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Abstract. PCG approaches are commonly categorised as constructive,
generate-and-test or search-based. Each of these approaches has its
distinctive advantages and drawbacks. In this paper, we propose an app-
roach to Content Generation (CG) — in particular level generation — that
combines the advantages of constructive and search-based approaches
thus providing a fast, flexible and reliable way of generating diverse con-
tent of high quality. In our framework, CG is seen from a new perspective
which differentiates between two main aspects of the gameplay experi-
ence, namely the order of the in-game interactions and the associated
level design. The framework first generates timelines following the search-
based paradigm. Timelines are game-independent and they reflect the
rhythmic feel of the levels. A progressive, constructive-based approach
is then implemented to evaluate timelines by mapping them into level
designs. The framework is applied for the generation of puzzles for the
Cut the Rope game and the results in terms of performance, expressivity
and controllability are characterised and discussed.

1 Introduction

In procedural content generation for games (PCG), a commonly used distinction
is that between constructive, generate-and-test and search-based approaches [1].
Constructive approaches work in a single pass and generate content in a
predictable and typically short time. Several classic PCG algorithms are con-
structive in nature, e.g. Perlin noise, L-systems and variations on dungeon
diggers, and constructive PCG is widely used in commercial games for “dec-
orative” elements such as skyboxes and plants [2]. However, when generating
content with playability constraints (also called “necessary” content), such as
puzzles that need to have a solution, maps that need to be balanced or levels that
need to be winnable, constructive approaches run into the problem that there is
typically no way to guarantee such properties. To the extent that constructive
methods are used for such content, the expressive range of the algorithms tend to

© Springer International Publishing Switzerland 2015
A.M. Mora and G. Squillero (Eds.): EvoApplications 2015, LNCS 9028, pp. 381-393, 2015.
DOI: 10.1007/978-3-319-16549-3_31



382 M. Shaker et al.

be severely curtailed in order to avoid the generation of unplayable content; see
for example the unimaginative generated levels in many roguelikes and infinite
runners.

One solution to this problem with constructive algorithms is to generate-and-
test: apply some sort of test (is the map balanced? the puzzle solvable?) and keep
regenerating until the content is good enough. However, depending on how strict
the test is, it might take very long time until acceptable content is generated.

A more informed version of generate-and-test is search-based PCG. Here, an
evolutionary algorithm or other stochastic global search algorithm is used to search
content space for content that optimally satisfies some evaluation function — for
example, map balance or level winnability. Evolutionary algorithms have excel-
lent facilities for generating sets of diverse content artefacts, even while satisfying
multiple fitness functions [3]. However, search-based approaches are still in gen-
eral much slower than constructive approaches, often too slow to be used in real
time. To make matters worse, the more sophisticated the playability demands are,
the more computationally expensive the evaluation function becomes. In particu-
lar simulation-based evaluation functions which require an agent playing through
part of the game are very time-demanding.

In this paper we present a new attempt at combining the diversity, flexibility
and playability-preserving ability of search-based approaches with the speed of
constructive approaches. We call this a progressive approach to the generation
of playable content. The first step is to turn the CG problem on its head: instead
of generating playable content directly, we first generate a timeline of in-game
interactions that need to be performed in order to successfully play through
the content artefact. This is done using a search-based approach, but as we can
use a simple evaluation function based on lightweight simulation this part can be
done quickly. Every time a timeline is evaluated, it is turned into level content.
This is done using a constructive approach, where each point in the timeline is
converted into a part of the level. As we shall see, this allows fast and reliable
level generation with a considerable expressive range.

This paper presents the components of this approach in more detail. It then
presents a case study of the application of the progressive method to generating
puzzles for the physics-based puzzle game Cut the Rope. Finally, we report some
observations on the performance and expressive range of this method in the
given domain.

2 Evolving Game Content: A Progressive Approach

The framework we propose (presented in Fig. 1) consists of two layers: a Timeline
Generator (TLG) and a Game Simulator (GS) where the generated timelines are
evaluated and scored according to playability and/or other design constraints.
The framework is search-based in the sense that the structures of the timelines
are evolved by the TLG. Each individual is then simulated by the GS follow-
ing a constructive approach (using a game specific software) and assigned a
fitness according to predefined criteria. Evolution then continues to explore the
generation of “better” timelines.
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Fig. 1. The progressive content generation framework. Timelines are evolved by gram-
matical evolution and evaluated by the game simulator. The simulator progressively
maps a timeline to a game design through simulating the game. A complete design is
finally scored based on the result of the simulation and other design aspects.
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Fig. 2. An abstract timeline and its possible interpretations in different games.

2.1 Timeline Generation

We define a level timeline as a sequence of in-game interaction events that should
occur at specific times throughout the game session. By taking all those actions
at the specified times the level can be played through successfully (there might
or might not be other equally successful timelines for a given level). For real-time
games, the timeline is essential for meaningful gameplay experience as it reflects
the rhythm of playing a level. The timelines in our framework are defined in
a generic way that can be easily interpreted and applied in dissimilar games.
Figure 2 shows different example timelines for different games. The first timeline
contains abstract actions that can be instantiated into game-specific actions such
as the instances presented for Super Mario Bros (SMB), Cut the Rope (CTR)
and Temple Run.

The events in a timeline are presented given their temporal order (activation
order). Some games are more order-sensitive than others. For instance, in games
where the player can navigate in both directions, such as SMB, the order of placing
the components is important from a design and aesthetics point of view, while in
other games, such as CTR, the order in which the components are activated plays
a key role in making the game playable (and in how difficult it is).

We use grammatical evolution [4] to define and evolve timelines since it
provides a simple way of defining phenotype structure through the use of the
design grammar. Grammatical evolution also facilitates adapting the framework
to other games, as this requires only instantiating a new design grammar with
the game-specific events.
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<timeline>::=<IEs><TLE_terminal>
<IEs>::=<IE><TLEs_more>
<IEs_more>: :=<IE>|<IE><IEs_more>
<IEs>::= <IE_1>|<IE_2>|<IE_3>
<IE_1>::=gameplayEventl (<Timel>)
<IE_2>::=gameplayEvent2 (<Time2>)
<IE_3>::=gameplayEvent3 (<Time3>)
<IE_terminal>::=endOfLevelEvent (0)
<Timel>::=[500,3000]

Fig. 3. The design grammar employed to specify the levels’ timeline.

Grammatical Evolution. Grammatical Evolution (GE) is the result of com-
bining an evolutionary algorithm with a grammatical representation [4]. GE has
been used extensively for automatic design with promising results [5-7] motivat-
ing the exploration of its applicability for automatic CG [8-10].

In our implementation of GE, the phenotype (a timeline) is a one-dimensional
string of interaction events (IEs). IEs are the possible events that can happen
during a game session; this can be a jump in SMB, a rope cut or an interaction
between the candy and a bump in CTR or swipe in Temple Run. Each event in
the timeline is associated with a timestamp that specifies the exact time during
the game in which this event is activated. Instead of using an absolute timestamp
for each IE, we assign a number that indicates the timespan elapsed since the
previous event was activated. The use of elapsed time permits the incorporation
of context (game specific) information. For instance, the frequency of doing an
action and/or the waiting time required after performing a specific action is
game-dependent. In fast-paced games, such as Temple Run, the player has to
rapidly perform swipes and tilts to avoid losing, while in other games, such as
SMB or Candy Crush, the amount of time available for the player to perform an
action is relatively long. The use of elapsed time also allows for action dependent
time variant as some actions are followed by a longer waiting time than others.
(Pressing an air-cushion in CTR is usually followed by a relatively long waiting
time allowing the candy to reach a specific position, but shooting a gun in a FPS
game is mostly followed by rapid reactions from opponents.) Finally, the use of
the elapsed time allows for more efficient search since it reduces the size of our
search space by eliminating a high number of invalid individuals with the exact
or an overlapping timestamps.

Figure 3 shows an abstract grammar employed by GE for timeline generation.
The grammar is defined so that each level has at least two IEs and a terminal
state (winning or losing the game). Each event can be one of the possible events
in a game associated with an event-dependent timestamp.

The second part of the progressive approach is the use of a constructive
method to evaluate the evolved timelines. Each timeline is passed on to a game
simulator that progressively scans the timeline while building a compatible level
design. A timeline is assigned a score by the simulator according to whether it
could be matched with a playable design and to other heuristics that relate to
aesthetics or design constrains.
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2.2 Timeline Simulation

A timeline controls the order, the elapsed time and the type of the components
that will be presented in a level. It does not however carry information about
the components’ specific properties such as their direction or their exact position
in the game canvas. Moreover, the compatibility between the added components
is not guaranteed (whether a specific action can actually be performed within a
certain period of time from another). Thereafter, a generated timeline can not
be guaranteed to be playable and therefore a timeline structure generated by the
TLG needs to be evaluated. For this purpose, we use the game simulation layer.
In this layer, each evolved timeline is mapped into its phenotype representation
(a game level) while being simulated by an agent. Since we want our algorithm
to be fast and reliable, and as the timelines contain missing information, our pro-
posed approach to generate a matching design for a given timeline is to gradually
construct the design as the timeline is being scanned, hence the word progression.
More specifically, as the timeline is being simulated, components are added to the
scene in a way that maximises the chance that the final design is playable accord-
ing to the steps presented in Algorithm 1. Notice that we are aiming at generating
playable designs but we consider playability as a minimal criterion and other fac-
tors might also be considered when assigning a score for a timeline.

Algorithm 1. The Progression Algorithm

Data: E : list of events in the timeline with their associated timestamps;
Set game timer T to 0;
Start simulation;
while E contains more events, e do
if e is the End event then
L return the level design;

1
2
3
4 if T = e.time then

5 create the associated component, c;
6 c.activate();

7

8

if T >e.time or lose then
L return invalid;

The algorithm starts by converting the genotype (timeline) into a list of
interaction events with their associated timestamps. The simulator then resets
the game timer and starts the simulation. This is done by scanning the list of
events and activating the top event in the stack when the game timer becomes
equal to the event’s timestamp (lines 4-6). Activating an event means placing the
associated component in the game canvas (more details about how to intelligently
do this later) and simulating the event’s action (jumping over a gap or popping a
bubble). The simulation continues until the next event becomes activated (when
the game timer reaches e.time) and this continues until the game termination
event is reached (line 2) in which case the game is considered playable and the
final design is returned.
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Since the simulator can freely assign properties and positions to the compo-
nents, it is likely that some of the configurations will fail to reach the termination
event and consequently the timeline is considered invalid (line 7). Therefore, the
simulator is optimised so that it places the components intelligently; i.e. when-
ever a component is to be added, it is placed in a way that its position intersects
with the trajectory of an agent playing the part of the game constructed so far.
This way we can guarantee the existence of a path between the components. The
termination event is also placed along this path, if possible, ensuring a playable
design.

The informative placement of components solves only part of the problem,
there remains the part where the characteristics of the components also play a
role in whether a timeline is playable (this could be for example placing a gap
that is too wide for the player to jump over). In this case, a valid timeline might
be misclassified as invalid (a false positive case). This issue can be easily solved by
repeating the simulation a number of times to allow the exploration of different
configurations (note however that there is still a slight chance of misclassification).

Finally, the simulation might fail because the structure of the events in the
timeline is indeed invalid (too short or too long time between the events or
incompatible sequence of components (for example, a gap followed by stairs in
SMB)) (line 7).

2.3 Notes on the Progressive Approach

A core feature of our approach is that content is placed in a way that matches the
timeline whilst guaranteeing playability (a timeline is always playable up to the
point where the simulation fails). There is no need for any additional playability
check afterwards. This is a main advantage over other CG methods proposed
in the literature where two separated steps are usually employed to (1) gener-
ate complete designs and (2) performs a playability check [11,12] which results
in a significantly slower performance than the one obtained by the proposed
approach.

A vital contribution of the proposed framework is that it guarantees usability,
i.e. all the components presented are necessary, and should be used, to complete
the level, unlike previous attempts to generate content where this is not guar-
anteed [8,11,12]. This is an important issue in game design since the number of
paths that could be followed to finish the game provides an estimate of difficulty.
This issue, however, is more important in some games than others. The existence
of extra components in SMB for example allows for level’s segments with alter-
native paths, while in other games such as CTR that requires fine tuning of the
components and their properties to preserve playability, the extra components
are usually perceived as a design flaw.

Another important feature of the methodology followed is that the genotype-
to-phenotype mapping is one-to-many, i.e. more than one playable design could
be generated that match one evolved timeline (note that this could be the result
of one or multiple runs of the algorithm). This is facilitated because of the
imperfect information carried by the timeline which permits many successful
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interpretations. This is beneficial since it allows the designer to explore a number
of alternatives or variants of the level that are structurally different but all share
the exact in-game interactions.

Simulating a timeline indicates whether or not it could be mapped into a
playable design. This forms the first step in evaluation. Other measures could
also be considered in this step and depending on the designer preference, a fitness
value will be returned indicating the “goodness” of the timeline.

In what follows, we demonstrate an application of our framework to a physics-
based puzzle game to illustrate its applicability. We present the game and the
modifications required to employ the method and we analyse the performance
and the output obtained.

3 Customising the Framework for Cut the Rope

We use a clone of the game Cut the Rope as a testbed for our approach. The
original CTR is a popular commercial physics-based puzzle video game released
in 2010 by ZeptoLab for mobile devices. The game was a huge success and it
has been downloaded more than 150 million times. The game has also many
characteristics and challenges that motivate choosing it as a testbed; the physics
constraints applied and generated by the different components of the game neces-
sitate considering factors when evaluating the content generated other than the
ones usually considered for other game genres, testing for playability is another
issue that differentiates this type of games since this needs to be done based on
a physics simulator, finally, the game defines a new genre that has slightly been
researched.

The gameplay consists of performing certain actions on specific components
to redirect the candy towards Om Nom, a frog-like creature. Timing is an ess-
ential property of the game as the player has to perform specific actions at
certain times to successfully finish the game.

There are many different level components in the original game and we use
the basic ones in our clone: ropes, air-cushions, bubbles, rockets and bumpers.
The possible actions that could be performed thereafter are: a rope cut, an
air-cushion press, a bubble pop, a rocket press or a void action (not taking any
action, i.e., waiting for the candy to reach a certain position). More details about
the different game components and the possible interactions can be found in [11].

3.1 Timeline Generation

Customising this layer for CTR implies instantiating a new design grammar with
the possible events in CTR and assigning the appropriate timestamps. The final
grammar can be seen in Fig. 4 where the timespan values are assigned for each IE
experimentally based on several evaluations to reflect the components’ specific
properties. An example timeline evolved using this grammar is: rope_cut(200)
rope_cut(500) aircuh_press(700) rocket_press(600) omNom_feed(0). This timeline
consists of four IEs (two rope cuts followed by pressing an air cushion and finally
pressing a rocket) and a game-end event.
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<timeline>::=<IEs><IE_terminal>

<IEs>::=<IE><IEs_more>

<IEs_more>::=<IE>|<IE><IEs_more>
<IE>::=<rope_cut>|<aircush_press>|<bubble_pop>|<bumper_inter>|<rocket_press>
<rope_cut>::=rope_cut (<default_ET>)

<aircush_press>::=aircush_press (<default_ET>)

<bubble_pop>::=bubble_pop (<short_ET>)

<rocket_press>::=rocket_press (<short_ET>)
<bumper_inter>::=bumper_inter (<long_ET>)
<IE_terminal>::=OmNom_feed (0)
<short_ET>::=[600,1600]
<default_ET>::=[800,1800]
<long_ET>::=[1200,2200]

Fig. 4. The design grammar employed to specify the levels’ timeline in Cut the Rope.

3.2 Timeline Simulation and Evaluation

Since CTR is a physics-based game, simulating the game requires a physics
simulator that can handle the different physical properties presented in the game.
As there is no open source code available for the game, we had to implement
our own clone using the original game assets. The simulator thus implemented
is used to create designs that match given timelines following the algorithm pre-
sented in Algorithm 1. Figure 5(a) presents the different steps followed by the sim-
ulator when mapping the timeline: rope_cut(200) rope_cut(500) aircuh_press(700)
rocket_press(600) omNom_feed(0) into a game design. As can be seen, as the
simulator starts scanning the timeline, two ropes attached to the candy are added
with a very short timespan in-between. The simulator then activates the associ-
ated IEs by cutting the ropes. This initiates a candy free movement and when the
time for an interaction with an air cushion is reached, the simulator adds an air
cushion in a position that intersects with the candy’s trajectory. The air cushion
is directly activated and this leads to a slight change in the candy’s path as the
result of blowing air. The candy keeps moving downwards affected by its gravity
and it hits the rocket that is created after 700 ms from activating the air cushion.
Finally, the simulator adds Om Nom in the rocket’s path and this termination
event successfully ends the simulation resulting in a playable level.

As discussed earlier, the characteristics of the added components have a great
impact on whether or not the final design is playable. In our previous example,
adding a rocket directed downwards will result in losing the game and thereafter
misclassifying the timeline as invalid (see Fig. 5(b) for illustration). Several runs
of the simulation while differentiating the properties of the components will lead
to many design variants. Some of which are indeed playable designs proving
the validity of a timeline. Examples of possible playable levels for the timeline
discussed previously can be seen in Fig. 5(c).

The fitness function chosen to score the timelines is a weighted sum of several
properties that capture different design, playability and aesthetic considerations.
The list of features includes:
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(a) Progressively designing a successful mapping. (b) Unsuccessful mapping.

. \ 3 . :

(c) Examples of successful mappings for the same timeline to a number of dissimilar designs.

Fig. 5. A successful, unsuccessful and some example possible designs for the timeline:
rope_cut(200) rope_cut(500) aircuh_press(700) rocket_press(700) omnom_feed(0).

— The total duration of gameplay calculated as the sum of all elapsed times.

— Trajectory loops: the arrangement of the components on the canvas might
lead to situations where the same position will be revisited by the candy. This
is considered an inferior design as some of the components become obsolete.

— Overlapping components which occurs when the elapsed time assigned for two
adjacent events is too short.

— Playability: in some cases, the simulator will repeatedly fail to map the time-
line to a playable design.

Notice that the first condition defines a design constraint since levels that
are too long or too short are likely to be uninteresting. The second condition
depends on how the simulator chooses to place the components in the canvas and
repeating the simulation might lead to different results. The final two conditions
are actual faults in the timeline and thereafter they are given the highest weights.
The exact values assigned for the weights given to each of the above conditions
are experimentally chosen.

4 Implementation and Experimental Setup

The existing GEVA software [13] was used to implement the TLG tier. The exp-
erimental parameters are the following: 100 runs were initialised with the ramped
half-and-half method, each run lasted for 30 generations with a population size of
10 individuals. The maximum derivation tree depth was set at 100, tournament
selection of size 2, int-flip mutation with probability 0.1, one-point crossover with



390 M. Shaker et al.

probability 0.9, and 3 maximum wraps were allowed. The termination criterion
is creating the first valid design®.

5 Results and Analysis

As our framework constitutes two modules, we will focus our analysis on the
timeline generation and the design generation separately.

5.1 Timeline Analysis

In order to assess the quality of the generated timelines, their variation and the
generation efficiency, we ran the TLG for 100 timelines and analysed the results
of the valid timeline evolved. The results show that in most cases two genera-
tions are required to get a valid timeline which can be achieved relatively quickly
(within 7.23 £ 9.19s) (note that this is mainly because of the efficiency of map-
ping the TL to a playable design). We also ran a simple analysis to investigate
the difference in the length of the timeline evolved (the number of IEs). The
results show that the average length is 4.83 4+ 0.82. The analysis also showed
that more than 85% of the timelines are of length five or smaller. This ten-
dency towards generating short timelines draws our attention to the design of
our scoring scheme which does not account for the number of IEs. As a result,
the system favours short timelines that could be easily mapped to valid designs.

To further investigate the generator’s capabilities we calculated the number of
occurrences of the different events in the timelines evolved. The results show that
48, 44, 47, 51 and 51 items are generated for rope_cut, aircush_press, bubble_pop,
bumper_inter and rocket_press, respectively. The results approximate a uniform
distribution demonstrating a good balancing capability.

As the order in which the events are presented in the timelines has a high
impact on the gameplay experience, we ran an experiment to capture the tempo-
ral property of the timelines. For this purpose, the timelines are converted into
sequences of strings where each event is given a unique identifier. We then calcu-
lated the distance between each pair of timelines using the Levenshtein distance
measure. The average distance obtained is 2.29 £+ 0.91. Given that the timelines
length varies between 4 and 8, this means that an average of two operations
(insertion, deletion or substitution) are required to change one sequence into the
other and this indicates an adequate amount of structural variations.

5.2 Generator Expressivity Analysis

Visualising the distribution of the components helps us understand the simula-
tor’s capabilities and its expressive space. Colour maps is one of the methods
used for this purpose [11]. This is done by generating a large amount of game

1 A video showing the implementation of the framework in CTR is available online:
http://noorshaker.com/CutTheRope.html.
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R

Fig. 6. Om Nom’s, blowers’ and rockets’ placement colour maps for 100 generated
levels.

e

(a) Rockets (b) Ropes (¢) Om Nom

Fig. 7. Colour maps for different components for 63 designs generated for the same
timeline.

content, converting each instance into a pixelated image and projecting all
instances on a single image. To analyse our generator, colour maps are applied
on individual components to ease the analysis and to give a better visualisa-
tion. Figure 6 presents the colour maps obtained for Om Nom (assigned a green
colour) in 100 levels generated from valid timelines. Note that Om Nom’s place-
ment corresponds to the position in the map where the end-game event takes
place. The figure illustrates that a large portion of the canvas is explored.

The above visualisation helps use understand the diversity of levels generated
from different timelines; given the two-step nature of the approach, it is also
interesting to look at the diversity of levels generated from a a single timeline.
For this purpose, the game simulator is set to run 100 times while trying to map
the timeline rope_cut(700) rope_cut(1000) bubble_press(1000) rocket_press(1500)
OmNom_feed(0) into playable designs. As a result, the simulator was able to
successfully generate 63 playable designs while failing the rest of the attempts.
Figure 7 presents the distribution of rockets, ropes and Om Nom in the successful
cases. The results illustrate a wide variety of structural differences for all items
indicating that the same timeline can create numerous different levels, likely
contributing to different types of player experience.

5.3 Comparison with Previous Attempts

In comparison with previous attempts to evolve playable content for the same
testbed, our approach shows superiority in terms of speed, variety, control and
usability of generated content. While it takes the simulation-based and the ran-
dom agents 470 and 82 s to evolve a complete playable level [11,12], the proposed
methodology is able to evolve timelines with more than one associated design
in 9.79s while ensuring that all generated entities are used in all successful
playthroughs.
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6 Conclusions and Future Directions

In this paper we presented a framework for content generation in games. Our
framework is built on the idea that by combining the advantages of search-based
and constructive approaches for content generation, a fast and expressive gen-
erator can be built. The generator is composed of two main components: an
evolutionary based timeline generator and a constructive-based game simulator.
Each timeline is sequence of in-game events that can be mapped to a game
design by the simulator. Timelines are evolved using grammatical evolution and
evaluated by the simulator which progressively scans a timeline and adds com-
ponents when necessary while preserving playability. A timeline can be mapped
to more than one design, facilitating the exploration of multiple levels with the
same rhythm. The framework is tested in a physics-based game where timelines
are evolved and scored according to playability and aesthetic constraints.

There are a number of interesting future directions: (1) The method shows
promising results in our testbed and it would be interesting to validate its
generality by applying it to games from other genres such as first-person shooters
or endless runners. (2) A measure of the game difficulty is somehow embedded
in the definition of the timeline (the more the components and the shorter the
time between the events the harder the level is). It would therefore be interesting
to generate content of specified difficulty by modifying the calculation of the fit-
ness. (3) One could also try to generate levels with multiple alternate timelines,
that could be solved in different ways.
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