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Abstract. Landscape analysis is an established method to provide an
insight into the characteristic properties of an optimization problem with
the aim of designing a suitable evolutionary algorithm for a given prob-
lem. However, these conventional landscape structures require sophis-
ticated notions for multi-objective optimization problems. This work
presents a real-valued multi-objective landscape analysis concept that
allows the investigation of multi-objective molecular optimization prob-
lems. Sophisticated definitions for ruggedness, correlation and plateaus
on multi-objective real-valued landscapes are introduced and indicators
are proposed for this purpose. This landscape concept is realized on a
generic three- and four-dimensional biochemical minimization problem
and the results of this analysis are discussed regarding the design prin-
ciples of a multi-objective evolutionary algorithm.

Keywords: Real-valued multi-objective landscape · Molecular land-
scape · Analysis concept · MOEA design

1 Introduction

The design of a Multi-Objective Evolutionary Algorithm (MOEA) for a specific
class of optimization problems requires the knowledge of the landscape charac-
teristics [1] to tune the algorithm for an increased search performance. The use
of MOEAs for molecule optimization has increased significantly, but the general
understanding of the molecular landscape properties with the aim of designing
an appropriate MOEA to search the molecular space is missing [2]. The analysis
of the landscape structure provides information about the landscape character-
istics and difficulties of molecular optimization problems. This information pro-
vides a better insight into the composition of a search performance optimized
MOEA regarding a particular type of algorithm, the types of variation opera-
tors and the selection pressure for a suitable balance of global and local search
behavior. Nevertheless, it is known that the fitness landscape structure influences
the EA performance and various techniques for statistical analysis as qualita-
tive technique and information analysis as quantitative technique are proposed
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(see [3] for an overview) to analyze single-objective fitness landscapes. In the
case of multi-objective landscapes, the important landscape structures modal-
ity, ruggedness, correlation and plateaus have to be generalized or defined in a
more sophisticated manner. A respectable amount of work has been done in the
area of multi-objective landscape analysis for combinatorial optimization prob-
lems, e.g. assignment problems [1,4,5]. In [4], potentially useful indicators are
discussed characterizing multi-objective landscapes: the modality is character-
ized by the number and distribution of global optima. From the multi-objective
point of view, these global optima are a set of non-dominated or Pareto optimal
solutions. The fitness distance correlation (FDC) in the case of single-objective
landscapes is a correlation coefficient that indicates the distance between a
set of local optima to the nearest global optima. Due to the generalization to
multi-objective landscapes, non-dominated solutions (NDS) are considered as
global optima. The critical point of this notion is that each of the NDS is the
optimum of one single-objective function and therefore, the correlation between
the NDS is not necessarily resembling to the correlation between different local
optima of a single-objective function. However, the correlation between NDS
provides useful information referring to a search process of MOEA moving along
the Pareto front. Additionally, concepts are introduced by Garrett, which define
other distance indicators: the Euclidean distance between the solutions or math-
ematically spoken between the fitness vectors or the angle between these fitness
values as an alternative distance indicator. These proposed metrics have not been
investigated empirically or theoretically so far. An intuitive definition for land-
scape ruggedness is also given by Garrett. The autocorrelation of the random
walks between known Pareto optimal solutions is used to investigate the path
ruggedness between the Pareto optima. A further elaboration of these concepts
or empirical investigations are missing by today. [4]

A traditional and systematical molecular landscape analysis is presented
in [2,8]. Herein, the purpose of the molecular landscape analysis is defined by
the examination of the common principle -molecular structure similarity is often
related to similar molecule properties- for the underlying optimization problem.
Four molecular functions are analyzed separately according to the landscape
properties modality, ruggedness, neutrality, local optima and basins. This land-
scape analysis is based on random walks of length 100 and 500 over a search
space with a complexity of 235 feasible peptides (5-mer peptides consisting of
23 amino acids). Feasible solutions are character strings of length 5, neighboring
solutions differs in exactly one amino acids and one-point mutation is used as
moving operator to explore the neighborhood.

In this work, a concept for multi-objective landscape analysis is proposed
with the aim of analyzing a multi-objective molecular landscape (MOML), which
involves the ideas of Garrett. The analysis results are used for design consider-
ations of a MOEA with optimized search performance for the purpose of multi-
objective biochemical optimization. This concept is based on the considerations
of important properties modality, correlation, ruggedness and plateaus on real-
valued multi-objective landscape. Sophisticated definitions of these landscape
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properties are presented and discussed. Furthermore, indicators are proposed
for this purpose. These techniques are simple to calculate and most important -
independent of the optimization problem dimension. This concept is applied
on a generic three- and four-dimensional biochemical optimization problem and
the results are interpreted according to the guidance of the search process of
a MOEA.

2 A Concept for MOML Analysis

The evolution of a landscape analysis concept in general requires the determina-
tion of the fitness landscape components: the components of a fitness landscape
are a set of genotypes (configuration of the solutions), the fitness functions which
evaluate the genotypes and the genetic operators, which represent the move oper-
ator to explore the neighborhood. Stadler presented the formal description of the
landscape composition [6]:

Definition 1. A landscape consists of three ingredients: a set X of configura-
tions; a notation X of the neighborhood, the nearness, distances or accessibility
on X; and a fitness function f : X → R.

A landscape analysis starts by specifying metrics that characterize the geometric
properties. The selection of suitable metrics depends on the organization of the
configuration space X and has to take account of the optimization problem.
Reidys and Stadler [7] stated three distinct approaches for the organization of X:

1. transition probabilities are used to describe the movement from one configura-
tion to another. The process is describable by Markov chains and is especially
applied in the case of combinatorial optimization problems.

2. in the field of computer sciences, genetic operators (mutation or recombina-
tion) are usually used as move operators to create new configurations.

3. rigorous mathematical analysis is performed by specified metrics or topologies
on X.

The set X comprises all feasible peptides and is given by a character string.
According to [8,9], the neighborhood of a configuration is explored by one-point
mutation as move operator and neighbored configurations are differing by exactly
one amino acid or a character in the MOEA terminology. The one-point mutation
is used as move operator for an insight into the mutation potential of a MOEA
and to avoid highly differing consecutive configurations, which are potentially
produced by a recombination operator. Small changes in the configurations pro-
vide information about the effectiveness of the local search of a MOEA. The
organization of the configuration set refers to the second approach of Reidys
and Stadler as the other approaches are unsuitable: The use of Markov chains is
not advisable because of the general difficulty to efficiently design high complex
spaces [10], which usually occurs in molecular spaces. Furthermore, X allows no
mathematical definitions of metrics of topologies.
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Modality. The modality or the investigation of the optima density is examined
based on measurements of the random walk part consisting only of the NDS or
the individuals of the first front. The modality requests information about the
number of NDS, a potential clustering of these or otherwise a large distribution
over the MOML. For this purpose, the individuals of the random walk are ranked
into fronts. For an Optima Distribution Analysis (ODA), the average Euclidean
distance dODA between all possible combinations of non-dominated fitness values
xi is determined:

dODA =
1
K

∑

i,j

dij with dij = |xi − xj | for i, j = 1, ...,M and i < j, (1)

where M is the number of fitness vectors in the first front and K =
(
M
2

)
the

number of all possible combinations of differences dij . The value of dODA is a
measure for the central tendency of the non-dominated solution diversity. Other-
wise, dODA globally seen as mean value has its limitation in the case of extremal
boundary values. Therefore, the diversity of the NDS is quantified via the average
distance of all distances dij :

dMAD =
1
K

∑

i,j

|dij − d̄| with i, j = 1, ...,M and i < j. (2)

with d̄ = dODA. The higher the diversity values, the wider is the spread of the
NDS over the search space. In the case that the range of the objective function
values are differing drastically, the use of the normalized Euclidean distance is
advisable. Another indicator for the distribution of NDS is the measurement of
the so-called ’beeline’ between two consecutive NDS along the random walk path.
Therefore, the magnitude of the beeline between two consecutive fitness vectors
xi+1 and xi is determined and is set in relation to c̄ =

∑
i=1,...,N−1 |yi+1 − yi|,

the average Euclidean distance between two consecutive fitness vectors yi+1 and
yi of the random walk with N as the number of random walk steps to classify
the distribution tendency:

bi =
|xi+1 − xi|

c̄
with i, j = 1, ...,M − 1, (3)

where xi are ordered according to their occurring in the random walk. A low
number of bi indicates that the corresponding distance between the two consec-
utive NDS is relatively small compared to the average distance of all consecutive
distances of the random walk.

Correlation. The correlation is a measure for the relationship between two con-
figurations in the landscape. A correlation analysis of the single fitness functions
provides some information about the correlation tendency of the corresponding
fitness values. In the case of MOMLs, the correlation between the single molec-
ular fitness functions is of great interest as the high correlation between two
time series of different fitness functions theoretically reduces the optimization
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problem dimension and therefore the problem difficulty. The correlation matrix
is a suitable analysis technique for this purpose:

Mcorr =

⎛
⎜⎜⎜⎝

1 corr(f1, f2) ... corr(f1, fk)
corr(f2, f1) 1 ... corr(f2, fk)

...
...

. . .
...

corr(fk, f1) corr(fk, f2) ... 1

⎞
⎟⎟⎟⎠ , (4)

where Mcorr is symmetrical and consists of the Pearson correlation coefficients
of the fitness function fi and fj :

corr(fi, fj) =
∑n

i=0(fi − f̄) · (fj − f̄)
σfi · σfj

(5)

In this context, the correlation coefficients lie in a range of [−1; 1], where negative
value symbolize a potential anti-proportional linear relationship and a positive
value a possible proportional linear relationship. Furthermore, no or at least a
low correlation is given by |corr(x, y)| < 0.3. A weak correlation is given by
0.3 ≤ |corr(x, y)| ≤ 0.8 and |corr(x, y)| > 0.8 indicates a high linear correlation.

Ruggedness. The ruggedness refers to the relationship between each config-
uration and its neighbors. A landscape is said to be rugged if it reveals high
varying fitness values, the greater the fitness differences the more rugged is the
landscape. From this point of view, the analysis technique for MOML rugged-
ness is based on the difference vectors determined between each two consecutive
fitness vectors of the random walk. A measure for the variation of the fitness
vector values is the magnitude of the absolute value calculated of the difference
vectors. The absolute value of the difference vectors provides an insight in the
magnitude of differences between the single molecular fitness functions. A closer
consideration of the absolute values as a measure for fitness difference leads to
the insight that this value does not take account of the fitness variation of the
single molecular fitness functions in the sense that potentially only a few of these
fitness functions are responsible for a high absolute value. Furthermore, another
view on the absolute value reveals that it is no indicator for the direction of
the single molecular function moving and therefore no indicator for the increase,
decrease or stagnation of the different fitness functions. These considerations
lead in conclusion to a definition of ruggedness: a real-valued multi-objective
fitness landscape is regarded as rugged if the single fitness functions are mov-
ing differently with high fitness differences. As a consequence, this landscape is
regarded as smooth if all fitness functions are moving equally or only a very few
of these functions are directed differently and with small fitness differences.

The information about the single fitness function directions are provided
by the difference vectors between the consecutive fitness vectors. A suitable
indicator for the direction of the difference vectors is the angle between the
difference vectors as - in general - an angle between vectors is an indicator for
similarity [9]:

similarity(x,y) = cos(θ) =
x · y

|x| · |y| (6)
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For the angle between two consecutive difference vectors, which provide informa-
tion about the relative position of three consecutive fitness vectors and therefore
of the fitness variance direction of a configuration and its neighbors along the
random walk, the following geometrically interpretation is stated: an angle of
0 refers to two vectors pointing in the same direction. This implies, that the
single fitness values of the consecutive random walk steps, which define these
two difference vectors, are all positioned in the same direction. Otherwise, an
angle of more than 90 indicates a moving to a large part of single fitness function
in different directions. In the case of stagnating objective function values, the
difference vector is the zero vector and the angle is not defined. In that case, the
angle is set to 0.

Hence, to gain an insight into the potential ruggedness and structure of a
MOML, the angle between every two consecutive difference vectors is calculated.
Furthermore, the length of the random walk path consisting of the difference vec-
tors, of which two forming an particular angle �(xi+1, xi) = a with a ∈ [0; 180]
is determined to gain information about the magnitude of fitness differences.
This path length allows no statistically reasonable interpretation as these values
depend on the subspace dimension of the search space covered by the random
walk steps. Therefore, this path length is set in relation to the number of ran-
dom walk steps. The fitness vectors have been normalized to ensure comparative
values.

plength =
∑ |xi+1| + |xi|

2 · (N − 1)
. (7)

Plateaus. Another important structure of a landscape are the plateaus. The
number and size distribution of plateaus are investigated by neutrality measures
[2]. In MOML, plateaus are characterized in two different aspects: firstly, plateaus
are characterized according to the stagnation of all objective functions values
over several steps of the time series and secondly - in a more global view -
according to the number of consecutive time series steps in the same Pareto
front. The plateau characterization in the sense of objective function stagnation
is determined via:

|xi+1 − xi| ≤ 1 for i = 1, ..., N − 1. (8)

3 Computational Landscape Analysis and Discussion

Simulation Onsets. Short peptide sequences of a length of 20 consisting of 20
canonical amino acids constitute the search space. Therefore, the search space
has a complexity of 2020 feasible solutions and is further discrete for the pro-
posed physiochemical fitness functions as there are real-valued solution vectors
which have no corresponding configurations in the search space. The MOML
analysis is performed via random walks with one-point mutation to investigate
the neighbored molecular landscape. The mutation of the same amino acid is
excluded to avoid a stagnation of the random walk. The start configuration of
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Fig. 1. No. of NDS
(3D-MOML).

Fig. 2. No. of NDS
(4D-MOML).

Fig. 3. Diversity of
NDS (3D-MOML).

Fig. 4. Beeline of
NDS (3D-MOML).

the random walk is initialized randomly. The phenotypes of the MOML are real-
valued vectors of length k according to the number of objectives. Random walks
of length 100 and 500 are performed and the consecutive real-valued vectors of
each random walk are termed time series. For statistic reason, these random
walks are repeated at least 30 times.

Physiochemical Properties. Three of the four physiochemical fitness func-
tions are provided by the BioJava library [11]. BioJava is a Java tool that provides
different physiochemical property data as well as a module for sequence align-
ment for peptides and proteins composed of the 20 canonical amino acids. The
Needleman Wunsch algorithm (NMW) provided by BioJava is used as global
sequence alignment to a pre-defined reference peptide. The optimal alignment
is found in a quantitative way by assigning scores for matches, mismatches and
gaps. NMW uses different scoring models. Here, the BLOcks SUbstitution Matrix
(BLOSUM 100) is used with the percentage identity of 100 [12]. Two further
physio-chemical functions are utilized of BioJava: the Molecular Weight (MW)
is computed by the sum of the mass of each amino acid plus a water molecule.
The Instability Index (InstInd) of a peptide is calculated by the summation
of the Dipeptide Instability Weight Values (DIWV) of each two consecutive
amino acids in the peptide sequence. The summarized value is normalized then
by the peptide length. The fourth physio-chemical function is the Hydrophilicity
(Hydro), which is calculated by the method of Hopp and Woods [13]: hydrophilic
parts of a peptide are determined by a sliding window of a fixed size over the
sequence and averaging the corresponding amino acid scales. Here, the window
size is the entire peptide length. All this fitness functions act comparatively to a
pre-defined reference peptide and have to be minimization for optimization. The
fitness function NMW, MW and Hydro constitute the 3D-MOP. The 4D-MOP
has to optimize NMW, MW, Hydro and InstInd.
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Fig. 5. Number of
fronts (3D-MOML).

Fig. 6. Number of
fronts (4D-MOML).

Fig. 7. Diversity of
NDS (4D-MOML).

Fig. 8. Beeline of
NDS (4D-MOML).

Experiments. In a first step, the modality is investigated for the 3D- and 4D-
MOP. Therefore, the number of individuals in the first front, the total number
of detected fronts, the diversity of the individuals and the relational beeline is
determined by random walks of length 100 or 500 respectively. Figures 1 and 2
depict the number of NDS (NDS) detected in the time series of length 100
and 500. Figure 1 reveals that 50% of the NDS are in a inter-quartile range
determined by 10% to 17% of the Random Walk Length (RWL). An increase
of the RWL (right boxplot of Fig. 1) results in an increase of the NDS round
about 83.9%. The number of NDS in the time series of the 4D-MOML is on
average significantly higher than for the 3D-MOML (Fig. 2). The inter-quartile
range of the time series of length 100 (Fig. 2) is determined by 23% to 36%
of the RWL. A comparison of the time series of length 100 in Figs. 1 and 2
reveals an increase of the NDS round about 53% in the case of 4D-MOML.
An increase of the RWL from 100 to 500 (right boxplot of Fig. 2) results in an
increase of NDS round about 84, 2%, this value is comparable to the results
of the 3D-MOML. Concluding, the investigation of larger times series reveals
a larger number of NDS, but this increase is of a lower level than the increase
of the RWL. Further, the 4D-MOML provides a significantly higher number of
NDS than the 3D-MOML. This effect is due to the lower front diversity in the
case of 4D-MOML. Figures 5 and 6 depict the front diversity of the 3D- and
4D-MOML in the time series of length 100 and 500. Figure 5 reveals that 50%
of the front numbers in the time series of length 100 are in the inter-quartile
range determined by 8 and 10 fronts. An increase of the RWL to 500 results
in an increase of the detected front number round about 104% referring to the
results of the time series of a length of 100. The front diversity is significantly
lower in the case of the 4D-MOML (Fig. 6).The increase of the RWL from 100 to
500 (right boxplot in Fig. 6) results in an front diversity increase of round about
52,3 %. This percentage increase is only a half of the average increase observed
in the 3D-MOML. This is a consequence of the fact that the average number
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Fig. 9. Average number of angles
between two consecutive difference vec-
tors (3D-MOML).

Fig. 10. Average length of the two con-
secutive difference vectors enclosing a
particular angle (3D-MOML).

of NDS in the random walks of a length of 100 is significantly higher than in
the case of the 3D-MOML, but the increase of the NDS number by an increase
of the RWL is comparable. Therefore, the increase of the front diversity by an
increase of the RWL is significantly lower.

Figures 3 and 7 present the spread of the NDS diversity in the time series
of length 100 and 500. In general, the diversity dMAD of the NDS - computed
by Eq. (2) - is of the same level for the 3D- as well as 4D-MOML. Only, the
diversity of the NDS in the 3D-time series of length 100 reveals a tendency
for lower diversity values. Figures 4 and 8 depict the average rational beeline
(Eq. (3)) between each consecutive NDS in time series of length 100. The boxplots
reveal that some of the NDS are clustered and others are positioned in a wide
range of distance: 50 % of the relational beeline values are between 0, 5 and 2 in
the case of the 3D-MOML (Fig. 4), which indicates that the distance between
the corresponding consecutive NDS is more than half (0, 5) or twice (2) of the
average distance between all consecutive solutions time series. The relational
beeline values of the 4D-MOML are between 0, 6 and 1, 7, which indicate that
the distance between the consecutive NDS is more than a half (0, 6) or more than
one and a half (1, 7) of the average distance between all consecutive solutions
(Fig. 8). However, Fig. 8 reveals some outliers up to a value of 10. This indicates
that some distances between the NDS are significantly higher.

The correlation matrix of the physio-chemical functions is given by (Eq. (4)):

Mcorr =

⎛
⎜⎜⎝

1 0.047 0.252 0.09
· · · 1 −0.014 −0.032
· · · · · · 1 −0.266
· · · · · · · · · 1

⎞
⎟⎟⎠ . (9)

The matrix entries reveal no linear relationship between the time series of each
two molecular fitness functions: there is a weak relationship between NMW
and MW (Eq. (9): corr(f1, f3) = 0.252) as well as InstInd and Hydro (Eq. (9)):
corr(f3, f4) = −0.266) and no correlation between the other combinations. As a
consequence, the dimension of a MOML constituted of these four molecular
functions is equal to the number of participating objective functions.
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Fig. 11. Average number of angles
between two consecutive difference vec-
tors (4D-MOML).

Fig. 12. Average length of the consec-
utive difference vectors enclosing a par-
ticular angle (4D-MOML).

Figures 9 and 10 depict the average number of angles and the average path
length with a particular bending of the 3D- time series - categorized in intervals
of ten degree on the x-axis. The depicted upper and lower boundaries mark the
one-sigma interval. The highest number of angles are detected in the interval
of [170; 180) (Fig. 9). This indicates that the difference vectors are oppositely
directed and the single objective functions are increasing, decreasing or stag-
nating over three steps of the time series in very different manners. Exemplary
spoken: one objective function increases from one time series step to the next one
and decreases afterwards. The second function is exactly moving the other way
around and the third function is stagnating from the first to the second solution
and increasing or decreasing afterwards. This reveals that the landscape is very
rugged along a large number of random walk steps. The second highest number
of angles is in the interval of [0; 10). This indicates that the difference vectors
are similarly directed and the single objective functions are increasing, decreas-
ing or stagnating in a similar manner. Exemplary spoken: one of the objective
functions is stagnating over three time series steps and the other two functions
are increasing or decreasing over these three steps. The number of angles in the
interval of [40; 150) is almost stable. In general, the larger the angle the larger the
number of objective functions revealing oscillating moving behavior in a different
manner over three time series steps.

A similar pattern is achieved by calculating the average path length with
a particular bending provided by the difference vectors which enclose partic-
ular angles (Fig. 10). The highest length is achieved in the interval [170; 180)
indicating large differences between the single molecular function values with
mainly oscillating behavior. The second highest length is achieved in the inter-
vals [10; 30) indicating large differences between the solutions of the time series
mostly positioned in the same direction. The length of the difference vectors
enclosing angles in the interval [40; 150) are small and reveal slight changes of
the single objective function values. Figures 11 and 12 depict the corresponding
results for the 4D-MOML. Compared to the results of the 3D-MOML, the max-
ima of average number of angles and the average path length are in the intervals
[20; 30) and [160; 170) and the values of the interval [40; 160) are higher in the
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Fig. 13. No. of
3D front plateaus
(100).

Fig. 14. No. of
3D front plateaus
(500).

Fig. 15. No. of
4D front plateaus
(100).

Fig. 16. No. of
4D front plateaus
(500).

case of the 4D-MOML. This is a consequence of the fact that the probability
of the four objective functions moving similarly or oscillating simultaneously is
lower than for a lower number of objective functions. Plateaus are a structural
property that provides some information about clustered similar qualified solu-
tions. Firstly, plateaus are identified in MOML by consecutive equal or nearly
equal fitness values for each molecular function (see Eq. (8)). In the 30 random
walks of length 100 on the 3D-MOML, 20 plateaus have been identified totally:
two plateaus of each two consecutive equal fitness values have been identified
in five random walks, a plateau of three consecutive equal fitness values have
been found in one random walk and the remaining 9 plateaus have been iden-
tified in different random walks each consisting of two consecutive equal fitness
values. Only 8 plateaus have been detected in the corresponding random walks,
each of length 2. Figures 13, 14 and 15, 16 depict the number of front-plateaus
in the 3D- and 4D-MOML detected in 30 random walks of length 100 and 500.
Front-plateaus are more globally characterized by consecutive time series steps in
the same Pareto front. In general, an increase of the time series length results in
an increase of the plateaus for the 3D- and 4D-MOML. The number of plateaus
is always higher in the case of the 4D-MOML, a consequence of the lower front
diversity. Thus, the increase of the plateau number is significantly slower than
the increase of the time series length. This is once more a consequence of the
higher front diversity in larger time series. In the case of 3D-MOML: 14, 5%
and 7% of the plateaus detected in the time series of length 100 and 500 are
first front plateaus. The average plateau sizes are 2, 31 and 2, 18. The average
plateaus size of the first front plateaus are on average larger with 2, 7 and 2, 3
in the time series of length 100 and 500. In the case of 4D-MOML: 36, 5% and
12, 9% are first front plateaus in the time series of length 100 and 500. Compared
to the 3D-MOML, these percentage increases are a consequence of the lower front
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diversity of the 4D-MOML. The average plateau sizes are 3, 04 and 2, 42. The
average plateaus size of the first front plateaus are 3, 08 and 2, 75 in the time
series of length 100 and 500.

4 Conclusions and Future Work

The results of the 3D- and 4D-MOML analysis provide some important hints
regarding the design of a MOEA: the 3D- and 4D-MOML are very rugged and
no significant structure is discernible according to the distribution of the NDS
over the landscapes. The 3D-MOML reveals a higher front diversity and therefore
fewer solutions are in the optimal front compared to the 4D-MOML. Further, the
average first-front-based plateau size is accordingly smaller. These facts make
the 3D-MOML more rugged and therefore more challenging for a MOEA than
the 4D-MOML. In general, the significant number of front plateaus in both
MOMLs require a specific balance of global and local search behavior of the
MOEA: the variation operators of the MOEA have to support a global search in
the first generations of the MOEA to tap potential high quality solutions widely
spread over the landscape. In the later generations, a more local search behavior
of the MOML supports the search process in the neighborhood of the previously
detected high quality solutions. The 4D-MOML reveals a higher number of NDS
caused by the lower front diversity which requires far-reaching differentiation of
the NDS. The most intuitive way to perform this differentiation is by assistance
of the selection procedure. A strategy providing a good differentiation is an
indicator-based selection strategy. The increase of the RWL and therefore of the
investigated MOML does not result in a corresponding increase of NDS in both
MOMLs. Further, the NDS are unevenly distributed over the search space. These
facts indicate that an increase of the population size does not result in highly
improved MOEA performance from a statistical point of view.

The optimization results verifying the 3D-MOP difficulties compared to the
4D-MOP are the topic of future work. Apart from these two biochemical MOP,
the generality of this concept is validated on classical MOP as another topic of
future work.
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