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Abstract

Adult hippocampal neurogenesis is a remarkable form of brain structural plas-

ticity by which new functional neurons are generated from adult neural stem

cells/precursors. Although the precise role of this process remains elusive, adult

hippocampal neurogenesis is important for learning and memory and it is

affected in disease conditions associated with cognitive impairment, depression,

and anxiety. Immature neurons in the adult brain exhibit an enhanced structural

and synaptic plasticity during their maturation representing a unique population

of neurons to mediate specific hippocampal function. Compelling preclinical

evidence suggests that hippocampal neurogenesis is modulated by a broad range

of physiological stimuli which are relevant in cognitive and emotional states.

Moreover, multiple pharmacological interventions targeting cognition modulate

adult hippocampal neurogenesis. In addition, recent genetic approaches have

shown that promoting neurogenesis can positively modulate cognition

associated with both physiology and disease. Thus the discovery of signaling

pathways that enhance adult neurogenesis may lead to therapeutic strategies for

improving memory loss due to aging or disease. This chapter endeavors to

review the literature in the field, with particular focus on (1) the role of

hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic

and intrinsic signals that modulate hippocampal neurogenesis with a focus on

pharmacological targets; and (3) efforts toward novel strategies pharmaco-

logically targeting neurogenesis and identification of biomarkers of human

neurogenesis.
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1 Introduction: Adult Hippocampal Neurogenesis

Purification of prospective neural progenitor cells, which are characterized by their

potential to proliferate and give rise to differentiated neural progeny in vitro, has

been successfully achieved from many regions of the adult mammalian central

nervous system (CNS). However, despite the widespread distribution of neural

precursors throughout the adult brain, adult neurogenesis is maintained in only
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two discrete regions of the adult mammalian brain: the subventricular zone of the

lateral ventricles (Altman 1969; Lois and Alvarez-Buylla 1994; Alvarez-Buylla and

Garcia-Verdugo 2002) and the subgranular zone of the dentate gyrus of the hippo-

campal formation (Kaplan and Hinds 1977; Cameron et al. 1993).

From a neuroscientific perspective, hippocampal adult neurogenesis is of major

interest as (1) the generation of new hippocampal neurons contributes to hippocam-

pal function including learning and memory and mood regulation; (2) hippocampal

neurogenesis is involved in the pathophysiology of depression, schizophrenia,

age-related memory impairment, and multiple neuronal developmental disorders

including autism spectrum disorder; and (3) the process of developing newborn

neurons in a mainly restrictive environment as the adult brain provides an in vivo

model to elucidate the molecular and cellular basis of neural regeneration which

ultimately could be harnessed to develop novel therapies for neurodegenerative

diseases.

The process of generating new granule neurons from adult neural stem cells is a

highly dynamic process and at the same time tightly regulated at multiple develop-

mental stages. Developmental stages include neuronal precursors cell proliferation,

differentiation, survival, migration, and integration into preexisting hippocampal

networks (see Fig. 1). Hippocampal neural stem cells, commonly referred to as

radial Type I cells, have the capacity to self-renew and to differentiate into neurons

and astroglia (Bonaguidi et al. 2011; Encinas et al. 2011; Lugert et al. 2010). They

are localized in the subgranular zone of the dentate gyrus (DG) with a characteristic

radial process spanning through the molecular layer and express the radial-glia

marker GFAP (Seri et al. 2001; Kriegstein and Alvarez-Buylla 2009). Active Type I

cells give rise to transient amplifying neural precursor cells (NPC), referred to as

Type II cells, which then develop into mature granule neurons unless negatively

selected by hippocampus resident microglia (Sierra et al. 2010). Morphological

maturation of newborn granule neurons includes the development of dendritic trees

into the molecular cell layer of the dentate gyrus (DG) and the projection of axons

toward CA3 to become functionally integrated (Hastings and Gould 1999; Toni

et al. 2007). During development, newly generated cells are characterized by a

temporally ordered expression of stage-specific markers and changes in morpho-

logical and functional properties. From a morphological standpoint, differentiating

progenitors located in the subgranular zone show bipolar horizontal processes; after

cell cycle exit they develop the primary apical dendrite toward the molecular cell

layer and axons toward the CA3 region and show progressive increase in the

complexity of the dendritic tree during maturation. Morphological changes are

paralleled by dynamic expression of specific marker proteins. Early in the neuro-

genic lineage transient amplifying Type II cells show the expression of glial

markers including the transcription factor SRY (sex determining region Y)-box2

(Sox2). At later stages differentiating progenitors express neuronal transcription

factors like NeuroD (neurogenic differentiation) (Kronenberg et al. 2003; Seki

2002) and immature neurons express the microtubule-associated protein

doublecortin (DCX) (Brown et al. 2003b).
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The trajectory of functional maturation includes formation of synaptic

connections and the switch from depolarizing to hyperpolarizing action of the

neurotransmitter GABA. In particular, while immature adult-born neurons receive

Fig. 1 Hippocampal neurogenesis in the adult rodent brain follows distinct developmental stages.
(Top) Schematic depiction of developmental stages of hippocampal neurogenesis including

proliferation, differentiation, maturation, and integration of newborn neurons. (Middle) The

morphological development of neurons monitored by GFP expression upon retrovirus-mediated

gene transduction in the adult mouse brain. (Proliferation: left panel, 3 days postinjection (dpi);

differentiation, middle panel, 7 dpi, differentiation, mature granule neurons, right panel, 28 dpi).

Experiments performed by RJ as a fellow in the laboratory of Prof. Dr. Dieter Chichung Lie.

(Bottom) Depiction of known and potential CNS receptors/targets modulating the process of adult

neurogenesis at the proliferation and differentiation stages in vivo
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synaptic excitatory GABA inputs (Ge et al. 2006, 2007; Karten et al. 2006), at later

stages GABAergic inputs become gradually hyperpolarizing (Ge et al. 2006). Con-

comitantly, immature neurons form spines and receive glutamatergic excitatory

inputs and develop mossy fiber boutons around 4–8 weeks after birth (Faulkner

et al. 2008).

Adult hippocampal neurogenesis is not exclusive to rodents, but has repetitively

been shown to occur in humans (Knoth et al. 2010; Eriksson et al. 1998). In adult

humans around 700 new neurons per day are being integrated per dentate gyrus.

This corresponds to an annual turnover rate of 1.75 % of the renewing dentate

granule cell population (Spalding et al. 2013). This significant number of new

hippocampal granule neurons in humans, together with dynamic regulation under

physiological conditions, suggests that adult neurogenesis may be integral to brain

functions.

2 Factors Affecting Hippocampal Neurogenesis
and Plasticity and Correlation to Cognition

Over the past 15 years, substantial converging evidence has indicated that

neurogenesis in the adult hippocampus is functionally relevant to hippocampal-

dependent cognition. Many factors that modulate cognition, including pharmaco-

logical agents and intrinsic pathways involved in brain plasticity, as well as

physiological stimuli such as running, learning, and enriched environment, also

modulate hippocampal neurogenesis. Multiple studies impairing proliferation and

adult neurogenesis in the dentate gyrus using various approaches such as chemi-

cally and irradiation-induced blockade of proliferation, genetic ablations of pro-

genitor cells, and optogenetic physiological silencing have demonstrated that

neurogenesis contributes to hippocampus-dependent learning and memory. In

addition, specifically increasing the amount of newborn neurons in the dentate

gyrus improves cognitive processes associated with the hippocampus. We will

highlight the role of adult neurogenesis in cognition and discuss intrinsic and

extrinsic factors regulating the process of neurogenesis.

2.1 Cognitive Behaviors Dependent on Hippocampal Function

Early evidence of the role of the hippocampus in memory and learning comes from

studies in humans showing that bilateral resection or damage of hippocampus and

hippocampal gyrus leads to memory impairment (Scoville and Milner 1957).

Detailed analysis in animal models using functional imaging approaches, lesioning

of specific areas of the brain, and circuit tracing reveals that the hippocampus is

required for several forms of memory including declarative memory (the ability for

conscious remembering) (Squire 1992), episodic memory (remembering of auto-

biographical events) (Wixted et al. 2014), contextual association memory (Rudy

and Sutherland 1995; Lee et al. 2014), and spatial navigation. The hippocampus

Role of Adult Hippocampal Neurogenesis in Cognition in Physiology and. . . 103



combines information about spatial and non-spatial items coming from inputs from

the parahippocampal cortex and medial entorhinal cortex and from the perirhinal

and lateral entorhinal areas, respectively. In the hippocampus, the dentate gyrus

region receives inputs from the entorhinal cortex and DG granule cells project

excitatory mossy fibers to the proximal apical dendrites of pyramidal cells in the

CA3 area. The dentate gyrus is characterized by structural and functional heteroge-

neity along the dorso-ventral axis, with the dorsal region being mainly implicated in

the regulation of cognition and memory and the ventral region involved in the

modulation of mood and stress (Kheirbek et al. 2013; Tannenholz et al. 2014). One

major process supported by the dorsal DG is conjunctive encoding which is the

processing of multiple unique sensory spatial and non-spatial inputs from the

perirhinal cortex and lateral and medial entorhinal cortex to form metric spatial

representations (Kesner 2013). Indeed, lesions in the dorsal DG cause impairments

in cue-context associations like the ability to associate environmental cues to

specific odors (Morris et al. 2013).

Different circuits and regions in the hippocampus are instrumental in the pro-

cesses of pattern separation and pattern completion, important mechanisms in

declarative memory (Yassa and Stark 2011). Pattern separation is the ability to

discriminate between similar overlapping representations by differentially

encoding small or weak changes from similar inputs such as between two friend’s

faces (Treves et al. 2008). On the other hand, pattern completion allows accurate

reconstruction of incomplete representations based on previously stored

representations. The dentate gyrus appears to be critical for the process of pattern

separation. This process is facilitated by the distributed pattern of firing activity of

the DG cells and the sparse mossy fiber connections onto CA3 pyramidal cells,

lowering the probability of two CA3 neurons to receive inputs from the same

population of DG neurons (Rolls 1996). On the other hand, local axonal inputs of

neurons in the CA3 onto dendrites of cells in the same regions (also called recurrent

collaterals) appear to mediate the process of pattern completion. The CA3 area of

the hippocampus also receives direct inputs from the entorhinal cortex (perforant

path) which are critical for memory retrieval, while inactivation of mossy fiber

inputs onto CA3 neurons affects encoding and new learning without altering

memory recall (Lassalle et al. 2000; Lee and Kesner 2004; Rolls 2007). In humans,

fMRI studies performed during incidental encoding tasks show a correlation

between level of activity in the CA3/DG and pattern separation tasks, while activity

in CA1, the subiculum, the entorhinal, and parahippocampal cortices correlates

with pattern completion (Bakker et al. 2008).

2.2 The Role of Hippocampal Neurogenesis in Cognition

How does adult neurogenesis contribute to memory and hippocampal function and

why is this so unique to the dentate gyrus? Adult hippocampal neurogenesis has

been implicated in several aspects of contextual and spatial memory. For example,

in aged outbred rats there is direct correlation between performance in the water
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maze test, a hippocampus-dependent spatial learning task, and the amount of

neurogenesis in the dentate gyrus. Notably, high performers have a significantly

higher number of surviving neurons, based on BrdU (bromodeoxyuridine, a syn-

thetic nucleoside analogue of thymidine incorporated in newly synthesized DNA of

replicating cells)-positive cell counting, a readout of proliferation, in the dentate

gyrus after learning (Drapeau et al. 2003). Spatial learning tasks such as the Morris

water maze modulate hippocampal neurogenesis leading to the question of whether

these newborn neurons are integrated in the preexisting memory circuit and

reactivated during memory recall.

The evidence that newborn neurons are actively integrated in circuits during

specific spatial learning tasks comes from studies analyzing the expression of

immediate early genes (like c-fos and arc), a molecular correlate of neuronal firing

activity, in newborn cells generated before or after exposure to spatial learning and

birthdated with specific thymidine analogues. Interestingly, newborn neurons

generated during a specific development window before exposure to the learning

task are preferentially activated upon reexposure to the same spatial learning

paradigm if compared to mature dentate granule neurons. These studies suggest

that the newborn neurons are preferentially recruited in the generation of specific

memory circuits compared to mature dentate granule neurons (Kee et al. 2007;

Ramirez-Amaya et al. 2006; Tashiro et al. 2007). The enhanced plasticity of

newborn young granule cells could potentially facilitate the integration into new

memory circuits and upon maturation the increase in threshold for induction of

synaptic plasticity could render the connectivity more stable. Thus, sustained

hippocampal adult neurogenesis and continuous maturation of pools of immature

neurons allow the DG network to achieve both stable analysis of “old” features and

adaptation to new environments, supporting precise and distinct representations of

new memories throughout life.

To address the causal relationship between neurogenesis and cognition, studies

have focused on the analysis of the effect of neurogenesis ablation or enhancement

on behavioral performances. X-ray irradiation-mediated ablation of neurogenesis,

as well as genetic ablation in the GFAP-TK genetic mouse model (in which a

modified herpes simplex virus gene encoding thymidine kinase under the control of

the GFAP promoter causes dividing cells to die upon administration of the drug

ganciclovir), leads to impairment in context fear conditioning tasks (Saxe

et al. 2006; Drew et al. 2010). In another mouse model, where neurogenesis is

ablated selectively inducing the expression of Bax, a pro-apoptotic protein, in

neural precursors, spatial relational memory is strongly impaired (Dupret

et al. 2008). In a mouse model that allowed a transient reduction of the number

of adult-born DGCs, it has been shown that reduction of immature neurons confers

a deficiency in forming robust, long-term spatial memory and leads to impaired

performance in extinction tasks. These results further substantiate that the maturing

dentate granule neurons are critical in cognition (Deng et al. 2009). These results

were largely confirmed in another study where novel object recognition was

impaired by the elimination of 4- to 6-week-old immature neurons (Denny

et al. 2012). Recent studies looking at the effect of post-training ablation
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(retrograde effects) of newborn neurons and silencing of adult-generated neurons

on hippocampal memory further highlight the importance of this neuronal popula-

tion in formation of memory. Ablation of newborn neurons using a diphtheria toxin-

based strategy after learning leads to degradation of existing contextual fear and

water maze memories, even when the ablation is induced 1 month after learning

(Arruda-Carvalho et al. 2011). Along the same line, using an optogenetic approach,

it has been shown that silencing newborn neurons affects the retrieval of memory

after completion of training. Interestingly, silencing specifically 4-weeks-old but

not younger or older neurons leads to memory impairment. This strongly suggests a

functional role of newly integrated immature neurons in the hippocampal circuit

(Denny et al. 2012) and supports the hypothesis that immature adult-born neurons

contribute to proper cognitive processing.

As cells in the dentate gyrus possess low firing rates and are only activated in a

sparse manner, it has been hypothesized that the dentate gyrus may possess a

supportive function in pattern separation. Indeed, the ablation of neurogenesis

through X-irradiation or Bax overexpression impairs the ability to discriminate

between two contexts with overlapping features (Clelland et al. 2009). Importantly,

by specifically enhancing the survival of newborn neurons through the deletion of

Bax, it has been shown that increase in adult hippocampal neurogenesis does not

affect the ability to distinguish between two different contexts but significantly

improves the ability to discriminate between overlapping contextual

representations (Sahay et al. 2011).

Newborn neurons integrate in preexisting hippocampal circuitry competing with

already established synaptic connections. Thus beyond modulating formation of

novel memory, adult hippocampal neurogenesis may affect memories already

stored in these circuits. Indeed, in many species including humans, during infancy,

when the degree of neurogenesis is highest, the retrieval of hippocampus-dependent

memories is impaired at later time points (Rubin 2000). Recently, a link between

neurogenesis and the ability to forget previously acquired memories has been

provided. In this study, using a combination of genetic, pharmacologic, and behav-

ioral strategies, the authors show that increase in neurogenesis after learning is

responsible for forgetting and leads to the hypothesis that reconfiguration of

hippocampal circuits by newborn neurons may reduce the ability to retrieve previ-

ously acquired patterns of activity (Akers et al. 2014).

In conclusion, although there is a certain variability in the effect of modulation

of neurogenesis on specific behavioral tasks, a number of studies have consistently

shown the causal relationship between neurogenesis and hippocampal-dependent

cognitive processes. In the next section, we will review physiological, pathological,

and pharmacological mechanisms which can modulate neurogenesis and behavior.
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2.3 Intrinsic Factors Which Regulate Hippocampal Neurogenesis
and Implications in Cognition

Neurogenesis is controlled by interaction of neural progenitor cells and newborn

neurons with several components of the dentate gyrus microenvironment, including

astrocytes, vasculature, mature granule neurons, and GABAergic interneurons

(Song et al. 2002; Palmer et al. 2000; Ma et al. 2009; Ge et al. 2006). Moreover,

neurogenesis is tightly regulated by several endogenous signaling molecules

including hormones and growth factors. In parallel, the activity of the neuronal

network and the release of neurotransmitters from afferent projections onto the

dentate gyrus can modulate several aspects of neuronal development. The con-

certed action of these signaling systems ultimately determines the coordinated

functional integration of new neurons in preexisting circuitry (Pathania

et al. 2010). Below we will highlight key experimental evidence supporting regu-

latory roles for some of these factors which are relevant in both physiologically and

pharmacologically induced neurogenesis.

2.3.1 Neurotransmitters
Neuronal activity strongly modulates various stages of neurogenesis. Lesions of the

entorhinal cortex which is one of the major excitatory afferent on granule cells

increases DG cells proliferation (Cameron et al. 1995; Nacher et al. 2001). Further-

more, electrical induction of LTP at the perforant path/granule cells synapses

promotes proliferation and survival of 1 and 2 weeks old newborn neurons

(Bruel-Jungerman et al. 2006; Chun et al. 2006). Glutamatergic neurotransmission

and specifically NMDA receptor activity regulates proliferation and correct func-

tional maturation/integration and survival of newborn neurons (Pathania

et al. 2010). In tree shrew DG, pharmacological blockade of NMDA receptors

leads to increase in the number of BrdU-positive cells (Gould et al. 1997). Along

the same line, activation and blockade of NMDA receptors reduce or promote cell

proliferation in adult rat DG, respectively. An important question is to what extent

this effect is regulated cell-autonomously rather than indirectly via other signals

elicited by neuronal activity in the dentate gyrus. Immature neurons have NMDA

receptors and express NR1 and NR2B subunits (Nacher and McEwen 2006;

Ambrogini et al. 2004). Deletion of the NMDA subunit NR1 in newborn cells

reduces the number of properly integrating/surviving newborn neurons. This effect

is due to NMDA-dependent regulation of survival during the third week after

neuronal birth and it appears to involve a mechanism of competitive survival

between the incoming immature neurons and the preexisting neurons. Indeed,

global hippocampal reduction in NMDA signaling can rescue the loss of cells.

Importantly, maturing neurons (4–6 weeks after neuronal birth) show increased

plasticity and reduced threshold for induction of LTP, a process in part mediated by

NR2B (Ge et al. 2007). This suggests that glutamatergic signaling plays multiple

roles in modulating neurogenesis and controlling the precise integration of newborn

neurons into the hippocampal network.
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In the SGZ, GABA neurotransmitter, released by specific populations of

interneurons, modulates several aspects of neurogenesis, including precursor

cells’ proliferation, differentiation, and subsequent neuronal maturation. Like in

development, there is a switch between depolarization and hyperpolarization

effects of GABA while the newborn cells are maturing and this may alter properties

of immature neurons including their synaptic plasticity (Ge et al. 2006). The

enhanced synaptic plasticity of immature neurons is likely in part due to a lack of

strong GABAergic inhibition (Ge et al. 2008; Markwardt and Overstreet-Wadiche

2008; Pallotto and Deprez 2014). Tonic response of nestin-expressing quiescent

radial glia cells to GABA released from parvalbumin interneurons regulates their

reactivation and entry into the cell cycle. This is mediated by activation of

γ2 containing GABA A receptors since conditional deletion of the subunit induces

exit from quiescence and promotes symmetric self-renewal of type I cells (Song

et al. 2012). The role of tonic GABA transmission on inhibition of cell proliferation

is confirmed in another study upon deletion of the α4 subunit, component of GABA

A receptors mediating tonic (extrasynaptic) response (Duveau et al. 2011). Neural

progenitors’ proliferation is regulated also by GABA B receptors, metabotropic G-

protein-coupled receptors located both on pre- and postsynaptic terminals. Both

pharmacological blockage and genetic deletion of the B1 subunit of GABA B

receptors promote progenitor cells’ proliferation (Felice et al. 2012; Giachino

et al. 2014). GABA-mediated depolarization, due to high concentration of intracel-

lular Cl� in immature neurons, induces neuronal differentiation and NeuroD

expression in transient amplifying neuronal progenitor (type 2) cells (Tozuka

et al. 2005). Deletion of both the α4 and α2 subunits, a component of GABA A

receptors mediating synaptic phasic response, causes reduction of dendritic length

and complexity in newborn neurons, which is revealed at different stages of

differentiation (Duveau et al. 2011). Altering the GABAergic-dependent depolari-

zation/hyperpolarization switch process by genetically modulating the expression

levels of the Cl� importer NKCC1 reveals the key role of this mechanism in the

regulation of proper neuronal morphology, differentiation, and synaptic maturation

(Jagasia et al. 2009; Ge et al. 2006). The effect of GABA transmission on newborn

neurons development is at least in part mediated by activation of downstream

signaling events via activity-dependent transcription factors such as CREB (Jagasia

et al. 2009).

Loss of cholinergic neurons or blockage of acetylcholine (ACh) receptors in the

central nervous system causes learning impairment in experimental and clinical

situations in humans (Drachman and Leavitt 1974; Rasmusson and Dudar 1979).

Newborn neurons in the dentate gyrus are innervated by forebrain cholinergic fibers

(Kaneko et al. 2006) and by septal cholinergic cells as shown using a combination

of rabies virus-mediated retrograde tracing and retroviral labeling of new granule

cells (Vivar et al. 2012). Neurotoxic and immunotoxic lesion of forebrain choliner-

gic projections leads to decreased neurogenesis, increased apoptosis and impaired

spatial memory (Mohapel et al. 2005; Cooper-Kuhn et al. 2004). Modulation of the

cholinergic system using a number of pharmacological approaches further supports

the role of the system in regulation of neurogenesis (Veena et al. 2011a).
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Table 1 Examples of pharmacological interventions that improve neurogenesis and cognition

Molecule

Effect on

neurogenesis

Effect on

cognition Disease model References

GABA(A) a5

negative

allosteric

modulator

Correction of

hippocampal

synaptic

plasticity and

adult

neurogenesis

defects

Correction of

spatial learning

and memory

deficits

Ts65Dn mouse

model of Down

Syndrome

Martinez-

Cue

et al. (2013)

Isoxazole-9 Enhancement of

proliferation and

differentiation

of neuroblasts,

dendritic

arborization of

immature

neurons

Enhancement of

memory in

Morris Water

Maze

Petrik

et al. (2012)

P7C3 Enhancement of

survival of

newborn

neurons

Improvement of

performance in

Morris water

maze task in

aged rats

Aging Pieper

et al. (2010)

SB216763

(GSK3 beta

inhibitor)

Correction of

neuronal

differentiation

and maturation

deficits

Improvement in

trace

conditioning

learning test and

spatial learning

and memory in

DMNP radial

arm maze

FMR1 ko mouse

model of Fragile X

syndrome

Guo

et al. (2012)

Lithium

(GSK3 beta

inhibitor)

Enhancement of

progenitor cells

proliferation and

differentiation

Improvement of

performance in

Morris Water

maze task and

inhibitory

avoidance task

TgCRND8 mouse

model of AD

Fiorentini

et al. (2010)

Lithium Correction of

hippocampal

synaptic

plasticity and

adult

neurogenesis

defects

Correction of

deficits in

performance in

fear

conditioning,

object location,

novel object

recognition tests

Ts65Dn mouse

model of Down

Syndrome

Contestabile

et al. (2013)

Compound K Partial

correction of

neurogenesis

impairment

Improvement in

passive

avoidance and Y

maze tests

Cyclophosphamide-

treated mice as

model of

chemotherapy

Hou

et al. (2013)

(continued)
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Stimulation of cholinergic receptors with the cholinergic agonist physostigmine

and inhibition of acetylcholinesterase using donepezil induces neurogenesis and

promotes proliferation and short-term survival (Mohapel et al. 2005; Kaneko

et al. 2006; Kotani et al. 2006). On the other hand, scopolamine, a cholinergic

muscarinic receptor blocker, decreases the number of BrdU-positive cells in the DG

affecting the survival of newborn neurons (Kotani et al. 2006). Early in their

development, adult-born neurons express homomeric α7-containing nicotinic ace-

tylcholine receptors and cell autonomous genetic ablation leads to impairment in

dendritic maturation and synaptic integration ultimately resulting in reduced sur-

vival (Campbell et al. 2010). In global knockout models of the β2 receptor subunit

there is significant reduction in cell proliferation culminating in a net reduction in

the size of the dentate granule cell layer (Harrist et al. 2004). In vitro, cholinergic

stimulation affects proliferation and survival of rat olfactory bulb and cortical

neural precursor cells (Coronas et al. 2000; Ma et al. 2000). Acetylcholine neuro-

transmission appears to be deregulated with age and in Alzheimer’s disease,

conditions with reduction in both neurogenesis and cognitive capacity. Notably,

pharmacological modulation of the cholinergic activity in aged or stressed animals

promotes NSCs’ proliferation and corrects cognitive alterations (Itou et al. 2011;

Veena et al. 2011b).

The dopaminergic system has been shown to affect proliferation and differenti-

ation of neural progenitor cells during embryonic development and in both adult

neurogenic zones. Lesion and pharmacological studies in the SGZ have yielded

Table 1 (continued)

Molecule

Effect on

neurogenesis

Effect on

cognition Disease model References

Fluoxetine Correction of

progenitor cells

proliferation in

the DG

Improvement in

contextual fear

conditioning

tests

Ts65Dn mouse

model of Down

Syndrome

Bianchi

et al. (2010)

(NB: early

treatment)

Fluoxetine Correction of

reduced

progenitors

proliferation in

the DG

Improvement in

hippocampal-

dependent

spatial working

memory

5-fluorouracil-

treated rats as model

of chemotherapy

ElBeltagy

et al. (2010)

Imipramine Preservation of

proliferation and

survival of

newborn

neurons

Improvement in

novel object

recognition test

Mouse model of

traumatic brain

injury

Han

et al. (2011)

Amitriptyline Increase in

neurogenesis

and BDNF

signaling

Improvement in

short- and long-

term memory

retention

3xTgAD mouse

model of AD

Chadwick

et al. (2011)

Metformin Increase in

neurogenesis

Improvement in

spatial reversal

learning

Wang

et al. (2012)

110 V. Costa et al.



discrepancy in results (Veena et al. 2011a). Focusing on the pharmacological

approaches, depletion of dopamine in rodents reduces proliferation of SGZ neuro-

nal precursor cells and this is reversed by treatment with a D2-like receptor agonist

(Hoglinger et al. 2004). Similarly, activation of D2 receptors using quinpirole

promotes NSCs’ proliferation (Yang et al. 2008). However, administration of

haloperidol, a D2-like receptor antagonist, has been reported to induce both positive

and negative effects on neurogenesis in the SGZ (Wakade et al. 2002; Wang

et al. 2004; Keilhoff et al. 2010; Halim et al. 2004). A recent study demonstrates

that dopamine increases adult hippocampal NSCs’ proliferation acting on D1-like

receptors since the effect is phenocopied by a D1-like receptor agonist but not a D2

agonist (Takamura et al. 2014). On the other hand, stimulating the D3 receptor

appears to exert an inhibitory effect on neurogenesis since inhibition of the D3

receptor using the antagonist S33138 increases cell proliferation in the hippocam-

pus and the results are replicated in a D3 KO mouse model (Egeland et al. 2012).

Serotonin and noradrenaline, as well as antidepressant drugs that influence their

neurotransmission, play a key role in the regulation of hippocampal neurogenesis

and hippocampal-dependent behaviors. This class of molecules will be described

more in detail in the section on depression and antidepressant treatments. In Table 1

are listed examples of pharmacological manipulations that have been demonstrated

to induce changes in neurogenesis and cognition.

2.3.2 Wnt/Beta-Catenin Pathway
The Wnt signaling pathway is a highly conserved signaling pathway that has been

implicated in nervous system development and has multiple functions in the adult

brain including a role in hippocampal adult neurogenesis. Disruption of the physio-

logical Wnt signaling pathway has been associated with several CNS pathologies,

including schizophrenia, mood disorders, autism, and Alzheimer’s disease. A

canonical Wnt ligand inhibits glycogen synthase kinase-3β (GSK-3β), which

modulates the degradation of β-catenin. In the presence of extracellular Wnt ligand,

and subsequent receptor activation, stabilized β-catenin enters the nucleus and

associates with TCF/LEF transcription factors, resulting in transcription of

Wnt-target genes (Varela-Nallar and Inestrosa 2013).

Based on in vitro and in vivo results, it has been demonstrated that

Wnt/β-catenin signaling regulates adult hippocampal NPC proliferation and differ-

entiation (Lie et al. 2005; Kalani et al. 2008). In the hippocampus, lentivirus-

mediated expression of Wnt3 or a dominant-negative form of WNT (dnWNT),

respectively, increases and almost abolishes adult neurogenesis. Furthermore,

expression of dnWNT impairs both long-term retention of spatial memory in the

water maze task and performance in a hippocampus-dependent object recognition

task (Jessberger et al. 2009). Importantly, the levels of neurogenesis correlate with

the performance on specific memory tasks.

Wnt signaling is modulated in diverse physiological conditions characterized by

changes in the rate of hippocampal adult neurogenesis. The relationship between

aging, neurogenesis, and cognitive impairment will be described in later sections.

For example, Wnt signaling shows a reduction during aging when neurogenesis is
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decreased and, most importantly, modulation of the pathway can counteract

age-related neurogenesis and cognitive declines. Aged astrocytes show a reduced

expression of multiple canonical Wnt molecules, which in part results in a reduction

of adult hippocampal neurogenesis (Miranda et al. 2012). Moreover, the expression

of the Wnt antagonist Dickkopf-1 (Dkk1) increases with age and inducible deletion

of Dkk1 enhances neurogenesis. Aged mice with a loss of Dkk1 exhibit enhanced

spatial working memory and memory consolidation (Seib et al. 2013). Conversely,

activity-dependent induction of neurogenesis using electroconvulsive shock leads

to reduction in the expression of secreted frizzled-related protein 3 (sFRP3), a

naturally secreted Wnt antagonist, in mature dentate granule neurons (Jang

et al. 2013a). Deletion of sFRP3 induces the proliferation of precursor cells and

promotes newborn neurons maturation, dendritic growth, and dendritic spine for-

mation in the adult mouse hippocampus.

Modulation of Wnt signaling appears to be of therapeutic relevance also in

disease conditions. Indeed, sFRP3 deletion alone is sufficient to induce an

antidepressant-like behavioral response on the same magnitude of known

antidepressants, whose effect, as we will describe later, is at least in part linked to

neurogenesis (Jang et al. 2013b). Moreover, in mouse models of Alzheimer’s

disease characterized by impairment in neurogenesis, treatment with lithium, a

pharmacological activator of Wnt/β-catenin signaling acting via GSK3-β inhibition,
ameliorates memory loss (Toledo and Inestrosa 2010). In a recent study, in vivo

administration of both WASP-1, an activator of Wnt/β-catenin signaling, and

FOXY-5, an activator of both Wnt/JNK and Wnt/Ca2+ signaling, improves

hippocampal-dependent learning and memory processes (Compton et al. 2011).

Wnt signaling enhancers would be potentially highly relevant cognitive therapies

targeting hippocampal neurogenesis.

2.3.3 Neurotrophic Factors: The Role of BDNF
Neurotrophic factors are extracellular signaling proteins that play critical roles in

both the developing nervous system and in adult brain physiology. BDNF and its

role in hippocampal neurogenesis have been studied more extensively than any of

the other neurotrophins. Chronic infusion of BDNF in the hippocampus of adult rats

promotes cell proliferation and neurogenesis (Scharfman et al. 2005). The induction

of neurogenesis by BDNF appears to be region specific since it does not affect the

process in the SVZ, the other neurogenic niche in the adult rodent brain (Galvao

et al. 2008). BDNF affects also later stages of neuronal maturation. Indeed, deletion

of TrkB, the receptor of BDNF, in adult neuronal progenitor cells in the hippocam-

pus leads to impairment in dendritic and synaptic growth in newborn neurons and

deficits in neurogenesis-dependent LTP (Bergami et al. 2008).

BDNF plays a key role in hippocampus-dependent functions associated with

roles in cognition and mood regulation, which will be further discussed in later

sections. For example, in pattern separation inhibition of BDNF by infusion of a

BDNF-blocking antibody or by antisense oligonucleotide-mediated knockdown

impairs the ability to encode and consolidate “pattern separated” memories. On

the other hand, acute infusion of recombinant BDNF enhances the separation of
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representations (Bekinschtein et al. 2013). The effect of BDNF on pattern separa-

tion performance is mediated by newborn immature neurons since BDNF infusion

has no behavioral effect when neurogenesis is reduced by overexpression of

dnWNT (Bekinschtein et al. 2014). As we will describe in more detail later, intact

BDNF signaling is critical for learning, exercise, and antidepressants’ treatment-

induced increase in neurogenesis and effect on behavior (Rossi et al. 2006; Li

et al. 2008). BDNF-based therapies would be highly relevant to increase

neurogenesis activity and hippocampal function associated with cognition.

2.4 Physical Exercise and Learning: Effect on Hippocampal
Neurogenesis, Synaptic Plasticity, and Cognition

The CNS is known to undergo cellular, molecular, and functional changes in

response to external social, cognitive and physical stimuli. Voluntary physical

exercise has been shown to have beneficial effects on memory and cognition in

physiological and pathological conditions in rodents and in humans (Voss

et al. 2013). Interestingly, the cognitive amelioration is paralleled by increase in

hippocampal neurogenesis and synaptic plasticity. In this section, we will review

the effects of exercise on cognitive performance focusing on hippocampal-

dependent behaviors and we will describe the effects on adult neurogenesis and

synaptic plasticity.

2.4.1 Exercise and Enriched Environment in Animals: From Cognition
to Neurogenesis

In adult rodents, physical exercise and exposure to enriched environment (EE), a

complex combination of cognitive, physical and social stimulation, improve cogni-

tive functions. Running and EE ameliorate performance in tasks of contextual fear

conditioning, novel object recognition, and passive avoidance learning and in tasks

assessing hippocampus-dependent memory like spatial memory in the Morris water

maze and pattern separation (Kempermann et al. 1997; Fordyce and Farrar 1991;

Falls et al. 2010; O’Callaghan et al. 2007; Creer et al. 2010). Hippocampal

neurogenesis is one of the most remarkable changes in cellular and synaptic brain

plasticity correlating with cognitive improvements upon exercise and EE. The first

study analyzing the correlation between exercise and neurogenesis demonstrated

that mice housed in an enriched environment with access to a running wheel

exhibited better performance in Morris water maze tasks and have a 15 % increase

in granule cell neurons in the dentate gyrus (Kempermann et al. 1997). BrdU

birthdating experiments in mice show that cell proliferation peaks after 3 days of

running, and the effect is still sustained at 10 days (Kronenberg et al. 2006; van der

Borght et al. 2006). Running affects cell cycle kinetics of various subpopulations of

newborn neurons. It induces both proliferation and cell cycle exit of DCX-positive

type 3 precursors, shortens cell cycle in NeuroD1-positive progenitors, and even

activates proliferation of radial type 1 stem cells (Brandt et al. 2010; Farioli-

Vecchioli et al. 2014; Lugert et al. 2010). Exercise and EE appear to affect specific
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stages of the neurogenic process. In a study dissecting the role of learning and

exercise on neurogenesis, voluntary exercise increases cell proliferation and inte-

gration/survival while exposure to an enriched environment, including access to a

running wheel, only affects newborn neurons integration/survival in mice (van

Praag et al. 1999b). In another study focusing on the effect of different learning

paradigms on neurogenesis, the number of adult-generated neurons doubles in the

dentate gyrus of rats trained on hippocampus-dependent associative learning tasks

like spatial navigation in a Morris water maze and conditioning of the eye blink

response using a trace protocol. Learning tasks that do not require the hippocampus

fail in eliciting neurogenesis changes. These results suggest that to affect

neurogenesis in the hippocampus, animals need to be trained on learning tasks for

which the hippocampus is essential (Gould et al. 1999). The increase in newborn

neurons upon learning appears to be due to enhanced survival and or integration

rather than proliferation (Gould et al. 1999; Kee et al. 2007). Interestingly, a

sequential combination of running and EE in mice leads to a 30 % greater increase

in neurons than either stimulus alone. This suggests that coupling a stimulus like

running which induces precursor cell proliferation to a survival-promoting stimulus

like EE can enhance neurogenic pool and then subsequent integration (Fabel

et al. 2009). Moreover, the effect of physical exercise and learning on neurogenesis

appears to be region specific since generation of new neurons is not observed in the

subventricular zone or in the cortex (Brown et al. 2003a; Gould et al. 1999;

Ehninger and Kempermann 2003). Studies aimed at understanding whether

neurogenesis is necessary for the beneficial effect of exercise and EE on cognition

have yielded contradictory results. Reduction of neurogenesis using the antimitotic

agent methylazoxymethanol acetate (MAM) in rats prevents the improvement in

long-term recognition memory in a novel object recognition task upon EE (Bruel-

Jungerman et al. 2005). In mice, gamma irradiation-mediated reduction in

neurogenesis has a behavior-specific effect: while running-induced improvements

in motor performance (rotarod) and contextual fear conditioning are not affected,

spatial memory amelioration is ablated in the absence of neurogenesis (Clark

et al. 2008). Interestingly, in very old mice (22 months old) with physiological

reduction of neurogenesis which is no longer induced by running, the improvement

in spatial pattern separation by voluntary exercise seen in young mice is lost (Creer

et al. 2010). However, another study in mice shows that the improvement in spatial

learning and the decrease in anxiety-like behavior upon EE are not affected by

irradiation-mediated reduction of neurogenesis (Meshi et al. 2006). While several

methodological and species differences might contribute to the discrepancies, this

work suggests that cognitive improvement might be mediated also by neurogenesis-

independent mechanisms such as increase in neurotrophic factors and induction of

neuronal and synaptic plasticity.

Upon exercise several growth factors relevant for neuronal function and plastic-

ity like NGF (Neeper et al. 1996), IGF-1 (Carro et al. 2000; Trejo et al. 2001), FGF2

(Gomez-Pinilla et al. 1997), and BDNF are upregulated. The levels of BDNF are

increased upon both short- and long-term exercise paradigms (Molteni et al. 2002;

Berchtold et al. 2005; Ding et al. 2011) and the increase is sustained up to 2 weeks
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after exercise has ended in mice (Berchtold et al. 2005). In rats exposed to voluntary

running the expression of BDNF in the hippocampus and neocortex positively

correlates with the mean distance run per night (Neeper et al. 1996). BDNF is

increased in the dentate gyrus also in response to a forced treadmill-running training

and this correlates with improved object recognition learning (O’Callaghan

et al. 2007). Interestingly, while the performance in this learning task is improved

both upon exercise and EE, only exercise can induce an increase in BDNF expres-

sion and cell proliferation (Bechara and Kelly 2013). Importantly, genetic ablation

of the BDNF receptor TrkB in hippocampal neural progenitor cells ablates

neurogenesis in response to exercise (Li et al. 2008). These results indicate that

exercise induces BDNF expression, which results in increased neurogenesis in the

DG. Interestingly, peripheral neutralization of VEGF abolishes running-induced

neurogenesis potentially affecting angiogenesis, a process required in the modula-

tion of the neurogenic niche to sustain greater cell production (discussed below in

more detail) (Fabel et al. 2003).

Exercise-induced increase in BDNF often accompanies changes in synaptic

plasticity and expression of genes important for neuronal activity and synaptic

function (Tong et al. 2001). Voluntary running in rats induces expression of

BDNF, NR2B subunit of NMDA receptor, and glutamate receptor 5 and concomi-

tantly alters the induction threshold for synaptic plasticity leading to enhanced

short- and long-term potentiation (LTP) in the dentate gyrus (Farmer et al. 2004). In

another study, expression analysis in the whole hippocampus after 3 and 7 days of

exercise shows an upregulation of NR2A (Molteni et al. 2002), a subunit shown to

be necessary for exercise-induced neurogenesis in a genetic mouse model

(Kitamura et al. 2003). Similarly, recordings in hippocampal slices from mice

exposed to running show an enhancement of LTP specifically in the dentate gyrus

(van Praag et al. 1999a). Synaptic transmission properties in the DG and the CA1

area of the hippocampus are modified also in response to learning and EE. For

example, electrophysiological recording in freely moving rats shows increase in

fEPSPs and in granule cell excitability in the dentate gyrus upon EE exposure

(Irvine et al. 2006).

Exercise and learning also affect the morphological maturation of newborn

neurons and the structure of already existing neurons in the hippocampus. In

newborn DG neurons, running accelerates the formation of mushroom spines and

alters spines motility early during differentiation without affecting the total spine

density (Zhao et al. 2006). Spatial learning in the Morris water maze increases

dendritic arbor complexity in both immature and mature newborn neurons, between

3 weeks and 4 months after birth (Lemaire et al. 2012). Interestingly, spatial and

non-spatial environmental cues affect spine morphogenesis in a layer-specific

fashion in the DG. Spatial cues induce mushroom spine formation in the middle

molecular layer of newborn neurons that receive inputs from the entorhinal cortex

(EC) providing spatial information. Conversely, non-spatial components increase

mushroom spine formation in the outer molecular layer receiving inputs from the

lateral EC (Zhao et al. 2014). Voluntary exercise affects dendritic complexity and

spine density not only in the DG but also in afferent populations like pyramidal
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neurons in the CA1 and layer III pyramidal neurons of the entorhinal cortex (Redila

and Christie 2006; Stranahan et al. 2007).

Another brain structural change that correlates with and indirectly supports the

increase in neurogenesis is angiogenesis. The brain vasculature is a key component

of the neurogenic niche providing extrinsic signals for progenitor cells that are

closely associated with blood vessels. Moreover, angiogenic factors can stimulate

neurogenesis. Exercise enhances blood flow and blood vessels growth throughout

the brain and in the dentate gyrus (Black et al. 1990; van Praag et al. 2005). The

growth is at least in part supported by increased expression of angiogenic factors

like IGF-1 and VEGF and correlates with increased neurogenesis (Fabel

et al. 2003). Intriguingly, experiments using parabiotic animals have identified

blood-derived factors that directly regulate neurogenesis in a positive or negative

manner, pointing toward systemic factors influencing neurogenesis in adults

(Villeda et al. 2011, 2014; Katsimpardi et al. 2014). Interestingly, MRI studies

show that increased cerebral blood volume (CBV) in the dentate gyrus can be used

as an in vivo correlate of neurogenesis and it is specifically affected by exercise in

mice. These findings are confirmed in human where dentate gyrus CBV correlates

with cardiorespiratory fitness and cognitive function (Pereira et al. 2007). These

data suggest that CBV measurements could represent a correlative biomarker for

neurogenesis in humans.

2.4.2 Human Neurogenesis, Cognition and Exercise
Brain imaging studies support the role of the DG/CA3 subfields of the hippocampus

in pattern separation in humans. In a study combining functional MRI and

ultrahigh-resolution structural MRI, it has been shown that there is a correspon-

dence between CA3 anatomy and functioning and pattern separation, pattern

completion and individual differences in episodic memory recall (Chadwick

et al. 2014). In non-demented older adults, changes in the activity measured by

fMRI in the CA3/DG region correlate with the performance in pattern separation

(Yassa et al. 2011). Moreover, DG/CA3 is also involved in pattern separation of

emotional information and in patients affected by depression the severity of depres-

sive symptoms negatively correlates with DG/CA3 activity (Leal et al. 2014). As in

animals, hippocampal structural changes appear to correlate with training on tasks

dependent on the hippocampus. Indeed, the posterior hippocampus stores spatial

representations of the environment and people with high dependence on naviga-

tional skills like London taxi drivers show increased posterior hippocampal volume

(Maguire et al. 2000). These data support the relevance of hippocampal areas and

their dynamic regulation in specific cognitive tasks in humans. Although animal

studies demonstrate a key role for neurogenesis in pattern separation, the lack of

biomarkers for neurogenesis in humans limits conclusive studies. On the other

hand, studies in cancer patients show that systemic treatment with chemotherapy

agents often results in cognitive impairment and decline in aspects of memory

which require hippocampal function. In animal models it has been shown that

neural stem cells proliferation in the DG is reduced by chemotherapy, suggesting
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this as one of the potential mechanisms underlying some of the cognitive deficits

related to the treatment (Wigmore 2013).

Several studies in human suggest that aerobic exercise has a positive effect on

cognitive performance in healthy individuals and can counteract cognitive

impairment during aging or in pathological conditions (Voss et al. 2013). In the

healthy population, aerobic exercise can improve executive functions like task

switching, selective attention, working memory updating, and inhibitory control

in children and young adults (Guiney and Machado 2013). Cardiovascular fitness

positively associates with intelligence assessed using tests for logical, verbal, and

technical skills (Aberg et al. 2009; Moore et al. 2014), with increased cognitive

flexibility and improved action monitoring process (Themanson et al. 2008;

Hillman et al. 2008), and with improvement in academic achievements

(Chaddock-Heyman et al. 2013; Chaddock et al. 2012).

Exercise has also been shown to specifically improve performance in cognitive

tasks known to critically depend on hippocampal function. Young individuals,

exposed to a long-term aerobic exercise regime and experiencing a change in

fitness, show better performance in visual pattern separation task, visuospatial

memory, and positive affect (Dery et al. 2013; Stroth et al. 2009; Herting and

Nagel 2012), relational memory (e.g., children show higher ability to remember

pairs of faces and houses studied under relational encoding conditions) (Monti

et al. 2012; Chaddock et al. 2010, 2011). Interestingly, magnetic resonance imaging

shows that performance in relational and visuospatial memory tasks positively

correlates with larger hippocampal volumes, suggesting that structural

modifications play a role in improved function (Chaddock et al. 2010; Herting

and Nagel 2012).

Physical activity has beneficial effects on cognition also in older adults and in

conditions associated with cognitive impairment. Older humans exposed to physi-

cal exercise improve executive control processes like planning, scheduling, and

working memory (Kramer et al. 1999). Similarly to that observed in younger adults,

aerobic fitness correlates with increased hippocampal volume and better spatial

memory in older individuals (Erickson et al. 2009). Moreover, a longitudinal study

showed that in adults over the age of 65 years physical activity correlates with

diminished incidence of Alzheimer’s disease. In conditions of memory problems or

cognitive impairment, exercise still improves cognitive function and positive

behavior (Heyn et al. 2004).

Overall these studies support a positive effect of exercise on cognition and on

hippocampus-dependent processes like spatial and relational memory and pattern

separation. Importantly, cognitive improvements correlate with structural changes

in the hippocampus both in animals and in humans. However, a direct link to

neurogenesis in humans is lacking, as currently there is no possibility to measure

neurogenesis in living humans.
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2.5 Depression, Stress, and Antidepressants: Effect
on Neurogenesis and Behavior

2.5.1 Cognitive Impairment in Depression
Depression is a widespread disorder and it presents with symptoms which include,

among others, low mood, feelings of despair, reduced attention capacity, and

suicidal ideation. Patients affected by major depressive disorder (MDD) show

high prevalence of cognitive dysfunction, including hippocampal-dependent cog-

nitive processes. Among the most common deficits are memory disturbances,

difficulty in making decisions, and reduced cognitive flexibility (Fava et al. 2006;

Wagner et al. 2012; Jaeger et al. 2006; McCall and Dunn 2003). Morphometric

analysis in patients diagnosed with first episode MDD shows structural alterations

in hippocampus, amygdala, and corticolimbic regions (Frodl et al. 2002; Zhu

et al. 2011). MDD patients show impaired performance in tests assessing

hippocampal-dependent declarative memory and functional imaging analysis

shows abnormal activation of hippocampus during verbal memory encoding task

(Bremner et al. 2004). As we will describe in detail later, alteration of the

hypothalamic–pituitary–adrenal (HPA) axis and in glucocorticoids (GCs) levels

are hallmarks of depression pathophysiology. Although not confirmed in all studies,

cortisol levels are found to correlate with cognitive deficits in MDD patients and

acute administration of GCs in healthy individuals can compromise long-term

memory retrieval (Schlosser et al. 2010; Wolf et al. 2009).

Taken together, there is increasing evidence supporting a role for hippocampal

dysfunction in cognitive deficits in MDD. Recent anatomical and functional evi-

dence indicates a dissociation of the dorsal and ventral regions of the hippocampus

with the dorsal region being responsible for memory and cognition and the ventral

part playing a key role in regulation of mood. How alterations in cognitive functions

contribute to MDD pathogenesis and to the recovery process is still unclear. In this

sections, we will review the effects of stress and antidepressant treatment on

neurogenesis and will discuss the role of neurogenesis in the onset and recovery

of behavioral phenotypes.

2.5.2 Stress and Neurogenesis
Stressors are considered as experiences and events which challenge the ability of

the individual to adapt. Reponses which promote adaptation to stressors include the

release of hormones and other cellular factors. However, when the response is

deregulated it can induce the activation of pathophysiological processes leading to

the onset of neuropsychiatric disorders (McEwen 1998).

Stress has been demonstrated to have deleterious effects on multiple stages of

hippocampal neurogenesis, newborn neuron maturation, hippocampal neuron plas-

ticity, and dendritic and synaptic density. Exposure of tree shrews to acute conflict

to establish a dominant/subordinate relationship leads to reduction of neurogenesis

in the dentate gyrus in the subordinate animal (Gould et al. 1997). Negative

regulation of neurogenesis is observed also upon chronic stress paradigms in

several animal models. For example, cell proliferation in the dentate gyrus shows
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a significant reduction in mice subjected to repeated intermittent social defeats (Yap

et al. 2006) and in young adult marmosets after forced prolonged social isolation

(Cinini et al. 2014). Besides affecting cell proliferation, chronic stress exposure

impairs newborn neurons’ survival (Tanti et al. 2013; Dagyte et al. 2011) and

induces structural abnormalities like dendritic atrophy in CA3 pyramidal neurons

(Watanabe et al. 1992; Sousa et al. 2000). At the behavioral level, animal models

subjected to chronic stress develop depression-related behaviors. While the effect

of stress on neurogenesis has been widely confirmed in several animal models, the

role of neurogenesis in the onset of depressive-like behaviors is still a matter of

debate. Ablation of neurogenesis in mice via X-ray irradiation of the hippocampus

or via pharmacological intervention does not induce behavioral phenotypes rele-

vant to anxiety or depression (Santarelli et al. 2003; David et al. 2009; Bessa

et al. 2009). Genetic ablation of neurogenesis via overexpression of the

pro-apoptotic protein Bax leads to increase in anxiety-related behaviors while it

does not affect depressive behaviors (Revest et al. 2009). Similarly, cyclin D2

knockout mice which lack neurogenesis do not show impaired performance in the

forced swimming test (Jedynak et al. 2014). Conversely, in a transgenic model

where increase in survival of newborn neurons is achieved by selective deletion of

Bax, there are no differences in anxiety and depressive behaviors (Sahay

et al. 2011). In contrast to these findings, ablation of radial cell precursors in a

GFAP-TK mouse model (expressing under the control of GFAP promoter herpes

simplex virus thymidine kinase which renders mitotic cells sensitive to the antiviral

drug valganciclovir) leads to depressive behavior in control conditions and

increased anxiety in response to stress (Snyder et al. 2011).

2.5.3 Mechanisms Underlying the Effect of Stress on Neurogenesis
and Establishment of Depressive Behavior

Several mechanisms have been proposed to mediate the effect of stress on adult

neurogenesis and establishment of depressive behavior including alteration in the

hypothalamic–pituitary–adrenal (HPA) axis (for a comprehensive review, see

Anacker 2014; Bambico and Belzung 2013). Here we will review the evidence

supporting a causal link between HPA axis dysfunction and alteration in

neurogenesis, synaptic plasticity, and neurotrophic factor signaling in depression.

The hypothalamic–pituitary–adrenal (HPA) axis, part of the neuroendocrine sys-

tem, plays a crucial role in the response to stress and it is deregulated in depression

and chronic stress conditions (Anacker 2014). Upon stress, the hypothalamus releases

corticotropin-releasing factor (CRF) which stimulates the pituitary to release

adrenocorticotropin (ACTH) which ultimately leads to the synthesis and release of

glucocorticoids (GCs) from the adrenal cortex. GCs then bind to their intracellular

receptors, namely mineralocorticoid receptors (MRs) and glucocorticoid receptors

(GRs). Upon chronic stress, the HPA axis is hyperactive and leads to chronically high

levels of glucocorticoids (Anacker and Pariante 2012). Recent anatomical studies

have shown that projections from the ventral hippocampus mediate an inhibitory

effect on the hypothalamus, whereas the dorsal hippocampus projects to cortical areas

where cognitive processes are mediated. Studies in preclinical models support a
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strong causative link between stress, glucocorticoids, and neurogenesis. Exposure of

adult rats to predator odor induces rise in adrenal hormones levels and decrease in

neurogenesis which is prevented blocking the increase of corticosterone by adrenal-

ectomy (Tanapat et al. 2001). Interestingly, chronic corticosterone treatment induces

depressive behavior in rodents (Gourley and Taylor 2009) and affects cell prolifera-

tion reducing the number of BrdU-positive cells in the dentate gyrus in adult mice

(David et al. 2009). Besides reducing neurogenesis, it has been proposed that stress

and corticosterone treatment promote a cell fate switch of nestin-positive neural stem

cells in the DG toward increased oligodendrocytes’ differentiation (Chetty

et al. 2014). Interestingly, corticosteroid levels and expression of the receptors are

also altered during aging, a physiological situation with reduced neurogenesis (Gupta

and Morley 2014).

Patients affected by major depressive disorder (MDD) show increased cortisol

levels, impaired feedback response to GR activators, and correlation between

genetic variation in components of the HPA pathway and clinical manifestations

(Young et al. 1991; Belvederi Murri et al. 2014; Schatzberg et al. 2014). Volumetric

analysis reveals alterations of several brain regions involved in the control of the

HPA axis in MDD patients, like significantly increased volume of adrenal gland and

reduced volume of hippocampus (MacMaster et al. 2014; Sheline et al. 1996). At

the cellular level, expression of synaptic proteins regulating synapse function and

structure as well as glutamate receptor subunits is altered in hippocampi and

prefrontal cortex from MDD patients’ brains (Duric et al. 2013; Fatemi

et al. 2001; Kang et al. 2012). Interestingly, this correlates with alterations in the

expression of neurotrophic factors important for the function and plasticity of

synapses. Expression levels of BDNF, NGF, and their relative receptors are

decreased in hippocampi and PFC from suicide victims (Banerjee et al. 2013;

Pandey et al. 2008) and MDD patients (Dunham et al. 2009). Moreover, serum

levels of micro-RNAs associated with the regulation of expression of BDNF are

altered in depressed patients (Li et al. 2013). Although the mechanisms which link

stress and alterations of neurotrophic factors’ levels are not completely understood,

several studies show that antidepressant treatment corrects neurotrophins levels and

that normal BDNF signaling is necessary for antidepressant action (Castren

et al. 2007; Adachi et al. 2008). This suggests that these factors play an important

role in restoring the physiological function of networks involved in mood disorders

(Duman and Duman 2015).

2.5.4 Antidepressants, Neurogenesis, and Synaptic Plasticity
For long time, one of the dominant hypothesis to explain the mechanisms underly-

ing MDD has been the monoamine hypothesis, mainly supported by the observation

that antidepressants (ADs) exerting a pharmacological action on the central mono-

amine systems (monoamine oxidase A inhibitors/MAOI, tricyclic compounds/

TCA, serotonin and norepinephrine reuptake inhibitors) were effective in relieving

depressive symptoms (Delgado 2000). According to this hypothesis, reduced activ-

ity of monoamine neurotransmission is at the core of the pathophysiology of

depression and correction of this dysfunction alleviates disease symptoms (Asberg
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1976). Through different mechanisms, several ADs classes in clinical use enhance

serotonergic (5-HT) and noradrenergic neurotransmission.

Many preclinical and some human postmortem studies demonstrate that antide-

pressant treatment induces an increase in neurogenesis. Malberg and colleagues

showed that chronic but not acute fluoxetine treatment increases the number of

dividing cells in the dentate gyrus in rats as measured by BrdU incorporation, while

the survival of newborn neurons does not appear to be altered by the treatment

(Malberg et al. 2000). In humans, analysis of postmortem brains from MDD

patients shows that SSRI and TCA chronic treatment increases the number of

neural progenitors in the anterior and mid-dentate gyrus (Boldrini et al. 2009,

2012). However, another study could not replicate these findings (Lucassen

et al. 2010). The precise role of specific serotonergic receptors in SSRI-induced

neurogenesis is still under investigation. Genetic ablation of 5-HT1A receptor in

mouse prevents fluoxetine induction of neurogenesis while a partial reduction is

observed with 5-HT4 receptor-specific antagonist (Santarelli et al. 2003; Mendez-

David et al. 2014). Moreover, pharmacological studies show that 5-HT1A receptors

are involved in regulation of proliferation of neuronal precursors, while 5-HT2

receptors influence proliferation and promote neuronal maturation (Klempin

et al. 2010). Induction of neurogenesis has been reported also upon treatment

with antidepressants which do not act directly through the serotonin system

suggesting some potential convergence in mechanisms of action. For example,

the endocannabinoid receptor ligand cannabidiol (CBD) exerts anxiolytic and

antidepressant effects and induces hippocampal progenitor proliferation and

neurogenesis in mice (Campos et al. 2013). Increase in BrdU-positive cells is

observed in the dentate gyrus of mice treated with an antidepressant antagonist of

group II metabotropic glutamate receptor (Yoshimizu and Chaki 2004). Moreover,

non-pharmacological interventions which elicit an antidepressant response like

electroconvulsive shock strongly promote hippocampal neurogenesis (Malberg

et al. 2000). Altogether these data support a correlation between ADs and

neurogenesis, but is this convergent cellular response necessary for these drugs to

have an effect on behavioral symptoms? Ablation of neurogenesis through

X-irradiation of hippocampus prevented certain behavioral effects of fluoxetine

(SSRI) and imipramine (TCA) in mice (Santarelli et al. 2003). The causal role of

neurogenesis in certain specific behavioral effects of antidepressants has been

confirmed in several studies (Surget et al. 2008, 2011). Fluoxetine treatment

corrects the behavioral and neurogenesis defects in mice exposed to chronic

corticosterone treatment and ablation of neurogenesis impairs amelioration in

novelty suppressed feeding test, while open field and forced swim test

performances are neurogenesis independent (David et al. 2009). Recently, the

antidepressant action of cannabidiol has been shown to require neurogenesis

since its effects are not observed in GFAP-TK mouse models (Campos

et al. 2013). On the other hand, the behavioral effects of a vasopressin V1b

antagonist and a CRF1 antagonist (corticotropin-releasing factor 1) which reverse

stress-induced suppression of neurogenesis in models of depression appear to be

neurogenesis independent (Alonso et al. 2004; Surget et al. 2008).
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Chronic antidepressant treatment leads to an increase in the expression levels of

neurotrophic factors in the hippocampus and cortical regions, including VEGF,

FGF2, and BDNF and its receptor trkB which in turn can positively regulate the

hippocampal cellular response (Warner-Schmidt and Duman 2007; Mallei

et al. 2002). Taking advantage of genetic mouse models designed to have reduced

BDNF signaling (heterozygous BDNF knockout or inducible ablation of trkB

receptor in NPC), it has been demonstrated that a BDNF response is necessary

for modulation of newborn hippocampal neurons upon chronic imipramine treat-

ment (Li et al. 2008; Sairanen et al. 2005). In addition, behavioral response to

antidepressant treatment is impaired in mice with altered BDNF signaling and with

conditional ablation of BDNF in forebrain regions (Saarelainen et al. 2003;

Monteggia et al. 2004). These data suggest that increasing BDNF activity is a key

mechanism mediating antidepressant action.

Interestingly, the BDNF signaling pathway is upregulated in the hippocampus

and PFC shortly after treatment with fast-acting antidepressants (Zhou et al. 2013b;

Yang et al. 2013; Autry et al. 2011) and it is associated with functional synaptic

changes (Tizabi et al. 2012). Ketamine, an antagonist of N-methyl-D-aspartate

(NMDA) receptors, exerts antidepressant action within few hours after administra-

tion with effects lasting up to 2 weeks in depressed patients (Zarate et al. 2006;

Price et al. 2009). Administration of NMDA antagonists leads to rapid translation of

BDNF in mouse hippocampus and the antidepressant effect is ablated in BDNF

conditional knockout mice (Autry et al. 2011). Interestingly, miR-206 regulates the

expression of BDNF in response to ketamine (Yang et al. 2014). In light of the role

of BDNF in modulation of synaptic plasticity and the increase in BDNF in the

hippocampus upon ketamine treatment, it is tempting to speculate that changes in

hippocampal synaptic plasticity may contribute, together with other brain regions,

to rapid-onset antidepressant effect. However, this hypothesis still needs to be

tested.

2.5.5 Antidepressants and Cognitive Impairment
As mentioned above, MDD is associated with alterations in hippocampal-

dependent cognitive processes. Since antidepressant treatments have been shown

to improve BDNF signaling and neurogenesis, key processes in hippocampus-

dependent cognitive functions, antidepressants could potentially ameliorate cogni-

tive symptoms in MDD patients. However, clinical studies have not yielded con-

clusive results and discrepancies are often attributed to limited study design.

Longitudinal studies report persistent cognitive dysfunction in patients after remis-

sion from depressive symptomatology (Trivedi and Greer 2014; Hasselbalch

et al. 2011; Kuny and Stassen 1995; Weiland-Fiedler et al. 2004; Neu

et al. 2005). In one study, cognitive functions have been monitored in patients

treated with escitalopram (SSRI) or duloxetine (SNRI); an improvement in working

memory, processing speed, and visual episodic memory was best observed with

duloxetine (Herrera-Guzman et al. 2009, 2010). To further address the effects of

antidepressants on cognitive improvement more studies are needed and understand-

ing this relationship would help design new and more efficacious therapeutic
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interventions (Goeldner et al. 2013). Along the same line, more research is needed

to unravel the role of hippocampal network and neurogenesis in the onset and

recovery of cognitive alterations in MDD.

2.6 Cognition and Adult Hippocampal Neurogenic Axis
in Physiological and Pathological Aging

Cognitive functions decline with age and are impaired in pathological conditions

associated with advanced age like Alzheimer’s disease. Impairment of

hippocampus-dependent cognitive processes often correlates with structural and

functional changes in this brain region and with alterations in neurogenesis. This

sections highlights the relevance of neurogenesis in physiological aging and

associated cognitive decline in human and animals. Furthermore, the potential

pathophysiological role of neurogenesis in cognitive deficits in Alzheimer’s disease

is highlighted.

2.6.1 Aging and Cognitive Decline in Human: Correlation
with Hippocampal Changes

In human, aging affects a broad range of cognitive functions like executive

functions (task switching, updating, inhibition) associated with the prefrontal

cortex, episodic memory (memory for events which include specific temporal and

spatial context) associated with prefrontal cortex and medial temporal lobes,

information processing speed, specific aspects of language, and visuospatial

functions (for a review, see Alexander et al. 2012). Several studies report specific

alterations in hippocampus-dependent processes. Older individuals show

impairment in spatial navigation tasks designed to specifically assess

hippocampus-dependent ability to develop a cognitive map (a mental representa-

tion of the landmarks and paths in the environment) and to use it to reach any target

location by any route available (Iaria et al. 2009). These cognitive deficits often

correlate with functional and structural alterations in the hippocampus. For exam-

ple, older individuals tested in a virtual spatial navigation task show differential

activation of several brain areas, as measured by voxel-based analysis, if compared

to younger controls. Among those differences, old participants show a reduced

activation of hippocampus and parahippocampal gyrus (Moffat et al. 2006). Simi-

larly, impairment in hippocampus-dependent spatial and non-spatial functions and

recognition memory has been shown to correlate with decreased hippocampal

volume and neurochemical properties in older individuals (Driscoll et al. 2003).

Along the same line, a specific correlation between hippocampal volume and

wayfinding skills (generation and use of a cognitive map) has been described in

older individuals (Head and Isom 2010). Moreover, older adults show performance

decline compared to younger control individuals in pattern separation task and a

bias toward pattern completion. High-resolution (1.5 mm isotropic) blood-

oxygenation level-dependent fMRI analysis reveals an altered activation in

the CA3/dentate gyrus regions during trials (Yassa et al. 2011). However, a
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meta-analysis of the correlation between hippocampal size and episodic memory in

older adults reveals extremely weak correlation (Van Petten 2004). Moreover,

while some studies show a progressive change in the volume of several brain

regions including shrinkage of the hippocampus (Raz et al. 2010), others show an

age-dependent decline in temporal cortex but not in hippocampal volume (Sullivan

et al. 2005).

Moving from the neuroanatomical to the cellular level, early analysis with

stereological techniques showed no neuronal loss in several areas of the hippocam-

pus during aging (West et al. 1994). On the other hand, neurogenesis appears to

decline with age. The expression of neurogenesis markers and the number of

DCX-positive cells are decreased in the dentate gyrus in post-mortem human brains

from older donors (Knoth et al. 2010). Moreover, birthdating experiments based on

measurements of genomic DNA incorporation of 14C, liberated in the atmosphere

during atom bomb testing, show that adult hippocampal neurogenesis in the human

brain undergoes a modest decline during aging (Spalding et al. 2013). Whether

neurogenesis decline contributes to cognitive deficits in elderly humans remains an

open question, although studies in rodents suggest that it might have a significant

impact.

2.6.2 Age-Related Cognitive and Neurogenesis Decline in Animals
Decline of cognitive functions has been described in aged rodents and non-human

primates. Deficits include impaired performance in spatial learning and memory

(Barnes 1979; Gage et al. 1984; Rapp et al. 1997; Lazarov and Marr 2013).

Structural MRI analysis shows that hippocampal volume does not change with

age (Shamy et al. 2006). However, histologic evaluation shows an imbalance in the

volume of different areas of the hippocampus in aged rats with a relative reduction

of the volume of the middle portion of the molecular layer (Rapp et al. 1999).

Interestingly, early studies demonstrated that in rodents neurogenesis in the

subgranular zone declines with age (Seki and Arai 1995; Kuhn et al. 1996; Ben

Abdallah et al. 2010) with the major decline taking place during adulthood, before

aging (Rao et al. 2005; Demars et al. 2013). Whether the decline in neurogenesis

correlates with cognitive impairment is a matter of debate. Studies show that aged

rats performing better in Morris water maze and hippocampus-dependent tasks

have higher number of proliferating cells and newborn neurons (Driscoll

et al. 2006; Drapeau et al. 2003). On the other hand, others show no correlation

or negative correlation between the number of proliferating cells and performance

in Morris Water Maze in aged rats (Merrill et al. 2003; Bizon et al. 2004). Interest-

ingly, in middle-aged (12 months old) rats, despite the massive reduction of

progenitor cell proliferation and newborn cells survival, no deficits in trace fear

conditioning are observed (Cuppini et al. 2006).

Several hypotheses have been put forward to explain the mechanisms accounting

for neurogenesis decrease in aging and they include both cell-autonomous and non-

cell-autonomous processes. Aging is accompanied by changes in the hippocampal

stem cell niche vasculature (Hattiangady and Shetty 2008) and reduced expression

levels of growth factors important for neurogenesis like VEGF, FGF2, BDNF, and
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WNT signaling activity (Shetty et al. 2005; Hattiangady et al. 2005; Bernal and

Peterson 2011). Glucocorticoid signaling is altered in aged animals and decreasing

corticosterone levels restores the rate of proliferation of neuronal progenitors

(Cameron and McKay 1999; Nichols et al. 2001). A heterochronic parabiosis

experiment, in which the circulatory system of two animals is connected, shows

that blood-borne factors from old mice can induce impairment in synaptic plasticity

and cognitive deficits in young animals. Elevated levels of chemokines, including

CCL11, are observed in aged animals and increasing peripheral levels of CCL11 in

young mice decreases neurogenesis and induces cognitive decline (Villeda

et al. 2011). One of the most robust changes observed during aging is a dramatic

reduction in progenitor cells’ proliferation (Olariu et al. 2007; Walter et al. 2011;

McDonald and Wojtowicz 2005; Bondolfi et al. 2004), with the most prominent

effect in the ventral hippocampus (Jinno 2011). A meta-analysis comparing the

reduction in progenitors’ proliferation between different species of rodents, fox,

and non-human primates shows that the decline is chronologically equal between

species and independent of life span (Amrein et al. 2011). Reduction in

neurogenesis in the aged brain has been associated with depletion of the neural

stem cells pool as a consequence of their division (Encinas et al. 2011) or to a

switch toward a quiescent state (Hattiangady and Shetty 2008; Lugert et al. 2010).

Importantly, pro-neurogenic stimuli such as increasing neuronal activity by induc-

ing seizures lead NSCs to reenter the cell cycle and restore proliferation to a level

comparable to the one observed in young animals (Lugert et al. 2010). Similarly,

exercise and exposure to enriched environment rescue neurogenesis deficits and

improve cognitive functions like spatial memory and place recognition memory

(van Praag et al. 2005; Kronenberg et al. 2006; Siette et al. 2013). Recently, the

chronic administration in aged rats of a blood–brain barrier-permeable peptide

derived from the ciliary neurotrophic factor (CNTF), which is known to have

neuroprotective properties, restores neurogenesis, synaptic plasticity, and memory

(Bolognin et al. 2014). These works suggest that induction of neurogenesis has

beneficial effects on cognition during aging. Moreover, targeting the reactivation of

neural stem cells in the aged brain could be a promising therapeutic approach to

restore cognitive functions. Interestingly, young circulating factors like GDF11, a

member of the BMP/TGFβ family, can restore neurogenesis and proper vasculature

also in the SVZ, the other neurogenic niche in the adult brain, and improve

olfactory discrimination in aged mice (Katsimpardi et al. 2014).

2.6.3 Pathological Aging: Alzheimer’s Disease, Cognitive Impairment,
and Neurogenesis

Alzheimer’s disease (AD) is an age-related neurodegenerative disease

characterized by progressive memory loss and cognitive decline (Caselli

et al. 2006). AD represents the most common cause of dementia in the elderly.

Pathological hallmarks of the disease are extracellular deposition of amyloid-beta

(Aβ) plaques, excessive phosphorylation of the cytoskeletal protein tau, formation

of intraneuronal fibrillary tangles, and neuronal cell loss in the cerebral cortex and

hippocampus (Selkoe 2001; Braak and Braak 1991, 1995). The major
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environmental risk factor for the onset of the disease is aging, while the greatest

genetic factor is apolipoprotein E (ApoE) genotype (Ashford 2004). ApoE exists in

three isoforms, with isoform E3 being the wt form and the most common in the

population, isoform E2 considered to be protective toward AD, and E4 increasing

the risk for the disease and anticipating the age of onset. Hereditary autosomal

dominant forms of the disease are caused by mutations in genes encoding for

amyloid precursor protein (APP) and presenilin-1 and -2, components of the

aspartyl protease γ-secretase complex. Cleavage of APP can follow two pathways:

in the non-amyloidogenic pathway cleavage by the protease complex α-secretase
releases the soluble fragment of APP (sAPPα) and γ-secretase cuts in the

intramembrane domain; in the amyloidogenic pathway cleavage by the aspartyl

protease β-site APP cleaving enzyme I (BACE1) and by γ-secretase leads to the

formation of Aβ (De Strooper and Woodgett 2003; Selkoe and Wolfe 2007).

The hippocampus and the afferent entorhinal cortex show early neuronal loss

that correlates with memory decline (Van Hoesen et al. 1991; Gomez-Isla

et al. 1996; West et al. 1994, 2004). Patients affected by amnesic mild cognitive

impairment (aMCI) and mild AD show reduced performance in hippocampus-

dependent tasks like pattern separation (Ally et al. 2013). Importantly, impairment

in performance correlates with CSF levels of Aβ42 and patients carrying the ApoE4
genotype perform worse than others in difficult pattern separation tasks (Wesnes

et al. 2014). As discussed previously, performance in pattern separation appears to

require hippocampal neurogenesis in the dentate gyrus and growing evidence

supports alterations in the neurogenic process in AD. Several proteins associated

with AD and mutated in familial forms of the disease are directly involved in the

regulation of neural stem cell proliferation and differentiation. Notch1, a master

regulator of neural stem cell physiology, is a substrate of PS1/γ-secretase and it is

cleaved in response to ligand binding (Alexson et al. 2006; LaVoie and Selkoe

2003; De Strooper et al. 1999). Deletion of PSEN1, the gene encoding for PS1 in

mice, leads to aberrant neurogenesis during development (Shen et al. 1997). In

adult animals, lentiviral-mediated knockdown of PS1 in the dentate gyrus leads to

enhanced differentiation of neural stem cells (Gadadhar et al. 2011). Moreover,

Notch1 and EGF receptor ligands are substrates of ADAM10, a component of the

α-secretase complex (Hartmann et al. 2002; LaVoie and Selkoe 2003). Neural stem

cells’ proliferation is regulated also by cleavage products of APP, and the intraven-

tricular injection of sAPPα rescues age-dependent decline in neural progenitors’

proliferation (Caille et al. 2004; Demars et al. 2013; Lazarov and Demars 2012).

Studies in several mouse models of AD suggest a strong correlation between

alterations in neurogenesis, including neural stem cells’ proliferation, newborn

neurons’ survival and maturation, and disease progression. For example, in the

transgenic mouse model Tg2576 which overexpresses the human APP isoform with

the Swedish double mutation and develops cognitive defects and amyloidosis,

aberrant maturation of newborn neurons is observed already in young age

(3 months) and this might lead to altered functional integration of new neurons in

the hippocampal circuits (Krezymon et al. 2013). Recently, spatial learning and

memory impairments have been described in a knock-in mouse model bearing the
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human pathological domain of ApoE4 gene in young age. Neurogenesis appears to

be increased in young animals and decreased with age, while apoptotic markers

indicate enhanced cell death. Interestingly, these early cognitive and cellular

changes take place in the absence of classical AD pathological hallmarks (Adeosun

et al. 2014). In another study, deletion of ApoE in mice results in reduced

neurogenesis and knock-in of the human ApoE4 leads to impaired maturation of

newborn neurons through a mechanism dependent on GABAergic signaling

(Li et al. 2009). Comprehensive reviews of neurogenesis phenotypes in AD models

can be found elsewhere (Lazarov and Marr 2010; Verret et al. 2007; Mu and Gage

2011).

Analysis of postmortem brain samples from senile AD patients reveals increased

expression of newborn neurons markers including DCX in the subgranular zone,

granular layer, and CA1 area. These findings suggest that activation of neurogenesis

might represent a mechanism of compensation and replacement of degenerated

neurons (Jin et al. 2004). In another study, AD brain samples show altered expres-

sion of early progenitor markers in the hippocampus, suggestive of enhanced

proliferation, while the number of newborn neurons does not appear to be affected

(Perry et al. 2012). Plasma and CSF concentrations of stem cell factor, a growth

factor exerting neuroprotective effects and supporting neurogenesis, are decreased

in AD patients and the level inversely correlates with the degree of dementia (Laske

et al. 2008). On the other hand, in pre-senile AD patients no evidence of altered

neurogenesis has been detected, while a proliferative change has been observed in

glia and vasculature cells (Boekhoorn et al. 2006).

As described above, the hippocampus and the neurogenic process are strongly

altered in AD and this might account for some aspects of cognitive decline in

patients. However, growing evidence suggests that molecular and structural

prerequisites for activity-dependent hippocampal plasticity are preserved in models

of AD. Exposure to enriched environment leads to amyloid plaque load reduction

and increased expression of genes involved in protective processes and

neurogenesis in a transgenic AD mouse model (Lazarov et al. 2005). Similarly,

exposure to EE of mice bearing the Swedish mutation in APP reverses spatial

learning and memory deficits and this correlates with restoration of some aspects of

the neurogenic process. As opposed to the previous study, amyloid load is not

affected by EE in this model (Valero et al. 2011). A study dissecting the role of

physical activity and cognitive stimuli on neurogenesis in AD shows that while

exposure to EE improves neurogenesis and water maze performance in the APP23

mouse model, exercise alone does not show beneficial effect (Wolf et al. 2006).

Besides memory and learning impairment, AD is associated with behavioral

symptoms that include anxiety and depression. As described previously, the ventral

hippocampus is involved in regulation of the response to stress and depressive

behavior and neurogenesis might play a role in this process. In a 3xTgAD mouse

model bearing mutations in APP, PS1, and Tau genes, restoration of neurogenesis

through chronic overexpression of Wnt3a in the ventral region of the dentate gyrus

leads to correction of impairments in danger assessment. The effect is neurogenesis
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dependent since ablation of neurogenesis via X-irradiation prevents the recovery

(Shruster and Offen 2014).

Altogether these works suggest that neurogenesis is pathologically impaired in

AD and restoration of the neurogenic process might be a promising therapeutic

approach to reverse behavioral and cognitive symptoms in AD patients. Below is

highlighted the potential of targeting neurogenesis in disease and drug-discovery

approaches for the identification of neurogenic compounds are discussed.

3 Novel Concepts for Targeting Neurogenesis in Cognition
and Disease

As described above, compelling preclinical evidence suggests that hippocampal

neurogenesis is modulated by a broad range of physiological and pharmacological

stimuli, and most excitingly, de novo neurogenesis positively correlates with

improved cognitive and emotional states. Three lines of research are emerging

that suggest that targeting hippocampal neurogenesis will have translational value

in human cognition and warrant future work: (1) recent rodent models demonstrate

a cell-autonomous role of neurogenesis in cognition in both physiology and disease;

(2) drug screening efforts have led to the identification of novel CNS active

compounds with both pro-neurogenic and pro-cognitive effects; and (3) the study

of human neurogenesis will potentially lead to the identification of biomarkers to

monitor the process in mental illnesses for both diagnostic and therapeutic

interventions. Below we highlight discoveries, opportunities, and challenges in

these research domains. Research on the role of hippocampal neurogenesis in

human physiology and disease will ultimately increase the translational value of

this remarkable process of plasticity in the adult human brain.

3.1 Neurogenesis as a Target to Improve Cognition in Physiology
and Disease

Recent studies strongly suggest that the discovery of cell-autonomous signaling

pathways that enhance adult neurogenesis may lead to therapeutic strategies for

improving memory loss due to aging or injury. Here we highlight some of these

pathways relevant for the regulation of neurogenesis and implicated in mental

disability and we describe the effect of their modulation on cognitive functions.

As previously mentioned, the hippocampus plays a key role in declarative memory

functioning as a pattern separator. Genetic modulation of the apoptotic pathway in

neural stem cells in the DG through ablation of the pro-apoptotic protein Bax leads

to increased neurogenesis and improved performance in pattern separation tasks

(Sahay et al. 2011). Future studies using this model in disease-relevant backgrounds

(e.g., AD models) could potentially elucidate whether the enhancement of

neurogenesis changes significantly disease states.
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The ERK pathway is important for the modulation of neurogenesis and cogni-

tion. ERK5 is a member of the MAP kinase family and it plays a role in prenatal

neuronal development and cell fate specification (Cavanaugh et al. 2001; Finegan

et al. 2009; Cundiff et al. 2009). ERK5 is expressed in the adult brain in neurogenic

regions and inducible conditional ablation of ERK5 in neural progenitors in the

adult brain leads to attenuation of hippocampal neurogenesis (Pan et al. 2012a, b).

This correlates with alterations in hippocampus-dependent memory tasks like

contextual fear conditioning, with defects in learning flexibility and deficits in

pattern separation. Conversely, in a genetic mouse model the activation of ERK5

in neuronal progenitors in the DG induces neurogenesis promoting cell survival,

neuronal differentiation, and enhanced dendritic structural complexity. The mor-

phological changes are paralleled by improved spatial learning and memory and

hippocampus-dependent long-term memory persistence (Wang et al. 2014). The

discovery that memory can be prolonged by stimulating adult neurogenesis has

important implications for the development of therapeutic strategies to treat mem-

ory disorders.

Recent studies show that restoring the function of adult neurogenesis in disease

models with clear cognitive dysfunction can reverse the learning deficits. Conse-

quently, treatments directed at this cell population may have a significant impact on

disease-relevant cognitive and learning phenotypes. Fragile X syndrome (FXS) is

the most common cause of inherited intellectual disability and the leading mono-

genic cause of autism spectrum disorders. FXS is a trinucleotide repeat disorder

caused by a CGG repeat expansion in FMR1, which leads to the loss of its protein

product FMRP. Deletion of FMRP in neural stem cells in adult mice affects several

aspects of adult hippocampal neurogenesis leading to deficits in proliferation and

differentiation of newborn neurons. This is accompanied by reduced performance

in hippocampus-dependent learning tasks. Importantly, in FMRP-deficient mice,

restoration of FMRP expression specifically in adult neurogenic compartments can

rescue these learning deficits (Guo et al. 2011). Although more studies are needed

to understand whether postnatal and adult neurogenesis plays a role in the patho-

genesis of intellectual disability, these data suggest that FMRP-dependent aberrant

neurogenesis could potentially contribute in part to the cognitive deficits observed

in Fragile X patients.

Altered neurogenesis appears to contribute to phenotypes observed in DISC1

loss-of-function models. Disrupted-in-schizophrenia 1 (DISC1) is a multifunctional

scaffold protein that has been implicated as a susceptibility gene for major mental

illness including schizophrenia, bipolar disorders, and autism (Chubb et al. 2008).

DISC1 plays an important role in multiple stages of adult neurogenesis in the DG

including proliferation, maturation, migration, and synaptic plasticity of newborn

neurons. Importantly, the levels of neurogenesis correlate with the performance on

specific memory tasks. The cellular phenotypes appear to be in part regulated by

disruption in critical signaling pathways modulating adult neurogenesis including

the AKT-mTOR, GABA, and GSK3β signaling pathways (Kim et al. 2009, 2012).

Indeed, DISC1 has been shown to modulate the proliferation of adult hippocampal

precursor cells by inhibiting GSK3β activity (Mao et al. 2009). Pharmacologically
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targeting these pathways leads to restoration of both neurogenesis and behavioral

phenotypes. Notably, in a DISC1 loss-of-function mouse model, treatment with a

GSK3β inhibitor, SB-216763, normalizes both the neurogenesis deficits and the

schizophrenia- and depression-like behaviors (Mao et al. 2009). In another study,

the downregulation of Disc1 specifically during the development of newborn

neurons results in defective neuronal maturation, neuronal hyperexcitability, and

alteration of neuronal structure. On a molecular level, knockdown of Disc1 results

in increased mTOR signaling. Moreover, Disc1 knockdown induces cognitive and

affective deficits and behavioral abnormalities are reversed by pharmacological

inhibition of the mTOR pathway (Zhou et al. 2013a).

The described roles of adult hippocampal neurogenesis in neurodevelopmental

disorders suggest that treatments targeting the adult neural stem cell population

may have a significant impact on pathophysiology and endophenotypes and can

represent a novel therapeutic approach.

3.2 Potential of Screening for Neurogenic Compounds

Neuro-regenerative approaches aimed at treating pathological cognitive decline

could include both the stimulation of endogenous adult neural stem cell populations

and the transplantation of exogenous stem cells in the brain. Seminal experiments

suggest that both approaches have potential for treating neurological diseases. For

example, in a mouse model of hippocampal neurodegeneration that results in

significant memory impairment, transplanting neural stem cells improves cognition

(Yamasaki et al. 2007). Similarly, transplantation of hippocampal neural stem cells

ameliorates complex cognitive deficits in a model of Alzheimer’s disease

characterized by abundant amyloid/TAU pathology. Interestingly, the behavioral

rescue is achieved despite persistent pathological hallmarks and it is mediated by

BDNF-dependent increase in hippocampal synaptic density (Blurton-Jones

et al. 2009). On the other hand, the ability of neural stem cells to be reactivated

in aging and in disease conditions supports the idea that identification of novel

pharmacological targets/molecules promoting adult hippocampal neurogenesis

represents a promising therapeutic approach.

A search of Thomas Reuter Integrity suggests that there are well over 50 relevant

patents claiming neurogenic molecules. A large number of diverse chemical classes

are neurogenic and have been patented for diverse CNS therapeutic indications

(Rishton 2008). Reported patents claim that besides CNS acting molecules such as

anticonvulsants, cognition modifiers, anxiolytics, and mood-stabilizing agents, also

antidiabetic, blood pressure-lowering, and cholesterol-lowering agents have sur-

prisingly shown neurogenic properties (Rishton 2008). For example, metformin,

which is widely used to treat type II diabetes and other metabolic syndromes, has

been shown to have neurogenic properties (Wang et al. 2012). In vitro work on both

mouse and human cell cultures shows that metformin promotes neurogenesis and

this translates in vivo in increased neurogenesis and enhanced spatial reversal

learning in a water maze task.
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A promising route for the identification of novel neurogenesis-increasing

compounds is the high-throughput screening of chemical libraries using neural

stem cell-based assays. Screens have already demonstrated the potential to eluci-

date known and novel mechanisms regulating adult hippocampal neurogenesis. In

an early study, 1,200 compounds with known pharmacological activity were

screened on rat neurospheres for proliferative and differentiation capacity leading

to the identification of many CNS-relevant targets. Active compounds included

modulators of dopamine, serotonin, opioid, glutamate, and vanilloid signaling

(Diamandis et al. 2007). Besides targeting known receptors relevant for

neurogenesis, molecule screening can help identify novel relevant signal transduc-

tion pathways associated with hippocampal plasticity and cognition. In another

screen the small molecule isoxazole 9 [Isx-9; N-cyclopropyl-5-(thiophen-2-yl)
isoxazole-3-carboxamide] was identified. Isx-9 robustly induces neuronal differen-

tiation in an in vitro model of adult neural stem cells. In addition, Isx-9’s effects

appear to involve myocyte-enhancer factor 2 (Mef2), a family of transcription

factors that had never been linked before to adult neurogenesis in vivo (Schneider

et al. 2008). In a follow-up study, it has been shown that Isx-9 promotes multiple

stages of neurogenesis in vivo and this correlates with enhanced memory in Morris

water maze tasks (Petrik et al. 2012). The mechanism of action of Isx-9 on

hippocampal neurogenesis and cognition is at least in part cell autonomous since

inducible deletion of Mef2 isoforms from neural stem cells and their progeny

thwarts the cognitive enhancing effect. The identification of ISX-9 highlights the

potential of small molecule screening campaigns to identify novel mechanisms of

action relevant to hippocampal neurogenesis and cognition.

A novel in vivo screening campaign has been undertaken identifying a com-

pound called P7C3 with neurogenic properties (Pieper et al. 2010). Further charac-

terization demonstrates that P7C3 can enhance neurogenesis in the dentate gyrus,

can modulate mitochondrial physiology and neuronal survival, can increase synap-

tic activity, and can preserve cognitive capacity in aged rats. The target(s) and

pathway(s) of P7C3 remain unknown, which provides both a challenge as well as an

interesting opportunity to identify new pathways linked to neurogenesis and patho-

logical cognitive decline. Clearly, the mechanisms mediating the effect of P7C3 on

cognition might involve biological processes beyond hippocampal neurogenesis

that could regulate broader aspects of brain plasticity. In follow-up studies,

modified and more potent analogues of P7C3 demonstrated that the compound

class exhibits neuroprotective effect in models of Parkinson’s disease, amyotrophic

lateral sclerosis, traumatic brain injury, and age-related cognitive decline

(MacMillan et al. 2011; Blaya et al. 2014; Walker et al. 2014). Derivatives

appended with immobilizing moieties may reveal the protein targets of the P7C3

class of neuroprotective compounds.

Few classes of neurologically active molecules have been discovered in the last

50 years, at least in part because neuroscience drug discovery efforts have been

dominated by target-based assays. Unlike target-based approaches, phenotype-

based screens can identify compounds hitting on pathways that capture the com-

plexity of the neurobiological tissue. One impressive example of a large-scale HTS
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screening campaign on primary cells has been recently reported, where one million

small-molecule compounds have been screened on primary rat neurospheres,

assessing proliferation and differentiation capacity based on the measurement of

ATP levels (Liu et al. 2009). Over 5,000 primary hits have been identified to induce

proliferation and differentiation. Further characterization of these compounds and a

strategy for target identification will potentially provide novel insight into the

mechanisms involved in the regulation of neural stem cells and adult neurogenesis.

As highlighted above, several neurodevelopmental disorders show adult

neurogenesis alterations that appear to be partly responsible for cognitive deficits.

Recent advances in human-induced pluripotent stem cell (hiPSCs) technologies

allow the use of human cells with patient-specific genetic alterations for in vitro

neuronal disease modeling. In vitro human neuronal differentiation recapitulates

several aspects and stages of in vivo neurogenesis and this system can be used to

characterize specific disease-related phenotypes observed in vivo. Moreover,

hiPSCs represent an unprecedented tool for development of platforms for pheno-

typic screening using human tissue- and disease-relevant models. Despite the

challenges associated with the novelty of the technology and the limited under-

standing of human neuronal differentiation in vitro, hiPSC disease models hold

great promise as tools for innovative drug discovery (Chailangkarn et al. 2012;

Bellin et al. 2012).

3.3 Translational Biomarkers of Human Neurogenesis

In CNS translational research, good translational biomarkers are crucial to identify

pre-symptomatic early disease states, to improve dose finding, and to allow patient

stratification and responder/nonresponders analysis, significantly affecting the suc-

cess in drug development. As described above, increasing preclinical evidence in

animal models of neurodevelopmental disorders, schizophrenia, Alzheimer’s dis-

ease, stress, and depression demonstrates that alterations in neurogenesis correlate

with behavioral and cognitive symptoms. Moreover, multiple pharmacological

interventions targeting cognition modulate adult hippocampal neurogenesis. There-

fore, the identification of a noninvasive biomarker for human neurogenesis is an

area of growing interest and intensive scientific research. The lack of biomarker

currently represents a key limitation in the ability to ultimately demonstrate the

relevance of the neurogenic process in human health and disease and its role in

mediating beneficial effects of therapeutic interventions.

Identification of hippocampal neurogenesis-specific biomarkers in blood or CSF

could serve as a proxy for the rates of neurogenesis in the brain. Immature neuronal

precursors in the adult brain are characterized by specific transcriptomes, cellular

and membrane proteomes, secretomes, metabolomes, and lipidomes (Ramm

et al. 2009; Knolhoff et al. 2013). Unbiased approaches to identify neurogenesis-

specific transcriptomic profiles have led to the identification of several transcripts

expressed during specific stages of adult neurogenesis (Miller et al. 2013;

Couillard-Despres et al. 2006; Lim et al. 2006). Moreover, expression levels of
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miRNA involved in the regulation of neurogenesis appear to be altered in brain

samples from AD patients. Importantly, miRNA can be released and detected in the

CSF, representing a potential biomarker (Cogswell et al. 2008). Similarly, some

neurogenesis-specific proteins are secreted into fluids including the CSF. For

example, doublecortin (DCX), which encodes for a microtubule-associated protein

specifically expressed in newborn neurons, is detected in CSF of both rodents and

humans (Kremer et al. 2013).

Another potential strategy to monitor neurogenesis is brain imaging. A possible

approach would be to identify a PET ligand binding molecular markers of adult

hippocampal neurogenesis. A PET imaging strategy could be feasible based on

anatomical considerations. PET resolution is in the order of 1.5–3 mm, the hippo-

campus volume in human is ~3 cm3, and the dentate gyrus is 90 mm3. It has been

reported that around 0.033 % of granular cells are newborn neurons in old primates

and 0.07 % in old mice (Aizawa et al. 2009). Considering the sensitivity of PET

imaging, shown to reach 30 pM of receptor density for the D2 receptor, the

detection of the newborn cells’ fraction would be feasible (Kessler et al. 1993;

Farde 1996). The challenge is to find a hippocampal neurogenesis-selective protein

with a binding pocket that could serve as a PET tracer. 18F-30-deoxy-30-fluoro-L-
thymidine (FLT) has been described to be a potential PET tracer to monitor neural

stem cell division in the rat hippocampus (Rueger et al. 2010). FLT is a thymidine

analogue that accumulates in dividing cells and it is a common marker to monitor

cell proliferation in tumors. For measurements in the brain, strategies to improve

the signal-to-noise ratio and to reduce radioactive doses would significantly imple-

ment the approach (Rueger et al. 2010). Monitoring neurogenesis targeting imma-

ture neurons could represent another approach considering that in aged macaque

monkeys and mice, immature neurons are 4- to 4.5-fold more abundant than

dividing NPCs (Aizawa et al. 2009).

MRI/MRS technologies could be a potential way to identify biomarkers of

neurogenesis or at least epiphenomena of the process. A conceptually very appeal-

ing study, using MRI-based technologies, suggested relative cerebral blood volume

(rCBV) increases specific to the dentate gyrus as a putative biomarker for

neurogenesis (Pereira et al. 2007). As described previously, neurogenesis and

angiogenesis in the DG are tightly linked processes (Palmer et al. 2000; Louissaint

et al. 2002). However, the specificity of this method is challenged by the fact that

hippocampus hemodynamics observed by fMRI is sensitive to changes due to

disease states and drug treatments (Choi et al. 2006; Littlewood et al. 2006;

Gozzi et al. 2008).

Using proton MRS, a very exciting study identified a particular resonance at

1.28 ppm with enhanced prevalence in NPCs in vitro (Maletic-Savatic et al. 2008;

Manganas et al. 2007). This marker was demonstrated to be a translational bio-

marker in both rats and human subjects, and the putative NPC-specific peak

strongly decreases during brain development from childhood to adulthood

(Manganas et al. 2007). If confirmed, this study provides an unparalleled glimpse

into the human brain with the promise to provide a truly noninvasive biomarker of

adult neurogenesis. Not unexpectedly, this report has aroused a certain amount of
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controversy on technical and study design aspects (Friedman 2008; Hoch

et al. 2008; Jansen et al. 2008; Dong et al. 2009; Ramm et al. 2009). More studies

are needed to demonstrate feasibility and practicality of this approach as a tool to

investigate the role of neurogenesis in a wide variety of human brain disorders.

4 Conclusions

Adult hippocampal neurogenesis is a complex process that provides an excellent

example of the surprising plasticity of the mature brain. Research within the last few

years has identified molecular mechanisms that regulate individual steps in

neurogenesis and has highlighted its function in various neurological disorders.

However, the process of translating basic knowledge into pharmacological

interventions is only at the beginning. Key aspects need to be further clarified to

support targeting of adult neurogenesis for the treatment of neurological and cognitive

disorders in humans: (1) Can results obtained from animal models of neurological

disorders be translated to humans?, (2) Can changes in neurogenesis be assessed in

humans (i.e., is there a biomarker)?, (3) Is it possible to identify chemical entities or

biomolecules to pharmacologicallymodulate neurogenesis in humans? In this chapter,

we have highlighted key studies investigating the role of neurogenesis in cognitive

impairment associated with physiological and disease conditions. Moreover, we have

described endogenous and pharmacological factors that modulate neurogenesis and

have an effect on cognitive functions. Deep understanding of several of these aspects

would enable the development of drugs that target andmodulate adult neurogenesis in

humans to treat patients with neurological disorders.
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