
General Video Game Evaluation Using Relative
Algorithm Performance Profiles

Thorbjørn S. Nielsen1, Gabriella A.B. Barros1, Julian Togelius2,
and Mark J. Nelson3(B)

1 Center for Computer Games Research, IT University of Copenhagen,
Copenhagen, Denmark
{thse,gbar}@itu.dk

2 Department of Computer Science and Engineering, New York University,
New York, NY, USA
julian@togelius.com

3 Anadrome Research, Copenhagen, Denmark
mjn@anadrome.org

Abstract. In order to generate complete games through evolution we
need generic and reliably evaluation functions for games. It has been
suggested that game quality could be characterised through playing a
game with different controllers and comparing their performance. This
paper explores that idea through investigating the relative performance
of different general game-playing algorithms. Seven game-playing algo-
rithms was used to play several hand-designed, mutated and randomly
generated VGDL game descriptions. Results discussed appear to support
the conjecture that well-designed games have, in average, a higher per-
formance difference between better and worse game-playing algorithms.

1 Introduction

How well do knowledge-free algorithms play really bad video games? This might
not be a question that has kept you awake at night, but as we shall show there
are excellent reasons to consider it. Reasons having to do with understanding
fundamental design characteristics of a broad class of simple video games, and
laying the groundwork for automatically generating such games.

One way to generate complete games might be to search a space of games
represented in a programming language like C or Java. However, the proportion
of programs in such languages that can in any way be considered a game is
quite small. Increasing the density of games in the search space can be achieved
by searching programs defined in a game description language (GDL) designed
to encode games.

Even searching a reasonably well defined space of games still supposes that we
have a way of automatically telling good games from bad games (or not-quite-so-
bad games from really bad games). In other words, we need a fitness function.
Part of the fitness function could consist in inspecting the rules as expressed
in the GDL, e.g. to make sure that there are winning conditions which could
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in principle be fulfilled. But there are many bad games that fulfil such criteria.
To really understand a game, you need to play it. It seems the fitness function
therefore needs to incorporate a capacity to play the games it is evaluating.

This game-playing capacity needs to be general, because we know almost
nothing about the games that will be evaluated. We can therefore not
incorporate any domain knowledge about these games; we need algorithms that
are as knowledge-free as possible. Examples of such algorithms are the various
tree-search algorithms, such as Minimax and Monte Carlo tree search (MCTS),
that have been widely used for playing various games. But online evolutionary
algorithms might also be used as knowledge-free algorithms. In case a heuristic
representing the quality of a particular in-game state is need, such a heuristic
should be as neutral as possible, e.g. the score of the game.

Just being able to play a game does not in itself tell us how good the game is.
Many boring games are perfectly playable by an algorithm. And because we don’t
know the game, we don’t know what constitutes good or bad play, compared
to how well or badly the game could be played. Instead we propose a measure of
relative performance between algorithms, the Relative Algorithm Performance
Profile (RAPP). The intuition is that good games are likely to have high skill
differentiation: good players get better outcomes than bad players. A game that
is insensitive to skill, by contrast, is not likely to be a good one. We therefore for-
mulate the following hypothesis: the performance difference (measured as score
and/or win-rate) between generally better game-playing algorithms and gener-
ally worse game-playing algorithms is on average higher for well-designed games
than for poorly designed games. But there might very well be other interesting
differences between classes of games that can be discerned by looking at the
performance profiles of sets of game-playing algorithms; this study is intended
as a preliminary investigation into the hypothesis that RAPP is a productive
way of differentiating games.

We carry out this investigation using the General Video Game Playing plat-
form (GVG-AI) and its associated Video Game Description Language (VGDL).
This framework makes 20 hand-designed games available, mostly versions of well-
known arcade games. We contrast those games with a large number of randomly
generated games in the same language, and with a large number of “mutations” of
the hand-designed games. A core assumption we make is that the hand-designed
games are, on average, better designed than the randomly generated ones. We
calculate a performance profile using several game-playing algorithms available in
the GVG-AI framework and some new algorithms. The concrete contributions of
this paper thus include two new variations on Monte Carlo-based game-playing,
as well as a quantitative investigation of the performance profiles of these algo-
rithms and the associated methodology for performing this study. However, we
primarily see this work as groundwork for a reliable game fitness function, that
will eventually allow us to generate good new sets of game rules.

2 Background

The idea of generating complete games through algorithms is not itself new.
The problem in full generality is quite large, so usually a subset of the general
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problem is tackled. Videogames may be comprised of a large number of tangible
and intangible components, including rules, graphical assets, genre conventions,
cultural context, controllers, character design, story and dialog, screen-based
information displays, and so on [2,7,8].

In this paper we look specifically at generating game rules; and more specif-
ically the rules of arcade-style games based on graphical movement and local
interaction between game elements, represented in VGDL. The two main app-
roaches that have been explored in generating game rules are reasoning through
constraint solving [11] and search through evolutionary computation or similar
stochastic optimisation [1,4,13].

Generating a set of rules that makes for an interesting and fun game is a
hard task. The arguably most successful attempt so far, Browne’s Ludi system,
produced a new board game of sufficient quality to be sold as a boxed product [1].
However, it succeeded partly due to restricting its generation domain to the rules
of a rather tightly constrained space of board games. A key stumbling block for
search-based approaches to game generation is the fitness/evaluation function.
This function takes a complete game as input and outputs an estimate of its
quality. Ludi uses a mixture of several measures based on automatic play of
games, including balance, drawishness and outcome uncertainty. These measures
are well-chosen for two-player board games, but may not transfer well to video
games or single-player games, which have in a separate analysis been deemed
to be good targets for game generation [12]. Other researchers have attempted
evaluation functions based on the learnability of the game by an algorithm [13]
or an earlier and more primitive version of the characteristic that is explored in
this paper, performance profile of a set of algorithms [4].

2.1 Game Description Languages

Regardless of which approach to game generation is chosen, one needs a way to
represent the games that are being created.1 For a sufficiently general description
of games, it stands to reason that the games are represented in a reasonably
generic language, where every syntactically valid game description can be loaded
into a specialised game engine and executed. There have been several attempts
to design such GDLs. One of the more well-known is the Stanford GDL, which
is used for the General Game Playing Competition [5]. That language is tailored
to describing board games and similar discrete, turn-based games; it is also
arguably too verbose and low-level to support search-based game generation.
The various game generation attempts discussed above feature their own GDLs
of different levels of sophistication; however, there has not until recently been a
GDL for suitably large space of video games.

2.2 VGDL

The Video Game Description Language (VGDL) is a GDL designed to express
2D arcade-style video games of the type common on hardware such as the Atari
1 See [9] for a discussion of game-rule representation choices.
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2600 and Commodore 64. It can express a large variety of games in which the
player controls a moving avatar (player character) and where the rules primarily
define what happens when objects interact with each other in a two-dimensional
space. VGDL was designed by a set of researchers [3,6] (and implemented by
Schaul [10]) in order to support both general video game playing and video game
generation. The language has an internal set of classes, properties and types that
each object can defined by.

Objects have physical properties (i.e. position, direction) which can be altered
either by the properties defined, or by interactions defined between specific
objects. A VGDL description has four parts: the SpriteSet, which defines the
ontology of the game – which sprites exist and what can they do; the Lev-
elMapping, which maps from level description to game state; the InteractionSet,
which defines what happens when sprites overlap, and the TerminationSet which
defines how the game can be won or last.

2.3 The GVG-AI Framework

The GVG-AI framework is a testbed for testing general game playing controllers
against games specified using VGDL. Controllers are called once at the begin-
ning of each game for setup, and then once per clock tick to select an action.
Controllers do not have access to the VGDL descriptions of the games. They
receive only the game’s current state, passed as a parameter when the controller
is asked for a move. However these states can be forward-simulated to future
states. Thus the game rules are not directly available, but a simulatable model
of the game can be used.

BasicGame
SpriteSet

city > Immovable color=GREEN img=city
explosion > Flicker limit=5 img=explosion
movable >

avatar > ShootAvatar stype=explosion
incoming >

incoming_slow > Chaser stype=city color=ORANGE speed=0.1
incoming_fast > Chaser stype=city color=YELLOW speed=0.3

LevelMapping
c > city
m > incoming_slow
f > incoming_fast

InteractionSet
movable wall > stepBack
incoming city > killSprite
city incoming > killSprite scoreChange=-1
incoming explosion > killSprite scoreChange=2

TerminationSet
SpriteCounter stype=city win=False
SpriteCounter stype=incoming win=True

Fig. 1. Example of VGDL description - a simple implementation of the game Missile
Command
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The framework additionally contains 20 hand-designed games, which mostly
consist of interpretations of classic video games. Figure 1 shows the VGDL
description of the game Missile Command.

3 Method

There are three types of games tested: human-written VGDL games, mutated
versions of those games, and randomly generated games.

3.1 Example Games

Two of the 20 games from the GVG-AI framework were deemed too monotonous
after initial tests. In these two games the controllers all had similar scores for each
run—or only one controller was able to increase its score. The remaining 18 hand-
designed VGDL game descriptions are used as the baseline. Most are inspired

Fig. 2. A visual representation of a few of the VGDL example games. From top-left:
Zelda, Portals and Boulderdash
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by classic arcade (e.g. Boulderdash, Frogger, Missile Command and Pacman).
The player controls a single avatar which must be moved quickly around in a 2D
setting to win, or to get a high score. The player can increment a score counter
in all of the games. A brief descriptions of each game (Fig. 2):

Aliens Based on Space Invaders. Aliens are spawned from the top of the
screen; the player wins by shooting them all. Boulderdash Based on Boulder
Dash. The avatar has to dig through a cave to collect diamonds while avoiding
being smashed by falling rocks or killed by enemies. Butterflies The avatar has
to capture all butterflies before all the cocoons are opened. Cocoons open when a
butterfly touches them. Chase Chase and kill fleeing goats. However, if a fleeing
goat encounters the corpse of another, it gets angry and starts chasing the player
instead. Digdug Base on Dig Dug. The avatar collects gold coins and gems, digs
through a cave, and avoids or shoots boulders at enemies. Eggomania Based
on Eggomania. The avatar moves from left to right collecting eggs that fall from
a chicken at the top of the screen, in order to use these eggs to shoot at the
chicken, killing it. Firecaster The goal is to reach the exit by burning wood
that is on the way. Ammunition is required to set things on fire. Firestorms
The player must avoid flames from hell gates until reaching the exit of a maze.
Frogs Based on Frogger. The player is a frog that has to cross a road and a
river, without getting killed. Infection The objective is to infect all healthy
animals. The player gets infected by touching a bug. Medics can cure infected
animals. Missile Command Based on Missile Command. The player has to
destroy falling missiles, before they reach their destinations. The player wins if
any cities are saved. Overload The player must get to the exit after collecting
coins. But too many coins make the player too heavy to pass through the exit.
Pacman Based on Pac-Man. The goal is to clear a maze full of power pills and
pellets, and avoid or destroy ghosts. Portals The objective is to get to a certain
point using portals to go from one place to another, while at the same time
avoiding lasers. Seaquest Based on Seaquest. The avatar is a submarine that
rescue divers and avoids sea animals that can kill it. The goal is to maximise
score. Survive Zombies The player has to flee zombies until time runs out,
and can collect honey to kill the zombies. Whackamole Based on Whac-a-
Mole. Must collect moles that appear from holes, and avoid a cat that mimics
the moles. Zelda Based on Legend of Zelda. The objective is to find a key in a
maze and leave the level. The player also has a sword to defend against enemies.

3.2 Controllers

Seven general videogame controllers were used to test the games. The controllers
use different approaches, with a varying degree of intelligence. Three of the
controllers are included in the GVG-AI framework, while the remaining were
implemented for this work. Except for OneStep-Heuristic, the controllers only
evaluate a given state according to its score and win/loss status.

MCTS. GVG-AI sample controller. “Vanilla” MCTS using UCT.
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GA. GVG-AI sample controller. Uses a genetic algorithm to evolve a sequence
of actions.

OneStep-Heuristic. GVG-AI sample controller. Heuristically evaluates the
states reachable through one-step lookahead. The heuristic takes into account
the locations of NPCs and certain other objects.

OneStep-Score. Similar to OneStep-heuristic, but only uses the score and
win/loss status to evalue states.

Random. Chooses a random action from those available in the current state.
DoNothing. Returns a nil action. Literally does nothing.
Explorer. Design specifically to play the arcade-style games of the GVG-AI

framework. Unlike the other controllers which utilise open-loop searches, it
stores information about visited tiles and prefers visiting unvisited locations.
Also addresses a common element of the VGDL example games, random-
ness. The controller gains an advantage by simulating the results of actions
repeatedly, before deciding the best move.

3.3 Mutation of Example Games

A mutation process was repeatedly applied for each of the 20 example games
mentioned in Sect. 3.1. The process consisted of changing the set of interaction
rules (i.e. lines from the InteactionSet) defined in each game description. For
each mutation, each interaction rule had a 25% chance of being mutated, but
with a requirement that at least one rule were changed. Mutation occurred by
changing the objects in that interaction rule, the function on collision between
said objects, and/or the function’s parameters.

Several contrains were used during each mutation to avoid games with non-
valid descriptions (which can cause crashes in the GVG-AI framework). Addi-
tionally, several constraints were used for the different function parameters, as
to only allow “realistic” values. The range of these constraints were extrapolated
(and slightly extended) from the example games. For instance, the parameter
limit used by certain rules was limited to values between 0 and 10, as the same
is true for the rules of the example games. This process was applied 10 times for
each example game description, resulting in 200 generated game descriptions.

When testing the mutated games the same level descriptions as for their
original counterparts were used (those mentioned in Sect. 3.1).

3.4 Random Game Generation

A set of 400 random VGDL game descriptions were generated by constructing
the textual lines for different parts of a VGDL description: Generating an array of
sprites (for the SpriteSet), interaction-rules (InteractionSet), termination-rules
(TerminationSet) and level mappings (LevelMapping) (Fig. 3).

Before generating descriptions, we used similar constraints to those in
Sect. 3.3, partly to avoid generating descriptions with invalid elements, and
partly to increase the proportion of interesting outcomes. The number of sprites,
interaction, and termination rules were randomly chosen, limited to 25, 25, and 2,
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Fig. 3. Visual representation of one of the 400 randomly generated VGDL games

respectively. A simple level (only containing one of each sprite) was generated
for each of the generated games for test purposes.

4 Results

The seven controllers mentioned in Sect. 3.2 were used to play through a set
of example-, mutated and randomly generated games. Because of CPU budget
limitations, each game was played for a maximum of 800 clock ticks, and each
controller was restricted to use 50 ms on each tick. In the following sections,
we show results of these tests, analyse the average of all play-throughs for each
controller, and compare the results with each other.

To more accurately compare the score for the different controllers across the
range of different games, we normalise each score using a max-min normalisation.
Normalised averages and win rate averages are shown in Figs. 7 and 8, respec-
tively. In Fig. 7, it is possible to see that the difference between the highest and
lowest scores is greater in the example and mutated games than in the generated
games. On the other hand, the average win rate of generated games surpasses
both examples and mutated games, as shown in Fig. 8.

In addition to the score and win-rate, the average entropy of actions chosen
for the player avatar is shown in the tables below.

4.1 Example Games

Averages and win-rates from the 18 human-designed example games are shown
in Fig. 4. The distributions of normalised scores show that more intelligent
controllers tend to have more success. It is worth noticing that the score mean
and normalised score mean have slightly different orderings. Notice also that dis-
tributions are slightly different when analysing the results of individual games.
For instance, in Aliens, Random has a higher average than Onestep.
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controller score mean std.dev. normalised-mean winrate act-entropy

Explorer 42.94 121.55 0.7966 0.4467 0.8860
MCTS 23.14 86.39 0.4935 0.2489 0.9006
GA 11.98 51.08 0.4010 0.1533 0.7052
Onestep-S 14.48 27.28 0.4149 0.0844 0.8848
Onestep-H 3.73 9.81 0.2350 0.1111 0.1943
Random 7.52 17.01 0.2493 0.0556 0.9016
DoNothing 0.39 4.02 0.1317 0.0556 0

Fig. 4. Results from the 20 example games

4.2 Mutated Example Games

When mutating games, two types of games are problematic: Games where the
controllers never increase their score (and never win), and games where too many
objects are created and each frame end up taking too long (>50 ms). We exclude
both types of games in the following analysis.

Averages from playing the remaining 146 mutated games (of 200 total) are
shown in Fig. 5. The scores have higher means and standard deviations, indicat-
ing outliers in the data. The ordering of the normalised score mean, however,
shows a similar pattern as for the example games, with Explorer again excelling.

controller score mean std.dev. normalised-mean win-rate act-entropy

Explorer 392.08 6441.77 0.8361 0.3055 0.8372
MCTS 140.49 1097.93 0.4799 0.1510 0.9012
GA 88.96 756.92 0.4254 0.1274 0.6693
Onestep-S 128.82 706.79 0.4418 0.1049 0.8444
Onestep-H 82.67 762.93 0.2580 0.1866 0.2033
Random 69.70 666.81 0.2581 0.1077 0.9030
DoNothing 81.55 945.71 0.1819 0.0959 0

Fig. 5. Results from mutated games

4.3 Randomly Generated Games

Figure 6 shows results for the 65 randomly generated games, with problematic
games removed according to the same criteria as in the previous section.

First of all, score std. deviations are much higher than in the previous games,
with the minimum being 199,406.58, over 1500 times larger than the highest in
the set of example games (i.e. 121.55, by Explorer). Clearly, only the normalised
mean can be on this set to compare scores across the different game types. The
normalised score means and win-rates both have values that are more closely
clustered together, than in the previous game sets.
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controller score mean std.dev. normalised-mean win-rate act-entropy

Explorer −18 207.91 227 282.72 0.6193 0.2566 0.7193
MCTS −4035.85 258 890.78 0.4395 0.2769 0.8392
GA −3501.65 262 508.97 0.4399 0.2480 0.5767
Onestep-S −16 680.67 231 600.95 0.3916 0.2191 0.8197
Onestep-H −25 728.97 195 365.78 0.3640 0.2025 0.4022
Random −23 348.24 199 405.58 0.3195 0.2105 0.8553
DoNothing −3051.34 259 562.33 0.3747 0.1846 0

Fig. 6. Results from randomly generated games
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Fig. 7. Average normalised score

5 Discussion

The results in Sect. 4 display some interesting patterns. Win rates suggest a
relationship between intelligent controllers’ success and better game design; for
better designed games, the relative performance of different types of algorithms
differ more. This corroborates our hypothesis that RAPPs can be used to dif-
ferentiate between games of different quality. In randomly generated games,
which arguably tend to be less interesting than the others, smarter controllers
(e.g. Explorer and MCTS) do only slightly better than the worse ones (i.e. Ran-
dom and DoNothing). This is due to a general a lack of consistency between
rules generated in this manner. Mutated games, however, derive from a designed
game. Therefore, they maintain some characteristics of the original idea, which
can improve the VGDL description’s gameplay and playability. Furthermore, it
is interesting that Random and DoNothing do well in some games, as seen in
Fig. 8. While it is possible that random actions can result in good outcomes, this
chance is very low, especially when compared to the chance of making informed
decisions. In spite of that both Random and DoNothing do fairly well in ran-
domly generated games. The performance of DoNothing emerges as a secondary
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Fig. 8. Average wins

indicator of (good) design: in human-designed games, DoNothing very rarely
wins or even scores.

6 Conclusion

Our intent has been to investigate evaluating video games via the performance
of game-playing algorithms. We hypothesised that the performance difference
between good and bad game-playing algorithms is higher on well-designed games,
and therefore can be used as at least a partial proxy for game quality. To test
this theory, we had seven controllers with varying levels of skill play 18 human-
designed, 146 mutated, and 65 randomly generated VGDL games. The results
seem to corroborate our initial conjecture, showing a clear distinction between
results of more and less intelligent controllers for human-designed games but
not for random games. We also suggest new controllers for GVG-AI: Explorer,
OneStep-Score and DoNothing. The first one in particular shows strong overall
performance compared to existing baselines such as “vanilla” MCTS.
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