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Centre Hospitalier de l’Université de Montréal Research Center, Montreal, QC, Canada, H1W

4A4

Department of Medicine, University of Montreal, Montreal, QC, Canada, H3T 1J4

R. Quirion (*)

Douglas Mental Health University Institute, McGill University, Perry Pavilion, 6875 LaSalle

Boulevard, Montreal, QC, Canada, H4H 1R3

Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1

e-mail: remi.quirion@mcgill.ca

# Springer International Publishing Switzerland 2015

K.M. Kantak, J.G. Wettstein (eds.), Cognitive Enhancement, Handbook of

Experimental Pharmacology 228, DOI 10.1007/978-3-319-16522-6_3

59

mailto:remi.quirion@mcgill.ca


3.2.2 PKC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.3 ERK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.4 mTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.5 CREB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.1 Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.2 Homer 1a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.3 Zif268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.4 IGF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.5 BDNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Cholinergic System and Cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Impact of AChR Agonists and Antagonists on Memory Function . . . . . . . . . . . . . . . . . . . 75

4.2 α-7 Nicotinic ACh Receptor Agonists and Cognitive Deficits . . . . . . . . . . . . . . . . . . . . . . . 76

5 Dynorphinergic System and Memory Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Dynorphins and Age-Related Cognitive Decline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Dynorphins and Social Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Dynorphins, KOR and Stress-Related Memory Deficits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Abstract

Aging is generally associated with a certain cognitive decline. However, indi-

vidual differences exist. While age-related memory deficits can be observed in

humans and rodents in the absence of pathological conditions, some individuals

maintain intact cognitive functions up to an advanced age. The mechanisms

underlying learning and memory processes involve the recruitment of multiple

signaling pathways and gene expression, leading to adaptative neuronal plastic-

ity and long-lasting changes in brain circuitry. This chapter summarizes the

current understanding of how these signaling cascades could be modulated by

cognition-enhancing agents favoring memory formation and successful aging. It

focuses on data obtained in rodents, particularly in the rat as it is the most

common animal model studied in this field. First, we will discuss the role of the

excitatory neurotransmitter glutamate and its receptors, downstream signaling

effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), pro-

tein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian

target of rapamycin (mTOR), cAMP response element-binding protein

(CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268),

and growth factors [insulin-like growth factors (IGFs) and brain-derived

neurotrophic factor (BDNF)] in synaptic plasticity and memory formation.

Second, the impact of the cholinergic system and related modulators on memory

will be briefly reviewed. Finally, since dynorphin neuropeptides have recently

been associated with memory impairments in aging, it is proposed as an attrac-

tive target to develop novel cognition-enhancing agents.

Keywords

Aging • Memory • Synaptic plasticity • Glutamate • Acetylcholine • Dynorphin
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1 Introduction

Despite a general lengthening of life span in humans over the last decades, the

quality of life still varies substantially among older adults. Some individuals are

active and socially engaged, while others have physical or cognitive impairments

and/or present depressive symptoms (Rowe and Kahn 1997; Frisardi et al. 2011). A

better understanding of the processes leading to individual differences during aging

might help identifying new pharmacological targets and develop innovative

treatments to favor successful cognitive aging. This chapter summarizes the current

knowledge on signaling pathways of particular importance in memory formation

(especially spatial memory) in rodents and the changes occurring during normal

(non-pathological) aging. Each section covers potential cognition-enhancing drug

targets and includes an overview of related published studies, focusing on the data

obtained in rats, and compounds already available (Fig. 1).

Normal aging is associated with increasing memory losses that can be detected

in middle-aged rats (Deupree et al. 1993) similarly to humans (Davis et al. 2003).

However, in aging rats of similar ages, important inter-individual differences in

cognitive abilities have been reported (Gallagher et al. 1993, 2003; Aubert

et al. 1995; Quirion et al. 1995; Rowe et al. 1998; Wilson et al. 2003; Menard

and Quirion 2012b). Sex and strain differences have also been observed

(Markowska 1999; Menard et al. 2014b) but will not be specifically addressed in

this chapter. Variations of cognitive status in aged rats are not related to neuronal

loss, as cell death in the hippocampus and neocortex does not characterize normal

aging in rodents (Rapp and Gallagher 1996; Rasmussen et al. 1996; Merrill

et al. 2001; Gallagher et al. 2003). Moreover, no regression of dendrites (Turner

and Deupree 1991; Flood 1993; Pyapali and Turner 1996) or decrease of spine

density (Curcio and Hinds 1983; Markham et al. 2005) has been reported in old rats.

Most electrical properties of the neurons remain constant over the life span includ-

ing resting membrane potential, threshold to reach an action potential, and the

width and amplitude of Na+ action potentials (Segal 1982; Landfield and Pitler

1984; Niesen et al. 1988; Kerr et al. 1989; Barnes et al. 1992; Potier et al. 1992,

1993; Burke and Barnes 2006). These observations suggest that in rodents,

age-related memory impairments associated with normal aging might be linked to

altered cell signaling and dysregulation of gene expression as reported by us and

others (for a review, see Benoit et al. 2011).

2 Types of Memory

The hippocampus-dependent Morris Water Maze (MWM) task (Morris 1984) is

one of the most widely used behavioral paradigms in neuroscience. It is particularly

efficient to discriminate aged rat subgroups depending on their level of cognitive

fitness. However, multiple tests and paradigms have been developed over the years

to study different forms of learning and memory. The following sections will
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Fig. 1 Summary of the signaling pathways involved in memory formation. Following neurotrans-

mitter glutamate release, postsynaptic ionotropic (AMPA, NMDA) and metabotropic (mGluR)

receptors become activated leading to the phosphorylation of downstream signaling effectors,

notably PKC, CaMKII, ERK, mTOR and CREB, and immediate early gene expression (Arc,

Homer 1a, Zif268). Glutamatergic neurotransmission can be modulated by other

neurotransmitters, such as acetylcholine and its nicotinic (nACh) and muscarinic (mACh)

receptors, neurotrophins (BDNF) and growth factors (IGF) through the Trk receptors, or

neuromodulators such as dynorphins (Dyn) that act on presynaptic κ-opioid receptors (KOR) to

block glutamate release. Astrocytes play an active role in the glutamatergic system activity as they

recapture glutamate through the excitatory amino-acid transporters (EAATs), where it is amidated

and reconverted in glutamate in neuron mitochondria to finally be accumulated in synaptic vesicles

through the vesicular glutamate transporters (VGLUTs)
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summarize spatial, recognition, social, and fear memory neuronal processes and the

behavioral paradigms to which they are associated.

2.1 Spatial Memory

Spatial memory is probably the most studied form of cognition in rodents. It is

required to navigate in an environment or to remember where objects have been

placed and implies various representations and encoding (Bird and Burgess 2008).

Initial information was obtained from epileptic patients showing the devastating

effects of bilateral medial temporal lobe or hippocampal damage (Milner and

Penfield 1955; Scoville and Milner 1957). In rodents, hippocampal lesions severely

impair performances in the MWM task (Moser and Moser 1998) which consist in

finding a hidden escape platform in a pool filled with opaque water (Morris 1984).

The animals use spatial cues on the walls of the room to orient themselves in the

environment and successfully navigate. Following several days of training (multi-

ple trials per day), young rats or mice will reach the platform quickly. Old rat

learning curves can then be compared to classify them in aged memory-impaired

(AI) and -unimpaired subgroups (AU) (Gallagher et al. 1993, 2003; Aubert

et al. 1995; Quirion et al. 1995; Rowe et al. 1998; Wilson et al. 2003; Menard

and Quirion 2012b). A probe test for which the platform is removed can subse-

quently be conducted to confirm cognitive status. In this task, the number of

platform crossings and time or distance spent in the target quadrant can be com-

pared to assess memory accuracy. The classical paradigm can be modified to add a

second week of training in which the platform is moved to another quadrant of the

pool (Menard and Quirion 2012b). Inhibitory and reversal learning, which

contributes to the extinction of previously acquired memories and learning of a

novel similar task, is strongly altered in AI rats suggesting that adaptative synaptic

plasticity is affected and less efficient than in young and AU animals (Menard and

Quirion 2012b). This could be related to place cells which are an ensemble of cells

that fired when an animal is moving in an environment, encoding a cognitive map

with a specific spatial-firing pattern (O’Keefe and Dostrovsky 1971). Wrong

encoding or recollection of the patterns could lead to cognitive deficits in old

rodents (Wilson et al. 2003, 2006).

Other paradigms have been developed to study spatial memory in rodents

including the Barnes maze, radial arm maze, and the hole-board task. In the Barnes

maze, rodents have to find an escape box using visual cues on a circular surface with

up to 20 holes around its circumference (Barnes 1979). The task is based on

rodents’ aversion of open bright spaces and is considered relatively unstressful

and modestly demanding physically. Similarly to the MWM task, various

parameters can be measured such as latency to escape, path length, velocity, etc.

Some senescent rats exhibit poor performances in this test (Barnes 1979; Harrison

et al. 2006; Barrett et al. 2009). Hippocampal lesions induced by traumatic brain

injury also lead to memory deficits in this task (Fox et al. 1998). Another interesting

behavioral paradigm to evaluate spatial memory is the radial arm maze (Walker and
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Olton 1979; Hudon et al. 2002; Webster et al. 2014). In this task, the animals have

to find food reward at the end of the baited arms and the design allowed to explore

reference and working memory function separately (Roberge et al. 2008; Grayson

et al. 2014). Indeed, reference memory errors are associated with visits in

non-baited arms, while working memory errors are the results of reentry in a

previously visited arm. Nevertheless, the MWM task is generally used to evaluate

the impact of normal aging on spatial memory particularly in rats.

2.2 Recognition Memory

While spatial memory is necessary to explore and navigate in old or new

environments, other skills such as the ability to discriminate novelty from stimuli

that have been previously encountered are also necessary for survival. Interestingly,

the ability to recognize a familiar versus novel stimulus (Rowe et al. 1998) or

objects (Menard et al. 2013b, 2014b) declines with normal aging in rodents.

Recognition memory tests compared time spent exploring familiar versus novel

objects, smells, or tastes in distinct spatial locations (Fedulov et al. 2007; Dere

et al. 2007; Tse et al. 2007; Menard et al. 2013b). In contrast, spatial memory which

involves circuitry of the hippocampal formation, albeit recognition memory, is

linked to the perirhinal cortex (Burke et al. 2012). AI rodents seem to falsely

identify novel objects or stimulus as familiar leading to pattern separation deficits

(Burke et al. 2010). As for spatial memory and hippocampal lesions, impairments

of recognition memory have been reported in rats with lesions of the perirhinal

cortex (McTighe et al. 2010). Again no significant loss of neurons has been

observed in this brain structure over the life span (Rapp et al. 2002).

2.3 Social Memory

Another form of cognition essential for survivability is social memory. Rodents

need to interact with each other, establish social networks, and learn how to respond

to stimuli that define hierarchy and mate choice (Berry and Bronson 1992). Basic

social interaction between rodents can be studied using video recording to analyze

active interaction time between a test animal and a novel unfamiliar mouse or rat.

Various behavioral paradigms were developed to study in detail memory formation

processes by social recognition and learning (for a review, see van der Kooij and

Sandi 2012). In rodents, androgens and estrogens control social information

processing by regulating hormones and neuropeptides such as oxytocin and

arginine–vasopressin (Winslow et al. 1993; Neumann 2008; Choleris et al. 2009).

Interestingly, the memory of mice seems to be far superior to that of rats in social

recognition paradigms and it could be related to differences in olfaction (Noack

et al. 2010). Aging affects olfactory sensory function in rats, particularly in reversal

learning (Schoenbaum et al. 2002; Brushfield et al. 2008), and thus impairs social

memory recognition processes (Guan and Dluzen 1994). Social defeat stress can
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induce behavioral adaptations relevant to depression such as anxiety-like behaviors,

social avoidance, and anhedonia (Golden et al. 2011). In humans, depression-

related cognitive deficits might be a risk factor for dementia while normal aging

could involve memory impairments associated with enhanced anxious behaviors

(Bunce et al. 2012).

2.4 Fear Memory

Stressful and emotionally arousing or challenging experiences are generally

retained in memory (Schacter 1999; Smith et al. 2004; LaBar and Cabeza 2006;

Joels et al. 2011). In fact, fear memory is essential not only to rodents but to all

species to avoid dangerous situations and improve coping strategies. Fear learning

is fast and efficient: single exposure to a stressful event can lead to the formation of

long-lasting fear memories but also lead to detrimental behaviors (Najavits

et al. 1998). Fortunately, adaptation and underlying brain plasticity allow for the

damping of fear memories. However, these processes are slower than fear learning

and often require multiple non-reinforcing expositions to the fear-associated cues of

contexts (Myers and Davis 2002, 2007). While the hippocampus is still involved in

the formation of fear learning and memory (Radulovic and Tronson 2010), the

amygdala is central to these processes (Maren and Quirk 2004; McGaugh 2004;

Hermans et al. 2014). Aversive learning can be evaluated with multiple behavioral

paradigms including passive avoidance, contextual and cued fear conditioning,

eyeblink conditioning, fear-conditioned startle, or taste aversion (for a review, see

Crawley 2008). Anxiety-like behaviors and stress responses on the other hand can

be measured with methods exploiting the approach-avoidance conflict between

rodents’ innate desire to explore new environments and fear of open bright space

with apparatus such as the light dark box, elevated plus maze, or open field

(Bouwknecht and Paylor 2002; Ducottet and Belzung 2005; Crawley 2008; Menard

et al. 2013b). Old rodents are generally characterized by exacerbated anxious

behaviors and stress responses (Menard et al. 2013b, 2014b) which affects brain

synaptic plasticity and memory formation.

3 Synaptic Plasticity Associated with Learning and Memory
Formation

Learning and memory processes benefit from brain plasticity and this induces

reversible cellular and molecular changes in the central nervous system. These

modifications can then be stabilized or consolidated to create long-lasting memories

(Dudai 1996; McGaugh 2000; Lamprecht and LeDoux 2004; Frankland and

Bontempi 2005; Baudry et al. 2011; Choquet and Triller 2013; Huganir and Nicoll

2013). In this section, the role of the neurotransmitter glutamate, its receptors, and

related signaling pathways on cognitive function will be discussed.
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3.1 Glutamate Receptors

3.1.1 NMDA Receptors
Glutamate is the main excitatory neurotransmitter in the brain and activation of its

N-methyl-D-aspartate receptors (NMDAR) play a critical role in synaptic plasticity

and memory formation (Morris et al. 1986; Sakimura et al. 1995; Tsien et al. 1996;

Kiyama et al. 1998; Nakazawa et al. 2002, 2003; McHugh et al. 2007; Lee and Silva

2009). NMDARs form a heterotetramer composed of two obligatory GluN1

subunits and two modulatory GluN2 (A, B, C and D subtypes) or GluN3 (A or B

subtypes) subunits. Receptor subunit composition changes during development

(Monyer et al. 1994; Sheng et al. 1994; Bellone and Nicoll 2007) and aging

(Kuehl-Kovarik et al. 2000; Zhao et al. 2009; Magnusson et al. 2010), influencing

the kinetics of the receptor channel opening. Greater ratios of GluN2B prolonged

NMDAR currents enhancing long-term potentiation (LTP) (Foster et al. 2010; Cui

et al. 2011; Muller et al. 2013). LTP is a form of synaptic plasticity closely related

to learning and memory formation (Bliss and Collingridge 1993) which is altered in

the aging brain and could contribute to cognitive decline (Landfield and Lynch

1977; Deupree et al. 1993; Rosenzweig et al. 1997; Shankar et al. 1998; Tombaugh

et al. 2002; Barnes 2003; Burke and Barnes 2006). Facilitation, saturation or

inhibition of LTP by pharmacological agents or genetic manipulation directly

affects behaviors in rodents (Morris et al. 1986; Sakimura et al. 1995; Tsien

et al. 1996; Kiyama et al. 1998; Tang et al. 1999). Trafficking of glutamate

receptors from the cytoplasm to the membrane and postsynaptic densities (PSD)

are crucial to facilitate LTP maintenance and synaptic plasticity (Malinow and

Malenka 2002; Rumpel et al. 2005). Accordingly, transgenic mice overexpressing

the kinesin-like protein KIF17, a protein involved in GluN2B transport along

microtubules, display better spatial learning and working memory performances

(Wong et al. 2002). In contrast, degradation of NMDAR by the protease calpain

decreases the number of functional receptors in the PSD (Simpkins et al. 2003;

Dong et al. 2006; Baudry et al. 2013). Cyclin-dependent kinase 5 (Cdk5) regulates

calpain-dependent GluN2B proteolysis (Su and Tsai 2011) and deletion of Cdk5

reduces GluN2B degradation favoring stronger LTP and memory processes

(Hawasli et al. 2007). Mice overexpressing GluN2B outperform age-matched

controls in hippocampus-dependent memory tasks up to 18 months of age (Cao

et al. 2007), suggesting that GluN2B and related downstream signaling pathways

could be promising targets for cognition-enhancing drugs (Mony et al. 2009).

Enhancement of NMDAR functioning has been a pharmacological target for

cognition for decades (for a review, see Collingridge et al. 2013). Briefly, NMDAR

activity can be modulated either directly with agonists or antagonists and regulation

of posttranslational modifications such as phosphorylation, palmitoylation,

ubiquitination, and proteolysis, or indirectly through its interactions with other

receptors and neuromodulators (Collingridge et al. 2013). NMDAR antagonists

generally impair NMDA-dependent LTP, learning, and memory (Morris 1989;

Manahan-Vaughan et al. 2008; Blot et al. 2013). However, exceptions exist,

notably memantine, a fast, voltage-dependent channel blocker (Bresink
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et al. 1996; Frankiewicz et al. 1996), which is used to treat late-stage Alzheimer’s

disease as it delays cognitive decline (Danysz and Parsons 2003). NMDAR

antagonists may enhance cognition by blocking aberrant activation of the receptors

while preserving physiological functions (Frankiewicz and Parsons 1999; Fitzjohn

et al. 2008).

Another attractive therapeutic avenue to rescue age-related memory deficits is

the potentiation of NMDAR activity via the glycine-binding site (Baxter

et al. 1994). Glycine or glycine-like substance such as D-serine acts as a

co-agonist of glutamate to open the NMDAR channel (Johnson and Ascher 1987;

Kleckner and Dingledine 1988; Mothet et al. 2000) and NMDAR full activation

requires agonist binding at two glycine and two glutamate sites of the

heterotetramer complex (Benveniste and Mayer 1991; Clements and Westbrook

1991). Age-associated changes in D-serine signaling could contribute to cognitive

decline in aging (Billard and Rouaud 2007; Potier et al. 2010). Finally, other

glutamatergic receptors such as α-amino-3-hydroxy-5-methyl-4-isoxazole-

propionic acid (AMPA) and group 1 metabotropic glutamate receptors (mGluR)

interact physically with NMDAR regulating, to some extent, its activity.

3.1.2 AMPA Receptors
Like NMDAR, ionotropic AMPAR consists of four subunits (GluA1–4) that form

heteromeric tetrameric complexes (Traynelis et al. 2010; Huganir and Nicoll 2013).

GluA1–4 subunits can be phosphorylated on serine, threonine, and tyrosine residues

by several protein kinases including Ca2+/calmodulin-dependent protein kinase II

(CaMKII) and protein kinase C (PKC) on over 20 different phosphorylation sites

(Shepherd and Huganir 2007; Lu and Roche 2012). Phosphorylation of AMPAR

subunits regulates its function and intracellular trafficking, raising the hypothesis

that posttranslational modifications could mediate synaptic plasticity (Isaac

et al. 1995; Liao et al. 1995; Barria et al. 1997; Lee et al. 1998, 2000; Derkach

et al. 1999). AMPAR trafficking between the plasma membrane and intracellular

compartments is highly dynamic and can be modified by short-term and long-term

changes in neuronal activity (for a review, see Bredt and Nicoll 2003; Huganir and

Nicoll 2013). Synaptic scaling which is a homeostatic response to long-term

changes in a network activity has been associated with AMPAR trafficking regula-

tion by intrinsic activity (for a review, see Turrigiano 2008). Furthermore, AMPAR

are mobile within the plasma membrane (Opazo and Choquet 2011), but their

mobility decreases when entering the synapse (Borgdorff and Choquet 2002).

AMPAR synaptic levels and responsiveness can be modulated with various

pharmacological agents including inhibitors [(2R)-amino-5-phosphonopentanoate,

APV; 6-cyano-7-nitroquinoxaline-2,3-dione, CNQX; tetrodotoxin, TTX] and

activators (bicuculline, picrotoxin) (Lissin et al. 1998; O’Brien et al. 1998;

Turrigiano et al. 1998). Auxiliary subunits, known as transmembrane AMPAR

regulatory proteins (TARPs), bind to the receptors and ensure proper maturation

and delivery at the membrane and synapses (Tomita et al. 2003). TARPs can also

affect biophysical and pharmacological properties of AMPAR (Priel et al. 2005;

Menuz et al. 2007). For example, in the presence of TARPs, the antagonist CNQX
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acts as a partial agonist (Menuz et al. 2007). Experiments conducted with

ampakines, a class of compounds strongly interacting with AMPAR, suggest that

region-specific expression of GluA1–4 and TARPs may explain the variations

reported in experimental drug activity (Montgomery et al. 2009). Ampakines

potentiate AMPAR-mediated synaptic currents by slowing the receptor deactiva-

tion and, consequently, enhance synaptic responses and LTP (Staubli et al. 1994;

Arai and Kessler 2007). Early on, ampakines were targeted as cognition-enhancing

drugs (Davis et al. 1997; Hampson et al. 1998a, b). Interestingly in pilot

experiments, ampakines improved recall memory in aged humans (Lynch

et al. 1997).

3.1.3 mGlu Receptors
Our group and others have recently highlighted the importance of group 1 mGluR-

related synaptic plasticity in successful cognitive aging (Menard and Quirion

2012b; Menard et al. 2013b, 2014b; Yang et al. 2013a). Eight mGluR have been

identified and divided into three groups: group 1 includes postsynaptic mGluR1 and

mGluR5, while group 2 (mGluR2, mGluR3) and group 3 (mGluR4, mGluR6,

mGluR7, mGluR8) are mainly presynaptic (for a review, see Nicoletti

et al. 2011). Activation of presynaptic mGluR2/3 following an excess of glutamate

release from neurons or astrocytes inhibits neurotransmitter release, regulating

synaptic plasticity and excitatory synaptic transmission (Yokoi et al. 1996;

Altinbilek and Manahan-Vaughan 2009). Group 3 mGluRs are localized at the

active zone of neurotransmitter release negatively autoregulating glutamate release

(Niswender and Conn 2010). Postsynaptic mGluR1s are concentrated in

perisynaptic and extrasynaptic areas and coupled to Gq/G11 proteins. Their activa-

tion stimulates phospholipase C and intracellular second messenger release, such as

inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) (Nicoletti et al. 2011).

Finally, mGluR5s are also coupled to Gq/G11 protein, but their activation

stimulates polyphosphoinositide (PI) hydrolysis. These receptors can functionally

interact with NMDA receptor GluN2 subunits through a chain of interacting

proteins including PSD-95, Shank, and Homer (Tu et al. 1999; Collett and

Collingridge 2004).

Group 1 mGluRs are abundant in the hippocampus and cerebral cortex of the

adult rat brain (Romano et al. 1996) and involved in hippocampus-dependent

spatial learning and LTP (Balschun et al. 1999). Accordingly, mice lacking

mGluR5 have reduced LTP and are characterized by cognitive deficits in the

MWM task (Lu et al. 1997). Furthermore, spatial memory impairments are

exacerbated in a reversal learning paradigm (Xu et al. 2009). This type of memory

involves efficient pattern separation and inhibitory learning processes which can be

affected by aging (Burke et al. 2010; Menard and Quirion 2012b; Menard

et al. 2013b). Stimulation of group 1 mGluRs could act as a molecular switch to

facilitate synaptic plasticity (Bortolotto et al. 2005; Manahan-Vaughan and

Braunewell 2005; Bikbaev et al. 2008; Neyman and Manahan-Vaughan 2008)

particularly in the aging brain (Menard and Quirion 2012a, b; Menard

et al. 2013b, 2014b; Yang et al. 2013a).
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Long-term depression (LTD), a form of synaptic plasticity involved in learning

and memory processes (Ge et al. 2010; Dong et al. 2013; Menard et al. 2013b), can

be induced by the group 1 mGluR-specific agonist 3,5-dihydroxyphenylglycine

(DHPG) (Palmer et al. 1997). Age-related cognitive deficits have been associated

with a reduction of DPHG-induced mGluR-LTD in old mice (Menard et al. 2013b).

Over the years, multiple mGluR5 enhancers have been developed (for a review, see

Cleva and Olive 2011; Nicoletti et al. 2011). Indeed, positive allosteric modulators

can facilitate mGluR-related synaptic plasticity and improve spatial learning (Ayala

et al. 2009; Menard et al. 2013b) possibly through NMDAR interaction

(Rosenbrock et al. 2010) and/or AMPAR regulation (Uslaner et al. 2009). Con-

versely, mGluR5 antagonists impair learning and memory in adult (Christoffersen

et al. 2008) and aged rodents (Menard et al. 2013b). Nevertheless, negative

allosteric modulators are under clinical development because overactive mGluR

functioning is thought to play a role in neurological disorders such as Alzheimer’s

disease and Fragile X syndrome (Luscher and Huber 2010).

3.2 Intracellular Glutamatergic Signaling

Learning and memory processes involve multiple signaling pathways triggered by

glutamatergic receptor activation. Following Ca2+ entry in the neuron, cascades of

kinases become phosphorylated leading to transcription factor activation and gene

expression. The next section highlights several proteins essential for long-term

synaptic plasticity establishment and maintenance.

3.2.1 CaMKII
The hypothesis that phosphorylation/dephosphorylation of AMPAR subunits

regulates receptor function and modulates synaptic transmission was proposed in

the early 1990s (Swope et al. 1992; Soderling 1993). Data from a number of studies

have shown that protein kinase activity, particularly CaMKII, is required for LTP

induction (Malenka et al. 1989; Malinow et al. 1989; Wyllie and Nicoll 1994).

CaMKII is considered to be the primary downstream target following Ca2+ entry

through NMDAR activation and associated with LTP, AMPAR trafficking, and

memory formation (Anggono and Huganir 2012; Lisman et al. 2012). In fact,

elevation of Ca2+ level in the cytoplasm induces recruitment of CaMKII to the

PSD where it binds to NMDAR GluN2B subunits (Barria and Malinow 2005; Zhou

et al. 2007; Halt et al. 2012) and phosphorylates multiple targets, notably GluN2B,

AMPAR GluA1, and PSD-95 (Yoshimura et al. 2000, 2002; Dosemeci and Jaffe

2010). However, activation of CaMKII during LTP lasts only a few minutes (Lee

et al. 2009), suggesting that downstream signaling cascades are required for LTP

maintenance and memory consolidation.

3.2.2 PKC
Twelve PKC isoforms have been identified in mammals (Sun and Alkon 2010).

These serine–threonine kinases are central to many signal transduction pathways
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and densely expressed in the brain (Saito et al. 1988). PKC isoforms seem to play an

essential role in multiple forms of learning and memory processes (Bank

et al. 1988; Olds et al. 1989; Coalombo et al. 1997; Colombo and Gallagher

2002; Nelson et al. 2008; Nithianantharajah and Murphy 2009; Zhang et al. 2009;

Menard and Quirion 2012b). Inhibition of kinases such as PKC can block LTP

induction (Malinow et al. 1989). Phosphorylation of GluA1 by PKC controls

synaptic incorporation of GluA1-containing AMPAR into the synapses during

LTP (Boehm et al. 2006). Moreover, GluA2 phosphorylation by PKC modifies its

binding to scaffolding proteins (Matsuda et al. 1999; Chung et al. 2000) and appears

to be essential for LTD (Chung et al. 2000). Activation of both ionotropic and

metabotropic glutamate receptors stimulate PKCγ activity (Codazzi et al. 2006).

Moreover, mGluR activity can enhance NMDAR currents via a PKC-dependent

mechanism (Tyszkiewicz et al. 2004). For example, following training in a spatial

memory task PKC gamma (γ) expression increases (Nithianantharajah and Murphy

2009). This kinase was linked to the individual differences observed in the cogni-

tive status of aging rats (Coalombo et al. 1997; Colombo and Gallagher 2002;

Menard and Quirion 2012b), and its activation in small groups of hippocampal or

cortical neurons improves old rat performances in the MWM task (Zhang

et al. 2009). PKCγ activity may promote neuronal interconnections (Menard

et al. 2013a) and synaptogenesis (Hongpaisan and Alkon 2007) and protects against

neurodegeneration (for a review, see Sun and Alkon 2010). PKC enzymes can be

activated by Ca2+, DAG, arachidonic acid, phospholipids, and phorbol esters. The

development of cognition-enhancing drugs based on PKC isoform pharmacology

was proposed to treat dementias (for a review, see Sun and Alkon 2010).

3.2.3 ERK
The extracellular signal-regulated kinases (ERKs) signaling pathway plays a cru-

cial role in neuronal processes including long-term synaptic plasticity and memory

formation (English and Sweatt 1996; Blum et al. 1999; Thomas and Huganir 2004;

Davis and Laroche 2006; Ciccarelli and Giustetto 2014). ERKs activities regulate

AMPAR transmission, potentiation by CaMKII, and insertion into synapses (Zhu

et al. 2002). When activated by phosphorylation, ERKs translocate to the nucleus

where they activate downstream transcription factors and immediate early genes

(IEG) expression (Thomas and Huganir 2004; Davis and Laroche 2006; Menard

and Quirion 2012a; Yang et al. 2013b). Long-term synaptic plasticity can last for

weeks and the late phase is dependent on gene transcription activation and synthesis

of new proteins (Bliss and Collingridge 1993; Lynch 2004). Following NMDAR or

voltage-gated calcium channel activation, Ca2+ level increases in the cytoplasm

activating ERK through Ras signaling (Rosen et al. 1994). However, Ras GTPases

signaling can be induced by other stimuli including activation of tyrosine receptor

kinase (Trk receptor) or G-protein-coupled receptors (GPCR) (Ciccarelli and

Giustetto 2014). Ca2+-independent co-activation of NMDAR and mGluR5 can

also lead to ERK phosphorylation and IEG expression (Yang et al. 2004). ERK

signaling is necessary to establish mGluR-LTD in the hippocampus (Gallagher

et al. 2004) and seems to be affected by aging (Williams et al. 2006), possibly
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through age-related changes in Ca2+ homeostasis (Burke and Barnes 2010) leading

to cognitive deficits (Menard and Quirion 2012b).

3.2.4 mTOR
The mammalian target of rapamycin (mTOR) serine/threonine kinase is another

kinase regulating several translation regulatory factors and promoting protein

synthesis (Page et al. 2006; Costa-Mattioli et al. 2009). Similarly to ERKs,

mTOR inhibition blocks long-term synaptic plasticity and memory formation

(Tang et al. 2002; Stoica et al. 2011). mTOR activation via phosphorylation can

be triggered by various synaptic signals including glutamatergic agonists and

neurotrophic factors such as insulin-like growth factor (IGF) or brain-derived

neurotrophic factor (BDNF) (Costa-Mattioli et al. 2009; Costa-Mattioli and

Monteggia 2013). mTOR complex 1 (mTORC1) has been associated with transla-

tional control, while mTORC2 seems to be involved in the cytoskeleton actin

dynamics (for a review, see Costa-Mattioli and Monteggia 2013). Activation of

NMDAR and mGluR modulates activity-dependent dendritic synthesis through

mTOR activity in hippocampal neurons (Gong et al. 2006). Inhibition of mTOR

prevents DHPG-induced mGluR-LTD (Hou and Klann 2004), while maintenance

of good performances in the MWM spatial memory task was positively correlated

with mTOR phosphorylation in aged rats (Menard and Quirion 2012b). Formation

and stability of long-term fear memory is also compromised when mTOR activa-

tion is altered (Parsons et al. 2006). Altogether, mTOR function appears to be an

attractive target in the cognition-enhancing target space. However, in addition to

protein synthesis and actin polymerization, mTOR is involved in autophagy, lipid

synthesis, ribosome biogenesis, nutrient support, and other growth-related pro-

cesses (Costa-Mattioli and Monteggia 2013). Therefore, a better understanding of

the various cell mechanisms associated with mTOR activity is necessary if one is to

develop highly selective compounds that will improve cognition.

3.2.5 CREB
The transcription factor cAMP response element-binding protein (CREB) has

probably been the most intensively studied kinase substrate with regard to cognition

(for a review, see Alberini 2009). In fact, CREB-dependent transcription is essential

for multiple forms of learning and memory such as fear conditioning and social

recognition (Josselyn et al. 2001; Kida et al. 2002; Lonze and Ginty 2002; West

et al. 2002; Han et al. 2007; Suzuki et al. 2011). Phosphorylation of CREB at the

residue Ser133 regulates gene transcription (Shaywitz and Greenberg 1999) and

this posttranslational modification is prevented by ERK inhibition (Wu et al. 2001;

Hardingham et al. 2001). CaMKIV can also activate CREB-dependent transcription

(Sun et al. 1996). Lower phosphorylation and total protein levels of CREB have

been linked to age-related memory impairments in rats (Brightwell et al. 2004;

Monti et al. 2005; Menard and Quirion 2012b). Compounds potentiating CREB

activation have been identified as potential cognition-enhancing drugs (Tully

et al. 2003; Xia et al. 2009). However, like mTOR, CREB is expressed ubiquitously

and involved in several critical functions limiting its usefulness (Barco et al. 2003).
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An alternative strategy might be to manipulate CREB primary gene targets and

therefore, enhance treatment specificity.

3.3 Gene Expression

As mentioned previously, behavioral experience-induced activation of neuronal

transmission and subsequent synaptic plasticity require the transcription of essential

IEGs for long-term memory formation and consolidation (Marrone et al. 2008).

These genes affect cell signaling, cytoskeletal dynamics, protein trafficking and

degradation, and posttranslational modifications. In the following sections, the roles

of five out of the growing list of genes involved in cognition (Benoit et al. 2011) are

discussed.

3.3.1 Arc
The IEG activity-regulated cytoskeleton-associated protein (Arc) (Link et al. 1995;

Lyford et al. 1995) is considered a master regulator of synaptic plasticity (Bramham

et al. 2008; Shepherd and Bear 2011). In fact, cellular imaging of Arc mRNA and

protein induction is currently used to detect the neuronal networks involved in

behavioral encoding (Guzowski et al. 2005). Spatial exploration, for example,

induces Arc transcription in ~40 % of hippocampal neurons of the hippocampus

CA1 region after only 5 min (Guzowski et al. 2005). Several kinases and transcrip-

tion factors are implicated in Arc expression including CaMKII, ERK, and CREB

(Waltereit et al. 2001; Vazdarjanova et al. 2006; Shepherd and Bear 2011). Inter-

estingly, Arc protein can be found in PSD and co-purified with NMDAR (Husi

et al. 2000; Steward and Worley 2001). However NMDAR-independent synaptic

transmission, notably through group 1 mGluR activity, can also regulate Arc

transcription (Park et al. 2008). Our group reported higher Arc expression in

memory-unimpaired old mice characterized by intact mGluR-LTD in comparison

to aged mice for which mGluR-LTD and cognition were altered (Menard

et al. 2013b). Arc mRNA is enriched in the dendrites of active synapses (Steward

et al. 1998) possibly to facilitate protein expression, synaptic plasticity, and spine

remodeling (Messaoudi et al. 2007). Downregulation of the Arc gene blocks

consolidation of spatial memory (Guzowski et al. 2000) and fear conditioning

(Ploski et al. 2008) while Arc knockout (KO) mice exhibit impaired long-term

memory (Plath et al. 2006). Arc seems also crucial for the late phases and mainte-

nance of LTP (Guzowski et al. 2000). Furthermore, mGluR-LTD requires Arc

translation (Waung et al. 2008) which is impaired in Arc KO mice (Park

et al. 2008). In fact, Arc affects AMPAR trafficking through interactions with the

endocytic machinery (Chowdhury et al. 2006; Waung et al. 2008) and activity-

dependent Arc induction is involved in AMPAR-mediated neuronal homeostasis

(Shepherd et al. 2006; Beique et al. 2011). Development of cognition-enhancing

drugs targeting Arc expression in specific area of the brain may therefore become a

promising research avenue.
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3.3.2 Homer 1a
Homer 1a is another interesting IEG dynamically regulated in response to synaptic

activity and closely related to learning and memory formation (Vazdarjanova

et al. 2002; Szumlinski et al. 2004; Celikel et al. 2007; Menard and Quirion

2012b; Menard et al. 2013b, 2014b). As mentioned previously, NMDARs directly

interact with mGluRs through PSD-95, Shank, and Homer scaffolding proteins

(Tu et al. 1999; Collett and Collingridge 2004). In fact, Homer proteins act as both

scaffolding and transduction molecules (Brakeman et al. 1997; Ciruela et al. 2000;

Ango et al. 2002; Fagni et al. 2002). Long Homer isoforms are constitutively

expressed, enriched in PSD where they form synaptic clusters (Xiao et al. 1998)

and facilitate signal transduction (Duncan et al. 2005; Shiraishi-Yamaguchi and

Furuichi 2007). In contrast, the Homer 1a short isoform is an IEG produced

following neuronal activity (Brakeman et al. 1997; Vazdarjanova et al. 2002) and

when bound to mGluRs disrupts the protein clusters by dominant negative compet-

itive binding (Kammermeier and Worley 2007). Homer 1a can also inhibit

NMDAR currents by altering Homer–Shank complexes (Bertaso et al. 2010).

Overexpression of Homer 1a in the hippocampus impairs LTP maintenance and

spatial memory in adult mice (Celikel et al. 2007). Furthermore, elevated Homer 1a

protein level has been correlated with cognitive deficits in aged rodents (Menard

and Quirion 2012b; Menard et al. 2013b), which may be related to persistent

uncoupling of mGluRs with its downstream signaling effectors (Menard and

Quirion 2012b). To our knowledge, no drug has been proposed so far to directly

modulate Homer protein expression or function.

3.3.3 Zif268
Induction of LTP is associated with a rapid and robust transcription of the IEG

Zif268 in the hippocampus (Cole et al. 1989; Wisden et al. 1990; Jones et al. 2001;

Alberini 2009). Learning-related increases in Zif268 expression have been reported

for spatial (Guzowski et al. 2001) and fear memory (Hall et al. 2001). In mice

lacking the Zif268 gene, LTP early phases are intact but late LTP is absent, and

long-term memory is impaired in multiple tasks after a 24-h delay (Jones

et al. 2001). Thus, expression of Zif268 may be critical for LTP persistence and

memory consolidation (Abraham et al. 1993; Jones et al. 2001; Alberini 2009).

Interestingly, learning task repetitions seem to reduce Zif268 expression (Guzowski

et al. 2001). This observation is in line with similar Zif268 protein levels in aged

rats trained for several consecutive weeks in the MWM task despite individual

difference in cognitive status (Menard and Quirion 2012b). In a recent study, we

reported a negative correlation between NMDAR, mGluR5, Arc, and Zif268

protein levels in old rats, suggesting that persistent transcription of this IEG may

be involved in age-related cognitive deficits (Menard et al. 2014b). Such as for

Homer 1a, no drug is currently available to modulate Zif268 expression or function.

3.3.4 IGF
As mentioned earlier, mTOR activity can be triggered by the binding of the

neurotrophic factor IGF to Trk receptors, initiating intracellular signaling (Costa-
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Mattioli et al. 2009; Costa-Mattioli and Monteggia 2013). PKC activity modulates

IGF-1-induced activation of the serine–threonine protein kinase Akt (Zheng

et al. 2000), a major actor of neuronal survival regulation (Dudek et al. 1997).

IGFs play an important role in development, tissue repair, apoptosis, and regenera-

tion (Dore et al. 1997; Werther et al. 1998; Russo et al. 2005) as well as in memory

formation, consolidation, enhancement and extinction (Svensson et al. 2006; Agis-

Balboa et al. 2011; Chen et al. 2011; Stern et al. 2014). IGF-I and IGF-II are

growth-promoting peptides acting on plasma membrane Trk receptors on the cell

surface, the type I IGF receptors (IGF-IR) (Russo et al. 2005). IGF binding to the

IGF-IR promotes the activation of downstream signaling cascades including ERK

(Russo et al. 2005). IGF-II is the most abundantly expressed IGF in the adult brain

and is particularly concentrated in the hippocampus (Kar et al. 1993). Interestingly,

an IGF-II polymorphism has been associated with cognitive functions in humans

(Alfimova et al. 2012) and IGF-II expression declines with aging (Kitraki

et al. 1993). Intra-hippocampal injection of recombinant IGF-II enhances memory

retention and prevents forgetting via an increase of AMPAR GluA1 subunits and

generation of persistent LTP (Chen et al. 2011). Moreover, systemic treatment with

IGF-II increases Arc and Zif268 expression in the hippocampus (Stern et al. 2014).

These recent studies suggest that IGF-II may represent an attractive target to

develop cognition-enhancing drugs.

3.3.5 BDNF
Age-related cognitive deficits might be related to impaired LTP stability (Deupree

et al. 1993; Burke and Barnes 2010). Synaptic transmission stimulates the release of

BDNF (Balkowiec and Katz 2002; Aicardi et al. 2004), which is associated with

rapid modifications of spine actin networks and LTP consolidation (Rex

et al. 2007). LTP expression is impaired in BDNF KO mice (Korte et al. 1995),

but this deficit can be completely rescued by recombinant BDNF (Patterson

et al. 1996). Neurotrophins such as BDNF stimulate process outgrowth during

development but also modified the axonal and dendritic cytoskeletons in the mature

nervous system directly controlling synaptic plasticity (for reviews, see Huang and

Reichardt 2001; Miller and Kaplan 2003). Through Trk receptors activation,

neurotrophins regulate CaMKII activity (He et al. 2000) and ERK signaling path-

way (Kaplan and Miller 2000). Exogenous BDNF can directly potentiate synaptic

transmission (Kang and Schuman 1995) and this effect was proposed to be Arc

dependent (Messaoudi et al. 2007). Contextual learning induces a rapid and selec-

tive increase of BDNF expression in the hippocampus (Hall et al. 2000) and BDNF-

mediated signaling is involved in spatial learning (Mizuno et al. 2003) and fear

memory (Andero and Ressler 2012). Physical exercise benefits cognitive processes

and neuronal plasticity and this phenomenon seems to be mediated by IGF-1 and

signaling cascades triggered by BDNF expression (Ding et al. 2006). Clinical trials

have been conducted with BDNF as a therapeutic target for psychiatric diseases

with undesirable side effects (Lynch et al. 2008). An alternative strategy would be

to increase the production of endogenous BDNF. Ampakines, for example, increase
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BDNF production in vitro and in vivo in rodents up to an advanced age (Lauterborn

et al. 2000).

4 Cholinergic System and Cognition

The neurotransmitter acetylcholine (ACh) and its receptors play an active role in

cognitive processes (Sarter and Parikh 2005). ACh action might be mediated

through the regulation of NMDA. Indeed, stimulation of muscarinic ACh receptors

(mAChR) potentiates NMDAR responses in the hippocampus (Markram and Segal

1990) and can facilitate NMDAR-LTP induction (Shinoe et al. 2005). In addition,

mAChR activation can also promote NMDAR-LTD (Kirkwood et al. 1999; Jo

et al. 2010) and induce a NMDAR-independent form of LTD (Dickinson

et al. 2009). This last form of plasticity does not appear to involve the same

mechanisms as mGluR-LTD (Dickinson et al. 2009). ACh can bind and activate

two main classes of receptors: metabotropic mAChRs and nicotinic AChRs

(nAChRs) which are ionotropic and permeable to Na+, K+, and Ca2+ (for a review,

see Deiana et al. 2011). An age-related downregulation of the cholinergic system

has been proposed to explain the progressive impairments of cognitive abilities

associated with normal and pathological aging (Bartus et al. 1982; Bartus 2000;

Auld et al. 2002). In fact, increased activation of the cholinergic system generally

facilitates learning and memory processes (Scali et al. 1997a, b; Bradley

et al. 2010). However, an increased expression of the negative autoreceptor

mACh2 was reported in aged rats exhibiting memory deficits (Aubert et al. 1995)

and inhibition of these receptors may facilitate spatial memory function (Quirion

et al. 1995).

4.1 Impact of AChR Agonists and Antagonists on Memory
Function

Early on, studies showed that muscarinic antagonists such as scopolamine or

atropine impair cognitive abilities in animals and humans (Deutsch 1971;

Drachman 1977). Systemic administration of scopolamine impairs learning acqui-

sition and memory formation in multiple tasks (Aigner and Mishkin 1986; Aigner

et al. 1991; Miller and Desimone 1993; Brouillette et al. 2007). Interestingly, IEG

Homer 1a expression is enhanced in the hippocampus of amnesic scopolamine-

treated rats (Brouillette et al. 2007). Conversely, treatment with a mACh1R alloste-

ric agonist improves cognitive performances (Bradley et al. 2010). Neurotrophins

enhance ACh release through TrkA receptor signaling (Auld et al. 2001) and

activation of the TrkA receptor with a selective partial agonist can rescue

age-related memory deficits in rats through modulation of the cholinergic system

(Bruno et al. 2004). IGFs differentially regulate ACh release: IGF-I acts as an

inhibitor, while IGF-II potentiated ACh-related currents in rat hippocampal slices

(Kar et al. 1997). TTX alters the effect of IGF-I (Kar et al. 1997) suggesting an
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interaction with AMPAR. Treatment of rat cultured olfactory bulb neuronal cells

with carbachol, a cholinergic agonist, increases neuritic outgrowth and this effect is

mediated by nAChR since it can be mimicked with nicotinic agonists (Coronas

et al. 2000). Furthermore, low concentrations of carbachol can potentiate NMDA

responses in the hippocampus (Harvey et al. 1993). These results suggest that

nAChR may be actively involved in neuronal plasticity and could represent an

attractive target to develop cognition-enhancing drugs.

4.2 a-7 Nicotinic ACh Receptor Agonists and Cognitive Deficits

Multiple nAChR agonists have been examined as possible treatments for memory

impairment associated with aging or in psychiatric disorders. In this regard, modu-

lation of the ionotropic α7 nAChR is of particular interest, considering its high

density in the hippocampus and cerebral cortex and its implication in cognitive

processes (Paterson and Nordberg 2000; Levin and Rezvani 2002; Leiser et al. 2009;

Floresco and Jentsch 2011). Treatment with of α7 nAChR agonists such as N-[(3R)-
1-azabicyclo[2.2.2]oct-3-yl]-7-[2-(methoxy)phenyl]-1-benzofuran-2-carboxamide

(ABBF), 5-morpholin-4-yl-pentanoic acid (4-pyridin-3-yl-phenyl)-amide

(SEN12333), or 4-bromophenyl 1,4diazabicyclo (3.2.2) nonane-4-carboxylate,

monohydrochloride (SSR180711) rescue cognitive deficits in spatial (Boess

et al. 2007; Pichat et al. 2007), recognition (Wishka et al. 2006; Boess et al. 2007;

Pichat et al. 2007; Hashimoto et al. 2008; Roncarati et al. 2009), social (Boess

et al. 2007), and fear (Roncarati et al. 2009) memory tasks. Multiple studies have

tested the efficacy of α7 nAChR agonists and demonstrated positive cognitive effects

following activation of these receptors (for a review, see Leiser et al. 2009). Several

clinical trials are currently ongoing notably to treat negative symptoms of schizo-

phrenia (Davis et al. 2014) and Alzheimer’s disease (Geerts 2012).

5 Dynorphinergic System and Memory Function

Dynorphins, a class of endogenous opioids peptides expressed in the brain (for a

review, see Schwarzer 2009), have been linked to learning and memory processes

since the 1990s (McDaniel et al. 1990; Wagner et al. 1993; Sandin et al. 1998).

Intra-hippocampal administration of dynorphin in rats impairs spatial learning

(McDaniel et al. 1990; Sandin et al. 1998). Encoded by the prodynorphin gene

(Pdyn), dynorphin peptides are also involved in emotional control and stress

responses (Schwarzer 2009). In humans, Pdyn gene polymorphisms have been

associated with episodic memory deficits in the elderly (Kolsch et al. 2009). Fur-

thermore, enhanced dynorphins expression might be related to Alzheimer’s disease

pathogenesis (Yakovleva et al. 2007). Surprisingly, dynorphin A-(1–13) injection

can improve scopolamine-induced cognitive deficits in mice by activating kappa-

opioid receptors (KOR) (Itoh et al. 1993) and possibly regulating ACh release

(Hiramatsu et al. 1998; Hiramatsu and Watanabe 2006). Pdyn-derived peptides
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preferentially bind to the postsynaptic GPCR, KOR (Chavkin et al. 1982),

modulating PKC (Barg et al. 1993), and ERK signaling pathway activation

(Belcheva et al. 1998). Presynaptic KOR can act as an autoreceptor and inhibits

the release of dynorphin peptides (Nikolarakis et al. 1989). These peptides can also

interact with other opioid receptors (Quirion and Pert 1981; Schwarzer 2009) and

NMDAR (Shukla and Lemaire 1994; Schwarzer 2009). Release of endogenous

dynorphins inhibits excitatory transmission and blocks LTP induction in the hippo-

campus (Wagner et al. 1993). Furthermore, dynorphins and activation of presynap-

tic KORs suppress glutamate release (Drake et al. 1994; Simmons et al. 1994).

These findings suggest that dampening of the dynorphinergic system may be a

relevant strategy to modulate glutamatergic function and cognition.

5.1 Dynorphins and Age-Related Cognitive Decline

Expression of dynorphins increases with age in the hippocampus of rats (Jiang

et al. 1989; Zhang et al. 1991; Kotz et al. 2004) and mice (Menard et al. 2013b) and

this upregulation may be associated with cognitive deficits generally observed in

old rodents (Jiang et al. 1989; Zhang et al. 1991; Menard et al. 2013b). In line with

this idea, knocking down the Pdyn gene improves spatial learning in middle-aged

mice (Nguyen et al. 2005). Our group has recently shown that elevated Pdyn

expression correlates with age-related body weight gain, memory deficits, and

reduced glutamatergic signaling in rats (Menard et al. 2014b). Furthermore, we

rescued loss of group 1 mGluR function, related signaling, and cognitive decline in

old mice by knocking down the Pdyn gene (Menard et al. 2013b). Whereas aged

wild-type (WT) mice developed spatial and recognition memory deficits, aged

Pdyn KO mice performances were similar to those of young mice in both tasks

(Menard et al. 2013b). Old WT mice performed poorly in an inhibitory learning

acquisition task, which has been related to mGluR5 function (Xu et al. 2009).

Accordingly, group 1 mGluR protein level was increased and mGluR-LTD unal-

tered in old KO mice (Menard et al. 2013b). Intact synaptic plasticity and cognition

were associated with increased expression of IEG Homer 1a and Arc in aged Pdyn

KO mice (Menard et al. 2013b). Pharmacological treatments with 3-cyano-N-
(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB, positive modulator of

mGluR5) or norbinaltorphimine (norBNI), a KOR antagonist, rescued memory

function in old WT mice. These results are in line with previous studies in which

positive modulation of mGluR5 (Uslaner et al. 2009; Reichel et al. 2011; Fowler

et al. 2013) as well as norBNI treatment (Bilkei-Gorzo et al. 2014) promoted

memory formation. Conversely, mGluR5 antagonism impaired spatial memory of

old Pdyn KO mice (Menard et al. 2013b), suggesting that dynorphinergic and

glutamatergic systems closely interact to establish memories in the aging brain

(Menard et al. 2013b, 2014a, b). Gene expression profiling reveals increased Pdyn

expression in the hippocampus of amnesic scopolamine-treated rats (Brouillette

et al. 2007), raising the possibility of complex interactions between these systems in

cognitive functions.
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5.2 Dynorphins and Social Memory

Considering its role in emotional behaviors and stress responses (Schwarzer 2009),

the dynorphinergic system might also regulate the strength of social memories. In

young mice, genetic deletion of the Pdyn gene enhanced partner recognition ability

without affecting recognition memory for objects (Bilkei-Gorzo et al. 2014). Phar-

macological blockade of KOR with norBNI enhanced social memory in control

animals, whereas KOR activation impaired the abilities of transgenic mice (Bilkei-

Gorzo et al. 2014). Emotionally arousing situation such as partner recognition

induces higher expression of dynorphins than novel object recognition (Bilkei-

Gorzo et al. 2014), raising the possibility that stress-related release of these peptides

may affect the formation of social memories.

5.3 Dynorphins, KOR and Stress-Related Memory Deficits

Aging is generally characterized not only by reduced cognitive abilities but also by

increased anxiety-related behaviors (Lenze et al. 2001; Lupien et al. 2009;

Bedrosian et al. 2011; Menard et al. 2013b, 2014b). Stress exposure over a life

span may accelerate cellular aging and promote cognitive dysfunction (Lupien

et al. 2009). Furthermore, exacerbated neurobiological sensitivity to threat may

even increase the risk of developing age-related diseases (for a review, see

O’Donovan et al. 2013). The first association between the dynorphinergic system

and anxious behaviors was observed with naloxone, an opioid partial agonist,

reversing the effect of benzodiazepines (Billingsley and Kubena 1978). Similar to

Pdyn gene deletion, pharmacological treatment with norBNI reduces anxious

behaviors and increases exploratory activity in young (Knoll et al. 2007; Wittmann

et al. 2009) and aged rodents (Menard et al. 2013b). Conversely, treatment with

dynorphin peptides and KOR agonists is anxiogenic (Tsuda et al. 1996; Wittmann

et al. 2009; Smith et al. 2012). Endogenous KOR activation has been linked to

stress-induced learning and memory deficits (Carey et al. 2009). KOR signaling

could also play a role in fear memory extinction (Bilkei-Gorzo et al. 2012). Indeed,

mice lacking Pdyn gene are characterized by enhanced cue-dependent fear condi-

tioning, an effect that can be reproduced by blocking KOR before the extinction

trials (Bilkei-Gorzo et al. 2012). Interestingly, functional imaging has revealed

reduced fear extinction in human volunteers bearing Pdyn polymorphisms

(Bilkei-Gorzo et al. 2012), suggesting that dynorphins might be essential to effi-

cient fear memory consolidation. All these results identify the dynorphinergic

system as a promising target to develop novel cognition-enhancing drugs that

could be efficient in not only in normal but also pathological aging.
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6 Conclusions

In summary, despite memory function involving multiple types and processes at

synaptic, cellular, and molecular levels, promising targets have been identified that

could lead to novel cognition-enhancing drugs. Up to now, glutamatergic and

cholinergic receptor modulators have been extensively studied and, in some

cases, tested in clinical studies with equivocal results. Here we propose novel

targets involved in crucial signaling pathways. Nonetheless, to create efficient

tissue-specific and even cell type-specific compounds, modulating these effectors

remains a challenge at the chemistry, pharmacokinetic, and formulation levels.

However, considering the increase in life span generally observed in various

populations, reduction of age-related cognitive deficits represents a biomedical

issue deserving a multidisciplinary global approach.
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