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Abstract. Public health is a critical issue, therefore we can find a great research
interest to find faster and more accurate methods to detect diseases. In the
particular case of cancer, the use of mass spectrometry data has become very
popular but some problems arise due to that the number of mass-to-charge ratios
exceed by a huge margin the number of patients in the samples. In order to deal
with the high dimensionality of the data, most works agree with the necessity to
use pre-processing. In this work we propose an algorithm called Heat Map
Based Feature Selection (HmbFS) that can work with huge data without the
need of pre-processing, thanks to a built-in compression mechanism based on
color quantization. Results shows that our proposal is very competitive against
some of the most popular algorithms and succeeds where other methodologies
may fail due to the high dimensionality of the data.
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1 Introduction

Diseases that are detected at an advanced stage, usually lead to high death rate, hence early
detection of conditions such as cancer are critical for public health [1]. With the devel-
opment of new technologies for data analysis such as microarrays and mass spectrometry
(MS) it has been possible to understand diseases much better than before [2]. For several
diseases, but in the particular case of cancer, the use of MS to profile high resolution
complex protein and compare the results of cancer vs normal samples has become very
popular and early diagnosis has been made possible [3, 4]. The main idea is to find
measurable indicators for a biological condition, these indicators are known as biomarkers
and help in a considerable way for the early detection of diseases [5].

To gather MS data a mass spectrometer device is required, and the most common
current techniques are [2]: (1) Matrix-Assisted Laser Desorption and Ionization Time-Of-
Flight, known as MALDI-TOF which allows the analysis of biomolecules (such as DNA,
proteins, peptides and sugars) and (2) Surface-Enhanced Laser Desorption and Ionization
Time-Of-Flight, known as SELDI-TOF that it is used mainly for the analysis of protein
mixtures in tissues samples such as blood, urine and other clinical samples [6].

In this research we have used data that was collected using SELDI approach. Using
this technology is possible to generate protein features information that has been
successfully used in the detection of several diseases using serum and other complex
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biological specimens [7, 8]. When analyzing the MS data, the value (height) for each
feature represents the ion abundance at a specific mass-to-charge (m/z) interval. The
combination of multiple m/z values produces a pattern that represents a condition or
state, such representation is known as the fingerprint for such condition. Hence if we
have different fingerprints for some conditions, e.g. for cancer and non-cancer samples,
it would be possible to identify the disease presence or absence.

The use of high resolution MS data to search proteins that help to detect the
presence of a particular disease has greatly accelerated the biomarkers discovery phase
[9], however it has been found that very few biomarkers reappear in new test data,
which leads to the conclusion that there is a classifier overfitting problem caused by
learning from very few samples with lots of variables [10]. When dealing with a large
number of variables, techniques such as Support Vector Machines (SVM) are used as
they can work with very high dimensional data, however even with such approaches, it
has been found that improvement is possible after variable reduction [11, 12].

The task of selecting just a part of the spectra, i.e. a subset of features, is a complex
process that can be divided in two main approaches [13, 14]: (1) Feature extraction:
where the key idea is to transform the high dimensional features into a whole new
space of lower dimensionality e.g. Principal Component Analysis (PCA) [15], and (2)
Feature selection: which main goal is to find the smallest number of features that still
describes the data in a reasonable way [16]. This is the approach used in this work.

When dealing with MS data, feature selection (FS) becomes a very fundamental
part of the learning process as the number-of-features to number-of-samples ratio is
quite unbalanced. In our particular research we used the high-resolution ovarian dataset
provided by the National Cancer Institute (NCI): Center for Cancer Research [17]
which has 370,575 features for each sample and includes a total of 216 patients; such
amount of data gives us a matrix size of over 80,000,000 that most works prefer to
avoid due to the complexity it represents.

As part of this research we have developed an algorithm called Heat Map Based
Feature Selection (HmbFS) which is domain independent (i.e. not specifically designed
for MS data) and it is able to compute a large amount of data with limited memory
resources. Experiments were carried out using an on-line machine learning framework
known as ML Comp that allows objectively algorithm comparison and provides
external researchers with the ability to reproduce all our experiments, something that is
usually hard to achieve on most works of this kind [18].

The remaining of this paper is structured as follows: In Sect. 2, some related works
are presented. In Sect. 3 we present the formal proposal and algorithm description. In
Sect. 4 we describe our experiments and results. In Sect. 5 we present the final con-
clusions and discuss future work.

2 Related Works

In the past decade we have seen many works dealing with MS data and trying to reduce
its inherent high dimensionality by several different techniques, in this section we
present some of the works that are more closely related with ours.
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In 2005, Yu, et al. [1] used a Bayesian neural networks to identify ovarian cancer
from the high-resolution NCI dataset. Using binning as pre-processing it was possible
to removed almost 97 % of the data, leaving only 11,301 features (m/z ratios).
According to their results they managed to get an overall accuracy of 98.49 % using a
leave-one-out cross validation approach.

In 2006, Susmita et al. [2] used the NCI ovarian cancer dataset but in low-reso-
lution form (15,154 features). The FS methods Bonferroni [19] and Westfall and
Young [20] were employed to reduce the original data to 1700 (11.21 %) and 1912
(12.61 %) respectively. Best result in their experiments is achieved by a combination of
Westfall and Young with SVM with an accuracy of 96.5 %.

In 2009, Liu [21] proposes a new application of wavelet feature selection extraction
that in conjunction with SVM was used to do classification on the same ovarian cancer
dataset that we are using. A pre-processing step to resample the data was employed,
resulting dataset was almost 96 % smaller and using SVM they got a classification
accuracy of 98 % although using an unknown dataset partition.

In 2010, Jiqing et al. [22], used NCI low-resolution ovarian dataset and proposed a
sparse representation based FS for MS data. Authors managed to remove around 68 %
of the data by limiting the m/z range from 1,500 to 10,000; this decision is based on the
rationale that points lower than 1,500 are distorted by those of energy-absorbing
molecules (EAM). Further reduction is achieved by baseline correction using local
linear regression [23] and normalization. Using a wrapper FS approach guided by
SVM, authors achieved an accuracy of 98.3 %.

In 2013, Soha et al. [24], presented a genetic programming (GP) approach for FS in
MS data. The data was pre-processed reducing it from the 370,575 features to 15,000.
The key idea in this work is to combine two well known FS algorithms Information-
Gain (IG) [25] and Relief-F [26] and use their outputs as terminals for the GP method.
However the process is very exhaustive as the GP method is designed in a wrapper
approach. When using a SVM approach for classification they got an accuracy of
93.15 %.

As a summary, we can see a common pattern in all related works, due to constrains
such as computer resources and algorithms complexity, dealing with raw MS data is
reported as unmanageable. In this work we present an efficient algorithm that is capable
of dealing with huge number of features with limited resources.

3 Formal Proposal

The context of this work is focused on supervised machine learning, in order to
formally express the place that FS takes in the learning process, we first must define the
supervised learning process itself.

In order to build a model to solve a problem, for supervised learning it is required to
have a set of data known as training set, this data is composed by a set of labeled (e.g.
cancer vs normal) instances which are features vectors containing the information that
is required to learn.

An instance is therefore formalized as an assignment of values V = (v1, …, vn) to a
set of features F = (f1, …, fn), where each instance is labeled with at least one of the
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possible c1, …, cn classes of C. In the case of MS data, each possible value in the m/z
spectrum is a feature, and the specific m/z concentration is the value assigned to that
feature; later each instance is labeled with the condition they represent.

Since the training set is the input to build a classifier, it is clear that its performance
is inherently dependent of the values of such features. And as pointed out by Yu [27],
in theory, the more features we have, the more power to discriminate between classes
we would have, however, in practice with a limited number of instances (as is the case
of MS data) the excessive number of features not only causes the learning process to be
slow but there is a high risk of overfitting the data, as irrelevant or noisy features may
confuse the learning algorithm. To handle this problem is where FS takes place.

To formalize the concept of FS, let R be a reduced (subset) version of F and VR the
value vector for R. So in general, FS can be defined [28] as finding the minimum subset
R such as P(C | R = VR) is equal or close to P(C | F = V), or in other words, if the
probability distribution of different classes given the reduced subset is equal or close to
the original distribution for the whole features in F.

Since our goal is to reduce the original space, it is required to identify such features
that are relevant to the learning process and discard the rest. John et al. [29] propose a
relevance categorization that is shown below.

Let F be the full set of features, Fi a particular feature and Si = F – {Fi}. Now we
can identify three types of features, strongly relevant, weakly relevant and irrelevant
given the following conditions:

A feature Fi is strongly relevant iff: P(C | Fi, Si) ≠ P(C | Si)
A feature Fi is weakly relevant iff: P(C | Fi, Si) = P(C | Si) and 9 S0i � Si

such as PðC jFi; S0iÞ 6¼ PðC j S0iÞ:
A feature Fi is irrelevant iff: 8 S0i � Si; PðC jFi; S0iÞ ¼ PðC j S0iÞ
Given these definitions, we have that a feature is strongly relevant if it is always

required in order to keep (or improve) the original conditional class distribution, while
a weakly relevant feature may or may not be required to keep the probability. Then an
irrelevant feature is simply not required and its removal causes very minimal or not
impact at all in class probability.

Our proposal hence consist in finding such relevant features in an automatic way
employing our algorithm called Heat Map Based Feature Selection (HmbFS) which has
been designed to work with very high dimensional datasets (such as MS data) with very
low memory footprint thanks to a data compression mechanism. The FS process is
divided in two stages: (1) Compression and (2) Selection, which are described below.

Stage 1 - Compression: in order to handle the analysis of hundred thousands of
features with efficiency, a key factor that takes our proposal apart from others is that we
do not perform single feature analysis but instead we join features in “groups”, hence
reducing the number of required iterations to compare the usefulness of features.
Therefore our relevance definition had a slight change as we do not analyze Fi anymore
but instead a group Gi that is defined as Gi = {Fr, Fg, Fb}, these features stands for
FeatureRed, FeatureGreen and FeatureBlue and their corresponding values represent
color intensities, but together (i.e., as a group) the relation between them creates a true
color.
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In order to produce these groups G, we employ a lossy compression technique that
builds a graphical representation of the data, the result of such transformation is known
as Heatmap. The first step for compression is the normalization of each isolated feature
at a time, i.e. each feature is treated independently, to formalize this, let I be the full set
of instances (e.g. samples in MS data) and Ix a particular sample for the whole dataset
D, each value for Fi that belongs to a instance Ix (IxFi) is then normalized to a 0–255
interval as shown:

8 IxFi 2 D: dIxFi ¼ IxFi � min IFið Þ
max IFið Þ � min IFið Þ
� �

� 255 ð1Þ

Where min(IFi) and max(IFi) represents the minimum and maximum value
respectively that a feature gets across all the instances of the dataset. This process is
repeated for every feature Fi across all instances Ix. Once the features have been
normalized, each of the packages containing Fr, Fg and Fb can be mapped to a true
color expressed in red/green/blue (RGB) format, together the three features can rep-
resent up to 16,777,216 different colors or patterns. However, since the idea is to build
a generalization of the original data, we apply a technique called Color Quantization
that allows the mapping of a true color to a lower depth color scale, in this case we have
reduced to a 4-Bit 16-Colors. The idea is to discard small data variations or uniqueness,
and produce a new set of data which is more general and consistent, the process of
quantization is performed by finding the minimum euclidean distance between the true
color and the 16 reference colors, ranging from Rj=1 to Rj=16, the RGB values for each
of those colors are the standard values defined in the HTML 4.01 specification.

To formalize the information quantization, let G be the set of all the built groups
and Gi a particular group (which is composed by Fr, Fg and Fb) that belongs to a
instance Ix, each of those IxGi combinations are then compared against all the reference
colors Rj in set R to produce the new single-value compressed feature Fi that will
represent the old 3-feature as shown below:

8 IxGi 2 D and 8j 2 1; . . .; 16f g

new IxFi ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IxGiFr � RjFr
� �2þ IxGiFg � RjFg

� �2
þ IxGiFb � RjFb
� �2

s !
ð2Þ

Once all the distances between true color and reference color have been calculated,
we select the reference color Rj with the minimum euclidean distance, and this process
gives origin to a new dataset that is purely built in reference colors, or in other words, it
is a compressed lossy version of the original. Dataset reduction is possible due to the
fact that the reference color is represented by a single value (e.g.: red, which is
composed by RGB values of 255,0,0) instead of three different features, this com-
pression makes possible to reduce the original 370,575 feature dataset to only 123,525.
It is important to notice that such reduction is only performed for selection, the original
data is untouched.
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Stage 2 - Feature Selection: after compression is completed (Stage 1), selecting
relevant features is based on the rationale that different classes should look different,
hence their associated quantized colors should look different as well. Since FS occurs
in the new compressed dataset, the process see regular features Fi although we know
they represent a group in the original space. The mode is calculated for each feature-
class (FC) relation i.e. a mode for feature 1 and class 1 (F1C1) and another mode for
F1C2, and so on.

The conditional probability that a given value for mode belongs to a class or
another is compared and if such probability exceeds other classes then we define the
feature as useful. A threshold Th can be applied to produce more strict comparisons. In
order to formalize the criteria, let P(Cj|Mo(Fi)) be the probability that a given mode in
Fi be associated to a class Cj, then the feature Fi usefulness is defined as follows:

Useful Fið Þiff :
9 Cj;Ck
� � � CjP Cj jMo Fið Þ� �

[ P CkjMo Fið Þð Þ � Th½ � ð3Þ

After all useful features have been identified, we need to restore the original data,
however such process is very efficient as each group is mapped to exactly 3 features,
e.g. if FS process selected (compressed groups) Fi = {2}, {5}, {7} and {10}, we know
they are mapped to the original space to Fi = {4, 5, 6}, {13, 14, 15}, {19, 20, 21} and
{28, 29, 30}. Below we present the algorithm’s pseudo-code:

As it can be seen from pseudo-code, our proposal is very programming friendly.
The compression stage allows to reduce problem complexity and evaluate features in a
smaller space without losing the original data because, at the end of the process we map
our results to it. Figure 1 summarizes the whole process:

In the next section we present our experiments setup and results obtained after
processing the NCI High-resolution MS Ovarian Cancer dataset, which is commonly
used as we reviewed in related works.

4 Experiments and Results

As correctly pointed out by Zhang [18], reproduce experiments in works such as this
one is sometimes hard to achieve, in our approach we want to fill that gap by allowing
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readers to easily replicate our experiments and open the possibility to objectively
compare any future work with ours. In order to achieve our goal we have performed
our experiments in the Machine Learning (ML) Comp framework which can be
accessed on-line for free in order to review our experiments or create new ones, this
allows researchers to work in the same conditions than we did, with the exact same
data, train/test partitions and hardware resources.

To test HmbFS we selected the NCI High-resolution ovarian cancer dataset as
several works can be found using this dataset. Unlike most works, we wanted to deal
with raw MS-data in order to push the limits of FS algorithms. In Table 1 we present
our dataset setup compared with related works.

As it can be seen from Table 1, we performed all experiments with raw MS-data, no
pre-processing of any kind was performed, the only modification to the data was a
transformation to the SVM-light format that ML Comp requires. The summary of
performed experiments is reviewed below:

Exp. 1 – Learning without FS: Our first goal was to find out how important FS can be
when dealing with such big amount of data, for that task, we selected 5 well known
multi-class algorithms and run the learning process without any FS aid.

Fig. 1. HmbFS algorithm process overview

Table 1. NCI ovarian cancer dataset characteristics comparison

Authors Resolution Original
features

Features after
pre-processing

Reference

Yu et al. High 373,401 11,301 [1]
Susmita et al. Low 15,154 No pre-processing. 15,154 [2]
Liu High 368,750 15,000 [21]
Jiqing et al. Low 15,154 10,000 [22]
Soha et al. High 370,575 15,000 [24]
This work High 370,575 No pre-processing.

370,575
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Exp. 2 – FS in high-dimensional space: In a previous work [12] we evaluate the top
10 feature selection algorithms. In this work we used the top performers, Chi2 [30],
Fcbf [31] and Relief-F [32] and coupled them with top classification algorithms to
evaluate results.

Exp. 3 – Learning from HmbFS reduced datasets: Since experiments 1 & 2 proved
that most current techniques are not efficient enough to handle such amount of data
with limited resources, we decided that in order to have a reference point to compare
HmbFS we had to reduce the datasets to allow other FS algorithms to handle the
problem. However, HmbFS handled the full 370,575 features without any issue as can
be seen in http://mlcomp.org/runs/36467.

The summary of classification error for our experiments is presented in Table 2,
multiple partitions of data using stratified random subsampling can be found on
MLComp as well as the experiments ID (reported in parenthesis) to validate our results.
Two main threshold values are evaluated, using Th = 2, the number of selected features
was 86,010 but for more aggressive reduction a Th = 12 was used to reduce the original
data to only 2,802, over 99.4 % reduction compared with original data. The first 4 rows
represent experiment 1, rows 5–8 are for experiment 2, and last 4 for experiment 3.

Table 2. Classification test error for multiple FS and classification algorithms

Classifier/Feature
selection

Selected
features

Bonzai
Boost

SVM with
SMO

Logistic
regression

Adagrad
with SGD

MIRA

None 370,575 OOM(36388) OOM(36396) OOM(36399) 0.077(36402) OOM(37004)

Fcbf (FS cause

OOM)

– OOM(36941) OOM OOM OOM OOM

Relief-F

(FS cause OOM)

– OOM(36391) OOM OOM OOM OOM

Chi2

(FS cause OOM)

– OOM(36390) OOM OOM OOM OOM

HmbFS Threshold=2

(Two)

86,010 OOM(36946) OOM(36396) 0.046(36945) 0.077(37007) 0.154(37008)

HmbFS

Th=2 + Fcbf
286 0.123(36600) 0.154(37003) 0.062(37045) 0.108(37006) 0.108(37005)

HmbFS

Th=2 + Relief-F
60,202 0.123(36599) 0.077(37011) 0.046(37047) 0.062(37012) 0.123(37013)

HmbFS

Th=2 + Chi2
34,265 0.077(36598) 0.123(37015) 0.046(37046) 0.108(37017) 0.154(37016)

HmbFS

Threshold=12

(Twelve)

2,802 0.077(36499) 0.092(36507) 0.108(36511) 0.108(36509) 0.092(37018)

HmbFS

Th=12 + Fcbf
31 0.108(36518) 0.154(37020) 0.123(37042) 0.138(37022) 0.123(37019)

HmbFS

Th=12 + Relief-
F

2,685 0.092(36503) 0.092(37026) 0.092(37044) 0.108(37023) 0.092(37024)

HmbFS

Th=12 + Chi2
2,695 0.031(36502) 0.092(37028) 0.092(37043) 0.123(37030) 0.108(37029)
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From Table 2, we can clearly see the problem under investigation by reviewing the
first 4 rows, where most of the values are Out-Of-Memory (OOM). Current FS algo-
rithms cannot easily handle the amount of data that raw MS represents, learning
algorithms suffer from similar problems, since only Adagrad was able to process the
entire dataset without any FS aid. Our proposal, HmbFS was the only FS algorithm
capable of reducing the entire dataset, but in order to have a reference for comparison,
we reduce the data in *23 % (using Th=2) to make feasible the FS for competing
algorithms. Best result was obtained by a combination of HmbFSTh=12 and Chi2,
together they achieved an accuracy of 96.9 % with only *0.7 % of the original data.

5 Conclusions and Future Work

From the related works we reviewed, the ones that used the high resolution NCI
ovarian cancer dataset had to use different techniques for pre-processing, our experi-
ments confirmed the necessity for such approach, as dealing with the raw MS data its
very complex because at least two reasons: (1) There is a lot of noise and (2) Com-
plexity to process such big data. After pre-processing the data however, we can notice a
FS step is still performed, hence reducing the data even more. Since a FS algorithm
main goal is to remove useless data (e.g. noise) and produce a small subset of feature
that inherently reduce processing complexity, it would be ideal to employ a FS on MS
data without the need for pre-processing, however it is hard to find FS algorithms
capable to reduce such big datasets, in our experiments, none of the reviewed top
algorithms was able to handle the data, all of their tests failed due to OOM errors.

Our proposal, HmbFS aims to be memory efficient in order to manage very high
dimensional datasets. Experiments proves that our algorithm was able to process the
almost 56 million elements (370,575 features by 151 train samples) where others failed,
we were forced to help competing algorithms with a pre-filtering by HmbFS in order to
have a reference point to compare with. Based on the way our algorithm works
(grouping features), it can be used as a first-pass followed by a second-pass filtering by
a classical FS algorithm that evaluates individual features, however this may not
necessary lead to better results as shown in Table 2.

Our best result overall was achieved by using HmbfsTh=12 and Chi2 as a second-
pass FS, with an accuracy of 96.9 % (run id 36502), such result however was achieved
without any pre-processing, that excludes any alignment of the MS data as well,
comparing with other works, we believe HmbFS can lead to very competitive results as
very similar accuracies were obtained, even without pre-processing the data. Another
remarkable detail of our experiments, is that all of them can be (1) replicated and (2)
objectively compared, thanks to the ML Comp framework.

As far a future work it can be divided in three sections right now:

(1) General dataset comparison: we want to perform more experiments of HmbFS
with very different datasets in order to prove its usefulness in other areas other
than MS data.

(2) Automatic threshold: right now we need to set a manual threshold Th in order to
decide “how much we want to reduce”, while the Th is the only required
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parameter and its quite intuitive, it is interesting to get rid of it by an automatic
approach.

(3) Human interaction in feature selection: since the theory behind HmbFS involves
color generation, we would like to experiment with human-in-the-loop (HITL) to
find patterns in such colors that may lead to improved selection.
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