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Abstract. To enable a more efficient utilization of energy carriers,
energy management systems (EMS) are designed to optimize the usage
of energy in future smart buildings. In this paper, we present an EMS
for buildings that uses a novel approach towards optimization of energy
flows. The system is capable of handling interdependencies between mul-
tiple devices consuming energy, while keeping a modular approach to-
wards components of the EMS and their optimization. Evaluations of
the EMS in a realistic scenario, which consists of a building with adsorp-
tion chiller, hot and cold water storage tanks as well as combined heat
and power plant, show the ability to reduce energy consumption and
costs by an improved scheduling of the generation of hot and chilled
water for cooling purposes.

Keywords: Energy management · Smart building · Evolutionary Algo-
rithm · Combined heat and power plant · Adsorption chiller

1 Introduction

The transition from fossil energy carriers towards renewable energy sources is
one of today’s most important challenges for society. To support this transition,
the European Union has defined ambitious goals for the year 2030: A reduc-
tion of greenhouse gas emissions by at least 40 %, an increase of the share of
renewable energy to at least 27 %, and an increase of energy efficiency by at
least 27 % [1]. Apart from new technologies, a better usage of existing systems
is a promising factor to achieve these goals. Considering the increasing usage of
volatile renewable energy sources, an efficient utilization of energy carriers is get-
ting increasingly complex [2]. Among other cases, this applies to energy usage in
commercial and private buildings. To ensure efficient energy carrier utilization,
sophisticated energy management systems (EMS) have been introduced [3].

In this paper we extend an EMS that is based on a modular approach for
optimization. It uses a customizable, run-time based phrasing of the optimiza-
tion problem, because the problem instance varies with respect to the devices
that have to be optimized and the constraints to be considered from one build-
ing to another. The actual optimization utilizes a dynamically assembled and
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Fig. 1. Smart building scenario with EMS (left) and schema of power flows (right)

parametrized Evolutionary Algorithm (EA) [3,4], which can be adapted to the
current optimization problem at run-time of the system.

The major contribution of this paper is the consideration of interdependen-
cies between the devices. In particular, a flexible approach is presented for the
optimization of interdependent devices with non-linear behavior. The term inter-
dependency refers to the nature of energy consumption: The actual energy con-
sumption of an interdependent device depends on the state of at least one other
device and may also be non-linear in its energy consumption. The approach pre-
sented and evaluated in this paper is able to optimize diverse setups of buildings
with different devices. Typical examples for interdependent devices in buildings
can be found in the heating, ventilating, and air conditioning system (HVAC). To
evaluate the EMS, a simulation of an EMS-controlled building has been carried
out that is based on data of a real building.

Details about the energy management scenario and the EMS extended in this
paper are given in Sect. 2. The major contribution of this paper—the Energy
Simulation Core that enables the customizable optimization of interdependent
energy-consuming devices—is presented in Sect. 3. In order to demonstrate the
effectiveness of the presented approach, simulations with the setup shown in
Sect. 4 have been conducted. The results are then discussed in Sect. 5. The paper
is concluded with a summary and an outlook to further work.

2 Scenario and Energy Management System

2.1 Energy Management Scenario

This paper focuses on energy management and optimization of multiple energy
carriers, such as electricity and hot water, in intelligent smart buildings (SB). The
presented scenario (see Fig. 1) is based on a real SB environment and consists of
a building with a small combined heat and power plant (μCHP), an adsorption
chiller (Ad-A/C), as well as storage tanks for hot and chilled water. The chilled
water, which is produced by the Ad-A/C, is used to cool a meeting room. The
Ad-A/C is powered by the hot water that is generated by the μCHP. This hot
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Fig. 2. Overview of Organic Smart Home

water is a secondary product of the μCHP in addition to electricity. Generation
of electricity and production as well as consumption of chilled respective hot
water are decoupled by the storage tanks. Such a system is called trigeneration
or combined cooling, heat and power system.

2.2 Related Work

Similar systems with have been optimized using linear programming [5], non-
linear programming [6], or Evolutionary Optimization [7–10]. However, these
publications focus either only on optimization of the technical setup of the sys-
tem [7,8], do not respect interdependencies or non-linearities [6,8,10,11], or per-
form only a scheduling that is exact to the hour [5,10,11]. In contrast, this
paper schedules devices exact to the minute with respect to interdependencies
and non-linearities of the devices, such as the non-linear interdependence of hot
water input and cold water output of the Ad-A/C, using an EA.

2.3 Organic Smart Home

The Organic Smart Home (OSH) is an EMS that has been designed following the
principles of Organic Computing [12] by using the generic Observer/Controller
Architecture. This architecture constitutes one way to achieve controlled self-
organization in technical systems utilizing a regulatory feedback mechanism [12].
An overview of the general system architecture is shown in Fig. 2. Major advan-
tage of the OSH is its usability in both, real world energy management and
simulations of buildings with different sets of devices in diverse scenarios [3].

The OSH utilizes different kinds of sensors and actuators to monitor and
influence the System under Observation and Control (SuOC), in the present
case a smart building. Every sensor and actor is assigned to a Local Observer/
Controller-unit (O/C-unit). Every Local O/C-unit forms a closed control loop
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around the specific local device. To enable a global interaction between the
devices, every Local O/C-unit is connected to a Global O/C-unit, responsible
for the global building energy management. This hierarchical structure enables
expedient responses to behavior, status, and interaction of different local agents,
representing the physical or simulated devices in the building, as well as the
global system, representing the smart building. Interaction with users or external
entities is handled by a Com Manager, analogous to the handling of devices.

A Hardware Abstraction Layer (HAL) and device-specific drivers realize the
abstraction from distinct devices, protocols, and communication media of com-
ponents into generic exchange objects [3]. The Local O/C-units pass abstracted
data to the Global O/C-unit, which aggregates the data of all Local O/C-units
to the current state of the SuOC. Based upon this state, the energy management
predicts the future global state and optimizes its control sequence in order to
influence the SuOC with respect to given external and internal constraints as
well as objectives defined by the user. The resulting schedule of planned actions
and procedures, i.e., the control sequence, is then communicated back to the
Local O/C-units, which apply it to the devices.

3 Energy Simulation Core

In the present paper, the OSH, which has a configurable, modular Optimization
Algorithm [3], is enhanced by an additional component: the Energy Simulation
Core (ESC). This component, which is depicted in Fig. 3, simulates the local
electricity and thermal grids, i.e., the local electrical wiring and water pipes, as
well as the energy consumption of interdependent devices while keeping a mod-
ular approach to the optimization. This modular approach is necessary, because
the concrete operational scenarios in SBs with different setups of devices and
characteristics of these devices, as well as the objectives of the users are widely
unknown a priori to the installation of the EMS. Furthermore, these properties
may change over time, when additional devices are being added to management
and optimization. Moreover, the ESC enables the reuse of the abstracted models
of the devices, which are already used for prediction purposes in the EMS.

3.1 ESC: General Architecture

The ESC is used in two parts of the EMS (see Fig. 3): the calculation of energy
flows in every simulated time step, which in the present EMS is at every second,
and the simulation of energy flows in the optimization process, which is done
in time steps of 60 s. The calculation of energy flows is necessary to determine
the actual electrical and thermal power consumption, when different producing
and consuming devices are considered. For instance, active power generated by
a photovoltaic system has usually a different payment scheme for feed-in than
power generated by a μCHP.

Characteristics and control of thermal devices, such as water heaters and Ad-
A/Cs, usually depend on the current state of the overall system, i.e., indoor and
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Fig. 3. Overview: Energy Simulation Core in the Organic Smart Home

outdoor temperature, as well as the water temperatures of hot and chilled water
in the storage tanks. Additionally, these characteristics often include non-linear
dependencies. For example, the required thermal energy in terms of hot water
consumption of an Ad-A/C is non-linear with respect to the generated thermal
energy in terms of chilled water. Therefore, the simulation of energy flows in
the optimization requires a step-by-step approach when determining the future
control sequence of the devices.

The ESC consists of two main components: the Electrical Simulation and the
Thermal Simulation. Both sub-modules simulate their respective local grid with
its different energy carriers. The local electricity grid consists of the wiring, i.e.,
the electrical connections between all devices consuming or producing electricity
in a building. To be able to take their different payment schemes into account,
active power produced by a photovoltaic system is regarded as a different com-
modity than active power produced by the μCHP.

Similarly, the local thermal grid contains all information about the physical
interconnections, i.e., pipes, between devices consuming different thermal com-
modities, such as hot and chilled water. In addition to the power flows between
the devices, the temperatures are communicated between the devices. Thus,
devices can react on states of other devices: The μCHP starts producing hot
water when the water temperature of the hot water storage tank falls below a
certain threshold level. Furthermore, devices can determine their current power
consumption or production based on the temperatures of other devices, such
as water temperatures. For example, the hot water power consumption of an
Ad-A/C depends on the hot water temperature in the storage tank.

The ESC handles the information exchange between all simulated devices,
i.e., the actual power consumption and productions as well as the additional
information, such as water temperatures or voltages. These simulated devices
(see Fig. 3) are for one thing the simulation agents, i.e., simulation drivers, and
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Fig. 4. Determination of load profiles using Interdependent Problem Parts

for another the Interdependent Problem Parts in the optimization, which are
more closely described in the next subsection.

3.2 Interdependent Problem Parts

The modularity of the approach is further enabled by the introduction of Inter-
dependent Problem Parts (IPP). These IPPs are an extended version of the Prob-
lem Parts presented in [3], which are provided by the Local O/C-units to handle
the optimization of devices. Every device managed by the EMS provides an
IPP that contains information about characteristics, behavior, predicted future
states, such as the predicted power consumption, and possible control sequences
of the device, as well as interdependencies with other devices. The IPPs are
used in the ESC to determine load profiles of the devices with respect to their
interdependencies (see Fig. 4).

There are two fundamentally different properties of an IPP: controllability
and activeness. Controllability (see also [3,4]) refers to the the property whether
a device offers the possibility of control, i.e., in the case of a non-controllable
device the respective IPP has zero bits, whereas a controllable device has at
least one bit in the optimization. Activeness refers to the property of whether the
device is determining the power flow to other devices (active) or not (passive).

Depending on the optimization target, the same device may be handled alter-
natively with different IPPs. For instance, one IPP may be non-controllable and
active, whereas another may be controllable and active. This means that in the
first case the device controls itself, e.g., by using an on-off control, while in sec-
ond case it receives an optimized control sequence by the global optimization.
In both cases, the device determines actively its power flows.
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3.3 Interdependent Problem Parts of the µCHP

The μCHP simulated in this paper is controllable, because it can be controlled
using a signal that switches it on or off. In order to show the effect of opti-
mization, it can also be run unoptimized using an IPP that is non-controllable
by the optimization. Therefore, it uses two different types of IPPs: one IPP is
non-controllable another is controllable.

Both IPPs implement an on-off control ensuring that the water temperature
in the hot water storage tank remains within an upper and a lower temperature
threshold. This thermal management ensures that every solution determined by
the optimization leads to a valid solution: the μCHP is forced on or off in cases
of violations of the threshold, even if the control sequence by the optimization
would originally lead to a violation of the thresholds. In both cases, the μCHP
is actively participating in the energy simulation, because its state, i.e., being
switched on or off, and therefore its power generation of hot water and electricity,
depends on at least one other device: the hot water storage tank. The encoding
of the μCHP uses a sequence of bits that is interpreted as the control sequence,
i.e., sequence of being switched on or off, and is more closely described in [4].

3.4 Interdependent Problem Parts of the Ad-A/C

The Ad-A/C uses IPPs that are similar to those of the μCHP. Other than that,
it consumes hot water from the storage tank and produces chilled water that is
stored in the chilled water storage tank. Additionally, it considers the outdoor
temperature that determines the efficiency of the heat exchanger for the re-
cooling process. Both IPPs, non- and controllable, implement an on-off control
for ensuring that the chilled water temperature remains within its thresholds.

3.5 ESC and IPPs: Optimization Process

The optimization process in the OSH and its usage of the ESC are depicted in
Fig. 5. Analogously to the optimization process in [3], the IPPs are constructed
periodically and in case of certain special events in their relative Local O/C-
units. Every IPP is initialized with information about the current device state
and the current possibility of control.

In the scenario presented in this paper, the control sequences of an Ad-A/C
and a μCHP have to be determined with respect to states of the storage tanks,
predictions of future hot and chiller water power consumptions as well as outdoor
temperature and price signals. The present example requires three bits for both,
the Ad-A/C and the μCHP, for every five minutes in the optimization horizon.
Among the IPPs for the controllable devices, the states of the storage tanks and
the predicted power consumptions are handled as non-controllable IPPs.

All these IPPs are communicated to the Global O/C-unit and aggregated to
represent the global optimization problem in the building for the current opti-
mization period. They determine the length of individuals in the optimization



246 I. Mauser et al.

Global
O/C-unit

Cold
Water

EA

Local O/C-unit Local O/C-unit

Individuals

ActiveIPP
Ad-A/C

ActiveIPP
CHP

11001101…1000011 1011100111…1011110101101…1010110 1011000111…1011110001101…1010111 1011010111…10111
10

00
1…

10
10

1
11

01
10

0…
10

11
1

Stopping  Criteria  reached ?

1010110…1101

1101011…10011

ActiveIPP
AdAC

ActiveIPP
CHP 

Selection

Recombination 
and Mutation

Initial / Current
Population

Signals and 
(User) 

Preferences

Evaluation

Fitness Function

ActiveIPP
CHP 

648 bits

ActiveIPP
Ad-A/C 

648 bits

Transformation
to Phenotype

Determination of 
Load Profiles

Ad
AC

Hot
Water

2h
3h

Local O/C-unit

O C

Local O/C-unit

O C

Local O/C-unit

O C

Local O/C-unit

O C

PassiveIPP
ColdWater

0 bit

PassiveIPP
HotWater

0 bit

PassiveIPP
ColdWater

PassiveIPP
HotWater

µCHP 

ActiveIPP
SpaceCooling

0 bit

Local O/C-unit

O C

ActiveIPP
SpaceHeating

0 bit

Local O/C-unit

O C

ActiveIPP
SpaceCooling

ActiveIPP
SpaceHeating

Creation of
Interdependent 
ProblemParts

Control of 
Devices

Local 
Thermal 

Grid

Energy Simulation Core

Jo
in

t 
E

va
lu

at
io

n

Thermal Simulation

Local Thermal Grid 

Electrical Simulation

Local Electrical Grid 
… 

Ad-
A/C

Ad-
A/C Resulting 

Load Profiles

In
it

ia
liz

at
io

n
 

Iteration 

Fig. 5. Energy Simulation Core in the optimization process

process and its EA by defining an adequate number of bits required for the opti-
mization of every device. Thus, every individual consists of sub-strings of bits,
which have to be interpreted by their relative IPP in order to determine the load
profile of the related device. This joint evaluation with the determination of load
profiles is done using the ESC. The load profiles are combined to expected total
future load profiles for the building, which are then evaluated to a fitness value
using external signals, such as the costs of electricity and natural gas, or the
feed-in tariff for electricity.

The EA runs until the stopping criterion, which in the present case is the max-
imum number of generations, has been reached. The sub-strings of the best indi-
vidual are then transformed to their phenotypes, i.e., the control sequences for
devices that can be controlled. In the scenario of this paper, these are the future
periods when the Ad-A/C respective the μCHP are scheduled to be switched on
or off.
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Table 1. Experiments: combinations of Interdependent Problem Parts

Experiment IPP of Ad-A/C IPP of µCHP Appointments

A Non-controllable Non-controllable Real, simulated

B Non-controllable Controllable Real, simulated

C Controllable Non-controllable Real, simulated

D Controllable Controllable Real, simulated

Table 2. Experiments: specifications of devices

Device Specification Real device

Ad-A/C Cooling power: 9 kW InvenSor LTC 09

µCHP Hot water power: 12.5 kW Senertec Dachs G 5.5

Electric active power: 5.5 kW standard

Natural gas power: 20.5 kW

Hot water storage tank 3250 liters Custom-made tank

Min. temperature: 57 ◦C

Max. temperature: 78 ◦C

Chilled water storage tank 3000 liters Custom-made tank

Min. temperature: 10 ◦C

Max. temperature: 15 ◦C

4 Experimental Setup

To evaluate the performance of the implemented ESC and to demonstrate its
capability of handling interdependent devices, a simulated SB has been used.
The specifications of the simulated SB and its devices are based on a real SB,
the FZI House of Living Labs1. The EMS—the OSH—uses a sub-problem based
EA for optimization purposes, which applies binary tournament selection, single-
point-crossover with two offspring and bit-flip-mutation using an elitist (μ,λ)-
strategy with a rank based survivor selection [3]. Parameters of the operators
have been calibrated manually (see Fig. 6) and set to a crossover probability of
0.7, a mutation probability of 0.005, and 200 generations with 100 individuals.

4.1 Simulated Devices

The simulated SB consists of a simulated Ad-A/C, a μCHP and simulated stor-
age tanks for hot and chilled water. These have been modeled according to
specifications of real devices (see Table 2). The efficiency of the Ad-A/C, which
depends on the tank and outdoor temperatures, has been interpolated from the
1 http://www.fzi.de/en/research/fzi-house-of-living-labs/.

http://www.fzi.de/en/research/fzi-house-of-living-labs/
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technical specification. Standing loss Ploss in kW of the storage tanks, depend-
ing on the current tank temperature Ttank in ◦C and the ambient temperature
Tambient, which has been set to 20 ◦C, has been modeled based on measurements
with c = 0.040 for the cold water and c = 0.011 for the hot water storage tank:

Ploss(Ttank) = −c · (Ttank − Tambient).

Optimization using the EA is triggered at least every four hours or when a
temperature threshold of either the hot or the cold water storage tank has been
violated. Optimization horizon is the next 18 h.

4.2 Test Scenarios and Experiments

In the simulations, eight different experiments with 30 random seeds each have
been tested. All simulate four weeks in July 2013 with real outdoor temperatures.
The experiments are presented in Table 1 and consist of the four combinations
of controllable and non-controllable IPPs of the Ad-A/C and the μCHP as well
as two different sets of appointments determining the cooling demand: Simu-
lated cooling demand refers to simulated appointments in the meeting room,
real cooling demand refers to real appointments in the meeting room pulled
from the Microsoft Exchange Calendar. The simulated appointments are ran-
domly generated using the following constraints based on the typical key data
of appointments in the meeting room of the real building:

#appointments per day ∈ {1, 2},
#appointment duration in h ∈ {2, 3, 4},

pause between appointments in h ∈ {2, 3, 4}.

Cooling demand P in kW as a function of the outdoor temperature T in ◦C is
calculated using the an empirical formula that is based on measurements in the
real building. Above an outdoor temperature of about 21.9 ◦C, this model leads
to a cooling demand that increases linearly with the outdoor temperature:

P (T ) = max(0; 0.4415 · T − (0.4415 · 21.8831)).
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5 Results and Discussion

Simulation results (see Fig. 7 and Table 3) show an average improvement of the
total monthly costs by up to 15.6 %. This improvement is realized in experi-
ment D with real appointments in comparison to experiment A. The results of
a t-test confirm the significance of improvements by the optimization with IPP
in comparison to the non-optimized reference scenario.

Optimization of the Ad-A/C only (experiment C) leads to better results
than the sole optimization of the μCHP (experiment B). Nevertheless, a higher
volatility of the achieved total costs is observed. This can be explained by a
surplus of hot and chilled water that remains in the storage tanks at the end
of the simulation. In case of an optimized μCHP and Ad-A/C, the optimization
ensures that the tank temperatures are kept at a low respective high temperature
at any time without an appointment. Thus, the tank is not unnecessarily heated
up respective cooled down to prevent standing loss. Especially when using real
appointments, the volatility is higher. This is due to the nature of the real
appointments, which are less often but longer than the simulated ones. Therefore,

Table 3. Simulation results: statistical values of the absolute total costs and the
improvement over the non-optimized experiment A.

Abs. Electricity Costs Improvement wrt. A [%] t-test

Experiment Appointments Min Max Avg sn Min Max Avg sn p-value

A Real 8224 8224 8224 0 - - - - -

Simulated 8762 11555 9974 659 - - - - -

B Real 7266 7504 7410 54 8.75 11.64 9.89 0.65 0.000

Simulated 8078 10410 9100 578 3.76 14.24 8.70 2.90 0.000

C Real 6969 7734 7304 213 5.94 15.25 11.18 2.59 0.000

Simulated 7878 9984 8818 544 2.69 17.42 11.48 4.02 0.000

D Real 6853 7046 6939 49 14.31 16.67 15.63 0.60 0.000

Simulated 7631 9880 8589 551 7.87 19.90 13.82 3.12 0.000
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on the last day of the simulation, the remaining hot water in the storage tank
is not used to produce chilled water for an appointment in the meeting room.

6 Summary and Outlook

This paper presented an approach towards flexible and modular energy optimiza-
tion in smart buildings using an EMS. The approach has been implemented as
an additional module for an existing EMS that can be used in both, simulations
and real-world control. The formulation of the problem instances at run-time
of the EMS has been extended to cope with interdependent devices, such as
trigeneration systems consisting of a combined-heat and power plant combined
with an adsorption chiller as well as hot and chilled water storage tanks.

The implementation of the presented module has been tested in simulations
of a scenario that is based on the characteristics of a real building. Results of the
simulation show the ability of the system to manage and optimize such buildings.
The energy costs of the building can be reduced by the optimization using the
EA on average by up to 15 %. This improvement is mainly due to the better
coordination of the adsorption chiller and the combined heat and power plant
as well as the generation of chilled water in the morning, when the outdoor
temperature allows for a better efficiency.

Future work shall verify the simulation results with additional data from real
buildings. Furthermore, the approach presented in this paper will be extended
to the optimization of a battery storage and hybrid household appliances that
may use hot water from the storage tank, too, while substituting electricity.
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