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    Abstract     High-grade central nervous system (CNS) tumors are notorious for high 
rates of recurrence and poor outcomes. A small cohort of tumor cells, dubbed tumor 
stem cells (TSC), are now being recognized as an important subset of the tumor 
that is resistant to chemotherapy and radiotherapy and account for the high recur-
rence rates. Recent research is developing modalities to target TSCs specifi cally in 
a bid to improve the response of the tumor as a whole. The methods being employed 
to target TSCs include targeting TSC-specifi c pathways or receptors, TSC-
sensitizing agents to chemotherapy and radiotherapy, immunotherapy, TSC-
differentiating agents, and viral therapy. This chapter provides an overview of 
strategies that are expected to help develop new and more effective treatments for 
CNS tumors.  
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        Introduction 

    Central nervous system (CNS) tumors are notorious for including some of the 
most lethal tumors in humans. The most common intrinsic brain tumor, the glio-
blastoma multiforme (GBM), carries a uniformly poor prognosis with most 
patients not surviving up till 2 years after diagnosis. The standard management 
strategy for patients with GBM is based on the protocol described by Stupp and 
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colleagues: specifi cally, maximal safe surgical excision followed by radiotherapy 
and temozolomide (TMZ) chemotherapy [ 1 ]. Unfortunately, in spite of these 
aggressive measures, recurrence almost always occurs. This therapeutic regimen 
has only been able to increase the median survival for GBM from 12.1 months to 
the current 14.6 months [ 1 ]. The current prognosis of the disease stresses the 
importance of developing novel treatment strategies and therapeutics targeting 
tumor stem cell (TSC) populations have recently received notable attention in this 
regard. 

 The TSC hypothesis is based upon the presence of a small subset of tumor cells 
with properties akin to stem cells. According to this premise, TSCs sit at the apex of 
all tumor cells and exhibit properties of multi-lineage capacity and self-renewal [ 2 ]. 
While self-renewal maintains the population of the TSCs, the process of differentia-
tion produces downstream tumor progenitor cells that generate the genetically 
diverse progeny of the tumor mass. 

 An important property of TSCs is the ability to initiate tumors when xenografted 
in nude mice. The xenograft initiation effi ciency is signifi cantly higher than 
implantation of traditional GBM cell lines [ 3 ,  4 ]. Additionally, TSCs are generally 
more resistant to conventional cytotoxic therapy, leading to tumor repopulation via 
differentiation of unaffected TSCs after cytotoxic therapy. Therefore, TSCs are 
thought to be a major factor driving recurrence and therapeutic resistance in 
 gliomas (Fig.  1 ).   

    Challenges with Current Treatment Strategies 

 Current therapeutic strategies advocate a uniform regimen for patients with CNS 
tumors. For chemotherapy in GBM, TMZ is considered an essential part of the 
treatment approach. TMZ causes cytotoxicity against GBM by the creation of 
O6-methylguanine (O6MeG) lesions—leading to DNA fragmentation and disrup-
tion of DNA replication. The resulting effects include tumor suppression and tumor 
cell apoptotic cell death [ 5 ]. 

 While the addition of TMZ to the chemotherapy protocol is only able to improve 
the median survival to 14.6 months, Heigi and colleagues reported a specifi c patient 
cohort of long-term GBM survivors with a median survival of 21.7 months [ 6 ]. 
Further investigation of their cohort revealed an absence of tumor methylguanine- 
DNA methyltransferase (MGMT) expression in their patients [ 6 ]. By removing the 
methyl groups added on by TMZ, MGMT prevents tumor cell death. However, 
methylation of its promoter leads to absent or reduced expression of the MGMT and 
increases the cytotoxic effi cacy of TMZ. The overall effect is that of increased 
tumor cell death, translating into improved patient survival. 

 The effect of MGMT status on the response to treatment points towards the 
importance of understanding the differences within the tumor cell cohort that 
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  Fig. 1    Implication of cancer stem cells (CSCs) in cancer therapies and tumor relapse. ( a ) 
Anticancer therapies may not kill all tumor cells equally. CSCs that sustain tumor growth or 
another population of more slowly cycling tumor cells may be responsible for tumor resistance to 
therapies and tumor relapse. Depending on the population responsible for tumor relapse, new 
strategies should be designed to eradicate all tumor cells. ( b ) The CSC model suggests that inhibit-
ing CSC renewal or promoting their differentiation should induce tumor regression. Drugs could 
impair CSC self-renewal, induce their specifi c cell death, induce their differentiation, or target 
their niche. All of these strategies would lead to the depletion of the pool of CSCs and subsequent 
tumor regression. However, if the CSC potential is reversible, or if newly acquired mutations con-
fer resistance to therapy, then tumor regression would only be transient, leading to cancer relapse 
(reprinted with permission from Beck B, Blanpain C, Nat Rev Cancer. 2013 Oct;13(10):727–38. 
Unraveling cancer stem cell potential)       
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 dictates the ultimate response to treatment. For treatment purposes the TSC fraction 
is increasingly being recognized as an important, and in some ways fundamentally 
different, part of the tumor. Liu and colleagues reported that CD133+ cells depicted 
a multifold higher activity of MGMT compared to CD133− cells, which translates 
into improved DNA repair and increased resistance to TMZ [ 7 ,  8 ]. Another reason 
for the increased resistance to TMZ may be the downregulation of autophagy- related 
proteins in the TSCs [ 9 ]. TSCs have also shown to possess stronger drug resistance 
to other conventional anticancer drugs, such as doxorubicin (Dox), etoposide (VP-
16), carboplatin, and BCNU due to an enhanced expression of multidrug resistance 
(MDR) 1 [ 10 ]. Thus, increasing evidence points towards the relatively refractory 
nature of TSCs to conventional chemotherapy. 

 While Beier and colleagues were able to show that TMZ induced a dose- and 
time-dependent decline of brain TSCs in a cell culture study, TMZ needed clinically 
unreachable levels to be effective [ 11 ]. Glioma TSCs also show an upregulation of 
mRNAs of FAS-associating death domain (FADD)-like antiapoptotic molecule 
(FLIP), B-cell CLL/lymphoma 2 (Bcl-2), Bcl-X, and some inhibitor of apoptosis 
(IAP) family members [ 12 – 14 ]. Other factors that confer a protective advantage to 
TSCs include a higher expression of breakpoint cluster region pseudogene 1 
(BCRP1; drug-resistant gene) and antiapoptosis proteins and inhibitors [ 7 ]. 

 The fraction of tumor cells expressing CD133 is also known to be enriched after 
radiation in gliomas [ 15 ]. CD133-expressing glioma cells survive ionizing radiation 
in increased proportions relative to most other tumor cells. This is because TSCs 
preferentially activate the DNA damage checkpoint in response to radiation, and 
repair radiation-induced DNA damage more effectively than CD133-negative tumor 
cells. With exposure to conventional radiation, CD133+ cells exhibit enhanced acti-
vation of three key mediators of cell cycle check points: Rad17, Chk1, and Chk2 [ 16 , 
 17 ]. Interestingly, if administered specifi c inhibitors of the Chk1 and Chk2 check-
point kinases TSCs become more radiosensitive, akin to CD133− tumor cells [ 16 ]. 

 Due to their inherent resistant nature, TSCs are worthwhile targets for the devel-
opment of specifi c treatment modalities to improve the overall response of tumors 
to treatment [ 18 ]. Targeting a specifi c molecular protein signal pathway of TSCs 
with a therapeutic target is one of the ways investigators are aiming to eradicate 
these cells. Other strategies include virotherapy, increasing TSC chemosensitivity 
and radiosensitivity by using hypersensitivity agents [ 19 ,  20 ], immunotherapy using 
autologous dendritic cells, and using differentiation agents in a bid to promote dif-
ferentiation of TSCs [ 21 ]. Improving knowledge of the unique characteristics of 
TSCs is driving the development of TSC-specifi c therapeutics. Based on the sug-
gested pivotal role of TSCs in the origin, development, and maintenance of tumors, 
future therapies will aim to effectively eradicate them to improve the response rates 
in tumors and decrease recurrences. We will now review some of the basic strategies 
being employed to target TSCs that are expected to help engineer more effective 
treatment strategies in the future.  
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    Targeting TSC-Specifi c Pathways and Receptors 

 One of the major methods to target TSCs is to identify pathways and/or receptors 
that are specifi c for TSCs (Fig.  2 ). These pathways can then be exploited to decrease 
the number of TSCs while combining with conventional therapeutics will treat the 
overall tumor mass. Some of the major targets of interest are summarized below.  

 Notch ligands, receptors, and targets have been found in a wide range of neo-
plasms, including, but not limited to, lung, breast, cervix, renal, pancreas, medul-
loblastoma (MB), and GBM [ 22 – 31 ]. Additionally, in many of these tumors 
increased Notch activity has been shown to promote tumor growth, with studies 
showing that Notch pathway blockade inhibits proliferation of tumor cells. In the 
CNS, Notch signaling pathway regulates neural stem cells (NSCs). Studies have 
also demonstrated higher Notch activity in CNS TSCs [ 32 ]. 

  Fig. 2    Mediators of TSC treatment resistance. Depicted are the various treatment resistance 
mechanisms and pathways differentially expressed or regulated in TSC versus their differentiated 
cell counterparts.  Blocked red lines  indicate ways to inhibit or block these mediators (from Schmalz 
PG1, Shen MJ, Park JK. Cancers (Basel). 2011 Feb 10;3(1):621–35. Treatment resistance mecha-
nisms of malignant glioma tumor stem cells (open access))       
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 The Notch pathway blockade by gamma-secretase inhibitors is another important 
pathway that depletes glioma TSCs through reduced proliferation and increased 
apoptosis associated with decreased AKT and STAT3 phosphorylation [ 33 ]. Using a 
three-dimensional organotypic explant system of surgical GBM specimens, Hovinga 
and colleagues inhibited Notch signaling and reported not only decreased prolifera-
tion and self-renewal of tumor cells, but also a decrease in endothelial cells [ 25 ]. 
These fi ndings suggest that the Notch pathway plays a critical role in linking angio-
genesis and TSC renewal. A more recent study suggested that the brain microvascu-
lar endothelial cells are the source of Notch ligands that lead to TSC sustenance and 
renewal [ 31 ]. A Notch signaling pathway inhibitor RO4929097 is currently being 
evaluated in clinical trials for recurrent and progressive GBMs (NCT01122901). 

 The hedgehog (Hh) pathway is another signifi cant pathway that plays an  essential 
role in development of the cerebellum [ 34 ,  35 ]. MB, a primitive neuroectodermal 
tumor, is thought to arise from immature neural progenitors in the cerebellum [ 36 ]. 
Additionally, Michael and colleagues showed that genomic alterations in compo-
nents of the Hh signaling pathway were present up to 25 % of human MBs [ 37 ]. 
Additional work using knockdown experiments of Bmi1 demonstrated that Hh sig-
naling drives Bmi1 expression, which is a key TSC regulatory gene implicated in 
the pathogenesis of MB [ 38 ]. 

 The Hh pathway is similarly important in the pathogenesis of gliomas. Gli, a 
component of the Hh signaling pathway, is amplifi ed in gliomas [ 39 ]. Bar et al. 
reported that cyclopamine blocks the Hh pathway causing a depletion of TSC in 
GBM [ 40 ]. Likewise, Clement and colleagues reported that interference of Hh-Gli 
signaling with cyclopamine or through lentiviral mediated silencing resulted in 
decreased self-renewal and tumorigenicity of TSCs [ 41 ]. SANT-1 inhibition of Hh 
has also been shown to reduce proliferation of glioma TSCs [ 42 ]. 

 Glioma TSCs have also shown a positive correlation with microvessel density 
and have multiple regulatory roles in endothelial cells [ 43 ]. They are thought to 
enhance the migration and proliferation of the endothelial cells by secretion of sonic 
hedgehog (Shh), leading to activation of the Hh pathway of the endothelial cells 
[ 44 ]. Consequently, GDC-0449 or vismodegib (a small-molecule antagonist of the 
Hh pathway) has recently garnered interest and is being tested in a clinical trial for 
recurrent GBM (NCT00980343) [ 45 ]. A case report of a patient with refractory 
metastatic MB managed with GDC-0449 has also been reported. This treatment 
resulted in rapid (although transient) regression of the tumor and reduction of symp-
toms [ 46 ]. GDC-0449 is also being evaluated in clinical trials for recurrent and 
recalcitrant MB (NCT00939484 and NCT00822458). 

 Bao and colleagues were the fi rst to report the intimate relationship between glioma 
TSCs and the microvasculature. They reported that CD133+ cells produced high levels 
of VEGF that induced endothelial cell migration. Conversely, treatment of CD133+ 
GBM cells with bevacizumab blocked the tumor cells’ ability to induce endothelial cell 
migration and initiate tumors in vivo [ 47 ]. Similarly, Calabrese et al. demonstrated that 
treatment of GBM with bevacizumab depleted tumor blood vessels and caused a sig-
nifi cant reduction in the number of GBM TSCs [ 48 ]. Due to the effi cacy of antiangio-
genic agents in preclinical studies, they have been tested in clinical trials. Unfortunately,  
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bevacizumab has failed to show improvement in the overall survival of patients with 
newly diagnosed GBM [ 49 ]. Similarly, cediranib did not prolong progression-free sur-
vival in patients with recurrent GBM, either as monotherapy or in combination with 
lomustine, compared to patients who were treated with lomustine alone [ 50 ]. 

 Amplifi cation and/or mutation of receptor tyrosine kinases, such as epidermal 
growth factor receptor (EGFR), is another common genetic alteration in GBM [ 51 , 
 52 ]. Recent studies have demonstrated the presence of a constitutively active EGFR 
mutant (EGFRvIII) associated with glioma TSCs. This pathway potentiates tumor 
growth and heterogeneity through IL-6-mediated Notch signaling [ 53 ,  54 ], and Src 
family kinase (SFK)-dependent phosphorylation of Dock180 [ 55 ,  56 ]. Clinical 
trails investigating the effi cacy of EGFR inhibitors however have yielded disap-
pointing results [ 57 – 59 ]. 

 Aberrant Wnt signaling is molecularly linked to many human cancers, including 
colorectal, breast, ovarian, and hepatocellular carcinoma, neuroectodermal tumors, 
and glioma [ 60 – 63 ]. Dysregulation of the Wnt-pathway has also been documented 
in glioma TSCs [ 64 ,  65 ]. Investigators have also identifi ed a role for this pathway in 
MBs [ 66 ,  67 ]. Other similar targets currently being investigated to treat CNS TSCs 
include the homeobox (HOx) family [ 7 ], phosphatase and tensin (PTEN) [ 68 ], 
telomerase [ 69 ], effl ux transporters [ 70 ,  71 ], and microRNA [ 72 – 74 ].  

    Chemotherapy and Radiotherapy Sensitizers 

 Increased resistance to chemotherapy is a great challenge when treating TSCs. 
However investigators have reported several ways to potentiate the cytotoxicity of 
chemotherapeutic agents. These include cell-cycle checkpoint abrogation 
[ 75 ,  76 ], depletion in the expression of antiapoptosis proteins [ 77 ], and DNA 
repair enzymes [ 78 ]. 

 A molecular chaperone, 90-kDa heat-shock protein (hsp90), has recently been 
described as a chemotherapy sensitizer because it is expressed at 2–10-fold higher 
levels in tumors compared to normal tissues [ 79 ]. Ohba and colleagues reported that 
inhibition of hsp90 potentiated the cytotoxicity of chemotherapeutic agents in human 
glioma cell lines [ 80 ]. On the other hand, Sauvageot and colleagues reported that 
while 17-AAG (inhibitor of hsp90) inhibited the growth of glioma cells and although 
it has a synergistic effect with radiation, it was not found to synergize with TMZ [ 81 ]. 

 GPI 15427, a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor, signifi -
cantly increases the life span of its tumor-bearing mice when it is administered 
systemically shortly before TMZ [ 82 ]. The same group later used the oral route to 
administer GPI 15427 and found it to be effi cacious as a chemosensitizer as well 
[ 83 ,  84 ]. 

 More recently, the effect of secreted frizzled-related protein 4 (sFRP4), a Wnt 
signaling antagonist, in chemosensitizing glioma TSCs was examined. The results 
indicated that sFRP4 was able to signifi cantly sensitize glioma TSCs to doxorubicin 
or cisplatin [ 85 ]. Similarly, another study used proteasome inhibitor bortezomib and 
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revealed that combination therapies based on bortezomib and bevacizumab offered 
an increased benefi t when the two agents are used in combination [ 86 ]. Xu et al. 
targeted CD44, which is upregulated in GBM, and reported that its depletion 
impeded the growth of GBM and sensitized the tumor cells to cytotoxic drugs 
in vivo [ 87 ]. Tyrosine kinase inhibitors have also been experimented for sensitiza-
tion of the tumor. Wachsberger and colleagues used cediranib, a potent receptor 
tyrosine kinase inhibitor that inhibits all three VEGF receptors. They reported that 
while cediranib did not radiosensitize the glioma cells, it did enhance the effective-
ness of TMZ [ 88 ]. 

 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) is one of the most commonly used 
chemotherapeutic agents in the treatment of GBM but it often fails to eradicate 
TSCs. Research has uncovered an overexpression of multiple ion channel genes 
that are related to drug effl ux. However when a chloride channel blocker, 
4,4′-diisothiocyanostilbene-2,2′-disulfonic acid, is used in combination with 
BCNU, the effect of BCNU is seen to synergistically increase [ 89 ]. 

 Some investigators have aimed to disrupt the TSC niche by administering antian-
giogenic agents with the intention of disrupting the stemness of the tumor cells. By 
losing the stem-cell characteristics the tumor cells may become more sensitized to 
chemotherapy. This technique has been used by researchers to show that combined 
antiangiogenic and cytotoxic drugs can result in a signifi cant reduction in the num-
ber of glioma TSCs [ 90 ]. 

 There has also been a concentrated effort to understand the biology of TSC 
radioresistance and develop approaches to sensitize the tumor cells to ionizing radi-
ation. As TGF-β is a modifi er of radiation responses, TGF-β receptor (TGFβR) I 
kinase inhibitor (LY2109761) has been used in combination with radiotherapy as an 
approach to increase the radiosensitivity of glioma cell lines including in TSCs [ 91 ]. 
Similarly, LY364947, another small-molecule inhibitor of TGF-β type I receptor 
kinase, was used by investigators to show improved tumor response when it was 
administered prior to radiotherapy [ 92 ]. A TGF-β inhibitor, LY2157299, alongside 
TMZ-based treatment regimen is also being evaluated in an ongoing clinical trial 
(NCT01220271). 

 EGFR activation has also been implicated in the radioresistance of many can-
cers, including brain tumors. Combining EGFR targeting with radiotherapy is an 
appealing option to increase the cytotoxic effect of radiation. To test this strategy, 
Geoerger et al. used gefi tinib (tyrosine kinase inhibitor) in two xenograft models: an 
EGFR-amplifi ed glioma and an EGFR-expressing ependymoma. For both the mod-
els, there was a positive trend towards superior antitumor activity when combined 
therapy was administered (gefi tinib + radiation) [ 93 ]. 

 Kang and colleagues further investigated the effect of gefi tinib in glioma TSCs 
and found that it enhanced radiosensitivity of TSCs by reducing EGFR-Akt acti-
vation and DNA-PKcs expression. This was accompanied by enhanced irradiation- 
induced DNA double-strand breaks and inhibition of its repair [ 94 ]. Likewise, 
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another group investigated the effi cacy of ZD1839 (Iressa), a selective EGFR 
tyrosine kinase inhibitor, on the radiation sensitivity of the U251 GBM cell line. 
In their radiation survival experiments, ZD1839 had a signifi cant radiosensitizing 
effect and increased tumor cell death [ 95 ]. In the clinical domain, a phase 1/2 
study of radiation therapy with concurrent gefi tinib for newly diagnosed GBM 
showed good tolerance of the drug but no benefi t in survival [ 96 ]. Other tyrosine 
kinase inhibitors investigated as radiosensitizers for GBM include erlotinib [ 57 ] 
and vandetanib [ 97 ]. 

 Signal transducer and activator of transcription (STAT) 3 is a member of a family 
of DNA-binding molecules, and the aberrant activity of the JAK2/STAT3 pathway 
is associated with glioma TSCs. Inhibition of this pathway leads to decreased pro-
liferation of glioma TSCs [ 98 ,  99 ]. Yang and colleagues reported that resveratrol 
(inhibitor of the STAT3 axis) therapy signifi cantly improved the survival rate in 
their xenotransplant model in part by synergistically enhancing the radiosensitivity 
of radiation-treated GBM TSCs [ 100 ]. 

 STAT3 pathway also plays a key role in mediating CSC properties in MB-derived 
CD133(+) cells [ 101 ]. Celecoxib is a selective COX-2 inhibitor and has been shown 
to potentially reduce STAT3 phosphorylation [ 102 ,  103 ]. Incubation of MB TSCs 
with celecoxib has shown to dose-dependently suppress the TSC properties of the 
tumor cells and enhance the radiotherapy effect on the induction of apoptosis [ 104 ]. 
Similarly, inhibition of phosphorylated STAT3 by cucurbitacin I has also demon-
strated enhancement of the chemoradiosensitivity of MB TSCs [ 101 ]. 

 Valproic acid (VPA) is a commonly prescribed antiepileptic drug used for the 
management of seizures in brain tumor patients. Besides its antiseizure property, 
VPA is an effective inhibitor of histone deacetylase and is involved in modulating 
chromatin structure and gene expression [ 105 – 107 ]. Interaction between VPA and 
TMZ has been studied to depict enhanced cytotoxicity in TMZ-sensitive cell line 
(D384) and the TMZ-resistant cell line (T98). The enhancement of TMZ-induced 
apoptosis is associated with increased reactive oxygen species production and glu-
tathione depletion. Pretreatment with  N -acetylcysteine can partially recover the 
apoptotic effect of the TMZ/VPA combination treatment [ 108 ]. Furthermore, the 
combination of VPA and TMZ also causes signifi cant radiation enhancement in the 
glioma cell lines [ 109 ]. 

 Another approach to make glioma TSCs more radiosensitive is to inhibit the 
DNA damage responses (DDR) that follow radiotherapy [ 110 ]. A dual phos-
phoinositide 3-kinase/mTOR inhibitor NVP-BEZ235 can potently inhibit two cen-
tral DDR kinases, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) 
and ataxia-telangiectasia mutated (ATM), and has been shown to potentiate the 
damage caused by ionizing radiation in glioma cells [ 111 ,  112 ]. The recognition of 
various pathways and receptors that can be modulated to increase the chemoradio-
sensitivity of CNS TSCs is an area of intense research that promises to identify 
specifi c clinical targets that may be exploited.  
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    Immunotherapy 

 GBMs secrete multiple immunosuppressive factors, including transforming growth 
factor-β (TGF-β) and prostaglandin E2 (PGE2), which lead to a profound immuno-
suppressive effect both locally and systemically [ 113 ,  114 ]. TGF-β expands the 
pool of immunosuppressive regulatory T cells, resulting in suppression of T cell 
proliferation. Additionally, TGF-β and PGE2 downregulate the expression of major 
histocompatibility complex (MHC) class II, as well as the antigen processing of 
dendritic cells (DCs) [ 115 ]. Disruption of the immunosuppressive environment rep-
resents a promising immunological target to treat tumor cells. 

 Glioma cells also express certain antigens that are not expressed elsewhere in the 
brain. These antigens can be recognized by T cells, which can play an important role 
in tumor rejection. Some of the major glioma antigens include MAGE-1 [ 116 ], 
SOX6 [ 117 ], gp100, TRP-2 [ 118 ,  119 ], EGFRvIII [ 120 ], L13Ra2 [ 121 ], HER-2 
[ 118 ], WT1 [ 122 ], SART-3 [ 123 ], and SOX11 [ 124 ,  125 ]. In general, immunothera-
pies consist of antibody-mediated immunotherapy, active immunotherapy that 
induces antitumor immunity in patients via a cancer vaccine, and adoptive or pas-
sive immunotherapy whereby tumor antigen-activated T cells are prepared ex vivo 
and administered to patients [ 114 ]. 

 Tenascin is a well-known antigen associated with glioma and is an extracellular 
matrix molecule that is prominently expressed in the fi brillary matrix and perivas-
cular patterns of gliomas [ 126 ,  127 ]. Multiple monoclonal antibodies (mAb) spe-
cifi c for human tenascin have also been generated [ 128 ,  129 ]. As EGFR is highly 
expressed by glioma cells, a chimeric mAb (cetuximab) has also been used in clini-
cal trials but showed disappointing results [ 130 ]. More recently, a chimeric form of 
mAb ch806 administered to a patient with anaplastic astrocytoma showed good 
localization of the mAb at the tumor [ 131 ]. Various clinical trials have also studied 
the effi cacy of various mAb to EGFR [ 114 ]. 

 HER2-specifi c T cells against CD133+ cells generated by transduction with a ret-
roviral vector encoding a HER2-specifi c chimeric antigen receptor have been used by 
investigators to show sustained regression of autologous GBM xenografts [ 132 ]. The 
same group also reported regression of experimental MB following transfer of HER2-
specifi c T cells [ 133 ]. Similarly, IL-13 receptor alpha2 (IL13Ralpha2) is a glioma-
restricted cell-surface epitope that is not otherwise detected within the CNS. Numerous 
preclinical studies have demonstrated the ability of L13-zetakine-redirected T cells to 
cause regression of GBM and GBM TSCs, as well as MB TSCs [ 134 – 137 ]. 

 Dendritic cells (DCs) are the most potent antigen-presenting cells and have the 
ability to prime naïve T cells. A variety of tumor-associated antigens (specifi c 
tumor-associated peptides, tumor RNA and cDNA, tumor cell lysate, or apoptotic 
tumor cells) have been tested in numerous studies [ 138 ,  139 ]. Initial clinical trials 
using DC vaccines have shown to have strong systemic and intracranial T cell 
response and robust infi ltration with T cells along with positive clinical outcomes 
[ 140 – 142 ]. Some studies have also suggested that eliminating the regulatory T cells 
would lead to improved anti-glioma immunity [ 143 ,  144 ].  
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    TSC Differentiation 

 Due to their nature, TSCs play an important role in the tumorigenicity and mainte-
nance of CNS tumors. While other agents aim to decrease the number of TSCs via 
specifi c targeting, differentiation agents aim to preferentially route the TSC into 
differentiating into progenitor cells. The strategy helps in decreasing the number of 
TSCs and gives rise to downstream tumor stem cells that are much more likely to be 
vulnerable to established therapeutics. 

 One of the fi rst agents to be used as a differentiating agent for GBM TSCs was 
bone morphogenetic protein (BMP) 4 [ 145 ]. BMPs have an instructive role in the 
adult brain stem cell niche and favor the acquisition of an astroglial fate [ 146 ,  147 ]. 
Piccirillo and colleagues demonstrated that BMPs trigger the Smad signaling cas-
cade in GBM cells. This was followed by a decrease in the size of CD133+ popula-
tion and a decrease in their clonogenic ability [ 145 ]. 

 A closer look at the oncogene BMI1 that regulates gene expression by modifying 
chromatin organization demonstrated that BMI1 was highly expressed in CD133+ 
cells. Knockdown of this gene using short hairpin RNA-expressing lentiviruses 
resulted in the inhibition of clonogenic potential in vitro and of brain tumor forma-
tion in vivo [ 148 ]. More recent research has shown the importance of BMI1 to self- 
renewal in CD133+ populations as well [ 149 ]. 

 Metformin, a fi rst-line drug for type II diabetes, was recently reported to possess 
anticancer properties affecting the survival TSCs in breast cancer models [ 150 –
 152 ]. Würth and colleagues investigated the effect of metformin on glioma cells and 
reported a TSC-specifi c inhibition of Akt-dependent cell survival pathway that 
affected the self-renewal mechanisms [ 153 ]. Clinical trials using metformin for 
treatment of GBM are being conducted in the light of these promising results 
(NCT02149459 and NCT01430351). 

 Induction of autophagy has also shown to promote differentiation in glioma 
TSCs. Drugs such as rapamycin [ 154 ] and curcumin [ 155 ] trigger the differentiation 
cascade in TSCs by activating autophagy. Other differentiating targets include gir-
din, an actin-binding protein [ 156 ], and the vanilloid-2 cation channel [ 157 ]. 
Cannabinoids and sorafenib have also been documented to induce glioma TSC dif-
ferentiation and deplete GBM TSCs [ 158 ].  

    Virotherapy and Gene Therapy 

 Among the emerging therapeutic options for CNS TSCs, virotherapy has shown 
noteworthy promise in terms of targeting glioma TSCs [ 159 ] (Fig.  3 ). Fueyo and 
colleagues constructed a tumor-selective adenovirus (Delta24) that carried a 24-bp 
deletion in the E1A region responsible for binding Rb protein. In vivo and in vitro 
results from their study demonstrated a potent lytic effect of glioma cells [ 160 ]. 
Later another group used a second-generation Delta24 (Delta24-hyCD) and 
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 exhibited signifi cant chemosensitization and signifi cant glioma control when 
5- fl uorocytosine was coupled with Delta24-hyCD [ 161 ].  

 In another study, a combination of adenoviral virotherapy and TMZ chemother-
apy demonstrated a signifi cant overexpression of autophagy markers, acidic vesicu-
lar organelles, and light-chain 3 (LC3) in vitro. In vivo studies showed signifi cantly 
higher survival with combination therapy [ 162 ]. 

 Gene silencing techniques can also be used to better understand the role of cer-
tain genes in the biology of TSCs and identify viable therapeutic targets. Bao and 
colleagues investigated the role of a neuronal cell adhesion molecule, L1CAM, in 
glioma TSCs using lentiviral mediated shRNA interference. They reported dis-
rupted neurosphere formation, induced apoptosis, and inhibited growth of glioma 
TSCs [ 163 ]. Similarly, Wang and colleagues interrogated the signifi cance of c-Myc 
expression in glioma TSCs using shRNA interference and showed that decreased 
expression of the target decreased proliferation and survival of TSCs [ 164 ].  

  Fig. 3    Stem cell-targeted virotherapy. Adenoviral vectors are genetically modifi ed to recognize 
and multiply only in cancer stem cells (CSCs). Viral replication in CSCs leads to destruction of 
CSCs and release of viral progeny, which in turn further infect neighboring stem cells. Repetition 
of this cycle leads to eradication of CSCs. Thus targeted therapy in addition to conventional ther-
apy can lead to eradication of the tumor (reprinted with permission from Dey M et al. Stem Cell 
Rev. 2011 Mar;7(1):119–29. Cancer stem cells: the fi nal frontier for glioma virotherapy)       

 

I.S. Khan and M. Ehtesham



179

    Conclusion 

 Promising results from preclinical research using TSC-directed therapy have led to 
hopes for signifi cant improvement in outcomes with high-grade CNS tumors. In this 
regard, the combination of conventional surgery, chemotherapy, and radiotherapy 
with TSC-targeted therapy may provide a new treatment approach to improve the 
response of CNS tumors. The potential effi cacy of these therapeutic measures is 
being tested in various clinical trials and may direct future therapeutic interventions 
for CNS malignancies.     
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