
Combining Ensemble of Classifiers by Using
Genetic Programming for Cyber Security

Applications

Gianluigi Folino(B) and Francesco Sergio Pisani

Institute of High Performance Computing and Networking (ICAR-CNR),
Rende, Italy

{folino,fspisani}@icar.cnr.it

Abstract. Classification is a relevant task in the cyber security domain,
but it must be able to cope with unbalanced and/or incomplete datasets
and must also react in real-time to changes in the data. Ensemble of clas-
sifiers are a useful tool for classification in hard domains as they combine
different classifiers that together provide complementary information.
However, most of the ensemble-based algorithms require an extensive
training phase and need to be re-trained in case of changes in the data.

This work proposes a Genetic Programming-based framework to gen-
erate a function for combining an ensemble, having some interesting
properties: the models composing the ensemble are trained only on a
portion of the training set, and then, they can be combined and used
without any extra phase of training; furthermore, in case of changes in
the data, the function can be recomputed in an incrementally way, with
a moderate computational effort.

Experiments conducted on unbalanced datasets and on a well-known
cyber-security dataset assess the goodness of the approach.

1 Introduction

In the last few years, the interest in cyber security problems is really increasing, as
cyber crime seriously threatens national governments and the economy of many
industries [1]. In this domain, computer and network technologies have intrinsic
security weaknesses, i.e., protocol, operating system weaknesses, etc. In addition,
computer network activities, human actions, etc. generate large amounts of data.
Potential threats to the network need to be identified, and the related vulnerabil-
ities need to be addressed to minimize the risk of the threat.

Therefore, data mining techniques could be used to efficiently fight, alleviate
the effect or to prevent the action of the cybercriminals. In particular, classifica-
tion can be efficiently used for many cyber security application, i.e. in intrusion
detection systems, in the analysis of the user behavior, risk and attack analysis,
etc. However, in this particular domain, datasets often have different number of
features and each attribute could have different importance and costs. Further-
more, the entire system must also works if some datasets are not present. There-
fore, it would be really unlikely a single classification algorithm will perform well
c© Springer International Publishing Switzerland 2015
A.M. Mora and G. Squillero (Eds.): EvoApplications 2015, LNCS 9028, pp. 54–66, 2015.
DOI: 10.1007/978-3-319-16549-3 5



Combining Ensemble of Classifiers by Using Genetic Programming 55

for all the datasets, especially in presence of changes and with constraints of real
time and scalability.

Ensemble [2,3] is a learning paradigm where multiple component learners
are trained for the same task by a learning algorithm, and the predictions of the
component learners are combined for dealing with new unseen instances. Among
the advantages in using ensemble of classifiers, we would like to remind that they
help to reduce the variance of the error, the bias, and the dependence from a
single dataset; furthermore, they can be build in an incremental way and they
are apt to distributed implementations. They are also particularly suitable for
distributed intrusion detection, because they permit to build a network profile
by combining different classifiers that together provide complementary informa-
tion. However, the phase of building of the ensemble could be computationally
expensive as when new data arrives, it is necessary to restart the training phase.

To this aim, we propose a more flexible approach, and design a distributed
Genetic Programming (GP) framework, based on the distributed CellulAr GE-
netic programming (CAGE) environment [4], named CAGE-Combiner, to evolve
a function for combining the classifiers composing the ensemble, having some
attractive characteristics. First, the models composing the ensemble can be
trained only on a portion of the training set, and then they can be combined and
used without any extra phase of training; furthermore, in case of changes in the
data, the function can be recomputed in an incrementally way, with a moderate
computational effort. In addition, all the phases of the algorithm are distributed
and can exploits the advantages of running on parallel/distributed architectures
to cope with real time constraints.

The rest of the paper is structured as follows. Section 2 presents some related
works. In Sect. 3, the strategy to combine the ensemble and the distributed GP
framework are illustrated. Section 4 shows some experiments conducted to verify
the effectiveness of the approach and to compare it with other similar approaches.
Finally, Sect. 5 concludes the work.

2 Related Works

Evolutionary algorithms have been used mainly to evolve and select the base
classifiers composing the ensemble [5,6] or adopting some time-expensive algo-
rithms to combine the ensemble [7]; however a limited number of papers concerns
the evolution of the combining function of the ensemble by using GP, which we
illustrate in the following.

Chawla et al. [8] propose an evolutionary algorithm to combine the ensem-
ble, based on a weighted linear combination of classifiers predictions, using many
well-known data mining algorithm as base classifiers, i.e. J48, NBTree, JRip, etc.
In [9], the authors extend their work in order to cope with unbalanced datasets.
In practice, they increase the total number of base classifiers and adopt an
oversampling technique. In [10], the authors consider also the case of homoge-
nous ensemble and show the impact of a cut-off level on the total number of
classifiers used in the generated model. Our approach also uses heterogeneous



56 G. Folino and F.S. Pisani

classifiers, but we combine functions of different types, also considering weights
derived by the performance of the classifiers on the training set; we take also into
account the effect of unbalanced datasets and, in addition, our method is apt to
operate with incomplete datasets, without using oversampling techniques.

Yan Wang et al. [11] use multiple ensembles to classify incomplete datasets.
Their strategy consists in partitioning the incomplete datasets in multiple com-
plete sets and to train the different classifier on each sample. Then, the pre-
dictions of all the classifiers could be combined according to the ratio between
the number of features in this subsample and the total features of the original
dataset. A similar approach could be included in our system.

In [12], the authors develop a GP-based framework to evolve the fusion func-
tion of the ensemble both for heterogenous and homogeneous ensemble. The
approach is compared with other ensemble-based algorithms and the generaliza-
tion properties of the approach are analyzed together with the frequency and the
type of the classifiers presents in the solutions. The main aim of the paper is to
improve the accuracy of the generated ensemble, while distributed implementa-
tions and the problems concerning incomplete and unbalanced datasets are not
explored. In addition, differently form our approach, the authors do not consider
weights depending from the performance of the classifiers on the datasets.

In [13], Brameier and Banzhaf use linear genetic programming to evolve
teams of ensemble. A team consists of a predefined number of heterogeneous
classifiers. The aim of genetic algorithm is to find the best team, i.e. the team
having the best accuracy on the given datasets. The prediction of the team is
the combination of individual predictions and it is based on the average or the
majority voting strategy, also considering predefined weights. The errors of the
individual members of the team are incorporated into the fitness function, so that
the evolution process can find the team with the best combination of classifiers.
Differently from our approach, the recombination of the team members is not
completely free, but only a maximum pre-defined percentage of the models can
be changed. In our approach, GP generates tree-based models and the number
of base classifiers in the tree is not predefined; therefore, it will be the evolution
process to select the best combination of the base classifiers.

3 Combining Ensemble of Classifiers

In this section, we show a general schema for combining an ensemble of classifiers
and introduce the concept of “non-trainable functions”, that can be used in
order to combine an ensemble of classifiers without the need of a further phase
of training. Then, we illustrated the distributed GP framework used to evolve
the combining function of the ensemble.

3.1 Background: Ensemble of Classifiers and Non-trainable
Functions

Ensemble permits to combine multiple (heterogenous or homogenous) models in
order to classify new unseen instances. In practice, after a number of classifiers



Combining Ensemble of Classifiers by Using Genetic Programming 57

are built usually using part of the dataset, the predictions of the different clas-
sifiers are combined and a common decision is taken. Different schemas can be
considered to generate the classifiers and to combine the ensemble, i.e. the same
learning algorithm can be trained on different datasets or/and different algo-
rithms can be trained on the same dataset. In this work, we follow the general
approach shown in Fig. 1, in which different algorithms are used on the same
dataset in order to build the different classifiers/models.

Fig. 1. A general schema for combining ensemble of classifiers

Let S = {(xi, yi)|i = 1, . . . , N} be a training set where xi, called example
or tuple or instance, is an attribute vector with m attributes and yi is the class
label associated with xi. A predictor (classifier), given a new example, has the
task to predict the class label for it.

Ensemble techniques build g predictors, each on a different training set, then
combine them together to classify the test set. As an alternative, the g predictors
could be built using different algorithms on the same/different training set.

The largely used boosting algorithm, introduced by Schapire [14] and Freund
[15], follows a different schema; in order to boost the performance of any “weak”
learning algorithm, i.e. an algorithm that “generates classifiers which need only
be a little bit better than random guessing” [15], the method adaptively changes
the distribution of the training set depending on how difficult each example is
to classify.

This approach was successfully applied to a large number and types of
datasets; however, it has the drawback of needing to repeat the training phase for
a number of rounds and that could be really time-consuming for large datasets.
The applications and the datasets in hard domains, as cyber security, have real-
time requirements, which do not permit to re-train again the base models. On
the contrary, ensemble strategies following the schema shown in Fig. 1 do not
need any further phase of training, whether the functions used can be combined
without using the original training set. The majority vote is a classical example of



58 G. Folino and F.S. Pisani

this kind of combiner function. Some types of combiner has no extra parameters
that need to be trained and consequently, the ensemble is ready for operation as
soon as the base classifiers are trained. These are named non-trainable combiners
[16] and could be used as functions in a genetic programming tree.

Before describing the GP framework used, here, we introduce some definitions
useful to understand how the algorithm works.

Let x ∈ RN be a feature vector and Ω = {ω1, ω2 ..., ωc} be the set of the
possible class labels. Each classifier hi in the ensemble outputs c degrees of
support, i.e., for each class, it will give the probability that the tuple belong to
that class. Without loss of generality, we can assume that all the c degrees are in
the interval [0, 1], that is, hi : RN → [0, 1]c. Denote by Hi,j(x) the support that
classifier hi gives to the hypothesis that x comes from class ωj . The larger the
support, the more likely the class label ωj . A non-trainable combiner calculates
the support for a class combining the support values of all the classifiers. For
each tuple x of the training set, and considering g classifiers and c classes, a
Decision Profile matrix DP can be build as follow:

DP (x) =

⎡
⎣

H1,1(x) ... H1,j(x) ... H1,c(x)
Hi,1(x) ... Hi,j(x) ... Hi,c(x)
Hg,1(x) ... Hg,j(x) ... Hg,c(x)

⎤
⎦

where the element Hi,j(x) is the support for j-th class of i-th classifier.
The functions used in our approach simply combine the values of a single

column to compute the support for j − th class and can be defined as follow:

μj(x) = F [H1,j(x),H2,j(x), ...,Hg,j(x)]

For instance, the most simple function we can consider is the average, which
can be computed as: μj(x) = 1

g

∑g
i=1 Hi,j(x).

The class label of x is the class with maximum support μ.

3.2 Functions, Terminals and Fitness Evaluation

In this subsection, we describe the model that our GP system use in order to
combine the predictions of multiple base classifiers.

Differently from classical models in which the GP tool is used to evolve the
models, in our approach, the classifiers (with an associated weight previously
computed on the training set) are the leaves of the tree, while the combiner
functions are placed on the nodes. In particular, the functions chosen to better
combine the classifiers composing the ensemble are non-trainable functions and
are listed in the following: average, weighted average, multiplication, maximum
and median. They can be applied to a different number of classifiers, i.e. each
function is replicated with a different arity, typically from 2 to 5. More details
are supplied in the following.

The average function, used with an arity of 2, 3 and 5, is defined as: μj(x) =
1
g

∑g
i=1 Hi,j(x).



Combining Ensemble of Classifiers by Using Genetic Programming 59

The multiplication function (arity 2, 3 and 5) is defined as: μj(x) =∏g
i=1 Hi,j(x).
The maximum function returns the maximum support for 2, 3 and 5 clas-

sifiers and can be computed as: μj(x) = maxi {Hi,j(x)}.
The median function (arity 3 and 5) can be computed as: μj(x) = mediani

{Hi,j(x)}.
Finally, the weighted version of the average function uses the weights com-

puted during the training phase to give a different importance to the models
on the basis of the performance on the training set, and can be computed as:
μj(x) = 1∑g

i=1 wi,j

∑g
i=1 wi,j ∗ Hi,j(x). For this function the values of 2, 3 and 5

are chosen for the arity.

Fig. 2. An example of GP tree generated from the tool.

In order to better clarify, how the tree is built, in Fig. 2, an example of tree
generated from the tool is illustrated. As for the fitness function, it is simply
computed as the error of the ensemble on the validation set, i.e. the ratio between
the tuples not correctly classified and the total number of tuples.

3.3 A Distributed Tool to Evolve Combiner Functions

The tool used to evolve the combining function is a distributed/parallel GP
implementation, named CellulAr GEnetic programming (CAGE) [4], running
both on distributed-memory parallel computers and on distributed environ-
ments. The tool is based on the fine-grained cellular model. The overall pop-
ulation of the GP algorithm is partitioned into subpopulations of the same size.
Each subpopulation can be assigned to one processor and a standard (panmictic)
GP algorithm is executed on it. Occasionally, migration process between sub-
populations is carried out after a fixed number of generations. For example, the
n best individuals from one subpopulation are copied into the other subpopu-
lations, thus allowing the exchange of genetic information between populations.



60 G. Folino and F.S. Pisani

The model is hybrid and modifies the island model by substituting the stan-
dard GP algorithm with a cellular GP (cGP) algorithm. In the cellular model
each individual has a spatial location, a small neighborhood and interacts only
within its neighborhood. The main difference in a cellular GP, with respect to
a panmictic algorithm, is its decentralized selection mechanism and the genetic
operators (crossover, mutation) adopted.

This tool is used to evolve the combiner functions and obtain an overall com-
biner function, which the ensemble will adopt to classify new tuples. Implicitly,
the function selects the classifiers/models more apt to the particular datasets
considered.

To summarize, if we consider a dataset partitioned in training, validation and
test set, the approach works using the following steps.

1. The base classifiers are trained on the training set; then, a weight, propor-
tional to the error on the training set, is associated to each classifier together
with the support for each class, i.e. the decision support matrix is built. This
phase could be computationally expensive, but it is performed in parallel, as
the different algorithms are independent from each other.

2. The combiner function is evolved by using the distributed GP tool, CAGE,
on the validation set. No extra computation on the data is necessary, as
validation is only used to verify the correct class is assigned and consequently
to compute the fitness function.

3. The final function is used to combine the base classifiers and classify new
data (test set). This phase can be performed in parallel, by partitioning the
test set among different nodes and applying the function to each partition.

4 Experimental Section

In this section, in order to assess the goodness of the proposed framework, using
the parameters and the datasets described in the next subsection, we analyzed the
size of the model and the accuracy obtained by CAGE-Combiner, with different
configurations and compared our approach with different state-of-the-art combi-
nation strategies (Subsect. 4.2). Then, the performance of our approach was ana-
lyzed on a really unbalanced and hard intrusion detection dataset (Subsect. 4.3).

4.1 Datasets and Parameter Settings

All the experiments were performed on a Linux cluster with 16 Itanium2 1.4GHz
nodes, each having 2 GBytes of main memory and connected by a Myrinet high
performance network. No tuning phase has been conducted for the GP algorithm,
but the same parameters used in the original paper [4] were used, listed in the
following: a probability of crossover equal to 0.7 and of mutation equal to 0.1,
a maximum depth equal to 7, and a population of 132 individuals per node. The
algorithm was run on 4 nodes, using 1000 generations and the original training set
was partitioned among the 4 nodes. The parsimony factor is varied using the values



Combining Ensemble of Classifiers by Using Genetic Programming 61

of 0, 0.01 and 0.1 in order to generate classifiers of different size and to study the
effect of the size of classifiers on the classification error and on the generalization
of the algorithm. All the results were obtained by averaging 30 runs.

In Table 1, the size, the number of features and of classes and the percentage
of the minority class of the datasets used in the experiments is shown. The
datasets present different characteristics in terms of number of attributes and
classes; in addition, most of them have a distribution of the tuples belonging to
one or more classes really unbalanced, as it is evident from the percentage of the
minority class.

Table 1. Description of datasets ordered by decreasing percentage of minority class.

Dataset Number of examples Number of features Number of class Minority

class

Satimage 6,435 36 6 0.0972

DNA/Splice 3,190 61 3 0.2404

Phoneme 5,404 5 2 0.2938

Pendigit 10,992 16 10 0.0959

KDDCup 494,020 41 5 1.052e-4

The different classifiers composing the ensemble are trained on the same
training set. In practice, each dataset is partitioned in three subsamples: the
70 % of original dataset is used to train the base classifiers, the remaining 30 %
is equally partitioned in two parts: validation and test set. The validation part
is used by the evolutionary algorithm to build the combination function, while
the error rate of the best tree is calculated on the test partition. The learning
algorithms are implemented in WEKA platform and the models are built using
standard parameters.

The algorithms used as base classifiers in the experiments are based on the
WEKA implementation1 and are listed in the following: J48 (decision trees),
JRIP rule learner (Ripper rule learning algorithm), NBTree (Naive Bayes tree),
Naive Bayes, 1R classifier, logistic model trees, logistic regression, decision
stumps and 1BK (k-nearest neighbor algorithm).

In Table 2, it is shown the error rate of each base classifier respectively on
the training, validation and test set and this helps to understand the improve-
ment obtained in terms of accuracy using an ensemble, how shown in the next
subsection.

4.2 Comparing with Other Evolutionary Strategies
and Meta-Ensemble Techniques

As stated in the previous subsection, the GP framework is executed without any
tuning of the parameters. The only exception is that we want to analyze (Table 3)
1 http://www.cs.waikato.ac.nz/ml/weka.

http://www.cs.waikato.ac.nz/ml/weka


62 G. Folino and F.S. Pisani

Table 2. Error rate of the base classifiers used to build the ensemble

Dataset Type J48 Jrip NBTree Naive OneR LMT Logistic Stump Ibk

Bayes Stump

Satimage Training 2.60 7.90 17.30 19.90 39.10 8.80 12.00 55.80 0.00

Validation 15.00 13.20 19.10 20.40 43.40 13.20 14.50 58.30 9.30

Test 15.30 14.20 20.60 22.90 41.30 13.60 15.80 56.60 10.10

Phoneme Training 8.40 11.30 10.80 23.10 18.20 9.00 24.60 24.30 0.00

Validation 14.40 14.90 13.90 22.90 25.60 12.80 25.40 24.80 9.40

Test 14.80 16.60 14.30 25.20 23.20 15.20 26.00 25.40 11.30

Pendigit Training 0.70 1.20 0.20 13.50 59.40 0.30 3.70 79.70 0.00

Validation 4.10 4.50 4.90 14.90 63.50 1.70 4.40 79.20 1.00

Test 3.90 3.30 5.20 14.90 60.50 1.90 4.80 79.80 0.50

Dna Training 4.00 4.20 0.00 3.30 0.00 0.00 0.00 37.00 0.00

Validation 5.50 4.80 8.30 5.00 71.40 3.50 11.30 40.90 27.80

Test 4.50 4.30 5.50 4.30 73.70 3.80 11.00 37.80 24.10

Table 3. The error rate for different values of parsimony (0, 0.1 and 0.01), along with
the average number of classifiers and functions used in the best tree.

Dataset Parsimony Error train Error test Distinct Total Functions

classifiers classifiers

Satimage 0 7.77 ± 0.60 9.08 ± 0.56 8.64 ± 0.79 78.44 ± 42.03 30.56 ± 15.01

0.01 7.46 ± 0.62 9.25 ± 0.58 7.26 ± 1.34 25.70 ± 11.49 11.10 ± 4.16

0.1 7.48 ± 0.41 9.09 ± 0.51 6.57 ± 1.54 14.46 ± 4.61 6.76 ± 2.45

Phoneme 0 8.27 ± 0.43 11.63 ± 1.30 8.70 ± 0.55 99.95 ± 74.63 38.85 ± 30.36

0.01 7.62 ± 0.65 11.14 ± 0.44 6.61 ± 1.41 26.15 ± 18.37 11.96 ± 6.98

0.1 7.80 ± 0.46 10.91 ± 0.51 5.53 ± 1.33 13.73 ± 5.47 7.00 ± 2.75

Pendigit 0 0.66 ± 0.22 0.74 ± 0.22 8.86 ± 0.33 71.30 ± 37.16 27.95 ± 14.82

0.01 0.60 ± 0.12 0.68 ± 0.12 6.13 ± 1.50 14.48 ± 7.84 6.10 ± 3.30

0.1 0.64 ± 0.10 0.67 ± 0.12 6.13 ± 1.08 10.40 ± 3.20 5.16 ± 2.35

Dna 0 2.46 ± 0.85 3.71 ± 1.05 8.48 ± 0.89 88.31 ± 92.59 33.86 ± 36.10

0.01 1.86 ± 0.15 3.48 ± 0.28 6.53 ± 0.92 11.70 ± 2.53 4.50 ± 1.25

0.1 1.82 ± 0.13 3.53 ± 0.22 6.26 ± 0.81 9.20 ± 1.75 4.30 ± 1.29

the effect of the size of the combiner function on the accuracy, varying the value
of the parsimony factor. In order to balance the accuracy against the size of
tree, in GP algorithms, the fitness is augmented with an optional parameter,
the parsimony, which measures the complexity of the individuals. Higher is the
parsimony, simpler is the tree, but accuracy diminishes.

In order to statistically validate the comparison results, we performed the
two-tailed t-test(σ = 0.05) over the 30 runs. The values in bold highlight, for
each value of parsimony, the results that, according to the t-test, are significantly
differently from the other values. As for the last three columns, most of the
values present statistically significant differences, so, for this case, the values are



Combining Ensemble of Classifiers by Using Genetic Programming 63

not significantly different are represented in italic. From the table, it is evident
that most of the differences in accuracy is not significantly different with the
exception of the DNA and Phoneme datasets for the case of using parsimony
vs. not using parsimony, while there is no difference between the case of 0.1 and
0.01. On the contrary, the size of the trees and the distinct classifiers selected by
the algorithm are affected by the parsimony factor. For this reason, we choose a
parsimony factor of 0.1 for the other experiments conducted.

Table 4. Error rate for different strategies for the 4 datasets used in the experiments.

Satimage Phoneme Pendigit DNA

CAGE-Combiner 9.09 10.92 0.68 3.53

EVEN 8.91 11.68 0.68 4.20

EVEN (cut-off = 0.8) 8.69 11.06 0.66 4.34

Majority Vote 10.52 15.85 0.98 4.20

Weighted Vote 10.40 15.04 0.93 4.32

Best classifier 10.60 12.59 0.89 4.82

Stacking NB 10.75 14.93 0.81 4.55

Stacking LR 9.72 11.12 0.82 5.03

In Table 4, CAGE-Combiner is compared with the EVEN algorithm,
described in the related work section [10] and also with the meta-algorithms used
in the same paper. Note that EVEN uses a population size of 120 (the number of
classifiers) for 1000 generations. The results show that CAGE-Combiner obtain
better or comparable accuracy for all the datasets; however, we would like to
remark that the number of classifiers used is sensibly minor than the 120 used
by the EVEN algorithm. However, in the latter, a cut-off threshold is introduced
and only those classifiers whose weights are above this threshold are allowed to
participate to the ensemble. The maximum value of cut-off used in the paper
(0.8) and shown in the table permits to reduce the number of classifiers to about
25 % of the original size, while our approach (see Table 3) using the parsimony
value of 0.1, obtains a better reduction of the number of classifiers (about 10 %),
without any relevant reduction in the accuracy.

4.3 A Dataset in the Cyber Security Domain: KDD Cup 99

To evaluate the system proposed on a real-world dataset in the field of cyber
security, we performed the same experiments as the previous subsection, using
one of the most used dataset for the task of classification of intrusions: KDD Cup
19992. This dataset contains 494,020 records, representing normal connections
and 24 different attack types. Each attack is clustered into four main categories,
so each connection belongs to the following classes: normal (normal, i.e., no

2 http://www.sigkdd.org/kdd-cup-1999-computer-network-intrusion-detection.

http://www.sigkdd.org/kdd-cup-1999-computer-network-intrusion-detection


64 G. Folino and F.S. Pisani

attack), DoS (Denial of Service connections), R2L (Remote to User, remote
attacks addressed to gain local access), U2R (User to Root, exploits used to
gain root access) or Probe (probing attack to discover known vulnerabilities).

Table 5. The error rate for different values of parsimony (0, 0.1 and 0.01), along with
the average number of classifiers and functions used in the best tree: KDD Cup 99.

In Table 5, it is evident that the size of the trees and the distinct classifiers
selected by the algorithm strongly depends on the parsimony factor, while for
the accuracy the differences are minimal and the best results are obtained with
the parsimony value of 0.01.

However, we are more interested to the behavior of our approach for the
unbalanced datasets and in particular for the minority classes of the KDD Cup
dataset, i.e., Probe, R2L and U2R.

To this aim, we consider the work in [17], which describes a boosting app-
roach, named Greedy-Boost, to build an ensemble of classifier based on a linear
combination of models, specifically designed to operate for the intrusion detec-
tion domain. The main idea is to extend the boosting process maintaining the
models that behave better on the examples badly predicted in the previous round
of the boosting algorithm (while the classical algorithm adjust only the weights
and not the models).

In Table 6, CAGE-Combiner is compared with the Greedy-Boost algorithm
on the KDDCup 99 datasets and the precision and the recall values are reported
for all the classes. It is evident that our approach performs better both for the
precision and the recall measure, especially in the case of the minority classes
R2L and U2R.

Table 6. Precision and Recall for different strategies for the KDD Cup dataset. In the
first column, it is reported the class distribution for the test set.

Precision Recall

Class Greedy-Boost CAGE-Combiner Greedy-Boost CAGE-Combiner

distribution

DoS 0.7960 100.0 100.0 100.0 100.0

Normal 0.1936 99.1 99.9 100.0 100.0

Probe 0.0079 99.0 99.6 97.1 98.9

R2L 0.0023 93.2 98.5 71.9 94.9

U2R 4.85E-5 88.5 93.1 44.2 76.7



Combining Ensemble of Classifiers by Using Genetic Programming 65

5 Conclusions and Future Work

A distributed framework for classifying unbalanced dataset, based on the ensem-
ble model, is presented. The system evolves a combiner function, which does not
need additional phases of training, after the heterogeneous classifiers composing
the ensemble are trained. Preliminary experiments showed that the proposed sys-
tem improves or is comparable to the performance of state-of-the-art approaches
for combining ensemble, by using a smaller number of models. In future, we
intend to investigate the ability of the algorithm to handle incomplete datasets
and changes in data and to test the scalability of the algorithms on distributed
machines mainly for large real-world datasets in the cyber security domain.

Acknowledgment. This work has been partially supported by MIUR-PON under
project PON03PE 00032 2 within the framework of the Technological District on Cyber
Security.

References

1. CERT Australia: Cyber crime and security survey report. Technical report (2012)
2. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)
3. Freund, Y., Shapire, R.: Experiments with a new boosting algorithm. In: Machine

Learning: Proceedings of the Thirteenth International Conference (ICML 1996),
pp. 148–156. Morgan Kaufmann (1996)

4. Folino, G., Pizzuti, C., Spezzano, G.: A scalable cellular implementation of parallel
genetic programming. IEEE Trans. Evol. Comput. 7, 37–53 (2003)

5. de Oliveira, D.F., Canuto, A.M.P., de Souto, M.C.P.: Use of multi-objective genetic
algorithms to investigate the diversity/accuracy dilemma in heterogeneous ensem-
bles. In: International Joint Conference on Neural Networks, pp. 2339–2346. IEEE
(2009)

6. Folino, G., Pizzuti, C., Spezzano, G.: Training distributed GP ensemble with a
selective algorithm based on clustering and pruning for pattern classification. IEEE
Trans. Evol. Comput. 12, 458–468 (2008)

7. Stefano, C.D., Folino, G., Fontanella, F., di Freca, A.S.: Using bayesian networks
for selecting classifiers in GP ensembles. Inf. Sci. 258, 200–216 (2014)

8. Sylvester, J., Chawla, N.V.: Evolutionary ensembles: combining learning agents
using genetic algorithms. In: AAAI Workshop on Multiagent Learning, pp. 46–51
(2005)

9. Chawla, N.V., Sylvester, J.: Exploiting diversity in ensembles: improving the per-
formance on unbalanced datasets. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS
2007. LNCS, vol. 4472, pp. 397–406. Springer, Heidelberg (2007)

10. Sylvester, J., Chawla, N.V.: Evolutionary ensemble creation and thinning. In: Pro-
ceedings of the International Joint Conference on Neural Networks, IJCNN 2006,
pp. 5148–5155. IEEE (2006)

11. Wang, Y., Gao, Y., Shen, R., Yang, F.: Selective ensemble approach for classifi-
cation of datasets with incomplete values. In: Wang, Y., Li, T. (eds.) ISKE2011.
AISC, vol. 122, pp. 281–286. Springer, Heidelberg (2011)

12. Acosta-Mendoza, N., Morales-Reyes, A., Escalante, H.J., Gago-Alonso, A.: Learn-
ing to assemble classifiers via genetic programming. IJPRAI 28 (2014)



66 G. Folino and F.S. Pisani

13. Brameier, M., Banzhaf, W.: Evolving teams of predictors with linear genetic pro-
gramming. Genet. Program Evolvable Mach. 2, 381–407 (2001)

14. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5, 197–227 (1990)
15. Schapire, R.E.: Boosting a weak learning by majority. Inf. Comput. 121, 256–285

(1995)
16. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-

Interscience, Chichester (2004)
17. Bahri, E., Harbi, N., Huu, H.N.: Approach based ensemble methods for better and

faster intrusion detection. In: Herrero, A., Corchado, E. (eds.) CISIS 2011. LNCS,
vol. 6694, pp. 17–24. Springer, Heidelberg (2011)


	Combining Ensemble of Classifiers by Using Genetic Programming for Cyber Security Applications
	1 Introduction
	2 Related Works
	3 Combining Ensemble of Classifiers
	3.1 Background: Ensemble of Classifiers and Non-trainable Functions
	3.2 Functions, Terminals and Fitness Evaluation
	3.3 A Distributed Tool to Evolve Combiner Functions

	4 Experimental Section
	4.1 Datasets and Parameter Settings
	4.2 Comparing with Other Evolutionary Strategies and Meta-Ensemble Techniques
	4.3 A Dataset in the Cyber Security Domain: KDD Cup 99

	5 Conclusions and Future Work
	References


