as shown in Fig.2. We use m; to represent the number
of robots occupying the connected component ¢;, and define a function N(Q) that
returns the number of connected components in a configuration space Q. N(g) is
used as shorthand for N (Q’Zee @)).

We define feasible paths to be the subset of object paths that the robots are able
push the object along:

ym = {p € Py | PR causing M to follow p.}

For a path to be feasible, there must be sufficient space adjacent to the object for
a robot throughout the course of the manipulation. Considering the environment in
Fig.2, no transition from { — « is feasible because there is no space for a robot
to the left of M. Similarly, any path from ¢« — B — o — ¢ is infeasible, despite

n

!

Fig.2 An EG where each node is represented by an example object configuration. Arrows indicate
neighboring ECs

306 L. Lindzey et al.

each individual transition being feasible. This is because earlier transitions requires
my, > 1, but the final transition requires mg, = 0.

Robots can move freely within @/, so chaining together feasible block paths
only requires keeping track of how many robots occupy each connected component
of Q’;gee (ga1), rather than the full cross product of |R| such spaces. Individual robot
trajectories can then be derived from the block path. This relies on two assumptions.
First, the robots are interchangeable, such that we do not have to consider how robot
positions affect the connectivity for other robots. (The robots in a conflict would
simply have their goal assignments swapped.) Second, we assume that robot packing
density is not a limiting factor, which depends on the details of the world model.

4 Approach

In cluttered spaces, constraints on manipulation and robot location interact in com-
plex ways. In this section, we present our approach to simplifying the analysis of
pushing interactions in order to solve Problems P1-P4. The first data structure, the
Equivalence Graph (EG), exposes the topological structure of the ECs as a function
of movable object position. The second data structure, the Feasible Transition Graph
(FTG), computes feasible kinematic motions, using the ECs from the EG for book-
keeping about robot occupancy. Implementation details for sample environments are
presented in Sect. 7.

4.1 Constraints

The data structures proposed here require us to associate constraints with each transi-
tion of the object across an EC boundary. Recall that we have two types of constraints:
manipulation and conservation of robots, as described in Sect. 1. These constraints
prescribe the number of robots assigned to each connected component. For example,
in the environment shown in Fig. 2, a transition from EC § to 8 imposes the following
constraints:

ms| = mg3 (conservation of robots)

msy =mgy +mgy (conservation of robots)
msp > 1 (push manipulation)

mgz > 1 (push manipulation).

Conservation of robots constraints deal with the splitting and merging of con-
nected components of Q’Zee (gm) over time. These constraints, which are a function
of the geometry of the environment alone, take four different forms which we describe

The Feasible Transition Graph ... 307

with references to the ECs shown in Fig. 2. In the case of merging components, such
as § — ¢, we have mgs; + mg» = mg1. For splitting components, such as « — S,
we have mqo = mgy + mg3. For the same transition, we have mq1 = mgi, for com-
ponents involved in neither splitting nor merging. If a component has no associated
robots in the next EC, such as for y — 5, we have m,, = 0.

Manipulation constraints require that every connected component, or set thereof,
responsible for generating a transition is occupied. We say that a connected compo-
nent is responsible for a transition if a robot occupying it would be able to push the
object in the required direction. This leads to constraints in the form of m; > 1.Inthe
case of multiple connected components able to execute the push, we only require that
one of them be occupied, and the constraint takes the form (mgy; > 1) V (ma i = 1).

Changing the manipulation model requires changing how these manipulation
constraints are defined and updating the feasibility checking to accommodate the
different robot positions during motion. For example, if we wanted to require one
robot pushing and one robot pulling, we would require that the connected components
on either side of the object are occupied by at least one robot and that there is space
at the start and end of the motion for both robots. Other possible configurations
include allowing one robot to both push and pull, or requiring two robots pushing
side-by-side to manipulate the object.

4.2 Equivalence Graph

The Equivalence Graph (EG) encodes a compact representation of the topology of the
environment and the motion of the object. It is an undirected graph used to represent
how the object’s motion between ECs affects the connectivity of Q);gee. Each node of
the EG corresponds to an EC, as defined in Sect.3. Every EC denotes a number of
connected components of the robots’ free configuration space, given alphanumeric
labels in Fig.2. The edges represent object motions that cause a transition between
ECs, and are labeled with the corresponding conservation of robots constraints. Using
the EG and an exact mapping g, — EC, it is possible to determine the conservation
of robots constraints involved for any object path Pj;.

4.3 Feasible Transition Graph

The Feasible Transition Graph (FTG) describes feasible object motions in the envi-
ronment. It is a directed graph, reflecting the fact that transfer actions are not
reversible in time. The nodes are object configurations, and edges are labeled with
the constraints on connected component occupancy required for the associated object
motion to be feasible. It has two key properties: any feasible object motion must map
to a walk on the FTG, and for any walk on the FTG, we must be able to determine

308 L. Lindzey et al.

which EC transitions have been crossed. If it is possible to exactly describe all
such transitions, the resulting planner will be complete, and bounds on the number
of robots required will be exact. Otherwise, it is possible to use a sampling-based
approach to construct the FTG and obtain a probabilistically complete planner. When
constructed, the FTG’s nodes have no associated constraints; the Planning (Sect.5)
and Minimum Sufficient Robot (Sect. 6) algorithms both add annotations to the nodes
of the FTG and propagate them through the FTG. These node annotations may repre-
sent constraints on robot assignments, denoted C (n;), or feasible robot assignments,
denoted A(n;).

S Planning

Given an initial object position M and robot positions R, we wish to find a sequence
of object pushes that cause the object to reach the goal location (P2). We present a
roadmap-like planner that solves this problem. A roadmap planner uses a directed
graph, where the nodes are configurations and the edges represent feasible paths
between the configurations. It also requires that the graph be accessible/departible
from any configuration and that it preserves connectivity [18]. We use the FTG as
described in Sect. 4.3 as the roadmap, and give details for connecting start and goal
positions in Sect.7.3.

Nodes in the FTG may be labeled with an assignment of robots to connected
components and/or a set of constraints. For P2, a labeling of robot assignments
indicates that there is a feasible object path that could result in the robots moving
from their given initial conditions to the indicated locations. A labeling of constraints
indicates that if those constraints are met at that node, then there is a feasible block
path from that node to the goal. A solution has been found when there exists a node
with an assignment of robots that satisfies its constraints.

Possible robot assignments to connected components of Qgee(qM) propagate
along the edges, starting with the provided initial conditions, and only change along
edges that cross an EC boundary. The child node is assigned the set of all possible
robot assignments to {m,;} that satisfy the constraints on the transition and could
result from starting with (one of) the parent node’s robot assignment(s) and reparti-
tioning the robots into connected components, if applicable. For example, consider
the planning problem shown in Fig. 7b. The initial conditions are A(n11) = {¢1 = 3}.
After a transition from ¢ — §, we have A(n12) = {(61,82) = (1, 2), (2, 1), (3,0)}.
The partition (81, §2) = (0, 3) was eliminated because it does not satisfy the con-
straints for the edge. In the case of a node with two parents, we add both sets of
possible assignments to the set. This has a branching factor proportional to (l‘Rl‘)
In practice, this may be reduced dramatically by the requirement that propagated
assignments satisfy the edge constraints, and is bounded by the number of robots
that must be considered for a given environment, as discussed in Sect. 6.

The Feasible Transition Graph ... 309

Backpropagation of constraints is based on the observation that if an edge exists
between two nodes and there are a known set of constraints that would allow a path
from the child node to the goal, then the parent node’s constraints are the union of
the child node’s and the edge’s. For the same transition discussed above, we have
C(n11) = C(n12) U C(n11 — ni2) If multiple paths exist from a given node to the
goal, the constraints at that node are the disjunction of those from all edges leaving
it. For example, the environment shown in Fig. 3 has two topologically distinct paths
from the initial condition to the goal, described here in terms of the ECs that must
be traversed:

n—>38—->y—>B—>ua

n—>p—>a«a

If either path is feasible, then a feasible path exists from n, — ng, so C(n,) =
(C(ns) UC(ny — ng)) v (C(ng) U C(ny — ng)). Determining whether a feasible
path exists requires solving at least one satisfiability problem, which is in general
NP-complete, but in practice, efficient solvers exist. Additionally, search efficiency
involving the constraints can be improved by preferentially propagating constraints
along edges in the FTG that are known to lie on a path connecting the start and goal
nodes.

Since the FTG is complete by construction, so long as we use a complete graph
search algorithm the resulting planner is also complete. The resulting plan includes
an assignment of robots to connected components for each EC that the object passes
through. These constraints on robot position can be fed into a multirobot path planner
to generate a set of robot paths that are guaranteed to push the object to the goal.

We have discussed a solution to P2. This is a special case of P1, which asks if
any solution exists independent of initial robot assignments. For P1, only backprop-
agation of constraints is used, and it is necessary to check if a satisfying assignment
of robots to connected components exists at the start node. Optimizing for object

Fig. 3 Environment with topologically distinct paths to the goal, requiring different numbers of
robots. Goal is shown as dashed outline; ECs are labeled and different shades of gray

310 L. Lindzey et al.

distance or number of robots (P3) can be achieved by ordering the FTG traversal
based on these metrics.

6 The Minimum Sufficient Robots Problem

In this section, we derive a bound on how many robots are required to push the object
along any feasible path in a given environment (P4). We term this the minimum
sufficient robots (MSR) problem. The resulting bound applies to the solution found
by any planning algorithm. It is of interest for determining how many robots to
purchase or deploy and for classifying how challenging a particular environment is
for multirobot object manipulation tasks.

An important distinction is that we are considering every feasible path in the
environment, not just the path-length-optimal ones. The environment shown in Fig. 4
demonstrates why it is necessary to propagate the constraints through the FTG, rather
than simply consider the union of all constraints in the EG. It is not possible for the
object to travel from the left half to the right half of the environment, so the full set of
constraints would lead to an overestimate of how many robots are required. Consider
the environment shown in Fig.5. The object path shown requires six robots to be
executed. However, there exists a path between the same initial and final positions
that requires only four robots, and there is a path in this environment that requires
nine robots. Thus, the MSR bound is the least upper bound to the number of robots
required to solve all point-to-point object motions, disregarding the path taken.

The FTG is designed to propagate constraints throughout the environment, which
allows us to find a tight bound on the minimum sufficient number of robots. Just as
in the planner, constraints on a directed FTG edge impute constraints on the edge’s
parent node. The two problems differ with respect to how constraints are joined when
there are multiple edges leading from a node. In the planner, we only require that
a feasible path exists to the goal; in the MSR problem, we require that all paths be
feasible. Thus, rather than taking the disjunction of constraints from outgoing edges,
we take the conjunction. A solution to the MSR problem can then be found by fully
propagating these constraint sets backward through the FTG until the graph becomes

Fig. 4 Environment where
using the set of all
constraints would give an
overestimate of the
minimum sufficient robots

The Feasible Transition Graph ... 311

Fig. 5 Example
environment for object
pushing. We show an object
path that would require 6
robots, numbered in the
order that they push the
object. Intermediate robot
and object positions are
shown in lighter colors. A
dashed square shows the
initial object position

§
N
|
o
o
-
—
—

consistent. By consistent, we mean an assignment of constraints to each node that
will not change upon any further constraint propagation. In a consistent FTG, every
constraint on a node applies to some feasible object path starting at that node.

In order to solve P4, constraints must be propagated from every node, not just
the goal. After achieving a consistent set of constraints, the minimum sufficient
number of robots will be determined by the node whose set of constraints requires
the most robots. We have now reformulated the minimum sufficient robots problem
as a constrained integer minimization problem with bounded variables. In the worst
case, solving this requires a graph search over all possible combinations of variable
assignments [19], but the problem structure will allow improvement using heuristics
to guide the search.

The procedure outlined above is conceptually straightforward but computation-
ally inefficient, as it can require up to |N,| traversals of the FTG to make the graph
consistent. This can be eliminated by preprocessing the FTG to condense it into a
directed, acyclic graph whose nodes are the FTG’s strongly connected components.
The initial constraints on each new node are the union of all constraints in the cor-
responding strongly connected component. This acyclic graph will only require one
additional traversal to propagate all constraints.

312 L. Lindzey et al.

7 Implementation

We present implementations of the EG and FTG in two different environments, which
were chosen in an attempt to provide as simple an example as possible while still
retaining the complex configuration space structure of interest. Both environments
allow exact decomposition of Q’Lg ¢ into ECs; the first also has a completely-specified
FTG, whereas we use a probabilistic approach for the second.

Axis-Aligned Box Obstacles All objects in this environment (O, M, and R)
are closed, axis-aligned rectangles. Surface contact, including sliding, is allowed
between any pair of objects, but the intersection of their interiors must be empty.
The robots R may translate freely within their respective connected components of
Qgge (gm)- All motion of the object M is aligned with an axis and is generated by a
single robot R; pushing M, in face-to-face contact. The resulting M + R; assembly
can only move in the direction of M’s inward-pointing contact normal. This is the
same environment as [6] use, but with different constraints on object manipulation.

Polygonal Obstacles In this environment, all obstacles O are closed polygons, while
the object M and robots R are circular disks. As in the axis-aligned environment, the

robots translate freely within connected components of Q’;ee(qM). Contact among
robots, or between the environment and robots or the object, is forbidden. Two robots
pushing in tandem are required to generate object motion. For robot—object normals
aM—qR;

lam—qr; 1
forO <a,b < 1.

n; = the possible object motion directions are given by vy = an + by,

7.1 Equivalence Graph

There are two types of EC boundaries: those imposed by the boundaries of Qf;,[ee
and those created by transitions between ECs. Transitions between ECs correspond
to the object “pinching off” or “opening up” a previously (im)passable corridor for
the robot (connectivity), or to the object’s motion causing a connected component of
Q’Zee to disappear (existence). Connectivity changes can only occur when the object’s
edge is exactly a robot width or height away from an obstacle. For the axis-aligned
environment, these boundaries correspond to extending the obstacles by Rg +2Ry,.
For the polygon world, these boundaries are the configuration space obstacles for
a disk with radius Rg + 2Ry, (Fig.6a). In the axis-aligned environment, existence
of connected components only changes along the same bounds as the connectivity
changes. For the polygon environment, changes in connected component existence
will occur when the robot is wedged into a corner, and the EC boundary corresponds
to an arc of radius Ry; + Rpr around the robot’s location (Fig. 6¢).

We now have a tiling of the environment, where all g, in the interior of each tile

are guaranteed to result in the same N (Q;gee (gm)). For each tile, we determine the

The Feasible Transition Graph ... 313

Fig. 6 Calculation of equivalence classes. a Dotted lines show potential EC boundaries derived
from transitions. b Division of Q, into tiles. Tiles in QCWW are labeled with N (gpr): A for 3, x for

2, o for 1. ¢ The black arcs show potential EC boundaries derived from a disappearing connected

component in Qgge. d Division of nge into ECs. Black indicates C-space obstacle, and each
different shade of gray is a different EC

314 L. Lindzey et al.

number of connected components in the robots’ free space (Fig. 6b). Equivalence
classes correspond to the union of neighboring tiles with the same N (Q). Figure 6d
shows exact decompositions of both environments into ECs.

Finally, we need to find the edges of the EG, which correspond to possible object
motions that change the connectivity of Qflgee (gm). In these environments, such
edges are simple to compute, as they connect any ECs that share a spatial boundary.
They are then labeled with the conservation of robots constraints associated with
motion between those ECs. Figure2 shows a representation of the EG for the same
environment as the left column of Fig. 6.

7.2 Feasible Transition Graph

Axis-Aligned Environment The tiling calculated in Sect.7.1 also captures all
changes in possible object motions, as pushing requires a robot to fit behind the
object. For an object motion gyr1 — g2, feasibility is calculated by determining if
the boundary between a connected component of Q’de(q m1) and the trailing edge
of the object’s C-obstacle has non-zero length.

In order to represent possible object motions within and along tile boundaries,
the FTG’s nodes are chosen to be the centroids of each tile, along with mid-points
of boundaries and the edges. Note that all locations within a tile will have the same
feasible motions as the centroid, so this sampling fully specifies all possible object
motions throughout Q’X; ¢. Directed edges are added for any feasible motion between
nodes, and labeled with the corresponding constraints on connected component occu-
pancy from the EG. In order to have the required information to plan in the graph,
any edge that involves transitioning between ECs is also labeled with the correspond-
ing constraints on connected component occupancy from the EG. Figure 7a shows a
representation of the FTG for a simplified version of the environment shown in Fig. 2.

Polygonal Environment The purpose of the FTG is to discover feasible motion
sequences within Q};C,ee.We present a general, stochastic method based on Proba-
bilistic Roadmaps (PRMs) [20].

In this application, the PRM randomly samples object configurations from Qf;; ¢
and tries to connect them to nearby configurations. An edge Ef7C in this roadmap
represents a trajectory in the configuration space of the object that obeys the manip-
ulation semantics. Computing these edges requires an inverse manipulation model.
In so doing, robots may be placed wherever they are needed to complete the motion.
Collision-free edges are annotated with the number of robots required in each con-
nected component to perform the transfer action. This roadmap describes feasible
object motions both within each EC and across EC boundaries.

We note the resemblance of this structure to Multi-Modal PRM [21] and the
manipulation planning PRM of [22]. Each generates a roadmap connecting several
manifolds of arbitrary dimension, which are bridged by lower-dimensional inter-
section manifolds. We show that our formulation of the FTG is probabilistically

The Feasible Transition Graph ... 315

Fig.7 FTG and planning problem for a simplified version of Fig.2’s environment. a FTG, subsam-
pled for clarity (only nodes at tile centers are drawn). ECs are shown as different shades of gray,
and the labels match those in Fig. 2. b Example instance of P2 (top), and connecting start/goal to
the FTG (bottom)

complete by reducing it in the context of a planning problem (P2) into an instance
of the Multi-Modal PRM (MM-PRM) of [21], constructed in the joint configuration

space of the object and n robots.

Consider an edge E7C in the FTG joining two object states, qu 16, qg TG ¢ Ar,f ‘.

We show that this edge is equivalent to edges E f” M E ,i” M in the MM-PRM, with

. . . n
k > 2, representing a motion connecting g{™, g™ ¢ Q’;,Iree X Q’Zee . We may

separately consider transit and transfer tasks of the robots. In transit tasks (£ {W My,
the robots alone move, whereas transfer tasks (Eé” L) ,’{W M) involve manipulation
of the object by the robots.

EFTG is annotated with constraints on the number of robots in several connected
components, which specify goal states for the robots. By the definition of a connected
component, each transit is a motion planning problem that can be solved easily by
a standard PRM. For homogeneous robots, the multirobot planning problem can be

316 L. Lindzey et al.

simplified by selectively permuting goal positions to avoid conflicts [23]. Note that
not all robots need to move.

Transfer tasks, whether within or between ECs, are defined by the coordinated
motion of the object and some subset of the robot. The motion of the relevant robots
is given by the inverse manipulation model. In the case of intra-EC motion (k = 2),
the other robots do not need to move. For inter-EC motion, k > 2 because the
transfer edges in the MM-PRM must meet at a point on the boundary between ECs.
In this case, the other robots must move to ensure they are in the correct connected
component after the transition. Any goal state within the new connected component
is an acceptable goal. Again, some robots may not move.

Any edge in the FTG may be mapped to an edge in a connected MM-PRM.
Therefore, the probabilistic completeness property of MM-PRMs applies also to this
FTG construction. Unlike MM-PRMs, the ECs in which we sample are typically the
full dimension of Qs and the space of edges that cross an EC boundary is likewise
of full dimension. Consequently, it is not typically necessary to explicitly sample on
the boundary in order to get a connected FTG.

In comparison to building a roadmap directly in the high-dimensional joint con-
figuration space of the object and robots, we can get away with a lower dimensional
roadmap by exploiting structure in the problem. Specifically, there is minimal cou-
pling in the motion among the object and robots. The EG allows us to specify goals for
the robots in advance without excessive precision. That is, provided that each robot
is in the correct EC, detailed positioning is a simple, decoupled motion planning
problem.

7.3 Planner

Finally, in order to use the FTG as a roadmap, we need to show that it is acces-
sible and departible. In the axis-aligned environment, simply connecting the points
qM.inits M final € Qfﬁr,; “ to the graph does not preserve connectivity. Consider the case
of a narrow hallway—if no motion perpendicular to the hallway is feasible, it is pos-
sible that there will be a feasible path between two configurations that can never reach
a point in the graph. Instead, we extend the graph to include nodes corresponding
to the intersection of both points’ coordinates with the all other FTG edges (Fig. 7b,
bottom). The polygonal environment is simpler, as the start/goal positions can be
connected to the FTG in the same way as the randomly sampled configurations.

8 Discussion and Future Work

In this paper, we propose the Feasible Transition Graph, a representation for multi-
robot object-pushing in cluttered environments. This approach enables a user to
reason about resource allocation, including how many robots are needed and where

The Feasible Transition Graph ... 317

they should be positioned while planning motions for the object. We provide complete
algorithms for solving these planning problems, and we describe how to construct the
FTG for a few simple environments. Our approach exploits the structure of transient
independence among robots to construct a much simpler representation than the naive
search space comprising the joint configuration space of the object and all robots.

In future work, we plan to consider more general environments, particularly those
with a higher-dimensional configuration space. The probabilistic FTG construction
approach is already quite general, but we plan to investigate a probabilistically com-
plete construction of the EG for diverse environments as well.

Additionally, there are a number of simple extensions from what we described in
detail. First, heterogeneous robots may be handled in one of two ways. If they are of
different sizes, then there will be additional EC boundaries corresponding to each new
robot radius. If they have different capabilities, then we must introduce additional
variables to the number of robots in a given connected component matching that
capability. In this way, we could handle planning for robots that must cooperate to
push and pull an object.

Acknowledgments The authors thank Geoffrey Gordon for his incisive comments on early drafts
of this work. Laura Lindzey was supported by the Department of Defense (DoD) through the
National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

References

1. Cao, Y.U.,Fukunaga, A.S., Kahng, A.: Cooperative mobile robotics: antecedents and directions.
Auton. robots 4(1), 7-27 (1997)

2. Doty, K.L., Van Aken, R.E.: Swarm robot materials handling paradigm for a manufacturing
workcell. In: Proceedings IEEE International Conference on Robotics and Automation, pp.
778-782 (1993)

3. Hashimoto, M., Oba, F., Eguchi, T.: Dynamic control approach for motion coordination of mul-
tiple wheeled mobile robots transporting a single object. In: Proceedings of the 1993 IEEE/RSJ
International Conference on Intelligent Robots and Systems’93, IROS’93, vol. 3, pp. 1944—
1951 (1993)

4. Rus, D.: Coordinated manipulation of objects in a plane. Algorithmica 19(1-2), 129-147 (1997)

5. Simmons, R., Singh, S., Hershberger, D., Ramos, J., Smith, T.: Coordination of heterogeneous
robots for large-scale assembly, In: Proceedings of the International Symposium on Experi-
mental Robotics (ISER), Hawaii (2000)

6. vanden Berg, J., Stilman, M., Kuffner, J., Lin, M., Manocha, D.: Path planning among movable
obstacles: A probabilistically complete approach. In: Algorithmic Foundations of Robotics VIII
(2008)

7. Koga, Y., Latombe, J.-C.: On multi-arm manipulation planning. In: Proceedings of IEEE Inter-
national Conference on Robotics and Automation (1994)

8. Gayle, R., Moss, W., Lin, M.C., Manocha, D.: Multi-robot coordination using generalized
social potential fields, In: Proceedings of the IEEE International Conference on Robotics and
Automation (2009). ISBN 978-1-4244-2788-8

9. van den Berg, J., Patil, S., Sewall, J., Manocha, D., Lin, M.: Interactive navigation of multiple
agents in crowded environments. In: Proceedings of the 2008 Symposium on Interactive 3D
graphics and games, 2008. ISBN 978-1-59593-983-8. http://doi.acm.org/10.1145/1342250.
1342272

http://doi.acm.org/10.1145/1342250.1342272
http://doi.acm.org/10.1145/1342250.1342272

318

10.

11.

12.
13.

14.

18.
19.

20.

21.

22.

23.

L. Lindzey et al.

Stilman, M., Kuffner, J.J.: Navigation among movable obstacles: real-time reasoning in com-
plex environments. Int. J. Hum. Robot. 2(04), 479-503 (2005)

Lynch, K.M., Mason, M.T.: Controllability of pushing. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (1995)

Mason, M.T.: Mechanics of Robotic Manipulation. MIT press, Cambridge (2001)

de Berg, M., Gerrits D.H.P.: Computing push plans for disk-shaped robots. In: Proceedings of
the IEEE International Conference on Robotics and Automation (2010)

Sudsang, A., Rothganger, F., Ponce, J.: Motion planning for disc-shaped robots pushing a
polygonal object in the plane. In: Proceedings of the IEEE International Conference on Robotics
and Automation (2002)

. Fink, J., Ani Hsieh, M., Kumar, V.: Multi-robot manipulation via caging in environments with

obstacles. In: IEEE International Conference on Robotics and Automation (2008)

. Pereira, G.A.S., Kumar, V., Campos, M.FE.M.: Decentralized algorithms for multirobot manip-

ulation via caging. Int. J. Robot. Res. 23(7-8), 783-795 (2004)

. Song, P., Kumar, V.: A potential field based approach to multi-robot manipulation. In: Proceed-

ings of the IEEE International Conference on Robotics and Automation (2002)

La Valle, S.M.: Planning Algorithms. Cambridge Press, Cambridge (2006)

Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall,
Upper Saddle River (2003)

Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566-580
(1996)

Hauser, K., Latombe, J.-C.: Multi-modal motion planning in non-expansive spaces. Int. J.
Robot. Res. 29(7), 897-915 (2010)

Siméon, T., Laumond, J.-P., Cortés, J., Sahbani, A.: Manipulation planning with probabilistic
roadmaps. Int. J. Robot. Res. 23(7-8), 729-746 (2004)

Sung, C., Ayanian, N., Rus, D.: Improving the performance of multi-robot systems by task
switching. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp.
2999-3006 (2013)

Collision Prediction Among Rigid
and Articulated Obstacles
with Unknown Motion

Yanyan Lu, Zhonghua Xi and Jyh-Ming Lien

Abstract Collision prediction is a fundamental operation for planning motion in
dynamic environment. Existing methods usually exploit complex behavior models
or use dynamic constraints in collision prediction. However, these methods all assume
simple geometry, such as disc, which significantly limit their applicability. This paper
proposes a new approach that advances collision prediction beyond disc robots and
handles arbitrary polygons and articulated objects. Our new tool predicts collision by
assuming that obstacles are adversarial. Comparing to an online motion planner that
replans periodically at fixed time interval and planner that approximates obstacle with
discs, our experimental results provide strong evidences that the new method signifi-
cantly reduces the number of replans while maintaining higher success rate of finding
avalid path. Our geometric-based collision prediction method provides a tool to han-
dle highly complex shapes and provides a complimentary approach to those methods
that consider behavior and dynamic constraints of objects with simple shapes.

1 Introduction

Imagine a scenario where a robot navigates itself through a disaster zone filled with
static obstacles, mobile robots carrying debris with various sizes and shapes and
mobile manipulators picking up and loading debris on top of the mobile robots or
conveyor belts. In this scenario, the robot must plan its path without knowing how

This work is supported in part by NSF 1IS-096053, CNS-1205260, EFRI-1240459, AFOSR
FA9550-12-1-0238.

Y. Lu - Z. Xi - J-M. Lien (&)

Department of Computer Science, George Mason University, Fairfax,
VA 22030, USA

e-mail: jmlien@cs.gmu.edu

Y. Lu
e-mail: ylu4@gmu.edu

Z. Xi
e-mail: zxi@gmu.edu

© Springer International Publishing Switzerland 2015 319
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_19

320 Y. Lu et al.

the other robots will move. Similar scenarios can be found in factory, warehouse
or airport where a robot requires the same ability to navigate among other mobile
robots manipulating and carrying commercial goods with various sizes and shapes.
Figure 1 illustrates three of such examples where a mobile robot, which is modeled
either as a point or a polygon, navigates through environments filled with static and
dynamic obstacles with various shapes. In motion planning literature, this problem
is usually known as online motion planning or sensor-based motion planning.

Online motion planning methods usually exploit the idea of temporal coherence
to gain better efficiency by repairing the invalid portion of the path or (tree-based or
graph-based) roadmaps [1-4] since the changes in the configuration space is usually
small from frame to frame. These planning strategies are often known as replanning
methods [5-9]. Although these replanning methods are efficient, almost all existing
frameworks update the environmental map and then replan periodically at fixed time
interval. That is, even if there are no changes in the configuration space, motion
planner will still be invoked to replan. The situation is even worse when replanning
is not done frequently enough: Paths that are believed to be valid may become unsafe.

Motivated by this issue, several strategies [8, 10—15] have been proposed to replan
adaptively only at the critical moments when the robot and obstacles may collide.
These critical moments are usually detected by collision prediction methods. The
main challenge in predicting collision stems from the assumption that obstacle’s
motion is unknown. Existing methods in collision prediction exploit complex behav-
ior prediction [14, 15] or consider dynamic constraints [10, 11, 13, 16]. However,
these methods all assume either translational or disc objects, which significantly limit
their applicability. This limitation seriously hinders the robot’s ability to move in clut-
tered environments, such as those in the aforementioned scenearios and the examples
in Fig. 1, where moving obstacles can have arbitrary shapes and sizes and can even
be articulated objects. As we will show later, bounding these moving obstacles with
discs can lead to arbitrarily poor collision estimation.

(b) (c)

o
Atart s%tart Startcx? a? *@
Current (Goal
I '
/ -
- C t
Current @ Goal —_— l G*] Hlej urren
0al

Fig. 1 Three examples of a mobile robot moving from corner to corner through environments
filled with static (black) and dynamic (grey) obstacles whose motion is unknown to the robot.
Bounding these moving obstacles with circles can lead to poor collision prediction and result in
many unnecessary replanning. Our method predicts the collision time for obstacles with arbitrary
shapes including articulated objects. The obstacles shown in red are the ones with the earliest
collision times with respect to the current configurations of the robot (also shown in red). a Point
robot. b Polygonal robot. ¢ Articulated obstacles

Collision Prediction Among Rigid and Articulated Obstacles with Unknown Motion 321

In this paper, we propose a new geometric tool that advances collision prediction
beyond the translational and disc objects and can handle arbitrary polygons and artic-
ulated objects. The basic framework introduced in this paper models the obstacles as
adversarial agents that will minimize the time that the robot remains collision free.
As aresult, a robot can actively determine its next replanning time by conservatively
estimating the amount of time (i.e., earliest collision time or simply ECT) that it can
stay on the planned path without colliding with the obstacles. The idea of ECT and
conservative advancement are detailed in Sect. 3. In Sects. 4-6, we discuss how ECT
can be formulated in the three scenarios illustrated in Figs. 1a—c, respectively. Our
prediction is determined only based on the last known positions of the obstacles and
their maximum linear and angular velocities. In the experimental results (in Sect. 8),
we demonstrate that an online planner using the proposed collision prediction method
significantly reduces the number of replannings while maintaining the same or higher
success rate of finding a valid path than (1) planner that replans periodically at fixed
time intervals and (2) planner that bounds obstacles with circles. In essence, our main
contribution is a geometric-based collision prediction method that can handle highly
complex shapes. This tool provides a complimentary approach to the methods that
consider complex behavior prediction or handle dynamic constraints but with only
simple shapes.

2 Related Work

Motion planning problems involving dynamic environments can be roughly classi-
fied into two categories: (1) The trajectory of every moving obstacle is fully known in
advance, and (2) the trajectory of a moving obstacle is partially or completely unpre-
dictable. Since our work falls into the second category, we will focus on reviewing
recent works considering unknown environments.

2.1 Collision Avoidance

Due to little knowledge of the environment, safety becomes very important and
challenging in path planning in unknown environments. Fraichard and Asama [17]
provided the formal definitions of two new concepts: inevitable collision state (ICS)
and inevitable collision obstacle (ICO). If the robot is in an ICS, no matter what its
future trajectory is, a collision eventually occurs with an obstacle in the environment.
ICO is a set of ICS yielding a collision with a particular obstacle. Shiller et al. [18]
proposed a motion planner based on Velocity Obstacles (VO) for static or dynamic
environments. The time horizon for a velocity obstacle is computed based on the
current positions of robot and the obstacle as well as control constraints. With this
adaptive time horizon strategy, the velocity obstacle tightly approximates the set
of ICS. Gomez and Fraichard [19] proposed another ICS-based collision avoidance
strategy called ICS-AVOID. ICS-AVOID aims at taking the robot from one non-ICS

322 Y. Lu et al.

state to another. The concept of Safe Control Kernel is introduced and it guaran-
tees ICS-AVOID can find a collision-free trajectory if one exists. Recently, Bautin
et al. [20] proposed two ICS-checking algorithms. Both algorithms take a probabilis-
tic model of the future as input which assigns a probability measure to the obstacles’
future trajectories. Instead of answering whether a given state is an ICS or not, it
returns the probability of a state being an ICS. Wu and How [16] extended VO to
moving obstacles with constrained dynamics but move unpredictably. To compute
the velocity obstacle of an obstacle, it first predicts its reachable region considering
all possibly feasible trajectories and then maps this reachable region into velocity
space by dividing it by time. Computation of ICS or VO requires some informa-
tion about the future in the environment. When it comes to environments whose
future is completely unpredictable, methods applying ICS or VO may fail to avoid
approaching collisions.

The work closes to the spirit of our new method is by van den Berg and Overmars
[8]. Their work assumes that the robot and all obstacles are discs and it conservatively
models the swept volume of an obstacle over time as a cone with the slope being
its maximum velocity. In this way, no matter how the obstacle moves, it is always
contained inside this cone. Therefore, the computed path is guaranteed to be collision
free. However, these assumptions can be unrealistic for many applications. For obsta-
cles with arbitrary shapes or rotation, computing their swept volumes is nontrivial.

2.2 Collision Prediction

Since the robot has partial or no information about the environment, it is very difficult
to plan a collision free path for it to move through a field of static or dynamic obstacles
to a goal. One of the biggest challenge is to predict possible collisions with dynamic
obstacles whose trajectories are unknown. There exists a lot of work which checks
collisions at a sequence of fixed time steps [7, 21-24]. For example, van den Berg
et al. [7] performed collision detections at fixed time intervals (every 0.1s in their
experiments). Both the robot and dynamic obstacles were modeled as discs moving
in the plane. Moreover, the future motions of a moving obstacle were assumed to
be the same as its current motions. In order not to miss any collisions, they either
increased the number of time steps or assumed the objects move very slowly.
There are also works which adaptively changed the frequency of collision checks:
collisions are more frequently checked for two objects which are more likely to
collide. Hayward et al. [10], Kim et al. [13] and Hubbard [11] assumed that the
maximum magnitude of the acceleration is provided for each object. Hayward et al.
calculated the amount of time within which two moving spheres are guaranteed not
to collide with each other. Then more attention was adaptively paid to objects which
are very likely to collide. Hubbard first detected collisions between the bounding
spheres of two objects. Then the pairs of objects whose bounding spheres intersect
are further checked for collisions using sphere trees that represent the objects. Kim
et al. [13] first computed the time-varying bound volume for each moving sphere

Collision Prediction Among Rigid and Articulated Obstacles with Unknown Motion 323

with its initial position, velocity and the maximum magnitude of its acceleration.
As time goes by, the radius of this time-varying bound volume increases and it is
guaranteed to contain the sphere at any time in the future. For two moving spheres,
whenever their time-varying bound volumes intersect, they are checked for actual
collision. Chakravarthy and Ghose [12] proposed collision cone approach (similar
as velocity obstacle) for predicting collisions between any two irregularly shaped
polygons translating on unknown trajectories. All these methods are limited to discs,
spheres or translational objects. Our new tool allows polygons with arbitrary shape
(even non-simple polygons) with rotation.

Almost all existing works collect sensory data and update its environmental infor-
mation at fixed times. As a result, either updating is redundant or the situation is even
worse if update is performed not frequently enough. The robot may be at some state
which leads it to be in unavoidable collisions. To address this, we propose to update
environmental belief when necessary by exploring temporal coherence of obstacles
and predict a critical time ¢ such that the robot is guaranteed to move safely along
its current path until 7.

3 Overview of Our Method

Planning a path in environments populated with obstacles with unknown trajectories
usually involves two steps: (1) find an initial path IT based on known information and
then (2) modify I7 as the robot receives new information from its onboard sensors at
fixed times. In the rest of this paper, we assume that the robot R plans a path I7 based
on its current belief of the state of the workspace. However, instead of determining
if I7 is safe to traverse at fixed time, R determines the critical moment ¢ that IT may
become invalid. The robot budgets a certain amount of time At before this critical
moment ¢ to update its belief and replan if necessary. We would like to emphasize
again that this setting is merely a framework among many other applications of
collision prediction that allows us to make our discussion more concrete.

Because the trajectory of the obstacles in workspace is unknown, the critical
moment ¢ can only be approximated. To ensure the safety of the robot, our goal is
to obtain conservative estimation ' < ¢ of the unknown value ¢. Follow the naming
tradition in collision detection, we call such an estimation conservative advancement
on IT and denote it as CAf7. To compute CA[7, the robot assumes that all obstacles
are adversarial. That is, these adversarial obstacles will move in order to minimize
the time that 7 remains valid.

Contrary to the traditional motion planning methods, the calculation of CApy
(performed by the robot) in some sense reverses the roles of robot and obstacles.
The robot R is now fixed to the path I7, thus the configuration of R at any given
time is known. On the other hand, the obstacles’ trajectories are unknown but will be
planned to collide with R in the shortest possible time. As we will see later, the motion
strategy for an obstacle O; will only depend on its shape, the maximum translational
velocity v; and a maximum angular velocity w; around a given reference point.

324 Y. Lu et al.

3.1 Estimate Conservative Advancement on Path IT1

Without loss of generality, the problem of estimating CA 7 can be greatly simplified
if we focus on only a single obstacle and a segment of path I7. Let IT be a sequence
of free configurations IT = {cy, ¢2, ..., c,} with ¢c; = S and ¢, = G, where the S
and G are start and goal configurations, respectively. Given a segment ¢;c; 1 C I1,
we let ECT; ; be the earliest collision time (ECT) that O; takes to collide with the
robot on ¢;¢j+1. Then we have CA;; = min; (min; (ECT;,;)), where 1 < i < |O|
and 1 < j < n. Note that ECT; ; is infinitely large, if O; cannot collide with R
before R leaves ¢;c; 7.

Lemma 1 IfECT; ; # oo, then ECT; j < ECT;y, Yk > j.

Once an earliest collision time is detected for a path segment ¢;c¢;171, it is not nec-
essary to check all its subsequent segments cxcr+1 with j < k < n. In Sect. 3.1, we
will provide an overview on how ECT; ; can be computed.

Before we proceed our discussion, we would like to point out that our method
does not consider collisions between the obstacles. Although this makes our estimate
more conservative, the obstacle with the earliest collision time rarely collides with
other obstacles.

3.2 Earliest Collision Time (ECT)

Given a segment ¢;c; 1 C 1T of path in C-space, our goal is to compute the earliest
collision time ECT; ; when obstacle O; hits robot R somewhere on ¢;c¢; 1. Assume
R starts to move on 7 at time 0.

Since the robot R moves along a known path I7, R knows when it reaches any
configuration ¢ € I1. Let ¢ be the time that R takes to reach a configuration c(¢) €
cjcjt1 and let T be the time when O; reaches this ¢(7). Because O; is constrained
by its maximum linear and angular velocities v; and w;, there must exist an earliest
time T for O; to reach any ¢ € cjcz without violating these constraints. Since
every configuration on c¢;c¢;1 is parameterized by ¢, this T can also be expressed
as a function of 7. Let this function be f(¢). Furthermore, when the robot R and
O; collide, they must reach a configuration ¢ at the same time. Therefore, we also
consider the relationship between ¢ and T modeled by the function g(¢) : t = T. See
Fig.2a, b.

In Fig.2a, a bold (red) curve represents the earliest arrival time f () and a black
straight line represents g(¢). These two curves subdivide the space into interesting
regions.

e Forapoint p = (¢, T > t), indicates situations that O; reaches c(¢) later thanz. No
collisions will happen because when O; reaches c(t), the robot R already passes

c(1).

Collision Prediction Among Rigid and Articulated Obstacles with Unknown Motion 325

(a) (b)
T

ECT

Collision Region

0 7.‘]' t]'+1 0 t]' tj+l

Fig. 2 The red (thicker) curves in both figures are plots of the earliest arrival time f(¢) for an
obstacle. Black straight lines are plots of g(t) : t = T.a When there is at least one intersection (blue
dot) between f(¢) and g(t), collision region is not empty. b Otherwise, the collision region is empty

e The points p = (1,T < f(t)) indicates impossible situations that Q; needs to
move faster than its maximum velocities in order to reach c(z) at T'.

e For apoint p = (¢, f(t) < T < t) from the region above curve f(¢) but below
curve t = T, O; has the ability to reach c(¢) earlier than R. In order to collide
with R, O; can slow down or wait at c¢(¢) until R arrives. We call this region the
collision region.

Given that the robot R enters the path segment ¢;¢;171 through one end point c;
at time ¢; and leaves c¢;c; 1 from the other endpoint c; at time #;1, the earliest
collision time ECTj; is the ¢ coordinate of left most point of the collision region
between ¢; and ¢;4 1. Therefore if this collision region is empty, R and O; will not
collide on ¢;¢;17.

Based on what has been discussed so far, the most important step of estimating
critical moment is to compute f (), the earliest moment when O; reaches c(t). The
shape of function f(#) depends on the type and the degrees of freedom of the robot
and obstacles.

In the following sections, we will discuss three examples of how f () can be
formulated when: (1) R is a point and O; is a polygon, (2) both R and O; are
polygons and (3) R is a point and O; is an articulated object. From these examples,
we can build up f(¢) for complex shapes even when rotation is considered.

4 Point-Polygon Case

Let us start with the case where robot R is a point and obstacle O; is a polygon that
can translate and rotate around a given reference point o. Without loss of generality,
let us focus on a moving segment pipz € O;. Given a configuration ¢(f) € ¢;¢;11

326 Y. Lu et al.

which represents the location of R at time ¢, we are interested in solving f (¢), the
earliest moment when p1 p; hits c().

To estimate the earliest collision time (ECT), we observe that O;’s rotation and
translation can be considered separately. That is, f(¢) can be decomposed into trans-
lational and rotational components: 77, the time that the point ¢ needs to translate at
velocity v;, and tg, the time that ¢ needs to rotate at velocity w;. If we let the closest
distance between c(¢) and pjp2 be a function d(¢) of time, we can compute ECT
between p1p2 and R moving from configuration c; to configuration ¢, using the
following lemma.

Lemma 2 The ECT between p1 p; and cic3 is:

ECT = argmin (jtg — r7]) = argmin (1t — d(tR)/vil) (1)
R R

where d(tg) is the distance between c(tr) € c1cz and segment pipz when pipa
rotates 0 = tgrw around o.

Proof The key to this proof is the definition of the function d(¢). In our analysis,
d(¢) depends on two cases: (1) p1p> and ¢ € c¢ic; are sufficiently far apart, and (2)
P1p2 and c are sufficiently close. Details of the analysis can be found in [25]. U

In summary, to estimate the ECT of R and O;, we decompose f(¢) into translational
and rotational components: t7 and ¢ and solve the optimization problem in Lemma 2.
Since both translation and rotation decrease the closest distance between R and O,
the time spend on translation 7 must equal the time spend on rotation 7g. Again,
interested readers should refer to [25] for detail.

5 Polygon-Polygon Case

In this section, we briefly discuss the case that both the robot R and the obstacle O;
are polygons. The robot R rotates around its center of mass and moves along the
designated path I7. Obstacle O; undergoes unknown translation and rotation around
a given reference point o.

Taking the same conservative advancement approach, we will focus our discussion
on the motion strategy that an edge g1g2 of O; can take to collide with an edge pj p2
of R at a given time ¢. Our main observation of computing the ECT etween is stated
in the following lemma.

Lemma 3 Giventwo separating line segments p1 p2 € Randqiq; € O;, the earliest
collision can only happen between an endpoint of p1 p2 and q1q> or an endpoint of
q1q2 and p1p3. Collisions at the interior portion from both line segments can only
happen after one of those two cases.

Proof See detailed proof in [25].]

Collision Prediction Among Rigid and Articulated Obstacles with Unknown Motion 327

Essentially, Lemma 3 allows us to determine the ECT of two line segments from
only two instances of point-polygon case discussed in Sect. 4. Given that R and O;
are composed of n and m line segments, respectively, their ECT can be determined
via 2mn point-polygon case analysis.

6 Point-Articulated Obstacle Case

Let us now focus on collision prediction between a point robot and an articulated
obstacle in 2D, such as a mobile manipulator. The motion of such an articulated
obstacle O; is unknown to the robot but constrained by the following assumptions:
(1) O; can translate as a rigid body and it has a maximum translational velocity v;,
and (2) every two adjacent linkages are connected by a revolute joint. In addition,
every revolute joint has a maximum angular velocity w;. To simplify our discussion,
we assume that O; has no branch and is represented as a sequence of m linkages
O; = LiL;...Ly.Linkage L; is closer to the base than linkage L; iff 1 <i < j <
m, and we call L; an ancestor of L ;.

We again are interested in detecting the earliest time when collisions occurred
between a point robot and such an articulated obstacle O;. Let us first assume the
robot reaches cj at #; and reaches ¢, at t» where c¢jc; is some path segment on its
current path I7. Note that the earliest collision time that we want to predict needs to
fall into the range [t1, 2] because we consider each path segment on I1 separately,
and at this moment we are only interested in detecting collisions if the robot is on
c1c2. Our main observation of the ECT between O; and ¢ c; is stated in the following
lemma.

Lemma 4 The computation of ECT between O; and ¢ic; is decomposable w.r.t. the
linkages of O;. Let O{? be a subset of O including the linkages between L and Ly,
ie., Of = LiLy...Li<m, then ECT(O;, c1c2) can be written as:

ECT(0;, cic2) = lg}(igm(ECT(Of, ci2)) = min (ECT(Ly,c1c2)) . ()

Note that, in ECT (L, c1¢3), the motion of Ly is constrained by Of.‘_l.

Proof We will provide a proof sketch here. See detailed proof in [25]. Let us start
from the first linkage L. Without considering other linkages, we can compute the
earliest time #; when L hits the robot using ideas from Sect.4. Now we move on
to the next linkage L,. Considering only linkage L, (whose motion is dependent
on linkage L1), the earliest collision at time #, between L, and cjc¢;) without con-
sidering collision status between Lj and c¢jc; can also be determined through a
similar formulation from Sect. 4 (see details in [25]). Then there are only two possi-
ble cases: (1) L hits cjc; earlier than L, and (2) L, hits ¢jc; earlier than L;. Both
cases can be summarized into min(¢q, r) = min(ECT(Ly, ci¢2), ECT(L2, ¢1¢3)).
This analysis process repeats for all successive links, and then we can conclude that
ECT(O;, cic2) = minj <k <m (ECT(Ly, €1¢2)). U

328 Y. Lu et al.

In summary, Lemma 4 allows us to reduce the computation of the ECT between a
point robot and an articulated obstacle of m linkages into m cases of point-polygon
analysis.

7 Planning Motion Using Predicted Collision

So far we assume that the robot only stays on a given path. In this section, we show
how to use the predicted collision in a motion planner. It is important to note that this
RRT-based planner [26] discussed below is merely an example to show how earliest
collision time (ECT) can be used. Other planners, such as PRM-based planners can
also be combined with ECT.

In general, there are two desirable properties when a robot plans a path. First, a
path should bring the robot near the goal. Second, the path should remain safe (valid)
for as long as possible. With these two properties in mind, we propose to augment
RRT with predicted collision. More specifically, the RRT is constructed as usual but
each path from the root to a leaf is now associated with an ECT. The best path is then
a path in the RRT that has the latest ECT while still reduces the geodesic distance
between the robot and the goal. An example of an augment RRT is shown in Fig. 3.
In this example, paths from configuration r to all leaves reduce the distance to the
goal but the path 74 to configuration d has the latest ECT, thus 7 is the best path.

8 Experimental Results

We implemented the collision prediction method in C++ using Eigen linear algebra
library and NLopt library. Experimental results reported in this paper are obtained
from a workstation with two Intel Xeon E5-26302.30GHz CPUs and 32GB memory.
We tested our implementation in 12 environments shown in Figs.1 and 4. These
environments contain both static and dynamic obstacles. For a dynamic obstacle, its
motion is simulated using Box2D physics engine by exerting random forces. The
robot knows the locations of static obstacles and the maximum translational velocity
and angular velocity of dynamic obstacle. The only way that the robot knows the

Fig.3 An RRT augmented
with earliest collision time.
The tree is rooted at current
configuration r of the robot.
Configurations ¢’ and d’ are
the predicted earliest
collision locations on the
paths from r to ¢ and d,
respectively

Collision Prediction Among Rigid and Articulated Obstacles with Unknown Motion 329

(a) (b) (c)

x|
\]

(d) (e) (

| f)
N
(i)

x
+

(2 (h)

N | “.I_'

Fig.4 a—c Point-polygon environments. d—f Polygon-polygon environments. g—i Point-articulated
environments. In all environments, the green robot and blue robot indicate start configuration and
goal configuration, respectively. The red robot indicates the current configuration and the obstacles
which cause earliest collisions are colored in red. Black obstacles are static and light grey obstacles
are dynamic

pose of a dynamic obstacle is through its (simulated) onboard sensors. The best way
to visualize the environments is via animation. We encourage the reader to view the
videos at http.://masc.cs.gmu.edu/wiki/ECT.

8.1 Compare to a Fixed-Time Strategy

In our first experiment, we compare two planning strategies: One replans adaptively
based on collision prediction using augmented RRT (see Sect. 7), and the other replans
periodically at fixed time interval using regular RRT.

http://masc.cs.gmu.edu/wiki/ECT

330 Y. Lu et al.

100
2 1000
o «
s~ 80 - [=}
o) [0)
= o 100
C 60 5
» =
[0
g 40 our method === Q 10
8 fixed replan time 0.05 —»— IS
S fixed replan time 0.1 =]
@ 20 fixed replan time 0.2 =z 1
fixed replan time 0.5
0 fixed replan time 1.0 —o—
012 4 8 16 012 4 8 16
Robot Speed (m/s) Robot Speed (m/s)
(a) Point-Polygon Cases (b) Point-Polygon Cases
100
2 1000
«
® 80 2
2 // € 100
¢ 60 5
o . [S)
7 5 10~
o 40 our method se— Ee} - -
8 fixed replan time 0.05 —»— €
5 fixed replan time 0.1 S
»n 20 fixed replan time 0.2 z 1
fixed replan time 0.5
0 fixed replan time 1.0 —s—
012 4 8 16 012 4 8 16
Robot Speed (m/s) Robot Speed (m/s)
(¢) Polygon-Polygon Cases (d) Polygon-Polygon Cases
100
2 1000
° «
s~ 80 o
@ [0)
= o 100
c 60 5
A g 10
o 40 our method ==e=— o ~—
8 fixed replan time 0.05 —»— IS
S fixed replan time 0.1 =)
@ 20 fixed replan time 0.2 =z 1
fixed replan time 0.5
0 fixed replan time 1.0 —o—
012 4 8 16 012 4 8 16
Robot Speed (m/s) Robot Speed (m/s)
(e) Point-Articulated Cases (f) Point-Articulated Cases

Fig.5 Compare our method to the fixed-time strategy. The top row is obtained from environments
in Fig. 1a, and a—c in Fig. 4, the middle row is obtained from environments in Fig. 1b and d—f in
Fig.4, and the bottom row is obtained from environments in Fig. Ic and g-i in Fig.4. Each data
point in the plot is an average over 500 runs. In the fixed-time strategy, the robot replans every 0.05,
0.1, 0.2, 0.5 and 1.0s. Notice that the y-axis of (b), (d) and (f) is in logarithmic scale

Figure5 shows the success rate and number of replans obtained from environ-
ments in Fig. 4. The success rate is the number of runs that robot reaches the goal over
the total number of runs, and the number of replans is the number of times that the
robot replans to reach the goal. The maximum translational velocity of an obstacle
is set to 2m/s and the maximum angular velocity is set to 3rad/s. The experiments

Collision Prediction Among Rigid and Articulated Obstacles with Unknown Motion 331

Table 1 Average running Method Time (s)

time in seconds
Our method 2.68
Replan every 0.05s 25.70
Replan every 0.1s 8.76
Replan every 0.2s 4.00
Replan every 0.5 1.66
Replan every 1.0s 0.97

are conducted for multiple situations when robot’s velocity is 1, 2, 4, 8 and 16 m/s.
Each data point is collected over 500 runs (i.e. 100 runs for each environment).

Success Rate and Number of Replans. From the plots in Fig. 5, we show that our
approach using predicated collision helps the robot achieve nearly optimal success
rate with a small number of replans. First, let us look at Fig. Sa, c and e. We see that
the success rate of the proposed method is almost identical to or even better than the
fixed-time strategy with very high (and almost unrealistic) replanning frequency (i.e.
replan every 0.05s.). This is especially clear when the robot’s velocity is greater than
2m/s. However, frequent updates introduce a large number of replans. As shown in
Fig.5b, d and f, in order to provide a success rate similar to the proposed method,
the fixed-time strategy needs to replan around 100 times more.

Running Time. In Table 1, we provide average computation times spent on replan-
ning over five environments for rigid obstacles. We observe that, to achieve similar
success rate, our method runs 3 and 12 times faster than fixed-time strategy with time
steps 0.1 and 0.05 s, respectively.

8.2 Compare to an Optimal Strategy

We further compare our method to a conservative optimal strategy [8]. In their work,
every obstacle must be a disc and its swept volume over time is conservatively
modeled as a cone with the slope being its maximum velocity. Therefore, the path,
if any, generated by their method is guaranteed to be safe.

To apply their strategy in our environments shown in Fig. 4, we replace the obsta-
cles with their smallest bounding circles. Static obstacles are modeled as moving
obstacles with zero velocity. Also note that bounding box is not allowed in their
method. Our experiments found that, the robot needs to move at 22m/s or faster in
order to find a safe path in Fig.4b, and at least 15m/s in Fig.4c. No path can be
found at lower speed in these environments. For environments in Figs. 1a and 4a, c,
the start or the goal is covered by one or more obstacles at the very beginning, thus no
path can be found. On the contrary, the proposed method provides better flexibility
while still allows the robot to achieve a nearly 90 % success rate at 4m/s and almost
100 % at 8m/s.

332 Y. Lu et al.

9 Conclusion

In this paper, we proposed an adaptive method that predicts collisions for obstacles
with unknown trajectories. We believe that this collision prediction has many poten-
tial usages and advantages. Similar to collisions detection in the setting of known
obstacle motion, we have shown that collision prediction allows the robot to eval-
uate the safety of each edge on the extracted path with unknown obstacle motion.
‘When the robot travels on a predetermined path, collision prediction enables adaptive
repairing period that allows more robust and efficient replanning. Comparing to a
planning strategy that replans periodically at fixed time interval, our experimental
results show strong evidences that the proposed method significantly reduces the
number of replans while maintaining higher success rate of finding a valid path.
Because of its ability to handle arbitrary shapes including articulated objects, this
tool provides a complimentary approach to the methods that consider complex behav-
ior prediction or dynamic constraints but with only simple shapes. Even though the
obstacles are modeled as adversarial agents in this paper, we are currently investigate
strategies to incorporate the constraints in obstacles’ motion when better behavior
patterns of the obstacle are known [7].

References

1. Jaillet, L., Simeon, T.: A prm-based motion planner for dynamically changing environments. In:
Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS),
pp. 1606-1611 (2004)

2. Kallman, M., Mataric, M.: Motion planning using dynamic roadmaps. In: Proceedings of the
2004 IEEE International Conference on Robotics and Automation, 2004, ICRA’04, vol. 5, pp.
43994404 (2004)

3. Li, T.Y,, Shie, Y.C.: An incremental learning approach to motion planning with roadmap man-
agement. In: Proceedings of IEEE International Conference on Robotics and Automation, pp.
3411-3416 (2002)

4. Ferguson, D., Kalra, N., Stentz, A.: Replanning with RRTs. In: Proceedings 2006 IEEE Inter-
national Conference on Robotics and Automation, ICRA 2006, pp. 1243—-1248 (2006)

5. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot.
Res. 5(1), 90-98 (1986)

6. Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime dynamic a*: an
anytime, replanning algorithm (2005)

7. van den Berg, J., Ferguson, D., Kuftner, J.: Anytime path planning and replanning in dynamic
environments. In: Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 2366-2371 (2006)

8. van den Berg, J., Overmars, M.: Planning the shortest safe path amidst unpredictably mov-
ing obstacles. In: Proceedings of the International Workshop on Algorithmic Foundations of
Robotics (WAFR) (2006)

9. Wzorek, M., Kvarnstrom, J., Doherty, P.: Choosing path replanning strategies for unmanned
aircraft systemsun (2010)

10. Hayward, V., Aubry, S., Foisy, A., Ghallab, Y.: Efficient collision prediction among many
moving objects. Int. J. Robot. Res. 14(2), 129-143 (1995)
11. Hubbard, PM.: Collision detection for interactive graphics applications. Ph.D. thesis (1995)

Collision Prediction Among Rigid and Articulated Obstacles with Unknown Motion 333

12.

13.

14.

15.

18.

20.

21.

22.

23.

24.
25.

26.

Chakravarthy, A., Ghose, D.: Obstacle avoidance in a dynamic environment: a collision cone
approach. IEEE Trans. Syst., Man Cybern. Part A: Syst. Hum. 28(5), 562-574 (1998)

Kim, H.K., Guibas, L.J., Shin, S.Y.: Efficient collision detection among moving spheres with
unknown trajectories. Algorithmica (2005)

Ziebart, B.D., Ratliff, N., Gallagher, G., Mertz, C., Peterson, K., Bagnell, J.A., Hebert, M.,
Dey, A.K., Srinivasa, S.: Planning-based prediction for pedestrians. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 3931-3936 (2009)
Henry, P., Vollmer, C., Ferris, B., Fox, D.: Learning to navigate through crowded environments.
In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 981-986
(2010)

. Wu, A., How, J.P.: Guaranteed infinite horizon avoidance of unpredictable, dynamically con-

strained obstacles. Auton. Robot. 227-242 (2012)

. Fraichard, T., Asama, H.: Inevitable collision states. a step towards safer robots? In: Proceedings

of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. (IROS
2003), vol. 1, pp. 388-393 (2003)

Shiller, Z., Gal, O., Raz, A.: Adaptive time horizon for on-line avoidance in dynamic environ-
ments. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 3539-3544 (2011)

. Martinez-Gomez, L., Fraichard, T.: Collision avoidance in dynamic environments: an ics-based

solution and its comparative evaluation. In: IEEE International Conference on Robotics and
Automation, 2009. ICRA’09, pp. 100-105 (2009)

Bautin, A., Martinez-Gomez, L., Fraichard, T.: Inevitable collision states: a probabilistic per-
spective. In: Proceedings of IEEE International Conference on Robotics and Automation,
Anchorage, pp. 4022-4027 (2010)

Cohen, J., Lin, M.C., Manocha, D., Ponamgi, M.: I-collide: An interactive and exact collision
detection system for large-scale environment. In: Symposium on Interactive 3D Graphics, pp.
189-196 (1995)

Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for rapid interfer-
ence detection. Comput. Graph. 30, 171-180 (1996)

Baraff, D.: Curved surfaces and coherence for non-penetrating rigid body simulation. Comput.
Graph. 24(4), 19-28 (1990)

Hahn, J.K.: Realistic animation of rigid bodies. Comput. Graph. 22(4), 299-308 (1988)

Lu, Y.: Path planning in similar environments. Ph.d. thesis, George Mason University, Fairfax
(2013)

Lavalle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Iowa State Uni-
versity, Technical report (1998)

Asymptotically Optimal Stochastic Motion
Planning with Temporal Goals

Ryan Luna, Morteza Lahijanian, Mark Moll and Lydia E. Kavraki

Abstract This work presents a planning framework that allows a robot with
stochastic action uncertainty to achieve a high-level task given in the form of a tem-
poral logic formula. The objective is to quickly compute a feedback control policy
to satisfy the task specification with maximum probability. A top-down framework
is proposed that abstracts the motion of a continuous stochastic system to a discrete,
bounded-parameter Markov decision process (BMDP), and then computes a control
policy over the product of the BMDP abstraction and a DFA representing the temporal
logic specification. Analysis of the framework reveals that as the resolution of the
BMDP abstraction becomes finer, the policy obtained converges to optimal. Simula-
tions show that high-quality policies to satisfy complex temporal logic specifications
can be obtained in seconds, orders of magnitude faster than existing methods.

Keywords Planning under uncertainty + Temporal logic planning - Stochastic
systems - Formal control synthesis

1 Introduction

Robots are rapidly becoming capable of performing a wide range of tasks with a
high-degree of autonomy. There is a growing desire to take full advantage of these
systems by allowing a human operator to dictate a high-level task to the robot and let
the robot itself decide the low-level details of how to accomplish the task. Consider
an automated warehouse where items are retrieved by a robot and then dropped off at

R. Luna - M. Lahijanian - M. Moll - L.E. Kavraki (B<)
Department of Computer Science, Rice University, Houston, TX, USA
e-mail: rluna@rice.edu

M. Lahijanian
e-mail: morteza@rice.edu

M. Moll
e-mail: mmoll@rice.edu

L.E. Kavraki
e-mail: kavraki@rice.edu

© Springer International Publishing Switzerland 2015 335
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_20

336 R. Luna et al.

a central location for further processing. A single human dispatcher can coordinate
such tasks at a high-level by simply telling the robot which items to gather. This is
in contrast to lower-level coordination where a technically savvy or highly trained
operator must tell the robot sow to gather each item. By abstracting the motion plan-
ning objective into a high-level task, the need for a human operator to reason over
low-level details (e.g., the order items are gathered) is obviated. There are two funda-
mental challenges, however, that inhibit this high-level abstraction. First, translating
ahigh-level specification into an equivalent model fit for a motion planning algorithm
is a computationally difficult endeavor, typically an exponential-time operation [1].
Second, physical robots suffer from uncertainties that can invalidate a motion plan,
like noisy actuation, unreliable sensing, or a changing environment, and robustly
handling uncertainty can require significant computation time [2]. Extensive litera-
ture exists for solving these challenges in isolation, but methods that are both efficient
and effective at high-level task planning for an uncertain system remain elusive.

High-level specifications using temporal logics have been employed to improve
the expressiveness of a motion planning task (e.g., [3—10]). These logics allow for a
natural encoding of both Boolean and temporal constraints, and the classic motion
planning task of move from start to goal without collision can be greatly enhanced
using these operators. For instance, in the warehouse scenario described above, com-
plex tasks such as

Pick up items from locations A, B, and C, in any order, and drop them off at location D or
Pick up items from locations A or B and then C and drop them off in D; meanwhile, if B is
ever visited, then avoid E

are easily encoded using only temporal and Boolean operators. Given a motion plan-
ning specification in the form of a temporal logic formula, existing frameworks (e.g.,
[3—10]) consider a mixed discrete and continuous approach, where Boolean propo-
sitions are mapped to discrete regions of the state space and planning is performed
in the continuous space to satisfy the specification.

When the robot is subject to action uncertainty, robust motion planners have
been developed that compute a control strategy over the entire state space rather
than a single trajectory (e.g., [11-13]). This strategy is often referred to as a policy.
Conceptually, a policy is a lookup table that maps each state to a particular action.
An optimal policy maximizes the reward the robot can expect to receive given a
stochastic motion model of its evolution. Computing an optimal policy can take
significant time, however, because every state of the system must be reasoned over
to ensure the action selected is indeed optimal.

This work operates at the intersection of high-level task planning and planning un-
der action uncertainty. A top-down framework is presented that is capable of quickly
computing an optimal control policy that satisfies a temporal logic specification with
maximum probability by utilizing a combination of discrete and continuous space
planning. To robustly handle noise in the actuation of the robot, the method constructs
an abstraction in the form of an uncertain Markov model that models the evolution
of the robot as it moves between discrete regions of the state space. Given a temporal
logic task specification, the framework then constructs an equivalent deterministic

Asymptotically Optimal Stochastic Motion Planning with Temporal Goals 337

finite automaton (DFA) that expresses the task and computes an optimal control policy
over the product of the DFA and the discrete abstraction to maximize the probability
of satisfying the specification.

1.1 Related Work

Motion planning for realistic robotic tasks is the subject of a large body of recent
work known as formal methods in robotics [3—10]. The kinds of tasks that are stud-
ied typically admit a wide latitude of possible solutions; this is evident in the tasks
described earlier for the warehouse scenario. Many complex motion planning sce-
narios can be naturally translated to temporal logics, in particular linear temporal
logic (LTL) [14]. Unfortunately, temporal logic planning suffers from state space ex-
plosion, and existing methods rely on a discrete abstraction of the continuous system
to gain computational tractability.

One class of methods for temporal logic planning synthesize controllers over a
discrete abstraction of the state space [3, 5]. The relationship between the controllers
and a discretization of the space ensures that motion between adjacent regions is
realizable by the continuous system, known as a bisimilar abstraction. Synthesis
of reactive controllers have also been considered that allow for robust control in a
dynamic environment, provided that all environmental behaviors are also encoded in
temporal logic [4, 6, 15, 16]. These methods are correct-by-construction, and find a
satisfying trajectory if one exists. Synthesizing controllers that satisfy the bisimilarity
constraints, however, admits only simple dynamical models. Recent work attempts
reactive synthesis for non-linear systems [17], but constructing these controllers
remains computationally difficult.

Sampling-based motion planners have been augmented to satisfy a task speci-
fication given in LTL [7, 8, 10, 18, 19]. These works are able to quickly emit a
satisfying trajectory for systems with hybrid and/or complex dynamics. Note that
these methods are not correct-by-construction. The probabilistic completeness of
many sampling-based planners, however, guarantees that if a satisfying trajectory
exists, the probability of finding a trajectory grows to 1 over time.

The temporal logic planning methods described above do not address instances
where the robot suffers from uncertainties. When there is uncertainty in actuation,
methods exist for temporal logic planning that employ a Markov decision process
(MDP) to model the evolution of the system through the state space [20, 21]. The
goal in these methods is to compute a control policy over the MDP abstraction to
satisfy a high-level task with maximum probability. These works are incomplete,
however, in that methods to construct the approximating MDP for the robot are not
presented; only planning over an existing abstraction is discussed. Uncertain MDPs,
where transition probabilities can belong to sets of values, have also been employed
to provide a hierarchical abstraction and improve computational complexity [22].
Strong assumptions must be made on the structure of this abstraction, many of which
are difficult to realize for physical systems.

338 R. Luna et al.

Construction of a Markov abstraction for continuous-time and space systems has
been studied in the literature for stochastic optimal control. In the stochastic motion
roadmap (SMR) [11], the state space is discretized through sampling and an MDP is
constructed over the sampled states using a Monte Carlo simulation; a set of discrete
actions is assumed. Another method is the incremental MDP (iMDP) algorithm [12],
which asymptotically approximates the optimal policy of the continuous stochastic
system by sampling both a state and a set of candidate controls; a single control is cho-
sen for the state with value iteration. To ensure a good approximation of the optimal
policy, both SMR and iMDP construct a highly accurate MDP abstraction. Achieving
the Markov property exactly, however, requires very dense state space sampling. Re-
cent work suggests the use of a bounded-parameter Markov decision process (BMDP)
[23], a special class of uncertain MDPs which can be solved in polynomial-time with
respect to the number of states, as the abstraction model [13, 24]. A BMDP allows
for coarse discretization of the state space by relaxing the Markov constraint while
still fully representing the memoryless transition model. Moreover, a BMDP does not
have the strong assumptions on the transition model that general uncertain MDPs do.

1.2 Contribution

This paper introduces a planning framework that quickly computes a control pol-
icy for a system with uncertain actuation to satisfy a high-level specification with
maximum probability. The proposed planning framework utilizes a coarse Markov
abstraction to mitigate state space explosion when planning for the continuous sto-
chastic system. Unlike previous works in temporal logic planning, however, the
proposed framework makes few assumptions on the underlying dynamics, and is
applicable to a broad class of stochastic systems. The proposed method builds upon
previous work [13, 24] by constructing a coarse, bounded-parameter MDP (BMDP)
abstraction to model the evolution of the stochastic system through discrete regions
of the state space. Departing from the previous works, an optimal policy is com-
puted over the BMDP abstraction to satisfy a high-level specification given in tempo-
ral logic. The framework constructs the entire abstraction and control policy from
scratch, requiring only a model of the dynamics, a map of environment, and a task
specification. Although errors are introduced when discretely approximating a con-
tinuous process, analysis shows that as the discrete regions become smaller, errors
in the approximation limit to zero and the control policy that is computed converges
to the true optimal.

This work presumes that the task specification is given in co-safe LTL [1], a subset
of LTL. Although co-safe LTL has infinite semantics, a finite trace is sufficient to satisfy
these formulas. In many robotics applications, tasks are required to be completed in
finite time, making co-safe LTL an ideal language for such high-level specifications.
A noteworthy property of the BMDP abstraction is that it can be reused for any co-safe
LTL specification given the same robot and workspace. Simulated results show that
given a BMDP abstraction, a complete control policy to satisfy the specification with

Asymptotically Optimal Stochastic Motion Planning with Temporal Goals 339

maximum probability can be computed in seconds, orders of magnitude faster than
existing techniques.

2 Problem Formulation

The objective of this work is to compute a control policy for a fully-observable robotic
system with noisy actuation that satisfies a high-level task specification given in a
fragment of LTL with maximal probability. Formal definitions of the robotic system,
LTL specification language, and task satisfaction follow.

2.1 Stochastic Robotic System

Consider a robotic system with noisy actuation whose dynamics are described by
the following stochastic differential equation [12, 13, 24, 25]:

dx = f(x(t),u(@)dt + F(x(t), u(t))dw, (1)
xeXcCcR™ |, ueU CR"™,

where X and U are compact sets representing the state and control spaces, and
w(-) is an ny-dimensional Wiener process. Functions f : X x U — R and
F : XxU — R"™*"w gre bounded and Lipschitz continuous, where f (-, -) describes
the robot’s nominal dynamics and F (-, -) captures the influence of noise on the
dynamics. The pair (u(-), w(-)) is assumed to satisfy the Markov property. The
stochastic process is fully observable and stops once the interior of X is left.

2.2 Syntactically Co-Safe LTL

The mission of the stochastic system is specified by a syntactically co-safe LTL
formula ¢ [1, 7]. The syntax and semantics of such a specification is given here for

completeness.

Syntax: A syntactically co-safe LTL formula ¢ is defined inductively over a set
IT = {my,...,m,} of atomic Boolean propositions and a set of unary and binary
operators:

pi=m|-m|oNVOlONG| X FD|OUP,

where 7 € IT in an atomic proposition, —, V, and A represent the Boolean operators
negation, disjunction, and conjunction respectively, & is the temporal next operator,

340 R. Luna et al.

JF represents the temporal eventually operator, and U denotes the temporal until
operator.

Semantics: The semantics of a syntactically co-safe LTL formula ¢ are defined over
infinite traces of 2/7. Let ¢ = {7;}%°, denote an infinite trace, where 7; € 27.
Furthermore, let o/ = 77, Ti+1, - - - denote a suffix of the trace starting at step i.
The notation o = ¢ denotes that the trace o satisfies co-safe formula ¢ and has the
following recursive definition:

—-okEmw if T e

-o k-7 if T ¢ 7

—oE=E Ve folkEgiorol=dd

—oEM AP ifoEg¢rando = ¢

—oE=X¢ ifol =¢

—okE=Fo if 3k > 0 where 0% = ¢

-0 = gy if 3k > 0 where o* |= ¢, and Vi € [0, k), o' = ¢

Although the semantics have an infinite horizon, a finite trace is sufficient to
satisfy ¢. Thus, a deterministic finite automaton (DFA) A¢ = (Z,X,6,z0,T) can
be constructed that accepts exactly the satisfying traces of ¢, where

e Z is afinite set of states,

e ¥ = 2! is the input alphabet, where each input symbol is a truth assignment for
all propositions in I7,

e 0 :Z x ¥ — Z is the transition function,

e 7o € Z is the initial state, and

e T C Z is the set of accepting states.

Leto = 0g. ..oy be astring over X. Ay accepts o iff a sequence of states wy . . . w;
exists in Z where wy = 79, wi+1 = 6(w;, 0;) fori =0,...,l —l,andw; € T.

2.3 Stochastic Motion Planning with Temporal Goals

Stochastic system (1) evolves in a static workspace WV consisting of a set of polytopic
obstacles O and a set of polytopic regions P = {p1, ..., pn}, where p; is mapped
to atomic proposition 7;. Proposition m; becomes true when the system visits any
part of region p;. With a slight abuse of notation, let o denote the trajectory traced
by the system during execution. Execution terminates when o = ¢ oro N O # @,
whichever occurs first. Given these definitions, the problem addressed in this work
is now formally stated:

Asymptotically Optimal Stochastic Motion Planning with Temporal Goals 341

Problem Definition: Given a fully-observable stochastic system (1) operating in a
workspace WV, compute a control policy for the system that maximizes the probability
of satisfying a syntactically co-safe LTL formula ¢.

3 Methodology

A top-down framework for computing an optimal control policy is presented in
this section that maximizes the probability of satisfying a task specified in co-safe
LTL. Computation of the policy occurs in two phases. First, the evolution of the
stochastic system is abstracted to a particular kind of uncertain Markov model, a
bounded-parameter Markov decision process (BMDP) 3. The BMDP models the range
of transition probabilities that are observed when the system transitions between
regions in a discretization of the state space. Second, the co-safe LTL specification ¢
is translated into an equivalent DFA A4, and the Cartesian product P = B x A, is
computed. Conceptually, the product P is also a BMDP where each state is a unique
tuple (g, z), where ¢ is a discrete region of the state space and z is a state in Ay.
Then, an optimal policy is computed over P to reach any state (q’, z’), where 7’ is
accepting in Ag. With respect to the discretization, an optimal policy over P satisfies
¢ with maximum probability. A block diagram illustrating the components of the
planning framework is shown in Fig. 1.

3.1 BMDP Abstraction

To achieve computational tractability, the proposed framework abstracts the evolu-
tion of the stochastic system to motions between discrete regions of the state space.
Since the system is stochastic, navigation of the system between any pair of adjacent
regions is presumed to be imperfect. Furthermore, the probability of transitioning
to an adjacent region depends on the initial state within the current region, which is
not known a priori. Therefore, a range of transition probabilities is required to fully
represent the likelihood of the system successfully moving between two regions,

BMDP Construction

Vs
State j
—> Discretization lLoer) Po-ltcy BMDP
space Generation Control
- [

Stochastic ;
%‘ policy

dynamics
Product Interval Value
DFA BMDP Iteration

Fig. 1 Diagram of the proposed stochastic temporal logic planning framework

Co-safe LTL—p|
specification

342 R. Luna et al.

corresponding to the minimum and maximum over all initial conditions. The dis-
cretization, coupled with the transition probability ranges naturally lends itself to an
uncertain Markov decision process. This particular construction of the region level
abstraction, however, forms a special kind of uncertain MDP, known as a bounded-
parameter MDP (BMDP) [23]. A BMDP is able to capture the uncertainty over the
transition probabilities with a range of values, and can be solved optimally in poly-
nomial time. In the remainder of this section, a formal definition of the BMDP is given,
and the construction of the BMDP abstraction for stochastic planning is detailed.

Bounded-Parameter MDP A bounded-parameter Markov decision process (BMDP)
[23] is an MDP whose transition probabilities are not known exactly. Instead, these
values are presumed to lie within a range of real numbers. Formally, a BMDP is a
tuple B = (Q, A, \};, ﬁ, L), where

e (is a finite set of states,

e A is a finite set of actions,

o« P: O xAxQ — [0,1] and P: 0 x A x Q — [0, 1] are pseudo-transition
probability functions that for state ¢ € Q under action a € A return the minimum
and maximum transition probabilities to state ¢’ € Q, respectively,

e L : QO — 2™ is a labeling function that maps each ¢ € Q to a set of atomic
propositions in 27 L relates discrete states with the proposition regions.

The following property must also hold in a BMDP: for all g, q' € Q and any
a e Aq), P(q a,-) and P(q a,) are pseudo -distribution functions such that 0 <
P(q,a,q) < P(g,a,q) <land Yo P(q,a.4) <1< 0 Plg,a,.q).

Discretization A discretization of the state space that respects both obstacles and
proposition regions forms the states of the BMDP abstraction. Formally, a discretiza-
tion of the bounded state space X is defined as a set of polytopic, non-overlapping
subspaces of X whose union is X.

A desirable discretization depends on a number of factors, including the geometry
and dynamics of the system. Practically speaking, the coarseness of the discretization
has a direct impact on policy computation time. The difficulty of discretizing a high-
dimensional space for motion planning purposes is well known [7]. The proposed
framework advocates a discretization of the workspace using a Delaunay triangu-
lation [26] that can easily be generated to respect obstacles and other regions of
interest. Moreover, this triangulation avoids skinny triangles which may be deleteri-
ous to the abstraction. Note that discretizing the workspace induces a discretization
of the state space by projecting each element of the state space into the workspace
and identifying the region the projection lies in.

Local Policy Computation Given a discretization of the state space, a local con-
troller or control policy is generated to optimally navigate the stochastic system
between adjacent regions. These local policies correspond to the actions of the BMDP
abstraction. The proposed framework is not dependent on a particular method for
local policy generation, so long as the transition probability range for successfully
moving between two regions can be calculated. A general method for computing

Asymptotically Optimal Stochastic Motion Planning with Temporal Goals 343

local policies is the iMDP algorithm [12], a sampling-based approach that asymp-
totically approximates the optimal control policy for stochastic system (1) using a
series of progressively larger Markov decision processes. When local policies are
approximated with a Markov chain (as in iMDP), the minimum and maximum transi-
tion probabilities for transitioning to an adjacent discrete region are easily obtained
with an absorbing Markov chain analysis [27]. The iMDP method is used to compute
the local policies in the evaluation of this framework. Depending on the system em-
ployed, however, more specialized controllers can also be synthesized for stronger
guarantees in the local control policies.

3.2 Product BMDP and Optimal Policy

Recall that the objective of the system is given as a co-safe LTL formula ¢, and
that a finite trace is able to satisfy this kind of specification. To compute a control
policy to satisfy ¢, the specification is first translated into an equivalent DFA [1].
Unfortunately, constructing Ay introduces an exponential blow-up with respect to
the size of ¢. Nevertheless, tools exist that emit a minimized DFA virtually instantly
for the kinds of specifications commonly used for planning tasks [28]. Given Ay, the
product of 44 with the BMDP described above is computed, and then a policy over
the product is obtained to satisfy the specification with maximum probability. The
product BMDP is formally defined below.

Product BMDP Given a BMDP 5 and a DFA A(_b for a co-safe LTL specification ¢,
the product BMDP P = B x Ay is a tuple P = (Qp, Tp, Ap, Pp, Pp), where

Op=0x12, Tp =0 xT, Ap =A,

P oy [Plaa,q) ifd =6z Lg")
Pp((q,2),ap,(q.2)) = [0 otherwise.

5 . | P(g.a.q) if 7 =6z, L(q")
Prl@,2),ap. (@, 2)) = [0 otherwise,

forg,q’ € Q,ap € Ap,a € A, and z,7 € Z. Conceptually, P is both a BMDP
and a DFA. The goal is to compute a policy over the actions Ap in P to reach
any terminal state (g, z) € Tp with maximum probability. Note that transitions in
the BMDP component of each state still obey the transition probabilities over the
actions between each discrete region, and a transition in the DFA occurs only when
the system enters a labeled proposition region that has a transition in the current
DFA state. Therefore, the policy that maximizes the probability of reaching a state in
Tp optimizes the probability of satisfying ¢ (reaching an accepting state in Agz). A
conceptual illustration of the of the product BMDP P given B and A is shown in Fig. 2.

Optimal Policy Computation Finding a policy over P to satisfy specification
¢ 1is equivalent to solving the maximal reachability probability problem [29].

344 R. Luna et al.

Dy

Dy

Fig. 2 a The minimal DFA Ay for ¢ = (=p3U(p1 V p2)) A Fp3. b A discretization of the state
space, allowing for the construction of a BMDP B with proposition regions pp, p2, and p3. ¢ An
illustration of the product BMDP P = B x Ay. Specification ¢ requires the system to transition
through P by visiting regions pj or py, followed by region ps3. If proposition p3 is visited first, ¢
cannot be satisfied. The accepting state is denoted with the double circle

The objective in this problem is to find the maximum probability that a set of states
can be reached from any other state in an MDP. Prior work also solves the maximal
reachability probability problem for a BMDP [30]. The key difference for a BMDP is
that the expected value (maximum probability) for each state is not a scalar value,
but rather a range derived from the transition probability bounds.

Note that a BMDP represents a uncountably-large set of MDPs whose transition
probabilities lie in those of the BMDP. This implies that the optimization objective
for a BMDP is ambiguous since the true probabilities are unknown. The literature
proposes two optimal policies: a pessimistic policy that optimizes for the lower
bound probabilities, and an optimistic policy that optimizes for the upper bound
probabilities [23]. From these two criteria, absolute optimal value ranges for each
state in the BMDP naturally correspond to the minimum pessimistic value and the
maximum optimistic value.

The algorithm for computing an optimal policy in a BMDP is interval value iteration
(1v1), the analog of value iteration for an MDP. Before IVI begins, an optimization
objective for the BMDP must be chosen (e.g., pessimistic or optimistic). For each
iteration of IVI, an MDP representative is selected, based on the optimization objective
and the current value estimate, and the typical Bellman backup is computed. Let P
denote the probability distribution for the MDP representative selected during an
iteration of 1vI for the product BMDP P. Then the Bellman backup operation for
computing the maximum reachable probabilities in P is:

1 ifqeTp

v(g) = ~
@) maXgeA(q) [zq,eQ P(q,a, q/)v(q’)] otherwise.

Asymptotically Optimal Stochastic Motion Planning with Temporal Goals 345

The result of the interval value iteration computation (2) is a control policy that
maximizes the probability of satisfying the co-safe LTL specification ¢ over the BMDP
abstraction. The value v(q) represents the probability that the stochastic system,
starting anywhere in region ¢, reaches an accepting state in the automaton 4. Since
IVI reasons over discrete regions of the state space rather than individual elements,
significant savings in computation time are realized.

4 Analysis

This section analyzes the asymptotic convergence of the probability of satisfying a co-
safe LTL specification ¢ computed over the BMDP abstraction to the true optimal values
for stochastic system (1). It is shown that the BMDP approximates the continuous
dynamics with a bounded error that is a function of the diameter of each polytopic
region. As the largest diameter in the discretization shrinks to zero, uncertainty in
the optimal value estimates for the BMDP are eliminated, indicating convergence to
the true maximum probabilities for the system to satisfy ¢. Proof of these claims
begins by inspecting the local policies of the BMDP. A typical method for computing
such policies uses a discrete, locally consistent approximation of the continuous
dynamics, defined below.

Definition 4.1 (Definition 1.3 in [25]) Let £ denote a controlled Markov chain ap-
proximating a stochastic system (1) whose dynamics are given by bounded, Lipschitz
continuous functions f and F. Each state x € £ is associated with a non-negative
holding time At (x), representing the time a control u is applied at state x. Let &; denote
the ith state resulting from the stochastic process £, and the notation A&; = &1 —¢&;
denote the distance between two consecutive states in the discrete approximation. A
discrete time Markov chain ¢ is locally consistent with continuous-time system (1)
if the following conditions are met for all x € £, where w € U is the control applied
at state x:

E[A& S = x, u; = w] = f(x, w)At(x) + O(At(x)) 3)
Cov[A&i & = x,ui = w] = F(x, w)F(x, w)TAt(x) + 0(At(x)) 4@

where O(-) indicates an upper bound on the error introduced by the discrete time
approximation of the continuous dynamics as a function of the holding time.

In the BMDP abstraction, actions for each discrete region (local policies) are pre-
sumed to be locally consistent Markov chains of stochastic system (1). Note, the iMDP
method [12] computes a locally consistent Markov chain. A transition between re-
gions in the BMDP, however, likely requires a series of discrete time steps to complete.
Since each action is locally consistent, the modeling error in each BMDP transition is
bounded, as shown in the following lemma.

346 R. Luna et al.

Lemma 4.2 Given a BMDP abstraction of stochastic system (1) where actions induce
locally consistent Markov chains, the error incurred by a transition from region q to
adjacent region q’ is bounded by the maximum expected time to exit q.

Proof Let " denote the locally consistent Markov chain induced by action p in the
BMDP abstraction defined over ¢ that attempts to navigate the system from ¢ to an
adjacent region ¢’. Furthermore, let AT, (£#) be the expected time for the system to
exit region ¢ from initial state x € &*. From (3), (4), the error introduced by & is
bounded by the discrete holding times at each state in £#. It then follows directly that
the error in the transition from region ¢ is bounded by max, e O (AT, (€#)), which
is the maximum error that accumulates when the system evolves within ¢ under p
over all possible initial states. (]

Furthermore, the expected exit time for system (1) from a bounded region is always
finite, and this time is a function of the initial state and the diameter of the region
([31], Chapter I1I, Lemma 3.1). Given the error incurred by the BMDP abstraction of
system (1) as a function of the diameter of each region, what remains to prove is that
as the maximum diameter shrinks to zero, an optimal BMDP policy asymptotically
converges to an optimal policy for the continuous system. Arguments are based on
the value functions corresponding to the optimal policies, and begin by inspecting
the transition probability ranges in the BMDP. For convenience, diam(q) denotes the
diameter of a polytopic region ¢ in the discretization.

Lemma 4.3 Let i denote a locally optimal, locally consistent control policy that
navigates the system (1) from region q to a region adjacent to q in a BMDP abstraction.
Then, for all ¢ adjacent to q:

li P, u,q)— P, uq)|=0. 5
d,-aml(qm)ﬁo[g,p.q) (quq)] (5)

Proof (sketch) The Lipschitz assumption for stochastic system (1) asserts || f (x, u)—
FO&) < K(|x — X/|| + |lu — u’||), where K € R is the Lipschitz constant.
An analogous assertion also holds for the covariance F. Since the system evolves
according to a locally optimal policy i to maximize the probability of reaching an
adjacent, contiguous region, it follows from the Lipschitz condition of f, F' that the
optimal transition probabilities for two states x, x" in a discrete region ¢ differ only
by a function of the distance between x and x’. As the diameter of g shrinks to zero,
the maximum distance between any two states in g also decreases to zero, indicating
that the transition probability ranges under p to reach all neighboring regions also
converge to scalar values. (]

For any policy over a BMDP, the range of optimal value function estimates falls
within the minimum pessimistic value and the maximum optimistic value. The fol-
lowing lemma shows that these policies and value function estimates always exist.
The subsequent theorem then relates the value function estimate to the continuous

Asymptotically Optimal Stochastic Motion Planning with Temporal Goals 347

dynamics (1), showing that the values converge to the maximum probability of sat-
isfying a co-safe LTL specification for each state in the product BMDP abstraction as
largest diagonal in the discretization approaches zero.

Lemma 4.4 (Theorems 8 and 9 in [23]) For any BMDP there exists an optimistically
optimal and a pessimistically optimal policy. These policies converge pointwise to
the desired optimal value function.

Theorem 4.5 Let v(q)) denote the minimum pessimistically optimal value and
v(qp) denote the maximum optimistically optimal value for a state q, computed
by (2) over the product BMDP abstraction P for the stochastic system (1) and co-safe
specification ¢. Then, for all g, € Qp:

lim [0(g,) — V(gp)] =0, (6)

maxgeg diam(q)—0

and 0(qp) = V(qp) is the maximum probability of satisfying ¢ for all states x € q
of stochastic system (1).

Proof (sketch) It follows directly from Lemmas 4.3 and 4.4 that the value function
range for each region in the BMDP abstraction must converge to a single value as the
diameter of the largest discrete region shrinks to zero. Thus, (6) holds. Furthermore,
from Lemma 4.2, the BMDP models the underlying dynamics of the continuous sto-
chastic system arbitrarily well as the largest diameter in the discretization shrinks to
zero. Therefore, as |0(q,) — V(qp)| approaches O for all states in the product BMDP,
the value range for g, converges to a scalar value that is the continuously optimal
value for all states x € g),. (]

5 Evaluation

Evaluation of the proposed method for computing a control policy that satisfies
specification ¢ with maximum probability is given in this section. A 2D system with
single integrator dynamics and Gaussian noise is simulated. Formally, f(x,u) = u
and F(x, u) = 0.11, where [is the identity matrix, as in [12, 13, 24]. Computations
are performed on a 2.4 GHz Intel Xeon CPU with 12 GB memory.

Simulated experiments are performed in a 20 x 20 warehouse inspired environ-
ment, shown in Fig. 3a. A set of proposition regions, p1, ..., pg, represent regions of
interest in the warehouse, and region pg represents a processing station where com-
pleted orders are taken. Two different co-safe LTL specifications are evaluated. The
first specification, ¢, represents a gathering task, where the system must retrieve
three items in any order, then bring the completed order to the processing station.
Since the same item could exist in multiple locations, subformulas ¢1 = (p; Vv p3),
¢ = (p2 VvV pa) and ¢3 = (p5 V ps V p7 V pg) denote the possible locations for
items 1, 2, and 3, respectively. The second task, ¢g, is a rigid sequence of items to

348 R. Luna et al.

Py N3

V2N

(a) Environment and discretization (b) Minimized automaton Ay,

I A TR W LT N W T BN
AN ZJ

(¢) Minimized automaton Agg

Fig. 3 a The 20x20 warehouse. Obstacles are gray, and nine proposition regions are shaded and
labeled. An obstacle and proposition respecting triangulation (826 triangles) is overlayed. The
system starts at the star. b Minimized DFA for ¢ . ¢ Minimized DFA for ¢g. Self-transitions in the
DFAs are omitted for clarity

gather, where item 1 must be retrieved before item 2, and item 2 must be retrieved
before item 3, and only then may the system return to the processing station. ¢ and
¢s are represented in co-safe LTL as:

oG = (=polor) A (=polUen) A (=poUep3) A F po
s = F(p1 AN XF (2 A XF (3 A XFpog))).

The minimized automata for ¢ and ¢g are shown in Figs. 3b, c.

The computation time and quality of the resulting control policy from the proposed
BMDP abstraction are evaluated here. To compare this work against existing meth-
ods for planning under uncertainty, two state-of-the-art frameworks are extended to
compute policies that satisfy a co-safe LTL specification. The first method employs
a typical MDP abstraction, constructed using the SMR method [11]. Eight unit con-
trols spanning the cardinal and ordinal directions are applied in the SMR for a fixed
duration of 100ms. Given the SMR, a policy is computed over the product of the
SMR with Ay in the style of existing temporal logic methods. The second approach
utilizes the iMDP algorithm [12] and iteratively constructs an optimal policy directly
in the continuous state space X x .A¢. In the BMDP abstraction, a discretization with
826 triangles is used, local policies are computed using iMDP, and a pessimistically

Asymptotically Optimal Stochastic Motion Planning with Temporal Goals 349

optimal policy over the BMDP is computed. All three methods are executed until there
are 750 states sampled per unit area or four hours elapses, whichever is first. Previ-
ous work has shown this sampling density yields favorable policies for the system
evaluated [13].

Discrete abstraction The first step for the BMDP and SMR methods is to construct a
discrete abstraction that models the evolution of the stochastic system in the envi-
ronment. This construction can be thought of as a one-time cost since the abstraction
can be reused for different tasks, provided the environment and robot stay the same.
The iMDP algorithm does not emit a reusable abstraction since an optimal policy is
constructed directly by this method. Table 1 shows that constructing the BMDP ab-
straction (over the discretization in Fig. 3a) is significantly faster than a comparable
MDP abstraction. BMDP construction for 826 discrete regions takes less than 20 min
on a single processor, compared to over 45 min for SMR.

Policy computation Computing a policy to satisfy the specification with maximum
probability exposes stark differences in the three different methods, as noted in Ta-
ble 1. In the BMDP and SMR methods, the Cartesian product of the Markov abstraction
is taken with the automaton .45, and an optimal policy over this product is computed.
For iMDP, the policy is computed directly in the product space. The BMDP abstraction
requires just over 10 seconds to find an optimal (pessimistic) policy for ¢ and under
6 seconds to find an optimal policy for ¢s. Compare these times to SMR, which re-
quires nearly 30 min for ¢ and over 20 min for ¢g. This difference accentuates the
gains in reasoning over discrete regions rather than individual state space elements.
The iMDP method consistently reached a four hour timeout, and only contains about
half of the number of discrete states that exist the final BMDP and SMR policies; the
complexity of iMDP depends on the number of states in the existing approximating
structure, where each iteration takes more time than the previous.

Probability of Success Naturally, the significant gains in computation time for the
BMDP abstraction do not come without a price. The last two columns in Table 1 show
the median probability of success to satisfy each of the specifications across all three
methods. Although the SMR abstraction does not provide any formal guarantees,
this method is able to consistently find a virtually perfect policy. This result can be
attributed to the relatively simple system evaluated coupled with the rather dense MDP

Table 1 The average time to generate the discrete abstractions, average policy computation time,
and median probability of success for tasks ¢ and ¢y in the three methods evaluated

Abstraction time (s) Policy time (s) Probability of success
le] os le] bs
BMDP 1181.59 10.80 587 |0.979 0.973
SMR 2494.68 1728.56 1234.97 |1.000 1.000
iMDP n/a 14,400.00 14,400.00 | 0.899 0.971

All values are taken over 50 independent runs. The abstraction for each method is a one time cost,
and can be reused for any ¢

350 R. Luna et al.

abstraction utilized. Nevertheless, the much coarser BMDP abstraction cedes only 2—
3 % probability of success compared to SMR while providing computation times that
are substantially faster. Although iMDP provides strong theoretical guarantees, the
complexity of this method prohibits scalability into the large product state space.
This is particularly evident for ¢, where Ay has 9 states, and iMDP has a probability
of success at just around 90 %.

6 Discussion

This work presents a method for efficient stochastic motion planning where the ob-
jective is a high-level specification given in co-safe LTL. By abstracting the evolution
of the robot to a bounded-parameter MDP where the states are discrete regions of the
state space, the method is able to quickly and effectively compute an optimal policy
over the product of the BMDP abstraction and a DFA representing the high-level spec-
ification with maximum probability. Evaluation of the approach shows that policies
for co-safe LTL specifications can be obtained in seconds once an abstraction is con-
structed. The BMDP abstraction admits optimal policy computation that is orders of
magnitude faster than existing methods.

The analysis of the method indicates that as the discretization becomes finer, errors
introduced in the BMDP abstraction model limit to zero and the policy asymptotically
converges to optimal. As presented, the framework does not actively seek to reduce
the transition probability ranges or discrete region sizes to achieve asymptotic opti-
mality directly. It is a natural extension of this work, however, to refine local policies
with large probability ranges by shrinking the discrete region they are defined over.

The relatively simple dynamics considered in the evaluation of this work should
not be considered a limiting factor. The dynamics are reasoned over only at the BMDP
abstraction level. For a more complex system, the time to compute the BMDP abstrac-
tion will surely increase, but time to computing the satisfying policy is polynomial
in the number of discrete regions.

Acknowledgments Work by Ryan Luna is supported by a NASA Space Technology Research
Fellowship. Work by Morteza Lahijanian, Mark Moll, and Lydia Kavraki is supported in part by
NSF NRI 1317849, NSF 1139011, and NSF CCF 1018798. Computing resources supported in part
by NSF CNS 0821727.

References

1. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Form. Methods Syst. Des.
19(3), 291-314 (2001)

2. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

3. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for mobile
robots. In: IEEE International Conference on Robotics and Automation, pp. 2020-2025 (2005)

Asymptotically Optimal Stochastic Motion Planning with Temporal Goals 351

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

Gazit, H.K., Fainekos, G., Pappas, G.J.: Where’s Waldo? Sensor-based temporal logic motion
planning. In: IEEE International Conference on Robotics and Automation, pp. 3116-3121
(2007)

. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems from tem-

poral logic specifications. IEEE Trans. Autom. Control 53(1), 287-297 (2008)

. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon control for temporal logic

specifications. In: International Conference on Hybrid Systems: Computation and Control, pp.
101-110 (2010)

. Bhatia, A., Kavraki, L., Vardi, M.: Motion planning with hybrid dynamics and temporal goals.

In: IEEE Conference on Decision and Control, pp. 1108-1115 (2010)

. Bhatia, A., Maly, M., Kavraki, L., Vardi, M.: Motion planning with complex goals. IEEE Robot.

Autom. Mag. 18(3), 55-64 (2011)

. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning with deter-

ministic p-calculus specifications. In: American Control Conference, pp. 735-742 (2012)
Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of LTL safety properties in hybrid systems.
Softw. Tools Technol. Transf. 15(4), 305-320 (2013)

Alterovitz, R., Siméon, T., Goldberg, K.: The stochastic motion roadmap: a sampling framework
for planning with Markov motion uncertainty. In: Robotics: Science and Systems, pp. 246253
(2007)

Huynh, V.A., Karaman, S., Frazzoli, E.: An incremental sampling-based algorithm for sto-
chastic optimal control. In: IEEE International Conference on Robotics and Automation, pp.
2865-2872 (2012)

Luna, R., Lahijanian, M., Moll, M., Kavraki, L.E.: Fast stochastic motion planning with op-
timality guarantees using local policy reconfiguration. In: IEEE International Conference on
Robotics and Automation, pp. 3013-3019 (2014)

Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
Kress-Gazit, H., Wongpiromsarn, T., Topcu, U.: Correct, reactive robot control from abstraction
and temporal logic specifications. IEEE Robot. Autom. Mag. 18(3), 65-74 (2011)

Ding, X.C., Kloetzer, M., Chen, Y., Belta, C.: Formal methods for automatic deployment of
robotic teams. IEEE Robot. Autom. Mag. 18(3), 75-86 (2011)

DeCastro, J.A., Kress-Gazit, H.: Guaranteeing reactive high-level behaviors for robots with
complex dynamics. In: IEEE/RSJ International Conference on Intelligent Robotics and Sys-
tems, pp. 749-756 (2013)

Vasile, C., Belta, C.: Sampling-based temporal logic path planning. In: IEEE/RSJ International
Conference on Intelligent Robotics and Systems, pp. 48174822 (2013)

. Maly, M.R., Lahijanian, M., Kavraki, L.E., Kress-Gazit, H., Vardi, M.Y.: Iterative temporal

motion planning for hybrid systems in partially unknown environments. In: International Con-
ference on Hybrid Systems: Computation and Control, pp. 353-362 (2013)

Ding, X.C., Smith, S.L., Belta, C., Rus, D.: MDP optimal control under temporal logic con-
straints. In: IEEE Conference on Decision and Control, pp. 532-538 (2011)

Lahijanian, M., Andersson, S.B., Belta, C.: Temporal logic motion planning and control with
probabilistic satisfaction guarantees. IEEE Trans. Robot. 28(2), 396-409 (2012)

Wolft, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain Markov decision processes
with temporal logic specifications. In: IEEE Conference on Decision and Control, pp. 3372—
3379 (2012)

Givan, R., Leach, S., Dean, T.: Bounded-parameter Markov decision processes. Artif. Intell.
122, 71-109 (2000)

Luna, R., Lahijanian, M., Moll, M., Kavraki, L.E.: Optimal and efficient stochastic motion
planning in partially-known environments. In: AAAI Conference on Artificial Intelligence
(2014)

Kushner, H.J., Dupuis, P.: Numerical Methods for Stochastic Control Problems in Continuous
Time, vol. 24. Springer, New York (2001)

Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput.
Geom. 22(1-3), 21-74 (2002)

352 R. Luna et al.

27. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York (1976)

28. Duret-Lutz, A., Poitrenaud, D.: Spot: an extensible model checking library using transition-
based generalized Biichi automata. In: IEEE/ACM International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems, pp. 76—83 (2004)

29. de Alfaro, L.: Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford University
(1997)

30. Wu, D., Koutsoukos, X.: Reachability analysis of uncertain systems using bounded-parameter
Markov decision processes. Artif. Intell. 172(8-9), 945-954 (2008)

31. Freidlin, M.: Functional Integration and Partial Differential Equations. Princeton University
Press, Princeton (1985)

Resolution-Exact Algorithms for Link Robots

Zhongdi Luo, Yi-Jen Chiang, Jyh-Ming Lien and Chee Yap

Abstract Motion planning is a major topic in robotics. Divergent paths have been
taken by practical roboticists and theoretical motion planners. Our goal is to pro-
duce algorithms that are practical and have strong theoretical guarantees. Recently,
we have proposed a subdivision approach based on soft predicates Wang, C., Chi-
ang, Y.-J., Yap, C.: On soft predicates in subdivision motion planning. In: 29th ACM
Symposium on Computational Geometry (SoCG’ 13), pp. 349-358 (2013). To appear
CGTA, Special Issue for SoCG’ 13 [20], but with a new notion of correctness called
resolution-exactness. Unlike mos ques for planar link robots. The technical contri-
butions of this paper are the design of soft predicates for link robots, a novel “T/R
splitting method” for subdivision, and feature-based search strategies. The T/R idea
is to give primacy to the translational (T) components, and perform splitting of rota-
tional components (R) only at the leaves of a subdivision tree. We implemented our
algorithm for a 2-link robot with 4 degrees of freedom (DOFs). Our implementation
achieves real-time performance on a variety of nontrivial scenarios. For comparison,
our method outperforms sampling-based methods significantly. We extend our 2-link
planner to thick link robots with little impact on performance. Note that there are no
known exact algorithms for thick link robots.

This work is supported by NSF Grants CCF-0917093, II1S-096053, CNS-1205260, EFRI-
1240459, and DOE Grant DE-SC0004874.

Z.Luo (X) - C. Yap
Department of Computer Science, New York University, New York, NY, USA
e-mail: z1562@nyu.edu

C. Yap
e-mail: yap@cs.nyu.edu

Y.-J. Chiang
Department of Computer Science and Engineering, New York University, Brooklyn, NY, USA
e-mail: chiang@nyu.edu

J.-M. Lien
Department of Computer Science, George Mason University, Fairfax, VA, USA
e-mail: jmlien@cs.gmu.edu

© Springer International Publishing Switzerland 2015 353
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_21

354 Z.Luo et al.

Keywords Exact algorithms - Subdivision algorithms « Motion planning - Soft
predicates - Resolution-exact algorithms * Link robots

1 Introduction

Algorithmic motion planning is a major topic in robotics. In the last 30 years, many
techniques have been developed. Divergent paths have been taken by practical robot-
icists and theoretical motion planners. There are three main approaches to algorith-
mic motion planning: exact, sampling and subdivision approaches [12]. The exact
approach has been developed by Computational Geometers [6] and in computer alge-
bra [2]. The correct implementation of exact methods is highly non-trivial because
of numerical errors. The sampling approach is best represented by Probabilistic
Roadmap (PRM) [8] and its many variants (see [19]). It is the dominant paradigm
among roboticists today. Subdivision is one of the earliest approaches to motion
planning [4]. Recently, we have revisited the subdivision approach from a theoreti-
cal standpoint [20, 22]. The present work continues this line of development.

Worst-case complexity bounds in motion planning are too pessimistic and ignore
issues like large constants, correct implementation of primitives, and adaptive behav-
ior. Roboticists prefer to use empirical criteria to measure the success of various
methods. For instance, Choset et al. [5, pp. 197-198, Fig.7.1] noted that sampling
methods (but not exact or subdivision methods) “‘can handle” planning problems for a
certain! 10 degrees of freedom (DOFs) planar robot. It roughly means that sampling
methods for this robot could terminate in reasonable time on reasonable examples.
Of course, this is a far cry from the usual theoretical guarantees of performance. In
contrast, not only there are no exact algorithms for this robot, but the usual exact tech-
nique of building the entire configuration space is a non-starter. Likewise, standard
subdivision methods would frequently fail on so many degrees of freedom. It is sug-
gested [5, p. 202] that the current state of the art PRM-based planners “can handle”
5- to 12-DOF robots; subdivision methods may reach medium-DOF robots (say, 4 to
7 DOFs). According to Zhang et al. [23], there are no known good implementations
of exact motion planners for more than 3 DOFs. On the other hand, their work [23]
shows that subdivision methods “can handle” 4- to 6-DOF robots, including the gear
robot that has complex geometry.

The empirical evidence described in the previous paragraph challenges us to
come up with a “theoretical response”: can we design theoretical algorithms that
are practical and which roboticists want to implement? Our answer may be a little
surprising: the answer is yes, but we do not come down on the side of exact algo-
rithms. The three approaches (sampling, subdivision and exact) provide increasingly
stronger algorithmic guarantees. So the above empirical observations about their
relative abilities is not surprising. Barring other issues, one might think we should

IThis robot was treated in Kavraki’s thesis [9] but its appearance seems to go back at least to
Barraquand and Latombe [1].

Resolution-Exact Algorithms for Link Robots 355

use the strongest algorithmic method that “can handle” a given robot. Nevertheless,
we suggest [20, 22] that subdivision is preferable to both exact and sampling meth-
ods for two fundamental reasons. First, robotic systems (sensors, actuators, physical
constants,> mechanical dimensions, environment, etc.) are inherently approximate.
Exact computation makes little sense in such a setting, while subdivision appear
to naturally support approximation. But to systematically design approximate algo-
rithms, we need a replacement for the standard exact model. We introduced the notion
of soft-predicates as the basis of an approximate computational model. Second, the
difficulty of sampling methods with the halting problem is a serious issue in the
form of “narrow passage problem.” Intuitively, researchers realize that subdivision
can overcome this (e.g., [23]), but there are pitfalls in formulating the solution: the
usual notion of “resolution completeness” is vague about what a subdivision planner
must do if there is NO PATH: one solution may reintroduce the halting problem, while
another solution might require exact predicates. To avoid the horns of this dilemma,
we introduce the concept of resolution-exactness. Taken together, soft predicates
and resolution-exactness, free us from exact computation and the halting problem.
They lead to new classes of planning algorithms that are not only theoretically sound,
but also practical.

Algorithms that provide resolution exactness promise to recover all the practical
advantages of the PRM framework, but with stronger theoretical guarantees. How-
ever, many challenges lie ahead to realize these goals. We need to test some of the
conventional wisdom of roboticists cited above. Is it really true that subdivision is
inherently less efficient than sampling methods? This is suggested by the state-of-art
techniques, but we do not see an inherent reason. Is randomness the real source of
power in sampling methods? There is some debate among roboticists on this point
(cf. LaValle et al. [11] and Hsu et al. [7]). We feel that the current limit of 6 DOFs
of subdivision algorithms is a desired barrier to cross

Contributions of this Paper. With the foundation of resolution-exactness and soft
predicates in place [20, 22], we need to develop techniques for designing such algo-
rithms. The present paper contributes to this goal. We focus on techniques for the
class of articulated robots. Note that even for a 2-link robot with 4 DOFs, the naive
splitting of configuration boxes into 2* = 16 is already unacceptable. It is also clear
that any such technique must be empirically supported by implementations. We make
several contributions in this paper

(A) Soft-predicates for link robots. As envisioned in [20], soft-predicates can exploit
a wide variety of techniques that trade-off ease of implementation against effi-
ciency. In this paper, we introduce soft-predicates based on the notion of length-
limited forbidden angles for link robots.

(B) A “T/R Splitting” technique based on splitting translational and rotational
degrees of freedom in different phases. Consider a freely translating k-link
planar robot with k + 2 DOFs. The naive subdivision would split each box into
2k+2 children; already for k = 2 or 3, this has little chance of being practical.

2 All constants of Physics have at most 8 digits of accuracy. The speed of light is an exception: it is
exact, by definition.

356 Z.Luo et al.

An idea [20] is to consider two regimes: configuration boxes are originally in
the “large regime” in which we only split the translational degrees of freedom.
When the boxes are sufficiently small, in the “small regime”, we split the angu-
lar degrees of freedom. But this idea only delays the eventual 2T2-way splits.
We now take this idea to the limit: we perform the angular split only once, at
the level just before the leaves. This turns out to be a winner.

(C) Extensions: Subdivision algorithms are typically easier to extend than exact
algorithms. For instance, let each robot link be thickened by taking the
Minkowski sum of a line segment with a disc of radius 7 > 0. We say the
link is thick when t > 0. We give a simple heuristic implementation for thick
robots which shows little performance penalty. Note that there are no exact
algorithms known for such robots. Another easy extension (not implemented)
of our 2-link robot is to a k-spider robot. This is easy because the rotational
degree of freedom of each of the links are mutually independent.

(D) We implemented a 2-link robot (with 4 DOFs) in C/C++, and our experi-
ments are extremely encouraging: our planner can solve a wide range of non-
trivial instances in real time. Unlike sampling-based planners, we can terminate
quickly in case of NO-PATH, and our algorithm does not need any tuning para-
meters such as the number of samples, or cut-off bounds. To evaluate our
approach further, we also compared with some probabilistic sampling algo-
rithms (PRM [8], Gaussian-PRM [3] and RRT [10]) implemented in OMPL
[18]. Preliminary experiments indicate that our subdivision solution outper-
forms these significantly. Our code and datasets are freely distributed with the
Core Library,’ where various parameter settings for the experiments on
some highly non-trivial instances are reproducibly encoded in the Makefile tar-
gets. Images of such instances are given in the Appendix of the full paper [15].
A video clip showing the animation of one such resulting path is available.*

2 Preliminaries

The basic motion planning problem is this [12]: Let R be a fixed robot living in R*
(k = 2, 3). It defines a configuration space Cspace = Cspace(Ro). We may5 assume
Cspace(Ro) € R4 if R has d DOFs. For any obstacle set £2 C R¥, we obtain a
corresponding free space Cfree = Crree(§2) S Cspace. The basic (exact) motion
planning problem for Ry is thus: the input is

I'=(£2,a,B, By) (D

3http://cs.nyu.edu/exact/core/download/core/.
“http://cs.nyu.edu/exact/gallery/2link/2link.html.

S1tis standard to identify Cypace (Ro) with a subset X C R. The topology of Cypace (Ro) is generally
different from that of X. In the case of k = 2, the correct topology is easy to simulate since S! may
be regarded as an interval with the endpoints identified.

http://cs.nyu.edu/exact/core/download/core/
http://cs.nyu.edu/exact/gallery/2link/2link.html

Resolution-Exact Algorithms for Link Robots 357

where 2 C RFisa polyhedral set, By € Cypace is a region-of-interest, and «, B €
Cspace are start and goal configurations. We want to find a path in By N\ C g, from a
to B; return NO-PATH if no such path exists. An algorithm for this problem is called
an (exact) “planner”.

Fundamentals of Our Subdivision Approach. Our subdivision approach includes
the following three fundamental concepts (the details are given in the Appendix of
the full paper [15]):

e Resolution-exactness: this is our replacement for a standard concept in the subdi-
vision literature called “resolution completeness”: Briefly, a planner is resolution-
exact if there is a constant K > 1 such that if there is a path of clearance > Ke,
it will return a path, and if there is no path of clearance ¢/K, it will return NO-
PATH. Here, ¢ > 0 is an additional input parameter to the planner, in addition to
the normal parameters.

e Soft Predicates: we are interested in predicates that classify boxes. Let OR? be
the set of closed axes-aligned boxes in RY. Let C : RY — {+1,0, —1} be an
(exact) predicate where +1, —1 are called definite values, and O the indefinite
value. We extend it to boxes B € [R? as follows: for a definite value v €
{+1, -1}, C(B) = vif C(x) = v for every x € B. Otherwise, C(B) = 0. Call
C: ORY — {+1,0, —1} a “soft version” of C if whenever 5(8) is a definite
value, C (B) = C(B), and moreover, if for any sequence of boxes B; (i > 1) that
converges monotonically to a point p, C(B;) = C(p) for i large enough.

e Soft Subdivision Search (SSS) Framework. This is a general framework for a
broad class of motion planning algorithms, in the sense that PRM is also such a
framework. One must supply a small number of subroutines with fairly general
properties in order to derive a specific algorithm. In PRM, one basically needs a
subroutine to test if a configuration is free, a method to connect two free config-
urations, and a method to generate additional configurations. For SSS, we need
a predicate to classify boxes in configuration space as FREE/STUCK/MIXED, a
method to split boxes, and a method to test if two FREE boxes are connected
by a path of FREE boxes, and a method to pick MIXED boxes for splitting. The
power of such frameworks is that we can explore a great variety of techniques and
strategies. This is critical for an area like robotics.

Link Robots. In our previous work [20], we focused on rigid robots. In this work,
we look at flexible robots; the simplest such examples are the link robots. Lumelsky
and Sun [13] investigated planners for 2-link robots in R? and R3. Sharir and Ariel-
Sheffi [16] gave the first exact algorithms for planar k-spider robots.

By a 1-link robot, we mean a triple Ry = (Ao, A1, £) where Ag and A are names
for the endpoints of the link, and £ > 0 is the length of the link. Its configuration space
isSEQ2) =RZ x SL.Ify = (x,y,0) € SE(2), then R [y] € R? denote the line
segment with the Ag-endpointat (x, y) and the A{-endpointat (x, y)+£(cos 6, sin9).
Call R[y] the footprint of Ry at y. Also, Ag[y], A1ly] € R? denote the endpoints
of Ri[y].

For k > 1, we define a k-link robot Ry recursively: Ry will have k + 1 named
points: Ag, A1, ..., Ax. We have defined R;. For k > 2, Ry is a pair (Rx—1, Lg)

358 Z.Luo et al.

Ay

Fig. 1 Some link robots

where Ly = (X, Ag, £x), X is a named point of Ry_1, Ay is the new named
point, and £, > O is the length of the kth link. The configuration space of Ry is
Cspace(Ri) = R? x (S l)k , with 2 translational DOFs and k rotational DOFs. See
Fig. 1 for some examples of such robots (k-chains and k-spiders).

We define the footprint of Ry: Let y = (y',60k) € Cspace(Rr) where y' =
(x,y,01,...,6k—1). The footprint of the kth link is L[y], defined as the line segment
with endpoints X[y'] and Ar[y] := Xi[y'] + £i(cos b, sin6;). The footprint
Ri[y]is the union Ry _1[y'1U L[y].

We say y is freeif Ry[y1N$2 = @. Asusual, Cree(Rr) € Cypace (Ri) comprises
the free configurations. The clearance of y is defined as C€(y) = Sep(Ri[y], £2).
Here, Sep(X,Y) := inf {|lx — y|| : x € X, y € Y} denotes the separation of two
Euclidean sets X, Y C RZ.

Feature-Based Approach. Our computation and predicates are “feature based”
whereby the evaluation of box primitives are based on a set $(B) of features associ-
ated with the box B.

Given a polygonal set £2 C R?, the boundary 32 may be subdivided into a unique
set of corners (points) and edges (open line segments), called the features of £2.
Let @ (£2) denote this feature set. Our representation of f € @ (£2) ensures this local
property of f: for any point q, if f is the closest feature to q, then we can decide if q
is inside §2 or not. To see this, first note that if f is a corner, then ¢ is outside £2 iff g
is convex corner of £2. So suppose that f is a wall. Our representation assigns an ori-
entation to f such that g is inside £2 iff g lies to the left of the oriented line through f.

3 The T/R Splitting Method

The simplest splitting strategy is to split a box B € R? into 2¢ congruent subboxes.
This makes sense for a disc robot, but even for the case of Cypace = SE(2), this strat-
egy is noticeably slow without additional techniques. In [20], we delay the splitting
of rotational dimensions, but the problem of 23 = 8 splits eventually shows up. In

Resolution-Exact Algorithms for Link Robots 359

this paper, we push the delaying idea to the limit: we would like to split the rotational
dimensions only once, at the leaves of the subdivision tree when the translational
boxes have radius at most €. Moreover, this rotational split can produce arbitrarily
many children, depending on the number of relevant obstacle features. Intuitively,
reducing the translational box down to ¢ for this technique is not severely inefficient
because there are only 2 DOFs for translation. Later, we introduce a modification.

The basis for our approach is a distinction between the translational and rota-
tional components of Cspqc.. Note that the rotational component is a subspace of
a compact space (S1)¥, and thus it makes sense to treat it differently. Given a box
B C Cspace(Ry), we write B = B' x B" where B' € R? and B" C (S)* are
(respectively) the translational box (t-box) and rotational box (r-box) correspond-
ing to B.

Forany box B C Cypace(Ri), letitsmidpoint m p = m(B) and radiusrg = r(B)
refer to the midpoint and radius of its translation part, B. Suppose the rotational part
of B is given by B = [[*_,[6; % 61. ~

Suppose we want to compute a soft predicate C(B) to classify boxes B C
Cspace (Ri). F~ollowing our previous work [20,~21], we reduce this to computing
a feature set ¢p(B) C @ (£2). The feature set ¢(B) of B is defined as comprising
those features f such that

Sep(mp, f) <rp+ro)

where rg is farthest reach of the robot links from its base (i.e., Ag). We say B is
empty if #(B) is empty but #(B1) is not, where By is the parent of B. We may
assume the root is never empty. If B is empty, it is easy to decide whether B is FREE
or STUCK: since the feature set a(Bl) is non-empty, we can find the f] € 5(31)
such that Sep(mp, f1) is minimized. Then Sep(mp, f1) > rp, and by the above
local property of features, we can decide if m p is inside or outside §2. Here then is
our (simplified) Split(B) function:

Split(B):
If B is empty,
Determine if B is free or stuck
Elif “r(B) > &”
T-Split(B)
Else
R-Split(B)

Here, T-Split(B) splits only the translational component B (the rotational com-
ponent remains the full space, B” = (S")¥). Similarly, R-Split(B) splits only B
and leaves B’ intact. The details of R-Split(B) are more interesting, and is taken up
in the next section.

Modified T/R Strategy. A possible modification to this T/R strategy is to replace
the criterion “r(B) > ¢&” of Split(B) by “r(B) > ¢ and |¢(B)| > ¢”, for some

360 Z.Luo et al.

(small) constant c. For instance if |¢~5(B)| = 2, we might be in a corridor region and
it seems a good idea to start to split the angles. The problem with this variation is
that the R-Split(B) gives only an approximation of the possible rotational freedom
in B; if no path is found, we may have to split B’ again, in order to apply R-Split
to the children of B. This may render it slower than the simple T/R strategy. As our
experiments show, a choice like ¢ = 4 is a good default.

4 Soft Predicate for Rotational Degrees of Freedom

We design the rotational splitting R-Split(B) routine. Recall that this amounts to
splitting B" (leaving B! intact). First assume the simple case where Ry is a k-spider.
In this case, each link of the robot is independent, so it suffices to consider the case
of one link (R}). Thus B” < S!. If this link has length £ > 0, then R-Split(B)
splits the full circle S! into a union of free angular intervals. The number of such
free angular ranges is equal to the number of features in ¢(B) within distance £ from
m(B).

Use the following convention for closed angular ranges: if 0 < o] < ay <
2m,then[ay, ar] (= {o:a) <a <opland[op, o] = {x:0<a <ajor ap <
a < 2m}.Inany case, if [0, @’] is an angular range, we call « (resp., «”) the left (resp.,
right) stop of the range.

For p, g € R?, let Ray(p, q) denote the ray originating at p and passing through g,
andletd(p, q) € S! denote its orientation. By convention, the positive x- and y-axes
have orientations 0 and /2, respectively. If P, Q C R? are sets, let Ray(P, Q) =
{Ray(p,q) :p€ P,q € O}

The main concept we need is the following: for £ > 0, the length-limited (or
£-limited) forbidden range of P, Q is

Forbe(P, Q) := {0(p,q) : p€ P,qe Q,llp—qll <{}.

If P N Q is non-empty, then Forb, (P, Q) = S'. Hence we will assume P N Q = @.
We may also assume P, Q are closed convex sets.

Our main task is to provide a compact computational formula for the set
Forby (P, Q) where P is a box and Q is an edge feature. Without suitable insight,
this task can be bogged down in numerous cases, and hard to verify. We present a
simplified elegant analysis, initially by considering the case £ = co. We simply write
Forb(P, Q) for Forbo (P, Q). Call Ray(p,q) € Ray(P, Q) a common tangent
ray if the line through Ray(p, ¢g) is tangential to P and to Q. Such a ray is sepa-
rating if P and Q lie on different sides of the line through Ray(p, g). If P, Q are
not singletons, then there are four common tangent rays, and exactly two of them
are separating. We call a separating common tangent ray a left stop (resp., a right
stop) of (P, Q) if P lies to the right (resp., left) of the ray. Now it is not hard to see
that Forb(P, Q) = [0(p1, q1), 0(p2, q2)] where Ray(p1, q1) and Ray(p2, q2) are
the left and right stops of (P, Q), as illustrated in Fig. 2.

Resolution-Exact Algorithms for Link Robots 361

T
1
i
W Tey
——— o o ‘
KEY: | ‘
H(s) C ‘
N W) T syl v s I oy HENHE)
sl 9 i
® Corner (C) (Ia) o (11a) :
— Side (s) :] U
) vertex (v) : TN\
; i)
H(s) Haltspace (H(s)) g U s C
B C i (1)
S S < S A
b s v s
() |/)
v

Fig. 3 Forbidden range Forb(B’, W) between box B’ and wall W

We apply these observations to the case where P is a translational box B’ and Q
is a wall W.If s is a side of B, let H (s) denote the closed half-space bounded by
s and that has empty intersection with the interior of B’. Up to symmetry, there are
three cases as seen in Fig. 3:

(I) B! has a unique side s such that W C H (s).
(Il) B’ has two unique sides s and s’ such that W € H (s) N H (s).
(IIT) B! has two sides s and s" such that W € H (s) U H (s"), but is not (I) or (II).

We can now easily compute the forbidden range (refer to Fig. 3):
[6(v, C), 0V, C"] if Case (Ia) or (I1a),

Forb(B', W) = } [6(v, C),0(v', C)] if Case (Ib) or (IIb), 3)
[0(v, C), 0(v, C] if Case (III).

362 Z.Luo et al.

Next, we must account for the length £. The initial observation is that £-limited
forbidden ranges in one of the two forms

Forby (v, W) or Forby (s, C) @)
are straightforward to compute:

Forb, (v, W) = Forb(v, D¢(v) N W),
Forby (s, C) = Forb(D,;(C) Ns, C).

where Dy (v) and Dy (C) are the discs of radius ¢ centered at v and C, respectively.
Subsets of S which are expressed in the form (4) are called cones. The cone decom-
position of a subset F € S' amounts to writing F as the union of a finite number
of such cone sets. For instance, subcase (Ia) in the Eq. (3) has a cone decomposition
comprised of two cones:

Forb,(B', W) = [0 (v, C), 8 (v', C")] = Forb, (v, W) U Forb, (s, C").

The following theorem shows that such a cone decomposition exists in the other
cases as well:

Theorem 1 Any £-limited forbidden range Forby (B', W) has a cone decomposition
comprising at most three cones.

5 Proof of Theorem 1

We use the cases in the formula (3) for Forb(B?, W) (refer to Fig. 3 for notation).

CASE (I) There is a unique side s of B’ such that the wall W lies in the half-
space H (s). We distinguish two subcases: let z denote the intersection of the line
through W and line through s. If z lies outside s, then we are in subcase (Ia);
otherwise we are in subcase (Ib). The situation where z is undefined because W
and s are parallel is treated under subcase (Ia).

First consider subcase (Ia) where C, C’ are distinct corners of W. Note that
Forb(B!, W) = [0(v, C), 8(v', C)] can be written as the union of two angu-
lar ranges,

Forb(B!, W) = Forb(s, C") U Forb(v, W). 5)

However, it could also be written as
Forb(B!, W) = Forb(s, C) U Forb(v', W). (6)

Can we extend these two representations of Forb(B’, W) into a cone decompo-
sition for Forb, (B?, W)? What if we simply replace Forb(s, C’) by Forby (s, C"),

Resolution-Exact Algorithms for Link Robots 363

SUBCASE (Ia) SUBCASE (Ila)

Fig. 4 Length-limited forbidden zone analysis

etc? It turns out that only one of the two extensions is correct. Recall that sub-
case (Ia) is characterized by the fact that intersection point z lies outside s; wlog,
assume that z lies to the left of s as in Fig. 4. Suppose @ € Forb(B’, W). Then (5)
implies that there exists a pair

(a,b) e s x CYU (v x W)
such that 6(a, b) = «. Similarly, (6) implies that there exists a pair
@,b)ye(sxC)U@® x W)

such that 6 (a, b) = «. One such angle is illustrated in Fig. 4 with (a, b) = (v, b)
and (a’,b") = (a’, C). It is easy to verify that this subcase implies

la — bl < lla"—b'|l
It follows that
a € Forby(B', W) <= « € Forby(s, C’) U Forb, (v, W).

In other words, the representation (5) (but not (6)) extends to the £-limited for-
bidden angles:

Forby(B’, W) = Forby (s, C') U Forb, (v, W). 7)

Note that in case W and s are parallel, both representations (5) and (6) are equally
valid.

It remains to treat subcase (Ib), we have C = C’ and so the preceding argument
reduces to Forbg (B!, W) = Forb,(C,).

CASE (II) First consider subcase (Ila) where C, C’ are distinct corners of W. The
analysis of subcase (Ia) can be applied twice to this case, yielding

364 Z.Luo et al.
Forb, (B', W) = Forb, (v, W) U Forb, (s, C") U Forb,(s’, C’). (8)

For subcase (IIb), we have C = C’ and so Forby(v, W) can be omitted. Thus
Forby (B*, W) = Forby (s, C) U Forby (s’, C).
CASE (ITII) This is simply

Forb, (B!, W) = Forb, (v, W). 9)

This completes our proof of Theorem 1.

6 Resolution Exactness of Our Algorithm

The cone decomposition leads to a simple formula for computing Forb, (B*, W).
We are ready to describe our R-Split(B) operator: Consider the set @ (B) :=
st \ (Ul Forb, (B!, Wl-)) where W; range over all walls with at least one corner in

¢(B). Write this set as the union of disjoint angular ranges
O(B) := AjUAyU---U Ag. (10)

Each B! x A; is called a configuration cell belonging to B, and let R-Splif(B)
denote the set of configuration cells belonging to B. Let B' x A and B' x A be two
configuration cells. We define these cells to be adjacent if B’ and B are adjacent
(as translational boxes) and A N A is non-empty. Motion planning is thus reduced to
searching in the adjacency graph of configuration cells.

The next lemma is about convergence and effectivity. Let |] R-Split(B) be the
union of the configuration cells in R-Split(B). Clearly, | J R-Split(B) € BNC free.
How good is | J R-Split(B) as an approximation of B N C f..? This is about effec-
tivity of our method and is answered in part(ii) of the lemma.

Lemma 1 (i)Let (B1, By, ...) beasequence of boxes in Cypqce Where B = Bit x S1
and B! converges to a point p as i — oo. Then | J R-Split(B;) converges to the set
(pxSHn C free, i.e., the free configurations with the base at p.

(ii) Let B = B' x S If y € B has clearance Cl(y) > r(B), then y €
|J R-Split(B)

Proof (1) is immediate. To see (ii), let y = (p,0) € B. We prove the contra-
positive. Suppose y ¢ |J R-Split(B). Then there is some p’ € B’ such that
y' = (p/, 0) is not free. But Sep(Ri[y], Ri[y']) < r(B"). This implies C£(y) <
r(B") =r(B). O

Theorem 2 Assume the T/R method for splitting and R-Split is implemented exactly
in our SSS Algorithm for a spider robot Ry. Then we obtain an resolution-exact
planner for Ry.

Resolution-Exact Algorithms for Link Robots 365

The proof follows the general approach in [20, 22]. Note if we implement
R-Split(B) by a conservative approximation with error that is bounded by r(B),
then we obtain a corresponding resolution-exact algorithm (but with larger constant
K). Furthermore, if the predicate for each box B is numerically approximated with
error at most 27" 5)_the resulting algorithm is still resolution-exact [20, 22]. In short,
exact computation is not necessary. For our present paper, machine accuracy seems
to be empirically sufficient for all our examples.

7 Extensions to Thick Links

We could extend the T/R method to spider and chain robots. The efficiency will be
minimally impacted in the case of spider robots, but this is less clear for chain robots.
In this paper, we implement an extension to links with thickness: each link is now
the Minkowski sum of a line segment with a disc of radius T > 0. Notice that there
are no known exact algorithms for thick link robots (except in the single link case
[17]). Let us now define the feature set 5(3) of a configuration box B to comprise
those features f such that

Sep(mp, f) <rp+ro+rT. (11)

This may be compared to the original criterion (2). When r(B) < &, we must
perform R-Split(B). This requires us to compute Forby ; (B, W), the £-limited
7-thick forbidden range of B’ and W, for various W’s. As in the thin case,
Forby - (B’, W) has a cone decomposition. This reduces to computing the thick cone
Forby . (v, W) (or Forby . (s, C), but this is similar). We can first compute the thin
cone Forby (v, W) = [a1, az]. Then we compute “correction angles” k1, k2 so that
Forby (v, W) = [a1 — k1, 02 + k]. There is one easy case: suppose a corner C
of W determines the angle «;. Then x| = arcsin(t/d) where d = |[v — C|. We
have implemented this extension, but as the results show, this has little impact on the
performance. In a followup work, we will present the complete analysis of thick link
robots.

8 Experimental Results

We have implemented in C/C++ the planner for 2-link robots, both without and with
thickness, as described in this paper, and conducted experiments. The platform for
the experiments was a workstation with Linux OS, two 3 GHz Intel Xeon CPUs and
6GB of RAM.

366 Z.Luo et al.

Our code and datasets are freely distributed with the Core Library,® where
various parameter settings for the experiments on some highly non-trivial instances
are reproducibly encoded in the Makefile targets. Here we present results on some
of these input obstacle sets: egl, eg2, eg5, egl0, and eg300. Each of these inputs
was represented by a set of polygons (not necessarily disjoint), with the dimension
of the global environment 512 x 512. For eg 300, we generated 300 triangles at
random; for other datasets, we generated polygons to form interesting and challenging
environments for robot planners. Images of these inputs are found in the Appendix
of the full paper [15]. Additional experimental results are reported in the Master
thesis [14] based on this paper.

For each obstacle set, Table 1 shows two statistics from running our planner: total
running time and the total number of tree boxes created. Each run has the parameters
(L1, Ly, T)where L, L, are the lengths of the 2 linksand T € {B, D, G} indicates’
the search strategy (B = BreadthFirstSearch (BFS), D = Distance + Size, G =
GreedyBestFirst (GBF)). In the left table of Table 1, we pick two variants of T/R
splitting: “Simple T/R” means applying R-Split when the box size is < €, and
“Modified T/R” means applying R-Split when the feature set size is small enough
(controlled by the parameter ¢ mentioned at the end of Sect. 3). The choice ¢ = 4 is
used here.

We see that GBF and “Distance + Size” are comparable to each other, and always
faster than BFS. Although “Modified T/R” was typically a winner, “Simple T/R” also
performed well—the bottom line is that the T/R splitting method, be it “Modified
T/R” or “Simple T/R”, gives a huge performance speed-up. In the right table of
Table 1, we compare the performance of robots with various thickness values, where
we always used “Modified T/R” with ¢ = 4. As can be seen, supporting thickness >0

Table 1 Statistics of running our algorithms

Obstacle|[robot Modified T/R. Simple T/R
(input) ||(links) time (ms)|boxes |[time (ms)|boxes
egl (50,80,G)[[198.0 8232 (|198.7 8514
(50,80,D)|[241.1 10886(222.3 10042 Tobot & in
N . put
50,80,B) |(486.1 29615(|444.0 28802 f . .
e 5225'8(] G>) 421) I 2::(]; =510 ,‘;ﬁ)q (links) time (ms)|boxes |[time (ms)|boxes
(85.80jD) 394.5 21400|/367.4 20060| [(50,80,G) thickness: 5 thickness: 6 (¥)
(85:80;]3) 681.8 53393|575.4 18851 | legl,e=4 280.4 [95880(|1368.5 |62080
o5 (60,50,G)[655.1 55731([638.2 52617 |(85:80,G) thickness: 0 thickness: 6
(60,50,D)||751.8 |25007||759.4 |27185 | |egZc=2 ||588.7 |35302]]1618.2 67023
(60,50,B) ||806.6 40007/(803.9 30868 (43,43,G) thickness: 0] thickness: 9
cgl0 ||(65,80,G)|[120.6 [0060 [[129.7 [9060 | |¢8P.€=2 ||2723.6 |84867||2307.9 |69774
(65,80,D)||95.2 7380 ||95.2 7380 (45,45,G) thickness: 0 thickness: 18
(65.80B)|[160.6 [15434)/160.7 |15434 | |egl0.€=2 |518.3 [28129]|503.9 |19515
e300 |[(40,30,G)|[256.6 |6132 ||250.6 __ |6133 (40,30,G) thickness: 0 1] thickness: 7 (¥)
(10.50.0)||267.6 |6376 ||262.6 |6337 | |e300,e=2 ||9449 [19297||2350.9 33248
(40,30,B) ||3125.0 52318(|2865.6 49944

In the left table, all instances are with thickness 0 and € = 4. In the right table, the thickness and €
values are explicitly shown. The instances of “No Path Found” are marked with “(*)”

Shttp://cs.nyu.edu/exact/core/download/core/.
"Note that a random strategy is available, but it is never competitive.

http://cs.nyu.edu/exact/core/download/core/

367

Resolution-Exact Algorithms for Link Robots

ploq ut
uMmoys os[e aIe spoyjow paseq-Jurdures ¢ oy Suowre 7 1599 Y ‘1oseIRP OB 104 *, 7 01 10dsar yiim sown Sutuuni Ay Jo UONBIAIP pIepuels ay) st (LS pue ‘(sur)
SPUODISI[[IW UL SUNI [¢ IOAO W) SUIUUNI 9FLIOAR JY) ST [‘SUNI [¢ ISAO JJRI $S3200S Y] SI § ‘sojdures Jo raquunu 95eIoAR) SI A ‘Spoylowl paseq-gurdures
9 10, “(I9Y puUR 219y} Y10q P[Oq UI UMOYS) | S[qE, JO 9[qe) 3] oY) UI USAIS 90UR)SUI }$aq Y} ST ((SWr) SPUodSSI[[Iw ut “ 7) awry Juruuni ay) ‘yoeordde mo 104

08¥°€l 1S1°v¢ 000°[L9¥01 68711 €50°CE 000°L 1L86| ¥8LTI S88'ST 000°L 8Cl¢ 9°9¢C 00€8
191 9L1 000°L 9L9 691 €LT 000°[T0L| €LYLI 6806 000°L 80¢ TS6 0180
9I1°'8E | S98°89 0IL0 128°CL €66°€C| €IL°901 91S'0| 90S°S0T 8SLTE L96°€8 185°0 €LSS T'8¢9 %o
SI91 8EVe 000°L 1€6 SELL 06€€ 0001 076 L6S18 | 086°10C 0IL0 1€S9 VLIt (&8
(424" 14144 000°[LT9S 8069 Y19 000°[090°11 rL6 | 6SS°61 000°L L9011 0°861 132
arLs V) S N aLs £ S N aLs L S N £ (andur)
INdd-uelssnes Ndd LY smQ | 9[3eISqO

0 SSOUIY} YIIM $10qOI YUI[-Z J0F ‘A J-UeIssneD) pue NN ‘LY spoyeuw paseq-Surjdures ay) yirm yoeoidde ano jo soueunrojrad oy Sunedwo)) g d[qel,

368 Z.Luo et al.

is quite easy (in fact quite easy to implement as well), with almost no performance
penalty—for some instances (eg5 and egl0) the performance of thickness >0 was
even faster (since thicker robots might result in some boxes to be classified as stuck
earlier)! This clearly shows the power of our soft predicates under the resolution-
exactness framework.

In Table2, we compare the performance of our planner for 2-link robots (with
thickness 0) with those of sampling-based methods RRT, PRM and Gaussian-PRM
(PRM planner with GaussianValidStateSampler) implemented in OMPL [18] (The
Open Motion Planning Library) version 0.14.1. For these sampling-based methods,
the time limit for solving motion planning problem was set to 300 seconds, and all
planner specific parameters were using the OMPL default values. (Note that our plan-
ner only has a parameter € (for “Modified T/R” we always used ¢ = 4)—therefore,
in our method and OMPL the default parameters were used in all experiments). We
report in Table 2 the average results over 31 runs for these sampling-based methods,
where we see that overall Gaussian-PRM had the highest success rate within the
given running time, while RRT performed the worst. As can be seen, our inputs were
very challenging for all these sampling-based methods, and our running times were
significantly faster than all these methods—For example, comparing with the best
running times of the three sampling-based methods, for egl (198.0 vs. 2484 ms) we
were 12.55 times as fast, for eg2 (367.4 vs. 3390ms) we were 9.23 times as fast,
for eg5 (638.2 vs. 68,865ms) we were 107.91 times as fast, and for eg300 (256.6
vs. 15,885 ms) we were 61.91 times as fast. These results show that our new algo-
rithms, in addition to providing stronger theoretical guarantees, also achieve superior
performance gains in practice.

9 Conclusions

We hope that the focus on soft methods will usher in renewed interest in theoretically
sound and practical algorithms in robotics, and more generally in Computational
Geometry. Our experimental results for link robots offer hopeful signs that this is
possible.

Our basic SSS framework (like PRM) is capable of many generalizations for
motion planning. One direction is to consider multiple-query models; another is
to exploit the stuck boxes for faster termination in case of NO-PATH. Extensions
to kinodynamic planning offer a chance at practical algorithms in this important
area where no known theoretical algorithms are practical. Much theoretical and
complexity analysis remains open.

It is clear that the theory of soft subdivision methods can be generalized and
extended to many traditional problems in Computational Geometry. But it can also
extend to new areas that are currently untouchable by our exact computational mod-
els, especially those defined by non-algebraic continuous data.

Resolution-Exact Algorithms for Link Robots 369

Appendices

The full paper [15] has 2 appendices: Appendix I describes the experimental setup
including screen shots of the obstacle sets in our experiments. Appendix II provides
the basic theory of our Soft Subdivision Search (SSS) framework.

References

12.
13.

14.

15.

16.

17.

. Barraquand, J., Latombe, J.-C.: Robot motion planning: a distributed representation approach.

Int. J. Robot. Res. 10(6), 628-649 (1991)

Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, 2nd edn. Algorithms
and Computation in Mathematics. Springer, Berlin (2006)

Boor, V., Overmars, M.H., van der Stappen., F.: The Gaussian sampling strategy for probabilistic
roadmap planners. In: Proceedings of the IEEE Robotics and Automation, vol. 2, pp. 1018—
1023. IEEE (1999)

Brooks, R.A., Lozano-Perez, T.: A subdivision algorithm in configuration space for findpath
with rotation. In: Proceedings of the 8th International Joint Conference on Artificial intelli-
gence, vol. 2, pp. 799-806. Morgan Kaufmann Publishers Inc., San Francisco (1983)

Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.:
Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston
(2005)

Halperin, D., Kavraki, V., Latombe, J.-C.: Robotics. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, Chapter 41, pp. 755-778. CRC Press
LLC (1997)

Hsu, D., Latombe, J.-C., Kurniawati, H.: On the probabilistic foundations of probabilistic
roadmap planning. Int. J. Robot. Res. 25(7), 627-643 (2006)

Kavraki, L., Svestka, P., Latombe, C., Overmars, M.: Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566-580 (1996)
Kavraki, L.E.: Random Networks in Configuration Space for Fast Path Planning. PhD thesis,
Stanford University (1995)

Kuffner, Jr. J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path plan-
ning. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation
ICRA00, vol. 2, pp. 995-1001. IEEE (2000)

. LaValle, S., Branicky, M., Lindemann, S.: On the relationship between classical grid search

and probabilistic roadmaps. Int J. Robot. Res. 23(7/8), 673—-692 (2004)

LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
Lumelsky, V., Sun, K.: A unified methodology for motion planning with uncertainty for 2d and
3d two-link robot arm manipulators. Int. J. Robot. Res. 9, 89-104 (1990)

Luo, Z.: Resolution-exact planner for a 2-link planar robot using soft predicates. Master thesis,
New York University, Courant Institute, January 2014. Master Thesis Prize (2014)

Luo, Z., Chiang, Y.-J., Lien, J.-M., Yap, C.: Resolution exact algorithms for link robots, 2014.
Full paper download with http://www.cs.nyu.edu/exact/doc/linkRobot2014.pdf or http://cse.
poly.edu/chiang/wafr14-full.pdf

Sharir, M., Ariel-Sheffi, E.: On the piano movers’ problem: IV. Various decomposable two-
dimensional motion planning problems. NYU Robotics Report 58, Courant Institute, New York
University (1983)

Sharir, M., O’D’tnlaing, C., Yap, C.: Generalized Voronoi diagrams for moving a ladder II:
efficient computation of the diagram. Algorithmica 2, 27-59 (1987). Also: NYU-Courant
Institute, Robotics Laboratory, No. 33, October (1984)

http://www.cs.nyu.edu/exact/doc/linkRobot2014.pdf
http://cse.poly.edu/chiang/wafr14-full.pdf
http://cse.poly.edu/chiang/wafr14-full.pdf

370 Z.Luo et al.

18. Sucan, 1., Moll, M., Kavraki, L.: The open motion planning library. IEEE Robot. Autom. Mag.
19(4):72-82 (2012). http://ompl.kavrakilab.org

19. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

20. Wang, C., Chiang, Y.-J., Yap, C.: On soft predicates in subdivision motion planning. In: 29th
ACM Symposium on Computational Geometry (SoCG’13), pp. 349-358 (2013). To appear
CGTA, Special Issue for SoCG’13

21. Yap, C., Sharma, V., Lien, J.-M.: Towards exact numerical Voronoi diagrams. In: 9th Proceed-
ings of the International Symposium of Voronoi Diagrams in Science and Engineering (ISVD),
Invited Talk, , Rutgers University, NJ, pp. 2-16. IEEE 27-29 June 2012

22. Yap, C.K.: Soft subdivision search in motion planning. In: Proceedings, Robotics Challenge
and Vision Workshop (RCV 2013). Best Paper Award, sponsored by Computing Community
Consortium (CCC). Robotics Science and Systems Conference (RSS 2013), Berlin, Germany,
27 June 2013. In arXiv:1402.3213v1 [cs.RO]. Full paper from: http://cs.nyu.edu/exact/papers/

23. Zhang, L., Kim, Y.J., Manocha, D.: Efficient cell labeling and path non-existence computation
using C-obstacle query. Int. J. Robot. Res. 27, 11-12 (2008)

http://ompl.kavrakilab.org
http://arxiv.org/abs/1402.3213v1
http://cs.nyu.edu/exact/papers/

Optimal Trajectories for Planar Rigid
Bodies with Switching Costs

Yu-Han Lyu and Devin Balkcom

Abstract The optimal trajectory with respect to some metric may require very many
switches between controls, or even infinitely many, a phenomenon called chattering;
this can be problematic for existing motion planning algorithms that plan using a finite
set of motion primitives. One remedy is to add some penalty for switching between
controls. This paper explores the implications of this switching cost for optimal
trajectories, using rigid bodies in the plane (which have been studied extensively
in the cost-free-switch model) as an example system. Blatt’s Indifference Principle
(BIP) is used to derive necessary conditions on optimal trajectories; Lipschitzian
optimization techniques together with an A* search yield an algorithm for finding
trajectories that can arbitrarily approximate the optimal trajectories.

1 Introduction

Consider an example problem, inspired by a problem from Mason [14]: amover wants
to move a refrigerator from one location and orientation to another. The refrigerator
is too heavy to move by lifting or pushing, but it can be lifted onto any of the four
legs at the corners of the square base and rotated. If there are no obstacles, what is
the fastest sequence of rotations (with time cost computed as the sum of the absolute
values of the angles rotated through)?

For some configurations (moving the refrigerator in a straight line), there exists
no optimal trajectory with a finite number of actions: for any trajectory with finitely
many switches, there is a faster trajectory with more switches, a phenomenon called
chattering. When chattering occurs, the refrigerator mover is required to run back and

This work was supported in part by NSF grant IIS-0643476.

Y.-H. Lyu (<) - D. Balkcom
Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
e-mail: yuhanlyu@cs.dartmouth.edu

D. Balkcom
e-mail: devin@cs.dartmouth.edu

© Springer International Publishing Switzerland 2015 371
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_22

372 Y.-H. Lyu and D. Balkcom

forth between legs of the refrigerator infinitely many times, rotating the refrigerator
through an infinitely small angle.

The chattering phenomenon is a fundamental problem in robot motion planning.
Sussmann showed that an extension of the well-known Dubins car [9] to include
bounds on angular acceleration leads to chattering [26]. Desaulniers showed that
chattering may occur if there are obstacles in the environment [8], even for systems
that are well-behaved without obstacles.

A natural approach to avoiding trajectories that switch frequently between con-
trols is to charge a fixed cost for switches. This fixed cost both avoids chattering, and
penalizes otherwise un-modeled costs (such as the cost of wearing out a switching
mechanism, or the time cost of running between legs in the refrigerator-mover’s prob-
lem). We give an approximately optimal trajectory for refrigerator mover’s problem
with switching costs in Fig. 1; this trajectory was generated by the algorithm we will
present in this paper. In the robotics community, the model of charging a fixed cost
for discontinuous switches between controls has been used in practice [2, 25], but
the implications of switching costs for optimal trajectories have perhaps not been
thoroughly explored.

The main contributions of this paper are:

1. Necessary conditions for optimal trajectories for rigid bodies in the plane in the
costly-switch model, i.e. Theorems 1 and 2.

2. Apractical algorithm that finds approximately optimal trajectories for rigid bodies
in the plane, with arbitrarily small additive error. This algorithm may also be
trivially adapted to the zero-switch-cost model in the case that chattering does
not occur.

Rigid bodies are building blocks for many models of robotic locomotion or manip-
ulation systems, and rigid bodies provide a good example for study of optimal tra-
jectories. We apply Blatt’s Indifference Principle (BIP) to show existence of optimal
trajectories, and to derive necessary conditions on these trajectories; for the simple
case of rigid bodies in the plane, analytical integration of certain differential equa-
tions of BIP is possible. We then show that Lipschitzian optimization techniques can
be applied to find trajectories between pairs of configurations, with arbitrarily small
error in both final configuration and time cost.

Fig. 1 An approximately up

optimal trajectory for a

refrigerator robot starting at

(=2, 0, 0), with unit cost for . Pl
switching between any pair -
of controls. The green line is
the control line

|
u
Start 3 Goal

Optimal Trajectories for Planar Rigid Bodies with Switching Costs 373

We admit that this paper is quite technical, and builds on a body of previous work
that is also quite technical. Nonetheless, we consider the costly-switch model to be
fundamental, and Lipschitzian optimization techniques appear to provide a powerful
approach to finding algorithms that provide guarantees of approximate optimality.

This paper extends work by Furtuna [10], which derived strong necessary condi-
tions for optimal trajectories for rigid bodies in the plane with zero switching cost,
but which did not provide algorithms to connect particular pairs of configurations,
with bounds on error. This paper also extends [28], which does provide algorithms for
the zero-switching-cost problem; however, these previous algorithms are inefficient
for single-source, single-destination problems. Finally, this paper extends our work
in [13], which derives some analytical solutions to simple versions of the costly-
switch model using other techniques.

Related Work. For some models of mobile robots in the plane, optimal trajectories
can be found analytically, including Dubins [7, 9], Reeds-Shepp [20, 24, 26] cars.
We and many other researchers have tried to generalize techniques (typically based
on Pontryagin’s Maximum Principle [19]), aiming to gain a greater understanding
of optimal motion for mobile robots [1, 4-6, 21, 22]. However, we are aware of
little work in the robotics community providing strong results on optimal trajectories
with a cost of switches; a notable exception is work by Stewart using a dynamic-
programming approach to find optimal trajectories with a costly-switch model [25].

The problem of costly switches has been studied in the optimal control community
with results dating back as far as the 1970s. One of the most powerful tools for
solving optimal control problems, Pontryagin’s Maximum Principle (PMP) [19],
does not appear to be the right tool to characterize optimal trajectories in the costly-
switch model due to the discontinuity with respect to time in the control and cost
functions. In [3], Blatt proposed a model in which the control set contains certain
primitives (a discrete set of actions), and there is some fixed cost associated with
switching between controls. Blatt characterized a set of necessary conditions for
optimal trajectories under this model; these necessary conditions are known as Blatt’s
Indifference Principle (BIP). Blatt showed that optimal trajectories always exist and
the number of actions must be finite. Blatt’s necessary conditions are similar to, but
weaker than, those provided by PMP; using BIP to solve an optimal control problem
is more challenging than using PMP in the cost-free-switch model. In Blatt’s model,
the control set is a discrete set, but other models have been proposed [11, 15, 16].

Although the costly-switch model was proposed in the *70s, no algorithms for find-
ing optimal trajectories in costly-switch model were proposed until the *90s [25, 27];
several algorithms have been developed recently [12, 30]. These recent approaches
are based on approximating the control function as a piecewise-constant functions,
and applying global optimization techniques to find optimal solutions. These algo-
rithms converge to optimal solutions as the number of iterations approaches infinity,
but cannot guarantee a bound of error within finite time. In this paper, we provide
a stronger result for a particular system; our algorithm guarantees a bound of error
within finite time, for the restricted problem of finding optimal trajectories of rigid
bodies in the plane.

374 Y.-H. Lyu and D. Balkcom

In the costly-switch model, due to the similarity between BIP and PMP, by adapt-
ing Furtuna’s analysis [10], we derive some general results that geometrically char-
acterize optimal trajectories for rigid bodies in the plane with costly switches. Based
on the necessary conditions for optimal trajectories, we also categorize optimal tra-
jectories into several types that are similar to Furtuna’s categorizations.

Although our conditions seem similar to Furtuna’s conditions, our conditions are
weaker due to the generality of the costly-switch model. We show that the problem of
finding optimal trajectories has two important parts: one is to determine an optimal
sequence of actions (the discrete structure of the trajectory), and the second is to
determine an optimal characteristic value H € R which in some sense parameterizes
the shape of the trajectory.

Model and Notation. We use ¢ = (x, y, 0) € SE(2) to denote a configuration, and
u = (vy, vy, w) € R3 to denote a control: x and y velocities in a frame attached to
the body (robot frame), and angular velocity. Let U be the control space containing a
finite number of primitives: constant-control actions. For example, one action might
be (vx, vy, w) = (1,0, 0), corresponding to driving in a straight line.

For a configuration g, if we apply a sequence of actions u € U" with a sequence
of durations t € R"., then the result is a configuration ¢’ = ¢g(qo, u, t) € SE(2),
where ¢ is a continuous function that integrates the control over time in the world
frame and then adds g to obtain the resulting configuration ¢’. Hence, a trajectory
can be represented as a pair of sequences (u, t).

We model the cost of control switches as a function C: U x U — R that depends
on the control applied before and the control applied after. Furthermore, we assume
that for any three controls u,, up, and u., the cost of switching satisfies the triangle
inequality, C(ug, up)+C (up, +uc) > C(ug, uc), to ensure that switching from u,, to
u. directly is always faster than switching to u. through other intermediate controls.
The cost of a trajectory is the summation of all durations and all switch costs of a
trajectory.

Problem statement: given a start configuration g, a final configuration gy, a
finite control set U, and a cost function C, find a trajectory (u, t) with the minimum
time cost, subject to g (g, u, t) =g .

2 Necessary Conditions of Optimal Trajectories

In this section, we will derive necessary conditions for optimal trajectories for rigid
bodies in the plane in the costly-switch model. Based on these necessary conditions,
we classify optimal trajectories into several classes.

2.1 Extensions of Previous Results

Due to the similarity between BIP and PMP, several results in [10] in the cost-free-
switch model can be extended to the costly-switch model by similar mechanisms.

Optimal Trajectories for Planar Rigid Bodies with Switching Costs 375

Hence, we list these results here and omit their proofs.

Theorem 1 Any optimal trajectory (W*, t*) with n actions in the costly-switch model
satisfies the following property: there exist four constants H > 0, k1, k2, and k3,
such that for any control u;.“, 1 < i < n, with the instantaneous velocity (vy, vy, w)
in the world frame when u; is applied at a configuration (x, y, 0), we have

kivy + kavy 4+ w(kiy — kox +k3) = H, whereki +k3 € {0, 1}. (1)

A trajectory (u, t) is called extremal, if there exist four constants H > 0, k1, kz,
and k3, such that Eq. 1 is satisfied. Equation 1 is virtually identical to the necessary
condition derived using PMP for the cost-free-switch problem, except that there is
no requirement that controls maximize the Hamiltonian H. Instead, H need only be
constant throughout the trajectory.

An extremal trajectory with constants H, ki, k2, and k3, is called a control line
trajectory, if k12 + k% = 1. An extremal trajectory with constants H, k1, kp, and k3,
is called a whirl trajectory, if k% + k% =0.

Control Line Trajectories. There is a nice geometric interpretation for Theorem 1
when k]2 + k% = 1, related to the control line interpretation in [10]. For a control line
trajectory (u, t), we define its corresponding control line, represented as (ky, ko, k3)
as a line in the plane with heading (ky, k7) and distance k3 from the origin. Now,
consider Eq. 1. The term kjv, + kov, becomes the translational velocity along the
vector (ki, k2) and the term k;y — kpx + k3 becomes the signed distance from the
reference point of the robot to the control line. By Corollary 1 in [10], when a
rotation is applied, the signed distance from the rotation center to the control line
is always H /w. Similarly, when a translation is applied, the dot product between
(k1, k2) and (vy, vy) mustbe H. See Fig. 2 for an (approximately) optimal trajectory
for an omni-directional vehicle with control lines in the cost-free-switch model and
in the costly-switch model. When the switch cost is introduced, optimal trajectories
tend to use fewer number of switches.

@ . (b)

Fig. 2 Trajectories for an omni-directional vehicle starting at (—3, —1). For the cost-free-switch
model, the optimal trajectory takes 5 actions. For the costly-switch model, the (approximately)
optimal trajectory takes 3 actions. Green lines are control lines. a Cost-free-switch model. b Costly-
switch model with switch cost 1

376 Y.-H. Lyu and D. Balkcom

Whirl Trajectories. For whirl trajectories, Eq. 1 only implies that all angular velocities
are equal. We can also extend the result in [10] to the costly-switch model. Due to
space limitations, we do not include the result here.

2.2 Necessary Conditions for Control Line Trajectories

We can prove a further necessary condition for a control line trajectory to be optimal.

Theorem 2 [n the costly-switch model, any optimal control line trajectory has either
zero translation actions, one translation action, or two non-parallel translation
actions.

Proof Let g = (u, t) be a control line trajectory. Suppose that g is optimal but has
two parallel translation actions. Let v, and v, be the velocity vectors in the world
frame of two non-parallel translation actions of g. We can remove the action of vy
from g and increase the duration of v, to 7, +f,. The resulting trajectory still reaches
the goal but has one fewer control and hence has smaller cost. This contradicts the
optimality of g.

Suppose that g is optimal but has more than two non-parallel translation actions
Let v,, vp, and v. be the velocity vectors in the world frame of three translation
actions of g. By Eq. 1, we know that the projection of v,, vp, and v, onto the control
line must be H. Let Vay > Vb, and Ve, be the projection of v,, vp, and v, onto the
norm of the control line. By the Plgeonhole Principle, we know that at least two of
Vays Ubys and Ve, have the same sign.

Without loss of generality, assume that v,, and v, have the same sign; let their
durations be ¢, and 7, respectively. See Fig. 3. If Va, = Ub,, then the velocity vectors v,
and v are identical. This contradicts the assumption that v, and vp are non-parallel.
If Va, * b, then without loss of generality, we assume |vay| > |vby |

Since the projections of v, and v, onto the control line are the same, we can

f
b|b) Let

u be the control corresponding to the translation vector vp. Let u), and uq be the
control before and after u in the trajectory. The new trajectory will decrease cost by
1|, |

‘Uay ‘
Hence, the resulting trajectory has smaller cost but still reaches the goal. This also
contradicts the optimality of g.

\

remove the actions of v, from ¢ and increase the duration of v, to , +

p— Clup,u) — C(u,uy) + C(up, uy), which is strictly larger than zero.

Fig. 3 Illustration of proof
of Theorem 2: a trajectory
containing three actions of
translations, v,, vp, and v. >/ 2 |
:
!

The sign of v,y and vy, are [
the same

Optimal Trajectories for Planar Rigid Bodies with Switching Costs 377

We call a control line trajectory that has either zero translation actions, one transla-
tion action, or two non-parallel translation actions an extremal control line trajectory.

Singular, TGT, and Regular Trajectories. In [10], Furtuna classified trajectories with
control lines into four classes: singular, TGT, generics, and regular. Here, we also
classify extremal control line trajectories into four subtypes and we name trajectories
by the names of their counterpart trajectories in the cost-free-switch model. An
extremal control line trajectory is called singular if there exists a non-zero measure
interval along the trajectory that multiple controls have the same Hamiltonian value
within this interval.

As an extension of a result in [10], any singular trajectory in costly-switch model
contains exactly one translation with velocity vector parallel to the control line, or
contains a switch from one translation to another translation. Hence, by Eq. 1, the
Hamiltonian values either equal to the velocity of the only translation, or can be
computed from the pair of consecutive translations. Since the control set U is given,
the set of all possible Hamiltonian values for singular trajectories is finite.

An extremal control line trajectory is called generic if the trajectory is not singu-
lar. A generic trajectory is called T7GT if both the first control and the last control are
translations. For a TGT trajectory, when the initial configuration and goal configu-
ration are given, we can obtain the Hamiltonian value analytically, using methods
from [10]. A generic trajectory is called regular if it either starts or ends with a
rotation. For regular trajectories, we do not have enough information to determine
the Hamiltonian value, and hence finding optimal regular trajectories is the most
challenging task.

2.3 Taxonomy of Optimal Trajectories

We summarize the taxonomy of optimal trajectories as Fig. 4. Since the Hamiltonian
values for whirl, TGT, and singular trajectories can be determined, the problems of

Extremal trajectories

[Whirl trajectories] (Control line trajectories)

[Two stage trajectories] Other whirl (Extremal control line trajectories] Other control line trajectories

(Singular trajectories] (Generic trajectories]

[TGT trajectories Jf Regular trajcctorics]

Fig. 4 Taxonomy of optimal trajectories. Each node corresponds to a type of optimal trajectories;
each leaf node without border is not necessary for optimality. All leaf nodes with single border
can be solved analytically. For the leaf node with double border, regular trajectories, we provide a
search algorithm that can find a trajectory arbitrarily close to optimal trajectories

378 Y.-H. Lyu and D. Balkcom

finding optimal trajectories in these three classes is equivalent to finding an optimal
sequence of controls, a discrete search problem. For these three classes, we have
designed three different A* search algorithms to find candidate optimal trajectories
by searching over discrete trajectory structures; due to space limitations, we omit the
details, and focus on the most challenging case, regular trajectories.

The problem of finding optimal regular trajectories has two ingredients: one is
finding the Hamiltonian value H, which is a continuous variable, and another one is
finding the sequence of controls, chosen from a finite set.

3 Optimal Regular Trajectories

A regular trajectory is a generic trajectory either starting or ending with a rotation.

3.1 Extensions of Previous Results

Due to the similarity between BIP and PMP, several results in [10] in the cost-
free-switch model can be extended to the costly-switch model with a few simple
modifications. We list these results here and omit their proof.

For a fixed first control u,, a fixed last control u y, and a given Hamiltonian value,
H, there exist at most two control lines; the mapping from the Hamiltonian values to
the control lines can be represented by two continuous functions. Furthermore, for
a control line L = (ky, kp, k3), k% + k% = 1, there exists a transformation 77, from
the world frame to the control line frame. For a configuration ¢ in the world frame,
we use ¢g& = T7(¢) to denote its representation in the control line frame whenever
the control line L is clear from the text.

For a configuration ¢ representing the configuration of the rigid body with respect
to the control line, and a candidate control u, we would like to determine the duration
that u may be applied before switching to some other control u’, while satisfying
Eq. 1. It can be shown that there are at most two candidate durations such that at
the time of switch, both controls # and u’ have the same Hamiltonian value H. The
mapping from configurations in the control line frame to durations (possibly co) can
therefore be represented by two continuous functions.

In order to describe which duration function is being considered, we use a duration
selector, which is a binary number associated with each pair of controls for a discrete
trajectory structure. We call a pair of (u, s) as a fentative structure if u is a sequence
of controls with length n and s is a sequence of duration selectors with length n — 1,
where s; is the duration selector for control pair (u;, u;+1). For a given configuration
g", the duration for each control in a tentative structure is fully determined except
for the last one.

If we knew the tentative structure for a trajectory, together with the Hamiltonian
value H (chosen from a continuous range), then the configuration(s) of the control

Optimal Trajectories for Planar Rigid Bodies with Switching Costs 379

line(s) consistent with the necessary conditions could be computed exactly, based on
techniques in [10]. In fact, the control line can be found using only the Hamiltonian,
the identity of the first and last controls, and the initial and the goal configurations;
this allows computation of durations of each control (except the last).

Given a configuration of the rigid body with respect to the control line, apply-
ing a particular control u will give a trajectory along which the Hamiltonian value
computed by Eq. 1 is constant. Along this trajectory, the body may or may not reach
other configurations such that some other control can be applied giving this same
Hamiltonian value. It can be shown that for a particular value H, there is some set of
feasible control switches. Let Q (H) be the set of all possible pairs of controls (u, u”)
such that there is a feasible switch, for a given H. Then,

Theorem 3 There exists a finite set of critical values of R that partition the Hamil-
tonian values into a finite set of open intervals, such that for each interval D, if two
Hamiltonian values H and H' are in D, then Q(H) = Q(H'). The set of critical
values of the Hamiltonian values can be computed by analyzing the control set U.

3.2 Reduction to a Lipschitzian Optimization Problem

It is easy to see that if there is a finite-time trajectory (found by any simple planner)
between a pair of configurations, there exists a computable bound, B, for the number
of actions in any optimal trajectories between those configurations in the costly-
switch model.

Together with Theorem 3, the bound B can be used to show that there are finitely
many discrete trajectory structures that must be considered for optimality. The basic
approach enumerates all candidate starting and final controls (u, u y) for a trajectory.
Given each (u,, u), we pose a Lipschitzian optimization problem to solve for H
values with time and position error at most e, for any desired € > 0. Then, we pick
the best trajectory among all approximately optimal trajectories.

The problem of finding optimal regular trajectories with the first control u; and
the last control u s has two parts: one is to determine a optimal tentative structure and
another is to determine a Hamiltonian value H that approximately minimizes error
and time. We first show how to find optimal trajectories for a fixed H value and then
show how to determine H.

3.3 Finding Optimal Trajectories for a Fixed H

Let D be an open interval of the partition of the Hamiltonian values containing
H.Let Gy, 4 f(D) be the set of tentative structures in G (D) with first control u
and final control u . When u, u s, and H are fixed, there are at most two control
lines. For a fixed control line, for any tentative structure in Gus,uf (D), the duration

380 Y.-H. Lyu and D. Balkcom

of each control is fully determined except for the last control, and the duration of
the last control will be determined by the goal configuration. Thus, finding optimal
trajectories for the fixed uy, u , and H is equivalent to finding the optimal tentative
structures in Gy, (D). Although Gy, (D) is a finite set, the size of Gy, (D)
may be large and hence we cannot enumerate all tentative structures in G, 5 (D)
to find optimal trajectories. Our approach is to use A* search guided by the distance
function described below.

Distance Function. Let qsL and ¢]% be the initial and goal configurations, and g =

(u, s) be a tentative structure. For any trajectory that reaches qI]: with the last two
controls of u;,_; and u,, there are at most two possible configurations of switching
control from u,_1 to u,, and these two possible configurations only differ in x-
coordinates in the control line frame. Let qZL1 and qu be these two configurations.
Let q ~_, be the configuration at which g will switch control from u,,—; to u,. Note
that qn_l also only differ from qz1 and q22 in x-coordinate. We define the distance
between g and the goal, d(L, g), to be the minimum difference from q,{;l to qZL] and
qZLz in x-coordinate.

We still need to determine the duration of the last control in order to compute the
cost. Let an be the final configuration of the trajectory. We require that an y=4q JLC y

and q 9= =gk 9 and the duration of the last control is determined by this restriction.
We define the cost of g, c(L, g) to be the sum of durations and switching costs.

Determining the Hamiltonian, H. In order to determine the best Hamiltonian value
H, we first compute the partition of the Hamiltonian values according to Theorem 3.
For each open interval, D, we determine the best Hamiltonian value H € D. Then
we pick the optimal Hamiltonian value among all best Hamiltonian values for each
D.

Let D be an open interval of the partition of the Hamiltonian values. Since the
first control, uy, and the last control, u ¢, are fixed, there are two mappings from H
to the control lines; let L(H) be one of the mappings from H to the control lines.
The problem of finding the best Hamiltonian value H € D is as follows:

min c¢(L(H), g)
d(L(H),g9) =0
9 € Gugu;(D),H € D. 2)

We will use Lipschitzian optimization techniques to solve Problem 2. Here, we
briefly introduce Lipschitzian optimization.

Lipschitzian Optimization. The goal of global optimization is to find optimal solutions
of constrained optimization problem even for non-linear, non-continuous problems.

A function f : R — R is called Lipschitz continuous if there exists a constant
L > 0, such that for all pairs x, y in the domain we have | f (x) — f(y)| < L|x — y]|,

Optimal Trajectories for Planar Rigid Bodies with Switching Costs 381

where L is called the Lipschitz constant. Given a Lipschitz continuous function
f(x), the problem of finding the global minimum min, f(x) is called a Lipschitzian
optimization problem. For Lipschitzian optimization problems, there exists efficient
algorithms to find globally (approximately) optimal solutions with arbitrarily small
error in a finite time [17].

The Lipschitzian optimization algorithm we used for solving Problem 2 is
Piyavskii’s algorithm [18]. The idea of Piyavskii’s algorithm is to iteratively sub-
divide a domain D into several intervals. For each interval, Piyavskii’s algorithm
determines the lower bound of the objective function based on Lipschitz constant,
and decides whether to further subdivide this interval or disregard this interval based
on the lower bound information. For any error bound € > 0, Piyavskii’s algorithm
guarantees to find a solution with additive an error at most ¢ within a finite number
of iterations.

We will show that Problem 2 can be modeled as Lipschitzian optimization problem
in the next section.

4 Lipschitz Continuity

Fix the first control to be u, and the last control to be uy. Let D be an open
interval of the partition of the Hamiltonian values. Remember that the problem is
mingecuwf<p),H€D c(L(H), g), subject to d(L(H), g) = 0, where Gy, (D) is a
finite set of tentative structures.

Since Lipschitz continuity is closed under the minimum operation, it suffices
to prove that for any g € Gy, 4 f(D), both the distance function d(L(H), g) and
cost function c(L(H), g) are Lipschitz continuous with respect to H € D for any
9 € Guyuy (D).

4.1 Lipschitz Continuity of d(L(H), g) and ¢(L(H), g)

Let g = (u,s) € Gy, u; (D) be a tentative structure, where the length of u is n. We
first consider the cost function c(L(H), g), which depends on the durations of each
control and switch cost. Since the number of controls is n, the switch cost will not
change and hence we focus on durations. Let ¢; (H) be the duration for the ith control
u; with respect to H. Since ¢(L(H), g) is just a summation of all #;, we only need
to argue that each t; (H) is Lipschitz continuous.

Next, we consider the distance function d(L(H), g). For control u; and its cor-
responding sub-trajectory, we use d; to denote the length of the sub-trajectory pro-
jection onto the control line. The distance function d(L(H), g) can be rewritten as
lgk, + >0 di — qjlz, . |- It suffices to show that each d; (H) and the mapping 77, is
Lipschitz continuous.

382 Y.-H. Lyu and D. Balkcom

Durations t; (H) and projections d;(H), 1 < i < n are easier to analyze, since
they depend on H directly. However, durations #; (H) and t,, (H) depend on H, initial
configuration ¢, and final configuration ¢ } in the control line frame. Hence, #{ (H)

and 7, (H) depend on H not only directly but also indirectly through qsL and q]I;.
Similarly, di (H) and d, (H) also depend on H directly and indirectly. The analysis
of t1(H), t,(H), d|(H), and d,,(H) should be separated from the analysis of #; (H)
and d;(H), 1 < i < n.Due to space limitations, we only show the analysis of #; (H)
andd;(H),1 <i < n.

Analysis of ¢;(H) and d;(H),1 <i < n.

Theorem 4 Let D = (a, b) be an open interval of the partition of the Hamiltonian
values. Let g = (u,s) € Gubuf (D) be a tentative structure with n actions. Let t; (H)
be the duration for the u; and d; (H) be the length of projection of the sub-trajectory
corresponding to u; onto the control line. Forany 6,0 < § < (b—a)/2, both functions
t;(H) and d; (H) are Lipschitz continuous with respect to H € (a + §, b — 6) for all
1 <i<n.

Proof The duration #; (H) and length d; (H) are fully determined by u;_1, u;, uj+1,
and H. Let qiL be the configuration in the control line frame at which the trajectory
switches control from u; 1 to u;. Let q,ﬁ | be the configuration in the control line
frame at which the trajectory switches control from u; to u; 1. Here, we use a result
from [10] that there exists a point p; = p(u;_1, u;) rigidly attached to the robot,
such that p; will lie on the control line when the robot is at ql.L . Similarly, when the
robot is at qiLJrl and switches from u; to u; 41, there exists a point p;+1 = p(ui, Ui4+1)
attached to the robot such that p;; is on the control line.

We introduce some notation for the remainder of the proof. Let ZL = (Z)I;, 0)
be the location of p; attached to the robot at qiL, which is on the control line. Let

St = (8L, SL) be the location of p; 41 attached to the robot at ¢/ Let SL = (8L, 0)
be the location of p; attached to the robot at qiL+1 . By considering the position of
SL we can determine the #; and d;.

Depending on whether u; is a translation or not, there are two cases:

u; is a translation. Let v; be the velocity of u;. By Theorem 1, the magnitude of the
projection of the velocity onto the control line is H. Consequently, the magnitude

of velocity in the y-coordinate in the control line frame is v)L, =,/ vl.2 — H2. The

duration of #; can be computed as SyL / v§. Consequently, the length of the projection
of the trajectory onto the control line, d; (H), can be computed as t; H. Hence, it
suffices to prove #; is Lipschitz continuous (Fig. 5).

The control u;_; must be a rotation, since if u;_; is a translation, then u; and
u;—1 have the same Hamiltonian value along the sub-trajectory corresponding to u;
and the trajectory is a singular trajectory. Let RY = (R, RL) be the location of the
rotation center of control u; ;. Let /g7 be the distance between SL and ZL. Let 0
be the angle rotating from vector Z-S” to vector Z- RL counterclockwise. Since

Optimal Trajectories for Planar Rigid Bodies with Switching Costs 383

Fig. 5 Illustration of proof SL
of Theorem 4: u; is a
translation
RL
0
01 .
L4
zL Sk

the mutual distance among SL RL and ZL is independent from H, [gz and 0 are
independent from H.

Let 0 be the angle between segment S SL and the control line; the value of 6,
is acos(H /v;). Furthermore, it can be shown that the line Z- R’ is perpendicular to
the line SLSE [10]. By geometric reasoning, Sf, can be computed as /sz cos(d —

acos(H /v;)) = (Isz/vi)(H cos 6 + ,/viz — H?sin6). Hence,

L
b sz (g, Hcosd
BT 2~ 2

We know a differentiable function is Lipschitz continuous if, and only if, this
function has a bounded first derivative.

8t,- . vilgz cost
OH — \ (v} — H?)1S
When H € (a+6,b—0) and H < v;, the derivative of t; (H) and d; (H) are bounded.

u; is a rotation. Let R™ = (R, RY) be the location of the rotation center of control

u; and let RJL_ = (RL,0) be the projection of R on the control line. We want
to compute the angle, o, between the control line to the vector RLSL, and the
angle 1, between the control line to the vector R” SL; these angles are measured in
counterclockwise direction. The duration #; (H) can be computed as (¢1 — ¢o)/wi,
where the subtraction wrapping around 27 and the result has the same sign as w;. Let
r be the distance between the reference point of the robot and R when robot is at
qiL. The projection of the trajectory on the control line, d; (H), can be computed as
r(cos 1 —cos ¢g). Thus, it suffices to show that ¢y and ¢ are Lipschitz continuous
with respect to H (Fig. 6).

Let gy be the distance between R and Z~ and let [rs be the distance between RL
and S”. Let 6 be the angle rotating from vector RYZ% to RS’ counterclockwise.
Note that 0, Igz, and [gg are independent from H.

384 Y.-H. Lyu and D. Balkcom

Fig. 6 Illustration of proof sL RL
of Theorem 4: u; is a o
rotation, w; 1 > w;, and g
Witl > Wi 01)02
2 ;
zl RE SL

Let 0; be the angle between the segment REZ% and RERY, which equals
acos(H /(Igzw;)). Let A, be the angle between the segment R- SL and RE Ri, which
equals acos(H /(Igsw;)). Let w;j_1 and w; 41 be the angular velocity of u; 1 and u; 1
respectively. Based on 6 and 6,, we can compute g and ¢ as follows:

¥0 ©1
wi>0 ZL<RL 3w/2—6,+6 SL>RL 37/2+6,
wi>0 ZE>RE 3m/2+460,+06 SL<RL 37/2-6,
wi<0 ZE>RL mj2—0,+96 S'f<R)I; /2 + 0,
wi<0 ZL<RL m/2460,+0 SL>RL n/2—6,

Thus, we have

dpo 2 2\ 03 i1 2 2) 703
0] < (arzen? — 1) and |25 < (s - 1)
Consequently,
ﬁ - ((lewi)z — H2)70'5 + ((ZRSWI')2 - Hz)*0~5
OH |~ |wi |
od H cos @
el < ; | sin 91| + L
OH | ~ Igzlwil Vilgzwi)? — H?
H cos 0

v singy) + |22
[rs|wil Vrswi)? — H?

When H € (a+6, b—0d), H is smaller than |/ g zw; | and |/ gsw; |, and the derivatives
of t;(H) and d; (H) are bounded.

Optimal Trajectories for Planar Rigid Bodies with Switching Costs 385

5 Implemetation

We implemented the algorithm described in C++. Our testing environment is a desk-
top system with an Intel Xeon W3550 3.07 GHz CPU.

In the costly-switch model, we used three test cases. First, we used the bench
mover’s problem proposed in [13] as one test case. We compare our program’s result
with the result of analytical solver. Except for some cases in which the Hamiltonian
value is close to the upper bound (for which numerical instability becomes a problem),
our results coincide with the result of exact solver.

We used the refrigerator-movers problem as the second test case; one approxi-
mately optimal trajectory is shown in Fig. 1. Third, we used omni-directional vehicle
as a test case; one approximately optimal trajectory is show in Fig. 2b.

In the cost-free-switch model, we compared our program with the exact solver
proposed in [29], which determines optimal trajectories for the omni-directional
vehicle analytically. Although our program is a general solver that can solve all
problems of finding optimal trajectory for rigid bodies in the plane, our program is
only about ten times slower; one approximately optimal trajectory is show in Fig. 2a.

6 Conclusion and Future Work

By adding a cost for switching between controls, we ensure existence of solutions for
optimal control problems that do not involve chattering. By applying Blatt’s Indiffer-
ence Principle and Lipschitzian optimization approach, we can find approximately
optimal trajectories and the error can be forced to be arbitrarily small.

The most exciting area of future work is to explore the application of BIP to
systems other than rigid bodies in the plane. It is particularly interesting that optimal
trajectories with costly switches exist even in the presence of obstacles.

There are at least two challenges in applying a BIP-based approach to finding opti-
mal trajectories. The first challenge is that the potential number of optimal trajectory
structures can be huge in the costly-switch model. In the costly-switch model, an
algorithm might potentially need to explore a number of structures that is exponential
in the number of controls in order to find solutions. For example, in order to find
approximately optimal trajectories for omni-directional vehicle, whose control set
contains fourteen controls, it takes about an hour to find an approximately optimal
trajectory for an initial configuration and goal configuration.

The second challenge is numerical instability. When the Hamiltonian value of
optimal trajectories is close to the boundary of the open interval in the partition
of the Hamiltonian values, the Lipschitz constant for the duration function may
be very large. Consequently, the numerical error in the computation also increases
significantly and is inherently unstable. This is an issue for our solver in the costly-
switch model and in the cost-free-switch model as well.

386 Y.-H. Lyu and D. Balkcom

References

1. Agarwal, PX., Biedl, T., Lazard, S., Robbins, S., Suri, S., Whitesides, S.: Curvature-constrained
shortest paths in a convex polygon. SIAM J. Comput. 31(6), 1814—1851 (2002)

2. Barraquand, J., Latombe, J.-C.: Robot motion planning: a distributed representation approach.
Int. J. Robot. Res. 10(6), 628-649 (1991)

3. Blatt, J.M.: Optimal control with a cost of switching control. J. Aust. Math. Soc. 19, 316-332
(1976)

4. Chitsaz, H.R.: Geodesic problems for mobile robots. Ph.D. thesis, University of Illinois at
Urbana-Champaign (2008)

5. Chitsaz, H.R., La Valle, S.M., Balkcom, D.J., Mason, M.T.: Minimum wheel-rotation paths
for differential-drive mobile robots. Int. J. Robot. Res. 28(1), 6680 (2009)

6. Chyba, M., Haberkorn, T.: Autonomous underwater vehicles: singular extremals and chatter-
ing. In: Ceragioli, F., Dontchev, A., Furuta, H., Marti, K., Pandolfi, L. (eds.) Systems, Control,
Modeling and Optimization, vol. 202 of IFIP International Federation for Information Process-
ing, pp. 103-113. Springer, Berlin (2006)

7. Cockayne, E.J., Hall, G.W.C.: Plane motion of a particle subject to curvature constraints. SIAM
J. Control 13(1), 197-220 (1975)

8. Desaulniers, G.: On shortest paths for a car-like robot maneuvering around obstacles. Robot.
Auton. Syst. 17(3), 139-148 (1996)

9. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with
prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497-516 (1957)

10. Furtuna, A.: Minimum time kinematic trajectories for self-propelled rigid bodies in the unob-
structed plane. Ph.D. thesis, Dartmouth College, June 2011

11. Kibalczyc, K., Walczak, S.: Necessary optimality conditions for a problem with costs of rapid
variation of control. J. Aust. Math. Soc. 26, 45-55 (1984)

12. Loxton, R., Lin, Q., Lay Teo, K.: Minimizing control variation in nonlinear optimal control.
Automatica 49(9), 2652-2664 (2013)

13. Lyu, Y.-H., Furtuna, A., Wang, W., Balkcom. D.: The bench mover’s problem: minimum-time
trajectories, with cost for switching between controls. In: IEEE International Conference on
Robotics and Automation (2014)

14. Mason, M.T.: Mechanics of Robotic Manipulation. MIT Press, Cambridge (2001)

15. Matula, J.: On an extremum problem. J. Aust. Math. Soc. 28, 376-392 (1987)

16. Noussair, E.S.: On the existence of piecewise continuous optimal controls. J. Aust. Math. Soc.
20, 31-37 (1977)

17. Pintér, J.D.: Global Optimization in Action: Continuous and Lipschitz Optimization: Algo-
rithms, Implementations and Applications (Nonconvex Optimization and Its Applications, 2nd
edn. Springer, Berlin (2010)

18. Piyavskii, S.A.: An algorithm for finding the absolute minimum of a function. USSR Comput.
Math. Math. Phys. 12, 13-24 (1967)

19. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: Mathematical The-
ory of Optimal Processes. Wiley, New York (1962)

20. Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pac.
J. Math. 145(2), 367-393 (1990)

21. Reister, D.B., Pin, E.G.: Time-optimal trajectories for mobile robots with two independently
driven wheels. Int. J. Robot. Res. 13(1), 38-54 (1994)

22. Renaud, M., Fourquet, J.-Y.: Minimum time motion of a mobile robot with two independent,
acceleration-driven wheels. In: IEEE International Conference on Robotics and Automation,
vol. 3, pp. 2608-2613, April 1997

23. Slotine, J.J., Sastry, S.S.: Tracking control of non-linear systems using sliding surfaces with
application to robot manipulators. In: American Control Conference 1983, pp. 132-135, June
1983

24. Soueres, P., Boissonnat, J.-D.: Optimal trajectories for nonholonomic mobile robots. In: Lau-
mond, J.-P. (ed.) Robot Motion Planning and Control, pp. 93—170. Springer, Berlin (1998)

Optimal Trajectories for Planar Rigid Bodies with Switching Costs 387

25.

26.

217.

28.

29.

30.

Stewart, D.E.: A numerical algorithm for optimal control problems with switching costs. J.
Aust. Math. Soc. 34, 212-228 (1992)

Sussmann, H.J., Tang, G.: Shortest paths for the reeds-shepp car: a worked out example of the
use of geometric techniques in nonlinear optimal control. Department of Mathematics, Rutgers
University, Technical report (1991)

Teo, K.L., Jennings, L.S.: Optimal control with a cost on changing control. J. Optim. Theory
Appl. 68(2), 335-357 (1991)

Wang, W., Balkcom, D.: Sampling extremal trajectories for planar rigid bodies. In: Frazzoli,
E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X, vol. 86
of Springer Tracts in Advanced Robotics, pp. 331-347. Springer, Berlin (2013)

Wang, W., Balkcom, D.J.: Analytical time-optimal trajectories for an omni-directional vehicle.
In: IEEE International Conference on Robotics and Automation, pp. 4519-4524, May 2012
Yu, C., Lay Teo, K., Tiow Tay, T.: Optimal control with a cost of changing control. In: Australian
Control Conference, pp. 20-25, Nov 2013

Maximum-Reward Motion in a Stochastic
Environment: The Nonequilibrium Statistical
Mechanics Perspective

Fangchang Ma and Sertac Karaman

Abstract We consider the problem of computing the maximum-reward motion in a
reward field in an online setting. We assume that the robot has a limited perception
range, and it discovers the reward field on the fly. We analyze the performance of a
simple, practical lattice-based algorithm with respect to the perception range. Our
main result is that, with very little perception range, the robot can collect as much
reward as if it could see the whole reward field, under certain assumptions. Along
the way, we establish novel connections between this class of problems and certain
fundamental problems of nonequilibrium statistical mechanics. We demonstrate our
results in simulation examples.

Keywords Motion planning - Stochastic environments - Nonequilibrium statistical
mechanics

1 Introduction

Nonequilibrium statistical mechanics is a branch of physics that studies systems
operating at out-of-equilibrium states [1-3]. Although the ideas originated in the
physics literature, the theory has profound applications that lie well outside the
domain of physics, such as biology [3, 4], stock markets [5], and highway traffic [6,
7]. Arguably, it is for this reason that developing a fundamental and comprehensive
understanding of nonequilibrium statistical mechanics is considered to be one of the
grand challenges in our time, both by the U.S. Department of Energy [8, 9] and the
U.S. National Academy of Sciences [10].

In this paper, we point out novel connections between the fundamental problems of
nonequilibrium statistical mechanics and a large class of robot motion planning and
control problems. With the help of these connections, we design practical algorithms

F. Ma (X)) - S. Karaman
Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

e-mail: fcma@mit.edu

S. Karaman
e-mail: sertac@mit.edu

© Springer International Publishing Switzerland 2015 389
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_23

390 F. Ma and S. Karaman

Fig. 1 An environmental
monitoring system, where =
the blue cylinders are sensing

devices and the vehicle tries '_. =
to collect as much data from (= ; / _' 4
them as possible ' . d
B P\
[J | J
- @
- T L 4
/
/
| ‘

with provable performance guarantees for planning problems involving agile robots
operating in stochastic environments. In what follows, we briefly introduce this class
of problems and list our contributions.

We consider a large class of problems involving a robotic vehicle navigating in
a stochastic reward field to collect maximal reward. Let us motivate these prob-
lems with an example. Consider an environmental monitoring system, where mobile
robotic vehicles and stationary sensing devices work together to collect valuable
information about the state of the environment, as in Fig. 1. Imagine small sensing
devices that house primitive sensors, for example, for seismic, acoustic, or magnetic
measurements. Along with sensing, these devices include communication equipment
and (primitive) computational platforms. Suppose these sensing devices are deployed
throughout the environment for persistent monitoring purposes. Rather than attempt-
ing to form an ad-hoc network, we envision a mobile data-harvesting vehicle that
traverses the environment, discovers the sensing devices on the fly, and approaches
them to harvest their data.!

The robot may not know the precise positions of the sensing devices a priori.
Instead, sensors are discovered on the fly, and the robot makes small corrections
in its trajectory to collect as much information as possible. Clearly, the amount of
information that can possibly be collected depends on the agility of the robot (its
actuation capabilities) as well as its perception range (how soon it can discover
the sensors). In this setting, we consider the following fundamental problems: How

Ad-hoc sensor networks may also be very valuable for environmental monitoring. In fact, such
technologies have been developed over past years. We note that the presented approach is for
motivational purposes. Yet, it may be beneficial over the ad-hoc network approach due to substantial
energy savings at the stationary sensors (as communication requirement is much lower); hence, the
sensor nodes require less maintenance. The main drawbacks are additional complexity of a mobile
vehicle, and communication delay due to the mobile vehicles physically carrying the data.

Maximum-Reward Motion in a Stochastic Environment ... 391

quickly can the mobile robots harvest the data from the field, given their perception,
actuation, and computation capabilities? What are the planning algorithms that
achieve the optimal performance?

Let us note that similar problems [11] arise in a large class of applications, includ-
ing spy planes taking pictures of unexpected enemies, and rescue vessels saving lives
after disasters, where target locations are discovered on the fly. To generalize, we
consider a robot that is traversing a stochastic “reward field”, where the precise
value of the reward is discovered on the fly. Given the statistics of the reward, we
aim to answer fundamental questions regarding the optimal performance that can be
achieved.

We answer some of the aforementioned questions by establishing strong con-
nections between this class of problems and nonequilibrium statistical mechanics.
Roughly speaking, we view the robot as a particle traveling in a stochastic field. This
perspective allows us to directly apply some of the recent results from mathematical
physics to characterize various properties of agile robotics.

Designing planning algorithms for agile robots to avoid obstacles in cluttered
environments has long been a focus of robotics [12—14]. In contrast, planning problem
for collecting maximal reward in a stochastic environment has received relatively
little attention, although similar problems were considered in the operations research
literature (see, e.g., [15]).

The analysis in this paper is fundamentally different from these references, as
we utilize the mathematical foundations of nonequilibrium statistical mechanics.
The results we utilize were reported in the mathematical physics literature fairly
recently [16-22]. In fact, the connections we establish between mathematical physics
and this class of maximum-reward motion planning problems and algorithms may
be interesting on their own right, inspiring a novel class of analysis techniques and
practical algorithms with formal performance guarantees.

This paper is organized as follows. In Sect. 2, we provide a more precise problem
definition, and we discuss a set of algorithmic approaches that solve this problem in
Sect. 3. We devote Sect. 4 to a mathematically rigorous analysis of the proposed algo-
rithms. We lay out the connections with nonequilibrium statistical mechanics also in
this section. In Sect. 5, we provide the results of several computational experiments
that validate our theoretical results. Finally, we provide some concluding remarks in
Sect. 6.

2 An Online Reward-Collection Problem

We consider a mobile robotic vehicle that is tasked with visiting target locations. Due
to differential constraints, it is impossible to visit all targets. The robot’s mission is to
visit these target locations as best as possible, measured by the amount of “reward”
it collects per time unit during the course of the whole mission.

Targets are discovered on the fly, in the sense that the robot obtains the location
and reward information associated with that target only when it gets sufficiently close

392 F. Ma and S. Karaman

to a target location. Hence, the robot does not know a priori all of the tasks and the
reward associated with them. However, the statistics for the spatial distribution of
the target locations and their reward is known, for example from past experience. To
model this environment, we assume that the target locations and their rewards are
generated by a stochastic process. The robot operates in this stochastic environment.

We formalize this online motion planning problem as follows. Consider a mobile
robotic vehicle governed by the following ordinary differential equation:

X(t) = fx(®), u@) (D

where x(r) € X C R” is the state and u(t) € U C R™ is the control input. A state
trajectory x : [0, T] — Y is said to be a dynamically-feasible trajectory, if there
exists u : [0, T] — U such that u, x satisfy Eq. (1) for all r € [0, T].

Let R(-) denote the reward function, which associates each dynamically-feasible
trajectory, say x : [0, T] — Y, with a reward denoted by R(x) € R. The robot is
tasked with finding a motion (i.e., a dynamically-feasible trajectory) with maximal
reward.

The reward function is not known a priori, but is revealed to the robot in an online
manner. We formalize this aspect of the problem as follows. Let P(-) denote the
perception footprint of the robot that associates each state z € X of the robot with
a footprint P(z) C X. When the robot is in state z € X, it is able to observe only
the reward function associated with the partial trajectories within the set P(z). We
assume that the reward function does not vary with time, and that the statistics of
its distribution is known to the robot. The reward can only be collected once, so the
robot keeps exploring new regions.

This general setting represents a large class of reward-collection problems. In this
paper we study a special case that is more closely related to the motivational example
presented in the previous section. Let 7 C X be a discrete set of target locations.
Suppose each target z € 7 is associated with a reward r(z), and the robot collects the
reward r (z) if it visits the state z. That is, given a trajectory x : [0, T] — X, itsreward
is R(x) := Zzl,ezr(z), where Z := {z € T : x(t) = zforsome ¢ € [0, T]}. The
robot observes the locations and the rewards of all targets that fall within its perception
footprint, and collects the associated reward if it visits a particular target location.
It travels through this environment, discovering targets on the fly and adapting its
trajectory to maximize the total reward it gathers by visiting these targets.

3 Lattice-Based Motion Planning Algorithms

In such general setting, analytical solutions can be found only in some special cases.
Yet, there are efficient computational approaches, based on the proper discretization
of the set of all dynamically-feasible trajectories, that can achieve good performance.
Below, we outline such an algorithm.

Maximum-Reward Motion in a Stochastic Environment ... 393

Lattice-based motion planning algorithms have long been successfully utilized in
robotics applications [23, 24]. Roughly speaking, these algorithms form a directed
lattice in the state space of the robot, and they select the best one among all paths
through this lattice. This task is often computationally efficient, which makes the
algorithm practical even in challenging problem instances. Below, we describe
lattice-based planning algorithms in our notation.

An infinite graph G = (V, E), where V is a countable set of vertices and E C
V x V is a set of edges, is said to be a lattice, if the following are satisfied: (i) any
vertex is a state of the dynamical system described by Eq. (1), i.e., V C X, and
(ii) for any edge e = (v1, v2) € E, there exists a dynamically feasible trajectory
Xxe ¢ 10, T,] — X such that x(0) = vy and x(7,) = v,.

A lattice-based receding-horizon motion planning algorithm works as follows.
Initially, the robotis at a state zjnir € V. Foreachiteration, thebestpath (eq, ea, . .., ex
through the “visible” part of the lattice is computed, and the robot follows the
dynamically-feasible trajectory x., : [0, T;;] — X that is associated with the first
edge on this path, denoted above by ;. Once the robot reaches the state v’ = x,, (T¢,),
the same procedure is repeated with the part of the lattice that is visible to the robot.

We formalize this algorithm below by first introducing some notation and a couple
of sensing and actuation procedures that this algorithm utilizes. Let G = (V, E) be a
lattice for the robot governed by Eq. (1). Two edges e = (v1, v}), e2 = (v2,v)) € E
are said to be connected if v{ = va. A path through G is a sequence of edges,
denoted by 7 = (e1, €2, ..., ex) such thate; € E and ¢; and e; 4 are connected for
alli € {1,2,...,k — 1}. The ith edge on path 7 is denoted by 7 (). The set of all
paths through G is denoted by Paths(G). Given a path p = (e, e2, ..., ¢ek), let
xe; [0, T,;] — X denote the dynamically feasible trajectory attached to the edge e;
inthe lattice G = (V, E), and let Trajectory(p) denote the dynamically-feasible
trajectory formed by concatenating x,,’s, thatis, Trajectory(p) is adynamically-
feasible trajectory x, : [0, T,] — X, where T), = ZLI T, and x, (1) = x¢; (t —
zjzl T,;) forall ¢ € [z;:1 T;. 23.*:11 T,;]and alli € {1,2,... .k — 1}. Recall
that X is the state space of the robot. Given a subset P C X and a (potentially
infinite) graph G = (V, E), the projection of G on P is a new graph defined and
denoted as follows: Projection(G, P) := (Vp, Ep), where Vp = V N P and
Ep=ENVp x Vp).

Now, we define two procedures that allow the algorithm’s perception and actu-
ation. Let CurrentState() be a procedure that returns the current state of the
robot. Given a dynamically-feasible trajectory x : [0, T] — X, let Execute(x)
denote the command that makes the robot follow the trajectory x.

Finally, we provide a formal description of the lattice-based receding-horizon
motion planning procedure in Algorithm 1. The algorithm first retrieves the robot’s
current state (Line 2). Subsequently, it computes the portion of the lattice that falls
within its sensor footprint (Line 3), and it then computes the optimal path through
this sub-lattice (Line 4). Finally, the robot takes the trajectory corresponding to the
first edge along the best path (Line 5), and it follows this path until it reaches the state

394 F. Ma and S. Karaman

Fig. 2 The two-dimensional directed regular lattice, N2, is illustrated in Fig.a An example lattice
for a curvature constrained vehicle, also called the Dubins vehicle, is shown in Fig.b The latter
lattice can be embedded in N2

that corresponds to the next vertex on the lattice (Line 6). This procedure continues
for N iterations (Lines 1-7).

1fortr=1,...,Ndo

2 | z < CurrentState();

3 | Gp < Projection(G, P(2));

4 | m <« argmax{R(Trajectory(w) :w € Paths(Gp))};

5 | Xfirst < Trajectory(m(1));

6 Execute(Xfirst);

7 end

Algorithm 1: Lattice-based receding-horizon online motion planning
This algorithm computes the maximum-reward path on a graph. Note that this

problem is NP-hard on a general graph [25]. However, for example, on acyclic graphs,
this problem can be solved efficiently [25]. In this paper, we focus on the analysis of
Algorithm 1 for acyclic lattices. This implies that, roughly speaking, the robot does
not return to a place it has been before, hence it constantly explores new regions in
the environment. An important acyclic graph is the d-dimensional directed regular
lattice Ly = (V, E), where V.= N? and (v, v') € E if v = (v, v2, ..., vg) and
vV =, v2,...,0+1,...,v,) forsome k € {1,2, ..., k}. The two-dimensional
directed lattice is illustrated in Fig. 2a. We say that a lattice G = (V, E) is embedded
in N if it is isomorphic to N¥. In Sect.4.2, we pay special attention to the two-
dimensional lattice N2, In Fig. 2b, we provide an example 2 dimensional lattice for
a non-holonomic vehicle.

4 Analysis of Online Motion Planning Algorithms

This section is devoted to the analysis of the lattice-based online planning algorithm.
This analysis sheds light on the relationship between the perception capabilities of
the robot and its performance. Specifically, we consider the following questions:
How much reward can the robot collect given a certain perception range? How does
this reward compare with the fundamental limit when the robot can observe the entire
reward field a priori and compute the best path?

Maximum-Reward Motion in a Stochastic Environment ... 395

4.1 On Perception Range Versus Performance

Before presenting the main theoretical result of this section, let us provide some
notation. Let G = (V, E) be an acyclic graph with infinitely many vertices. Recall
that the set of all paths in G = (V, E) is denoted by Paths(G). Given a path
7w € Paths(G), let || denote the length of 7 measured by the number of vertices
that 7 visits. Let IT (vinit, 7) denote the set of all paths that start from the vertex vjpj(
and cross at most n vertices. Suppose each vertex v € V is associated with a reward
denoted by p(v). Let R (vinit, 7) denote the total reward collected by following some
path that starts from vjpj; and crosses at most n vertices, i.e.,

R(vinit, n) = max 7
(init) 7 €11 (Vinit, 1) ;p()

Note that R(vini¢,) is the maximum reward that the robot can collect in n steps if
it could see the whole environment, not the reward collected with limited percep-
tion range.

The perception range limitation allows the robot to observe the reward associated
with only a subset of the vertices. Let m be a number such that any vertex that can
be reached with a path of length m is within the perception range independently of
the starting vertex, i.e., m is such that, for all viyiy € V, any statein{v e w : 7w €
I (vinit, m)} is within the perception range of the robot when the robot is at state vip;.

Let O (vinit, n; m) denote the reward that is achieved as follows. Let R denote
the reward that can be collected by a path that starts from vjn;; and has length m, i.e.,
R1 := R(vinit, m). Let vy denote the vertex that the maximum-reward path (achieving
reward Rp) ends at. Similarly, define Ry := R(vk—1, m), and let v be the vertex that
path achieving reward Ry ends at. Finally, define

n/m

O (Vinit, iy m) = Z R;

i=1

Compare this quantity with the reward that Algorithm 1 can achieve. Notice that
Algorithm 1 considers a larger set of paths each time it computes a maximum-reward
path through the observable part of the lattice. Moreover, Algorithm 1 computes a new
path right after the first edge along the path is executed. In contrast, the computation of
O (vinit, n; m) considers only those paths that are of distance m, and moreover it only
computes a new path after the current one is fully executed. Given these observations,
we expect the reward achieved by Algorithm 1 to be at least Q (vini¢, #; m). In other
words, Q (vinit, n; m) is a lower bound for the reward that Algorithm 1 can collect,
when measured in terms of suitable statistics, such as the expectation. Although
this statement can be properly formalized, we omit this formalism due to space
limitations.

Now we focus on the analysis of Q(vini, n; m). In particular we compare
QO (Vinit, n; m) and R (vini, n). The former is the reward that the robot can collect

396 F. Ma and S. Karaman

with limited perception range m. The latter is the reward that the robot can collect if
it had infinite perception range. In what follows, the initial vertex vip;; is fixed, and
it is the same for all results reported below. For simplicity, we drop vjy;; from our
notation, and we write Q(n; m) and R(n) in the sequel.

Our first result allows us to define the mean reward.

Proposition 1 The following holds:

! E[R(m)] E[R(n)]
im ———— =sup ———.

=00 n neN n

Proof The result follows directly from Fekete’s lemma [26], noting that the sequence
E[R(n)] is superadditive, hence —E[R(n)]/n is subadditive. ([l

Let’s define the mean reward per step as R* := lim,— ~ E[R(n)]/n, which is
well defined by Proposition 1. We compare R* with Q(n; m)/n for suitable values
of m.

Theorem 1 Suppose R* is finite. Suppose that the rewards p(v) are independent
(but not necessarily identically distributed) and that they are uniformly almost-surely
bounded random variables, i.e., there exists some L such that P(|p(v)| < L) = 1,
forall v e V. Then, for any § > 0, there exists a constant c such that

1
lim P(‘M—R* > 5) — 0.

n— 00 n
Roughly speaking, Theorem 1 implies that the robot can navigate to any vertex that
is at most n steps away almost optimally (as if it had infinite perception range), if its
perception range is at order log n. In other words, as the perception range increases,
the amount of distance that the robot can travel optimally increases exponentially
fast, as stated below.

Corollary 1 Suppose the assumptions of Theorem 1 hold. Then, for any § > 0, there
exists some constant ¢ such that
Z 8) = Oa

L 3
lim IP’(QL(m),m) _ o
where L(m) = e“™ for some constant c that is independent of m (but depends on §).

m— 00

L(m)

This corollary follows from Theorem 1 with a change of variables.

Before proving Theorem 1, we state an intermediate result that enables our proof.
This intermediate result is a concentration inequality, which plays a key role in
deriving many results in nonequilibrium statistical mechanics [20].

Maximum-Reward Motion in a Stochastic Environment ... 397

Lemma 1 (See [20]) Let {Y;, i € I} be a finite collection of independent random
variables that are bounded almost surely, i.e., P(1Y;| < L) = 1 foralli € Z. Let C
be a collection of subsets of Z with maximum cardinality R, i.e., maxcec |C| < R
and let Z = maxcec D ;¢ Yi. Then for any u > 0,

2
P(|Z —EZ| > u) < exp (—ﬁ +64).

Finally, we present the proof for Theorem 1.

Proof (Theorem 1) Let Z be the collection of nodes in the lattice. Define C =
{(N(m), ® € M}, where N () = {v € 7} is the set of nodes in the path 7. Then,
for the maximum-reward path with at most n steps, the maximum cardinality is
maxcec |C| < n. Then, by substituting R(n) for Z in Lemma 1,

2
P (IR —ERM)| > u) < exp (_64:1—L2 +64) .

Therefore, for any § = % >0,

)

P (‘ Q(n,clogn) ER(n)

n n

_p ‘Z { Ritm) ER(n) > s
n n

_p Z'" Ri(m) ER(m) N ER(m) ER(n) @

m m n
_p ‘Z | Ri(m)]ER(m)) _ 8 U {]ER(m) _ ER(m) . §])’(3)
2 m n 2

<P ‘Z | Riom)]ER(m)' . s _HED(]ER(m) _ ER(m) . §) @
n 2 m n 2

=P i R;(m) — ER(m)|>@ —HP(EI;ﬂ—@ zg) (3)

1

1

The inequality between hne (2) and line (3) can be seen if we take the complements on

both sides, Where{|(Z 1 Rim) IER(’”))-|-(IER(’”) IER("))| <8}D {|M
ER,,(,m) | < 31N ER,,Em) EIZ(") | < £}. Union bound is applied between line (3)
and line (4). Now we set m = ¢ logn. Taking limit on both sides, we get

398 F. Ma and S. Karaman

lim IP’(‘ Q(n clogn) ERM)| 5)
n—o00 n n
< 1im P[> |Ri(m) —ER(m)| =) L im p (EROW _ERM)| 8
- oo i=1 - 2 n—0o0o m n — 2
(6)
- né
= Jlim P | 25| Rim ~ER@n)| 2 5) +0 o
1=
: 2 mé
< nlggogp(mi(m) —ER(m)| > 7) ®
1=
n (%)?
=0 P (—m + 64) ©)
. 1 52
:nlin;oclogn'exp 1_—256L2.C logn + 64). (10)

The first inequality comes from line (5). The inequality between line (6) and line (7)
is due to Proposition 1. As n increases, m — o0, and thus both Elinﬂ and w
converge to the same constant R*. Union bound is again applied between line (7) and

line (8). Lemma 1 is applied in line (9). Line (10) converges to 0 when the constant

c is sufficiently large, i.e., for any constant ¢ > 2556—2L2. (]

Although the conclusion in Theorem 1 is exciting, it may be too restricted for
real-world applications, as it requires both independence among p (v) and the random
variables p (v) to be bounded almost surely. We propose a conjecture that generalizes
Theorem 1 by relaxing these assumptions. We believe that the reward collected by a
robot is arbitrarily close to optimal (as formalized by Theorem 1), even if the reward
is locally dependent (instead of independent) and the distribution of reward has light
tails (instead of being bounded). Local dependence refers to the case when p(vy) is
conditionally independent of all other rewards p(v;) given the local neighborhood
of vy, if vy is not a neighbor.

Conjecture 1 Assume that the non-negative reward p(z) at each state zis distributed
with local dependence and that their distributions satisfy:

/00(1 — F)dx < oo.
0

Then, for any § > 0, there exists a constant ¢ such that

25) = 0.

lim P

n— 00 n

(‘M_R*

Maximum-Reward Motion in a Stochastic Environment ... 399

Notice that the assumptions of this conjecture are much weaker. We leave the
proof of this conjecture as a future work. The rationale behind this conjecture is
two-fold. Firstly, the relaxation on the boundedness of F' is supported in a recent
text [16], where the sketch of the proof is given and the details are left as an exercise.
Secondly, the relaxation of the independence requirement is inspired by [17], where
the Hoeffding inequality for independent random variables can be extended to the
local dependent case with only slight modifications.

4.2 Special Case: Planning on the Directed Regular Lattice

The result in Theorem 1 includes two constants, namely the mean reward R* and
the constant ¢, the precise values of which are not known. In this section, we prove
various results to characterize these constants when the lattice G = (V, E) can be
embedded in N, particularly in the case when d = 2. Throughout this section, we
tacitly assume that G = (V, E) is embedded in N9, Unless stated otherwise, our
results hold for all values of d satisfying d > 2.

First, let us define some useful notation. The vertices of N? are denoted by
w = (wy, w2, ..., wy), where wy € N. We define |kw] := (lkwi], [kwa],...,
Lk wq]). Given a vertex w € N¢, let T (w) denote the reward of the maximum reward
path that starts from the origin and reaches the vertex w. With a slight abuse of nota-
tion let I7(w) denote the set of all paths that start from the origin and end at the
vertex v. Then,

T(w) := max w).
(W)= max %p()
wemr

On Almost-sure Convergence of the Reward: Let us point out an existing result
that shows the convergence result in Proposition 1 can be improved.

Proposition 2 (See Proposition2.1 in [21]) Assume E[p(W)] < 0o. Define

. E[T(lkw)D]
g(w) 1= sup —
keN

Then, M converges to g(W) almost surely as n diverges to infinity, i.e.,
T(lnw
IP’(lim M=g(w)) =1
n—oo n

This result implies that R* is finite and that R(n)/n converges to R* as n — oo,
almost surely.

400 F. Ma and S. Karaman

On Mean Reward: Suppose the dimensionality of the lattice is two, i.e.,d = 2. Let
F denote the distribution for i.i.d. random variables p(w). Then, the results in [21]
imply that there are two cases for which R* can be computed exactly, namely when
F is an exponential distribution or a geometric distribution. More specifically, if F
is the exponential distribution with parameter A = 1, then

g0 y) = (Vx+3)°, forall (x,y) e N2, (1)

On the other hand, if F is the geometric distribution with parameter p, then

g9((x,) = YEIVA =PI Ty (o y) € N2

p

According to arecent survey paper [22], Timo Sepplinen conjectured that the function
for general distributions F with mean y and variance o2 is

9((,) = n(x +y) +2\/o2xy, forall (x, y) € N2,

It is noted that a rigorous proof is beyond the reach of the mathematical statistical
physics community at this stage. However, if this conjecture holds, it has an important
implication for the problem considered in this paper. By the definition of R(n) and
Proposition 2, the reward per step, R(n)/n converges to ;& + o as the distance that
the vehicle travels increases to infinity, almost surely, i.e..

R
P(lim (”)=M+o)=1.
n—oo n

under mild technical assumptions. Hence, in this case, R* = p + o. Simulation
results supporting this conjecture are shown in the next section.

On the Fluctuations of the Reward: Now, we shift our attention to the constant ¢ in
the statement of Theorem 1. Recall that this constant is independent of n; however,
it depends on §. We characterize how this constant depends on § by employing
results from the nonequilibrium statistical mechanics literature. This investigation is
possible by utilizing more accurate characterizations of the function 7' (-). It is shown
in [19] that, for the aforementioned two cases,

T((Lxnl, Lyn))) —ng((x,y))

n

—

W=

as n goes to infinity, where F, is the Tracy-Widom distribution.
In this case, we find that ¢ = k 8%/ for some constant « that is independent of &
and n, as stated below.

Maximum-Reward Motion in a Stochastic Environment ... 401

Theorem 2 Suppose the lattice G = (V, E) is embedded in N2 and p(w) are inde-
pendent identically distributed random variables. Suppose their common distribution
is either the exponential distribution or geometric distribution. Then,

25)=0,

where L(m) = exp(k 8%/%> m), for some constant k > 0 independent of m and §.

lim — R*

m—00

IP>(Q(L(m); m)
L(m)

Before proving the theorem, let us compare it with Corollary 1. While Corol-
lary 1 characterizes the reward with respect to perception range m, Theorem 2 also
identifies its dependence on the error term §. A natural conjecture is that the result
of Theorem 2 holds for any distribution with finite variance. In the next section, we
present simulation results that support this conjecture.

The proof of Theorem 2 is similar to that of Theorem 1. We omit the full proof;
but we outline the main differences.

Proof Let TW be a random variable with the Tracy-Widom distribution. Then, the
results in [19] imply the following: For all u > 0,

lim P(M > u)

n—00 nl/3

P(TW > u)
= li)rrgOP(nzﬁ (R(n)/n — R*) > u)

lim P((R(”) — R*) > un2/3)
n—o00 n

Define § := un—2/3. Hence, u = 8 n/3. It was showed very recently [27] that the
right tail of the Tracy-Widom distribution F; can be characterized as follows:

4
lim P(TW > u) = aexp <—§ u3/2) .

u— 00

Combining this with the previous equality, we obtain:

R 4 3/2 4
lim P((n) —R*ZB):aexp(—— (5n2/3)):(xeXp<——53/2n).
n—00 n 3 3

The rest of the proof follows the proof of Theorem 1. (I

402 F. Ma and S. Karaman

5 Computational Experiments

In this section we provide simulations to support our analysis. There are two major
results. The first simulation shows how the speed of reward collection converges as
the distance n that the vehicle travels increases. The second simulation visualizes
how the expected distance that the robot can travel without losing too much reward
changes, as we increase the perception range.

5.1 Mean of Reward per Step

According to Eq. (11), when F is an exponential distribution with A = 1, the limit of
reward per step is known. In this experiment, we create a 2-dimensional matrix where
each element w = (x, y) inside the matrix corresponds to the reward p(w). The i.i.d.
random variables p(w) follow an exponential distribution with mean 1. We find the
maximal reward 7 (z), from the origin to a set of locations {z = (x, y)|x + y = n},
using dynamic programming. This process is repeated 1000 times to compute the
empirical average. The result is shown in Fig.3. A similar result can also be found
for the geometric distribution.

Recall the conjecture that g(x, y) = wu(x + y) + 24/o2xy, which implies that
@ — 1 + o almost surely as n — 00. As mentioned earlier, a rigorous proof is
not known yet, but we show some simulation examples that support this conjecture.
We set up an experiment which is very similar to the previous one, except that the
distribution F of the random variables p(w) is a Poisson distribution with A = 0.05.
The Poisson distribution is interesting because it is closely related with the example
we provide in Sect. I, when the sensing devices are dispersed according to a Poisson
distribution.

Fig. 3 This plot shows the Expected Maximal Rewards versus z=(x,n—x)
relationship between the 1 ‘ ‘ ‘ ‘ : ‘ ‘ ‘
reward per step,

T (x,n — x)/n, and the
x-coordinate of the final
destination of the robot. It
verifies that the lemma
g(x,y) = (Vx + /) for
exponential distribution is
correct

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Expected Maximal Rewards at z=(x,n—x)

0
0 100 200 300 400 500 600 700 800 900 1000
X

Maximum-Reward Motion in a Stochastic Environment ... 403

Fig. 4 This plot shows the Expected Maximal Rewards versus Scope
relationship between the 035 ‘ ‘ ‘ ‘ ‘
reward per step, R,(:’) , and the 03

122] . [
travel distance n, for Poisson B

. . . . <

distribution with A = 0.05. It E 025}
supports the conjecture that &
@—)u-ﬁ-aasn—)oo g 02¢
for general distributions %

S 015}

el

Q

o 0.1

[

=%

o]

= 0.05

—#—Expected Maximum Rewards
0 —r+23
0 50 100 150 200 250 300

Perception Range

In Fig. 4, we plot the relationship between @ and n. In this scenario, u + o0 =

A++/A = 0.05++/0.05 = 0.2736. From the graph we can see that @ is converging
towards this value.

5.2 Receding Horizon

In Sect.4.2 we have shown that with a perception range of m = O(logn), the
robot will be able to collect almost as many rewards as the optimal case (with full
information). Based on Theorem 2, we claim that for any fixed § > 0, if we know
that the optimal reward per step is R*, and we if would like to keep a reward per step
of no less than R* — § with a fixed perception range m, then the expected maximal
travel distance of the robot is of order L(m) = exp(k - 815 . m) for some constant
k > 0 that depends only on the distribution F.

Consider the following computational experiment. Suppose the robot is running
Algorithm 1 with a lattice that is embedded in N?. We run this simulation until the
reward per step falls below R* — §, and we measure the distance that the robot
has travelled before the simulation stops. We repeat this experiment 1000 times
on different realizations of the random variables. We average the distance that the
robot travels to compute an empirical average. In Fig.5, we show the relationship
between the distance that the robot travels and the perception range m for geometric
distribution with p = 0.5 and and different values of §.

The simulation results show that this distance increases exponentially, in fact
obeying the order exp(x 8'> m), where « is around 0.4 in this case. These simulation
results support the result of Theorem 2.

404 F. Ma and S. Karaman

§=0.05 8=0.1
10 10°

10°

Expected Maximal Distance
Expected Maximal Distance

—eo—Expected Maximum Distance —e—Expected Maximum Distance
—68- exp(0.44- 8" x) . —40- exp(0.39- 8'- x)

1
1
0100 200 300 400 500 600 700 800 100 200 300 400 500 600
Perception Range Perception Range

§=0.08 ‘ §=0.12

Expected Maximal Distance
S
Expected Maximal Distance

—o—Expected Maximum Distance —o—Expected Maximum Distance
. — 42 exp(0.41- 8" x)) —30- exp(0.39- 8" %)

100 200 300 400 500 600 700 100 150 200 250 300 350 400
Perception Range Perception Range

Fig. 5 This plot shows the relationship between the distance a robot can travel (with reward per
step no less than R* — § for geometric distribution with p = 0.5) and different values of §. Note that
the y-axis is semi-log, which indicates that as perception range increases, the distance a robot can
travel without too much loss in reward increases exponentially. The red line is an approximation of
the real data. Notice that the exponent is around 0.4 - §!-3, which supports Theorem 2

6 Conclusions

We analyze the maximum-reward paths computed by a simple, practical receding-
horizon online motion planning algorithm. In particular, we show that the distance
that the robot can travel almost optimally increases exponentially fast with increasing
perception range. We also characterize the exponent in terms of the error term. Along
the way, we establish novel connections between a class of path planning problems
and certain fundamental problems of non-equilibrium statistical mechanics, which
may be interesting on their own right.

Maximum-Reward Motion in a Stochastic Environment ... 405

Future work includes the construction of a rigorous proof for the main conjecture

of the paper (given in Conjecture 1). We will study how the maximum reward scales
with other perception capabilities, such as perception uncertainty, as well as with the
actuation and on-board computation capabilities of the robot.

References

10.

11.

12.

13.

14.

18.

19.

20.

21.

22.

. Heer, C.V.: Statistical Mechanics, Kinetic Theory, and Stochastic Processes. Academic Press,

New York (2012)

. Mazonko, G.F.: Nonequilibrium Statistical Mechanics. Wiley, Weinheim (2008)
. Chou, T., Mallick, K., Zia, R.K.P.: Non-equilibrium statistical mechanics: from a paradigmatic

model to biological transport. Rep. Prog. Phys. (2011)

. Shaw, L.B.,Zia,R.K.P., Lee, K.H.: Totally asymmetric exclusion process with extended objects:

a model for protein synthesis. Phys. Rev. E 68(2), (021910) (2003)

. Ingber, L.: Statistical mechanics of nonlinear nonequilibrium financial markets. Math. Model.

5,343-361 (1984)

. Antal, T., Schutz, G.M.: Asymmetric exclusion process with next-nearest-neighbor interaction:

some comments on traffic flow and a nonequilibrium reentrance transition. Phys. Rev. E 62(1),
83-93 (2000)

. Nagatani, T.: Bunching of cars in asymmetric exclusion models for freeway traffic. Phys. Rev.

E 51(2), 922-928 (1995)

. Fleming, G.R., Ratner, M.A.: Grand challenges in basic energy sciences. Phys. Today 61(7),

28 (2008)

. Basic Energy Sciences Advisory Committee. Directing matter and energy: five challanges for

science and imagination. pp. 1-144. November 2007

National Research Council Committee on CMMP 2010. Condensed-matter and materials
physics: the science of world around us. January 2010

Otte, M., Correll, N., Frazzoli, E.: Navigation with foraging. In: 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 3150-3157. IEEE (2013)
Karaman, S., Frazzoli, E.: High-speed flight in an ergodic forest. In: IEEE International Con-
ference on Robotics and Automation (2011)

Antoine, B., Jean-Christophe, Z., Dario, F.: Vision-based control of near-obstacle flight. Auton.
Robots 27(3), 201-219 (2009)

Scherer, S., Singh, S., Chamberlain, L., Elgersma, M.: Flying fast and low among obstacles:
methodology and experiments. Int. J. Robot. Res. 27(5), 549-574 (2008)

. Bertsimas, D.J.: A stochastic and dynamic vehicle routing problem in the Euclidean plane.

Oper. Res. 39(4), 601-615 (2008)

. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities : A Nonasymptotic Theory

of Independence. Oxford University Press, Oxford (2013)

. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized

Algorithms. Cambridge University Press, New York (2009)

Dumaz, L., Virdg, B: The right tail exponent of the tracy-widom-beta distribution. arXiv preprint
arXiv:1102.4818 (2011)

Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209(2), 437—
476 (2000)

Martin, J.B.: Linear growth for greedy lattice animals. Stoch. Process. Appl. 98(1), 43-66
(2002)

Martin, J.B.: Last-passage percolation with general weight distribution. Markov Process. Relat.
Fields 12(2), 273-299 (2006)

Zeng, X., Hou, Z., Guo, C., Guo, Y.: Directed last-passage percolation and random matrices.
Adv. Math. 42(3), 3 (2013)

http://arxiv.org/abs/1102.4818

406 F. Ma and S. Karaman

23. Urmson, C., et al.: Autonomous driving in urban environments: boss and the urban challenge.
J. Field Robot. 25(8), 425-466 (2008)

24. Koenig, S., Likhachev, M., Furcy, D.: Lifelong planning Ax. Artif. Intel. (2004)

25. Schrijver, A.: Combinatorial Optimization. Springer, Berlin (2003)

26. Steele, M.J.: Probability Theory and Combinatorial Optimization. SIAM, Philadelphia (1996)

27. Dumaz, L., Virdg, B.: The right tail exponent of the Tracy-Widom g distribution. Annales de
I’Institut Henri Poincaré, Probabilités et Statistiques 49(4), 915-933 (2013)

Optimal Path Planning in Cooperative
Heterogeneous Multi-robot Delivery Systems

Neil Mathew, Stephen L. Smith and Steven L. Waslander

Abstract This paper addresses a team of cooperating vehicles performing
autonomous deliveries in urban environments. The cooperating team comprises two
vehicles with complementary capabilities, a truck restricted to travel along a street
network, and a quadrotor micro-aerial vehicle of capacity one that can be deployed
from the truck to perform deliveries. The problem is formulated as an optimal path
planning problem on a graph and the goal is to find the shortest cooperative route
enabling the quadrotor to deliver items at all requested locations. The problem is
shown to be NP-hard using a reduction from the Travelling Salesman Problem and
an algorithmic solution is proposed using a graph transformation to the Generalized
Travelling Salesman Problem, which can be solved using existing methods. Simula-
tion results compare the performance of the presented algorithms and demonstrate
examples of delivery route computations over real urban street maps.

1 Introduction

An emerging application for micro-aerial vehicles, such as quadrotors, is in
performing autonomous deliveries in urban environments. A number of large retail-
ers have recently announced plans to deploy quadrotors for expedited small package
deliveries. While quadrotors have the potential to significantly enhance the speed
of deliveries in urban environments as well as the distribution of supplies or aid
in inaccessible regions, a number of issues such as safety, security and endurance,
still need to be addressed. Current quadrotor systems are limited by small payload
capacities and short operating ranges that severely restrict the extent and efficiency of
an autonomous delivery network. Further, current safety regulations usually restrict
commercial drone flights to only within line-of-sight of an operator.

In this paper we propose to overcome these limitations by introducing a hetero-
geneous delivery team of two cooperating vehicles: a carrier truck and a carried
quadrotor. The role of the truck is to carry a shipment of packages to be delivered,

N. Mathew (X)) - S.L. Smith - S.L. Waslander
University of Waterloo, Waterloo, ON N2L3G1, Canada
e-mail: nmathew @uwaterloo.ca

© Springer International Publishing Switzerland 2015 407
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_24

408 N. Mathew et al.

as well as a docked quadrotor, and the role of the quadrotor is to carry individual
packages from the truck to specific delivery points in the environment. By requiring
the quadrotor to perform only the last leg of the delivery, both range and line-of-sight
limitations are accounted for.

We will assume that the quadrotor has a payload capacity of one package and
hence must return to the truck after each delivery. We also assume that the truck is
capable of recharging the quadrotor after each delivery and that it has an operating
range sufficient for the entire delivery mission. The goal of this paper is to propose a
framework to compute a minimum cost cooperative route enabling the quadrotor to
visit all delivery points in the environment. To this end, we will abstract the problem
on a graph and formulate the Heterogeneous Delivery Problem (HDP) as a discrete
optimal path planning problem. Solutions consist of routes, computed for the truck
and the quadrotor through the graph, that minimise the total cost of deliveries.

Related Work: The HDP belongs to a class of problems referred to as Carrier-
Vehicle Travelling Salesman Problems (CV-TSP), extensively studied by Garone
et al. [1] in the context of a marine carrier and an aircraft visiting a set of locations
to conduct a rescue mission in a planar environment. They formulate a continuous
optimization and compute a solution using a sub-optimal heuristic to split the problem
into two tractable subproblems: first, a TSP to compute the optimal visit order and
second, a convex optimization to compute the specific deployment points for the team
in Euclidean space. In contrast, given the discrete nature of our HDP, we will be able
to design a single optimization that computes cooperative paths for both vehicles.

Cooperative control in heterogeneous multi-robot teams has been investigated
for applications like search and rescue, surveillance, and exploration, [2—4], where
robots with complimentary capabilities must accomplish a common goal. The most
relevant are collaborative UAV-UGV teams where UAVs can rendezvous and dock
with UG Vs to benefit from the larger payload capacity and energy resources of UGVs
[5, 6]. One of the main challenges with heterogeneous systems is the development
of cooperative planning algorithms to achieve a desired objective. Rathinam et al.
explore optimal path planning in heterogeneous teams using variants of the Travelling
Salesman Problem (TSP) and the Generalized Travelling Salesman Problem (GTSP)
[7, 8] which are well studied problems in operations research literature and can be
solved using a number of exact, approximate or heuristic algorithms. In this work we
use the Noon-Bean Transformation [9] to cast the GTSP as an Asymmetric Travelling
Salesman Problem (ATSP) and solve it using the Lin-Kernighan-Helsgaun (LKH)
heuristic solver [10]. Finally, we will draw from existing literature on vehicle routing
and pick-up delivery problems [11-13] to inform our work.

Contributions: The contributions of this paper are threefold. First, we formulate
the HDP as a novel adaptation of a carrier-vehicle system in a discrete environment.
Second, we prove NP-hardness of the HDP and present a solution based on an
efficient reduction to the GTSP. Finally, we examine a special case of the HDP
consisting of a single vehicle and multiple static warehouses, called the Multiple
Warehouse Delivery Problem (MWDP). We present two algorithms for the MWDP,
one, using an alternative transformation to the TSP and the other, a polynomial time
exact algorithm to compute an optimal delivery route.

Optimal Path Planning in Cooperative Heterogeneous Multi-robot Delivery Systems 409

The organization of the paper is as follows. Section2 formulates the HDP as
an optimal path planning problem in a discrete environment. In Sect.3, the HDP
is proved to be NP-hard. Section4 presents the transformation to the GTSP imple-
mented to solve the HDP. Section 5 presents two algorithmic solutions for the MWDP
and finally, Sect. 6 compares and benchmarks all proposed algorithms through sim-
ulation results.

1.1 Definitions and Nomenclature

A graph is denoted by G = (V, E, c¢), where V is the set of vertices, E is the set of
edges and ¢ : E — Ris a function that assigns a cost to each edge in E. In a directed
graph, each edge is an ordered pair of vertices (v;, v;) and is assigned a direction
from v; to v;. A partitioned graph, G, is a graph with a partition of its vertex set into
£ mutually exclusive sets (Vi, ..., V¢) where Ule Vi=1V.

A route over a graph is a sequence of vertices P = (vy, ..., vx) linked by edges
(vi, vix1),i = 1,...,k — 1. Following [14], a walk is a route such that no edge is
traversed more than once. A path is aroute where v; # v; foralli, j € {1, ..., k—1}.
A closed route is a route of any type (e.g. route, walk, path) where v| = vg. A four
is closed path that visits all vertices in V exactly once.

Given a complete graph G = (V, E, ¢), the Travelling Salesman Problem (TSP)
computes a minimum cost tour of G. Given a partitioned complete graph G =

(V, E, c), with a vertex partition (V7, ..., Vp), the Generalized Travelling Salesman
Problem (GTSP) computes a minimum cost closed path, P, that visits exactly one
vertex in each vertex set V; C V,i e {1, ..., £}

2 The Heterogeneous Delivery Problem (HDP)

The HDP is abstracted on a directed graph G that represents the physical locations
of the delivery points, the location of a warehouse and a set of drivable routes on a
street network. An example HDP graph is shown in Fig. 1. The graph G contains the
locations of n delivery vertices, denoted by d;, in set V; (red vertices in Fig. 1), m
street vertices, denoted by wj;, in set V,, (blue vertices in Fig. 1), and a warehouse
vertex, wo, where the truck and quadrotor are initially located. The vertices, edges
and costs of G are defined as follows:

Vertices: The vertex set V is defined as a union of three mutually exclusive subsets
V =VoUV, UV, where Vo = {wg}, |Vg| = n, and |V, | = m.

Edges: Theedge set, E,is aunion of two mutually exclusive subsets, E = E,,UE,.
The set Ey, contains directed street edges of the form (w;, w), that represent shortest
routes between street vertices for all w;, w; € V,,. The set E; contains pairs of
bidirectional flight edges of the form (w;, d;) and (d;, w;), for all w; € V,, and
dj € Vg, if w; is a viable deployment vertex to reach delivery point d;. These flight

410 N. Mathew et al.

Fig. 1 The heterogeneous

delivery problem. The street

edges (solid lines) are shown

as either single or double

arrows, that represent pairs g
of directed edges. All flight d7.»"
edges (dashed lines) are

bidirectional edges between

vertices

(o

edges would have to be computed prior to the first deployment, taking into account
the range and line-of-sight constraints. We define the set Wy, C V,, to be the set of
viable deployment vertices for each delivery point, d;.

Edge Costs: For full generality, we define three types of edge costs for the truck-
quadrotor team. A flight edge in E; can be traversed only by a quadrotor between a
street vertex, w;, and a delivery vertex, d;. A street edge in E,, may be traversed by
the truck, either carrying the quadrotor or travelling alone. Thus we define a triple
of costs C = (cy, ¢, crg) Where ¢4 : Eq — Rxq, assigns a quadrotor travel cost to
flight edges in Eg4, ¢; : Eyy — R assigns a truck travel cost to street edges in E,,
and ¢,y : Eyy — Rs(assigns a docked truck-quadrotor travel cost on street edges
in Ey.

We extend the definition of a graph from Sect. 1.1 to G = (V, E, C), where C is
a triple of costs, and formulate the HDP, on G, as the problem of computing two
routes, for the truck and quadrotor, both starting and ending at vertex wo, such that the
truck, travelling on street edges, stops at a sequence of deployment points w; € Vy,
at which the quadrotor can take-off, visit a delivery point, d; € V; and return to the
truck before the next deployment. The goal is for the quadrotor to visit all n delivery
points and minimize the total delivery cost of the mission.

Let the quadrotor’s route be a closed walk P, along a sequence of unique edges
E,; C E and let the truck’s route be a tour P;, with a sequence of edges E; C E.
Routes P, and P; share vertices at which the truck and quadrotor meet and share
edges during docked travel. The HDP can be formalized as follows.

Problem 1 (Heterogeneous Delivery Problem) Given G = (V, E, C), where V =
VoUVyUVy, E=EgUEy and C = (¢, ¢4, ¢1q), compute a closed walk P, and a
closed path P, that start and end at wo, such that (i) P, visits each d; € V; exactly
once; (ii) P, is a sequence of deployment vertices that visits each unique w; € P,
exactly once, and in the order defined by the first visit to each w; in P,; and (iii) The
routes collectively minimize

Do+ D @+ D cyle). (1)

ecE4\E; ecE\E, ecE,NE;

Optimal Path Planning in Cooperative Heterogeneous Multi-robot Delivery Systems 411

3 Proof of NP-Hardness

To prove NP-hardness of the HDP, we will show that (i) an instance of the TSP can
be reduced to an instance of the HDP, and (ii) an optimal HDP solution can be used
to generate an optimal TSP solution.

Theorem 1 The Heterogeneous Delivery problem is NP-hard.

Proof Let G' = (V', E', "), with |V’| = n, be an input to the TSP. To prove (i),
we give a polynomial-time transformation of G’ into an input G = (V, E, C) of the
HDP as shown in Fig. 2.

The HDP is constructed such that each delivery vertex, d; € V; corresponds to a
vertex v; € V', and has only one unique viable street deployment vertex w; € Wy, C
Vw. Thus, construct the vertex set V. = Vo U V; U V,,, where |V;| = n, |Vy| =n
and V| contains an additional start vertex wy.

Now for each edge (v;, v;) in E "with a cost ¢’ (v;, v i), add a sequence of directed
edges to E, from d; tod;, given by (d;, w;), (w;, wj), (w}, d;), denoting the feasible
flight and street edges, and resulting in a total cost of ¢, (d;, w;) + cg(w;, wj) +
cqg(wj,d;j). Let cq(e) = O for all flight edges e = (d;, w;) or e = (w;, d;). For all
street edges, e, we set ¢;(e) = ciq(e) = ¢/(e). Finally, add bidirectional edges from
all w; € Vy, to wg and set c(wp, w;) = 0 and c(w;, wg) = 0. This transformation
defines G, the required input to the HDP.

We can now demonstrate (ii) by showing that an optimal HDP solution, com-
prised of P, and P;, corresponds to the optimal TSP solution, P’. From Fig.2,
note that an HDP solution of the form, P, = (wo, w1, d1, w1, ..., Wy, dp, Wy, Wo)
and P, = (wo, wi, ..., Wy, wo), can be used to generate a TSP tour of the form
P’ = (vy, ..., vy, vy) by simply extracting the order of street vertices (wy, ..., wy)
in P, since the truck must visit every w; € V,, to service each d; € Vy. If E},
contains the sequence of edges in P’, then E; = E}J. Now, since ¢, (e) = 0 and
ci(e) = cyyle) = c’(e), we can see that

D@+ D a@+ D cgler= D .

e€Ey\E; ecE\E, ecE4NE; ecElp

Thus, the optimal solution to the HDP can indeed be transformed into the optimal
solution of the TSP, completing the proof. O

Fig. 2 A reduction from the dz,
TSP on graph G’ to the HDP (b) A
on graph G. a
G'=(V,E,c).b @)
G=(V,E,C

Va

Vi V3

412 N. Mathew et al.

4 Solution Approach

Given the NP-hardness of the HDP and the fact that it contains the TSP as a special
case, our solution approach will be to polynomially transform an instance of the HDP
into a GTSP, such that the optimal GTSP solution provides an optimal HDP solution
of equal cost.

Referring to Figs.3 and 4, note that the approach will be presented in two trans-
formations. The first, 77 is a procedure to cast an HDP on graph G as a GTSP on a
partitioned graph G' = (V!, E!, ¢!), where each vertex set Vl.1 € V! corresponds to
a delivery point d; € V; and the vertices in Vl.1 correspond to the set of viable street
deployment points, w; € Wy, C Vy,, for each d;. Edges correspond to feasible routes
between deliveries. The second transformation, 75, is a method to extract the HDP
solution, Py, P;, from a GTSP solution, Pl Lemmas 1 and 2 prove the correctness
of the transformations.

4.1 Transformation Algorithms

Figure 4 illustrates the graph transformations on a sample HDP instance to aid in the
description. The problem in Fig. 4a is a simplified version of the example problem in
Fig. 1 and contains an environment G = (V, E, C), where |V;| = 4 and |V,,| = 8.
Figure4b shows the transformed GTSP graph G!, as well as an optimal solution,
P!, through it. Finally, Fig. 4c shows how the GTSP solution can be translated to an
HDP solution on G. We will refer to these figures throughout the descriptions below.

Transformation 7'1: HDP to GTSP Let the input to transformation 77 be an instance
of the HDP defined on the directed graph G = (V, E, C). The output of 7} is a
partitioned directed graph G! = (V!, E', ¢!) with V! partitioned into n+ 1 mutually
exclusive subsets V1 = {Vol, e, an}, such that V1 = U?ZOVil, corresponding to
the initial location wq and each of n delivery vertices.

Algorithm 1 describes the transformation of the input G = (V, E, C) into the
output G! = (V], El,cl). In the graph G!, the vertex set VO1 contains wq, and
each vertex set Vil,i = {1, ..., n}, contains a copy of all street vertices w; € Vy,
for which the flight edges (w;, d;) and (d;, w;) exist in E. We construct E I as
follows. Consider two street vertices in G! defined by w; € V! and w; € V), where

GC——=> T, y GTSP solver T T, > Pq P
HPDP G P ! HPDP solution
' GTSP GTSP solution H

Fig. 3 Graph transformation based solution approach to the HDP

Optimal Path Planning in Cooperative Heterogeneous Multi-robot Delivery Systems 413

Fig. 4 Transformation of HDP to GTSP. Figure (b) and (c¢) highlight red edges (quadrotor travel),
blue edges (truck travel) and black edges (docked truck-quadrotor travel)

a # b. The edge (w;, w;) is added to E 1 if either one of two subsets of edges,
a = {(dq, w;), (wi, w;), (wj,dp)}, or B = {(da, wj), (Wi, wj), (w;, dp)} exist in
E:i.e., if the quadrotor can deliver to d, from w;, followed by dj, from w;.

Figure 5 illustrates this mapping between the edges of E! and E. Theedge e € E!
maps to either « or B in E between delivery vertices d, and d, as follows. In pattern
a, shown in Fig. 5a, b, the quadrotor, having delivered an item at d, from wj;, returns
to the truck at w; and travels in a docked state to w;, to be redeployed towards dp.
In pattern 8, shown in Fig. 5c, d, the quadrotor, having delivered an item at d, from
w; travels directly from d,, to w; to rendezvous with the truck and pickup the item
to be delivered at dp.

In Sect.4.2, Lemma 1 states that the edge subsets « and 8 encode all potential
truck-quadrotor deployment patterns between any two delivery vertices, d, and dj,
for a chosen pair of respective street deployment vertices w; and w . Thus, deploy-
ment patterns « and A present the only two potential edge costs for edges in E!, and
can be computed as follows:

el (wi, wj) = cq(da, wi) + crg(wi, wj) + cq(wj, dp) o

cp(wi, wy) = cq(da. wj) + ¢ (wi, wy) + cq(wj. dp)

414

Fig. 5 Mapping between
edges in GTSP and HDP. a
Pattern « (GTSP). b Pattern
o (HDP). ¢ Pattern 8
(GTSP). d Pattern 8 (HDP)

N. Mathew et al.

o e

0 0 Cq"‘ 7 Ca
Cl ' .

Vi, Vi Ceq j
(©) (dd) g
a .\ ’ b
OVHD)
1 [Cq
Cﬁ ~\\ ;
Vi, Vi, Wi Ct Wi

Given these two costs, the minimum cost deployment pattern between w; € V!
andw; € Vb1 is chosen and a cost, ¢! (e) = min{cé (e), C}s (e)} is assigned to the edge
(wi,wj) € E L Figure 4b illustrates the vertex sets of the constructed GTSP graph

G! as a result of Algorithm 1.

Algorithm 1: Graph Transformation: G to G'.

Input : G =(V,E,C)
Output: G' = (V! E', 1)
1Vi=W
2 foreach d; € V; do
3| V!={wjlwj €V, (wj.d) €E, (d.,w)) € E}
avi=(vl vl vh
5 El = {(wi, wj)| wi € V), w; € V), a #b}
6 foreach e = (w;, w;) € E' where w; € Va', w; € Vb1 do
7 if a = 0 then
8 L cq(dy, wi) =0
9 if » = 0 then
10 L cq(w.,-,d;,) =0
11| cle) = cq(da, wi) + crq(wi, wj) + cg(wj, dp)
12 | cp(e) = cglda, w)) + ¢ (wi, w)) + cq(w, dp)
13 c](e) :min{cgt,c}s}

Transformation 77 has a runtime complexity of O(nz) and for an HDP with
Vgl = n and |Vy,| = m, it generates a GTSP of size 1 + nm. While this is a
significant increase in problem size, it represents the worst case with the quadrotor
having an infinite operating range such that foreach d; € Vy, |Wy,| = m. In practice,
|Wg,| < m and the size of the GTSP is 1 + >_"_, |Wg,|. The simulation results in

i=1

Sect. 6, Fig. 8d show how the quadrotor range affects size and runtime complexity of

the GTSP transformation.

Optimal Path Planning in Cooperative Heterogeneous Multi-robot Delivery Systems 415

The GTSP can now be solved using a variety of solvers in existing literature
and as seen in Fig.4a, the solution to the GTSP is a closed path of the form P! =
(wg, wi, - .., wy, wo), where wy is the starting vertex and (wy, . . ., w,) is asequence
containing one vertex from each set Vi1 cvl

Transformation 72: GTSP Solution to HDP Solution Given the optimal GTSP
solution P!, the optimal HDP solution composed of a closed walk P, and a closed
path P; can be obtained using Algorithm 2 as briefly described below.

Let the computed GTSP solution be defined by the sequence of vertices P! =
(wg, wi, ..., wy,, wo) where each vertex w;, i € {1, ..., n}, belongs to a unique ver-
tex set le in G!. Since the optimal deployment pattern for every pair of deployment

points w; € Va1 andw; € Vh1 was predetermined during the construction of G', we
can construct P, by inserting the vertices of the complete quadrotor path between
every consecutive vertex in P!. P, can be constructed by copying all unique street
network vertices w; € Vy, from P, in the order in which they occur in ;.

Algorithm 2: Reconstructing P; and P; from Pl

Input : Pl = (wo, wi, ..., Wy, W)
Output: P, P;
1 P;.append(wo, wi, dy), where wy € Val
2 foreachi € {I,...,n— 1} do
3 if cl(w,-,wi+1) =coll(w,',wi+1)then
4 ‘ P, .append(w;, wiy1, dp), where wi ;| € Vb1
5 else
6 L P, .append(w; 1, dp), where w; | € Vb]

7 if ¢! (wy, wo) = ¢l (wy, wp) then
8 ‘ P, . append(w,, wo)

9 else

10 L P, . append (wo)

11 foreach w; € P, do

12 if w; ¢ P; then

13 L L Py . append(w;)

14 P;. append(wy)

In the HDP solution to the example problem, as shown in Fig.4c, P, =
(wo, wa, di, wa, dp, ws, d3, ws, wi, da, wi, wo) and Py = (wo, w4, ws, Wi, Wo).
Transformation 7> is a linear in time, O(n), algorithm since the deployment pat-
terns between each consecutive pair of vertices in P! were computed in T7.

416 N. Mathew et al.

4.2 Correctness of the Transformation

This section proves that the GTSP transformation encodes all possible HDP solutions
and that the optimal solution to the GTSP can be used to generate the optimal solution
to the HDP.

Lemma 1 follows immediately from the discussion in Transformation 77, that
describes patterns « and 8. Thus, if the GTSP solution, P 1 contains the edge (w;, w;)
and pattern « is chosen, then in the HDP solution, P, will contain a subsequence
of edges {(da, w;), (w;, wj), (wj, dp)}. If pattern B is chosen, P, will contain a
subsequence {(dq, w;), (wj, dp)}. P; will contain edge (w;, w;) in both cases. In
the case where d,; and dj, share deployment points (i.e. w; = w;), the truck does not
move and hence o = S.

Lemma 1 Deployment patterns o and 8 are the only two HDP routes between any
two delivery vertices, d, and dp, given their respective street deployment points w;
and wj.

Lemma 2 validates transformation 7> by showing that any feasible or optimal
GTSP solution P! directly corresponds to an HDP solution Py, Py.

Lemma 2 Any feasible GTSP tour on G' corresponds to a pair of feasible HDP
routes on G. Moreover, an optimal GTSP solution corresponds to the optimal HDP
solution of identical cost.

Proof Each vertex set, Va1 C V1, corresponds to a delivery vertex d, € V. Lemma 1
proves that an edge (w;, w;) € E', where w; € V, and w; € Vp, represents the
lowest cost HDP route from d, to dj, for a respective w; and w;. Thus the set of
edges between all w; € V, and w; € V}, will encode any optimal route between d,
and d},, and this implies that any feasible GTSP solution on G' will correspond to a
feasible HDP solution on graph G.

We prove that an optimal GTSP solution provides the optimal HDP solution, by
contradiction, as follows. Consider an optimal GTSP solution of the form Pl =
(wg, wi, ..., wy, wo). We know that each edge (w;, wi+1) € P!, where w; € V,
and w; 41 € V}, represents an optimal subsequence of edges in P, and P, based on
the choice of & or 8. Thus, a sub-optimal HDP solution can only be obtained if P!
contains (i) a sub-optimal ordering of vertex sets, or (ii) a sub-optimal selection of
vertices in any vertex set. This violates the definition of an optimal GTSP solution
and hence optimality is preserved in the transformation from P! to P. (]

4.3 Characterizing the HDP Solution

In a typical HDP solution, the truck-quadrotor team conducts deliveries in a clustered
manner, with the truck stopping at a sequence of deployment points given by Py, such

Optimal Path Planning in Cooperative Heterogeneous Multi-robot Delivery Systems 417

(a)

Fig. 6 HDP solution characterization based on ¢4, ¢; and cy;. All figures show wy = (0, 0),
delivery points (red vertices), a gridded street network (blue vertices), the truck path (blue paths)
and quadrotor flight paths (green paths). a ¢; > ¢y > c4. b ¢,y > ¢; > ¢4. € Low truck cost. d
High truck cost

that |P;| < m, while the quadrotor visits a subset of delivery vertices D,,, C Vg,
from each w; € Py, such that Uy:)’{Dwi =V

Given an HDP instance, the structure and total cost of P;, P,, and the choice of
deployment patterns between each truck stop depend entirely on the relative values
of the cost functions ¢y, ¢; and ¢4, in G. Figure 6 qualitatively illustrates the effect
of varying edge cost parameters on the nature of the HDP solution.

Figure 6a, b show two special cases of the HDP solution that arise when the
costs, ¢; and ¢y, are greater than ¢, as follows. When ¢; > ¢y, the cost of the
truck travelling alone is heavily penalized and all deployments occur using pattern
« as seen in Fig. 6a. Conversely, when ¢;; > ¢;, docked truck-quadrotor travel is
penalized, making deployment pattern 8 consistently preferable to o as shown in
Fig. 6b.

Finally, Fig. 6¢, d illustrate the effect of the relative truck and quadrotor costs on
the HDP solution. Low values of ¢; and ¢, relative to ¢, encourage greater truck
effort in the HDP solution, as in Fig. 6¢, while higher values of ¢; and ¢, relative to
¢4 result in a greater quadrotor effort, limited by its operating range, as in Fig. 6d.

418 N. Mathew et al.

5 The Multiple Warehouse Delivery Problem (MWDP)

In this section, we further examine the special case of the HDP where all quadrotor
deployments occur using pattern 8, similar to Fig. 6b. A limiting case of this problem
arises when ¢4 (e) = 00, and ¢;(e) = O forall e € E, thereby completely preventing
docked travel and assuming that the truck travelling alone has a zero cost and infinite
speed.

From Fig. 5 we can see that, ¢, (dy, w;) +cig(wi, wj) > cg(da, wj) +c (Wi, wj),
is always true in this case, and hence every edge of P, in the HDP solution will be a
flight edge of the form e = (w;, d;) ore = (d;, w;), with a cost ¢, (e). The total cost
of Pris)¢ £, ¢1(e) = 0. Note that a zero cost, infinite speed truck can be interpreted
as a static warehouse at each street vertex and we will define a special case of the HDP:
the Multiple Warehouse Delivery Problem (MWDP), where a set of delivery requests,
Vi = {di, ..., d,} must be fulfilled by a single vehicle from a set of warehouses
Vw = {w1, ..., wy}. Figure7a illustrates an MWDP graph, G = (V, E, c¢), where
V = Vo UV, UV, E contains directed edges (d;, w;) foralld; € Vg, w; € V),
and edges (wj, d;) if w; € Wy,. Cost function, ¢ : E — Rxo, represents the non-
negative travel cost, that satisfies the triangle inequality. The MWDP is stated in
Problem 2.

Problem 2 (Multiple Warehouse Delivery Problem) Given G = (V, E, c¢), where
V =VWUV;UV,, compute a closed walk P, that starts and ends at wg, such that
each delivery vertex in V; is visited exactly once.

The MWDP can be solved as an HDP using the methods in Sect.4. However, the
downside of this approach is that it results in an increase in the size of the prob-
lem instance as described in Sect.4.1. Exploiting the simplifications in the MWDP,
relative to the HDP, we present two improved solution approaches, first, a graph
transformation of the MWDP into a TSP and, second, an exact algorithm to solve
instances with a small, fixed number of warehouses.

Fig. 7 The multiple warehouse delivery problem (MWDP). a Sample MWDP problem scenario.
b Optimal MWDP solution

Optimal Path Planning in Cooperative Heterogeneous Multi-robot Delivery Systems 419

5.1 Transformation Algorithm: MWDP to TSP

Since, in the MWDP, the quadrotor uses pattern 8 for each delivery, there is only one
shortest path between any pair of delivery vertices d; and d;, and it passes through
the warehouse vertex w, € Wa;, such that ¢(d;, ws) + c(wg, dj) is minimized.
Therefore, we can cast the MWDP as a TSP, by transforming an MWDP instance
G = (V, E, ¢), into a TSP instance, Gl = (Vl, El, cl), where V! = Vy U V; and
E' contains edges e = (v;, v;), forall v;, vj € V1. Now for each edge, (vi, vj), we
identify the warehouse w, € Wy, that minimizes c¢(d;, wa) + c(wq, dj), and set the
cost ¢! (v;, vj) = c(di, wa) + c(wg, dj).

Graph G’ is a TSP instance of size | V| = n, which is significant smaller than the
GTSP and can be solved using a number of exact or heuristic algorithms in existing
literature such as the Lin-Kernighan [15] or LKH [10] heuristics. The TSP solution is
a sequence of vertices of the form Pl = (vo, V1, ..., Uy, vg), from which an MWDP
solution may be obtained by inserting the stored warehouse vertex w,, between each
consecutive pair of vertices {v;, v;} in P!. An optimal MWDP solution is illustrated
in Fig. 7b.

5.2 Kernel Sequence Enumeration (KSE) Algorithm

Figure 7b shows that an optimal MWDP solution will always be of the form
P = (wo, wg,, d1, Wk,, d2, ..., Wg,, dn, Wo), Wwhere we have numbered the delivery
points so that they are visited in the order dy, da, . . ., d, and each k; isin {1, ..., m}.
All delivery vertices are visited in sub-sequences, (wy; , d;, wx,,,) where wy, is the
warehouse assigned to service d;. Given this property, we identify two classes of
delivery vertices in P, (i) a localized delivery vertex, d;, for which k; = k;4+1 and
(ii) a transitional delivery vertex, d;, for which k; # k;11. We also say that d, is a
transitional delivery vertex since it returns to wg. Two additional properties of P,
that are proven by the triangle inequality are:

1. For every localized delivery vertex d; in P, where (wy,, d;, wy;,,) and k; = ki1,
we must have that wy, = argminyev, c(w, d;). Thus wy, = wy,,, is the closest
warehouse to dj;.

2. If the path P visits mp < m unique warehouses in V,,, then the number of transi-
tional delivery vertices | D;| = m p. This implies that the quadrotor never revisits
a warehouse wy; once it has transitioned to warehouse wy,,, with k; 11 # k;.

Given these properties the following procedure gives us an exact algorithm for
solving the problem:

1. Enumerate all kernel sequences consisting of an ordered subset of warehouses
and a transitional delivery point between each pair of warehouses. In total there
are O (n™m™) possible kernel sequences.

420 N. Mathew et al.

2. For each kernel sequence, create a complete path by assigning all remaining
delivery points as localized deliveries, using their closest warehouse in the kernel
sequence.

3. Output the shortest path among all completed kernel sequences.

To complete each kernel sequence we must compute the closest warehouse for
each remaining delivery point. Since there are at most m warehouses in the kernel
sequence and n delivery points that are not in the kernel sequence, the complexity
of each kernel completion step is O (nm). Therefore, the total runtime of this brute
force algorithm is O ((nm)™*1).

Thus, the key point is that the algorithm is polynomial for a fixed number of
warehouses m. For example, if there are three warehouses and a larger number of
delivery points, this exact algorithm runs in O (n*) time, which may be acceptable,
and does not require a transformation to an NP-hard problem. However, for a larger
number of warehouses, this algorithm is less practical.

6 Simulation Results

The optimization framework for this paper was implemented in MATLAB. The solu-
tions were computed on a laptop computer running a 32 bit Ubuntu 12.04 operating
system with a 2.53 GHz Intel Core2 Duo processor and 4GB of RAM.

The first set of results in Fig.8, presents HDP solutions on a sample problem
instance with 30 delivery points and a gridded terrain with 100 street vertices in
an environment of arbitrary size r.,,. The key simulation parameters are c;,c4,¢rq
and r,, the operating range of the quadrotor, defined as a percentage of 7., which
dictates the size of Wy, for each delivery point d; and consequently, the size of the
GTSP. For these results, we set ¢, to be the Euclidean distance between vertices and
ct(e) = cy(e) = 3¢y (e) for all edges e.

InFig.8a,r; = 0.3 r¢py, which resulted in a GTSP with 170 vertices and took 5.7 s
to compute a solution. When r, was reduced to r;, = 0.17,,, the resulting GTSP
contained 82 vertices and took 2.3 s to compute the solution, shown in Fig. 8b. From
the Fig.8a, b, we can see that reducing the quadrotor range resulted in a smaller
problem size, and an increasing truck effort, similar to the properties observed in
Sect.4.3 where a lower truck cost resulted in longer truck path in the HDP solution.
In the limiting case, the HDP approaches the MWDP special case in Fig. 8c, for which
the TSP method computes a solution in 0.45s. To assess this further, Fig. 8d shows
the effect of the quadrotor range on the size (right y-axis) and runtime complexity
(left y-axis) of the GTSP solution. Figure 8e shows that for the MWDP case, the TSP
of size n presents a faster and more scalable solution than the GTSP approach as
shown by the average growth of runtime complexity as |V,| in increased, keeping
other parameters and | V), | constant.

In the case of the MWDP, all three solution methods can be employed with com-
parable results in terms of solution quality. While the KSE algorithm is useful to

Optimal Path Planning in Cooperative Heterogeneous Multi-robot Delivery Systems 421

® a9

45
4
35
3
25
2
15
. 1
05

451 o
4 .
35
.
3
.
25
.
2
151 °
1
05

0 0 .
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5
(d) GTSP Size and Runtime (e) 7MWDP Runtime Comparison (GTSP vs. TSP)
200 800

——— GTSP runtime.
6 TSP runtime

@
3
3

Runtime (seconds)
g
S
3
Number of vertices in GTSP
Runtime (seconds)

50

N
3
3

[0
5 10 15 20 25 30 35 0 10 20 30 40 50 60 70 80

Quadrotor Range (% of Environment Size) Number of Delivery Points

Fig. 8 HDP simulation results and GTSP performance. a HDP (r; = 0.3r.). b HDP (r, =
0.17¢y). ¢ MWDP TSP solution. d GTSP performance. e GTSP versus TSP for MWDP

Table 1 MWDP algorithm comparison

Delivery points | Runtime Solution quality
GTSP TSP KSE GTSP TSP KSE
3 0.05 0.04 0.06 10.56 10.56 9.95
6 0.20 0.06 1.11 16.21 16.61 16.21
9 0.26 0.14 5.55 30.47 30.20 29.21
12 0.44 0.26 21.46 35.12 34.27 33.52
[Vl =3

obtain the optimal MWDP solution for smaller problem sizes it quickly becomes
impractical with greater complexity and the TSP method stands out as the appropri-
ate approach, as evident in Table 1, which shows runtime and solution quality results
for an MWDP problem with |V,,| = 3 and an increasing number of delivery points.

Finally, Fig.9 presents a realistic delivery scenario on a Google street map of a
15km? area in a residential neighbourhood in Waterloo, Ontario, Canada. Figure 9a
shows an HDP solution for 17 delivery points in contrast to a single delivery truck
conducting deliveries in Fig. 9b. Given a maximum range of 150 m for the quadrotor
to ensure line of sight, the HDP solution in this problem instance results in a ~50 %
reduction in travel distance for the truck.

422 N. Mathew et al.

Victoria
Park.

e

<\\.
Josephz ¥
Schoeider Haus

% > JIRP
i7F 3
Map data ©2014 Google Terms of Use Report a map enmor

Fig. 9 HDP solution on a map of Waterloo, Ontario. a HDP truck-quadrotor solution. b Truck
delivery route

7 Conclusions

This paper presents a novel adaptation of a heterogeneous carrier-vehicle system for
cooperative deliveries in urban environments. The HDP represents a class of cooper-
ative carrier-vehicle path planning problems in discrete environments, applicable to
anumber of multi-robot systems in scenarios like search and rescue, surveillance and
exploration. In future work, we are interested in generalizing the HDP to allow mul-
tiple simultaneous quadrotor deliveries, scheduled delivery requests, and dynamic
scenarios where new requests arrive during execution.

References

1. Garone, E., Naldi, R., Casavola, A., Frazzoli, E.: Cooperative path planning for a class of
carrier-vehicle systems. In: IEEE Conference on Decision and Control, pp. 24562462 (2008)

2. Parker, L.: Current state of the art in distributed autonomous mobile robotics. In: Parker,
L.E., Bekey, G., Barhen, J. (eds.) Distributed Autonomous Robotic Systems, vol. 4, pp. 3—12.
Springer, Japan (2000)

3. Pimenta, L., Kumar, V., Mesquita, R., Pereira, G.: Sensing and coverage for a network of
heterogeneous robots. In: IEEE Conference on Decision and Control, pp. 1-8 (2008)

4. Chand, P, Carnegie, D.A.: Mapping and exploration in a hierarchical heterogeneous multi-
robot system using limited capability robots. Robot. Auton. Syst. 61(6), 565-579 (2013)

5. Mathew, N., Smith, S.L., Waslander, S.L.: A graph-based approach to multi-robot rendezvous
for recharging in persistent tasks. In: International Conference on Robotics and Automation,
May 2013, pp. 3497-3502

6. Phan, C., Liu, H.: A cooperative UAV/UGYV platform for wildfire detection and fighting. In:
International Conference on System Simulation and Scientific Computing, pp. 494-498 (2008)

Optimal Path Planning in Cooperative Heterogeneous Multi-robot Delivery Systems 423

7.

10.

11.

12.

13.

14.

15.

Bae, J., Rathinam, S.: An approximation algorithm for a heterogeneous traveling salesman
problem. In: ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Sym-
posium on Fluid Power and Motion Control, pp. 637-644 (2011)

. Oberlin, P., Rathinam, S., Darbha, S.: A transformation for a heterogeneous, multiple depot,

multiple traveling salesman problem. In: American Control Conference, pp. 1292-1297 (2009)

. Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman

problem. INFOR 31(1), 39-44 (1993)

Helsgaun, K.: General k-opt submoves for the Linkernighan TSP heuristic. Math. Program.
Comput. 1, 119-163 (2009)

Nagy, G., Salhi, S.: Heuristic algorithms for single and multiple depot vehicle routing problems
with pickups and deliveries. Eur. J. Oper. Res. 162(1), 126-141 (2005)

Bullo, F,, Frazzoli, E., Pavone, M., Savla, K., Smith, S.: Dynamic vehicle routing for robotic
systems. Proc. IEEE 99(9), 1482-1504 (2011)

Qu, Y., Bard, J.F.: The heterogeneous pickup and delivery problem with configurable vehicle
capacity. Transp. Res. Part C 32, 1-20 (2013)

Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Algorithmics and
Combinatorics, vol. 21, 4th edn. Springer, New York (2007)

Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem.
Oper. Res. 21(2), 498-516 (1973)

Composing Dynamical Systems to Realize
Dynamic Robotic Dancing

Shishir Kolathaya, Wen-Loong Ma and Aaron D. Ames

Abstract This paper presents a methodology for the composition of complex
dynamic behaviors in legged robots, and illustrates these concepts to experimen-
tally achieve robotic dancing. Inspired by principles from dynamic locomotion, we
begin by constructing controllers that drive a collection of virtual constraints to
zero; this creates a low-dimensional representation of the bipedal robot. Given any
two poses of the robot, we utilize this low-dimensional representation to connect
these poses through a dynamic transition. The end result is a meta-dynamical system
that describes a series of poses (indexed by the vertices of a graph) together with
dynamic transitions (indexed by the edges) connecting these poses. These formalisms
are illustrated in the case of dynamic dancing; a collection of ten poses are connected
through dynamic transitions obtained via virtual constraints, and transitions through
the graph are synchronized with music tempo. The resulting meta-dynamical system
is realized experimentally on the bipedal robot AMBER 2 yielding dynamic robotic
dancing.

1 Introduction

The problem of realizing different motion behaviors (or tasks) and switching between
these different behaviors in robots has been well studied [6, 11]. Examples of tech-
niques employed include the elastic strip framework for robot manipulators [6], the
decision theoretic approach for mobile robots [5] and Eigen behaviors for generic
robots [9]. In particular, the elastic strip framework is used to deviate from original
preplanned tasks to reactively avoid obstacles while allowing for smooth transitions;
the decision theoretic approach is used for mobile navigation; and Eigen behaviors

S. Kolathaya () - W.-L. Ma - A.D. Ames
Texas A& M University, College Station, TX 77843, USA
e-mail: shishirny @tamu.edu

W.-L. Ma
e-mail: wenlongma@tamu.edu

A.D. Ames
e-mail: aames @tamu.edu

© Springer International Publishing Switzerland 2015 425
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_25

426 S. Kolathaya et al.

are used to learn the tasks themselves. The resulting behaviors (or motion primitives)
obtained through these methods are important in meeting different task requirements
like pick and place, assembly, but have not been successful in applications like legged
locomotion which require dynamic stability and handling of instantaneous discrete
transitions (foot strikes).

While different locomotion behaviors have been obtained in legged robots [10,
19, 20] individually, formally composing these primitives in one single format and
realizing them on robots is still a subject in its infancy. In [16], a method for compos-
ing stair climbing and flat ground walking behaviors on a bipedal robot in simulation
was presented; importantly, in this work a formalism for composing these dynamic
behaviors was presented: meta-hybrid systems. Other methodologies have also been
considered which show similar characteristics including [15] which utilized state
machines to navigate over rough terrain and [18] which applies reinforcement learn-
ing techniques to switch between behaviors and thus navigate varying ground slopes.
Motivated by these constructions and the need to extend them beyond locomotion,
this paper explores an approach to achieving dynamically stable advanced locomo-
tion behaviors on bipedal robots by considering the problem of obtaining dynamic
dancing on the bipedal robot AMBER 2 (see Fig. 1).

Robotic dancing has been achieved in the past by copying the movements of
human motions through their realization as trajectories that ensure static stability
[4, 14]. Robotic dancing has also been utilized in the context of social interaction
[12], where special emphasis was given to synchronizing the rhythmic movements
with the music. But these works were mainly focused on maintaining the stability of
the robot while realizing dancing for the purposes of entertainment. With the goal
of placing more emphasis on establishing dynamically stable motion behaviors that
strictly satisfy time constraints (tempo of a music), this paper presents a methodol-
ogy of composing dynamical systems to yield meta-dynamical systems. In particular,
different poses are represented as the vertices of a directed graph and, according to
the edges of this graph, dynamic transitions are created that connect these poses. To

Fig. 1 The bipedal robot AMBER 2 (left), configuration angles (middle), and virtual constraints
(right)

Composing Dynamical Systems to Realize Dynamic Robotic Dancing 427

achieve this dynamic behavior, an optimization problem is presented for generating
dynamic transitions through methods motivated by human-inspired control [2, 3, 20,
21]. In particular, virtual constraints are considered that create a low-dimensional
representation of the robot through zero dynamics [19]. These yield desired trajecto-
ries of the robot (parameterized by the phase variable) that can be therefore designed
to dynamically transition between robot poses. Creating a low dimensional represen-
tation facilitates the ease of constraining the timing of these behaviors with a simple
manipulation of a phase variable (position of the hip). The end result is a methodol-
ogy for dynamically composing behaviors, designed specifically with a view toward
robotic dancing.

The paper starts with a discussion of modeling and control of AMBER 2 in
Sect.2. Two phases, single support (SS) and double support (DS), are considered
and described. A sequence of poses is formulated along with corresponding desired
transitions between these poses. These are discussed in Sect. 3 along with dynamic
transitions which are designed through virtual constraints, with the end result being
ameta-dynamical system for dancing. Finally, to practically implement these behav-
iors on AMBER 2, Sect.4 describes how desired angles and angular velocities are
reconstructed from the zero dynamics through a novel reconstruction process. The
dynamic transitions are synchronized with the music tempo through the parameteri-
zation of time used to define the virtual constraints. The end result is the experimental
realization of dynamic robotic dancing on AMBER 2 (a video of the dancing can be
found at [1]).

2 AMBER 2 Model and Control

This section will provide a short description of the bipedal robot used, AMBER 2, to
realize dynamic dancing. This section will also show the control law used for tracking
the desired angles and velocities. AMBER 2 is a 2D bipedal robot with seven links
(two calves, two thighs, two feet and a torso, see Fig.1). AMBER 2 is the second
generation and an expansion upon its predecessor, the non-footed (point feet) bipedal
robot, AMBER 1 (see [20]). Each of the joints are actuated by brushless DC (BLDC)
motors. In addition, the motion of AMBER 2 is restricted to the sagittal plane via
a boom Fig.2. The boom is fixed rigidly to a rotating mechanism, which allows the
biped to walk in a circle with minimum friction. In addition, counterweights are
provided to cancel the weight on the robot due to the boom (note that the boom does
not support the robot in the sagittal plane, thereby restricting its overall motion to a
2D plane). The controller modules are remotely connected to the stationary power
supply with the help of slip rings located below the pivot.

428 S. Kolathaya et al.

Fig. 2 AMBER 2 with the boom and electronics. The boom restricts motion to the sagittal plane.
As shown in the figure: (/) Counterweight used to balance the boom around the pivot, (2) Controller
module where the walking algorithm is running, (3) The boom, (4) Boom support structure which
keeps the torso horizontal by using a parallel four-bar linkage mechanism, (5) The bipedal robot
AMBER 2

2.1 Robot Dynamics

Due to the changes of contact points on the foot throughout the course of dancing,
generalized coordinates are naturally used to characterize the robot. Specifically, the
configuration space, Q € R” is represented in coordinates as 6 = {, 0}, where
the extended coordinate ¥p € R represents the rotation angle of the body fixed frame
with respect to a fixed inertial frame Ro; here 6, = [6sa, Osk» Osh, Onshs Onsks Onsal®
6, € R” denotes the body coordinates of the robot as shown in Fig. 1. Note that the
translational coordinates p,, p, are also shown in Fig. 1, which are not considered
in the dynamics since the stance toe is assumed to be pinned to ground throughout
the course of dancing. For AMBER 2, n =7,b = 6,1.e., 0, € Réand @ € R.

Continuous Dynamics. The Lagrangian dynamics for this n-DOF robot is obtained
as:

M@®)d + H(®,6) = Bu, (1)

with the notations M € R"*" is the mass inertia matrix, H € R” is obtained from
Coriolis, Centrifugal and gravity forces apparent from the standard EOM for rigid
bodies. u € R¥ is the torque input with k the number of inputs, and B € R¥*K is the
mapping from torque to joints. For AMBER 2, k = 6.

With the multiple foot behaviors that can be realized, we know that the feet cannot
go below ground. The dynamics need to be realized through the use of holonomic
constraints which constrain both heel and toe of the non-stance foot whenever they

Composing Dynamical Systems to Realize Dynamic Robotic Dancing 429

are in contact with ground. These holonomic constraints are enforced in the following
manner:

M@©)d + H®,0) = Bu+ JL Fop + L, Fase + JL Fosns)

where J; (0) is the Jacobian of specific contact points i € {sh, nst, nsh} correspond-
ing stance heel, non-stance toe and non-stance heel respectively. F; (0, §), which are
the reaction forces due to the holonomic constraints, are defined for each domain
based on the contact conditions of the heel and toe. Note that F; = O if there is no
contact with ground. F; can be explicitly derived from the states x and the controller
u by differentiating the holonomic constraints twice. The details are omitted here
and can be found in [13]. If F,,5; = 0, Fy5p = 0 and Fyj; > 0, then a fully actuated
condition of the robot is realized.

Relabeling. If the robot takes a step, i.e., after the non-stance leg swings forward and
hits the ground, it is convenient to swap the stance and non-stance legs so that the
same motion primitive can be realized without the need to change the controller for
the robot. Therefore, at the end of every step relabeling of the angles is performed;
this is considered a discrete transition in a formal model.

2.2 Control

Since the objective is to achieve dancing, a convenient step is to make the joint angles
track a set of trajectories. We would like to generalize this by picking a vector of /
functions of joint angles, referred to as actual outputs y“, which we want to track
a vector of functions encoding the goal behaviors, termed the desired outputs y<.
The objective is to drive the error y = y¢ — y¢ — 0. These outputs are also termed
virtual constraints in [19]. The outputs are picked such that they are relative degree
two outputs. In other words, y* will be functions of joint angles, and not angular
velocities.

We first introduce the actual set of outputs (virtual constraints) which are inde-
pendent (as motivated by [2]): the linearized hip position, i.e., linearization of the
horizontal hip position (calculated from calf length L. and thigh length L;) w.r.t. the
stance toe of the robot:

(Sphip = —(L¢+ L) (Yo + Osk + Osa) — LiOsk; 3)
the stance ankle angle, 6;,; the stance knee angle, 6 ; the non-stance knee angle,

Onsk; the hip angle, 04, = Op5n — Osp; the torso angle, 6,0 = Yo + Osq + sk + Osis
and the non-stance foot angle, 6,5 = Y0 + Osq + sk + Osn — Oush — Onsk — Onsa-

430 S. Kolathaya et al.

We now introduce the Canonical Walking Function (CWF) which was first intro-
duced in [2] to realize human-like walking in robots [20]. The CWF is given by:

Yewf(t, @) = e * (a; cos(aat) + a3 sin(aat)) + - - -

o405

as cos(agt) + 5 sin(agt) + 7. (@)

2 2
052—{—054—056

This CWF will be used to formulate our desired outputs with the parameters o
dictating the shape of the trajectory, but it is useful to establish a relationship between
time and the linearized hip position through a parameterization:

(8Pnip©) — 8pnip 1))
Vhip '

T(0) = 4)

which relates the hip position and time, where here vy;), is the hip velocity. In other
words, the robot moving forward can be seen as increasing hip position or an increase
in time. Similarly, the robot moving backward can be seen as hip position reducing
or the parameterization of time going in reverse. Note that 6 represents the robot
configuration at the beginning of one step which can be defined such that parameter-
ized time is zero at initial hip position. This parameterization can then be utilized to
directly get the initial configuration of the robot from the parameters o which helps
in reducing computation of the trajectory optimization parameters (see [2]).

Single Support and Double Support. There are two types of phases which will
be considered in the paper, single support SS (when one foot is flat on ground) and
double support DS (when both the feet are always on ground). There are other phases
like underactuation where only the stance toe is on the ground, which also can be
modeled but are more complicated to analyze and are therefore omitted from the
paper. Depending on the contact conditions being enforced, we get control systems
associated with the single support and double support phases, denoted by (fss, gss)
and (fps, gps), respectively (see [21]).

Single Support. In the single support phase, the foot angle /o = 0, and the non-
stance foot is always above ground. Picking only the base coordinates 65, [= 5
desired outputs, ydg : R® — R and 5 actual outputs, ydg : R® — RS are considered:

Osk ycwf(f(e)’ Qgk)
Onsk Yew f (t(0), ansk)
Y5O = | Onip |+ Y§s((O) ass) = | Yeus (T(O). anip) | 6)
Oror ycwf(r (0), aror)
ensf ycwf(r(e)s ansf)

where 7 is a function of the configuration 0, as defined in (5), and the desired outputs
are functions of 6 and ass = [0k, Unsks Uhip, Aror, ansf]T. Therefore, the desired
trajectories are a function of (v4;p, ass) € R36. It is also important to note that
the actual output vector ygg is a linear function of the angles: y{g = Hss), with

Composing Dynamical Systems to Realize Dynamic Robotic Dancing 431

Hss € R3*C being the transformation matrix. Since, ¥ = 0, 0 = [0,6/17 for
single support phase.

The objective of the controller is to drive the outputs yss = y§q — yé’s to zero,
i.e., yss — 0. This can be achieved by using a feedback linearizing controller (see
[17]), which involves using the model of the robot and inverting this model to obtain
a stable linear system. Due to inaccuracies in the model parameters and difficulty in
identification, we could instead use a simpler controller, e.g. PD controller, which
does not guarantee convergence to zero, but will ensure minimum tracking error
provided sufficient gains are used. Firstly, we define the following coordinate':

Ess = —(Le + Ly) (Bsa + 051) — Libs = Cssbp.)

where Csg € R! %6 js the row vector of constants. Note that &ss derived here is same
as (3) with 1o omitted. If the controller used is expected to achieve zero tracking
error, i.e., yé‘s — ygs = 0, then the desired joint angles Qgs € RO and velocities
esds € RO of the robot for the single support phase which realize this equality can be
obtained as:

d Css | ,d &ss
st - [lecl

Therefore, the desired angle configuration and the angular velocities are:

—1 —1 .
Css Ess:| sd |:Css:| 1| &ss
0d; = , 6d = =S 9
58 [HSJ [ygs 59 Hss aay% Vhip ®

The PD controller can thus be defined as:
a’ . .
”gs = _Kgs(gb - Qgs) - Kéis(eb - 9§JS), (10)

where K sps’ K gs are the proportional and derivative gain matrices respectively.

Double Support. The double support phase adds extra constraints to the robot like
friction, pinning conditions (holonomic constraints [13]) and normal forces, which
will constrain the dynamics of the robot. The actual and desired outputs for the robot
can be defined similar to (6). In the double support phase, the stance ankle angle 65,
is added as:

yl%s _ |:9sa j| , yl%s _ |:Ywa(T(dg)a O5s(l)i| 7 (11)

¥Ss Yss

where yig : R7 — RO, ygs :R7 > RS, apg = [am,aSTS]T, with aps € R*.
The actual outputs can also be written as yj,s = Hpsf, with Hps € ROX7,

Note that the motivation for this coordinate is given by Partial Zero Dynamics as considered in

[3].

432 S. Kolathaya et al.

Since the actuators have the potential to fight each other due to overactuation, a
feedback linearizing controller will not necessarily yield exponential convergence:
bs — yﬁs — 0. However, since the objective of the controller during the double sup-
port phase is to achieve dynamic behaviors in the robot to realize a dancing sequence,
the convergence of the outputs to zero is ignored. Similar to (3), the following coor-
dinate is defined:

SDS = _(Lc + Lz)(‘ﬁo + Osk + 9sa) — L0 = CDSOa (12)

where Cps € R'*7 is the row vector of constant terms. Having obtained the expres-
sion for &pg, the desired joint angles and velocities can be defined as:

—1 —1 :
Cps éps “d Cps L | éps
0d. = . ol = a | == 13
o8 [HDS} [Ygs 5 | Hos —3§§S Vhip 9

With KSS, K]‘%S as the proportional and derivative matrices, the PD controller is:
d . .
ups = —Kps (0 — 05s) — Kis (6 — bfg), (14)

Note that, both these matrices are not square since uﬁ‘é € RC.In fact, the first columns
of the gain matrices are zeros.

2.3 Configuration Zero Dynamics

For the single support phase, with a feedback linearizing controller (see [17])
being applied, the outputs yss are exponentially driven to zero. The control sys-
tem (fss, gss) will exhibit zero dynamics. In other words, we have the following
restriction of the dynamics to the zero dynamics surface given by:

Zss =1{(0,6) : yss(@p) = 0, L 1yss(@p, 6p) = 0,0 = 0,49 =0}. (15)

This restriction of the dynamics to a surface enables us to connect different motion
primitives of the single support phase in a way such that the transition between
domains occurs without change of ysg .2 In other words, the transition will be smooth.
Motivated by the desire to relax the derivative condition in (15), we introduce the
notion of configuration zero dynamics defined to be:

CZss = {(0,6) : yss(@p) = 0, Yo = 0}. (16)

2Note: The construction of the PD g:ontroller defined in (7)—(10) is based on the notion that the
desired angles and velocities: (Géis, Géis) € 7ss.

Composing Dynamical Systems to Realize Dynamic Robotic Dancing 433

For the double support phase, due to geometric constraints, it is not possible
to realize zero dynamics. But, it is possible to connect a motion primitive with the
single support phase due to the choice of controller. The concept of configuration zero
dynamics plays an important role in the context of dancing, since when switching
between a large collection of surfaces, if the configuration zero dynamic constraints
are ensured, this allows for a transition without a sudden change in desired angles.
If the zero dynamics constraints are ensured, then it allows for a smooth transition
(jerk free) from one desired trajectory to other. This will be utilized in the next
section through the composition of configuration zero dynamic surfaces to allow
for minimum jerk transitions between domains. In addition, this constraint will be
independent of the speed in which the transition is executed.

3 Meta-Dynamical Systems

To achieve dancing, the primary goal is to connect trajectories, i.e., desired outputs
y?, for each motion primitive; that is, we wish to compose dynamical systems. To
this end, this section will present the notion of meta-dynamical systems which gives
a formalism to the notion of composition. We begin by considering different poses
of the robot that will be connected through dynamic transitions.

Pose. A pose of a robot is a configuration 6, which is intended to be realized in the
robot. In other words, a pose is just a captured frame of a robot while in motion.
For example, a robot with hip forward and low and both feet flat is a crouch, and is
considered a pose of the robot. There are several possible poses that the robot can
assume. If the stance toe is always on ground (since jumping is not considered), the
three remaining points (non-stance toe and heel and stance heel) can be either in
contact or not. Therefore, there are eight possible general cases for pose generation.
Accordingly, we will consider: front heel lift (FHL), front toe lift (FTL), back heel lift
(BHL), all feet flat on ground (FF), swing (S) with stance foot being flat on ground,
double heel lift (DHL), front toe and back heel lift (FTBH), and underactuation (UA)
with only stance toe in contact with ground. All the eight generic poses are shown
in Fig.3.

It is important to note that there could be more than one type of back heel lift,
front toe lift, and other combinations as well. In other words, there are more than
eight types of poses. For example, we could have two different kinds of flat footed
poses, where the vertical hip position is high for one and low for the other. This
will be discussed further in Sect.4 where the poses of dancing on AMBER 2 are
introduced. If a set of poses 01, 65, . .., 6; is considered, then dancing is achieved by
just executing dynamic transitions between these poses.

Dynamic Transition. Let x = (87,67) € R¥, and * = f(x) be a dynamical
system. Let @(¢; xo) be the solution to x = f(x) attime ¢ € R with initial condition
X, and let 7y be the canonical projection 7y (x) = 6.

434 S. Kolathaya et al.

Fig. 3 Eight generic poses of a robot based upon possible contact points

Definition 1 A dynamic transition between two poses, 6y and 6y, is a solution
& (1; xo) to the dynamical system % = f (x) such that there exists a point xg € R>"
and a time 77 > 0 with 79 (® (0; x0)) = 6y and 7y (P (1; xp)) = Of

This definition allows us to formally introduce meta-dynamical systems:

Definition 2 The meta-dynamical system is defined as a tuple:
M= (I,P,T), 17)

e ["isadirected graph givenas: I' = (V, [E), where V is the set of vertices describing
desired poses realizable on the robot, and [E represents transitions between these
poses. We denote the source and target of an edge ¢ € E by source(e) € V and
target(e) € V.

e PP is the set of poses given by: P = {P,},cy, where P, = 6, € R".

e T is the set of dynamic transitions: T = {T,}.cg, where T, = @, is the dynamic
transition between the poses Gyource(e) and Orarger (e)-

Creating dynamic transitions. Suppose we want to construct a meta-dynamical
system. Assume we are given a directed graph I" with the set of poses P. Using
the constructions given in Sect. 2.2, we can construct a set of dynamic transitions T.
Given that the desired outputs y? are obtained through Canonical Walking Functions
as described in (6) and (11), we propose the following optimization problem for
creating a dynamic transition T, for a particular edge e € E:

Composing Dynamical Systems to Realize Dynamic Robotic Dancing 435

(v;fl.p,oz*)z argmin Costp (vpip, @, vzip,o/) (18)
(Vhipsa)ERd
d
St dyPhase(Osa) _ | Hphaseto ’ (czD)
Yphase (Trmax» &) HphaseO ¢

where v,ﬁi » o' are the reference parameters, Phase € {SS, DS} denotes whether the
robot is in single support or double support phase, and 7,4y is the time at the end of
the step which is computed in the following manner:

Tnax = (Cphase® s — Cphase®0)/Vhip- (19)

with vy, being the hip velocity, as introduced in (5). The cost of dancing (or objective
function), Costp, is the least squares error relative to reference data:

Costp = D [ya(tlil. @) — ya(tlil. @) [ya(tlil. @) = ya(tlil. el (20)

where the reference used is either obtained from human data which have discrete
heel toe behavior, or obtained from the formerly established walking gaits which
were provably stable and experimentally realized on robots (see [20, 21]). Note that
in some of the transitions for dancing where there were no reference trajectories,
a zero cost will be used. The defining aspect of this paper is using the constraints
(CZD), which realizes configuration zero dynamics and is thus instrumental in being
able to compose different motion primitives to form a meta-dynamical system. This
follows from the fact that the end result of the optimization is a dynamic transi-
tion; for example, if Phase = SS, the parameters obtained from the optimization
(vy; - o), utilized in the feedback linearizing controller and applied to the control
system (fss, gss), yields a dynamic transition.

Example: dynamic leg swing. To illustrate meta-dynamical systems, we will con-
sider a simple example consisting of two poses: back heel lift (BHL) and swing (S)
(see Fig.4). Due to space constraints, it is not possible to show how the optimization
problem was formulated for each and every transition in case of dancing. Therefore,
we consider a specific example of transition from pose Ppp to Py, i.e., from back
heel lift to swing. The two poses with the transition is depicted separately in Fig. 4.We
can accordingly define the meta-dynamical system in the following manner:

Discrete structure and poses. The graph is given by:

Fig. 4 Figures showing the

initial pose (/eft) and the final

pose (right) for crouching.

The red arrows are the edges BHL

from which we wish to />
construct dynamic transitions AN

between these poses

436 S. Kolathaya et al.
I'=({,E), V={S,BHL}, E ={S — BHL,BHL — S}. 201

The set of poses is given by: P = {IP, : v € V}. The set of transitions is given by:
T = {T, : e € E}. The edges are depicted by the arrows shown in Fig.4. Note that
the above example can have more than 2 edges depending on how the transitions
between poses are obtained. We will now introduce the optimization problem which
realizes the dynamic transitions, T, from one pose to the other.

Dynamic transitions. Having obtained the desired angles and angular velocities (9),
(13), we can now discuss the transition optimization which yields the motion primi-
tive for the swing action.

The cost for the optimization was evaluated by obtaining the least squares fit with
the multi-domain walking trajectory obtained on AMBER?2 as found in [21]. The
time parameter was picked such that only the swing portion of [21] was considered
for the cost. In other words, the value t was constrained in the optimization to match
the reference trajectories. Additional constraints, like sufficient foot clearances on
ground, were imposed throughout the step. The knee angle was also constrained to be
within a certain limit to ensure low torque is utilized. That is, the final optimization
(with physical constraints) is given by:

(v;'l‘ip, o) = argmin Costp(vpip, @, v;ip, a”) (22)
(hip)R
s.t. (CZD)
Tmax < 0.4

min(h,g) > 0

min(6ys1) > 0,

Fig. 5 Tiles of a leg swing behavior consisting of a transition from back heel lift to swing pose.

The top tiles illustrate the behavior of the robot achieved in simulation, and the bottom tiles show
the same behavior realized experimentally on AMBER 2

Composing Dynamical Systems to Realize Dynamic Robotic Dancing 437

where the resulting optimal solution yields the parameters for the desired trajectories
represented through the outputs. Since the constraints are non-linear, the optimization
method used is active-set through MATLAB. If this optimization were to be done
online, a learning technique like [8] could have been used instead, but, this does not
yield dynamically stable trajectories which are necessary for maintaining balance.
When this is applied on the robot through trajectory reconstruction (10), the swing
of the non-stance leg is observed as shown in Fig.5. The same controller was also
applied on AMBER 2, both in simulation and experiment, with tiles of the resulting
behavior shown in Fig. 5.

4 Dynamic Robotic Dancing on AMBER 2

This section presents the process of realizing dynamic dancing in AMBER 2 by using
the methods introduced in this paper. We will not consider the cases UA, DHL, FTBH
from Fig. 3 since they require higher torque and are relatively difficult to realize in
the robot. Therefore, we will consider the remaining five generic cases of the feet
behavior for generating the pose. We will consider three types of front heel lift:
FHL1, FHL2, FHL3, one front toe lift: FTL, three types of flat-footed poses: FF1,
FF2, FF3, two types of swing poses: S1,S2, and finally one back heel lift pose: BHL.
All ten poses are shown in Fig. 6. The end result is an oriented graph I" = (V, E),
where:

V = {FHLI, FHL2, FHL3, FTL, FF1, FF2, FF3, S1, S2, BHL}, (23)

and E is the set of red arrows in Fig. 6.

For generating the dynamic transition between poses, the optimization (18) was
accordingly solved. Since it was not necessary to optimize trajectories to transition
from every pose to every other pose, we considered 20 edges (or optimized dynamic
transitions) which satisfied configuration zero dynamic (CZD) constraints. There-
fore, we consider the set of edges as shown in Fig.6, with the resulting dynamic
transition: T = {T, : e € E}, obtained through the optimization in (18). Note,
additional constraints were also implemented in the optimization to realize different
behaviors varying from constraining the angles, to allowing sufficient foot clearance,
to constraining the velocities, to constraining final parameterized time: T4y

Synchronizing with music. The particular method employed to synchronize the
behaviors of the robot with the music is to utilize the parameterization of time (5)
to change the hip position of the robot within a prespecified tempo period. Since t
is a direct function of the hip position, a change in t causes a corresponding change
in desired trajectories of the robot (as represented by the outputs parameterized by
7) resulting in synchronization between the beats of the music and the dynamic
transitions. Dynamic programming methods as described in [7] are used to generate
music tempo speed for a given song.

438 S. Kolathaya et al.

Fig. 6 Oriented graph for the meta-dynamical system considered for AMBER 2 in order to obtain
dynamic dancing

Sequence Design. To design a proper dancing sequence to the chosen music, the
tempo period AT, which was obtained from the beats, is utilized as the fundamental
period. For AMBER 2 dancing, each sequence input which executes the transition
from one pose to the other is given in the following format:

S = {a, Tmax, Ndance, Mo, M1, N freezes Phase, Leg}, (24)

where « is the set of parameters specifying the desired trajectory. The starting pose is
specified by the time parameter, m(7,4, and the ending pose is specified by m11 T4 -
Note that 7,4, is the maximum time parameter for current gait. 7244, 1s the tempo
number specifying for how long AMBER 2 will transition for the current primitive,
while 71 f;¢¢z. denotes the tempo number specifying for how long the robot will freeze
at the end of the transition. Phase € {SS, DS} indicates the current phase of the robot,
and Leg € {Left, Right} determines which leg is the stance leg.

Composing Dynamical Systems to Realize Dynamic Robotic Dancing 439

Algorithm 1 Real Time Module

Input: Encoder/motor status; AMBER 2 parameters: calf length L., thigh length L,;
Input: Optimization parameters: Bphip(0+), Vhip, @

Input: Joint angles and angular velocities 6, 9;,; PD controller gains: K l];hase’ K ghase;
Input: Dance sequence (see Fig. 6) in (&, Tiax, Ndances M0, M1, N freeze, Phase, Leg);
Output: Torque commands for FOC;

1: Enable Motor Drives;

2: repeat

Wait till all motor drives are Enabled

4: until (Drive-Status == Enable)

5: while (— Stop-RT) do

6: Based on specified stance foot, reform 6,,, éa from Left/Right to Stance/NonStance;
7

8

9

bl

Read absolute real time ¢ and sequencelndex;
if 0 <t < TyanceNdance then

if m; > mgo then
t

10: Td = MOTnax + Tmax 77—
TaanceNdance

11: else ;

12: Td = MOTmax — Tmax 7 »
. TiaanceNdance

13: end if

14: else

15: T4 = M1 Tpaxs

16: endif

17: Based on 4, calculate (&ppase) using one of (7) or (12);

18: Calculate yghase (tq, @), yghase(fdv «) based on Canonical Walking Function (4);
19: Calculate vgq,c. based on the time duration Tyu,ce;

20: Based on Phase, apply trajectory reconstruction to get (64, é,;) with updated vggnce;
21: Based on Phase, compute torque by choosing one of (10) or (14);

22: Reform torque u from Stance/NonStance to Left/Right and send it to FPGA;

23: if t = Tyaik + Trreeze then

24: sequencelndex +1;

25: Reset time clock;

26: end if

27: Log Data into Remote Desktop;

28: end while

29: Disable motor drives; Report errors and stop the Real Time VI;

The desired angles and velocities are obtained from (9) for SS, and (13) for DS
with the time parameter T being manually varied from m Ty, to m| T4y during the
period Tgance = Ndance AT seconds. It is important to note here, since the dancing
duration Ty, 1s specified differently than the original time duration, the transition
speed changes. Accordingly, the hip velocity should also be scaled as:

Vdance = Tdancevhip/((ml — mM0)Timax), (25)

with vp;p, is the designed hip velocity encoded in the motion primitive «. To obtain
the torque controller used in the robot, vy;p in (9) and (13) is replaced with vgapc. and
the desired angles, velocities are accordingly computed. Having the desired angle
and velocity of the robot, the torque controller is obtained from (10) or (14) based on

440 S. Kolathaya et al.

Fig.7 Experimental realization of the meta-dynamical system on AMBER 2, resulting in dynamic
robotic dancing (which can be viewed at [1])

the value of Phase given by the sequence S. At the end of each sequence, the robot
can also be frozen for the time Tfreeze = 7 freeze AT seconds. More details about
the algorithm used is shown in Algorithm 1.

Control Implementation and Results. On the hardware level, the controller for
AMBER 2 is implemented on two levels: a high level controller, which is realized
in Real-Time (RT) with the pseudocode running in RT as shown in Algorithm 1;
and a low level controller, which is realized by an FPGA for interfacing with the
hardware modules. Implementing the proposed algorithm in the robot resulted in

Composing Dynamical Systems to Realize Dynamic Robotic Dancing 441

0
04} -0.1
— ! — -0.2
z o2 ; e < s
= of = £ -04
o @ T
3 ool E} 228 7
< < -0.7} .
-0.4 = /“ -0.8}
-0.6 -0.9¢
0 0 5 10 15 0 5 10 15
_pa Time (s) N ﬁd g Time (s) gl g Time (s) gl
sa sa sk sk sh sh
02 .7
T 3
£ -02 +
3 04 =)
Z -06 =
-0.8

10 15
Time (s) Time (s) Time(s)
a _.pd a _.pd _.pd

- Hnsh, ensh - gmk ens/\‘ —0, 0

nsa nsa

Fig. 8 Experimental data comparing the actual and desired angles for a sequence of steps extracted
from a part of the dance sequence as realized on AMBER 2. The vertical dashed lines indicate end
points of the transitions

dynamically stable dancing accurately synchronized with the tempo of the music.
Figure 8 shows the comparison between desired and joint angle trajectories, Fig.7
shows the configuration of the robot at different instances of time during the dance
sequence. The video of AMBER 2 dancing is shown in [1].

5 Conclusions

This paper successfully showed how to achieve dynamically stable dancing in the
bipedal robot AMBER 2 which is accurately synchronized with the music. The
dance sequence is seen as a composition of motion behaviors with different poses
and transitions tied together in the form of a meta-dynamical system. The dance
was about 1.5min long showing 10 poses and 20 transitions from one to the other.
Tracking results also verified the method used. Future work involves implementing
more complex behaviors like the underactuation, flips and flying behaviors, using
different surfaces and terrains, and also music with varying tempo.

References

1. Dynamic Robotic Dancing on AMBER 2. http://youtu.be/IwR9XvojXWo
2. Ames, A.D.: First steps toward automatically generating bipedal robotic walking from human
data. In: Robotic Motion and Control 2011, vol. 422. Springer (2012)

http://youtu.be/IwR9XvojXWo

442

3.

10.
11.

13.

14.

15.

16.

17.
18.

19.

20.

21.

S. Kolathaya et al.

Ames, A.D., Cousineau, E.A., Powell, M.J.: Dynamically stable robotic walking with NAO via
human-inspired hybrid zero dynamics. In: Hybrid Systems: Computation and Control, Beijing,
China (2012)

. Aucouturier, J.-J.: Cheek to chip: dancing robots and Ai’s future. IEEE Intell. Syst. 23(2),

74-84 (2008)

. Bennewitz, M., Pastrana, J., Burgard, W.: Active localization of persons with a mobile robot

based on learned motion behaviors. In: Proceedings of the 3rd Workshop on Self Organization
of Adaptive Behavior (SOAVE) (2004)

. Brock, O., Khatib, O., Viji, S.: Task-consistent obstacle avoidance and motion behavior for

mobile manipulation. In: Proceedings of the ICRA’02, 2002 IEEE International Conference on
Robotics and Automation, vol. 1, pp. 388-393 (2002)

. Ellis, D.P.W.: Beat tracking by dynamic programming. J. New Music Res. 36(1), 51-60 (2007)
. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Learning attractor landscapes for learning motor prim-

itives. In: Advances in NIPS, pp. 1523-1530. MIT Press (2003)

. Jiang, X., Motai, Y.: Learning by observation of robotic tasks using on-line pca-based eigen

behavior. In: Proceedings. 2005 IEEE International Symposium on Computational Intelligence
in Robotics and Automation, CIRA 2005. pp. 391-396. IEEE (2005)

Johnson, A.M., Koditschek, D.E.: Legged self-manipulation. IEEE Access 1, 310-334 (2013)
Khatib, O., Sentis, L., Park, J., Warren, J.: Whole-body dynamic behavior and control of
human-like robots. Int. J. Humanoid Robot. 1(01), 29-43 (2004)

. Michalowski, M.P,, Sabanovic, S., Kozima H.: A dancing robot for rhythmic social interaction.

In: Proceedings of the ACM/IEEE International Conference on Human-robot Interaction, HRI
’07, pp. 89-96, ACM, New York (2007)

Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC
Press, Boca Raton (1994)

Nakaoka, S., Nakazawa, A., Yokoi, K., Ikeuchi, K.: Leg motion primitives for a dancing
humanoid robot. In: Proceedings of the ICRA’04. vol. 1, pp. 610-615, IEEE (2004)

Park, H., Ramezani, A., Grizzle, J.W.: a Finite-state machine for accommodating unexpected
large ground-height variations in bipedal robot walking. IEEE Trans. Robot. 29(2), 331-345
(2013)

Powell, M.J., Zhao, H., Ames, A.D.: Motion primitives for human-inspired bipedal robotic
locomotion: walking and stair climbing. In: 2012 IEEE International Conference on Robotics
and Automation (ICRA), pp. 543-549 (2012)

Sastry, S.S.: Nonlinear Systems: Analysis Stability and Control. Springer, New York (1999)
Sreenath, K., Park, H., Poulakakis, I., Grizzle, J.W.: A compliant hybrid zero dynamics con-
troller for stable, efficient and fast bipedal walking on MABEL. Int. J. Robot. Res. 30(9),
1170-1193 (2011)

Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of
Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton (2007)

Yadukumar, S.N., Pasupuleti, M., Ames, A.D.: From formal methods to algorithmic imple-
mentation of human inspired control on bipedal robots. In: Tenth International Workshop on
the Algorithmic Foundations of Robotics, Cambridge, MA (2012)

Zhao, H., Ma, W., Zeagler, W.B., Ames, A.D.: Human-inspired multi-contact locomotion with
AMBERR2. In: International Conference on Cyber Physical Systems (2014)

The Lion and Man Game on Convex Terrains

Narges Noori and Volkan Isler

Abstract We study the lion-and-man game in which a lion (the pursuer) tries to
capture a man (the evader). The players have equal speed and they can observe each
other at all times. In this paper, we study the game on surfaces of convex terrains.
We show that the lion can capture the man in finite number of steps determined by
the terrain geometry.

1 Introduction

Pursuit-evasion problems have been receiving increasing attention in the robotics
community. Many applications that include a search mission for a target can be
modeled as pursuit-evasion games. Interesting representative applications are search-
and-rescue, security, and environmental monitoring. In this paper, we study a fun-
damental pursuit-evasion game known as the lion-and-man game. In this game, the
lion’s goal is to capture the man while the man’s goal is to avoid capture forever.
This problem has been traditionally studied in graph settings or in geometric setups
on the plane [1]. It has been shown that a single lion can capture the man in a cir-
cular arena when the players take turns in moving and moreover when they have
complete information about the location of each other [2, 3]. This result has been
generalized to simply connected polygons in [4] where it is shown that a single lion
can still achieve capture. In more complex setups where obstacles are also present in
the polygonal environment, three lions can win the game [5]. Other results are also
available for the case that the players have limited sensing [4, 6, 7].

Although the game in higher dimensions is relevant from an application perspec-
tive, little is known about its properties in such environments. Kopparty and Ravis-
hankar showed that d 4 1 lions can capture the man in R? if and only if the man
starts inside their convex hull [8]. Alexander et al. [9] showed that if the environment

N. Noori () - V. Isler
Department of Computer Science & Engineering, University of Minnesota, Minneapolis, USA
e-mail: noor0032 @umn.edu

V. Isler
e-mail: isler@cs.umn.edu

© Springer International Publishing Switzerland 2015 443
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_26

444 N. Noori and V. Isler

has non-positive curvature (i.e. it is CAT(0)), the lion can eventually capture the man
by greedily moving toward the man. Recently Klein and Suri [10] showed that four
lions can capture the man on a polyhedral surface. When the polyhedral surface has
boundary, Noori and Isler [11] showed that three lions can win the game under the
condition that the capture radius is greater than zero. One question that remains open
is whether one or two lions can capture the man on a terrain which is a special class
of polyhedral surfaces with boundary. In this paper, we study the game on convex
terrains and show that one lion can catch the man. Notice that there are convex ter-
rains that are not CAT(0) but still a single pursuer can capture the evader in them.
An example is a hemisphere [9].

A terrain is obtained by assigning a single height value to each point in a bounded
region of a plane in R%. Our pursuit strategy is based on guarding wavefronts and
pushing them towards the evader. A wavefront at height z is defined as the set of
points on the terrain that are on the same height z. We first discretize the terrain
by a set of wavefronts. The pursuer starts from the highest wavefront and pushes
the frontier wavefront downwards while preventing the evader from entering any
previously guarded wavefront. Intuitively, the perimeter of the frontier wavefront
is increased in this downward sweep. This allows the pursuer to use the difference
between the perimeter of two consecutive wavefronts in order to make progress. In
this paper, we formalize this idea and analyze its correctness.

The paper is organized as follows. In Sect. 2 we present the preliminary definitions
we use throughout the paper. An overview of the proposed strategy is presented in
Sect. 3. The discretization of the terrain into wavefronts is explained in Sect. 4. Details
of the pursuer strategy for guarding the current wavefront and making progress to
the next wavefront are presented in Sects. 5 and 6 respectively. We present the details
of correctness proofs in [12].

2 Preliminaries

In this section, we present concepts and definitions that will be useful throughout the
paper. The game will take place on the surface of a convex terrain which is defined as
follows. A terrain is a polyhedral surface in R> given by a finite set of points which
we call them vertices of the terrain. The vertices are triangulated which implies that
the faces of the terrain are triangles. Each vertex of a terrain has a single height
value associated with it, i.e. terrains are height maps [13]. To make the presentation
easier, we assume that all terrain vertices are at different heights which is attainable
by slightly perturbing the height function. This will be relevant in Sect.4 where we
construct the set of wavefronts. A convex terrain is a terrain with a convex height
function. Finally, we refer to the common segment between two adjacent faces as an
edge of the terrain.

We refer to the two-dimensional plane with the lowest height, i.e. the z = 0 plane,
as the base plane. We occasionally refer to this plane as the XY -plane. Moreover,

The Lion and Man Game on Convex Terrains 445

we use the coordinate frame XY Z with its origin placed on any arbitrary point in the
base XY -plane (Fig. 1).

The game is played on the surface of a convex terrain excluding the XY -plane at
the base. This surface is denoted by T'. The set of points on 7" with z = 0 are referred
to as the boundary of 7'. The perimeter of this boundary is denoted by | 7'|. We denote
a specific path between p1, p» € T by T(p1, p2). We also use the operator + for
concatenating two paths e.g. T (p1, p3) = T (p1, p2) + T (p2, p3)-

2.1 Game Model

We use the following game model. We denote the location of the pursuer and the
evader by P and & respectively. The players move in turns. Each turn takes a unit time
step. In each turn, the players can move along any arbitrary path of length less than
or equal to one (the step-size). The pursuer and the evader both have full-visibility:
they can observe the location of the other player. The pursuer captures the evader if
at any time,! the length of the shortest path between them, which lies on 7', becomes
less than or equal to one (the step-size). The justification for this capture condition
is that if we assume non-zero area for the players (contrary to the point model), the
pursuer captures the evader if they collide.

2.2 Wavefront, Projection and Image

We now present some important concepts that we will use in our strategy.

Definition 1 (The Perpendicular Image and Pre-Image) For a point p = (x, y, z)
on T, the pointg = (x, y) is called the perpendicular image of p onto the base plane.
Also, p is called the pre-image of ¢. Similarly, one can define the image (pre-image)
of a path on T (on the XY -plane).

Note that we reserve the term projection for an important ingredient of our strategy
which we will present shortly. We have the following useful proposition.

Proposition 1 The pre-image of any continuous path in the XY -plane is a contin-
uous pathon T.

Definition 2 Let p; and p; be two distinct points which are on the same face f
of T. Consider the straight line segment that connects them on 7', and denote its
length by L. Also, let [be the length of its perpendicular image. We refer to the ratio
a(p1, p2) = % as the length coefficient associated with p; and p;.

I'This includes the entire time interval in one step.

446 N. Noori and V. Isler

(b)

wedge region

& &l
e ;

Fig. 1 a Discretization of T by a set of wavefronts. b The partitioning of the exterior of W' into
wedge regions and edge regions. ¢ The projection of £ onto the wavefront W. Here, p; and p; are
the projections of £ and &, respectively

The length coefficient «(p1, p2) is in fact the cosine of the angle between the
segment p1 p2 and the XY -plane. Notice that the largest possible value of this angle
is the angle between the face f and the XY -plane. Therefore, the minimum length
coefficient is well defined in the sense that it is a finite positive number. This is
because faces with vertical edges are not allowed, and also the two points p and p»
are distinct.

Proposition 2 The length coefficients are positive and less than or equal to one, i.e.
0 < a(p1, p2) < 1. We refer to the minimum possible length coefficient on T as
@ =minger Miny, p,er o (pr, p2).

Lemma 1 Letr py and py be two distinct points on T. Let s be the shortest path
between p1 and p> on T. Denote the length of s and its image by ar and a respectively.
Thenar < %.

Proof Let fi1, fa,---, fr be the sequence of faces that s passes through. Observe
that the portion of s which is on f; is a line segment (because otherwise, s can be
shortened by taking the line segment between the entry and the exit points of f;).
Let s; denote the line segment on f;. Denote the length of s; and its image by ar ;
and a; respectively. Then, ar = >"; ar; and a =) ; a;. By Proposition 2, we have
ar; < 5. Therefore, > ar; < > ; %.Thus,ar < £. O

We next present an important ingredient of our strategy: the wavefronts.

Definition 3 (Wavefronts) We refer to the set of points on 7 which are on the same
height z as the wavefront at z. Throughout the paper, we reserve the letter W for the
wavefronts.

Observe that the wavefront at height z is the intersection of 7' with the plane Z = z
which are both convex sets. Therefore, wavefronts are also convex polygons. Also,
the image of a wavefront in the XY -plane is obtained by taking the perpendicular
image of every point of the wavefront.

The Lion and Man Game on Convex Terrains 447

Definition 4 Let p;, pp € W be two points on the wavefront W. We denote the
shorter path from p; to py along W by W (p1, p2), and its length by dw (p1, p2). We
also denote the length of the segment pj p/, in the XY-plane by dxy (p1, p2).

Let W' be the perpendicular image of a wavefront W. We partition the region out-
side W' (in the base plane) into regions of two types: the edge regions and the wedge
regions as follows. Suppose that the vertices of W' are labeled as {wy, wy, ..., wy}
in the clockwise order. See Fig. 1b for an illustration. Let /]1 and ljz be the two per-
pendicular lines to edges w;—jw; and w;w ;4 which are drawn from w;.

Definition 5 (Wedge Regions and Edge Regions) For an edge wjw;1, its corre-

sponding edge region is the region in between l 2 and l]1 41- Fora vertex w; € Wi,

its corresponding wedge region is the region in between / Jl and l]2.. Notice that these
regions are non-overlapping since W is a convex polygon.

We use the following feature of T to provide the capture time of our strategy:

Definition 6 (Wedge Angle) For a given wavefront vertex w;, the wedge angle is
defined as the angle between / } and l% in the base plane.

We are now ready for presenting the key concept in guarding the wavefronts:
the projection of the evader onto a wavefront. Let £ and W' be the perpendicular
images of £ and a wavefront W onto the XY -plane respectively. Also, suppose that
&' is outside the region enclosed by W'. The projection of £ onto the wavefront W
is defined as follows.

Definition 7 (Projection onto a Wavefront) Consider the partitioning of the exterior
region of W into wedge regions and edge regions. See Fig. 1b. There will be two
cases based on the location of £: 1) £ is inside the edge region associated with an
edge wjw;11 (e.g. 5{); 2) &' is inside the wedge region of a vertex w; (e.g. Eé). In
the first case, let p denote the intersection of the edge w;w ;11 and the perpendicular
line to the edge w ;w41 which passes through &'. In the second case, let p denote
the vertex w ;. Then, the projection of £ onto W is the pre-image of p on T' (Fig. 1c).
We denote this point on T as (&€, W).

Remark 1 Notice that the perpendicular image in Definition 1 is different from the
projection onto a wavefront in Definition 7. For a point p € T, its image is denoted
by p' while its projection onto W is denoted by 7 (p, W).

3 Overview

The idea of our pursuit strategy is the following. We first discretize the surface of T
by a set of wavefronts (Sect. 4). Initially, the pursuer goes to the highest point of 7.
(In this paper we assume that this point is