
Parallel Extremal Optimization with Guided
State Changes Applied to Load Balancing

Ivanoe De Falco1, Eryk Laskowski2(B), Richard Olejnik3, Umberto Scafuri1,
Ernesto Tarantino1, and Marek Tudruj2,4

1 Institute of High Performance Computing and Networking, CNR, Naples, Italy
{ivanoe.defalco,umberto.scafuri,ernesto.tarantino}@na.icar.cnr.it

2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
{laskowsk,tudruj}@ipipan.waw.pl

3 Computer Science Laboratory, University of Science and Technology of Lille,
Villeneuve-d’Ascq, France
richard.olejnik@lifl.fr

4 Polish-Japanese Institute of Information Technology, Warsaw, Poland

Abstract. The paper concerns parallel methods for Extremal Optimiza-
tion (EO) applied for processor load balancing for distributed programs.
In these methods the EO approach is used which is parallelized and
extended by a guided search of next solution state. EO detects the best
strategy of tasks migration leading to a reduction in program execu-
tion time. We assume a parallel improvement of the EO algorithm with
guided state changes which provides a parallel search for a solution based
on two step stochastic selection during the solution improvement based
on two fitness functions. The load balancing improvements based on EO
aim at better convergence of the algorithm and better quality of program
execution in terms of the execution time. The proposed load balancing
algorithm is evaluated by experiments with simulated parallelized load
balancing of distributed program graphs.

Keywords: Distributed program design · Extremal optimization · Load
balancing · Parallel computing

1 Introduction

Many papers exist in literature dealing with dynamic load balancing in parallel
and distributed systems [1,2]. However, they do not profit from Extremal Opti-
mization (EO) [3] which is a technique following the approach of self-organized
criticality [4]. The algorithms presented in this paper are parallelized versions
of the EO–based load balancing algorithms [5,6], in which EO has been used
for load balancing of processors in execution of distributed programs. In the
previous paper, we have modified the EO algorithm to replace the fully random
processor selection by the stochastic selection in which the probability used in
the selection mechanism is guided by some knowledge of the problem (the EO-GS
algorithm). The guidance is based on a formula which examines how a migrated
c© Springer International Publishing Switzerland 2015
A.M. Mora and G. Squillero (Eds.): EvoApplications 2015, LNCS 9028, pp. 79–90, 2015.
DOI: 10.1007/978-3-319-16549-3 7

80 I. De Falco et al.

task fits a given processor in terms of the global computational balance in the
system and the processor communication load. The algorithm was evaluated by
simulation experiments in the DEVS (Discrete Event Simulation) model [7]. The
experiments have assessed the new algorithm against different parameters of the
application program graphs and the load balancing algorithm. The application
speedups have been positively verified against those obtained with the standard
EO-based version and in genetic algorithms.

An interesting aspect of Extremal Optimization is parallelization of the
involved approach. Parallelization of Extremal Optimization can be considered
in two ways. The first way is to intensify the actions aiming at a possibly
stronger improvement of the current EO solution, frequently with the intro-
duction of a population-based representation or a multipoint strategy during
solution improvement. It can be done using a really parallel system or a sequen-
tial system in which the components of an EO solution are identified based on
the multipoint selection and improved in a possibly concurrent way. The second
way consists in using a population-based approach for solutions with parallel
component improvement. Both approaches have accumulated already some bib-
liography. In [8] the authors propose an extended EO model in which a single
EO solution is replaced by a set of EO solutions which are processed using the
general EO strategy. These solutions are subject to selection and mutation to
provide a set of solution vectors to be next processed in parallel.

In [9–11] the authors propose a rich set of EO improvements used for opti-
mization of problems in molecular biology. The MEO (Modified EO) concept
consists in random generation of a neighbour solution in component improve-
ment but the best solution is selected among multiple thus formed new solutions
in respect to the fitness function used in the component selection. The PMEO is
a Population-based Modified EO in which a combination of a population-based
approach to solution generation with the MEO approach to the selection of the
best solution for further improvements. The generated solutions copy a substruc-
ture of the solution which behaves well in the solution improvement. The third
approach identified in the papers is the Distributed Modified EO (DMEO) which
is a combination of the PMEO approach and the distributed genetic algorithms
methodology. The DMEO is based on distribution of a population of solutions
into islands. The islands evolve using the PMEO method. There are transfers of
best solutions between the islands with back transfers of the replaced ones. Each
island improves a set of solutions to find a best island solution which are next
compared to find a globally best solution.

In this paper we propose an EO-based parallel approach for solving a proces-
sor load balancing problem in execution of programs represented as layered
graphs of tasks. In this approach, we first identify a load imbalance in the func-
tioning of the executive system. Then, we apply a parallel EO-GS algorithm to
select tasks which are to be migrated among processors to improve the general
balance of processor loads. The EO-GS algorithm is performed in the background
of the application program execution to execute a given number of EO cycles
which find a number of best logical migrations of tasks. When the EO iterations

Parallel EO with Guided State Changes Applied to Load Balancing 81

are over, the physical migrations worked out by the EO take place. In the
parallel EO-GS, a method similar to PMEO is applied but with an additional
fitness function which is a base for the stochastic selection of the best solution
state in the neighbourhood of the one chosen for improvement.

The paper is organized as follows. In Sect. 2 the Extremal Optimization prin-
ciples including the guided state changes are presented. Section 3 presents the
way of using EO for processor load balancing. Section 4 describes the proposed
parallel version of the algorithm. Section 5 presents the experimental results
which evaluate the proposed approach.

2 Extremal Optimization with Guided State Changes

In Extremal Optimization we use iterative updates of a single solution S built
of a number of components si, which are variables of the problem. For each
component, a local fitness value φi is evaluated to select the worst variable sw in
the solution. In a generic EO, S is modified at each iteration step, by randomly
updating the worst variable. As a result, a solution S′ is created which belongs
to the neighbourhood Neigh(S, sw) of S. For S′ the global fitness function Φ(S)
is evaluated which assess the quality of S′. The new solution S′ replaces S if its
global fitness is better than that of S. We can avoid staying in a local optimum in
such EO, by using a probabilistic version τ–EO, [3]. It is based on a user-defined
parameter τ , used in stochastic selection of the updated component. In a min-
imization problem solved by τ–EO, the solution components are first assigned
ranks k, 1 ≤ k ≤ n, where n is the number of the components, consistently with
the increasing order of their local fitness values. It is done by a permutation
π of the component labels i such that: φπ(1) ≤ φπ(2) ≤ . . . φπ(n). The worst
component si is of rank 1, while the best one is of rank n. Then, the component
selection probability over the ranks k is defined as follows: pk ∼ k−τ , for a given
value of the parameter τ . At each iteration, a component rank k is selected in
the current solution S according to pk. Next, the respective component sj with
j = π(k) randomly changes its state and S moves to a neighboring solution,
S′ ∈ Neigh(S, sj), unconditionally. The parameters of the τ–EO are: the total
number of iterations Niter and the probabilistic selection parameter τ .

τ–EO with guided state changes (EO–GS) has been proposed to improve the
convergence speed of EO optimization. For this, some knowledge of the problem
properties is used for next solution selection in consecutive EO iterations with
the help of an additional local target function ωs. This function is evaluated for
all neighbour solutions existing in Neigh(S, sπ(k)) for the selected rank k. Then,
the neighbour solutions are sorted and assigned GS-ranks g with the use of the
function ωs. The new state S′ ∈ Neigh(S, sπ(k)) is selected in a stochastic way
using the exponential distribution with the selection probability p ∼ Exp(g, λ) =
λe−λg. Due to this, better neighbour solutions are more probable to be selected.
The bias to better neighbours is controlled by the λ parameter. The general
scheme of the EO–GS is shown as Algorithm 1.

82 I. De Falco et al.

Algorithm 1. EO algorithm with Guided State Changes (EO–GS)
initialize configuration S at will
Sbest ← S
while total number of iterations Niter not reached do

evaluate φi for each variable si of the current solution S
rank the variables si based on their local fitness φi

choose the rank k according to k−τ so that the variable sj with j = π(k) is selected
evaluate ωs for each neighbour Sv ∈ Neigh(S, sj), generated by sj change of the
current solution S
rank neighbours Sv ∈ Neigh(S, sj) based on the target function ωs

choose S′ ∈ Neigh(S, sj) according to the exponential distribution
accept S ← S′ unconditionally
if Φ(S) < Φ(Sbest) then

Sbest ← S
end if

end while
return Sbest and Φ(Sbest)

3 EO-Based Load Balancing Foundations

In this section we will recall basic theoretical foundations for the proposed EO-
based load balancing. The proposed load balancing method is meant for a clusters
of multicore processors interconnected by a message passing network. Load bal-
ancing actions for a program are controlled at the level of indivisible tasks which
are process threads. We assume that the load balancing algorithms dynamically
control assignment of program tasks tk, k ∈ {1 . . . |T |} to processors (comput-
ing nodes) n, n ∈ [0, |N | − 1], where T and N are the sets of all the tasks
and the computing nodes, respectively. The goal is the minimal total program
execution time, achieved by task migration between processors. The load bal-
ancing method is based on a series of steps in which detection and correction
of processor load imbalance is done, Fig. 2. The imbalance detection relies on
some run-time infrastructure which observes the state of the executive computer
system and the execution states of application programs. Processors (computing
nodes) periodically report their current loads to the load balancing control which
monitors the current system load imbalance. When load imbalance is discovered,
processor load correction actions are launched. For them an EO-based algorithm
is executed, which identifies the tasks which need migration and the migration
target processor nodes. Following this, the required physical task migrations are
performed with the return to the load imbalance detection.

To evaluate the load of the system two indicators are used. The first is
the computing power of a node n: Indpower (n), which is the sum of poten-
tial computing powers of all the active cores on the node. The second is the
percentage of the CPU power available for application threads on the node n:
Time%CPU(n), periodically estimated on computing nodes. The percentage of the
CPU power available for a single thread is computed as a quotient of the time
during which the CPU was allocated to a probe thread against the time interval

Parallel EO with Guided State Changes Applied to Load Balancing 83

of the measurement. Time%CPU(n) value is the sum of the percentage of CPU
power available for the number of probe threads equal to the number of cores
on the node.

System load imbalance LI is a boolean defined based on the difference of
the CPU availability between the currently most heavily and the least heavily
loaded computing nodes:

LI = max
n∈N

(Time%CPU(n)) − min
n∈N

(Time%CPU(n)) ≥ α

The load imbalance equal true requires a load correction. The value of α is
set using an experimental approach (during experiments we set it between 25 %
and 75 %).

An application is characterized by two programmer-supplied parameters,
based on the volume of computations and communications tasks: COM(ts, td) is
the communication metrics between tasks ts and td, WP(t) is the load weight
metrics introduced by a task t. COM(ts, td) and WP(t) metrics can provide
exact values, e.g. for well-defined tasks sizes and inter-task communication in
regular parallel applications, or only some predictions e.g. when the execution
time depends on the processed data.

A task mapping solution S is represented by a vector μ = (μ1, . . . , μ|T |) of
|T | integers ranging in the interval [0, |N | − 1]. μi = j means that the solution
S under consideration maps the i–th task ti onto the computing node j.

The global fitness function Φ(S) is defined as follows.

Φ(S) = attrExtTotal(S) ∗ Δ1 + migration(S) ∗ Δ2 (1)
+imbalance(S) ∗ [1 − (Δ1 + Δ2)]

where 1 > Δ1 ≥ 0, 1 > Δ2 ≥ 0 and Δ1 + Δ2 < 1 hold.
The function attrExtTotal(S) represents the impact of the total external com-

munication between tasks on the quality of a given mapping S. By “external” we
mean the communication between tasks placed on different nodes. This function
is normalized in the range [0, 1]. In executive systems with homogeneous com-
munication links it is a quotient of an absolute value of the total external com-
munication volume and the total communication volume of all communications
(when all tasks are placed on the same node attrExtTotal(S) = 0, when tasks
are placed in the way that all communication is external attrExtTotal(S) = 1);
in heterogeneous executive systems equivalent measures of the communication
time are used:

attrExtTotal(S) = totalExt(S)/COM

where: COM =
∑

s,d∈T COM(s, d) and totalExt(S) =
∑

s,d∈T :μs �=μd
COM(s, d).

The function migration(S) is a migration costs metrics. The value of this
function is in the range [0, 1], i.e. it is equal to 0 when there is no migration, when
all tasks have to be migrated migration(S) = 1, otherwise 0 ≤ migration(S) ≤ 1:

migration(S) = |{t ∈ T : μS
t �= μS∗

t }|/|T |
where: S is the currently considered solution and S∗ is the previous solution (or
the initial solution in the algorithm).

84 I. De Falco et al.

The function imbalance(S) represents the numerical load imbalance metrics
in the solution S. It is equal to 1 when in S there exists at least one unloaded
(empty) computing node, otherwise it is equal to the normalized average absolute
load deviation of tasks in S, determined in the definition below:

imbalance(S) =
{

1 exists at least one unloaded node
D∗(S)/2 ∗ N ∗ WP otherwise

where: D∗(S) =
∑

n∈[0,N−1] |NWP(S, n)/Indpower (n) − WP|, WP =
∑

t∈T

WP(t)/
∑

n∈[0,N−1] Indpower (n), NWP(S, n) =
∑

t∈T :μt=n WP(t).
In the applied EO the local fitness function of a task φ(t) is designed in

such a way that it forces moving tasks away from overloaded nodes, at the
same time preserving low external (inter-node) communication. The γ parameter
(0 < γ < 1) allows tuning the weight of load metrics.

φ(t) = γ ∗ load(μt) + (1 − γ) ∗ rank(t) (2)

The function load(n) indicates how much the load of node n, which exe-
cutes t, exceeds the average load of all nodes. It is normalized versus the heavi-
est load among all the nodes. The rank(t) function governs the selection of best
candidates for migration. The chance for migration have tasks, which show low
communication with their current node (attraction) and low load deviation from
the average load:

rank(t) = 1 − (β ∗ attr(t) + (1 − β) ∗ ldev(t))

where: β is a real number between 0 and 1 – a parameter indicating the impor-
tance of the weight of attraction metrics. The attraction of the task t to its
executive computing node attr(t) is defined as the amount of communication
between task t and other tasks on the same node, normalized versus the maxi-
mal communication inside the node. The load deviation compared to the average
load ldev(t) is defined as the absolute value of the difference between the load
metrics of the task t and the minimum load on the node, normalized versus the
highest such difference for all tasks on the node.

We use the EO-GS algorithm to perform task and target node selection
for migration. Target node selection is based on additional “biased” stochastic
approach, to favour some solutions over others. In our case, the valid solution
state neighbourhood includes the use of all system nodes. Therefore, at each
update of rank k, all nodes n ∈ N are sorted using the ω(n1, n2) function,
n1, n2 ∈ N , with the assignment of GS-ranks g to them. Then, one of the nodes
is selected using the exponential distribution Exp(g, λ) = λe−λg.

We propose the following definition of ω(n1, n2) for the sorting algorithm
based on a pairwise ordering of the computing nodes n1, n2 as targets for migra-
tion of task j in the load balancing algorithm. It takes into account the normal-
ized load deviation of the nodes n1, n2 and the attraction of the task j to the
each of these nodes.

ω(n1, n2) =

{
sgn(relload(n1) − relload(n2)) when relload(n1) �= relload(n2)

sgn(attrext%(j, n2) − attrext%(j, n1)) otherwise.

Parallel EO with Guided State Changes Applied to Load Balancing 85

where:

relload(n) =
loaddev(n) − minm∈[0,N−1] loaddev(m)

maxm∈[0,N−1] loaddev(m) − minm∈[0,N−1] loaddev(m)

loaddev(n) =
NWP(S, n)
Indpower (n)

− WP

attrext%(j, n) =
attrext(j, n)

maxe∈N (attrext(j, e))

attrext(j, n) =
∑

e∈T (n)

(COM(e, j) + COM(j, e))

and T (n) = {t ∈ T : μt = n} — the set of threads, placed on computing node n.

4 Parallel Extremal Optimization Applied to Load
Balancing

The general scheme of the parallel version of the EO algorithm applied in this
paper to load balancing of distributed programs is presented in Fig. 1. This
algorithm is a parallelized version of the Algorithm 1 in Sect. 2. In this scheme,
after the setting of an initial solution S, the local fitness function φ(sj) values
are evaluated for all the components of S and the ranking of the components

Fig. 1. The general scheme of the parallel version of the EO algorithm.

86 I. De Falco et al.

Fig. 2. The general scheme of load balancing based on parallel EO with guided state
changes.

S based on φ(sj) is constructed. Next, a parallel EO part of the algorithm starts.
The population-type parallel EO algorithm is applied, which replaces the single
improvement of the EO solution by a parallel search for improvements performed
on a population of P EO solutions Sp. They are generated by a parallel selection
of the solution components and, next, an improvement of the worst components
stochastically selected based on the local fitness function with the highest prob-
ability of the worst components. During selection of components for solution
improvement a single point or multipoint selection of components in the same
basic solution can be performed. The set of components is improved using a
parallelized random selection or a parallelized approach of guided state changes
explained in Sect. 3. For each improved solution, the global fitness function Φ(S)
is evaluated. The improved solution with the global fitness better than the cur-
rent best value is selected as the base for next parallel EO iterations. The local
and global fitness function definitions are explained in Sect. 3.

The general scheme of the load balancing algorithm based on the parallel
EO-GS is shown in Fig. 2. The scheme is composed of two co-operating iterative
parts represented in the left and right parts of Fig. 2. Both parts can be executed
in a parallel way. In the left part, we first identify a sufficiently big load imbal-
ance in the functioning of the executive system following the model explained in
Sect. 3. When a sufficiently big processor load imbalance is noticed in program
execution, then we apply a parallel version of EO-GS to select tasks which are
to be migrated among processors to improve the general balance of processor
loads (the right hand side of Fig. 2). The parallel EO-GS algorithm performs
a given number of parallel iterations. EO-GS finds a number of best “logical”
migrations of tasks, which are registered to be performed when the EO-GS iter-
ations are over. Then, the physical migrations worked out by the EO-GS take

Parallel EO with Guided State Changes Applied to Load Balancing 87

place. The parallel EO-GS and the load imbalance detection are executed in the
background of the application program. The online overhead introduced in the
application execution time is due to task migration. The overhead is strongly
dependent on whether only data or task codes are migrated.

5 Experimental Results

The experiments were performed using simulated execution of application pro-
grams in a distributed system. Applications were run in a simulated distrib-
uted memory cluster of 32 multi–core processors. Communication was based on
message-passing. The DEVS-based system simulator [7] and parallel EO algo-
rithms were run in a cluster of Intel i7-based, 8–core workstations.

During the experiments we used a set of 5 synthetic exemplary programs,
which were randomly generated. The exemplary programs were composed of
layers of parallel tasks. Tasks from the same layer could communicate. At the
boundaries between layers there was a global exchange of data.The number of
tasks in an application varied from 272 to 576. The communication/computation
ratio for applications was in the range [0.10, 0.20]. The first exemplary pro-
gram is an irregular application in which the execution time of tasks depends
on the processed data. Thus, it exhibits unpredictable execution time of tasks
and the communication scheme and load imbalance can occur in computing
nodes. The next four programs are regular applications that have fixed tasks’
execution times. In regular applications load imbalance can appear due to a
non–optimized task placement of tasks or runtime conditions change.

During experiments, we have compared parallel EO and EO–GS to clas-
sic (sequential) EO and EO–GS which use the same local and global fitness
functions. The following parameters for load balancing control were used: α =
0.5, β = 0.5, γ = 0.75,Δ1 = 0.13,Δ2 = 0.17, τ = 1.5, and for EO–GS λ = 0.5.
Other settings of control parameters are not discussed here since we have pre-
sented them in [5,6]. Each experiment was repeated 5 times, for each run 4 differ-
ent methods of initial task placements (random, round-robin, METIS, packed)
were tested. Thus, 20 runs were executed in total for each experiment to produce
an averaged result. Experiments were repeated for the number of iterations of
EO and EO–GS set to 30, 60, 120 and 250.

In the first experiment, we tested the performance of standard EO paral-
lelized by concurrent random mutation. Figure 3(a) and 3(b) show the average
improvements over classic EO for the number of parallel candidate solutions in
the range [1, 8] (columns) and the different iteration count (rows). The reference
was the speedup for the lowest number of iterations (30) and non-parallelized,
classic EO. The speedup improvement is in the range [0%, 5%], where better
speedup is obtained when the number of iterations or parallel candidate solu-
tions is higher. It means that we can substitute the number of iterations with
widening the search area. The change of migrations number for different numbers
of parallel candidate solutions and the iteration count, Fig. 3(b), reveals that a
smaller number of migrations is obtained for parallelized version of EO.

88 I. De Falco et al.

In the second experiment, we investigated the performance of EO–GS par-
allelized with concurrent mutation guided by the search of the best solution
state change as explained in Sect. 3, Fig. 4(a) and (b). Similarly as in the first
experiment, the reference was speedup for 30 iterations and non-parallelized,
classic EO. The speedup improvement was in the range [10%, 12%], substan-
tially higher than that for the parallelized standard EO. On the other side, the
speedup improvement less depends on the number of iterations of EO and the
number of parallel candidate solutions. It confirms that EO–GS is able to find
load balance solutions of high quality, thus eliminating the need for further
intensive search of the solution space.

We analyzed also the impact of the regularity of applications on the obtained
results. For irregular applications the speedup strongly depends on load balanc-
ing. Figure 5 shows the speedup improvement of irregular applications for par-
allelized EO and parallelized EO with Guided Search (EO–GS). The speedup
improvement depends on the number of candidates and is noticeably better than
the average values for all kinds of applications. For irregular applications it is
more profitable to extend the search area by parallelizing EO than to increase the
number of iterations of EO. For regular applications speedup was not sensitive
to the number of candidate solutions.

(a) (b)

Fig. 3. Average speedup improvement (a) and migrations number change (b) of par-
allelized EO against classic EO for different numbers of parallel candidate solutions
(columns) and the iteration counts (rows).

(a) (b)

Fig. 4. Average speedup improvement (a) and migrations number change (b) of par-
allelized EO with Guided Search (EO–GS) against classic EO for different numbers of
parallel candidate solutions (columns) and the iteration counts (rows).

Parallel EO with Guided State Changes Applied to Load Balancing 89

(a) (b)

Fig. 5. Average speedup improvement of irregular applications for parallelized EO
(a) and parallelized EO–GS (b) against classic EO for different numbers of parallel
candidate solutions (columns) and the iteration counts (rows).

(a) (b)

Fig. 6. Average speedup improvement (a) and migrations number change (b) in irreg-
ular application for EO parallelized according to island model against classic EO for
different numbers of parallel candidate solutions (columns) and the iteration counts
(rows).

In the last experiment we tested the EO parallelized using a “population
model” but without solutions exchange, Fig. 6(a) and (b). In general, this kind
of parallelization of EO did not provide satisfying speedup improvement. Only
for irregular applications we got speedup improvement. The limiting factor was
here the inadequate solution exchange between parallel EO instances.

The general conclusion coming from our experiments is that the extension of
the solution search space in EO through parallel mutations of several candidate
solutions even in its basic form provides satisfactory results. We were able to
obtain better (or at least the same) quality of load balancing without increasing
the number of iterations of EO but using computing power of multicore CPUs.
Additional profit of using many parallel state changes in EO is a reduction in
the number of task migrations needed to balance the system.

6 Conclusions

The paper has presented a parallel algorithm for dynamic processor load bal-
ancing in execution of distributed programs. The algorithm is based on internal

90 I. De Falco et al.

use of an improved parallel EO method – EO-GS. The purpose of the parallel
EO-GS algorithm was to determine candidates for task migrations in the overall
load balancing procedure. The improvement consisted in the use of a guidance
of an additional state quality function which corresponded to a better use of the
knowledge of the problem. The experiments with simulated load balancing fol-
lowing the proposed algorithm have shown that the support by this guidance was
successful. Application of the parallel EO-GS enabled obtaining better quality
of load balancing compared to other tested methods.

References

1. Khan, R.Z., Ali, J.: Classification of task partitioning and load balancing strategies
in distributed parallel computing systems. Int. J. Comput. Appl. 60(17), 48–53
(2012)

2. Mishra, M., Agarwal, S., Mishra, P., Singh, S.: Comparative analysis of various
evolutionary techniques of load balancing: a review. Int. J. Comput. Appl. 63(15),
8–13 (2013)

3. Boettcher, S., Percus, A.G.: Extremal optimization: methods derived from coevo-
lution. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 1999), pp. 825–832. Morgan Kaufmann, San Francisco (1999)

4. Sneppen, K., et al.: Evolution as a self-organized critical phenomenon. Proc. Natl.
Acad. Sci. 92, 5209–5213 (1995)

5. De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.:
Load balancing in distributed applications based on extremal optimization. In:
Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 52–61.
Springer, Heidelberg (2013)

6. De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.:
Improving extremal optimization in load balancing by local search. In: Esparcia-
Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 51–62.
Springer, Heidelberg (2014)

7. Zeigler, B.: Hierarchical, modular discrete-event modelling in an object-oriented
environment. Simulation 49(5), 219–230 (1987)

8. Randall, M., Lewis, A.: An extended extremal optimisation model for parallel archi-
tectures. In: 2nd IEEE International Conference on e-Science and Grid Computing,
e-Science 2006, p. 114 (2006)

9. Tamura, K., Kitakami, H., Nakada, A.: Reducing crossovers in reconciliation
graphs with extremal optimization (in japanese). Trans. Inf. Process. Soc. Japan
49(4(TOM 20)), 105–116 (2008)

10. Tamura, K., Kitakami, H., Nakada, A.: Distributed extremal optimization using
island model for reducing crossovers in reconciliation graph. In: Proceedings of the
International MultiConference of Engineers and Computer Scientists 2013, Hong-
Kong, March 2013, pp. 1–6 (2013)

11. Tamura, K., Kitakami, H., Nakada, A.: Distributed modified extremal optimization
using Island model for reducing crossovers in reconciliation graph. Eng. Lett. 21(2),
EL 21 2 05 (2013)

	Parallel Extremal Optimization with Guided State Changes Applied to Load Balancing
	1 Introduction
	2 Extremal Optimization with Guided State Changes
	3 EO-Based Load Balancing Foundations
	4 Parallel Extremal Optimization Applied to Load Balancing
	5 Experimental Results
	6 Conclusions
	References

