
Making IDEA-ARIMA Efficient in Dynamic
Constrained Optimization Problems

Patryk Filipiak(B) and Piotr Lipinski

Computational Intelligence Research Group, Institute of Computer Science,
University of Wroclaw, Wroclaw, Poland

{patryk.filipiak,lipinski}@ii.uni.wroc.pl

Abstract. A commonly used approach in Evolutionary Algorithms for
Dynamic Constrained Optimization Problems forces re-evaluation of a
population of individuals whenever the landscape changes. On the con-
trary, there are algorithms like IDEA-ARIMA that can effectively antic-
ipate certain types of landscapes rather than react to changes which
already happened and thus be one step ahead with the dynamic environ-
ment. However, the computational cost of IDEA-ARIMA and its memory
consumption are barely acceptable in practical applications. This paper
proposes a set of modifications aimed at making this algorithm an effi-
cient and competitive tool by reducing the use of memory and proposing
the new anticipation mechanism.

1 Introduction

Dynamic Optimization Problems (DOPs) and Dynamic Constrained Optimiza-
tion Problems (DCOPs) have drown the attention of many scientists during
the last decade since these two models, unlike their stationary counterparts,
assume a more realistic point of view that either an objective function or a set
of feasible solutions or both of them may change in time [1–4].

For the scope of this paper let us assume that F (t) : D −→ R is the dynamic
objective function with D ⊆ R

d, d > 0, t ∈ N+ and G
(t)
i : D −→ R for all

i = 1, . . . ,m are the dynamic constraint functions. The aim is then as follows:
For all t ∈ {t1, t2, . . . , tn} ⊂ N+ find x(t) ∈ D such that

x(t) = arg min{F (t)(x) : x ∈ D ∧ ∀i=1,...,m G
(t)
i (x) � 0}. (1)

A commonly used approach in Evolutionary Algorithms (EAs) dedicated to
the above-defined D(C)OPs implements the so called reactive behaviour which
forces them to re-evaluate the population of individuals whenever a change of
the landscape is detected. Although such mechanism often guarantees at least
fairly good level of tracing the moving optima and localizing the newly appear-
ing ones as it was shown in [5–8], it is tempting to utilize the knowledge gained
during the run of an EA in order to predict the future landscape and act one step
ahead of the changes. This alternative approach is usually referred to as proac-
tive behaviour. One of the first proactive EAs was introduced by Hatzakis and
c© Springer International Publishing Switzerland 2015
A.M. Mora and G. Squillero (Eds.): EvoApplications 2015, LNCS 9028, pp. 882–893, 2015.
DOI: 10.1007/978-3-319-16549-3 71

Making IDEA-ARIMA Efficient in DCOPs 883

Wallace who used an Auto-Regressive model for anticipating the future shape
of Pareto optimal front in [9]. Bosman presented his learning and anticipation
mechanism in [10]. Later on, Simões and Costa proposed an EA equipped with
a Markov chain predictor to forecast the future states of the environment [11].

IDEA-ARIMA is a proactive EA that uses the Auto-Regressive Integrated
Moving Average [12] model for anticipating the future evaluations of a fitness
function. It was demonstrated in [13] that this algorithm can accurately antic-
ipate some periodically changing environments and simultaneously guarantee a
good constraint handling. However, the computational cost of running IDEA-
ARIMA and its demand for a huge amounts of memory are barely acceptable in
practical applications. A critical analysis of IDEA-ARIMA including a detailed
description of an algorithm followed by an identification of its weakest parts is
discussed further in Sect. 2.

A contribution of this paper includes a number of modifications aimed at
making IDEA-ARIMA an efficient and competitive tool by reducing the use
of memory and proposing the new anticipation mechanism which no longer
requires maintaining a separate population of individuals yet directly injects
the candidate solutions in the most probable future promising regions. It also
addresses the problem of possibly inaccurate forecasts by introducing a small
fraction of random immigrants spread evenly across the search space. All the
proposed modifications of IDEA-ARIMA are elaborated in Sect. 3.

The suggested modifications were evaluated using the set of popular bench-
mark functions. The experimental results are summarized in Sect. 4, then some
conclusions are given in Sect. 5.

2 Critical Analysis of IDEA-ARIMA

IDEA-ARIMA was first introduced in [13] as an extension of Infeasibility Driven
Evolutionary Algorithm (IDEA) which is known for its robustness in solving con-
strained optimization problems [14]. The original IDEA deals with constraints by
incorporating an additional optimization criterion called violation measure that
indicates “how far” from a nearest feasible region a given individual is. By using
a multi-objective optimization mechanism similar to NSGA-II [15], IDEA simul-
taneously maximizes the fitness function and minimizes the violation measure
which allows it to find the optima located on the boundaries of feasible regions.
Moreover, IDEA is able to approach these optima from both sides, i.e. from
a feasible and an infeasible one, which typically speeds up the convergence [14].
Note that even though IDEA was initially dedicated to Stationary Optimiza-
tion Problems (SOPs) it also has a potential of handling some DCOPs as it was
indicated in [8].

Taking into account the above-mentioned pros of IDEA, the IDEA-ARIMA
was meant to be a proactive EA that would hybridize the robust constraint han-
dling mechanism guaranteed by IDEA with a commonly used linear prediction
model called Auto-Regressive Integrated Moving Average (ARIMA) [12] applied
for anticipating the most probable future fitness values. This conglomerate was

884 P. Filipiak and P. Lipinski

believed to form a powerful tool able to solve DCOPs effectively. Despite the fact
that some experimental results presented in [13] were very promising, they also
revealed the two weakest points of IDEA-ARIMA which are the considerable
computational cost and the huge memory demands.

Let us now shed some light on the anticipation strategy used in IDEA-
ARIMA in order to indicate the sources of the two main drawbacks of this EA.
First of all, in this approach a dynamism of the environment is perceived through
the recurrent evaluations of a set of samples S ⊂ R

d (d > 0). Every sample s ∈ S
is associated with the time series of its past evaluations (Xs

t)t∈T , i.e.

∀t≤tnow
Xs

t = F (t)(s). (2)

In other words, all the historical values of the objective function F for all the
samples s ∈ S up to the present moment tnow ∈ T are collected and made
available at any time. On the top of it, the ARIMA model is applied for predicting
the future values of the objective function ˜Xs

tnow+1 = ˜F (tnow+1)(s) based on the
past observations (Xs

t)t≤tnow
. As a result, the whole future landscape ˜F (tnow+1)

can be anticipated by extrapolating the set

{ ˜F (tnow+1)(s) ; s ∈ S}, (3)

using the k > 0 nearest neighbours method. The point is that the size of S
tends to grow extremely fast from one iteration of IDEA-ARIMA to another (cf.
Algorithm 1) thus consuming more and more memory and additionally it requires
an increasing number of invocations of the evaluation function for keeping all
the samples up-to-date with the environment.

Algorithm 1. Pseudo-code of IDEA-ARIMA.
S1 = ∅
P1 = RandomPopulation()
Evaluate(P1)
for t = 1 → Ngen do

if the function F has changed then
Re-evaluate(Pt)
St = St ∪ Pt

Re-evaluate(St \ Pt)
if t − 1 > Ntrain then

Pt = ReducePopulation(Pt ∪ ˜Pt)
end if

end if
Pt+1 = IDEA(Pt, F

(t), Nsub)
if t > Ntrain then
˜Pt+1 = RandomPopulation()
˜Pt+1 = IDEA(˜Pt+1, ˜F

(t+1), Nsub)
end if
St+1 = St

end for

Making IDEA-ARIMA Efficient in DCOPs 885

Secondly, a proper use of the information concerning the anticipated future
landscape gathered by IDEA-ARIMA is assured by introducing a predictive pop-
ulation ˜Pt+1 which comprises of M > 0 individuals being evolved separately
from a regular population Pt and evaluated with the anticipated future fitness
function ˜F (t+1) instead of F (t). Later on, when the next time interval begins
(i.e. t ← t + 1), the individuals from the predictive population are immediately
transferred to Pt so that the EA could begin to explore the newest promising
regions straight away. Nevertheless, the anticipation mechanism firstly requires
some historical data in order to provide accurate forecasts about ˜F (t+1) thus for
the initial Ntrain > 0 generations it is only fed with data (Xs

t)t≤Ntrain
for s ∈ S

and produces no outputs. Although, from the efficacy perspective, after this pre-
sumably short period, an emergence of the predictive population appears to be
a yet another source of increase in the computational cost since these individu-
als also require evaluations (although without essentially invoking the evaluation
function F (t)) and an application of some evolutionary operators.

The entire pseudo-code of IDEA-ARIMA is given in Algorithm 1. It begins
with generating the population P1 by picking up randomly M > 0 individuals
and taking the empty set of samples S1. Then the main loop of the EA is run
for Ngen > 0 generations. Whenever a change of the objective function F (t) is
detected (i.e. the evaluation of at least one of the randomly chosen individuals
has just changed), the whole population Pt is re-evaluated and then added to
the set of samples St. Providing that the training period of the anticipation
mechanism t = 1, 2, . . . , Ntrain is over, and thus the population ˜Pt is ready, the
individuals from Pt and ˜Pt are grouped together and immediately reduced to
the fixed population size M > 0. Eventually, regardless the changes of F (t), the
original IDEA is run for 0 < Nsub 	 Ngen iterations (those will be referred to as
subiterations). Later on, the predictive population ˜Pt+1 is initialized randomly
and evolved within the same number of Nsub subiterations of IDEA however the
anticipated objective function ˜F (t+1) is used here instead of F (t).

3 Proposed Modifications of IDEA-ARIMA

The two drawbacks of IDEA-ARIMA emphasised in the previous section can
be overcome in a number of ways. A rather straightforward one would be to
simply bound the set of samples S and suggest a strategy for keeping it up-
to-date with the environment. Some ideas concerning that approach will be
discussed at first. A further modification proposed in this paper is a bit more
complex. The idea behind it is to modify the model of spreading the information
about the anticipated future objective function. Instead of introducing a whole
predictive population ˜P and evolving it separately, a single sample that currently
has the highest anticipated fitness ˜F can be selected out of the finite set S in
order to deliver that information into the population P . However, this scenario
can only succeed providing that the forecast is accurate. Otherwise it could
significantly deteriorate the performance of the EA. This risk can be minimized
by introducing a small fraction of individuals located near the estimated future

886 P. Filipiak and P. Lipinski

optimum and additionally another small fraction of random immigrants spread
uniformly across the search space. In this case, though, the proper sizes of small
fractions would remain an open issue. That is why the mechanism for auto-
adaptation of these fraction sizes will be introduced further in this section.

3.1 Bounded Set of Samples

IDEA-ARIMA assumes that the set of samples S grows from generation to gen-
eration by 0 up to M new elements, where M > 0 is the size of a population P . It
is the consequence of the operation presented in the 7th line of Algorithm 1 that
reads St = St ∪ Pt. It is tempting to get rid of this operation and instead select
randomly M samples during the initialization step and stick to them throughout
the whole run. Unfortunately, this leads to rather mediocre results. However, the
set S can still be bounded to M elements providing that the least contributing
samples are removed any time S exceeds its maximum size. In terms of time
series analysis, the least contributing samples can be those with the longest his-
tory trail (i.e. the oldest ones) since they are most likely to become over-learnt.
For the scope of this paper let us refer to this slightly modified IDEA-ARIMA
with a set of samples S permanently bounded to M as IDEA-ARIMA M .

3.2 Small Fractions Instead of Predictive Population

After the training period (i.e. for t > Ntrain) IDEA-ARIMA essentially main-
tains two populations, namely Pt and ˜Pt+1, each of which needs to be evolved
and evaluated separately. As a result, the computational time is doubled. Now,
that we have bounded the set of samples, it can be more efficient to simply
compare all of the anticipated fitness values and select a sample s∗ ∈ S such
that s∗ = arg min{ ˜F (t+1)(s) ; s ∈ S}. Of course, introducing a single sample
into Pt may be not enough in order to move the population towards it, espe-
cially that the foreseen fitness value ˜F t+1(s∗) is likely to be slightly distorted.
To alleviate that, a whole fraction of individuals concentrated around s∗ can be
introduced instead. Let us call it the anticipating fraction. Probably the most
appropriate way of generating the anticipating fraction is by using Gaussian
distribution N (s∗

i , ε) where i = 1, . . . , d and ε > 0. Although, it is worth notic-
ing that since a prediction population ˜Pt+1 in IDEA-ARIMA is always created
from scratch hence it is evenly distributed across the search space. This in turn
guarantees a safety buffer in case of the erroneous anticipation because there
are dozens of randomly placed candidate solutions in ˜Pt+1 that may potentially
attract the attention of individuals from Pt while the two populations would be
eventually grouped together. Fortunately, the same behaviour can be assured
by introducing a fraction of random immigrants (let us call them the exploring
fraction) into Pt apart from the anticipating fraction described above. The point
is that the proper sizes of these fractions, name them 0 < sizeanticip < M for
the anticipating fraction and 0 < sizeexplore < M for the exploring one, are
strictly problem-dependent thus cannot be estimated once for all the possible

Making IDEA-ARIMA Efficient in DCOPs 887

cases. Finally, it has to be stated that the condition sizeanticip +sizeexplore < M
must be satisfied for all time.

3.3 Auto-adaptation of Fraction Sizes

After introducing the two fractions defined above a population Pt can be thought
of as a mixture of the three subsets, namely P anticip

t ⊂ Pt built up of the antici-
pating fraction of sizeanticip individuals, P explore

t ⊂ Pt built up of the exploring
fraction of sizeexplore individuals, and the remaining P exploit

t = Pt\(P anticip
t ∪

P explore
t) fraction of sizeexploit = M −sizeanticip−sizeexplore individuals respon-

sible for exploiting the promising regions identified so far.

Algorithm 2. Pseudo-code of UpdateFractionSizes(Pt) procedure where Pt =
P explore

t ∪ P exploit
t ∪ P anticip

t and M = population size.

(P best
t , Pmedium

t , Pworst
t) = RankFractions(P explore

t , P exploit
t , P anticip

t)
distmedium = |BestEvaluation(P best

t) − BestEvaluation(Pmedium
t)|

distworst = |BestEvaluation(P best
t) − BestEvaluation(Pworst

t)|
sizebest = min {sizemax, sizebest + δ}
sizemedium = max

{

sizemin, (M − sizebest) · distworst
distworst+distmedium

}

sizeworst = M − sizebest − sizemedium

Algorithm 3. Pseudo-code of mIDEA-ARIMA.
S1 = RandomSamples()
P1 = RandomPopulation()
Evaluate(P1)
for t = 1 → Ngen do

if the function F has changed then
Re-evaluate(Pt)
St = ReduceSamples(St ∪ Pt, M)
Re-evaluate(St \ Pt)
if t − 1 > Ntrain then

P exploit
t = ReducePopulation(Pt, sizeexploit)

Pt = P explore
t ∪ P exploit

t ∪ P anticip
t

(sizeexplore, sizeexploit, sizeanticip) = UpdateFractionSizes(Pt)
end if

end if
Pt+1 = IDEA(Pt, F

(t), Nsub)
if t > Ntrain then

s∗
t = BestSample(St, ˜F

(t+1))
P anticip
t+1 = AnticipatingFraction(s∗

t , sizeanticip)

P explore
t+1 = ExploringFraction(sizeexplore)

end if
St+1 = St

end for

888 P. Filipiak and P. Lipinski

At first, all the fraction sizes are assumed equal sizeexplore = sizeexploit =
sizeanticip = M/3 yet after the training period of Ntrain generations those can be
adapted automatically. The updating rule is presented in Algorithm 2. It begins
with finding a single best individual per fraction as its representative. Then, all
the three fractions are given labels adequate to the fitness of their respective
representatives. The fraction containing the best representative is labeled best,
the second best is labeled medium and the last one—worst. Next, the size of the
best fraction is increased by 0 < δ 	 M . The remaining M − sizebest “vacant
slots” are disposed between the medium and worst fractions proportionally to
the differences in fitness of their representatives and the representative of the best
fraction. Clearly, all the three sizes must sum up to M . They are also restricted
to the range [sizemin, sizemax] where 0 < sizemin < sizemax < M in order to
prevent from the excessive domination of a certain fraction causing the exclusion
of the others. The suggested values of parameters used in UpdateFractionSizes
procedure are δ = 10% × M , sizemin = δ and sizemax = M − δ.

3.4 mIDEA-ARIMA

A pseudo-code of the modified IDEA-ARIMA algorithm (abbreviated to mIDEA-
ARIMA) is given in Algorithm 3. It differs from the original IDEA-ARIMA in
few places. First of all, it begins with a non-empty set S1 containing of M ran-
domly selected samples. Secondly, after the training period is over, it picks up
a best sample s∗

t out of St in each generation by taking into account the antici-
pated fitness values ˜F (t+1). Then, it prepares the anticipating fraction P anticip

t+1

concentrated around s∗
t and the exploring fraction P explore

t+1 uniformly distributed
across the search space. Finally, during the next time step (providing that the
landscape has changed since the last iteration) it reduces the set of samples
St ∪Pt to the maximum number of M elements and also reduces the population
Pt into sizeanticip individuals. Later on, it composes the new population out of
the three fractions Pexplore, Pexploit, Panticip and updates their respective sizes
for the next generation.

4 Experiments

The experiments were performed on the following benchmark problems.

Benchmarks G24 [2] Minimize the function

(a) G24 1, G24 6c

F (t)(x) = −
[

sin
(

kπt +
π

2

)

· x1 + x2

]

,

(b) G24 2
F (t)(x) = − [p1(t) · x1 + p2(t) · x2] ,

p1(t) =
{

sin
(

kπt
2 + π

2

)

, t | 2
p1(t − 1), t � 2

, p2(t) =

{

p2(max{0, t − 1}), t | 2
sin

(

kπ(t−1)
2 + π

2

)

, t � 2

Making IDEA-ARIMA Efficient in DCOPs 889

(c) G24 8b

F (t)(x) = −3 exp
{

−
[

(p1(t) − x1)
2 + (p2(t) − x2)

2
]

1
4
}

,

p1(t) = 1.4706 + 0.8590 · cos(kπt), p2(t) = 3.4420 + 0.8590 · sin(kπt)

subject to

(a) G24 1, G24 2, G24 8b

G1(x) = 2x4
1 − 8x3

1 + 8x2
1 − x2 + 2 ≥ 0,

G2(x) = 4x4
1 − 32x3

1 + 88x2
1 − 96x1 − x2 + 36 ≥ 0,

(b) G24 6c

G1(x) = 2x1 + 3x2 − 9

G2(x) =
{−1 if x1 ∈ [0, 1] ∪ [2, 3]

1 otherwise

where x = (x1, x2) ∈ [0, 3] × [0, 4], t ∈ N+ and 0 ≤ k ≤ 2.

Benchmark mFDA1 [13] Minimize the function

F (t)(x) = 1 −
√

x1

1 +
∑n

i=2

(

xi − sin
(

πt
4

))2

subject to

Gj(x) =
3[x2 − 1

2 (αj + βj)]2

2(αj − βj)2
− x1 +

1
4

≥ 0,

αj = sin
(

π(j + 1)
4

)

, βj = sin
(

π(j + 1)
4

)

, j ∈ {1, 2, 3, 4}.

where x = (x1, x2) ∈ [0, 1] × [−1, 1] and t ∈ N+.
Each of the above benchmarks was run in the three severity variants k ∈ {0.1,

0.25, 0.5} and four frequency variants expressed as a number of subiterations
between consecutive environmental changes Nsub ∈ {1, 2, 5, 10}.

The compared algorithms were split into the three groups.

1. IDEA with:
– re-initialization of a population each time a change of the landscape is

detected (further referred to as IDEA reset),
– introduction of a fixed-sized exploring fraction (IDEA explore),
– introduction of an exploring fraction of the size adapted online accord-

ing to the UpdateFractionSizes procedure yet without the anticipating
fraction (IDEA adapt).

890 P. Filipiak and P. Lipinski

2. IDEA-ARIMA with:
– the set of samples bounded to M (IDEA-ARIMA M),
– the set of samples bounded to 2M (IDEA-ARIMA 2M),
– the unbounded set of samples (IDEA-ARIMA ∞).

3. mIDEA-ARIMA with:
– non-empty anticipation fraction and empty exploring fraction

(mIDEA-ARIMA anticip),
– non-empty anticipation fraction and non-empty exploring fraction

(mIDEA-ARIMA anticip/explore),
– non-empty anticipation fraction and non-empty exploring fraction of the

sizes adapted online according to the UpdateFractionSizes procedure
(mIDEA-ARIMA adapt).

Tables 1, 2 and 3 summarize the offline performances obtained for all the
analyzed benchmark functions with severity regulator k set to 0.1, 0.25 and 0.5
respectively. The results are averaged over 50 independent runs each of which
lasted for Ngen = 100 generations. In the cases with fixed-sized fractions, the
optimal sizes are given in brackets, e.g. (0.7) means sizeexplore = 0.7 × M while
(0.1/0.6) stands for sizeanticip = 0.1 × M and sizeexplore = 0.6 × M .

It is clearly seen that mIDEA-ARIMA anticip/explore outperformed the
other algorithms in nearly all the cases. Particularly, it gave better results than
IDEA-ARIMA ∞ even though the latter required more evaluations and memory.
It also turned out that even the simplest modification including only a bounding
of S resulted in fairly good offline performances. A comparison with IDEA-
ARIMA 2M revealed that doubling the maximum size of S gave satisfactory
results only in cases with greater Nsub values.

Table 1. Offline performances averaged over 50 independent runs with k = 0.1.

Bench Nsub IDEA IDEA-ARIMA mIDEA-ARIMA

Reset Explore Adapt M 2M ∞ Anticip Anticip/explore Adapt

G24 1 1 −3.34 −3.66 (0.7) −3.47 −3.62 −3.33 −3.67 −3.73 (0.4) −3.80 (0.1/0.6) −3.70

2 −3.42 −3.71 (0.7) −3.60 −3.60 −3.42 −3.70 −3.74 (0.3) −3.81 (0.1/0.6) −3.77

5 −3.56 −3.75 (0.7) −3.72 −3.37 −3.58 −3.73 −3.75 (0.3) −3.83 (0.1/0.6) −3.81

10 −3.69 −3.80 (0.9) −3.80 −3.39 −3.66 −3.74 −3.76 (0.4) −3.84 (0.3/0.7) −3.83

G24 2 1 −1.45 −1.69 (0.7) −1.54 −1.69 −1.62 −1.68 −1.68 (0.7) −1.73 (0.1/0.5) −1.70

2 −1.50 −1.71 (0.7) −1.61 −1.69 −1.66 −1.69 −1.68 (0.2) −1.73 (0.2/0.4) −1.71

5 −1.62 −1.74 (0.7) −1.71 −1.66 −1.69 −1.70 −1.69 (0.4) −1.75 (0.1/0.4) −1.72

10 −1.70 −1.76 (0.7) −1.75 −1.69 −1.71 −1.72 −1.70 (0.3) −1.76 (0.2/0.3) −1.73

G24 6c 1 −2.86 −3.07 (0.6) −2.93 −3.05 −2.97 −3.11 −3.10 (0.1) −3.13 (0.2/0.2) −3.09

2 −2.92 −3.13 (0.6) −3.02 −2.94 −2.92 −3.14 −3.02 (0.6) −3.15 (0.1/0.5) −3.12

5 −3.04 −3.15 (0.7) −3.12 −2.66 −2.94 −3.06 −2.98 (1.0) −3.16 (0.1/0.6) −3.15

10 −3.13 −3.17 (0.7) −3.16 −2.74 −2.98 −3.07 −2.99 (0.8) −3.17 (0.1/0.7) −3.17

G24 8b 1 −1.30 −1.52 (0.7) −1.37 −1.52 −1.33 −1.58 −1.57 (0.4) −1.63 (0.1/0.6) −1.58

2 −1.37 −1.56 (0.7) −1.47 −1.54 −1.41 −1.62 −1.59 (0.5) −1.65 (0.1/0.7) −1.62

5 −1.50 −1.62 (0.7) −1.59 −1.53 −1.53 −1.68 −1.63 (0.5) −1.68 (0.1/0.7) −1.67

10 −1.61 −1.68 (0.7) −1.68 −1.58 −1.62 −1.71 −1.66 (0.5) −1.71 (0.2/0.6) −1.70

mFDA1 1 0.12 0.06 (0.7) 0.10 0.05 0.05 0.05 0.04 (0.4) 0.03 (0.3/0.4) 0.05

2 0.09 0.05 (0.7) 0.08 0.04 0.04 0.04 0.03 (0.6) 0.02 (0.4/0.4) 0.03

5 0.05 0.04 (0.7) 0.04 0.04 0.04 0.02 0.02 (0.7) 0.01 (0.3/0.5) 0.02

10 0.03 0.02 (0.7) 0.03 0.04 0.03 0.01 0.01 (1.0) 0.01 (0.2/0.6) 0.01

Making IDEA-ARIMA Efficient in DCOPs 891

Table 2. Offline performances averaged over 50 independent runs with k = 0.25.

Bench Nsub IDEA IDEA-ARIMA mIDEA-ARIMA

Reset Explore Adapt M 2M ∞ Anticip Anticip/explore Adapt

G24 1 1 −3.33 −3.58 (0.4) −3.41 −3.52 −3.31 −3.59 −3.72 (0.8) −3.76 (0.1/0.5) −3.70

2 −3.40 −3.62 (0.7) −3.53 −3.49 −3.35 −3.67 −3.73 (0.8) −3.77 (0.1/0.6) −3.74

5 −3.54 −3.65 (0.7) −3.64 −3.37 −3.45 −3.76 −3.72 (0.7) −3.78 (0.2/0.6) −3.77

10 −3.67 −3.75 (0.9) −3.74 −3.38 −3.60 −3.79 −3.74 (0.8) −3.80 (0.2/0.8) −3.79

G24 2 1 −1.57 −1.71 (0.7) −1.59 −1.62 −1.47 −1.53 -1.63 (0.5) −1.81 (0.1/0.6) −1.78

2 −1.60 −1.74 (0.7) −1.65 −1.61 −1.49 −1.55 −1.59 (0.6) −1.82 (0.3/0.7) −1.78

5 −1.72 −1.80 (0.7) −1.76 −1.49 −1.61 −1.60 −1.61 (0.6) −1.84 (0.1/0.7) −1.77

10 −1.80 −1.83 (0.7) −1.83 −1.64 −1.75 −1.68 −1.68 (0.6) −1.85 (0.7/0.3) −1.77

G24 6c 1 −2.84 −3.06 (0.5) −2.87 −3.04 −3.00 −3.03 −2.95 (0.1) −3.06 (0.1/0.5) −3.02

2 −2.90 −3.07 (0.5) −2.96 −3.01 −3.03 −3.09 −2.94 (1.0) −3.10 (0.1/0.6) −3.06

5 −3.02 −3.09 (0.7) −3.07 −2.62 −2.95 −3.13 −2.94 (0.8) −3.11 (0.1/0.7) −3.10

10 −3.11 −3.13 (0.9) −3.13 −2.60 −2.92 −3.13 −2.88 (1.0) −3.14 (0.1/0.9) −3.13

G24 8b 1 −1.31 −1.44 (0.7) −1.35 −1.41 −1.24 −1.51 −1.43 (0.6) −1.55 (0.1/0.6) −1.48

2 −1.37 −1.46 (0.7) −1.42 −1.39 −1.27 −1.57 −1.47 (0.6) −1.60 (0.1/0.7) −1.55

5 −1.50 −1.54 (0.9) −1.54 −1.33 −1.35 −1.57 −1.50 (0.5) −1.64 (0.3/0.7) −1.62

10 −1.61 −1.64 (0.9) −1.65 −1.41 −1.46 −1.61 −1.55 (0.4) −1.70 (0.1/0.7) −1.69

mFDA1 1 0.12 0.08 (0.7) 0.11 0.08 0.08 0.07 0.09 (0.8) 0.06 (0.1/0.7) 0.08

2 0.09 0.07 (0.7) 0.09 0.08 0.06 0.05 0.08 (0.6) 0.05 (0.1/0.7) 0.07

5 0.05 0.04 (0.7) 0.05 0.09 0.06 0.03 0.07 (0.4) 0.04 (0.1/0.7) 0.05

10 0.02 0.02 (0.7) 0.02 0.09 0.06 0.01 0.07 (0.9) 0.02 (0.1/0.9) 0.04

Table 3. Offline performances averaged over 50 independent runs with k = 0.5.

Bench Nsub IDEA IDEA-ARIMA mIDEA-ARIMA

Reset Explore Adapt M 2M ∞ Anticip Anticip/explore Adapt

G24 1 1 −3.30 −3.64 (0.6) −3.41 −3.49 −3.43 −3.64 −3.40 (0.3) −3.64 (0.1/0.6) −3.54

2 −3.37 −3.64 (0.6) −3.49 −3.45 −3.43 −3.65 −3.42 (0.3) −3.66 (0.1/0.6) −3.60

5 −3.51 −3.59 (0.7) −3.56 −3.43 −3.41 −3.68 −3.44 (0.1) −3.65 (0.1/0.7) −3.62

10 −3.63 −3.68 (0.8) −3.67 −3.40 −3.45 −3.64 −3.44 (0.5) −3.70 (0.1/0.7) −3.67

G24 2 1 −1.55 −1.63 (0.7) −1.56 −1.51 −1.40 −1.28 −1.43 (0.7) −1.72 (0.1/0.7) −1.69

2 −1.59 −1.64 (0.7) −1.61 −1.49 −1.45 −1.30 −1.40 (0.2) −1.74 (0.2/0.7) −1.70

5 −1.69 −1.71 (0.7) −1.71 −1.37 −1.51 −1.32 −1.28 (0.9) −1.77 (0.3/0.7) −1.70

10 −1.76 −1.77 (0.9) −1.77 −1.47 −1.62 −1.34 −1.40 (0.9) −1.79 (0.3/0.7) −1.71

G24 6c 1 −2.92 −3.12 (0.6) −2.93 −2.95 −2.88 −3.10 −2.98 (0.3) −3.13 (0.1/0.5) −3.10

2 −2.97 −3.16 (0.6) −3.02 −2.99 −2.99 −3.12 −2.99 (0.4) −3.17 (0.1/0.6) −3.14

5 −3.10 −3.17 (0.7) −3.13 −3.00 −3.00 −3.04 −3.00 (0.2) −3.18 (0.1/0.7) −3.16

10 −3.20 −3.22 (0.7) −3.21 −3.01 −3.01 −3.04 −3.01 (0.1) −3.22 (0.1/0.7) −3.21

G24 8b 1 −1.33 −1.48 (0.7) −1.38 −1.42 −1.29 −1.51 −1.30 (0.2) −1.59 (0.1/0.7) −1.48

2 −1.41 −1.50 (0.7) −1.47 −1.38 −1.30 −1.63 −1.33 (0.1) −1.56 (0.1/0.7) −1.52

5 −1.59 −1.59 (0.9) −1.59 −1.34 −1.34 −1.72 −1.37 (0.4) −1.62 (0.1/0.8) −1.59

10 −1.74 −1.74 (0.9) −1.74 −1.37 −1.45 −1.77 −1.41 (0.3) −1.74 (0.1/0.9) −1.70

mFDA1 1 0.12 0.07 (0.7) 0.13 0.08 0.08 0.07 0.15 (0.2) 0.07 (0.1/0.7) 0.10

2 0.10 0.07 (0.7) 0.10 0.07 0.06 0.06 0.15 (0.5) 0.07 (0.1/0.7) 0.09

5 0.05 0.05 (1.0) 0.05 0.07 0.07 0.04 0.16 (0.3) 0.05 (0.1/0.9) 0.09

10 0.01 0.01 (1.0) 0.01 0.09 0.09 0.02 0.15 (0.5) 0.01 (0.1/0.9) 0.08

Figure 1 presents the results of 50 runs of those algorithms that do not require
a prior estimation of proper fraction sizes. After each run the winning algorithm
scored +3 points, the second best +2 points and the third best +1 point. It can
be seen that mIDEA-ARIMA adapt performed best in many cases, especially
in rapidly changing environments. It also has to be mentioned that in this com-
parison IDEA-ARIMA M again proved its surprising effectiveness.

892 P. Filipiak and P. Lipinski

k = 0.1 k = 0.25 k = 0.5

G24 1

G24 2

G24 6c

G24 8b

mFDA1

Fig. 1. Results of 50 runs of algorithms not requiring a prior estimation of proper
fraction sizes. Each winning algorithm scored +3 points, the second best +2 points
and the third best +1 point.

5 Conclusions

In this paper a number of modifications of IDEA-ARIMA were proposed.
The introduced mIDEA-ARIMA proved its potential in solving DCOPs although
it increased the space of possible input parameters of the EA. To alleviate that
issue the online auto-adaptation mechanism was suggested.

Making IDEA-ARIMA Efficient in DCOPs 893

The experiments performed on the popular benchmark problems revealed the
superiority of mIDEA-ARIMA over the original IDEA-ARIMA in terms of the
offline performance, a number of evaluations and a memory consumption.

References

1. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer, Norwell
(2002)

2. Nguyen, T., Yao, X.: Benchmarking and solving dynamic constrained problems.
In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2009),
pp. 690–697 (2009)

3. Nguyen, T., Yao, X.: Continuous dynamic constrained optimisation - the chal-
lenges. IEEE Trans. Evol. Comput. 16, 769–786 (2012)

4. Yang, S., Yao, X.: Evolutionary Computation for Dynamic Optimization Problems.
SCI, vol. 490. Springer, Heidelberg (2013)

5. Aragón, V.S., Esquivel, S.C.: An evolutionary algorithm to track changes of opti-
mum value locations in dynamic environments. J. Comput. Sci. Technol. 4(3),
127–134 (2004)

6. Liu, X., Wu, Y., Ye, J.: An improved estimation of distribution algorithm in
dynamic environments. In: Proceedings of the 4th International Conference on
Natural Computing (ICNC 2008), pp. 269–272 (2008)

7. Tinós, R., Yang, S.: A self-organizing random immigrants genetic algorithm for
dynamic optimization problems. Genet. Program. Evolvable Mach. 8(3), 255–286
(2007)

8. Singh, H.K., Isaacs, A., Nguyen, T.T., Ray, T., Yao, X.: Performance of infeasibility
driven evolutionary algorithm (IDEA) on constrained dynamic single objective
optimization problems. In: Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2009), pp. 3127–3134 (2009)

9. Hatzakis, I., Wallace, D., Dynamic multi-objective optimization with evolutionary
algorithms: a forward-looking approach. In: Proceedings of the 8th Annual Con-
ference on Genetic and Evolutionary Computation (GECCO 2006), pp. 1201–1208
(2006)

10. Bosman, P.A.N.: Learning and anticipation in online dynamic optimization. In:
Yang, S., Ong, Y.-S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and
Uncertain Environments. SCI, vol. 51, pp. 129–152. Springer, Heidelberg (2007)

11. Simões, A., Costa, E.: Evolutionary algorithms for dynamic environments: pre-
diction using linear regression and Markov chains. In: Rudolph, G., Jansen, T.,
Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 306–315.
Springer, Heidelberg (2008)

12. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and
Control. Wiley, New York (2013). Wiley.com

13. Filipiak, P., Michalak, K., Lipinski, P.: Infeasibility driven evolutionary algorithm
with ARIMA-based prediction mechanism. In: Yin, H., Wang, W., Rayward-Smith,
V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 345–352. Springer, Heidelberg (2011)

14. Singh, H.K., Isaacs, A., Ray, T., Smith, W.: Infeasibility driven evolutionary
algorithm for constrained optimization. In: Mezura-Montes, E. (ed.) Constraint
Handling in Evolutionary Optimization. SCI, vol. 198, pp. 145–165. Springer,
Heidelberg (2009)

15. Deb, K., Pratap, A., Agarwal, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

http://wiley.com

	Making IDEA-ARIMA Efficient in Dynamic Constrained Optimization Problems
	1 Introduction
	2 Critical Analysis of IDEA-ARIMA
	3 Proposed Modifications of IDEA-ARIMA
	3.1 Bounded Set of Samples
	3.2 Small Fractions Instead of Predictive Population
	3.3 Auto-adaptation of Fraction Sizes
	3.4 mIDEA-ARIMA

	4 Experiments
	5 Conclusions
	References

