
Investigating Fitness Measures
for the Automatic Construction

of Graph Models

Kyle Robert Harrison1, Mario Ventresca2(B),
and Beatrice M. Ombuki-Berman1

1 Department of Computer Science, Brock University,
St. Catharines, ON, Canada

{kh08uh,bombuki}@brocku.ca
2 School of Industrial Engineering, Purdue University,

West Lafayette, IN, USA
mventresca@purdue.edu

Abstract. Graph models are often constructed as a tool to better under-
stand the growth dynamics of complex networks. Traditionally, graph
models have been constructed through a very time consuming and dif-
ficult manual process. Recently, there have been various methods pro-
posed to alleviate the manual efforts required when constructing these
models, using statistical and evolutionary strategies. A major difficulty
associated with automated approaches lies in the evaluation of candi-
date models. To address this difficulty, this paper examines a number
of well-known network properties using a proposed meta-analysis pro-
cedure. The meta-analysis demonstrated how these network measures
interacted when used together as classifiers to determine network, and
thus model, (dis)similarity. The analytical results formed the basis of a
fitness evaluation scheme used in a genetic programming (GP) system
to automatically construct graph models for complex networks. The GP-
based automatic inference system was used to reproduce two well-known
graph models, the results of which indicated that the evolved models
exemplified striking similarity when compared to their respective targets
on a number of structural network properties.

Keywords: Complex networks · Graph models · Centrality measures ·
Meta-analysis · Genetic programming

1 Introduction

A complex network is a collection of related elements in which the emergent patt-
erns of connections hold significant meaning [23]. Complex networks are referred
to as complex due to their intricate, tightly coupled structure and semantics, not
their size alone [23], and arise in a wide variety of natural and artificial contexts.
Examples of natural networks include social networks, which emerge from human

c© Springer International Publishing Switzerland 2015
A.M. Mora and G. Squillero (Eds.): EvoApplications 2015, LNCS 9028, pp. 189–200, 2015.
DOI: 10.1007/978-3-319-16549-3 16

190 K.R. Harrison et al.

interaction, and biological networks, which aim to describe biological processes
such as protein-protein interaction [5] and neural networks [24]. An example of
artificial networks are technological networks, which describe artificially cons-
tructed systems such as the Internet and power-grid networks [1].

Devising algorithms that explain the growth patterns of networks has been
a topic of interest for over 50 years [10]. These algorithms, known as graph mod-
els, are capable of generating networks of arbitrary size which replicate certain
statistical and structural properties, such as proportions of transitive connections
and path lengths. Graph models have a tremendous number of applications across
many domains and allow both interpolation of previous network states and extrap-
olation of future states; see [16] for an overview of the many uses for graph models.
While accurate graph models have many benefits, their applicability is governed
by how easily they can be created and/or tailored for a specific network at hand.
However, the task of constructing graph models from scratch has traditionally
been done manually – a time-consuming and difficult process [23].

Automated approaches to graph model construction have the potential to
significantly reduce the time and effort for their construction, especially in sce-
narios where the networks are large. A number of statistical methods to gen-
erate meta-models have been proposed to alleviate the manual effort required
in building a graph model [8,17]. Similarly, genetic programming (GP) has also
been recently proposed for the automated inference of graph models [2,3,22].
While the statistical methods are limited in the types of networks they can pro-
duce (e.g., Kronecker graphs produce log-normal distributions), GP provides a
potential solution with less limitations. Furthermore, GP has the potential to
reveal the underlying mechanisms that define the connections, whereas previous
techniques do not. Although automated approaches alleviate prohibitive factors
in graph model construction, they are by no means without their own difficul-
ties. For example, verifying that a model accurately describes the target network
is no trivial task, as the concept of similarity is loosely defined and dependent
upon the network semantics. Furthermore, the process which created the target
network is unknown, requiring the evaluation of the candidate graph model to
be done through graph comparisons. It should be noted that graph comparison,
in this context, is not an isomorphism problem, as the goal is not to reproduce
the target network itself, but rather to infer a model which reasonably approx-
imates the growth patterns that created the target network and, by extension,
replicates its structural properties.

This paper first provides an analysis of network centrality measures of which
the results are used as a basis for the fitness evaluation of a GP system to auto-
mate the construction of graph models. The remainder of this paper is struc-
tured as follows. Section 2 introduces the topic of graph models and network
measures. Section 3 proposes a meta-analysis framework for the analysis of cen-
trality measures. Section 4 describes the GP system used to automatically infer
graph models, while the results of automatic inference are presented in Sect. 5.
Finally, concluding remarks are given in Sect. 6.

Fitness Measures for the Automatic Construction of Graph Models 191

2 Background

This section briefly introduces the network centrality measures and graph models
used throughout the remainder of this study. For brevity, only limited, relevant
information is provided.

2.1 Network Centrality Measures

Global network properties, such as the average geodesic path length which pro-
vides a sense of the information propagation time, are useful to quantify the
overall structure of a network but are limited in that they generally disregard
the emergent local behaviors of individual vertices. Fan et al. [11] point out that
using only topological characteristics to evaluate complex network models can be
misleading. As such, this study makes use of more localized, vertex-level proper-
ties to assess network similarity. Centrality refers to how central or “important”a
vertex is within a network. The importance of a vertex is, however, subjectively
based on the perception of “importance”. As such, many definitions of impor-
tance, and corresponding measures of centrality, have been proposed. This work
examined six well-known centrality measures, namely degree distribution (D),
betweenness (B) [13], closeness (C) [14], local transitivity (LCC)1, eigenvector
centrality (EC) [6], and PageRank (PR) [7].

2.2 Graph Models

Graph models are typically stochastic or probabilistic algorithms which, through
repeated execution, produce a set of graphs that depict commonalities with
respect to certain properties, but are otherwise random [23]. The common prop-
erties among graphs generated by a model are dependent upon the model,
but may include basic structural properties such as the degree distribution [4]
and path lengths [25], or emergent properties such as community structure [18].
Note that a graph model is not expected to reproduce any specific graph, or
to generate isomorphic graphs. Similarly, the automatic construction of graph
models is not an isomorphism problem, thus producing isomorphic graphs is not
the intention.

To perform the analysis of network measures, this work made use of six
well-known graph models exhibiting a variety of different properties. The Grow-
ing Random (GR) model [4] demonstrated simple growth. The Barabasi-Albert
(BA) [4] and Aging Preferential Attachment (APA) [9] models depicted scale-free
degree distributions. The Erdos-Renyi (ER) [10] and Watts-Strogatz (WS) [25]
models represented low and high clustering coefficients, respectively. Both the
ER and WS models produced low average geodesic path lengths, which the latter
was explicitly designed to achieve. Finally, the Forest Fire (FF) model [17] pro-
duced heavily-tailed degree distributions and community structure. Note that
while all six aforementioned models were used to analyze the network measures,
only the BA and ER models were used as targets for the GP system. A further
discussion of graph models can be found in [15].
1 Transitivity is also commonly referred to as the clustering coefficient.

192 K.R. Harrison et al.

3 Meta-Analysis of Network Properties

To determine the performance of a set of centrality measures, used to differ-
entiate networks generated by different graph models, a method of combining
single-measure results was devised as follows. For a given target graph G, graph
model M , and set of measures F , N instances of M were generated. For each of
the instances of M , each centrality measure was compared using a Kolmogorov-
Smirnov (KS) test [19], at a 95 % confidence level, to that of the target graph, G.
The power set (excluding the empty set) of F was generated to examine all
non-empty subsets of measures. For each subset of measures, the p-values cor-
responding to its members were combined using Fisher’s method [12].

The procedure outlined above only compared a single target to a single model.
To compare multiple models to a single target graph, a meta analysis procedure
was used. A classification scheme was derived, allowing ROC curves to be used
for analysis. To construct such a classifier, an assumption was made that if two
graphs were generated by the same model, they would exhibit similar centralities
and thus a high p-value would be obtained when compared. This assumption is
reasonable in that a measure for which this doesn’t hold must produce signif-
icantly different values for networks generated by the same model, and thus is
not a good measure for determining network/model similarity. By extension of
the above assumption, a good subset of measures should produce a high p-value
when combined. If two graphs were produced by the same model, the combined
p-value from each subset of measures was expected to be 1. Conversely, if the
graphs were produced by different models, the combined p-value was expected
to be 0. This reasoning was used to derive a classification system where the
observed p-values from this procedure were taken as an approximation (i.e., the
response) to the expected outcome.

The area under the curve (AUC) was calculated for each ROC curve as a
measure of performance for the corresponding classifier. In the context of this
work, the AUC represented the probability that G, originating from model M ,
will receive a higher p-value using Fisher’s method when compared to graphs
generated by M than when compared to graphs not generated by M .

3.1 Meta-Analysis Results

This section presents the results obtained by repeating the meta-analysis pro-
cedure above using a target graph generated by each of the six models and
aggregating the results. One might argue that using only a single target network
may not be truly representative of the model family. However, in a real-world sce-
nario, there is often only a single example of the network being modeled. Thus,
using a single target network drew a closer parallel to a real-world scenario.

Figure 1 presents the ROC curves for 100 (smallest) and 1000 (largest) vertex
networks. The higher AUC values observed for 1000 vertex networks demon-
strated that larger networks were easier to distinguish due to their more pro-
nounced and emergent structural differences. A key observation was that the
highest AUC attained at each network size was produced by either the set con-
taining the PageRank measure alone or both the PageRank and betweenness

Fitness Measures for the Automatic Construction of Graph Models 193

Specificity (%)

S
en

si
tiv

ity
 (

%
)

PR (0.974)
B, PR (0.973)
D, PR (0.969)
D, B, PR (0.968)
LCC, B, PR (0.957)
D, B, PR, EC (0.956)
D, B, C, PR (0.956)
B (0.955)
D, LCC, B, PR (0.954)
LCC, PR (0.954)

(a) 100 vertex networks

Specificity (%)

S
en

si
tiv

ity
 (

%
)

0
20

40
60

80
10

0

0
20

40
60

80
10

0

100 80 60 40 20 0 100 80 60 40 20 0

B, PR (0.999)
D, PR (0.999)
PR (0.999)
D, B, PR (0.999)
LCC, B, PR (0.997)
D, LCC, B, PR (0.997)
D, LCC, PR (0.997)
B (0.997)
D, B (0.997)
LCC, PR (0.997)

(b) 1000 vertex networks

Fig. 1. ROC curves depicting the ten measure sets with the highest area under the
curve (AUC) values, shown in the legend, for various network sizes.

measures. At each of the four network sizes, the PageRank measure was included
in each of the top five sets of measures. Furthermore, PageRank was present in
nine of the top ten measure sets for the 100, 250, and 500 vertex networks and
eight of the top ten sets when 1000 vertex networks were examined. Similarly,
betweenness was present in at least five of the top ten fitness sets for each net-
work size.

When two measures were combined, it was noted that combining the between-
ness and PageRank measures would insignificantly change the AUC value rela-
tive to only using the PageRank measure, namely the AUC was different by at
most 0.002. When three measures were considered, the subset which contained
the degree, betweenness, and PageRank measures obtained the highest AUC.
As the number of measures combined was increased beyond three, the subsets
which attained the highest AUC became less intuitive. However, it was noted
that the subsets which obtained the highest AUC always contained the degree,
betweenness, and PageRank measures. Based on these observations, the degree,
betweenness, and PageRank were chosen as measures of evolutionary fitness to
be used by the GP system, detailed in the following section.

4 Automatic Construction of Graph Models

To demonstrate the effectiveness of the identified centrality measures as evolu-
tionary fitness criteria, the LinkableGP system [20,21], a linear-object-oriented
GP, was used to automatically construct graph models. An abstract class repre-
senting a generalized graph model, based on the model given in [20], was provided
to the system to define the structure of the evolved models. This abstract model
consisted of three unimplemented methods, namely SelectVertices, CreateEdges,
and SecondaryActions, which were evolved by the GP system. The generalized
model, beginning with an initially empty graph, constructed a network using

194 K.R. Harrison et al.

a single loop, executed once for each vertex to be created. First, SelectVertices
was executed, returning a collection of vertices, C, as potential candidates for
the new vertex to attach to. For each vertex in C, CreateEdges was executed
to produce a list of edges followed by SecondaryActions, which could add new
vertices to C. Each of the evolved methods were provided their own language
elements as detailed in the subsequent sections.

4.1 SelectVertices Method

For each of the methods listed below, a collection which prevented previously
seen elements from being inserted was returned in either stack or queue form.

– GetAll{Stack, Queue}(g) – Select all vertices from g.
– GetRandom{Stack, Queue}(g) – Select a random vertex from g.
– GetRandom{Stack, Queue}(g, n) – Select n random vertices from g.
– GetRoulette{Stack, Queue}(g, f) – Select a vertex from g using roulette

selection with probabilities assigned to vertices via the evaluator function f.
– GetRoulette{Stack, Queue}(g, f, n) – Select n vertices from g using

roulette selection as above.

The vertex evaluator functions and composition operators below were made
available to facilitate more robust selection procedures. In addition to these
functions, integer and floating-point generators with (inclusive) ranges (1, 10)
and (0.0, 1.0), respectively.

– GetDegree() – Computes the degree of the vertex.
– GetLocalTransitivity() – Computes the local transitivity of the vertex.
– GetAge() – Computes the age of the vertex.
– Add(f1, f2) – Computes f1(v) + f2(v).
– Add(f, d) – Computes f(v) + d.
– Mult(f1, f2) – Computes f1(v) × f2(v).
– Mult(f, d) – Computes f(v) × d.
– Pow(f, d) – Computes f(v)d.
– InversePow(f, d) – Computes f(v)−d.

4.2 CreateEdges Method

Each of the functions made available to the CreateEdges method, shown below,
returned a list of edges which were added to the graph after the secondary selec-
tion took place to prevent interference with the SecondaryActions procedure.
A floating-point generator with an (inclusive) range (0.0, 1.0) was also provided.

– AddEdge(v1, v2) – Return an edge between v1 and v2.
– EmptyEdge() – Designates no edge was to be created.
– AddEdgeWithProb(v1, v2, p) – With probability p, return an edge

between v1 and v2.
– AddTriangle(v1, v2) – Return two edges forming a triangle including v1,
v2 and a randomly chosen neighbor of v1 or v2.

Fitness Measures for the Automatic Construction of Graph Models 195

– AddTriangleWithProb(v1, v2, p) – Create an edge between v1 and v2,
and with probability p, create a triangle (as above).

– Duplicate(v1, v2, p) – Returns a list of edges between v1 and each neighbor
of v2. With probability p, an edge is also created between v1 and v2.

4.3 SecondaryActions Method

The SecondaryActions method was responsible for performing actions as a direct
result of adding a vertex and/or edge(s). Integer and floating-point constant
generators with (inclusive) ranges (0, 10) and (0.0, 1.0), respectively, were also
available.

– AddNeighbours(c, n, v) – Adds n randomly selected neighbors of vertex
v to the taboo collection c.

– GetRandomValue(a, b) – Returns a uniformly random integer between a
and b, inclusive, where a and b are integer arguments.

– GetGeometricValue(p) – Returns an integer generated according to a geo-
metric distribution with probability p.

5 Results and Discussion

By evolving a graph model for a known algorithm, the evolved model can be eas-
ily validated against both the network used as a target, referred to as the target
graph, as well as other networks generated by the model. Two well-known mod-
els, namely the BA and ER models were selected as target models. The BA
model was selected as it produces scale-free, power-law degree distributions
which are commonly found in real-world networks. While the BA model, as orig-
inally proposed, is limited in the degree distributions it can generate, the model
nonetheless describes many real world networks such as actor affiliation net-
works and the World Wide Web [4]. The ER model was selected as it can exhibit
non-zero clustering coefficients and does not produce a static number of edges
each iteration. Furthermore, these two models have been used in previous works
[2,3,22]. For this study, the BA model created a single edge per iteration and
used linear preferential attachment while the connection probability of the ER
model was set to 0.05 (5 %) to prevent excessive edge density.

For both models, a target graph was generated with 100 and 500 vertices. For
each target graph, the GP system was run 30 times to produce a set of candidate
models using empirically-determined parameters as follows. A population of 50
individuals was evolved over 50 generations and used an 80 % crossover rate
and 20 % mutation rate. Tournament selection using 3 individuals was employed
and elitism was set at 2 individuals per generation. Initial chromosome lengths
were randomly assigned within the following ranges: 1–15 for the SelectVertices
and SecondaryActions methods whereas the CreateEdges method had a smaller
range of 1–5. A sum-of-ranks strategy was employed during evolution using three
fitness measures, namely the KS test statistic comparing the degree distribution,

196 K.R. Harrison et al.

betweenness centrality, and PageRank measures of a single network generated
by the candidate model and the target network. The final model was selected as
the highest ranked model from the 30 runs using sum-of-ranks. In addition to the
centrality measures used during evolution, the number of edges, average geodesic
path length (AGP), and global clustering coefficient (CC) were also compared
between networks generated by the evolved model and the target model. Bold KS
statistic entries denote the average test statistic was below the critical threshold.

5.1 Evolving the Barabasi-Albert Model

When a 100 vertex BA network was used as the target, both the mean and
minimum observed AGP, shown in Table 1, were higher for the evolved model
than the true model. Although the mean and minimum AGPs were 0.325 and
0.352 higher, respectively, both were within a single standard deviation of the
true model. By definition, the transitivity of both the evolved and BA mod-
els was zero and the number of edges was constant. Examining the centrality
measures, the average D statistic for the PageRank measure (0.159) was rela-
tively high compared to the degree and betweenness measures (at 0.053 and 0.066
respectively), however, this value was still below the critical threshold of 0.192.

When a 500 vertex BA network was used as the target, the average AGP
was 0.261 higher in graphs generated by the evolved model than the true model
while the maximal difference was 0.776. However, examining the centrality mea-
sures demonstrated that the evolved and true models produced similar networks
with respect to the employed fitness measures. With average KS statistics of
0.023, 0.026, and 0.073 for the degree, betweenness, and PageRank measures,
respectively, the centrality measures were insignificantly different among net-
works generated by the evolved and true models. For comparison, Algorithm2
presents the evolved BA500 model, simplified to remove bloat, alongside the true
BA model (Algorithm 1). Note that in the true model, the in-degree was used in
a directed fashion which caused slightly different selection probabilities.

In summary, the BA model was effectively reproduced in both experiments,
however, the evolved models demonstrated higher values for the AGP measure.

Algorithm 1. BA Model
function SelectVertices(g)

f ← GetInDegree() //Degree - 1
S ← GetRouletteStack(g, f)
return S

end function

function CreateEdges(v, u)
E ← AddEdge(u, v)
return E

end function

function SecondaryActions(v, S)
//No action

end function

Algorithm 2. Simplified BA500 Model
function SelectVertices(g)

f ← GetDegree()
S ← GetRouletteStack(g, f)
return S

end function

function CreateEdges(v, u)
E ← AddEdge(u, v)
return E

end function

function SecondaryActions(v, S)
//No action

end function

Fitness Measures for the Automatic Construction of Graph Models 197

Table 1. Comparison of networks generated by the evolved models and their respective
true models.

Vertices Measure Min μ Max σ

100 BA100 Edges 99 99 99 0

AGP 3.947 4.806 5.843 0.481

CC 0 0 0 0

Barabasi-Albert Edges 99 99 99 0

AGP 3.595 4.481 5.842 0.522

CC 0 0 0 0

Average D Statistic Degree 0.020 0.053 0.100 0.020

Betweenness 0.030 0.066 0.140 0.024

PageRank 0.090 0.159 0.300 0.043

500 BA500 Edges 499 499 499 0

AGP 5.497 6.353 7.640 0.560

CC 0 0 0 0

Barabasi-Albert Edges 499 499 499 0

AGP 5.261 6.092 6.864 0.434

CC 0 0 0 0

Average D Statistic Degree 0.010 0.023 0.050 0.011

Betweenness 0.012 0.026 0.050 0.009

PageRank 0.050 0.073 0.114 0.016

100 ER100 Edges 214 246.833 280 13.643

AGP 2.855 3.013 3.237 0.084

CC 0.026 0.048 0.070 0.012

Erdos-Renyi Edges 217 245.867 267 14.920

AGP 2.900 3.033 3.221 0.102

CC 0.024 0.051 0.067 0.010

Average D Statistic Degree 0.030 0.099 0.220 0.041

Betweenness 0.060 0.107 0.160 0.030

PageRank 0.060 0.106 0.140 0.024

500 ER500 Edges 6529 6660.767 6761 58.078

AGP 2.164 2.175 2.189 0.006

CC 0.051 0.053 0.054 0.001

Erdos-Renyi Edges 6094 6238.300 6366 62.745

AGP 2.209 2.223 2.240 0.007

CC 0.048 0.050 0.052 0.001

Average D Statistic Degree 0.080 0.145 0.224 0.033

Betweenness 0.044 0.069 0.090 0.013

PageRank 0.036 0.056 0.088 0.011

198 K.R. Harrison et al.

5.2 Evolving the Erdos-Renyi Model

When a 100 vertex ER network was used as a target, the evolved model showed
a connection probability of 0.0507 – a difference of 0.0007 compared to the true
model. The post-validation results, shown in Table 1, showed that the average
number of edges, AGP, and CC measures were similar between the evolved model
and the true model; the evolved model exemplified 0.0957 more edges, 0.020 lower
AGP, and 0.003 lower CC, on average, than the true model. The average KS
statistics at 0.099, 0.107, and 0.106 for the degree, betweenness, and PageRank
measures, respectively, were all well below the critical threshold of 0.192 which
further demonstrated the similarity among the evolved and true models.

Algorithm 3. ER Model
function SelectVertices(g)

S ← GetAllStack(g)
return S

end function

function CreateEdges(v, u)
E ← AddEdgeWithProb(v, u, 0.0500)
return E

end function

function SecondaryActions(v, S)
//No action

end function

Algorithm 4. Simplified ER500 Model
function SelectVertices(g)

S ← GetAllStack(g)
return S

end function

function CreateEdges(v, u)
E ← AddEdgeWithProb(v, u, 0.0535)
return E

end function

function SecondaryActions(v, S)
//No action

end function

When a 500 vertex ER network was used as the target, the evolved model
had a 0.0535 connection probability and exemplified roughly 422 more edges per
graph, on average. As Table 1 demonstrated, networks produced by the evolved
model had an AGP that was 0.048 higher than those produced by the true
model, while the average transitivity was only 0.003 higher. The significantly
different degree distributions (average KS statistic of 0.145) among networks
generated by the true and evolved models were attributed to the increased con-
nection probability, and therefore the increased expected degree, of the evolved
model. Conversely, the average KS statistic for the betweenness and PageRank
measures, 0.069 and 0.056, respectively, were both well below the critical thresh-
old of 0.086. For comparison, Algorithm4 presents the evolved ER500 model,
simplified to remove bloat, alongside the true ER model (Algorithm3).

In summary, the GP system was able to reproduce the ER model with striking
accuracy, however, slightly higher connection probabilities were evolved.

6 Conclusion

This paper proposed a meta-analysis framework to analyze the discriminatory
power of centrality measures when comparing graph models of complex networks.

Fitness Measures for the Automatic Construction of Graph Models 199

Six well-known graph models were used to evaluate six network centrality mea-
sures. Results indicated that of the examined centrality measures, the degree
distribution, betweenness centrality, and PageRank were the most effective for
quantifying the (dis)similarity of networks generated by different graph models.
A genetic programming (GP) system for the automatic construction of graph
models was proposed using the results of the meta-analysis to form the fitness
evaluation. The GP system was used to automatically infer two well-known graph
models, namely the Barabasi-Albert (BA) and Erdos-Renyi (ER) models. Target
networks from these models were generated with 100 and 500 vertices, respec-
tively, and used as the target networks within the GP system. Results indicated
that these well-known graph models could be evolved with striking accuracy.
Furthermore, the exceptional quality of the evolved models provided empirical
evidence of the proposed meta-analysis’ merit.

Many avenues of future study have become apparent throughout the course of
this work. First and foremost, this paper only addresses undirected, unweighted
networks and considers only centrality measures. Examining further, non-
centrality network measures along with weighted and directed networks should
be an immediate future study.

References

1. Arianos, S., Bompard, E., Carbone, A., Xue, F.: Power grid vulnerability: a com-
plex network approach. Chaos: an Interdisciplinary. J. Nonlinear Sci. 19(1), 013119
(2009)

2. Bailey, A., Ventresca, M., Ombuki-Berman, B.: Genetic programming for the auto-
matic inference of graph models for complex networks. IEEE Trans. Evol. Comput.
18(3), 405–419 (2014)

3. Bailey, A., Ventresca, M., Ombuki-Berman, B.: Automatic generation of graph
models for complex networks by genetic programming. In: Proceedings of the
Fourteenth International Conference on Genetic and Evolutionary Computation
Conference, GECCO 2012, pp. 711–718. ACM, New York, NY, USA (2012)

4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

5. Berg, J., Lässig, M., Wagner, A.: Structure and evolution of protein interaction
networks: a statistical model for link dynamics and gene duplications. BMC Evol.
Biol. 4(1), 51 (2004)

6. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92,
1170–1182 (1987)

7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst. 30(1), 107–117 (1998)

8. Chung, F., Lu, L.: The average distance in a random graph with given expected
degrees. Internet Math. 1(1), 91–113 (2004)

9. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks with aging of sites. Phys.
Rev. E 62(2), 1842 (2000)

10. Erdös, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–297
(1959)

11. Fan, Z., Chen, G., Zhang, Y.: Using topological characteristics to evaluate complex
network models can be misleading. arXiv preprint arXiv:1011.0126 (2010)

http://arxiv.org/abs/1011.0126

200 K.R. Harrison et al.

12. Fisher, R.: Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh
(1925)

13. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry
40, 35–41 (1977)

14. Freeman, L.C.: Centrality in social networks: conceptual clarification. Soc. Netw.
1(3), 215–239 (1979)

15. Goldenberg, A., Zheng, A.X., Fienberg, S.E., Airoldi, E.M.: A survey of statistical
network models. Found. Trends Mach. Learn. 2(2), 129–233 (2010)

16. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.:
Kronecker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11,
985–1042 (2010)

17. Leskovec, J., Faloutsos, C.: Scalable modeling of real graphs using Kronecker multi-
plication. In: Proceedings of the 24th International Conference on Machine Learn-
ing, pp. 497–504. ACM (2007)

18. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: Proceedings of the eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining,
pp. 177–187. ACM (2005)

19. Massey Jr., F.J.: The kolmogorov-smirnov test for goodness of fit. J. Am. Stat.
Assoc. 46(253), 68–78 (1951)

20. Medland, M.R., Harrison, K.R., Ombuki-Berman, B.: Demonstrating the power of
object-oriented genetic programming via the inference of graph models for com-
plex networks. In: 2014 Sixth World Congress on Nature and Biologically Inspired
Computing (NaBIC), NaBIC 2014, pp. 305–311. IEEE (2014)

21. Medland, M.R., Harrison, K.R., Ombuki-Berman, B.: Incorporating expert knowl-
edge in object-oriented genetic programming. In: Proceedings of the 2014 Confer-
ence on Genetic and Evolutionary Computation Companion, GECCO Comp 2014,
pp. 145–146. ACM, New York, NY, USA (2014)

22. Menezes, T., Roth, C.: Symbolic regression of generative network models. Scientific
reports 4 (2014)

23. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)
24. Stam, C.J., Reijneveld, J.C.: Graph theoretical analysis of complex networks in

the brain. Nonlinear Biomed. Phys. 1(1), 3 (2007)
25. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature

393(6684), 440–442 (1998)

	Investigating Fitness Measures for the Automatic Construction of Graph Models
	1 Introduction
	2 Background
	2.1 Network Centrality Measures
	2.2 Graph Models

	3 Meta-Analysis of Network Properties
	3.1 Meta-Analysis Results

	4 Automatic Construction of Graph Models
	4.1 SelectVertices Method
	4.2 CreateEdges Method
	4.3 SecondaryActions Method

	5 Results and Discussion
	5.1 Evolving the Barabasi-Albert Model
	5.2 Evolving the Erdos-Renyi Model

	6 Conclusion
	References

