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Abstract. The mobility management strategy based on registration
areas is one of the most popular strategies to manage the subscribers’
mobility in current Public Land Mobile Networks. For it, the network
cells are arranged in continuous and non-overlapped sets in order to par-
tially track the subscribers’ movement. In this way, the network knows
the location of its subscribers at a registration area level and the paging
should only be performed in the cells within the last updated registra-
tion area. The paging scheme studied in this work is the geographical
cluster paging, a probabilistic paging in which it is assumed that the
probability of finding a mobile station (i.e. the subscriber’s terminal)
decreases as we move away from the last updated network cell following
a normal distribution. The main appeal of this paging scheme is that we
can considerably reduce the signaling traffic (with respect to the simulta-
neous paging) without including new elements in the network. Further-
more, we analyze it for different probability thresholds and considering
delay constraints. On the other hand, we use our implementation of the
Non-dominated Sorting Genetic Algorithm II (NSGAII) with the aim of
finding the best possible sets of non-dominated solutions. Results show
that each probability threshold has its own non-dominated region in the
objective space, and that the signaling traffic can be reduced by about
30 % (with respect to the simultaneous paging).

Keywords: Geographical cluster paging · Registration areas · Multiob-
jective optimization · Non-dominated Sorting Genetic Algorithm II

1 Introduction

Public Land Mobile Networks (PLMNs) are widely used throughout the world. In
fact, the GSM Association estimates that there will be approximately 3.9 billion
of mobile subscribers in 2017 [1]. That is, approximately half of the world’s
population will use mobile communications. In these networks and in order to
cope with such huge demand, the coverage area is divided into several smaller
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land areas (known as network cells) among which the radio-electric resources are
distributed and reused [2]. Nonetheless, an access network based on cells has an
important issue related to the subscribers’ movement because a mobile station
(i.e. the subscriber’s terminal) can be in any cell and receive a call at any time.
Therefore, every PLMN must have a method to properly redirect the incoming
calls (i.e. determine the exact cell in which the callee’s terminal is located).

In the literature, we can find several mobility management strategies, most
of them consist of two main procedures: the subscriber’s location update and
the paging [3]. The subscriber’s location update is the procedure whereby a
mobile station reports (to the network) that its location should be updated.
There are several strategies of location update: never update (a mobile station
never updates its location), always update (a mobile station updates its location
whenever it moves from one network cell to another), cell-based (a mobile sta-
tion updates its location whenever it moves to a specific type of network cell),
and area-based (a mobile station updates its location whenever it moves from
one registration area to another, where a registration area is a continuous and
non-overlapped set of network cells). On the other hand, the network uses the
paging to determine the exact cell in which the callee’s terminal is located. For
it, the network sends broadcast paging messages around the last updated loca-
tion (for the mobile station in question). The different paging schemes can be
classified into two main groups: simultaneous paging and sequential paging. In
the simultaneous paging, all the network cells that have to be paged are polled
simultaneously; and in the sequential paging, all the cells that have to be paged
are arranged into paging areas that are sequentially polled (all the cells within
a paging area are polled simultaneously). In this work, we study the mobility
management strategy based on registration areas (because it is widely used in
current PLMNs [4]) with the geographical cluster paging (a sequential paging
in which it is assumed that the probability of finding a mobile station decreases
following a normal distribution) in a multiobjective way. We analyze this paging
scheme because it allows us to reduce the signaling traffic associated with the
mobility management task (which could be more than 33 % of the total signaling
traffic [4]) without including new elements in the network.

The optimization problem addressed in this manuscript is called the Reg-
istration Areas Planning Problem (RAPP), an optimization problem in where
the main challenge consists in finding the configurations of registration areas
than minimize simultaneously the number of location updates and the number
of paging messages. It is important to empathize that this problem is a mul-
tiobjective optimization problem which was classified as an NP-hard problem
in the literature [5]. This is the reason why our research is focused on the use
of multiobjective optimization techniques applied to different mobility manage-
ment strategies in PLMNs. In this work and with the aim of finding the best
possible set of non-dominated solutions, we use our implementation of the Non-
dominated Sorting Genetic Algorithm II (NSGAII, a well-known multiobjective
evolutionary algorithm [6]).

The rest of the paper is organized as follows. Section 2 presents the related
work. The optimization problem addressed in this manuscript is defined in
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Sect. 3. Our implementation of NSGAII is briefly explained in Sect. 4. The per-
formance of the geographical cluster paging is analyzed in Sect. 5. Finally, our
conclusions and future work are discussed in Sect. 6.

2 Related Work

In the literature, we can find several manuscripts that tackle the Registration
Areas Planning Problem (RAPP). Please, take into account the fact that the
name of the registration area depends on the underlying mobile technology
(e.g. location area in GSM (Global System for Mobile communications), rout-
ing area in GPRS (General Packet Radio Service), UTRAN registration area
in UMTS (Universal Mobile Telecommunications System), or tracking area in
LTE (Long Term Evolution)). P. R. L. Gondim was one of the first authors in
using a Genetic Algorithm (GA) for finding quasi-optimal configurations of reg-
istration areas [5]. In that work, it was also shown that RAPP is an NP-hard
combinatorial optimization problem. P. Demestichas et al. analyzed this opti-
mization problem in different environments and with different metaheuristics
(Simulated Annealing (SA), Tabu Search (TS), and GA) [7]. I. Demirkol et al.
implemented a metaheuristic based on SA in where one of the two objective func-
tions was considered as a constraint [8]. J. Taheri and A. Y. Zomaya analyzed
the feasibility of different metaheuristics to optimize registration areas (Hop-
field Neural Network (HNN) [9], SA [10], GA [11], and different combinations of
HNN with GA (HNN-GA) [12]). S. M. Almeida-Luz et al. proposed other two
optimization techniques based on Differential Evolution (DE) [13] and Scatter
Search (SS) [14].

The main weakness of this related work is the fact that, although RAPP is
in essence a multiobjective optimization problem (as we show in Sect. 3), this
problem was tackled with single-objective optimization techniques (by consider-
ing one of the two objective functions as a constraint [8], or by using the linear
aggregation of the objective functions [5,7,9–14]. Furthermore, these works only
consider the simultaneous paging (i.e. the traditional paging scheme).

In our previous work, we have already analyzed the feasibility of different
multiobjective evolutionary algorithms for optimizing registration areas [15], and
the effect of increasing the number of paging cycles of the geographical cluster
paging in the SUMATRA test network (a test network which was well-validated
against real data measured in the San Francisco Bay) [16]. The main contribution
of this manuscript is that, for a given number of paging cycles (i.e. considering
delay constraints), we analyze the effect of varying the sizes of the paging areas
in the geographical cluster paging. Furthermore, we study other set of mobile
networks sited in four world capital cities. On the other hand and with the
aim of finding the best possible set of non-dominated solutions, we use our
implementation of the Non-dominated Sorting Genetic Algorithm II (NSGAII, a
well-known multiobjective evolutionary algorithm) [6]. We have chosen NSGAII
because it is the algorithm with which we obtain our better results in our previous
work [15,16].



106 V. Berrocal-Plaza et al.

3 Registration Areas Planning

In a location update strategy based on registration areas (RAs), the network
cells are arranged in continuous and non-overlapped sets in order to partially
track the subscribers’ movement [17]. In this way, a mobile station only initiates
a location update procedure when moving from one registration area to another.
Therefore, the network knows the location of its subscribers at a registration area
level, and consequently, the paging should only be performed in the network cells
within the last updated registration area (for the callee’s terminal in question).
It is noteworthy that a mobile station knows the cell in which it is currently
located because every base station (i.e. the network entity that provides access
to the mobile stations) periodically broadcasts its cell global identification packet,
which contains the following information: cell identity, registration area identity,
registration area code, mobile network code, and mobile country code [18].

The main challenge of the Registration Areas Planning Problem consists in
finding the configurations of registration areas that minimize the number of
location updates (or location update cost, LUcost) and the number of paging
messages (or paging cost, PAcost) simultaneously. For a given configuration of
registration areas (every cell has assigned an RA, that is, for a given combination
of decision variables), these two costs can be calculated as follows:

f1 = min

{
LUcost =

Tfin∑
t=Tini

Nuser∑
i=1

γt,i

}
, (1)

f2 = min

{
PAcost =

Tfin∑
t=Tini

Nuser∑
i=1

ρt,i · ϕt,i

}
, (2)

where [Tini,Tfin] is the time interval of the mobile activity trace. Nuser is the
number of mobile stations. γt,i is a binary variable which is equal to 1 when
the mobile station i crosses the boundary between two registration areas in the
time t. ρt,i is a binary variable which is equal to 1 when the mobile station i has
an incoming call in the time t. Finally, ϕt,i is the number of network cells that
have to be polled in order to locate the mobile station i in the time t. It should
be noticed that these two objective functions are conflicting, and therefore, this
optimization problem can be classified as a multiobjective optimization problem.
Suppose first that we want to reduce to its minimum the location update cost.
For it, all the network cells must belong to the same registration area, because in
this case a mobile station never updates its location (γt,i = 0 ∀t,i). However, the
paging cost is maximum in this configuration because every mobile station should
be searched in the whole network whenever it has an incoming call (please, note
that in this case the network has not previous information about the location of
its subscribers). On the other hand, if we want to minimize the paging cost, each
network cell must be in a different registration area (ϕt,i = 1 ∀t,i). In this case,
the network knows the location of its subscribers at a cell level, which leads to a
maximum location update cost because a mobile station will initiate a location
update whenever it moves from one network cell to another.
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(a) G-PA1 (b) G-PA2

Fig. 1. Geographical cluster paging with two paging cycles

3.1 Geographical Cluster Paging with Delay Constraint

The geographical cluster paging is a sequential paging scheme in which it is
assumed that the probability of finding a mobile station decreases (following a
normal distribution) as we move away from the last updated cell [19]. In this
way, the paging procedure is performed in concentric rings starting from the last
updated network cell until finding the mobile station in question. As a result,
the network cells within the last updated registration area (RAt,i) are arranged
in different paging areas (At,i,j), where each paging area is composed by one or
more concentric rings. This last can be mathematically expressed as:

RAt,i = At,i,1 ∪ At,i,2 ∪ · · · ∪ At,i,m, (3)

At,i,j ∩ At,i,k = ∅,∀j �= k, j ≤ m, k ≤ m, (4)

αt,i,j-1 ≥ αt,i,j, 2 ≤ j ≤ m, (5)

ϕt,i =
m∑
j=1

αt,i,j· | At,i,j |, (6)

where m is the number of paging cycles. αt,i,j is a binary variable which is
equal to 1 when the mobile station i is located in a cell of the paging area
j in the time t. Finally, | At,i,j | is the number of network cells within the
paging area At,i,j. In real world applications, the paging procedure must be
performed within a fixed time constraint known as maximum paging delay. This
imposes limits on the number of paging cycles. In this work and in contrast to
our previous work, we analyze the effect of increasing the size of the first paging
area (At,i,1) in a geographical cluster paging with two paging cycles (i.e. m = 2),
which is considered to be acceptable in practical implementations [19]. In the
following, G-PAn makes reference to each probability threshold studied in this
manuscript, where n represents the number of concentric rings inside the first
paging area (At,i,1). Figure 1 presents an example for the probability thresholds
n = 1 (At,i,1 is composed by the last updated network cell) and n = 2 (At,i,1

is composed by the last updated network cell and its neighboring cells), where
At,i,1 is represented in red color (or dark gray in a B/W printed version).
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4 Non-dominated Sorting Genetic Algorithm II

As stated in Sect. 3, RAPP is a multiobjective optimization problem. In this
kind of problems, the challenge consists in finding the best possible set of non-
dominated solutions, where each non-dominated solution is related to a specific
trade-off among objectives [20]. For definition and assuming a minimization bi-
objective optimization problem, a solution xi is said to dominate another solution
xj (represented as xi ≺ xj) if and only if ∀k ∈ [1, 2], zik = f k

(
xi

) ≤ zjk =
f k

(
xj

) ∧ ∃k ∈ [1, 2] : zik < zjk, where zi =
[
zi1, z

i
2

]
is the objective vector of

the solution i, and the graphical representation of the non-dominated objective
vectors is known as Pareto front. In this work, every individual (i.e. an encoded
solution of the problem) is a vector in which we store the registration area
associated with each network cell, see Fig. 2.

Fig. 2. Chromosome representation

With the aim of finding the best possible set of non-dominated solutions,
we use our implementation of the Non-dominated Sorting Genetic Algorithm II
(NSGAII), a well-known multiobjective evolutionary algorithm proposed by K.
Deb et al. in [6]. NSGAII is an elitist genetic algorithm with a fitness function
used to estimate the quality of a solution in the multiobjective context. This
fitness function arranges the solutions in fronts according to the non-dominance
concept. After that, the crowding distance is applied in order to discriminate
among solutions within the same front. For further information about this fitness
function, please consult [6]. In our implementation of NSGAII, we have used a
multi-point crossover in where the maximum number of crossover points is equal
to 4. Furthermore, we have defined two mutation operations specific to the prob-
lem. In the first one, we merge a randomly selected border cell (i.e. a network cell
which is border among two or more registration areas) with its smallest neigh-
boring registration area. On the other hand, in the second mutation operation,
the smallest registration area is merged with its smallest neighboring registra-
tion area. For a detailed explanation of our implementation of NSGAII, please
consult our previous work [15,16].
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5 Results

In this section, we present the study accomplished to evaluate (in a multiobjec-
tive way) the performance of the geographical cluster paging with two paging
cycles (m = 2) in a location update strategy based on registration areas. To
the best of our knowledge, this analysis is a novel contribution of our research.
As stated in Sect. 3.1, this paging scheme is analyzed for different probability
thresholds (i.e. for different sizes of the first paging area, n ∈ {1, 2, 3, 4}). An
analysis for higher values of n is not presented because we did not notice a
significant improvement in the results.

This study is performed over a set of mobile networks sited in four world
capital cities: Rome (a mobile network with 218 cells), Hong Kong (a mobile
network with 220 cells), London (a mobile network with 276 cells), and Paris
(a mobile network with 345 cells). The mobile activity traces for these networks
can be downloaded from http://arco.unex.es/vicberpla/MAT.html.

It is noteworthy that NSGAII is a stochastic optimization technique, and
therefore, it is necessary a statistical study in order to determine whether the
differences among the experiments are statistically significant. The first step
consists in applying the Shapiro-Wilk test to know whether the samples follow
a normal distribution. After that and whenever the Shapiro-Wilk test is posi-
tive, the Levene test is used to check the homogeneity of the variances. Finally
and whenever the Levene test is positive, the ANOVA analysis is applied in
order to determine whether the differences among the means of the experiments
are statistically significant. Otherwise, the Mann-Whitney U test is applied to
determine whether the differences among the medians of the experiments are
statistically significant. All of these tests have been configured with a confidence
level equal to 95 %.

After a parametric study, we have chosen the configuration of NSGAII that
maximizes the Hypervolume indicator: NPOP = 300 (population size), NG =
3000 (number of generations), PC = 0.90 (crossover probability), and PM = 0.25
(mutation probability). The Hypervolume (IH) is a multiobjective indicator that
associates the quality of a Pareto front with the area of the objective space that
is dominated by these non-dominated solutions, and is bounded by the reference
points [20]. According to this metric, a set of non-dominated solutions A is said
to be better than another set B if and only if IH(A) > IH(B).

Table 1 gathers statistical data of the Hypervolume (median (̃IH) and
interquartile range (iqr)) of 31 independent runs per each experiment (prob-
ability threshold). Due to the fact that each probability threshold has its own
maximum paging cost, we have used the reference points associated with the
simultaneous paging (m = 1, also known as Blanket Polling (BP)). In this table,
we can observe that, with some intelligence in the paging procedure, we can
increase considerably the Hypervolume, which leads to a reduction in the signal-
ing load. Furthermore, we notice that the Hypervolume gradually decreases as
we increase the size of the first paging area, i.e. we can deduce that, in general,
G-PA1 is the best probability threshold. Nonetheless, a different conclusion can
be drawn if we combine the Pareto fronts of each probability threshold and we

http://arco.unex.es/vicberpla/MAT.html
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Table 1. Statistics of Hypervolume (˜IH ± iqr)

Rome Hong Kong London Paris

Referece [1381003, 23341478] [1822841, 23728980] [2303888, 37283184] [3475953, 58455420]

Points [0, 107071] [0, 107859] [0, 135084] [0, 169436]

BP 94.15±0.124 � � � � 95.69±0.100 � � � � 96.34±4.94e−2 � � � � 96.84±2.67e−2 � � � �
G-PA1 97.72±4.84e−2 • � � � 98.24±1.79e−2 • � � � 98.51±1.57e−2 • � � � 98.70±1.98e−2 • � � �
G-PA2 97.59±5.78e−2 • � � � 98.17±3.56e−2 • � � � 98.46±1.29e−2 • � � � 98.65±1.64e−2 • � � �
G-PA3 97.32±5.21e−2 • � � � 97.97±2.30e−2 • � � � 98.30±1.31e−2 • � � � 98.48±1.58e−2 • � � �
G-PA4 96.95±3.14e−2 • � � � 97.79±1.66e−2 • � � � 98.18±1.83e−2 • � � � 98.34±1.46e−2 • � � �

• means that the difference with respect to BP is statistically significant

� means that the difference with respect to G-PA1 is statistically significant

� means that the difference with respect to G-PA2 is statistically significant

� means that the difference with respect to G-PA3 is statistically significant

� means that the difference with respect to G-PA4 is statistically significant

obtain the non-dominated solutions of this combined set, see Fig. 3, in where we
present the Pareto fronts associated with the median Hypervolume (̃IH). As we
can observe in this figure, every probability threshold has its own non-dominated
region in the objective space. Thus, the network operator could choose a differ-
ent probability threshold depending on the selected configuration of registration
areas. It is also important to note that this feature of the geographical cluster
paging would not have been detected without a multiobjective analysis. On the
other hand, Fig. 4(a) presents a comparison between the simultaneous paging
and the geographical cluster paging in the mobile network sited in Paris (sim-
ilar comparisons were obtained with the other networks). As stated before, we
can notice that the geographical cluster paging covers more area of the objec-
tive space than the simultaneous paging, and hence, we obtain more efficient
configurations of registration areas. For example and assuming an LTE (Long
Term Evolution) network with one Mobility Management Entity, if we select the
non-dominated solution that minimize the total signaling load (see Fig. 4(b)), we
can notice that the signaling load can be reduced by about 30 % (BP: 7,642,638
signaling messages per working day (4,787,136 messages due to location updates
and 2,855,502 messages due to the paging procedure), G-PA: 5,363,228 signal-
ing messages per working day (2,798,766 messages due to location updates and
2,564,462 messages due to the paging procedure)). It is also noteworthy that
the use of a more efficient paging procedure allows configurations with higher
registration areas, which leads to a reduction in the location update cost.

5.1 Comparison with Other Works

In this section, we compare our implementation of NSGAII with other optimiza-
tion techniques published in the literature [9–14]. It should be noted that all of
these optimization techniques are single-objective algorithms. Therefore and in
order to compare with these previous manuscripts, we must select in our Pareto
fronts the non-dominated solution that best optimizes the objective function
used by these single-objective metaheuristics (i.e. fSO = 10 · f1 + f2). With the
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Mobile network: Rome
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Mobile network: London

0 0.5 1 1.5 2
x 106

5

10

15
x 106

LUcost

PA
co

st

G−PA4
G−PA3
G−PA2
G−PA1

(g) Pareto front per
threshold

0 0.5 1 1.5 2
x 106

5

10

15
x 106

LUcost

PA
co

st

G−PA1
G−PA2
G−PA3
G−PA4

(h) Non-dominated solu-
tions per threshold

(i) Non-dominated solu-
tions per threshold. 3D
view

Mobile network: Paris
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Fig. 3. Analysis of the obtained Pareto fronts
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Fig. 4. (a) Comparison with simultaneous paging. (b) Selection of the non-dominated
solution (mobile network of Paris).

Table 2. Comparison with other works published in the literature [9–14]: fSO

NSGAII HNN [9] SA [10] GA [11] GA-HNN1 [12] GA-HNN2 [12] GA-HNN3 [12] DE [13] SS [14]

LA25 26,990 27,249 26,990 28,299 26,990 26,990 26,990 26,990 26,990

LA35 39,832 39,832 42,750 40,085 40,117 39,832 39,832 39,859 39,832

LA49 60,685 63,516 60,694 61,938 62,916 62,253 60,696 61,037 60,685

LA63 89,085 92,493 90,506 90,318 92,659 91,916 91,819 89,973 89,085

aim of performing a fair comparison, we have configured our implementation of
NSGAII with the same population size (NPOP = 300) and the same number of
generations (NG = 5000) as in these previous works [9–14]. Furthermore, we use
the same paging procedure (simultaneous paging) and the same test networks
(LAl, where l is the number of network cells). The results of this comparative
study are gathered in Table 2, in where we present the minimum value found
of fSO. Regrettably, an in-depth statistical study cannot be conducted because
the experimental data of these previous works are not available. Furthermore,
the authors of [9–12] only provide the minimum value found of fSO. This table
reveals that our implementation of NSGAII is also able to equal or even improve
the results obtained with single-objective metaheuristics. This last is far from
trivial because a single-objective metaheuristic is specialized in finding only one
solution (i.e. the one that best optimizes its objective function), and our imple-
mentation of NSGAII is specialized in finding a wide range of non-dominated
solutions.

6 Conclusion and Future Work

This manuscript presents a multiobjective analysis of the geographical cluster
paging in a location update strategy based on registration areas, a mobility
management strategy that defines a multiobjective optimization problem with
two objective functions. To the best of our knowledge, this is a novel contribu-
tion of our research. This paging scheme is studied considering delay constraints
and for different probability thresholds. With the aim of finding the best possi-
ble set of non-dominated solutions, we have used our implementation of the
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Non-dominated Sorting Genetic Algorithm II (a multiobjective evolutionary
algorithm by means of which we have obtained our better results in our pre-
vious work). After an experimental study, we have noticed that the signaling
traffic associated with the mobility management can be reduced by about 30 %
with some intelligence in the paging procedure. Furthermore and after a multi-
objective analysis, we have shown that each probability threshold has its own
non-dominated region in the objective space. In this way, the network operator
could choose a different probability threshold depending on the selected config-
uration of registration areas.

As a future work, it would be interesting to analyze the performance of other
paging schemes and other location update strategies in a multiobjective way,
as well as to compare them with the mobility management strategy studied in
this manuscript. Concretely, the multiobjective analysis of paging schemes and
dynamic location update strategies based on Markov chains could be a good
challenge.
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to-switch assignment in cellular networks. IEEE Trans. Wireless Commun. 3(3),
880–890 (2004)

9. Taheri, J., Zomaya, A.Y.: The use of a hopfield neural network in solving the
mobility management problem. In: Proceedings of The IEEE/ACS International
Conference on Pervasive Services, pp. 141–150 (2004)

10. Taheri, J., Zomaya, A.Y.: A simulated annealing approach for mobile location man-
agement. In: Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium, pp. 194–194 (2005)



114 V. Berrocal-Plaza et al.

11. Taheri, J., Zomaya, A.Y.: A genetic algorithm for finding optimal location area
configurations for mobility management. In: Proceedings of the IEEE Conference
on Local Computer Networks 30th Anniversary, pp. 568–577 (2005)

12. Taheri, J., Zomaya, A.Y.: A combined genetic-neural algorithm for mobility man-
agement. J. Math. Model. Algorithms 6(3), 481–507 (2007)
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J.M.: Applying scatter search to the location areas problem. In: Corchado, E.,
Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 791–798. Springer, Heidelberg
(2009)
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