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Abstract. In biology, the subject of protein structure prediction is of
continued interest, not only to chart the molecular map of the living cell,
but also to design proteins of new functions. The Inverse Folding Problem
(IFP) is in itself an important research problem, but also at the heart of
most rational protein design approaches. In brief, the IFP consists in find-
ing sequences that will fold into a given structure, rather than determining
the structure for a given sequence - as in conventional structure prediction.
In this work we present a Multi Objective Genetic Algorithm (MOGA)
using the diversity-as-objective (DAO) variant of multi-objectivisation,
to optimise secondary structure similarity and sequence diversity at the
same time, hence pushing the search farther into wide-spread areas of the
sequence solution-space. To control the high diversity generated by
the DAO approach, we add a novel Quantile Constraint (QC) mechanism
to discard an adjustable worst quantile of the population. This DAO-QC
approach can efficiently emphasise exploitation rather than exploration to
a selectable degree achieving a trade-off producing both better and more
diverse sequences than the standard Genetic Algorithm (GA). To vali-
date the final results, a subset of the best sequences was selected for ter-
tiary structure prediction. The super-positioning with the original protein
structure demonstrated that meaningful sequences are generated under-
lining the potential of this work.

Keywords: Inverse Folding Problem · Protein design · Genetic
Algorithm · Multi-objectivisation

c© Springer International Publishing Switzerland 2015
A.M. Mora and G. Squillero (Eds.): EvoApplications 2015, LNCS 9028, pp. 14–25, 2015.
DOI: 10.1007/978-3-319-16549-3 2



A Novel Multi-objectivisation Approach for Optimising the Protein IFP 15

1 Introduction

Protein engineering in general aims at designing molecules with desired prop-
erties and a method that allows to successfully design such molecules would
find applications in a number of areas. For example, it could allow to design
improved enzymes for biotechnology applications (e.g., waste-water treatment
or biomass production), or new antibodies more specific towards already known
targets (e.g., antibodies targeting a given pathogen like HIV, by binding to its
envelope spikes to neutralize the virus [11]).

Fig. 1. Three levels of protein structure

The structure of a protein is typically represented by different levels of struc-
tures (see Fig. 1). The primary structure is the protein sequence of N amino acids
(also referred to as residues) {aai} where 1 ≤ i ≤ N is the residue position. The
secondary structure defines the organisation of helices, sheets, turns and coils of
the tertiary structure and can be expressed by a type {Ti} ∈ {H,S, T,C} for
each position i in the protein. The tertiary structure completely describes the
arrangement of all atoms in the three-dimensional space. A simplified example
is presented in Fig. 1 with only N and C atoms and Ri residue side-chains.

With this hierarchical definition in mind, the Inverse Folding Problem (IFP),
first mentioned by Pabo in [16] can be defined as follows: given a primary struc-
ture (protein sequences) and its corresponding tertiary structure, find alternative
primary structures that will result in the same tertiary structure. This makes the
solution of the IFP a key part of any protein design-process, where a specific ter-
tiary structure is targeted while keeping a certain degree of freedom in the choice
of protein sequence. Furthermore, the IFP is of general scientific interest to study
the size, shape and characteristics of the sequence space that matches a given tar-
get structure, and how far from the original sequence solutions can be found. In
this work, the fact that matching secondary structures is a necessary, but not a
sufficient condition for proteins to have the same tertiary structures is exploited
to reduce the IFP to its simplest formulation: given a protein’s secondary struc-
ture and its corresponding protein sequence, find a set of highly dis-similar protein
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sequences that could result in the most similar secondary structure. With a fast
estimate of the sequence’s secondary structure as objective function, the compu-
tational time can be dramatically diminished, allowing a larger part of the feasible
sequence space to be explored than existing exact methods.

The resulting optimisation problem is highly multi-modal. Therefore the algo-
rithm proposed in this work addresses this aspect by using a diversity measure
as objective through multi-objectivisation. Additionally, the algorithm incorpo-
rates a novel constraint method that allows controlling of the high diversity
induced by the multi-objectivisation approach.

The remainder of this article is organised as follows. First the current work
is situated in related literature in Sect. 2, then a detailed description of the
problem and the biological background is introduced in Sect. 3. In Sect. 4 the
contributions of this work in terms of modeling the IFP as an optimisation
problem and achieving an adjustable level of diversity in the genetic algorithm
are presented. Sections 5.1 and 5.2 describe the experiments conducted and the
results obtained with a validation study in Sect. 5.3. Finally the contribution,
results and perspectives are summarised in Sect. 6.

2 Related Work

This section reviews some of the most relevant works related to the two main areas
covered in this paper: protein design and diversity preservation in metaheuristics.

2.1 Protein Design

Since the first design of a peptide by Gutte et al. [8] using secondary structure
rules, numerous works have described different approaches to the IFP problem.
Ponder and Richards [17] used a systematic exhaustive approach of enumerating
a selected subset of residue positions while Bowie et al. [2] introduce a 3D to 1D
score at each residue position in the protein sequence. The first reported use of
a Genetic Algorithm (GA) for sequence design is by Jones [9] where simplified
energy and amino-acid composition terms are optimised. Until the present day
the leading methods are largely based on branch-and-bound algorithms or Monte
Carlo enumeration techniques, changing a limited number of residue positions
[12,15,21]. Common for these methods is that they rely on evolutionary informa-
tion of existing structures and use energy potential and atomic scale force-field
approximations to different degrees of detail. In some works the flexibility inher-
ent in the tertiary structure of proteins is taken into account, referred to with
terms such as rotamer conformations and backbone flexibility. The complexity
and exhaustive nature of most methods effectively limits the size of the sequence
or decision space that can be sampled, and the final output consists of a single
or few sequences close to the original sequence.

2.2 Multi-modal Optimisation and Niching

In metaheuristics, the subject of exploration vs. exploitation characteristics has
been thoroughly studied. For population based optimisation algorithms it is well-
known that a higher level of population diversity results in more exploration at
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the expense of exploitation. An elevated population diversity is especially desir-
able for multi-modal, deceptive and/or dynamic problems. In general, if diversity
tends towards zero it indicates that the algorithm has converged towards a single
solution, which might be an undesired behavior if it occurs too early. A number
of works have sought to maintain and control diversity, e.g. crowding methods by
DeJong [3], fitness sharing by Goldberg and Richardson [7], cellular algorithms
by Alba and Dorronsoro [1], diversity preserving selection strategies based on
hamming distance Shimodaira [20] and on altruism by Laredo et al. [13]. Another
approach consists in designing new objectives through multi-objectivisation and
thereby extending the problem to a bi- or multi-objective one. Extending prob-
lems with an objective designed specifically for diversity preservation has been
proposed by Toffolo and Benini [22], Wessing et al. [24], as well as Deb et al. [5].
In these works, objectives have been designed based on the hamming distance
to the closest neighbor, the distance to the nearest better and the number of
individuals in the neighborhood. In this work, the diversity preserving objec-
tive is based on the average distance of each individual to all others which
directly targets the global diversity measure stated by the problem, contrary to
the pairwise local view of existing works. Given the discrete nature, complexity
and multi-modality of the problem, an effective diversity limiting mechanism is
required. The proposed approach achieves this with the added value of making
the population diversity highly variable depending on a single algorithm setting.

3 Problem Description

With the focus on finding diverse solutions to the Inverse Folding Problem (IFP),
we tackle a simplified model developed to matching solely the reference sec-
ondary structure - a requirement for the tertiary structure. A single solution is
represented as a sequence A = {aai} to consist of N residue positions, where
1 ≤ i ≤ N and aai ∈ {1, 2, ...20} corresponds to the set of 20 possible amino-
acids. As the solution space consists of a total of 20N different combinations,
considering that N is around 50–200 for typical design targets, it is clear that
alternatives to exhaustive exploration are required.

3.1 Secondary Structure Estimation

The primary goal of this estimate is to obtain sequences that match the reference
secondary structure. Secondary structure refers to the annotation of segmenta-
tion of the sequence into structural components, here only helices and sheets
are considered. These segments are the result of the protein naturally folding so
that different parts of the 3D structure connect through bonds between amino-
acids on separated residue positions in the sequence. Helices are characterised
by a corkscrew shape, sheets are parallel connected segments, and loops are
everything else. Using the tool PROFphd, updated to ReProf [18], the likely
secondary structure type Tpred(i) can be predicted per amino acid aai in A with
a reliability, Rpred(i) ∈ {1...10} by means of posterior neural network training.
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With Tref (i) the actual type found at position i of the reference secondary struc-
ture, the estimated similarity score Fsec(A) is calculated as a sum of reliability
weighted (mis)matches:

Fsec(A) =
Σmax − ∑N

i=1 Mi

Σmax
, (1)

where

Mi =

⎧
⎨

⎩

0 if Tpred(i), Tref (i) /∈ {helix, sheet}
Rpred(i) if Tpred(i) = Tref (i)

−Rpred(i) if Tpred(i) �= Tref (i)

and
Σmax = maxRpred · |{i|Tref (i) ∈ {H,E}}|

The reference types Tref (i) are extracted from the reference structure Sref , per
residue position i using the standard ‘Define Secondary Structure of Proteins’
(DSSP) algorithm [10]. As seen from Eq. 1, the calculation is only concerned
with helix and sheet structures. A position i only contributes to the score if one
of these are found at either Tref (i) or Tpred(i) and the contribution magnitude
is equal to the reliability of the prediction Rpred(i) where match or mis-match
determines the sign.

3.2 Diversity Measure

As a requirement stated in the problem description, the algorithm should not
only find a single very good solution, but rather a number of good solutions
as different as possible. An effective and simple measure of distance between
two sequences is the Hamming-distance, defined as the number of permutations
necessary to convert one into the other. Not taking gaps or varying sequence
lengths into account, for two sequences A = {aai} and A′ = {aa′

i} where 1 ≤
i ≤ N , the Hamming distance between them is defined as:

dHamm(A,A′) =
N∑

i=1

di, di =
{

0 if aai = aa′
i

1 otherwise . (2)

Equation 2 states that dHamm(A,A′) is essentially the amount of positions one
needs to change to transform A into A′. To obtain a non-negative objective value
for minimisation, the average Hamming distance to all other M − 1 individuals
in the current population, minus the sequence length N is computed:

Fdiv(A) = N − 1
M − 1

M−1∑

i=1

dHamm(A,Ai). (3)

4 Methodology

With the two functions, Fsec(A) and Fdiv(A) defined for integer encoded solu-
tions A = {aai}, a novel multi-objective GA based on NSGA-II [4] was applied.
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Algorithm 1. DAO-QC NSGA-II
1: Initialise(P0) // randomly generated individuals
2: t ← 0
3: while t < tmax do
4: Qt ← makeNewPop(Pt) // selection, mutation, re-combination
5: Rt ← Pt ∪ Qt

6: mutateDoubles(Rt) // eliminate doubles by mutation

7: F ← fastNonDominatedSort(Rt)
8: Pt ← truncate(F ) // based on domination and crowding

9: setQuantileConstraint(Pt) // to penalise worst quantile

10: end while

To achieve better performance, two modifications were done which are discussed
in the following and highlighted in Algorithm1.

In the context of diversity preservation it is clear that having two or more
identical individuals in the population is undesired. Hence doubles are removed
by mutating them with a probability of 5

chrom length in Step 6, rather than elimi-
nating them. A consequence of the nature of the objectives Fsec(A) and Fdiv(A)
is that the latter is much easier to optimise, hence the population quickly con-
sists of very diversified individuals with poor fitness according to Fsec(A). To
counter this effect the Quantile Constraint (QC) is introduced in Step 9 which
prevents a precisely defined worst quantile of the population from being selected
during the next generation starting in Step 4. The selection pressure can then
be selectively adjusted by changing the size of the quantile Cq, which has been
tested using Cq ∈ {0%, 5%, 25%}.

5 Experiments

To study the performance of the proposed modified NSGA-II, with diversity
objective and quantile constraint, a number of experiments have been conducted.
For baseline comparison, the performance results have been compared to a stan-
dard Genetic Algorithm (GA). As final validation of the results is only really
possible in the lab, an altsernative is running a top ranked protein structure
prediction framework, like I-TASSER [19], on selected sequences.

5.1 Experimental Setup

Table 1 summarises the settings of the standard generational GA and the GA
extended by multi-objectivisation into a Multi Objective Genetic Algorithm
(MOGA) with DAO and QC. The DAO-QC MOGA version applies NSGA-II
with standard selection and crossover operators: Binary tournament selection,
1-point crossover and uniform mutation. For the single objective version, a stan-
dard GA was applied using the same crossover and mutation operators. The
total number of function evaluations is limited to 20000 and every experiment
was repeated 30 times. As target samples, two proteins of different structural
classes were chosen as reference: 256b (E. Coli Cytochrome B562) and 1b3a
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Table 1. Algorithm settings

Setting Value

Population size 100

Algorithm NSGA-II and std GA

Termination condition 20000 function evaluations

Selection Binary tournament (BT)

Crossover operator 1-point, pc = 1.0

Mutation operator Uniform, pm = 1
N

Quantile constraint Cq ∈ {0%, 5%, 25%}

(human C-C motif chemokine 5, RANTES). 256b consists of N = 106 amino-
acids packed into 4 main helices whereas 1b3a consists of N = 67 amino-acids
packed into 1 helix, and 3 beta-sheets as well as a long unstructured coil region.

5.2 Algorithm Results

In the following we present and compare the results observed in terms of popula-
tion fitness and diversity averaged over the 30 individual runs. Figure 2 shows the
convergence of the population average fitness and population diversity. Table 2(a)
and (b) present the average final fitness values in numbers by pair-wise cross-
comparing the three Cq settings with the GA. The Wilcoxon test indicator [25]
with a 5 % significance level provides statistical confidence in comparing the sets
with symbols ‘�’, ‘�’ and ‘-’ indicating superior, inferior and no difference. The
symbols refer to the column value, which is the second in each cell.

Table 2. Summary of final fitness averages

Clearly, the higher diversity comes at the expense of lower average fitness due
to the exploration/exploitation trade-off. However the average fitness plots show
that the DAO approach has better final characteristics: The Cq = 5% quantile
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(a) Fitness convergence for 256b
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(b) Diversity convergence for 256b
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(c) Fitness convergence for 1b3a
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(d) Diversity convergence for 1b3a

Fig. 2. Algorithm convergence

DAO-QC NSGA-II overtakes the standard GA for the 1b3a sample scoring a
significantly better final average of 0.136 vs. 0.143 with statistical confidence.
For both samples with Cq ∈ {5%, 25%} the final slope is steeper than the GA,
indicating better performance given enough evaluation budget. With Cq = 25%
the algorithm clearly outperforms the GA with statistical confidence for both
samples with values 0.066 vs. 0.093 and 0.098 vs. 0.143 respectively. The steeper
final slopes can be partially explained by the constantly high diversity seen in
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Fig. 2. From the figure it is also evident that the size of the quantile has a direct
impact on the population diversity, providing an effective tool to achieve the
diversity preferred.

5.3 Validation Results

Ten generated sequences have been randomly selected between different runs
per each sample (256b and 1b3a) for prediction by I-TASSER [19] with the goal
of assessing the meaningfulness of the generated sequences. Table 3(a) and (b)
summarise super-positioning results of the predicted structures. The first column
contains the standard sequence identity score [14] based on alignment with gaps.
The remaining columns are well-known quality assessment metrics computed
with the tertiary structure alignment tool LGA detailed in [26] with default
Global Distance Test (GDT) and Longest Continuous Segments (LCS) analysis
settings. The second column contains the length of the longest continuous seg-
ment N ′ that can be fitted below a 5A threshold after super-positioning the two
structures. With Sa = {sa1 , sa2 , ...saN} and Sb = {sb1, sb2, ...sbN} denoting the 3D
positions of every residue in the two structures to compare, root-mean-square
deviation (RMSD) is defined in Eq. 4, assuming the structures are optimally
aligned.

RMSD(Sa, Sb) =

√
1
N ′

∑

i

|sai − sbi |2, i ∈ {i| |sai − sbi | < 5A} (4)

The Global Distance Test (GDT) Total Score (TS) is a measure indicat-
ing the total average of the average percentage of residues that can be fitted
below each of the thresholds {0.5A, 1.0A, 1.5A, ...10.0A}. The final column is a
quality estimate where values below 2.0 indicates a rather weak alignment (for
further details please refer to [26]). Figure 3(a) and (b) show a graphical super-
positioning of the best scoring generated sequences of Table 3 with PyMol [6].
Overall the sequences generated for the first sample 256b do better than the
1b3a sample, which can also be seen visually. This can largely be explained by
the fact that only secondary structure prediction has been used, and that the

Table 3. Summary of alignment scores of selected sequences
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(a) 256b (b) 1b3a

Fig. 3. Predicted (lighter) and reference (darker) structures superpositioned

latter sample contains less structured elements and mainly beta-sheet segments.
The differences are mostly in coil regions and due to slight mispositioning of
the main structure elements. For the highly structured 256b, the best prediction
gave a global score (GDT TS) of almost 76 % with most residues within 5A. The
non-structured coil of 1b3a diverts away from the target, giving a best GDT TS
of less than 68 %, but a low RMSD of 2.63 of the 56 residues that fit below
5A. Overall about half of the generated sequences were predicted with a total
score above 50 % and an RMSD below or close to 3A, which is reasonable con-
sidering that only secondary structure was optimised and that the main part
have sequence identity below 15 % with a minimum of 6.35 % - much lower than
existing approaches where values below 25 % are rare.

6 Conclusion

In this paper we have presented a novel approach to find a large amount of pro-
tein sequences that may result in a given reference 3D structure. This problem,
referred to as the Inverse Folding Problem (IFP), has received a lot of atten-
tion in theoretical chemistry and biophysics over the last 30 years, mostly for its
potential application in protein design. It is also of interest to study the extent
of the sequence space that may produce similar tertiary structures, and how far
from the original reference sequence such solutions can be found.

By defining the task as finding highly diverse sequences with most simi-
lar secondary structures, an optimisation problem was modeled to find many
well-scoring sequences in a few hours, which is fast compared to state-of-the-
art methods. To achieve high diversity we have adapted the requirement as
an additional objective and extended the problem through multi-objectivisation
to become Multi-Objective with Diversity-As-Objective (DAO). Combining the
novel Quantile Constraint (QC) with the DAO approach allows to shift focus
arbitrarily between diversity or fitness, and final results found are comparable or
better than the standard GA on average, while the diversity of found sequences
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remains higher at the same time. In addition, the algorithm convergence was
observed as being steeper than the standard GA which promises very good solu-
tions given an evaluation budget beyond the computational limitations set in
this work.

Selected sequences of the highly diverse sets generated were inspected further
by predicting their structure with I-TASSER (a top ranked structure prediction
software). Final validation was done by comparing the predicted structures to
their respective reference by tertiary structure super-position. For both samples
256b and 1b3a meaningful predictions were generated with close to 76 % and 68 %
GDT TS scores respectively and RMSD well below 3A. As could be expected,
the method works better for the sample with more defined secondary structure,
and less well in coil regions which are not captured by the objective function.

Future and ongoing works will address the identification of those sequences
that actually fold into the reference structure by designing new objectives and
constraints also addressing coil regions. Independent of this, sequences found
could already be used as starting points for other exact protein design meth-
ods and possibly generate successful designs with a very low sequence identity
comparing to the reference.

Acknowledgments. Work funded by the National Research Fund of Luxembourg
(FNR) as part of the EVOPERF project at the University of Luxembourg with the
AFR contract no. 1356145. Experiments were carried out using the HPC facility of the
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