
Object Detection in Natural Images Using
the Brain Programming Paradigm
with a Multi-objective Approach

Eddie Clemente, Gustavo Olague(B), Daniel Hernández, José L. Briseño,
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Abstract. In the last few decades the human vision system has been
the focus of several researches, using it as a model for solving the object
detection problem in digital images. In this work this approach is taken
to define the algorithm called Artificial Visual Cortex (AVC) which is
inspired in the information flow in the human visual cortex. Additionally,
a new methodology for image description is proposed, which allows the
detection and description of an object in the scene. Furthermore, this
paper describes a new multi-objective learning technique called brain
programming. This paradigm is implemented for the training stage of
the proposed model in order to classify the persons set of the GRAZ-02
image database. The solutions found in this research outperform other
techniques in the state-of-the-art.

Keywords: Artificial Visual Cortex · Object recognition · Object
detection · Brain programming

1 Introduction

Sight is one of the most important senses for human beings, approximately
70 % of the information received by the brain comes from visual perception;
this information helps in the process of making decisions and interacting with
the environment. Hence, several scientific communities, such as computer vision,
have focus their research in understanding the human vision system in order
to emulate it. In this sense, there are several computational models, [1–10],
inspired in the hierarchical structure of the human visual system, its neuropsy-
chological theories and neurophysiological characteristics; some examples are:
the feature integration theory [11], biased competition theory [12], Recognition-
By-Components [13], simple and complex cells model [14], the two path cortical
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model [15], to mention but a few. There is a model of particular interest for this
paper, because it is inspired in the human visual cortex and it is implemented for
object recognition; this model, proposed by Olague et al., it is called Artificial
Visual Cortex (AVC) [16], it shows great performance in establishing the absence
or presence of an object in an image. In this way, we enhanced this model for the
object detection task, in order to recognize and locate an object within a digital
image.

The AVC model is based mainly on two models: a psychological model called
feature integration theory and a neurophysiological model called the two pathway
cortical model. The feature integration theory explains that visual attention
in human beings is performed in two stages. The first one is called the pre-
attentive stage, where the visual information is processed in parallel over the
feature dimensions that compose a scene, which are: shape, color, orientation,
spacial frequency, brightness and motion direction. The second stage is called
focal attention, it integrates the features that were process independently on the
previous stage, and focuses the attention on a region of the scene. Hence, visual
attention is the capability of a creature, living or artificial, of focusing an object
of interest on a visual environment [17]. Visual attention can be formally defined
as “the process that establishes a relationship between the different properties in
the scene, perceived through the visual system, and the objective of finding the
best aspect for solving the task at hand” [18]. The second theory used for this
work is the two pathway cortical model; this neurophysiological model states
that the are two information pathways within the visual cortex, the dorsal and
ventral streams; both subsystems receive the same visual information as input,
but the difference between them is related to the information transformations
performed in each of them [15]. The dorsal stream is mainly related to the
spacial detection of objects and visual attention [19]. Thus, it is also known as
the “where?” or “how?” pathway; the regions of the brain related to this task are:
V1, V2, V3, V5, MST and PP, each region has a specific functionality and they
are hierarchically organized. On the other hand, the ventral stream is linked to
object recognition and shape representation; hence, it is also called the “what?”
stream. The brain areas involved in this functionality are: V1, V2, V4, TEO and
TE. Nevertheless, both information streams are interrelated in order to achieve
their tasks [12,19,20].

The integration of these theories within a computational model as the AVC
is based on the idea of defining an image as the graph of a function, which is
then transformed by a series of operators within a hierarchical process; where
each computational stage emulates the transformations that the visual infor-
mation undergoes in the brain. In this way, the AVC model was designed for
categorizing images regardless of the color, orientation, illumination conditions,
scale or position of the object in the image, and one of its innovations is the
way it selects prominent image features in order to build an abstract represen-
tation of the object. Hence, in images where the object of interest occupies a
big portion of the image the classification rate achieved by the AVC model is
98 % or higher. Nevertheless, when the system is applied on natural images, like
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those present in the database proposed in [21], where the objects are smaller
and immersed in a high content environment, the performances of the AVC is
lower. This might occur because most of the features selected to build the image
descriptor are selected from the environment, instead of the object of interest; on
the other hand, it might occur due to the fact that the descriptor is built using
scattered points from the last feature map, called mental map (MM), where
only the most prominent region is selected for the description of the image, but
this might not correspond to the object of interest. Therefore, in this work we
propose a new methodology for building the image descriptor, where the descrip-
tion is performed using an image region instead of sparse points; rendering the
AVC model capable of selecting a region of the object of interest using class
specific object attributes. Then, implicitly finding the object’s location. Also,
we propose a feedback operation using the first stages of the model for building
the descriptor, since the first maps contain more information about the object.
This new paradigm is called AVCMO due to the multi-objective approach taken
for the training stage of the model in order to detect and describe the object of
interest.

The remainder of this paper is organized as follows, Sect. 2 details the differ-
ent stages of our approach, as well as the implementation of a multi-objective
evolutionary system as the training paradigm for the AVCMO model. After,
Sect. 3 describes the performance achieved by the AVCMO model for classifying
the persons class of the GRAZ-02 database, and finally, the conclusion from this
work are explained in Sect. 4.

2 Methodology

This section describes the AVCMO model, focusing on the new methodoly for
building the image descriptor; also, the brain programming algorithm with a
multi-objective approach is detailed here.

2.1 Description of the AVCMO

The AVCMO is divided in two main stages. In the first stage the system acquires
and transforms the attributes that characterize the object; and in the sec-
ond stage, the system locates the most prominent image region and extracts
a description vector, which is later applied for classification purposes. These two
stages are detailed next.

Feature Acquisition and Transformation. The input for the system is a
digital color image in the RGB color model (red, green, blue); which is then trans-
formed to the CMYK (cyan, magenta, yellow, black) and HSV (hue, saturation,
value) color models, in order to build the set Icolor = {Ir, Ig, Ib, Ic, Im, Iy, Ik,
Ih, Is, Iv}, where each element corresponds to a component of the color models.
The color bands in Icolor are then transformed by four evolved visual opera-
tors (EV O) defined as EV Od : Icolor → V Md; where each operator is applied
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Fig. 1. Visual information flow.

independently aiming to highlight specific features of the object of interest, such
as color (C), orientation (O), shape (S) and intensity (Int); these features are
called dimension (d) and follow an independent information flow, see Fig. 1. In
this manner, d is an element in the dimension set d ∈ {C,S,O, Int}; hence, each
visual map (V Md) highlights promientent information from the object in the
different features.

Then, once the visual maps are calculated they go through a center-surround
process, this process is based on the functionality of the ganglion cells, where
the activation of the cells corresponds to the difference between the stimulus on
the central receptive field and the border one. From a computational point of
view, the objective of this process is to generate a conspicuous map (CM) per
dimension, in accordance with the model in [3]. This subroutine is defined by two
steps; first, starting from the V Md an eight level Gaussian Pyramid is created
P σ

d = {P σ=0
d , P σ=1

d , P σ=2
d , ..., Pσ=8

d }, where σ denotes the Gaussian blurring at
each level and its size. The second step of this process uses this pyramid as input
in order to generate six new maps as follows:

Qj
d = P

σ=� j+9
2 �+1

d − P
σ=� j+2

2 �+1

d ,

where j = 1, 2, ..., 6. Since the levels in P σ
d have different size all the levels are

scaled to the smaller size for calculating the differences. Then, each of these six
maps is normalized and integrated through a summation operation, the resulting
map is normalized and scaled to the size of the input V Md; hence, this resulting
map defines the CMd.



Object Detection in Natural Images 205

Object Detection and Description. After building the conspicous maps,
the next stage of the AVCMO aims to establish the image region with the most
prominent information about the object of interest and create a description
vector from it. This stage is analogous to the functionality of the V4 brain area,
as well as the inferior temporal cortex (IT), since these two areas are related
to the object classification task. Computationally speaking, in this stage of the
process a set of visual operators are applied in order to create a mental map
(MM) per dimension, see Fig. 1. In this way, a set of operator EV OMM is
applied over each CMd seeking the most prominent features per dimension, this
is: MMd =

∑k
i=1(EV OMMi

(CMd)), where d is the feature dimension and k
representes the cardinality of the set EV OMM . Thus, the sumatory integrates
the output of all the operators in EV OMM , creating the MMd.

Once the mental maps are created, they are normalized between 0 and 1
using a lineal interpolation, see Eq. 1; then, they are integrated into a single
saliency map SM , as shown in Eq. 2.

MMd =
MMd − min(MMd)

max(MMd) − min(MMd)
. (1)

SM = MMC + MMO + MMF + MMInt . (2)

When the SM is obtained, the coordinates of the highest value in the map are
stored in a location vector p. Then, a propagation operation is performed around
this position, this requires a process of n iterations, where we seek to add to the
locations vector p(i) the position of the highest value located in the neighborhood
around the points stored in p. In this way, the n elements of p(i) define a region
Υ on the saliency map, which establishes the area where the object is located.
Even though Υ defines the object location, the values used to describe the object
will be extracted from previous stages of the process. This is, the region Υ will
be projected over the visual maps with the aim of obtaining the best features
in each dimensions; then, the pixels with the highest values within each region
in the V Md are selected. Again, a propagation operation is performed in order
to obtain the m highest values in each visual map. Finally, the m values from
each dimension are concatenated creating a description vector ν of size n, which
is then input into a support vector machine (SVM) for classification purposes.
The construction of the description vector is detailed in the Algorithm 1 and it
is depicted in Fig. 1.

2.2 Multi-objective Brain Programming

In the brain programming paradigm each solution has the same hierarchical
structure defined by the AVCMO and what differentiates the solutions are the
set of operators within them. This idea comes from analogy to the natural sys-
tem, where evolution could modify the functionality of each brain area without
altering the order in which they work. Brain programming follows the evolution
cycle of genetic programming, but it proposes a new heterogeneous multi-tree
representation for the individuals, as well as new crossover and mutation oper-
ator for this new representation.
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Input: SM, V Md /*Saliency map and the array of visual maps */
Output: p, ν /*Region coordinates for each visual map and the description vector */
p[1] ← coordMaxVal(SM)
SM [p[1].x, p[1].y] ← 0
for i ← 2 to n increase 1 do

p[i] ← coordMaxValNeighbor(SM, p)
SM [p[i].x, p[i].y] ← 0

end
foreach V Md do

pd[1] ← coordMaxValReg(V Md, p)
vd[1] ← getVal(V Md, pd[1])
V Md[pd[i].x, pd[i].y] ← 0
for i ← 2 to n/4 increase 1 do

pd[i] ← coordMaxValNeighbor(V Md, pd)
νd[i] ← getVal(V Md, pd[i])
V Md[pd[i].x, pd[i].y] ← 0
ν ← concat(ν, νd)

end

end
return p, ν

Algorithm 1. Descriptor

Genotype. One important aspect of the EV Os is their independence, this
facilitates their computational representation as an array. In this way, we can
consider the next analogy with the biological system. The array of EV Os is
similar to a chromosome, and each operator can be considered as a gene, where
each function or terminal used to build the EV O as analogous to the nucleotides
that form a gene. This means that the representation or genotype has three levels,
the first one considers the whole chromosome as a unit, the second level are the
genes and the third level are the functions that define the operators, see Fig. 2.
Thus, the phenotype, defined as the physical manifestation of the genes, is the
result of applying the within the structure of the Artificial Visual Cortex.

Genetic Operators. There are two types of crossover operations, one for chro-
mosome level and the other for gene level operations, these are detailed next:

– Chromosome level crossover: the objective of this operator is the genetic com-
bination and information exchange between chromosomes, this process is per-
formed by exchanging array segments that constitute each of the parents. The
method used is known as cut and splice. First, a crossover point is randomly
selected on from the parent with the shortest string, then the same point is
selected for the other parent; after, the new individual, offspring 1, is gener-
ated by joining the left size of the string from parent 1 and the right size from
parent 2. In a similar way, the offspring 2 is built by using the left side of the
string in parent 2 and the right size in parent 1. This process is depicted in
Fig. 2a.

– Gene level crossover: this operator focuses on the operators that compose the
gene. A crossover point is selected for each three using the smallest one. Then,
parent 1 is selected to create offspring 1, where the sub-threes below the cross
point are replaces by the sub-threes from below the cross point. Similarly,
offspring 2 is created by taking parent 2 and replacing the sub-three from
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Fig. 2. The genetic operators are perform at two levels; Figure (a) shows the crossover
operation at chromosome level, and (b) at gene level, while (c) and (d) depict the
mutation operation at chromosome and gene level respectively.

parent 1. In this way, two new individuals are created. This process is shown
in Fig. 2b.

Mutation Operators. Once the new individuals are created, they might be
modified by one or two kinds of mutation operators: chromosome level mutation
and gene level mutation. These operators work as follows:

– Chromosome level mutation: it consists on exchanging each of the operators
that constitute the chromosome with a randomly generated operator, com-
pletely changing the genotype. This procedure can be seen in Fig. 2c.

– Gene level mutation: for each syntactic three a random mutation point is
selected, then the sub-three below the mutation point is replaced by a new
random sub-three. This kind of mutation only changes a portion of the each
operator. This mutation operator is depicted in Fig. 2d.

Functions and Terminals. In the proposed model each EV O is independent
and is built using its own set of functions and terminals, see Table 1. Hence, we
specially selected functions for each dimension, aiming to find the best features
to characterize the object. Therefore, for the operator EV OO we use Gaussian
smoothing filters with σ = 1 and σ = 2, as well as first and second order
derivatives on the x and y directions. Meanwhile, for the color dimension, we
selected functions like: color opponencies (Opr−g(I), Opb−y(I)), complement
function ((A)c); for building the EV OC operator. In a similar way, aiming to find
prominent shape features we propose to implement mathematical morphology
functions such as: dilation (A ⊕ SEx), erosion (A � SEx), opening (A � SEs),
closing (A � SEs), as well as other operations that result from combining these
four; this set of functions is applied to construct the EV OS operator. In the case
of the terminals, these are defined by the Icolor set, as well as the output from
some functions applied over elements of the same set.
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Table 1. Functions and terminals for the EV O.

Functions for EV OO Terminals for EV OO

A + B, A − B, A × B, A/B, |A|, |A + B|,
|A − B|, log(A), (A)2,

√
A, k + A, k − A, k × A,

A/k, round(A), �A�, �A�, inf(A, B), sup(A, B),
Gσ=1(A), Gσ=2(A), Dx(A), Dy(A), thr(A)

Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv,
Dx(Ix), Dxx(Ix), Dy(Ix), Dyy(Ix),
Dxy(Ix)

Functions for EV OC Terminals for EV OC

A+B, A−B, A×B, A/B, log(A), exp(A), (A)2,√
A, (A)c, thr(A)

Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv,
Opr−g(I),Opb−y(I)

Functions for EV OS Terminals for EV OF

A+B, A−B, A×B, A/B, k +A, k −A, k ×A,
A/k, round(A), �A�, �A�, A ⊕ SEd, A ⊕ SEs,
A ⊕ SEdm, A � SEd, A � SEs, A � SEdm,
Sk(A), Perim(A), A�SEd, A�SEs, A�SEdm,
That(A), Bhat(A), A � SEs, A 	 SEs, thr(A)

Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv

Functions for EV OMM Terminals for EV OMM

A + B, A − B, A × B, A/B, |A + B|, |A − B|,
log(A), (A)2,

√
A, Gσ=1(A), Gσ=2(A), Dx(A),

Dy(A)

MCd, Dx(MCd), Dxx(MCd),
Dy(MCd), Dyy(MCd), Dxy(MCd)

Fitness Function. The fitness function measures the performances of the solu-
tions, which is related to the task at hand. In this case, we focus on the classifica-
tion and localization of an object in an image. Thus, based on the characteristics
of the model we propose two functions, one for measuring the classification per-
formance and one for determining the quality of the solutions for localizing the
object in the image. The first objective is the called Equal Error Rate (EER).
This metric defines the probability of an algorithm for deciding if two instances
correspond to the same class [22]. The EER is defined as the value that satis-
fies fpr = fnr ; where fnr is the false negative rate and fpr is the false positive
rate, fulfilling the following restriction: fnr = 1 − tpr; where, tpr is the true
positive rate. From a ROC (Receiver Operating Characteristic) curve, the EER
can be calculated by extending a line from (0,1) to (1,0), the point where this
line crosses the curve corresponds to the EER. In this way the first objective is
defined as follows:

Objective1 = EER. (3)

The second objective is based on calculating the correspondance between a
groundtruth of the object location in the image and the region Υ selected as
the posible position. In this case, we use the F-measure defined by: Fα(ρ, ϑ) =
(1 + α) · (ρ · ϑ)

(α · ρ) + ϑ
, where α controls the balance between precision ρ and recall ϑ,

with 0 ≤ α ≤ ∞. If α < 1 then ρ is greater than ϑ; on the contrary, if α > 1
then ϑ is greater. Finally, when α = 1, we say that the precision and coverage
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True Positive (TP)

False Negative (FN)

False Positive (FP)

Object

Υ Region

Overlapping Region

ρ = TP
TP+FP

, ϑ = TP
TP+FN

Fig. 3. Correspondence between the attended image region and the object region occu-
pied by the object of interest applied for evaluating the precision ρ and recall ϑ values.

are balanced. In this work we consider that α = 1. The true positive elements
correspond to the pixels that belong to the region Υ and the object region, the
false positive are the pixels in Υ that are not part of the object of interest,
while the false negative are the points in the object that are not included in the
region Υ , as seen in Fig. 3. In this way, after processing n images that contain
the object, the fitness function is defined by the average of the F-measure over
the ω images, this is:

Objective2 =
1
ω

ω∑
i=1

(2 · (ρ · ϑ)
ρ + ϑ

)
. (4)

3 Experiments and Results

In this work, we approach the classification problem from a presence/absence
perspective. We established a protocol composed of three steps; the first two
define the training stage of the model, while the third one corresponds to the
testing phase. Therefore we need three sets of images for the experiments, one
per step. This protocol is described next:

1. Training: this step starts by evaluating each solution with an image set called
training; one image descriptor is created per image. Then, these descriptors
are used to generate a SVM model which labels of each descriptor linking the
image to a class. In order to avoid over training we perform the second step.

2. Validation: in this step, we evaluate all the solutions using another image set,
called validation; then, the descriptors found for this set are classified using
the SVM model created in step 1. The classification results from this step are
used as a fitness function and we continue the evolutionary process.

3. Test: once the brain programming optimization is finished, we take the solutions
from the last generation along their corresponding SVM model in order to eval-
uate their classification performance on another image set, called test; this eval-
uation provides the performances of the solutions in order to compare them
with other methods.
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3.1 Image Data Base

The image data based used for this work is called GRAZ-02, it was proposed
in [21]. This data base was constructed by using similar environments for all
the classes. GRAZ-02 is composed of three classes, where 311 images belong to
the persons class, 365 to the bikes class, 420 to the cars class and 380 images
conform the background set. This last set does not contain persons, bikes or
cars. For this work only the persons class was selected, using the same number
of training and testing images as the experiments presented in [21]. Then, 150
images were selected for the training set, 75 images for validation and 75 images
for the testing set. One of the advantages of this data base is that it provides
segmented images for each of the classes, which was taken as reference for the
F-measure evaluation. Figure 4 shows some image samples from the persons class
in the GRAZ-02 data base.

Fig. 4. Sample images from the persons class.

3.2 Comparison with Other Methods

The evolutionary parameters for the experiments are: 30 generations, 400 indi-
viduals per generation, the initialization of the syntactic trees as done using the
half-and-half method, using 9 levels as maximum tree depth, with a maximum
of 15 genes per chromosome. These parameters were proposed after a tuning
procedure. For the parent selection process we used the SPEA2 algorithm [23].

Figure 5 presents the solutions after evaluating the validation set. Note that
the graphs show the inverse of the EER versus the average of the F-measure,
since the optimization process is performed as a minimization task. One of the
issues of an multi-objective approach is finding the best solution, in this case,
it was selected according to its performance in classifying the test image set, in
order to compare our solution with other methodologies. Nevertheless, due the
multiobjective approach there are some solutions that achieve better results in
locating the person within the image. Thus, the selected solution AV CMO−S1
is detailed in Fig. 5. The AV CMO − S1 model outperforms the methods in the
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where the solution is applied can be seen on the right side of the Figure.
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Fig. 6. Performance comparison of classification with other methods.

state-of-the-art, see Fig. 6, and it is also capable of finding the object location
in the image; some examples of this process are shown in Fig. 5.

4 Conclusions and Future Work

This work shows a new methodology for building the description vector in the
AVC model. This new strategy seeks to create the descriptor using the infor-
mation of the image region where the object is located, implicitly finding its
location. The training process for this model was performed using the evolution-
ary technique called brain programming, implemented from a multi-objective
perspective. This new approach was applied for classifying the persons class of
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the GRAZ-02 data base, achieving better results than those in the state-of-the-
art. Some future work would be to extend the experimentation to other classes
in GRAZ-02 and GRAZ-01.
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