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Preface to Cognitive Enhancement

Cognitive enhancement is a treatment goal for a variety of neuropsychiatric and

neurological illnesses characterized by deficits in one or more cognitive domains.

One difficulty in pursuing drug development is identifying valid methods and

measures of cognitive enhancement in both human laboratory and clinical settings

as well as in animals. An additional challenge for animal work is the development

of models and measures with translation to humans. Using animals in research

offers several advantages, including uncovering relevant drug targets, signaling

pathways of importance, and brain plasticity changes that underlie cognitive

enhancement.

To assemble this volume for the Handbook of Experimental Pharmacology, we

invited a group of eminent international scientists with interdisciplinary expertise in

cognitive enhancement to write review chapters. The chapters they contributed

highlight the behavioral and neurobiological issues relevant for drug development

(Part I), review the current status of cognitive enhancing drugs across multiple

cognitive domains (Part II), and present perspectives on multiple topics ranging

from therapeutic drug use in special populations, non-pharmacological approaches

to cognitive enhancement, and emerging technologies (Part III). It is our hope that

this volume promotes a mind-set change in the way basic and clinical research in

cognitive enhancement is viewed and conducted worldwide. Underlying this inter-

national perspective is the notion that cognitive health is a global medical issue, and

therefore, the neuroethics of cognitive enhancement will require worldwide con-

sideration.

Boston, MA Kathleen M. Kantak

Basel, Switzerland Joseph G. Wettstein

v



ThiS is a FM Blank Page



Contents

Part I Basic Approaches and Perspectives

Methods for Delivering and Evaluating the Efficacy of Cognitive

Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Philip D. Harvey and Richard S.E. Keefe

Animal Paradigms to Assess Cognition with Translation to Humans . . . 27

Tanya L. Wallace, Theresa M. Ballard, and Courtney Glavis-Bloom

Signaling Pathways Relevant to Cognition-Enhancing Drug

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Caroline Ménard, Pierrette Gaudreau, and Rémi Quirion
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Part I

Basic Approaches and Perspectives

Introduction

The study of cognition and cognitive enhancement has held the attention of a wide

group of scientists for many decades. Cognition is affected by numerous intrinsic

and extrinsic factors and is altered across various disease states such as

Alzheimer’s, schizophrenia, and Down syndrome. Going forward, it is important

to continue to improve our clinical methodology for cognition assessment with a

focus on the different cognitive domains altered in each disease or illness. Aiding

this enhancement will be the study of new experimental drugs in animals as we now

have procedures in hand for rodents and nonhuman primates that mirror those used

in humans and, indeed, were developed for the specific study of domains such as

attention, working memory, visual–spatial learning, recognition memory, and

emotional memory. This approach will increase the efficiency of translation of

animal data to human studies. To date, it has been difficult to find drugs that

improve cognition in disease states. There are now, however, a number of receptor

targets and intracellular signaling pathways that have been linked to cognition, and

hopefully, further research will identify the cognitive domain most affected by

modulation of some of these targets and pathways. One associated phenomenon is

the process of hippocampal neurogenesis, a key to brain plasticity. A better

understanding of the physiology and biochemistry of neurogenesis could lead to

new therapies for cognitive enhancement or biomarkers for cognition change

tracking.

Chapter 1 (Harvey and Keefe) outlines both the basic and more intricate methods

needed to study cognition and cognitive enhancement in people. With all the

methods at hand, one may assume that the study of cognition is relatively straight-

forward. However, the authors point out the absolute necessity to control clinical

studies at their outset and over time. As one begins to assess cognition in people

with various neurologic or psychiatric illnesses, having the right paradigms in place

and the correct control groups is paramount to the initialization of a quality study.

http://dx.doi.org/10.1007/978-3-319-16522-6_1


Critical to this is the choice of which cognitive domain to study and for what

duration. For the latter, it is usually for longer periods of time, often up to 1 year or

2, and attention to detail over this time period is vital. Associated with assessment

over time is experimental drug administration. This in itself has inherent

characteristics that require attention such as drug–drug interactions with the

medicines that the affected individuals are taking or any compromised metabolic

function that affects the pharmacokinetics of the drug in question. Importantly, the

cognition tests themselves can be quite complex for ill patients, so it is important to

focus on the appropriate test that best matches the specific cognitive domain altered

in the illness of the group of people under study.

Chapter 2 (Wallace, Ballard, and Glavis-Bloom) defines the need to better

understand the underlying biology in a given disease and its effect on cognition.

With this in mind, Wallace et al. focus their attention on the use of methods in

rodents and nonhuman primates that are relevant to the different domains of

cognitive function. The highlighted domains of cognition are affected both differ-

ently across illnesses and across the chronicity of a single illness. Thus, when

studying new drugs for their effect on cognition, it is paramount to use the

appropriate preclinical method that can be best translated to a clinical setting.

Moreover, it is desirable to work with an animal, whether it be mouse, rat, or

monkey, that has perturbed brain function in the direction of the human illness in

question. Over time, the generation of animal and human data from similar cogni-

tion tests and the integration of both will lead to a better choice of experimental

drug testing in humans.

Chapter 3 (Meynard, Gaudreau, and Quirion) discusses various cell signaling

mechanisms and pathways that have been associated with cognitive function. Over

the past 20 years, a strong case has been made linking glutamatergic tone to

cognition. A number of experimental drugs acting on NMDA, AMPA, and mGlu

receptors have evolved from this research. More recently, attention has focused on

various intracellular signaling pathways, those downstream from receptor activa-

tion or blockade such as CaMKII and mTOR. There is another developing body of

literature that focuses directly on gene expression and the resulting proteins that

affect synaptic plasticity. Some of the most advanced clinical studies on cognition

have used drugs that upregulate cholinergic tone. Further understanding of the

cholinergic system may lead to the development of more beneficial drugs with

fewer side effects. Lastly, there is an interesting, evolving data set that links

dynorphins to age-related cognitive decline and specific domains of cognition.

Together, it is clear that there are a number of pharmacologic targets that demand

further development so that exploratory clinical studies can be pursued.

Chapter 4 (Costa, Lugert, and Jagasia) highlights hippocampal neurogenesis,

now a well-known, critical aspect of structural plasticity in both young and aging

brains. Cognition and cognitive performance are highly dependent and, in part,

regulated by hippocampal function. There are a number of factors that control

neurogenesis in the hippocampus, and some of these are possible drug targets.

Other factors such as general exercise and enriched environments promote

neurogenesis and enhance cognition. One illness, major depressive disorder, is

2 Part I Basic Approaches and Perspectives
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used as an example linking stress, neurogenesis, and cognition. Also, aging and

Alzheimer’s disease are possibly impacted by lack of or impaired neurogenesis.

Therefore, there is a growing interest in finding mechanisms and perhaps small-

molecule drugs that are neurogenic. In order to test their efficacy, however, it will

likely be critical to find and employ biomarkers of neurogenesis.

Together, Part I shows that accurate cognitive assessment in humans and

animals may be best served if proper attention can be placed on specific cognitive

domains. Associated with this is the need to develop new drugs that impact

signaling pathways or plasticity in a manner that is specific for the various cognitive

domains. Research is ongoing in these areas and should prove fruitful in the years

to come.

Part I Basic Approaches and Perspectives 3
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Abstract

Cognitive deficits are related to impaired everyday functioning in multiple

conditions and in healthy individuals. Treatment of cognitive functioning can

be facilitated through either pharmacological or remediation strategies. The

critical goals of cognitive enhancement are to improve everyday functioning in

multiple domains. This chapter describes the strategies that are most desirable

for the treatment of cognitive impairments and detection of potential benefits of

treatment in cognitive and functional domains. These strategies include the use

of performance-based assessments of cognition and functioning and the appro-

priate use of observational strategies to detect changes. Finally, we define

several outcome-related goals and discuss the practicality of their measurement.

Keywords

Cognition • Neuropsychology • Functional capacity • Disability •

Schizophrenia • Dementia • Bipolar disorder

1 Introduction

Cognitive functioning has been known to be a major predictor of multiple domains

of everyday functioning for over three decades (Heaton and Pendleton 1981). These

domains include productive functioning such as work and school, self-care and

residential functioning, and social functioning (Green et al. 2000). As a result,

treatment of cognitive functioning has multiple potential beneficial effects. These

effects can apply to individuals who have a variety of neuropsychiatric conditions,

as well as healthy aging, and it is entirely possible that cognitive functions could be

improved in people with no illness.

This chapter addresses the practical and scientific issues associated with deliv-

ering and measuring cognitive enhancement. There are several issues that require

attention across multiple potential populations who could be targeted for these

treatments. These include strategies for inclusion of the correct people to be treated

and measurement of the effects of cognitive enhancement on cognitive functioning

and everyday functioning. Other issues include dosing of the intervention, fre-

quency of delivery, side effects of treatment, and the possible interaction between

cognitive enhancement treatments and other concurrent interventions.

6 P.D. Harvey and R.S.E. Keefe



1.1 Cognitive Enhancement as a Concept

The central goal of cognitive enhancement is the persistent improvement of cogni-

tive performance through an externally applied intervention (Harvey 2009). There

are multiple viable strategies to improve cognitive functioning, including pharma-

cological and behavioral interventions. Both of these will be reviewed below.

Cognitive enhancement to date has largely been restorative in its focus: targeting

functioning that is currently poorer than at some point in the past (Keshavan

et al. 2014). Cognitive enhancement could also be facilitative: improving functions

that are currently performed similarly to lifelong levels of functioning, with a goal

of improving skills past their current level, like an exercise intervention aimed at

improved aerobic or anaerobic fitness in healthy people (Strassnig et al. in press).

Examples of restorative cognitive enhancement could include treatment of

cognitive deficits associated with dementia, neuropsychiatric conditions such as

schizophrenia or bipolar illness, or a traumatic brain injury. The intervention would

target functions that are viewed as adversely affected by the occurrence of the

condition. Thus, memory deficits seen in traumatic brain injury could be the target

of a memory-oriented training program, and an intervention for schizophrenia

might be aimed at processing speed. An example of a facilitative intervention

could be self-administration of a computerized cognitive training program in

order to improve memory, concentration, or even social cognition. Even if the

processes are performed in an average manner prior to treatment, the facilitative

intervention is aimed at improving them.

2 Delivery of Cognitive Enhancement

Cognitive enhancement can be delivered with drugs, with computer programs, in

person with exercises delivered by a therapist, or, at least theoretically, through

other wellness interventions such as exercise that augment cognitive functioning.

While these delivery systems are quite different, the scientific issues regarding

treatment delivery and measurement of benefits are likely quite similar. As the

literature on all three of these approaches is large, it cannot be reviewed here and is

covered elsewhere in the book. We will focus here on the issues of how to maximize

the possibility that an intervention will be effective and how to determine whether it

is working.

2.1 Dosing

Cognitive remediation is an intervention, and no cognitive enhancement

interventions to date have been shown that they can lead to sustained improvement

after a single, vaccine-like treatment. Evaluation of the efficacy of cognitive

enhancement interventions requires consideration of dosing, including both timing

and duration. Remediation strategies and pharmacological interventions both have

Methods for Delivering and Evaluating the Efficacy of Cognitive Enhancement 7



dosing considerations, although they may be different because of the delivery

strategy. Remediation interventions are typically delivered by a schedule. While

medications are typically administered daily, remediation interventions are

administered in sessions, with each session having a certain, generally limited,

duration. Interventions occur with a frequency that can be widely variable, includ-

ing one or more sessions (Fisher et al. 2010) each day down to a level of once or

twice per week (McGurk et al. 2007). Differences in the target population receiving

the intervention may have an impact on both the needs for frequent sessions and the

likelihood that participants can cooperate with them.

Any plan to deliver a remediation intervention needs to consider the match

between the population and the planned dosage. Individuals who are highly

motivated to engage in a facilitative intervention may be able to train themselves

daily in a variety of settings without prompts or encouragement and may be able to

engage in the intervention with a high session frequency. However, very impaired

populations such as patients with dementia or severe mental illnesses like schizo-

phrenia may have other interfering factors such as disorganization and low motiva-

tion that can limit the frequency of sessions that can be tolerated and the capacity of

the individual to complete the session without assistance. These individuals may be

unable to self-administer the intervention at home and may need to be trained in

person at a treatment center. Noncognitive factors such as the availability of a

caregiver or financial considerations regarding transportation have been previously

shown to impact the ability to dose cognitive remediation interventions (Keefe

et al. 2012).

In terms of pharmacological strategies, dosing also requires consideration. Some

of the mechanisms of action of pharmacological strategies may have a nonlinear

dose relationship (e.g., stimulant medications for ADHD, cholinesterase inhibitors

for dementia). As a result, all pharmacological cognitive enhancers need to be

evaluated for dosing as well. Depending on the characteristics of the pharmacolog-

ical agents, the daily delivery strategies for dosing of the medications may require

adjustment and consideration. Drugs with short half-lives may require dosing more

than once a day (Freedman et al. 2008) which may require special considerations

for some populations when adherence may be an issue.

Some potential cognitive enhancers also require highly specialized delivery. For

instance, the dopamine D1 agonist dihydrexidine (George et al. 2007) requires IV

administration, so it does not seem to be particularly practical as a widely used

treatment. In contrast, cholinesterase inhibitors are now available in a skin-patch

delivery system, which allows for highly controlled delivery of a medication that

has the potential to be poorly dosed due to nonadherence associated with side

effects (Silver et al. 2009). Thus, the route of administration of a medication may

also interact with dosing concerns.

Some medications for the treatment of neuropsychiatric and medical conditions

have long-acting formulations. For instance, injectable long-acting antipsychotic

medications can be dosed as infrequently as every 30 days. This is clearly an

important long-term goal for cognitive-enhancing treatments. Long-acting

medications bypass issues of adherence, which can impact the actual amount of

8 P.D. Harvey and R.S.E. Keefe



medication that is delivered to the targeted neurotransmitter systems and key neural

circuitry, and may also be quite useful in populations whose cognitive limitations

have been shown to be related to their ability to manage medications (Jeste

et al. 2003).

2.2 Duration

The duration of treatment is a multifaceted concern and may differ across pharma-

cological and cognitive remediation strategies. Clearly, interventions need to be

continued until there is either evidence of treatment response or futility is acknowl-

edged. Futility is an issue that is more relevant when the intervention has the

potential to have side effects, to have a high acquisition cost, or to require substan-

tial effort on the part of the participant receiving treatment. The risk-benefit ratio for

computerized and in-person cognitive remediation therapy seems favorable. Risks

for drug therapies will be specifically associated with the specific drugs and are

difficult to discuss in general. Some drugs may have greater risk with longer

duration of therapy or higher doses, and the duration of therapy trials for determi-

nation of efficacy for an individual participant may have to be adjusted accordingly.

The duration of a therapeutic trial will also be affected by the desired treatment

outcome. If changes in global functioning are the target, then treatment may require

a longer duration than if the treatment target is improvement in a single cognitive

performance domain. If changes in real-world functioning are desired, a substantial

time period may be required before cognitive benefits can lead to real-world

functioning improvements (Rosenheck et al. 2006). Assessment of intermediate

outcomes (improved cognition) will also be important even if the treatment goal is

improved everyday functioning. Improvements in intermediate outcomes (or lack

thereof) will provide an important signal regarding whether the intervention (phar-

macological or behavioral) is providing “target engagement” (Insel and Gogtay

2014) prior to exerting a beneficial effect on the overall treatment target.

2.3 Maintenance

After successful treatment, the question arises as to how long the treatment should

be continued. Antipsychotic, antidepressant, and mood stabilizer treatments are

only effective while being administered. Thus, they do not truly provide a restor-

ative effect, at least in individuals with an established course of illness. For these

treatments, continued treatment is required for continued benefit, and maintenance

therapy is requirement to sustain clinical gains.

The long-term treatment strategy for cognitive-enhancing interventions may be

quite different. There is considerable evidence that certain types of cognitive

enhancement lead to persistent changes. These have included sustained or even

accelerated functional gains following the end of therapy, particularly in

individuals with a positive therapeutic response (Bowie et al. 2012; McGurk
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et al. 2007). These persistent changes may be associated with effects on neural

plasticity and may be resulting in changes in brain function. These effects seem

even more pronounced in individuals who receive concurrent psychosocial

interventions (Wykes et al. 2011), which may mean that there is a cascade of

benefits wherein improvements in functioning also lead to improvements in the

ability to make further functional gains. As a simple example, an individual who

benefits cognitively from an intervention may be able to further their education,

thus making them in a better position for occupational gains.

Research on cognitive enhancement will need to determine whether benefits are

persistent after the end of treatment and whether renewed therapy, such as booster

sessions or rechallenges with medication therapy, is required. It remains to be seen

whether this may be a point of divergence between pharmacological and cognitive

remediation strategies; more research is needed to determine the differences in

persistence following successful treatment. If a pharmacological intervention in the

short term leads to functional gains which are self-sustaining, then it may be the

case that pharmacological cognitive enhancement can also be delivered in a time-

limited manner with treatment responders then manifesting sustained or accelerated

functional gains after the cessation of therapy.

2.4 Adherence

Adherence to cognitive remediation interventions is easy to index because of the

nature of the way the service is often delivered (i.e., in person) and because

remediation software routinely tracks participation. Adherence to pharmacological

interventions is critical to index in order to understand whether actually taking the

medication is associated with greater initial or persistent gains. Any research

involving cognitive enhancement needs to carefully consider both the extent and

patterns of adherence.

3 Measurement of Cognitive Change

Indexing the gains associated with cognitive enhancement therapy is a complex and

multidimensional task. This measurement requires a careful conceptualization of

the goals of treatment and the possible benefits of the treatment. Cognition is

complex, and there are multiple assessment strategies that can be employed, with

tremendous variation in the complexity of the assessment strategies, and associated

challenges of indexing the treatment goals and populations targeted by the treat-

ment (Nuechterlein et al. 2008).

In addition, since cognitive enhancement has the big picture goal of improving

everyday functioning, a consideration of the complexities of assessing everyday

functioning is important. Everyday functioning is under the control of many factors

other than cognition (Harvey et al. 2009a, b), thus successful cognitive enhance-

ment does not necessarily promise real-world functional gains. Separation of the
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environmental influences on functioning versus those influences derived from

cognition and other skills is critical for quantifying the effects of cognitive enhance-

ment therapy.

3.1 Cognition

The scientific construct of cognition includes a broad range of psychological

functions: sensation and perception, attention and concentration, learning and

memory, reasoning and problem solving, as well as crystallized knowledge and

speed of processing (Harvey 2012). These different aspects, or domains, of cogni-

tion require very different strategies for treatment and have very different potential

levels of benefit. For instance, certain pharmacological compounds have

demonstrated benefits in transmitter systems with specific cognitive benefits (ace-

tylcholine and episodic memory; Risacher et al. 2013). Other compounds, such as

amphetamine, have wide-ranging cognitive benefits that are not specifically related

to the primary pharmacological effects of the compound (see Sostek et al. 1980 for

a classic early study).

3.2 Domains

It is beyond the scope of this chapter to fully describe the ranges of functioning that

can be considered cognitive in nature. However, we will review the idea that

cognition can be conceptualized in terms of separable cognitive domains, which

are then amenable to measurement with specialized assessments (Nuechterlein

et al. 2004). The history of clinical neuropsychology, which is the origin of many

of the assessments that are used to generate outcome measures in clinical cognitive

enhancement research, was partially based on the assessment of individuals with

focal brain injuries or strokes (Harvey 2012). Thus, tasks were developed to be

sensitive to deficits in specific brain regions when performance is preserved in other

regions of the brain.

More recent conceptualizations of cognitive performance are focused on

networks, which can affect an array of cognitive abilities. For instance, impairments

in striatal regions, such as those induced by Huntington’s disease and related

conditions, impact an array of cognitive functions. These include processing

speed, concentration and attention, and learning and memory (Paulsen

et al. 1995). Traditionally these tasks were generally assumed to measure the

functions of several different regions, but impairments can typically occur in

concert.

Traditional domains of cognitive functioning are presented in Table 1. These

domains of functioning are differentially impaired in various neuropsychiatric

conditions and have been the target of previous cognitive enhancement

interventions. However, although these domains can be defined and measured

with psychological tests, there are two important points to consider. First, in
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many studies of neuropsychiatric conditions, the cognitive tests that are targeted at

different domains of functioning are often highly intercorrelated (Dickinson

et al. 2007), and the best fitting factor structure is a single, global factor (Keefe

et al. 2006a). On the other hand, performances on tests measuring similar cognitive

domains, such as elements of intelligence, are often somewhat discrepant from each

other in healthy people (Wechsler 2008).

The notion of separable versus highly related cognitive domains may influence

strategies for testing cognitive enhancers. First of all, if measures of different

cognitive domains are highly intercorrelated, it may be challenging to develop

interventions that are selective in their measured cognitive benefits. Certain

interventions can have specific effects on a limited set of cognitive domains (Fisher

et al. 2009), but global functioning is also likely to improve. Second, research on the

correlates of real-world functioning has consistently suggested that specific

measures from individual cognitive domains are much less strongly related to

real-world outcomes than composite measures that summarize global performance

(Green 1996). Thus, the typical distal goal of improving functional outcomes may

be better facilitated by interventions that are effective across multiple cognitive

domains (Bowie et al. 2012). As a result, treatments with broad cognitive benefits

may be the best ways to improve everyday functioning.

3.3 Measurement Strategies

Cognitive functions have traditionally been measured with performance-based

assessments. At the same time, many people become candidates for cognitive

enhancement because of their subjective experience of cognitive change or diffi-

culty. Thus, self-reported cognitive functions have been explored as an assessment

strategy (Keefe et al. 2006b). Finally, observers are often queried about cognitive

functioning, particularly in pathological conditions where the observer may have a

long history of interacting and observing the cognitively relevant behaviors of the

individual in question (Ventura et al. 2013).

Table 1 Typical domains

of cognitive functioning
• Sensation

• Perception

• Sustained attention (vigilance)

• Selective attention

• Working memory

• Episodic memory

– Learning

– Delayed recall

– Delayed recognition

• Executive functioning

• Processing speed
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These different strategies have different patterns of strengths and weaknesses

regarding their validity and practicality. These strengths and weaknesses tend to be

reciprocal in many instances, where the more practical strategies may have some of

the weaknesses in validity. Thus, the selection of outcomes assessment strategies

may be very different depending on the goals of the investigation and the

populations to be assessed.

3.4 Performance-Based Cognitive Assessments

Performance-based assessments do not rely on the opinion of an observer and are

highly standardized. Further, these assessments have been refined over time, and

their psychometric characteristics can be easily quantified and have been

investigated in detail (Nuechterlein et al. 2008). Thus, these measures will have a

known range of scores in the healthy population. As a result, performance can

immediately be interpreted, and improved performance can be quantified with ease.

These tests are often administered together as described below, and the administra-

tion of these tests can be taught to be people without advanced degrees, if the

interpretation of the scores is performed statistically. Interpretation of the pattern of

scores and their clinical meaning usually requires an advanced degree in

psychology.

An array of performance-based assessments of everyday functioning skills has

been developed. These procedures aim at assessment of skills in the domains of

residential, social, and vocational functions (Mausbach et al. 2007; Patterson

et al. 2001). The majority of these procedures use realistic assessments of functional

activities such as shopping, cooking, managing money, and social interactions.

These are administered as test procedures, with systematic administration of the

tests, systematic scoring procedures, and normative standards. Thus, much like

performance-based cognitive tests, they provide a repeatable index of skills com-

petence that can be used as an outcome measure in clinical trials.

Also like cognitive tests, the issues associated with comprehensiveness, duration

of the assessment, and practicality need to be considered. Also similar to cognitive

assessments, there are computerized versions of functional capacity measures that

are available, with the same caveats and concerns as cognitive assessments (Ruse

et al. 2014). So, there is considerable similarity across performance-based strategies

for assessment of cognition and functional capacity, including their advantages and

their limitations.

3.5 Detail and Comprehensiveness

The standard way to measure cognition in clinical practice and clinical trials is

performance assessment with intellectual and neuropsychological tests. The tradi-

tion in clinical neuropsychological assessment has been to perform a detailed

assessment aimed at examining a variety of cognitive strengths and weaknesses

Methods for Delivering and Evaluating the Efficacy of Cognitive Enhancement 13



(Heaton 1992). This approach is most appropriate for assessment of the extent and

severity of impairments in individuals who have experienced an illness or accident.

Similarly, children with academic problems may receive an extensive educationally

oriented assessment of abilities and achievements.

However, in many circumstances an extensive assessment is not required. In

some conditions performance is highly intercorrelated across tests; a carefully

selected, briefer assessment may provide the same amount of information as a

much longer assessment (Keefe et al. 2004). In some instances, a condition can be

identified through the presence of a single salient deficit. For instance, diagnostic

exclusion of possible Alzheimer’s disease can be accomplished through a very

abbreviated assessment of delayed recall memory, with this deficit leading to

substantial separation from the performance of various other diagnostic groups,

including even patients with schizophrenia (Davidson et al. 1996).

An advantage of more detailed assessment is that the identification of multiple

effects of a cognitive enhancer is only possible with a wide-ranging assessment.

Such an assessment would likely be undertaken in the early development phases of

a treatment, as regulatory agencies require investigators to declare their primary

outcome measure prior to the initiation of a trial (Buchanan et al. 2011). An

additional use of a more detailed assessment in early phase studies is that of the

detection of any possible adverse effects of a treatment. For example, if a drug or

cognitive remediation procedure was to improve problem solving but induce

sedation and slow processing speed, this could not be detected unless a wide-

ranging assessment of these domains was used. Regulatory agencies may require

relatively comprehensive cognitive batteries so that any deleterious effects of a new

medication on cognition can be detected (Buchanan et al. 2005, 2011).

3.6 Duration

Some formal neuropsychological assessment batteries can take 6–12 h or more to

complete. Duration of the assessment is generally correlated with level of detail, but

an assessment of episodic memory can take an hour itself, while an abbreviated but

wide-ranging (Harvey et al. 2009b; Keefe et al. 2004) assessment of cognition often

used in clinical trials can take as little as 20 min.

Longer assessments pose challenges from two directions. If a treatment trial has

multiple assessments other than cognition, then a cognitive assessment with a long

duration may increase the length of a study visit to the point that it is not practical.

The other point is that some populations are challenged by long assessments. For

instance it is not a surprise to see that children who have difficulty sustaining their

attention in school have similar problems tolerating long psychological

assessments, which can lead to misleading results. In general, however, even very

disorganized patient populations such as those with schizophrenia can provide valid

data with cognitive batteries requiring 75 min or more of assessment time

(Nuechterlein et al. 2008; Keefe et al. 2011; Bowie et al. 2002).
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The take-home principles from this discussion are that the shortest possible

assessment that assesses important aspects of cognition is the best strategy; how-

ever, attention must be paid to important psychometric characteristics of the data

collected, such as whether enough information is being collected to allow mean-

ingful conclusions. There are no generic answers for how long and how broad,

which will depend on enhancement strategies, targets, and populations.

3.7 Delivery

Performance-based measures are available in paper and pencil or computerized

formats. While computerized assessments would seem to ensure greater fidelity and

validity, the results are clearly divided. For populations with significant

impairments that may lead to problems in cooperation or effort, there have been

several studies showing that computerized assessments generate data that are less

complete and less reliable than standard administration procedures (Keefe

et al. 2006a; Silver et al. 2006; Iverson et al. 2009), and computerized assessment

can serve to mask invalid performance. Some recently developed assessment

strategies can detect invalid performance (Harvey et al. 2013b), but the message

here is clear: testers need to be as active, observant, and involved in the adminis-

tration of computerized assessments as they are in the administration of paper and

pencil assessments.

3.8 Frequency of Assessments and Related Issues

In a cognitive enhancement study, an estimate of treatment-related cognitive

change requires assessment before and after treatment. As we have noted before,

there are several situations where repeated assessments pose challenges. One is the

retest improvement, or “practice,” effect, which can be due to exposure to testing,

familiarity with the materials, and increased comfort levels. There are several

solutions to this problem (Goldberg et al. 2010). One is the use of alternate

forms, but alternate forms can be remarkably poorly correlated with each other in

certain populations, which can significantly weaken the reliability of assessing

cognitive change. Another is the use of a parallel research design, which allows

for comparison of changes in performance over time across active and inactive

treatments. As long as subjects do not perform at the ceiling of a measure such that

improved performance cannot be detected, the difference between active and

inactive conditions can index the effect of the treatment minus the effects of

repeated testing alone.

Practice effects are challenging because few measures will have information

from normative studies that examined practice effects beyond two or three

reassessments in the population of interest and even fewer in healthy individuals

for normative comparison. While it is generally believed that practice effects

habituate after a few assessments, leading to stable performance over time, some
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other data suggest small but incremental effects across numerous assessment

sessions. However, in the absence of ceiling effects, practice effects are preferable

over poorly correlated alternate forms, which will prevent the identification of a

treatment effect.

3.9 Interview-Based Cognitive Assessments

Interview-based assessments are appealing because they are easy to administer,

score, and interpret. Some conditions cannot be diagnosed without a subjective

cognitive complaint (i.e., mild cognitive impairment, MCI). At the same time, self-

reported cognitive ability can be almost shockingly unrelated to objective perfor-

mance and the opinions of others, across the multiple conditions where cognitive

enhancement would be employed (Durand et al. in press). Even in healthy people,

there are substantial response biases which lead to poor self-assessment. In

neuropsychiatric conditions, even though objective tests have been found to corre-

late with the reports of clinician informants and real-world functioning, the corre-

lation between objective test performance and self-reported functioning is

essentially zero, meaning that there is no chance of detecting reliable changes

from baseline that correspond to objective tests (Keefe et al. 2006a, b; Sabbag

et al. 2011). These results are not due to unsystematic self-assessments, because

structured interview-based instruments were used in these studies.

3.10 Functioning

The real target of cognitive enhancement is to improve functioning in real-world

situations, whether it is the workplace, school, or managing one’s life with more

efficiency. However, the assessment of real-world outcomes differs substantially in

the context of clinical interventions versus treatment studies. An ongoing clinically

oriented intervention over an indefinite time period removes many of the challenges

of assessment of real-world functioning. A 12-week clinical trial is very different

because some functional changes require time and some of these parameters are

outside the control of the cognitive enhancement recipient and the clinical treat-

ment team or clinical trial managers. We will address these issues below.

3.11 Real-World Functioning

Assessment of real-world functioning seems to be a trivial task, in that it would be

expected that most people would know where they live, what they do for work, and

how many friends they have. However, some of the subpopulations targeted for

cognitive enhancement may present challenges in these areas. Further, for

individuals who have experienced challenges and are functioning suboptimally,

there may be a complex array of factors that contribute to real-world functioning.
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These include disability compensation, opportunities in the local area, and the

complex interaction between care systems, families, and the patients.

3.12 Milestones

In a largely healthy population, achievement of functional milestones like full-time

work, living independently, and having friends, family, and social network is

expected. Individuals who have achieved these milestones and are seeking cogni-

tive enhancement will be trying to facilitate their functioning. In these individuals,

the real-world outcome would be school grades, promotions, and other indicators of

greater functional success. In impaired populations, however, the lack of experi-

ence with functional demands may prohibit individuals from being able to accu-

rately evaluate their own functioning.

For instance, in a recent study of ours, people with severe mental illness who had

never had a job in their lives rated themselves as more socially, vocationally, and

residentially capable than other individuals who were employed full time (Harvey

et al. 2012). As many populations seeking cognitive enhancement may have a lack

of functional success to date, modification of the typical assessment strategy may be

required.

3.13 Subthreshold Performance

If one is unemployed at present, there are a variety of functional acts that are

preparatory to employment that are positive from the perspective of vocational

outcomes. For instance, preparing a resume, applying for jobs, and going on job

interviews are positively valenced vocational activities. However, they do not

equate to having a full-time job. For a variety of populations where there are

long-term aspects of disability and the assessment of job performance is not

possible, we are limited to collecting information about the preparation and back-

ground activities aimed at real-world functioning. However, these subthreshold

milestones have been shown to be positively affected by skills training and cogni-

tive enhancement and are relevant measures related to eventual real-world

successes.

Multiple functional outcome rating scales are available. The consistent finding

from comparative studies of these scales is that the quality of the informant and

their knowledge of the patient are more important than the scales themselves

(Sabbag et al. 2011, 2012). Those studies that have conducted ratings with

informants who know the patient well, either as a high contact clinician or other

caregiver, have found solid correlations with cognitive performance. Studies that

have relied on patient self-report have consistently found no correlation between

ratings of functional skills and objective information (Bowie et al. 2007). A

reasonable conclusion from many of these studies is that the type of clients who
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are referred for cognitive enhancement is unlikely to be an adequate reporter of

either their baseline functioning or their improvements from that baseline.

3.14 Functional Capacity

Because of our knowledge that real-world outcomes are affected by an array of

factors other than patient abilities, interest has grown in the area of direct assessment

of functional skills. Referred to as “functional capacity,” this is the process of

assessing the ability to perform critical everyday living skills in simulation settings

(Harvey et al. 2007). The ability to perform skilled acts can be contrasted with the

actual likelihood of performing those acts (Mausbach et al. 2011; Depp et al. 2010).

Like performance-based cognitive tests, these procedures do not rely on self-report,

are administered by technicians, and can be evaluated for their psychometric and

validity properties. In addition, interviews can also be targeted at functional capacity

as well. Like interviews aimed at cognition and real-world functioning, the source of

the information may be as important as the specific questions that are asked.

3.15 Cognition or Capacity as the Outcome

The high correlation between assessments of cognitive performance and functional

capacity has led to the question (Leifker et al. 2011), partially supported by data,

that these are actually different assessments of the same general ability domain

(Harvey et al. 2013a). Future research will need to determine the differential

suitability of these indices for outcomes assessment in treatment studies. Given

that abbreviated assessments of both cognition and functional capacity are avail-

able, it would seem prudent to invest the time to assess both of these domains. This

issue may change with the future development of computerized functional capacity

assessments, as highly validated functional capacity assessments may lead to

increased validity and practicality.

3.16 What Defines Improvement?

The definition of improvement in performance following cognitive-enhancing

treatments depends on the goal of the assessment. Clinical treatment will have a

very different set of standards than a regulatory efficacy trial. Further, improvement

can be indexed in several ways. These improvements can be defined, in hierarchical

order of rigorousness, as:

• Statistically significant

• Clinically meaningful

• Definitely nonrandom

• Normalization of functioning
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Statistically significant is the criterion for demonstrating differences between

active treatments and control conditions. This is the lowest bar for empirically

defined improvement, because it is largely dependent on the sample size of the

study. This criterion does not depend in any way on the level of baseline perfor-

mance and does not require any predetermined end of study level of performance in

order meet this criterion. Although it is the lowest of the bars that we are discussing,

it is still important. Any treatment that does not separate from an inactive treatment

cannot be seen to provide reliable improvements. This criterion is required for a

treatment to receive regulatory approval.

Clinically meaningful is a higher bar than statistical significance. This threshold

would imply a certain average degree of improvement for the populations treated.

Required as part of this criterion is some notion of what the size of such a change

would be, and this requires information obtained from other sources other than

statistics. Embedded within this concept is the expectation that a certain amount of

improvement in cognition for an individual or group would be associated with a

certain amount of improved functioning. For instance, several different studies of

functional measures have identified threshold levels of cognitive performance

consistent with achievement of functional milestones such as independence in

residence. Treatment-related improvements that reach these thresholds would be

possible indices of clinically meaningful change.

Definitely Nonrandom When a group of participants receives treatment, even if the

benefit is statistically or clinically significant for the group, there is likely to be

variation in response among the people treated. The assessment of improvement for

individuals differs from that for groups in that to be certain that an individual has

improved to a level greater than chance, a host of influences on performance such as

practice effects require consideration. The “reliable change index” has been devel-

oped in order to quantify whether an improvement in one person exceeds what is

expected based upon general influences (Heaton et al. 2001). The reliable change

index statistic incorporates the test-retest reliability of the measure and establishes a

range of scores that exceeds this level of change. The confidence interval of the

reliable change index is typically set at 90 %, meaning that there is only a one in ten

chance that the threshold amount of change would have occurred by random factors

alone.

With commonly used outcome measures for clinical trials in humans, the typical

level of change required to define a definitely nonrandom change is in the range of

about 1.0 standard deviations (Leifker et al. 2010). This is a fairly high bar, but in

several previous cognitive treatment studies, the group improvements in cognitive

outcomes have been as great as 0.8 SD (Bowie et al. 2012; Fisher et al. 2009). This

could mean that a number of people treated in those studies manifest individual

improvements that are definitely nonrandom.

Normalization of Functioning This is the highest bar and is not necessarily a goal

of every treatment. Normalization of functioning would imply two things:
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substantial improvement in functioning that is entirely within the normal range and

improvement on the part of an individual to at least their pre-illness level of

functioning if not better. The normal range of functioning is typically defined as

within one standard deviation of the population mean or higher. Further, if an

individual’s performance was within that range prior to illness, then their posttreat-

ment functioning should be within that range as well. Normalization is a high bar

because many individuals whose performance is slightly below the cutoff for

normal cognitive functioning (�1.0 SD) are functioning adequately in their lives.

3.17 Practical Concerns

One of the issues that has come to the forefront of treatment with remediation

interventions is whether computerized interventions can be self-administered at

home (Fisher et al. in press). Like pharmacological interventions, remediation

interventions can be delivered outside the clinic setting. As these interventions

transition toward wider use, with the anticipated approval of drugs or medical

devices for cognitive remediation treatment, assessments may also need to be

performed outside of the clinic. This would require the ability to use remotely

deliverable cognitive and functional assessment strategies, with the same reliability

and validity standards that are conventionally applied to paper and pencil and other

in-person testing procedures.

Cognitive tests and functional capacity measures have already been developed

for remote administration. The issues associated with computerization and remote

delivery of these assessments are the same as in-person assessments. There needs to

be considerable evidence supporting the psychometric characteristics of the

instruments and a match between the content of the instrument and clinically

relevant community outcomes. This is likely to be a major area for future technol-

ogy development, and these procedures will be more successful if they are flexibly

adapted across emerging technology.

3.18 Populations

There are several conditions either defined by cognitive deficits or accompanied by

significant enough deficits so that they clearly will be a target population for

cognitive enhancement. Within some of these populations, it is acknowledged

that all people so classified have deficits; this includes conditions such as schizo-

phrenia, mild cognitive impairment, dementia, and attention deficit disorders. In

other conditions, the rates of cognitive impairment are less than 100 %, with these

including some proportion of cases known to not manifest cognitive impairments or

to only manifest them in a specific clinical state, such as when experiencing a mood

episode.
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In some situations, therefore, it would seem as if a pretreatment assessment of

functioning would be required in order to determine if the person needed treatment.

Other conditions would not require specific confirmation of the need but would still

require monitoring of treatment outcomes as described above. At the same time, it

is possible that even in a population where essentially every person has cognitive

deficits, there would be certain variation in treatment response expected. Thus,

understanding who would be the better or faster responders might allow for

optimized treatment delivery, particularly if treatment was in any way to be

rationed or otherwise access controlled.

In the area of cognitive remediation, there are already several leads as far as the

detection of better responders. In these studies several factors have been identified.

Age Brain plasticity varies over the life span, and it is known that there are critical,

often early, periods for optimal skills acquisition. Some studies have shown that

younger patients have a larger or faster clinical response, yet response is still

adequate in older people (Bowie et al. 2014; Lindenmayer et al. 2008). This is

more of an issue in early-onset lifelong conditions like schizophrenia or bipolar

disorder than in mild cognitive impairment or childhood onset ADHD.

Duration of Illness (if not completely overlapping with age) Cases where age and

duration of illness do not overlap may include traumatic brain injuries or other

neurological events such as stroke. In these conditions, there is often substantial

early recovery which can preclude the need for treatment. On the other side,

extended time since injury or event, paired with persistent symptoms, may identify

cases with poorer prognosis.

Pre-illness Functioning Skills and abilities acquired earlier in life, referred to as

“cognitive reserve,” are potent predictors of lifelong functioning. In individuals

challenged by conditions that adversely impact cognitive functioning, higher levels

of cognitive reserve likely identify cases who will have more potential for improve-

ment. It is not clear whether pharmacological or remediation interventions will lead

to improvements that surpass pre-illness levels of functioning and adjustment.

However, some individuals with intellectual disability may benefit from combined

treatments where cognitive remediation is offered as a facilitator of other skills

training interventions.

Motivation for Treatment and Functional Improvement Cognitive enhancement

with training programs requires attention and effort, as well as occasional self-

administration of training (Fisher et al. in press). For all enhancement interventions,

real-world functional gains require goals and effort, and patients not looking for

increased independence or vocational functioning will not make these gains (Choi

and Medalia 2010). If payers are focused on real-world outcomes, then cognitive

enhancement studies should be performed on patients who are likely to be

motivated to realize external goals.
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4 Conclusions

Behavioral and pharmacologic therapies aimed at the enhancement of cognition are

broadly applicable, and there are many aspects of cognition and functioning that

may experience a potential benefit. Measurement of these potential changes is

challenging and potentially complex. There are several strategies for simplifying

the measurement of the outcomes of cognitive enhancement, and these strategies

will continue to grow and evolve as more successful interventions are developed. It

is important that the measurement of the benefits of cognitive enhancement is valid

and accurate, such that effective treatments are immediately recognized and inef-

fective ones not incorrectly endorsed.
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Abstract

Cognition is a complex brain function that represents processes such as learning

and memory, attention, working memory, and executive functions amongst

others. Impairments in cognition are prevalent in many neuropsychiatric and

neurological disorders with few viable treatment options. The development of

new therapies is challenging, and poor efficacy in clinical development

continues to be one of the most consistent reasons compounds fail to advance,

suggesting that traditional animal models are not predictive of human conditions

and behavior. An effort to improve the construct validity of neuropsychological
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testing across species with the intent of facilitating therapeutic development has

been strengthening over recent years. With an emphasis on understanding the

underlying biology, optimizing the use of appropriate systems (e.g., transgenic

animals) to model targeted disease states, and incorporating non-rodent species

(e.g., non-human primates) that may enable a closer comparison to humans, an

improvement in the translatability of the results will be possible. This chapter

focuses on some promising translational cognitive paradigms for use in rodents,

non-human primates, and humans.

Keywords

Cognition • Translational models • Mouse • Rat • Monkey • Non-human

primate • Human • Neuropsychological tests • Psychiatric disorders •

Neurological disorders • Cognitive disorders • Cognitive biomarkers

1 Introduction

Cognition is a complex and multifaceted brain function that represents processes

such as attention, sensory gating, perception, learning and memory, working mem-

ory, planning, problem solving, and executive functions (Fig. 1). Impairments in

cognition are prevalent in many neuropsychiatric and neurological disorders. From

autism spectrum disorders beginning early in development through Alzheimer’s

disease in the aged, cognitive dysfunction is a defining yet heterogeneous feature of

Executive
Function

Working
Memory

Procedural memoryPerception

Attention &
Vigilance

Visual Learning
& Memory

Processing speed

Social / Affective
Processes

Fig. 1 Cognition is a multifaceted and translatable function that includes several domains that are

often interconnected. Verbal learning and memory and semantic memory omitted due to lack of

translation
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these conditions (Fig. 2). Despite its prevalence, limited treatment options are

available for effectively treating cognitive impairments, and these disorders remain

a large unmet medical need.

Developing new therapies is challenging, particularly for brain diseases (<10 %

success rate once entering clinical phases), and high attrition rates in development

threaten the continued investment into research and development for novel

therapies (DiMasi et al. 2010; Hay et al. 2014; Kola and Landis 2004; Miller

2010). Many issues can arise along the clinical development pathway to stop

advancement of a promising new drug candidate (e.g., safety and tolerability,

bioavailability), but a primary reason remains a lack of efficacy in patients. Since

the drug candidate likely would not be in development without preclinical data

suggestive of a desired effect, it has been repeatedly suggested that animal models

are not predictive.

With regard to cognitive-impairing diseases, a growing focus on improving the

construct validity of neuropsychological testing across species with the intent of

facilitating therapeutic development has strengthened over recent years. In general,

a concerted effort toward selecting and developing preclinical paradigms in which a

deep understanding of the underlying biology is in place aims to improve translatabil-

ity of results. In addition, optimizing the use of appropriate systems (e.g., transgenic

animals) to model targeted disease states, and incorporating non-rodent species [e.g.,

non-human primates (NHPs)] that may more closely compare to the cognitive and

mental capabilities of humans, is an effective translational strategy (Fig. 3). Ideally,

the selection of appropriate animal models can help to inform the clinical study

designs for effective doses, identification of sensitive endpoints, and expected side

effects. In addition, the clinical data can then help to refine the animal models to

improve their sensitivity and validity (i.e., forward and backward translation) (Fig. 4).

PTSD

ADHD

Depression

Schizophrenia

Parkinson’s Sleep–Wake
Disorders

Bipolar
Disorder

Down’s
syndrome

Substance
Abuse

Autism

Alzheimer’s

Fig. 2 Some brain conditions associated with cognitive impairment. Cognitive deficits are

associated with many neuropsychiatric and neurological disorders, as well as under conditions

of stress and general aging

Animal Paradigms to Assess Cognition with Translation to Humans 29



In 2002, an initiative known as MATRICS (Measurement and Treatment

Research to Improve Cognition in Schizophrenia) was sponsored by the National

Institute of Mental Health (NIMH) to assess and define the cognitive deficits in

schizophrenic patients. Seven different cognitive domains were selected: attention;

working memory; problem solving; processing speed; visual learning and memory;

verbal learning and memory; and social cognition (Marder and Fenton 2004;

Nuechterlein et al. 2004), and specific neuropsychological tests were suggested to

investigate each domain in humans.

Fig. 3 Effective translation across species. Representative example of rat, non-human primate,

and human versions of visual touchscreen-based cognitive testing

Fig. 4 Translational research across species. Developing an effective translational strategy from

animals to humans informs both clinical and preclinical investigations. Preclinical animal

investigations can be used to inform clinical study designs for dose selection, endpoint evaluation,

and side effect identification (forward translation). Clinical results can be used to improve

preclinical assessments, thereby refining the preclinical animal models to improve their sensitivity

and validity (backward translation)
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Following the MATRICS, the CNTRICS (Cognitive Neuroscience Treatment

Research to Improve Cognition in Schizophrenia) initiative was introduced with a

focus of identifying tasks with construct validity across species to improve the

translational capability of the test battery from rodents to NHPs and humans. Many

psychometric variables important for the selection of paradigms with high transla-

tional validity were incorporated (Table 1) to enable sound data collection and to

facilitate outcome assessment. Domains that were selected during the CNTRICS

initiative were largely modeled from the MATRICS (with the obvious exclusion of

verbal learning and memory), and included tests of perception, attention, executive

function, working memory, object/relational long-term memory, and social/affec-

tive processes (Moore et al. 2013; Young et al. 2009a).

More recently, the NIMH has established the Research Domain Criteria (RDoC)

project with a goal to “Develop, for research purposes, new ways of classifying
mental disorders based on dimensions of observable behavior and neurobiological
measures.” At its core, the RDoC is designed to be translational. Its framework uses

a matrix design which groups a functional dimension of behavior based on genes,

molecules, cells, circuits, physiology, behavior, and self-reports into “Constructs”
and then into higher-level “Domains” that represent system functioning. “Cognitive

Systems” is one of five defined Domains in the RDoC matrix and includes the

constructs of attention, perception, declarative memory, language, cognitive con-

trol, and working memory. Units of analysis are defined to study each level of a

construct (e.g., gene, molecules, circuit) for each of the domains. One of the

strengths of RDoC is that it provides a framework with which to build and change

the structure based on empirical findings over time.

A concerted effort is being made by research scientists and clinicians across

academia, government, and the biotechnology-pharmaceutical industry to improve

the translation of basic research findings into clinical application to improve human

health. One example of this is the European Union Innovative Medicines Initiative

(IMI) industrial-academic collaborative project, Novel Methods leading to New

Medications in Depression and Schizophrenia (NEWMEDS). One of the major

aims of this project was to develop and validate a battery of novel touchscreen-

based translational assays of cognition in rodents. By systematically developing and

validating paradigms with construct validity across species this goal seems attain-

able. This chapter will focus on some promising translational cognitive paradigms

for use in rodents, NHPs, and humans.

Table 1 Psychometric properties for paradigm selection

Relationship to functional outcome
Test-retest reliability
Practicality and tolerability
Pharmacological sensitivity
Utility as a repeated measure
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2 Attention

Attention is critical for daily functioning and underlies effective processing of

many cognitive domains. When discussing attention, it is important to recognize,

it is commonly divided into three subtypes that include: (1) sustained attention, the

ability to focus on a specific task for long durations; (2) divided attention, the ability

to respond simultaneously to multiple tasks; and (3) selective attention, the ability

to focus on certain stimuli while ignoring distractions (Parasuraman and Haxby

1993; Posner and Petersen 1990; Wilkins et al. 1987). Substantial evidence from

imaging, lesion, and pharmacology studies suggests that attention is primarily

mediated by the prefrontal cortex (PFC). For example, results from positron

emission tomography (PET) and functional magnetic resonance imaging (fMRI)

studies have demonstrated PFC activation in humans performing attention tasks

regardless of which sensory domain the stimuli are presented (e.g., visual, somato-

sensory, auditory) (Cohen et al. 1988; Coull et al. 1996; Lewin et al. 1996; Pardo

et al. 1991). Additionally, several studies have demonstrated that both rodents and

patients with frontal lobe lesions are impaired on tasks measuring attention

(Maddux and Holland 2011; Passetti et al. 2002; Wilkins et al. 1987).

More specifically, attention is sustained by the basal forebrain cholinergic

system (BFCS), and lesions to portions of the BFCS, including the nucleus basalis

of Meynert, which provides the major cholinergic innervation to the PFC, produce

attention deficits in both rodents and monkeys (McGaughy and Sarter 1998;

Mesulam and Geula 1988; Muir et al. 1995; Voytko et al. 1994). Additional

evidence for the role of cholinergic control of attention has been demonstrated

through pharmacological studies such as reversal of attention deficits in rodents and

humans through administration of nicotine and cholinesterase inhibitors such as

physostigmine and tacrine (Jones et al. 1992; Muir et al. 1995; Sahakian et al. 1989,

1993). Further, using in vivo microdialysis in rodents, a large increase in acetyl-

choline release within the PFC following exposure to an attention task has been

measured (Dalley et al. 2001; Passetti et al. 2000).

There is also evidence from studies in animal models as well as humans that

suggests a role for noradrenergic modulation of attention, with the locus coeruleus

(LC) supplying the sole source of norepinephrine (NE) to the cortex, and NE

depletion producing deficits in the performance of animals on a variety of attention

tasks (Arnsten 1993; Berridge and Waterhouse 2003; Brozoski et al. 1979; Carli

et al. 1983; Gamo et al. 2010). Conversely, stimulating the postsynaptic α2A NE

receptors in the PFC, either through administration of NE or the selective α2A
receptor agonist, guanfacine, increases neuronal PFC firing, and improves attention

(Arnsten and Contant 1992; O’Neill et al. 2000; Wang et al. 2007). Consistent with

these data, a recent study in aged monkeys demonstrated impaired performance on

a sustained attention test that was improved following the acute administration of

guanfacine (Decamp et al. 2011).

One of the most widely used tasks to measure sustained attention is the continu-

ous performance test (CPT), which assesses maintenance of attention over long

periods of time in response to infrequent, unpredictable, critical events
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(Beck et al. 1956). First developed for use in humans, the CPT has been effectively

translated to non-human primates and rodents (Fig. 5). The most basic version of

the CPT requires subjects to continuously attend to a stream of stimuli, and to

respond when they detect a previously defined “target” in order to earn a reward,

while ignoring all other stimuli (“distractors”). The data are commonly analyzed for

two kinds of correct responses, “hits” (correct response to a target) and “correct

rejections” (correct withholding of a response to a distractor), and two kinds of

incorrect responses, “misses” (incorrect withholding of a response to a target, also

called “errors of omission”) and “false alarms” (incorrect response to a distractor,

also called “errors of commission”). Speed of response can also be measured by

assessing reaction time for “hits.” Though the basic premise of the CPT remains

identical across primate species, colored shapes or symbols are often used when

testing non-human primates, whereas letters or numbers are most often used when

testing humans. Additionally, there are numerous variants of the CPT in humans,

some of which make the task quite difficult, for example, by defining the “target” as

a specific letter, but only when it follows a specific series of other letters (i.e.,

Continuous Performance Test (CPT)

Correct
nose poke

Food
reward

Human CPT:
Click when see “R”

Monkey CPT:
Touch when see

A
XC

F F
S

R

5-choice serial reaction time task (5-CSRTT) a b

Fig. 5 Sustained attention. (a) In the 5-choice serial reaction time task (5-CSRTT), rats are

trained to attend to five locations illuminated by a light at each location. In each trial, a different

light is illuminated and the rat is given a small food reward for a correct nose poke in the location

of the light. Mice also perform the 5-CSRTT. (b) In the continuous performance test (CPT),

monkeys are presented with a stream of stimuli presented one after another on a touch-sensitive

monitor. They are trained to ignore distractors (top and middle panel) and to respond to targets

(bottom panel) to earn food rewards. Humans can also perform the CPT, though they are often

trained to respond to letters or numbers rather than patterns or shapes
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CPT-AX). The rapid visual information processing (RVIP) task is also similar to

the CPT and has previously been used in both monkeys and humans.

The 5-choice serial reaction time task (5-CSRTT) was adapted from the human

version of the CPT for use in rodents (Carli et al. 1983). Like the CPT, the

5-CSRTT also measures speed and accuracy of attentional processes. The

5-CSRTT is mainly used to assess sustained and spatially divided attention. How-

ever, selective attention may also be assessed by including irrelevant and

distracting (auditory) stimuli during the intertrial interval while the animal has to

attend to the five locations. In addition the task can evaluate premature and

perseverative responses, which are measures of inhibitory control. Whereas

monkeys and humans are tested on the CPT on computer screens, the 5-CSRTT

is administered to rodents in a chamber with an array of five spatial locations with a

light corresponding to each location. On each trial, one of the five lights is

illuminated for a brief period of time (e.g., 100 ms), and the rodent is rewarded

for nose-poking in the location of the corresponding light (Fig. 5). There is a wealth

of literature on pharmacology and lesion studies in the 5-CSRTT (Lustig

et al. 2013; Robbins 2002). The 5-CSRTT has also been successfully implemented

on rodent touchscreens by presenting a white square briefly in one of five possible

locations (Fitzgerald et al. 2014). Though attention is impaired in a number of

neuropsychological and neuropsychiatric diseases, it is most notably affected in

patients with attention deficit disorder (ADD) and attention deficit hyperactivity

disorder (ADHD). A meta-analysis of children with ADHD determined that CPT

performance was impaired relative to performance by age-matched controls, with

the ADHD children making twice as many errors of commission and omission than

controls (Losier et al. 1996). Administration of methylphenidate significantly

decreased the rates of both types of errors on the CPT in adolescents with ADHD

(Corbett and Constantine 2006) and ADD (Klorman et al. 1991). Similarly, the

performance of rats originally trained to low baseline scores on the 5-CSRTT

improved when methylphenidate was administered prior to testing (Navarra

et al. 2008; Paine et al. 2007). Overall, the CPT is readily translatable between

species, with a large literature of published data in animals and humans alike. There

is an extensive amount of normative data (Robbins et al. 1994), and the CPT offers

a quick, standardized, objective means of measuring attention processes.

Recently, Young and colleagues have developed the 5-choice continuous per-

formance test (5C-CPT) in mice in which, as the name implies, combines the

5-CSRTT and the CPT (Young et al. 2009b). The 5C-CPT involves a chamber

with multiple apertures that are randomly illuminated. The subject is required to

respond to one aperture when it is illuminated, and to withhold responding when all

five apertures are illuminated. This differs from the 5-CSRTT, since in the

5-CSRTT a rodent does not need to inhibit a response; therefore the 5C-CPT is

similar to the human CPT. Thus far, sleep deprivation experiments have

demonstrated the use of this task in both mice and humans, and potential future

pharmacological and/or lesion experiments may affirm the usefulness of this new

task as a translatable paradigm (van Enkhuizen et al. 2014).
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In addition to sustained attention, as mentioned earlier, divided attention and

selective attention are also assessed across species. Measuring divided attention is

accomplished through dual-task performance tests where subjects are required to

perform two or more tasks or attend to two or more items, simultaneously. Divided

attention abilities are often contrasted to performance on selective attention tasks

that reveal greater performance accuracy scores. Both types of attention are

assessed primarily in humans using methods requiring the ability to identify letters

and numbers. For example, Farran and colleagues used tasks with stimuli consisting

of larger letters made up of smaller letters (Farran et al. 2003). In congruent trials,

the large letter was drawn with several smaller letters of the same symbol (e.g., the

letter “H” was drawn with many smaller “H”s). In incongruent trials, the large letter

was drawn with several smaller letters of a different symbol (e.g., the letter “H” was

drawn with many smaller “S”s). On each trial of the selective attention task,

subjects were asked to identify either the little letters or the big letters. On each

trial of the divided attention task, subjects were asked to indicate if they saw a target

letter anywhere, regardless of whether it was the small letters or a big letter.

Some work on divided attention has also been done in monkeys and rodents,

using clever tasks that do not require language abilities, but that do demand training

prior to experimentation. For instance, O’Neill and colleagues trained monkeys to

attend simultaneously to two spatial locations on a screen, marked by red circles,

and the monkeys were to indicate when small, quickly moving objects entered one

or both of the circles. Administration of choline mimetic compounds increased

performance on this test of spatial divided attention, particularly in aged monkeys

(O’Neill et al. 1999). Divided attention has also been assessed in rodents using

cross-modal stimulus presentations (McGaughy et al. 1994). Rats were trained to

perform operant conditional discrimination tasks with stimuli presented in the

auditory and visual domains. When tested on a block of stimuli presented in one

of the sensory domains, performance was better than when stimuli were randomly

presented in either domain within a block of trials.

3 Working Memory

Working memory is the basis of abstract thought, and reflects the ability to

represent salient information in the absence of sensory stimulation in order to

effectively execute a task (Arnsten et al. 2012) (e.g., effectively remembering a

telephone number before dialing in humans). The nature of working memory makes

it subject to distractibility and interference, and it declines in conditions of stress

and in psychiatric and neurological diseases (e.g., schizophrenia, Alzheimer’s

disease) (Barch and Ceaser 2012; Schroeter et al. 2012). Moreover, working

memory underlies other cognitive processes, such as long-term memory and lan-

guage, amongst others, which also can become impaired with age and disease

(Arnsten et al. 2012; Bizon et al. 2012).

The lateral region of the prefrontal cortex (PFC) is critical for effective working

memory function in primates (Mishkin 1957). More specifically, it is the persistent
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firing of a network of interconnected glutamatergic pyramidal neurons (also known

as “delay cells”) within layer III of the dorsolateral (dl) region of the PFC that

subserves visuospatial working memory (Goldman-Rakic 1995, 1996; Wang

et al. 2011). Activation of delay cells enables continuous updating of information

to maintain and flexibly manipulate information that is no longer present in the

environment (i.e., the basis of working memory). Delay cells communicate with

response cells, which are activated around a motor response. Whereas delay cells

are present in primate dlPFC, the rodent PFC is described to exhibit more response-

like cells suggesting that direct comparisons between species should be done

cautiously (Caetano et al. 2012).

To assess working memory function in humans and animals, delay tasks are

often employed [e.g., delayed alternation (DA), delayed match-to-sample

(DMS/DMTS) task]. The basis of these tasks is that information about a previous

trial needs to be stored temporarily “online” during an interim period in which the

stimulus is absent, and then accessed subsequently during the response period.

Longer delays increase the difficulty of the trial, and can lead to decreased perfor-

mance accuracy.

The DA task has been used successfully in rodents and in monkeys. In the

monkey version, animals are presented with two cups separated on a sliding tray in

which one of the cups is baited with a food reward. The animals are trained to select

one cup to obtain a reward and then are to alternate between the two cups following

a delay period (�5 s) during each trial. In 1957, Mishkin used the DA task to

demonstrate the importance of the mid-lateral frontal cortex in delayed-response

tasks by lesioning this region in rhesus macaques and subsequently measuring trials

to criterion (Mishkin 1957). In this study, half of the animals with mid-lateral

lesions did not reach criterion even after completing 1,000 trials, whereas animals

with lesions in other areas of the cortex not involved in working memory processes

performed the task with 90 % accuracy after less than 300 trials. Subsequent studies

have confirmed these results in NHPs following functional depression of the dlPFC

(Alexander and Goldman 1978) and in humans with focal lesions in the dlPFC

(Brodmann’s area 46) (Freedman and Oscar-Berman 1986).

In the rodent the DA task is more commonly a T-maze apparatus, in which one

arm of the maze is baited with a food reward and the mouse or rat needs to select the

alternate arm from the previous trial to receive a reward. This task exploits the

rodents’ inherent tendency to alternate arm choices on consecutive trials (Tolman

1945). Although it is not fully understood why rodents alternate on T-mazes (e.g.,

implicit directional sense, exploration strategy, odor cues), this task has been used

extensively to study working memory. The alternation performance is particularly

sensitive to hippocampal disruption in rodents and lesioned animals will perform at

chance level following relatively short delays (e.g., 15 s) (Dudchenko et al. 2000).

Other tasks used to test working memory in the rodent include the 8-arm radial

arm maze (RAM), in which food rewards are placed at the ends of each arm. Rats

tend to visit each arm once before returning to a previously visited arm (re-baited in

between trials), suggesting the engagement of working memory processes (e.g.,

remembering which arm they had visited earlier) (Olton and Papas 1979).
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Subsequently, introducing delays in between arm entries results in delay-dependent

increases in errors in rodents (Bolhuis et al. 1986) similar to results obtained in NHP

and human delay tasks. The Morris water maze (MWM) is another commonly used

task in rodents to assess working memory, in which the location of a platform

submerged in water is switched between sessions on a daily basis. As the animals

learn where the platform is using spatial cues, the latency to reach the platform

decreases (Morris et al. 1986). Although the MWM and the RAM tasks used in

rodents test the working memory construct and enable comparison between species

(e.g., NHPs, humans), the tasks themselves traditionally have not been used in

NHPs and humans. In addition, it should be noted that rodent working memory

tasks, which use long delay intervals, are actually measuring short-term spatial or

visual-spatial memory and not the working memory domain as defined for humans.

The DMS task is a test of working memory readily translatable between species.

This task occurs in two phases, first a sample phase in which a subject is presented

with a stimulus, and then following a variable delay period (e.g., seconds to

minutes), the choice phase, in which the subject is reexposed to the original

Trial unique non-match to location (TUNL) Delayed Match-to-Sample (DMTS)

Sample phase

a b

Choice phase

Choice phase

Sample phase

Variable delay

Variable delay

Fig. 6 Working memory. (a) In the trial-unique delayed non-matching-to-location (TUNL) task,

rats are trained to press a white square on the touchscreen during the sample phase and then have to

remember this location during the choice phase. The rat is given a small food reward for a response

to the correct novel location. Mice can also perform the TUNL task. (b) In the delayed match-to-

sample (DMTS) task, monkeys are trained to touch a sample stimulus and following a variable

delay are rewarded for choosing the same stimulus they were exposed to prior to the delay

Animal Paradigms to Assess Cognition with Translation to Humans 37



stimulus along with the introduction of a distractor stimulus (Fig. 6). The subject is

required to match the stimulus that was originally presented in the sample phase to

receive positive reinforcement (e.g., food reward for rodents, NHPs). The repeated

use of stimuli for all trials ensures the involvement of working memory and not

recognition memory processes, the latter of which is engaged when new stimuli are

introduced on a per trial basis (Mishkin and Delacour 1975). In a close variant of the

DMS task, delayed non-match-to-sample (DNMS) task, the subject is required to

select the stimulus that was not presented in the original sample phase. In either

version, as the delay increases, so does the task difficulty leading to decreased

performance.

The use of visual touchscreen-based working memory procedures such as

DMS/DNMS used in humans has been translated successfully to NHPs (Weed

et al. 1999). The use of touchscreen tests across species allows for standardization

of testing approach, stimuli, and conditions and minimizes experimenter involve-

ment and potential bias. Although some species differences can be present in terms

of increased task complexity needed to observe impairments in humans as

compared to NHPs (e.g., delay length). In addition, delay tasks to assess working

memory may not be suitable for all disease indications. For example, in schizo-

phrenia working memory deficits are prominent; however they do not appear to be

delay dependent (Lee and Park 2005). Recent suggestions from the CNTRICS

consortium suggested goal maintenance and interference control would be features

of working memory that have translational validity and are sensitive for use in

schizophrenic patients (Barch and Smith 2008).

More recently, the use of touchscreen working memory tasks has been

introduced to rodents with the trial unique non-match-to-location (TUNL) para-

digm (Oomen et al. 2013; Talpos et al. 2010). The spatial nature of the TUNL task

(Fig. 6) makes it hippocampal dependent; however, the hippocampus likely

interacts with the medial prefrontal cortex (mPFC), since lesions of the mPFC

have been shown to induce a delay-dependent impairment (McAllister et al. 2013).

Traditionally, lever-based operant delayed non-match- or match-to-position

paradigms have been plagued with questions of whether rodents are using

mediating strategies to bridge the delay period to enable accurate responding

instead of employing working memory processes. Many studies have shown that

rodents position their bodies to predict the correct location for their response, and

even after attempts to minimize this potential (e.g., required nose pokes in between

sample and choice phases), biased body position may still be a factor (Chudasama

and Muir 1997; Dudchenko and Sarter 1992; Gutnikov et al. 1994). In the TUNL

approach, multiple spatial locations are used making it difficult for the rat to predict

the correct response, and extensive testing to assess mediating potential has

suggested it is unlikely that rats are using this strategy. Although progress has

been made, further work is needed for a translational working memory task in

rodents, which is mediated by the prefrontal cortex and satisfies the criteria as

closely as possible for working memory assessed in humans.
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4 Visual-Spatial Learning

Visual-spatial learning is a form of declarative memory that is dependent on the

medial temporal lobe. One of the most commonly used paradigms to assess visual-

spatial learning across species is the visual-spatial paired-associates learning

(vsPAL) task. vsPAL requires subjects to associate a set of objects with particular

spatial locations on a trial-by-trial basis and is dependent on the hippocampus in

particular (Murray et al. 1993; Owen et al. 1995; Talpos et al. 2009; Wood

et al. 2002). Deficits in vsPAL performance have been reported in aging and disease

(Rabbitt and Lowe 2000; Robbins et al. 1994). In particular, impaired performance

in vsPAL has been demonstrated in patients with mild cognitive impairment who

are later diagnosed with Alzheimer’s disease (Blackwell et al. 2004; Sahakian

et al. 1988; Swainson et al. 2001). Similarly, schizophrenic patients (first episode

and following chronic disease) show impaired learning in vsPAL (Barnett

et al. 2005; Wood et al. 2002). The sensitivity of the vsPAL task in identifying

cognitive impairments associated with neurological and psychiatric disease has

enhanced the utility of this paradigm in clinical settings and has driven the need

for translation in preclinical species.

Subsequent to its development and use in humans, the vsPAL task has been

developed for NHPs, rats and mice using touchscreen-based computerized systems

(Bartko et al. 2011; Owen et al. 1995; Spinelli et al. 2005; Taffe et al. 2002; Talpos

et al. 2009) (Fig. 7). In humans and NHPs, vsPAL requires subjects to learn to

associate a specific stimulus with a particular location on a trial-by-trial basis. The

task difficulty increases with the number of stimulus-locations presented, and

memory load can vary within a session to allow performance-based assessment at

different demands (Taffe et al. 2002). Typically, NHPs have up to 4 stimuli/4

locations in their difficult trials (although this can be higher), whereas humans

can generally accommodate more stimulus-location pairs (e.g., up to eight) before

the task becomes too difficult and performance decreases (Fowler et al. 1997;

Swainson et al. 2001; Taffe et al. 2002).

In the human version of vsPAL, subjects are given verbal/written instructions

prior to testing; thus minimal training is needed. The sample phase of vsPAL

involves the presentation of a series of identical boxes located around the periphery

of a touchscreen monitor (Fig. 7). Sequentially, each box will open to reveal a

unique stimulus in a specific location until all the boxes have shown their contents.

Following a brief delay, the choice phase begins in which one sample stimulus

appears in the center of the screen and the subject is asked to match the stimulus to

the location (correct box) in which it was originally presented. Subjects go through

each of the sample stimuli until they have responded to them all, and may or may

not be rewarded for correct responses.

In the NHP version of vsPAL, animals must acquire the rules through a trial-and-

error approach prior to testing; thus training can take many months and

modifications to the task may occur as training progresses. During the sample

presentation, NHPs learn to touch the sample stimulus as a measure of

having attended to it prior to moving to the test phase (Fig. 7). In the vsPAL,
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stimulus-locations are randomized (9 locations; 20 stimuli) to avoid memorization,

and once animals are trained to a particular criterion, the performance generally

remains stable over time as long as the animals are being tested routinely.

In the rodent version of vsPAL, animals learn to associate a particular stimulus

with a particular location over an extended training period (Horner et al. 2013).

Many of the same approaches in both rats and mice are used, as the mouse version

was modeled after the rat. In the rodent vsPAL, animals must learn which location

is associated with each stimulus (Fig. 7). Two stimuli are presented at once in three

possible locations (i.e., six possible stimulus-location options), with one stimulus

being in the correct location (S+) and the other stimulus in an incorrect location

(S�). The animal is required to select the correct stimulus-location to receive a food

reward (Bartko et al. 2011; Talpos et al. 2009). After performing at a set criterion

consistently during the training phase, the animals are given a fixed number of trials

within each session; for mice it is generally 36 trials, and for rats it is generally

Rodent PAL
Sample phase

Monkey PAL

Choice phase

6 trial types presented randomly

Choice
phase

Delay Delay

Choice phase

Human PAL
Sample phase

Correct
pairings

a b c

s+ s-

Fig. 7 Visual-spatial memory. (a) In the paired associates learning (PAL) task, rats learn which

location is associated with each stimulus. Two stimuli are presented at once in three possible

locations (i.e., six possible stimulus-location options), with one stimulus in the correct location

(S+) and the other stimulus in an incorrect location (S�). The animal is required to select the

correct stimulus-location to receive a food reward. Mice can also perform the PAL task. (b) In the
monkey version of the PAL task, monkeys are presented with a series of stimuli, each in a different

location on a touch-sensitive monitor. Following a short delay, each stimulus is presented again,

alongside an identical stimulus in a distracter location. The monkey is rewarded for choosing the

stimulus in the location that it was originally presented. (c) In the human version of the PAL task,

subjects are presented with an array of boxes and “open” each box to reveal a unique stimulus in a

sample phase. Following a delay, one stimulus is presented in the middle of the array of boxes, and

the subjects are required to match the location at which that stimulus was presented in the sample

phase
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72 trials. Memory load remains constant throughout the test in the rodent version of

vsPAL, but can be manipulated pharmacologically with direct manipulations of the

dorsal hippocampus (e.g., lidocaine) (Talpos et al. 2009). Given the length of time

and the number of trials across sessions, the rodent version of vsPAL may assess

more long-term association formation as compared to the within-session changes of

humans and monkeys, which assesses more recent association formation.

5 Recognition Memory

Recognition memory in humans is a subtype of declarative memory and refers to

the ability to determine whether or not a stimulus has been previously encountered.

A large body of literature, with its beginnings in the 1960s, has identified that

recognition memory is critically dependent on medial temporal lobe cortical areas,

specifically the perirhinal and entorhinal cortices, and the hippocampus. For

instance, neuroimaging studies have demonstrated hippocampal activation during

recognition memory tasks in healthy volunteers (Cohen et al. 1999), and lesion

studies in animals and patients with specific brain damage have shed more light on

this finding. Patients with temporal lobe damage have demonstrated impairments in

recognition memory, regardless of whether the damage is extensive (McKee and

Squire 1993; Pascalis et al. 2004) or selectively confined to the CA1 region of the

hippocampus (Zola-Morgan et al. 1986). Data from several studies in monkeys and

rodents have corroborated this finding and have demonstrated that damage specifi-

cally to the perirhinal and entorhinal cortices also produces recognition memory

impairments (Hadfield et al. 2003; Leonard et al. 1995; Meunier et al. 1993; Suzuki

et al. 1993), as can selective damage to the hippocampus (Nemanic et al. 2004;

Pascalis and Bachevalier 1999; Zola et al. 2000). Rodent studies have been useful to

precisely define which brain regions are required for specific processes. It has been

shown that the perirhinal cortex is essential for object recognition memory (Brown

et al. 2012), but when tasks require an association of object with contextual or

spatial information, then integration of the hippocampus with the perirhinal cortex

occurs (Winters et al. 2010b).

Recognition memory tasks in rodents are widely used within many laboratories

and are referred to as the object recognition test (ORT) or novel object recognition

(NOR) or novel object discrimination (NOD). The “one-trial learning” test which is

predominantly used was originally described by Ennaceur and Delacour (Ennaceur

and Delacour 1988). The main reason for the popularity of this test is likely due to

the minimal equipment required and the ease of running the protocol. Due to the

spontaneous nature of the task, no reward or punishment is required. Moreover,

most tests require one-trial learning and so lengthy training is not needed, in

contrast to operant-based tasks already described in this chapter. In addition, it is

possible to determine the effects of compounds on different stages such as

encoding, consolidation, and retrieval, which is not always feasible with operant-

based tasks. There have been a number of recent reviews that describe variants of

the task, including species and gender differences, methodology, apparatus, and
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objects (Antunes and Biala 2012; Lyon et al. 2012; van Goethem et al. 2012). The

purpose of the recognition memory task in rodents is to assess whether subjects can

remember a previously presented object. Usually the test is comprised of a habitu-

ation period, acquisition, and test period (Fig. 8). Rodents are habituated to the test

chamber at least once 24 h prior to the test. During acquisition, subjects are usually

presented with two identical objects and the time spent exploring each is recorded.

After an interval, subjects are returned to the arena and presented with a duplicate of

the previously explored object and a novel object in the same locations as the

acquisition period. Since there is a natural tendency to explore novel objects, if the

rodent remembers the familiar object, then it will spend more time exploring the

novel object. Object recognition in rodents is sensitive to pharmacological effects

modulating dopaminergic, cholinergic, serotonergic, and glutamatergic systems

(Lyon et al. 2012). A number of studies have also determined the effects of

transgenic manipulations on object recognition. Recognition memory deficits

have been found in different transgenic mouse models of Alzheimer’s disease;

however, the temporal progression differs across the mouse lines and so care must

Acquisition

Object recognition test

Habituation to arena (no objects)

Visual Paired-Comparison (VPC)

Familiarization
phase

Retention
phase

Delay
Variable
interval

24 h

Test

a b

Fig. 8 Recognition memory. (a) Rodents are habituated to the test chamber at least once 24 h

prior to testing. During acquisition, subjects are presented with two identical objects and the time

spent exploring each is recorded. After a variable interval, subjects are returned to the arena and

presented with the familiar object and a novel object in the same locations as the acquisition trial.

Since there is a natural tendency to explore novel objects, if the rodent remembers the familiar

object, then it will spend more time exploring the novel object; (b) In the visual paired-comparison

(VPC) task, monkeys, or humans are exposed to a stimulus during a familiarization phase.

Following a delay, the same stimulus and a novel one are presented side by side. Since both

monkeys and humans have a natural preference for novelty, if the subject remembers the familiar

stimulus, they will spend more time looking at the novel stimulus
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be taken to select the appropriate model and time-point when assessing drug effects

(Webster et al. 2014). With regard to recognition memory in rodents, direct

translation to NHP and human must be taken with some caution, since in the rodent

paradigm it is possible that rodents may not only use visual information to perform

the task.

In humans, word and/or picture recognition tasks are primarily employed to test

recognition memory. In these tests, subjects are presented with a list of words or a

series of pictures, and at a later time, are asked to identify which words or pictures

in a new list they had seen previously. While these methods are used extensively in

clinical trials, they do not lend themselves well to translating to non-human species

because of the critical language component. In primates (i.e., monkey and human),

the visual paired-comparison (VPC) paradigm can be used to test recognition

memory. This task takes advantage of the subject’s innate preference to view

novel stimuli, and does not require the subject to learn any rules associated with

the task to earn a reward. In the VPC task, recognition memory is measured by the

subject’s preference to look longer at novel stimuli than to stimuli they have seen a

few seconds or minutes earlier. Each trial of a VPC test is divided into a familiari-

zation phase, a delay, and a retention phase (Fig. 8). During the familiarization

phase, a sample stimulus is displayed in the center of a screen until the subject looks

at it for a predetermined amount of time, after which a delay period ensues. The

retention phase follows, during which two images are displayed side by side in a

pseudorandom, counterbalanced location; one of the images is the same as the

sample stimulus seen in the familiarization phase, and the other image is a novel

stimulus. The dependent measure tends to be the total amount of time spent looking

at each of the images. Recognition memory is thought to be intact if the subject

spends a significantly larger amount of time viewing the novel as opposed to the

familiar stimulus. Humans can use both explicit episodic recollection and implicit

familiarity, whereas it is thought that rodents predominantly use the latter process.

By manipulating one or many of the task parameters, recognition memory can be

enhanced or impaired in humans (Richmond et al. 2004), monkeys (Zeamer

et al. 2011), and rodents (Antunes and Biala 2012). The parameters that can be

manipulated include the time allowed for familiarization, the length of the delay

between the familiarization and retention phases, and the discriminability of the

stimuli. Decreasing the length of the familiarization phase, increasing the delay, or

increasing the similarity between the stimuli will impair recognition memory,

whereas increasing the length of the familiarization phase, decreasing the delay,

or decreasing the similarity between the stimuli will enhance recognition memory.

There is wide support in the literature demonstrating the applicability of the VPC

paradigm to disease state, particularly for Alzheimer’s disease. For example, the

VPC test has been demonstrated to distinguish those subjects who are aging

normally from those with mild cognitive impairment and Alzheimer’s disease.

Most recently, Zola et al. (2013) reported that scores on the VPC paradigm not

only reveal present disease state, but are also predictive of disease progression

(Zola et al. 2013). This was demonstrated in subjects who were recruited to

participate in the study regardless of whether they were controls, patients with
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mild cognitive impairment, or patients with Alzheimer’s disease. The fact that this

paradigm can be used across species (NHPs and humans) and that it is sensitive to

disease state suggests it lends itself well to translational research, especially for

investigation of novel therapeutics. Rodents have been shown to discriminate visual

stimuli on a touchscreen, and acquisition of this task is impaired by perirhinal

cortex infusion of GABAA agonist or muscarinic and NMDA antagonists (Winters

et al. 2010a); however, so far it has not been possible to train rodents in a paradigm

similar to VPC.

6 Emotional Memory

Acquisition and extinction of fear conditioning require associative learning and

have been studied in both animals and humans to understand the neurobiology of

emotional memory, as well as to understand the processes underlying disorders

such as posttraumatic stress disorder (PTSD). Memory for emotionally arousing

stimuli associated with threat or danger is extremely important since it ensures that

the individual can learn to predict danger and adapt their behavioral response

accordingly. However, repeated exposure to traumatic events may lead to strong

emotional memories of the events resulting in PTSD. Patients with PTSD suffer

from the occurrence of intrusive memories which are so strong that it is not always

possible to dissociate current from past events.

Rodents respond to danger in a species-specific manner by freezing, (i.e., animals

will withhold all movement except for respiration), in order to avoid detection. This

behavioral response can be utilized to assess associative learning and memory. In

fear conditioning experiments during the acquisition period, animals are placed into

a chamber and presented with pairings of a conditioned stimulus (CS), such as tone

or light cue, with an unconditioned stimulus (US) that is usually a mild foot shock

applied through the grid floor (Fig. 9). Animals learn to associate the CS with the US

and when animals are placed into a novel chamber and presented with the CS in the

absence of the US, this results in the expression of increased freezing [i.e.,

conditioned response (CR)], which is usually expressed as percent time freezing.

If animals are returned to the same chamber where they were previously exposed to

the US, then they show increased freezing in this context. The former association is

known as cued fear conditioning and the latter is context fear conditioning. Extinc-

tion occurs when the CS or context is repeatedly presented in the absence of the US

and consequently the CR, (i.e., freezing behavior), diminishes over time. However,

studies have shown that the association between the CS and US is not completely

abolished because reinstatement can occur later in response to presentation of the

CS. Therefore the general consensus is that extinction learning represents new

learning during which a new CS-no US memory competes with and inhibits the

existing CS-US memory (Bouton 2004). Fear extinction in animals is considered to

be a model of exposure therapy in humans, where the fear-provoking stimulus is

presented repeatedly in the absence of harm, so that the patient ideally learns to fear

it less. Deficits in fear extinction are thought to contribute to PTSD.
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The direct translation of rodent studies has helped to define human paradigms for

use in neuroimaging and thus provide further understanding of the underlying

circuitry of PTSD (Delgado et al. 2006; Milad et al. 2006; Parsons and Ressler

2013). Note that NHP studies are lacking in the literature, possibly due to the

difficulty in setting up a conditioning paradigm without utilizing electric shock as

the US. However, there is a recent study describing a novel conditioning paradigm

which successfully uses an air puff as the US (Kazama et al. 2013). In human fear

conditioning experiments, the CR is usually a psychophysiological response of the

sympathetic nervous system in response to fear or perceived threat, which includes

heart rate response, electromyographic (EMG) response, or skin conductance

response (SCR). SCR is the most frequently used readout and measures

perspiration-induced electrical conductance or moisture level of the skin, usually

on fingers, palms, or feet. Most studies use a wrist or finger shock as the US and

Acquisition

Cue

Cue in novel chamber

Extinction: Repeated exposure to cue or context

Contextcb

d

a

Cue

Tone-shock pairings

Context

Tested in same chamber

Fig. 9 Fear conditioning and extinction. (a) During the acquisition period rodents are placed into
a chamber and presented with pairings of a conditioned stimulus (CS), such as tone, with an

unconditioned stimulus (US) usually a mild foot shock applied through the grid floor. (b) Rodents
learn to associate the CS with the US so that when animals are placed into a novel chamber and

presented with the CS in the absence of the US, this results in the expression of freezing behavior,

i.e., conditioned response (CR). (c) If animals are returned to the same chamber where they were

previously exposed to the US, they then show freezing behavior in this context. (d) Extinction
occurs when the CS or context is repeatedly presented in the absence of the US and consequently

the CR, (i.e., freezing behavior), diminishes over time
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compare response to a conditioned cue (CS+) with a nonconditioned or

extinguished cue (CS�). During acquisition of fear conditioning, SCR is higher

in response to a CS+ compared to a CS�. This approach can be used in neuroim-

aging studies and thus aid in defining brain regions required for fear conditioning

and extinction in humans (Parsons and Ressler 2013; VanElzakker et al. 2014).

The neural network underlying fear conditioning and extinction has been well

characterized in animals and humans, and knowledge has been derived from

lesions, pharmacology, genetically modified mice, electrophysiology, and neuro-

imaging (Fanselow and LeDoux 1999; Fanselow and Poulos 2005; Maren 2001).

The main brain region required for acquisition and expression of fear conditioning

is the amygdala (lateral and basolateral), which receives sensory input related to CS

information for contextual features from the hippocampus and entorhinal and

perirhinal cortex and for auditory cues from thalamus (Fanselow and Poulos

2005). The amygdala also has reciprocal projections back to the cortical regions.

Output from the amygdala to the brainstem, hypothalamus, periaqueductal gray,

and ventral striatum results in reflex modulation, autonomic arousal, stress

hormones, freezing, analgesia, and instrumental behavior, respectively. Regarding

extinction, there is evidence that the prefrontal cortex is required to modulate this

process (Quirk et al. 2006). Patients suffering from PTSD exhibit impaired extinc-

tion processes and dysfunctional activation of the fear extinction network, i.e.,

diminished activity in ventral medial prefrontal cortex, rostral anterior cingulate

cortex, hippocampus, and heightened amygdala activation (Shin and Liberzon

2010; VanElzakker et al. 2014). Animal studies have shown that it is possible to

modulate extinction by either pharmacological approaches or behavioral methods

(Fitzgerald et al. 2014; Kaplan and Moore 2011; Parsons and Ressler 2013). A

recent review has stated that over the last 10 years there has been much progress on

translational research of fear extinction due to a high degree of coordination

between rodent and human researchers (Milad and Quirk 2012).

7 Translatable Biomarkers

In addition to assessing cognition through behavioral measures, investigation of

cognitive function through neurophysiological methods and imaging techniques

can complement and/or provide additional information to behavioral approaches.

7.1 Electroencephalography

Electroencephalography (EEG) refers to the physiological technique used to exam-

ine electrical activity within the brain in response to synchronous activation of

pyramidal cells within cortical neural networks. Engagement of these networks

occurs through incoming sensory information or cognitive processing or under

resting conditions and has been recorded in species such as mice, rats, dogs, and

monkeys, and of course, in humans.
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Whereas the EEG technique itself lends itself to cross-species utilization, the

method in which it is collected may differ. In humans, EEG measurements are

generally recorded by multiple electrodes placed on the scalp, and whereas some

EEG studies in monkeys have employed scalp electrodes either through specialized

skull caps the animals wear (Gil-da-Costa et al. 2013), or by using sharp electrodes

placed in the epidermis of the scalp, the vast majority of studies in monkeys and

lower species employ electrodes implanted on the skull, the surface of the brain, or

within a neural substrate (generally referred to as local field potentials in this case).

EEG confers an advantage to many other in vivo tools used to assess neural function

(e.g., functional magnetic resonance imaging; fMRI) because of its pronounced

temporal resolution (<1 ms) allowing direct assessment of electrical activity in the

brain within a defined time frame (Jutzeler et al. 2011). However, depending on

where the electrodes are placed (e.g., scalp, skull, brain surface), EEG can lack

precise spatial resolution (e.g., >1 mm) due to interference from these substrates.

Nevertheless, alterations in neuronal oscillatory activity as measured by EEG

underlie many neuropsychiatric and neurological conditions making EEG an

important tool for monitoring brain function.

The use of quantitative EEG (qEEG) coupled to spectral frequency analysis has

been invaluable for understanding brain function under normal and abnormal

conditions, and is used routinely both in preclinical species (mice, rats, monkeys)

and in humans. EEG has been traditionally evaluated within specific frequency

ranges: delta (0–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and

gamma (>30 Hz), and each range is associated with specific brain functions.

Oscillations within the delta, theta, alpha, and beta bands are involved in long-

range synchronization between cortico-cortical structures, and the oscillations

within the gamma band are involved in synchronizations within local circuitry.

For instance, it is thought that oscillations in the theta range are involved in

perception, learning, and memory (Huerta and Lisman 1993), while oscillations

within the alpha frequency band are involved in response inhibition and attention

(Uhlhaas and Singer 2010). Beta oscillations have also been implicated in attention,

as well as sensory gating, while gamma oscillations have been associated with

perception, selective attention, encoding, and retrieval of memories and are being

investigated as a translational biomarker for neuropsychiatric diseases such as

schizophrenia (Gandal et al. 2012).

In addition to the use of qEEG to investigate cognitive function, the use of event-

related potentials (ERPs) assessed by EEG as neurophysiological indices of sensory

and cognitive processing has been studied for decades. Human ERPs consist of P50,

N100, P200, P300, and mismatch negativity (MMN). Homologous MMN and P300

have been reported between macaques and humans (Gil-da-Costa et al. 2013; Javitt

et al. 1992), whereas the timescale for ERPs in mice is approximately 40 % of the

human and is represented as the P20, N40, P80, and P120 (Siegel et al. 2003). The

decreased latency in rodents may reflect differences in the cortical structure

between rodents and humans as well as the smaller relative brain size, although

other differences also may contribute. For example, early sensory gating responses

in the rat are largely mediated by the hippocampus and are disrupted by certain
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changes in stimulus parameters (e.g., sound, but not delivery frequency), whereas in

humans the hippocampus plays a role in sensory gating at later stages and gating is

disrupted by any change to the sensory stimulus (Boutros et al. 1995, 1997;

Grunwald et al. 2003).

Overall, alterations in ERPs and selective frequency bands of the EEG have

proven to be useful tools to characterize and study disease states, and potential

treatment effects in humans. The EEG can be successfully adapted for use in lower

species (e.g., rat, NHP) during wake to study cognition with appreciation of some of

the aforementioned species differences.

7.2 Eye-Tracking

Eye-tracking is a useful tool for translational research because it can reveal infor-

mation about the brain that may otherwise remain elusive. The noninvasive

manner in which eye-tracking can be employed (e.g., Machado and Nelson

2011), along with the fact that it is independent of language ability, allows the

same techniques and equipment to be used across species (e.g., humans, NHPs).

These characteristics also allow for translation across developmental stages

(i.e., infancy through adulthood) and levels of intelligence.

Some of the many parameters that can be measured with eye-tracking include

gaze patterns, saccadic movement, pupil fixation duration and frequency, and pupil

dilation. The translatable nature of eye-tracking capitalizes on the fact that both

humans and non-human primates rely almost exclusively on vision for nonverbal

social communication, demonstrate conserved visual processing strategies revealed

as similarities in these measures of eye gaze behavior while observing stimuli (Dahl

et al. 2009), and also demonstrate high test–retest reliability (Farzin et al. 2011).

These measures also have demonstrated sensitivity to disease states with known

social cognition deficits (e.g., autism) for which abnormal eye gaze patterns are a

hallmark feature of the disorder. In fact, when shown photographs of human faces,

patients with autism spend less time attending to the faces, and in particular, less

time gazing at the eye region of the faces, (Riby and Hancock 2009) than healthy,

age-matched controls (Klin et al. 2002; Neumann et al. 2006). Patients with autism

also show face-specific recognition deficits (Bradshaw et al. 2011) that are well

documented and are speculated to contribute to the social deficits characterized as

one of the core deficits of autism in the DSM-IV.

As deficits in social interactions are one of three core deficits that characterize

ASD, much consideration has been given to ways to improve social behavior as a

potential therapy. To this end, oxytocin, a neurohormone associated with prosocial

behavior, has received a great deal of attention (for review Green and Hollander

2010). Of particular interest, intranasal administration of oxytocin to patients with

autism increased gaze to the eye region while viewing faces, and was associated

functionally with enhanced social behavior (e.g., feelings of trust) (Andari

et al. 2010). Similar effects have been identified in healthy volunteers following

oxytocin administration, with oxytocin increasing gaze to the eye region while
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viewing faces (Guastella et al. 2008; Kosfeld et al. 2005). Interestingly, intranasal

administration of oxytocin to monkeys also increases gaze to the eye region while

viewing faces (Dal Monte et al. 2014), promotes prosocial decisions, and affects

visual social orienting (Chang et al. 2011; Ebitz et al. 2013). Taken together, these

data suggest pharmacological intervention can improve complex social behaviors

and can be monitored through eye gaze patterns as an index of function.

Eye-tracking is a valuable translational approach to assess social cognition for

diseases in which social impairments are prevalent. The noninvasive nature of the

technology and the ability to measure eye gaze parameters across species, develop-

mental stages, intelligence levels, and language abilities make it a valuable

approach to strengthen accurate, earlier diagnosis (Riby and Hancock 2009) and

in turn open a larger window of opportunity to treat patients, identify novel

therapies, and evaluate the effectiveness of potential therapeutics.

7.3 Functional Imaging: fMRI and In Vivo Oxygen Amperometry

Increases in neuronal activity are accompanied by changes in cerebral blood flow,

blood volume, and oxygenation and these changes can be detected using imaging

techniques such as blood oxygen level-dependent (BOLD) functional magnetic

resonance imaging (fMRI). fMRI can measure the BOLD signal throughout the

brain to determine regional brain activity. In humans this method can be used to

determine which brain regions are required for specific aspects of cognition during

neuropsychological task performance in the scanner. Unfortunately, it is not feasi-

ble to determine the relationship between brain region activity and function in

rodents since sedation or anesthesia is required to minimize motor movements and

so alternative procedures have been developed. An interesting approach is in vivo

oxygen amperometry which detects the presence of oxygen in the extracellular fluid

in real time in freely moving animals and has been shown to correlate with the fMRI

BOLD signal in rats when modulating inspired oxygen levels (Lowry et al. 2010)

and can be modified by external factors such as stress and tail pinch (Kealy

et al. 2013). Since this method records oxygen levels in specific brain regions

longitudinally in freely moving animals, the changes in activity over time can be

correlated with ongoing behavior. To determine whether this method would have

translational relevance, a study was undertaken to compare nucleus accumbens

activation during a reward processing task in rats with data from human fMRI

studies using a monetary incentive delay task (Francois et al. 2012). It was

demonstrated that the nucleus accumbens was activated during anticipation of

reward and this could be modulated by varying the magnitude and/or motivational

incentive value of the reward, which was very similar to the human data. The

limitation of this technique is that the sensors have to be implanted into a specific

brain region and so it is not possible to look at the global effect as in human fMRI

studies. However, the method can be extremely useful to probe the function of

specific regions during a particular behavior. Moreover, recent work has shown that

it is feasible to implant sensors in two brain regions and record simultaneously, for
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instance, nucleus accumbens and infralimbic cortex during a reward-based learning

task (Francois et al. 2014) and dorsal and ventral hippocampus during anxiety and

spatial tasks (McHugh et al. 2011).

8 Conclusions

In this chapter, we have provided an overview of several neuropsychological

behavioral paradigms with construct validity across cognitive domains and transla-

tional relevance across species. In addition, we have highlighted some neurophysi-

ological and imaging techniques that are used routinely to assess cognitive function.

For some of the paradigms discussed, there is evidence of strong translational value

from rat to NHP to human (e.g., attention tasks). For other paradigms, the transla-

tional assessment may be limited to two species (e.g., fear extinction from rodents

to humans; or, VPC from NHPs to humans). As mentioned in the Introduction of

this chapter, improvement in the area of translational neuroscience is an ongoing

process by research scientists and clinicians across academia, government, and the

biotechnology/pharmaceutical industry. A continued commitment to the integration

of knowledge from animal and human work to strengthen the effectiveness of

translational paradigms in the cognitive neurosciences has promise to improve

the treatment options for patients with cognitive-impairing disorders.
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Abstract

Aging is generally associated with a certain cognitive decline. However, indi-

vidual differences exist. While age-related memory deficits can be observed in

humans and rodents in the absence of pathological conditions, some individuals

maintain intact cognitive functions up to an advanced age. The mechanisms

underlying learning and memory processes involve the recruitment of multiple

signaling pathways and gene expression, leading to adaptative neuronal plastic-

ity and long-lasting changes in brain circuitry. This chapter summarizes the

current understanding of how these signaling cascades could be modulated by

cognition-enhancing agents favoring memory formation and successful aging. It

focuses on data obtained in rodents, particularly in the rat as it is the most

common animal model studied in this field. First, we will discuss the role of the

excitatory neurotransmitter glutamate and its receptors, downstream signaling

effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), pro-

tein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian

target of rapamycin (mTOR), cAMP response element-binding protein

(CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268),

and growth factors [insulin-like growth factors (IGFs) and brain-derived

neurotrophic factor (BDNF)] in synaptic plasticity and memory formation.

Second, the impact of the cholinergic system and related modulators on memory

will be briefly reviewed. Finally, since dynorphin neuropeptides have recently

been associated with memory impairments in aging, it is proposed as an attrac-

tive target to develop novel cognition-enhancing agents.

Keywords

Aging • Memory • Synaptic plasticity • Glutamate • Acetylcholine • Dynorphin
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1 Introduction

Despite a general lengthening of life span in humans over the last decades, the

quality of life still varies substantially among older adults. Some individuals are

active and socially engaged, while others have physical or cognitive impairments

and/or present depressive symptoms (Rowe and Kahn 1997; Frisardi et al. 2011). A

better understanding of the processes leading to individual differences during aging

might help identifying new pharmacological targets and develop innovative

treatments to favor successful cognitive aging. This chapter summarizes the current

knowledge on signaling pathways of particular importance in memory formation

(especially spatial memory) in rodents and the changes occurring during normal

(non-pathological) aging. Each section covers potential cognition-enhancing drug

targets and includes an overview of related published studies, focusing on the data

obtained in rats, and compounds already available (Fig. 1).

Normal aging is associated with increasing memory losses that can be detected

in middle-aged rats (Deupree et al. 1993) similarly to humans (Davis et al. 2003).

However, in aging rats of similar ages, important inter-individual differences in

cognitive abilities have been reported (Gallagher et al. 1993, 2003; Aubert

et al. 1995; Quirion et al. 1995; Rowe et al. 1998; Wilson et al. 2003; Menard

and Quirion 2012b). Sex and strain differences have also been observed

(Markowska 1999; Menard et al. 2014b) but will not be specifically addressed in

this chapter. Variations of cognitive status in aged rats are not related to neuronal

loss, as cell death in the hippocampus and neocortex does not characterize normal

aging in rodents (Rapp and Gallagher 1996; Rasmussen et al. 1996; Merrill

et al. 2001; Gallagher et al. 2003). Moreover, no regression of dendrites (Turner

and Deupree 1991; Flood 1993; Pyapali and Turner 1996) or decrease of spine

density (Curcio and Hinds 1983; Markham et al. 2005) has been reported in old rats.

Most electrical properties of the neurons remain constant over the life span includ-

ing resting membrane potential, threshold to reach an action potential, and the

width and amplitude of Na+ action potentials (Segal 1982; Landfield and Pitler

1984; Niesen et al. 1988; Kerr et al. 1989; Barnes et al. 1992; Potier et al. 1992,

1993; Burke and Barnes 2006). These observations suggest that in rodents,

age-related memory impairments associated with normal aging might be linked to

altered cell signaling and dysregulation of gene expression as reported by us and

others (for a review, see Benoit et al. 2011).

2 Types of Memory

The hippocampus-dependent Morris Water Maze (MWM) task (Morris 1984) is

one of the most widely used behavioral paradigms in neuroscience. It is particularly

efficient to discriminate aged rat subgroups depending on their level of cognitive

fitness. However, multiple tests and paradigms have been developed over the years

to study different forms of learning and memory. The following sections will
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Fig. 1 Summary of the signaling pathways involved in memory formation. Following neurotrans-

mitter glutamate release, postsynaptic ionotropic (AMPA, NMDA) and metabotropic (mGluR)

receptors become activated leading to the phosphorylation of downstream signaling effectors,

notably PKC, CaMKII, ERK, mTOR and CREB, and immediate early gene expression (Arc,

Homer 1a, Zif268). Glutamatergic neurotransmission can be modulated by other

neurotransmitters, such as acetylcholine and its nicotinic (nACh) and muscarinic (mACh)

receptors, neurotrophins (BDNF) and growth factors (IGF) through the Trk receptors, or

neuromodulators such as dynorphins (Dyn) that act on presynaptic κ-opioid receptors (KOR) to

block glutamate release. Astrocytes play an active role in the glutamatergic system activity as they

recapture glutamate through the excitatory amino-acid transporters (EAATs), where it is amidated

and reconverted in glutamate in neuron mitochondria to finally be accumulated in synaptic vesicles

through the vesicular glutamate transporters (VGLUTs)
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summarize spatial, recognition, social, and fear memory neuronal processes and the

behavioral paradigms to which they are associated.

2.1 Spatial Memory

Spatial memory is probably the most studied form of cognition in rodents. It is

required to navigate in an environment or to remember where objects have been

placed and implies various representations and encoding (Bird and Burgess 2008).

Initial information was obtained from epileptic patients showing the devastating

effects of bilateral medial temporal lobe or hippocampal damage (Milner and

Penfield 1955; Scoville and Milner 1957). In rodents, hippocampal lesions severely

impair performances in the MWM task (Moser and Moser 1998) which consist in

finding a hidden escape platform in a pool filled with opaque water (Morris 1984).

The animals use spatial cues on the walls of the room to orient themselves in the

environment and successfully navigate. Following several days of training (multi-

ple trials per day), young rats or mice will reach the platform quickly. Old rat

learning curves can then be compared to classify them in aged memory-impaired

(AI) and -unimpaired subgroups (AU) (Gallagher et al. 1993, 2003; Aubert

et al. 1995; Quirion et al. 1995; Rowe et al. 1998; Wilson et al. 2003; Menard

and Quirion 2012b). A probe test for which the platform is removed can subse-

quently be conducted to confirm cognitive status. In this task, the number of

platform crossings and time or distance spent in the target quadrant can be com-

pared to assess memory accuracy. The classical paradigm can be modified to add a

second week of training in which the platform is moved to another quadrant of the

pool (Menard and Quirion 2012b). Inhibitory and reversal learning, which

contributes to the extinction of previously acquired memories and learning of a

novel similar task, is strongly altered in AI rats suggesting that adaptative synaptic

plasticity is affected and less efficient than in young and AU animals (Menard and

Quirion 2012b). This could be related to place cells which are an ensemble of cells

that fired when an animal is moving in an environment, encoding a cognitive map

with a specific spatial-firing pattern (O’Keefe and Dostrovsky 1971). Wrong

encoding or recollection of the patterns could lead to cognitive deficits in old

rodents (Wilson et al. 2003, 2006).

Other paradigms have been developed to study spatial memory in rodents

including the Barnes maze, radial arm maze, and the hole-board task. In the Barnes

maze, rodents have to find an escape box using visual cues on a circular surface with

up to 20 holes around its circumference (Barnes 1979). The task is based on

rodents’ aversion of open bright spaces and is considered relatively unstressful

and modestly demanding physically. Similarly to the MWM task, various

parameters can be measured such as latency to escape, path length, velocity, etc.

Some senescent rats exhibit poor performances in this test (Barnes 1979; Harrison

et al. 2006; Barrett et al. 2009). Hippocampal lesions induced by traumatic brain

injury also lead to memory deficits in this task (Fox et al. 1998). Another interesting

behavioral paradigm to evaluate spatial memory is the radial arm maze (Walker and
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Olton 1979; Hudon et al. 2002; Webster et al. 2014). In this task, the animals have

to find food reward at the end of the baited arms and the design allowed to explore

reference and working memory function separately (Roberge et al. 2008; Grayson

et al. 2014). Indeed, reference memory errors are associated with visits in

non-baited arms, while working memory errors are the results of reentry in a

previously visited arm. Nevertheless, the MWM task is generally used to evaluate

the impact of normal aging on spatial memory particularly in rats.

2.2 Recognition Memory

While spatial memory is necessary to explore and navigate in old or new

environments, other skills such as the ability to discriminate novelty from stimuli

that have been previously encountered are also necessary for survival. Interestingly,

the ability to recognize a familiar versus novel stimulus (Rowe et al. 1998) or

objects (Menard et al. 2013b, 2014b) declines with normal aging in rodents.

Recognition memory tests compared time spent exploring familiar versus novel

objects, smells, or tastes in distinct spatial locations (Fedulov et al. 2007; Dere

et al. 2007; Tse et al. 2007; Menard et al. 2013b). In contrast, spatial memory which

involves circuitry of the hippocampal formation, albeit recognition memory, is

linked to the perirhinal cortex (Burke et al. 2012). AI rodents seem to falsely

identify novel objects or stimulus as familiar leading to pattern separation deficits

(Burke et al. 2010). As for spatial memory and hippocampal lesions, impairments

of recognition memory have been reported in rats with lesions of the perirhinal

cortex (McTighe et al. 2010). Again no significant loss of neurons has been

observed in this brain structure over the life span (Rapp et al. 2002).

2.3 Social Memory

Another form of cognition essential for survivability is social memory. Rodents

need to interact with each other, establish social networks, and learn how to respond

to stimuli that define hierarchy and mate choice (Berry and Bronson 1992). Basic

social interaction between rodents can be studied using video recording to analyze

active interaction time between a test animal and a novel unfamiliar mouse or rat.

Various behavioral paradigms were developed to study in detail memory formation

processes by social recognition and learning (for a review, see van der Kooij and

Sandi 2012). In rodents, androgens and estrogens control social information

processing by regulating hormones and neuropeptides such as oxytocin and

arginine–vasopressin (Winslow et al. 1993; Neumann 2008; Choleris et al. 2009).

Interestingly, the memory of mice seems to be far superior to that of rats in social

recognition paradigms and it could be related to differences in olfaction (Noack

et al. 2010). Aging affects olfactory sensory function in rats, particularly in reversal

learning (Schoenbaum et al. 2002; Brushfield et al. 2008), and thus impairs social

memory recognition processes (Guan and Dluzen 1994). Social defeat stress can
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induce behavioral adaptations relevant to depression such as anxiety-like behaviors,

social avoidance, and anhedonia (Golden et al. 2011). In humans, depression-

related cognitive deficits might be a risk factor for dementia while normal aging

could involve memory impairments associated with enhanced anxious behaviors

(Bunce et al. 2012).

2.4 Fear Memory

Stressful and emotionally arousing or challenging experiences are generally

retained in memory (Schacter 1999; Smith et al. 2004; LaBar and Cabeza 2006;

Joels et al. 2011). In fact, fear memory is essential not only to rodents but to all

species to avoid dangerous situations and improve coping strategies. Fear learning

is fast and efficient: single exposure to a stressful event can lead to the formation of

long-lasting fear memories but also lead to detrimental behaviors (Najavits

et al. 1998). Fortunately, adaptation and underlying brain plasticity allow for the

damping of fear memories. However, these processes are slower than fear learning

and often require multiple non-reinforcing expositions to the fear-associated cues of

contexts (Myers and Davis 2002, 2007). While the hippocampus is still involved in

the formation of fear learning and memory (Radulovic and Tronson 2010), the

amygdala is central to these processes (Maren and Quirk 2004; McGaugh 2004;

Hermans et al. 2014). Aversive learning can be evaluated with multiple behavioral

paradigms including passive avoidance, contextual and cued fear conditioning,

eyeblink conditioning, fear-conditioned startle, or taste aversion (for a review, see

Crawley 2008). Anxiety-like behaviors and stress responses on the other hand can

be measured with methods exploiting the approach-avoidance conflict between

rodents’ innate desire to explore new environments and fear of open bright space

with apparatus such as the light dark box, elevated plus maze, or open field

(Bouwknecht and Paylor 2002; Ducottet and Belzung 2005; Crawley 2008; Menard

et al. 2013b). Old rodents are generally characterized by exacerbated anxious

behaviors and stress responses (Menard et al. 2013b, 2014b) which affects brain

synaptic plasticity and memory formation.

3 Synaptic Plasticity Associated with Learning and Memory
Formation

Learning and memory processes benefit from brain plasticity and this induces

reversible cellular and molecular changes in the central nervous system. These

modifications can then be stabilized or consolidated to create long-lasting memories

(Dudai 1996; McGaugh 2000; Lamprecht and LeDoux 2004; Frankland and

Bontempi 2005; Baudry et al. 2011; Choquet and Triller 2013; Huganir and Nicoll

2013). In this section, the role of the neurotransmitter glutamate, its receptors, and

related signaling pathways on cognitive function will be discussed.
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3.1 Glutamate Receptors

3.1.1 NMDA Receptors
Glutamate is the main excitatory neurotransmitter in the brain and activation of its

N-methyl-D-aspartate receptors (NMDAR) play a critical role in synaptic plasticity

and memory formation (Morris et al. 1986; Sakimura et al. 1995; Tsien et al. 1996;

Kiyama et al. 1998; Nakazawa et al. 2002, 2003; McHugh et al. 2007; Lee and Silva

2009). NMDARs form a heterotetramer composed of two obligatory GluN1

subunits and two modulatory GluN2 (A, B, C and D subtypes) or GluN3 (A or B

subtypes) subunits. Receptor subunit composition changes during development

(Monyer et al. 1994; Sheng et al. 1994; Bellone and Nicoll 2007) and aging

(Kuehl-Kovarik et al. 2000; Zhao et al. 2009; Magnusson et al. 2010), influencing

the kinetics of the receptor channel opening. Greater ratios of GluN2B prolonged

NMDAR currents enhancing long-term potentiation (LTP) (Foster et al. 2010; Cui

et al. 2011; Muller et al. 2013). LTP is a form of synaptic plasticity closely related

to learning and memory formation (Bliss and Collingridge 1993) which is altered in

the aging brain and could contribute to cognitive decline (Landfield and Lynch

1977; Deupree et al. 1993; Rosenzweig et al. 1997; Shankar et al. 1998; Tombaugh

et al. 2002; Barnes 2003; Burke and Barnes 2006). Facilitation, saturation or

inhibition of LTP by pharmacological agents or genetic manipulation directly

affects behaviors in rodents (Morris et al. 1986; Sakimura et al. 1995; Tsien

et al. 1996; Kiyama et al. 1998; Tang et al. 1999). Trafficking of glutamate

receptors from the cytoplasm to the membrane and postsynaptic densities (PSD)

are crucial to facilitate LTP maintenance and synaptic plasticity (Malinow and

Malenka 2002; Rumpel et al. 2005). Accordingly, transgenic mice overexpressing

the kinesin-like protein KIF17, a protein involved in GluN2B transport along

microtubules, display better spatial learning and working memory performances

(Wong et al. 2002). In contrast, degradation of NMDAR by the protease calpain

decreases the number of functional receptors in the PSD (Simpkins et al. 2003;

Dong et al. 2006; Baudry et al. 2013). Cyclin-dependent kinase 5 (Cdk5) regulates

calpain-dependent GluN2B proteolysis (Su and Tsai 2011) and deletion of Cdk5

reduces GluN2B degradation favoring stronger LTP and memory processes

(Hawasli et al. 2007). Mice overexpressing GluN2B outperform age-matched

controls in hippocampus-dependent memory tasks up to 18 months of age (Cao

et al. 2007), suggesting that GluN2B and related downstream signaling pathways

could be promising targets for cognition-enhancing drugs (Mony et al. 2009).

Enhancement of NMDAR functioning has been a pharmacological target for

cognition for decades (for a review, see Collingridge et al. 2013). Briefly, NMDAR

activity can be modulated either directly with agonists or antagonists and regulation

of posttranslational modifications such as phosphorylation, palmitoylation,

ubiquitination, and proteolysis, or indirectly through its interactions with other

receptors and neuromodulators (Collingridge et al. 2013). NMDAR antagonists

generally impair NMDA-dependent LTP, learning, and memory (Morris 1989;

Manahan-Vaughan et al. 2008; Blot et al. 2013). However, exceptions exist,

notably memantine, a fast, voltage-dependent channel blocker (Bresink
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et al. 1996; Frankiewicz et al. 1996), which is used to treat late-stage Alzheimer’s

disease as it delays cognitive decline (Danysz and Parsons 2003). NMDAR

antagonists may enhance cognition by blocking aberrant activation of the receptors

while preserving physiological functions (Frankiewicz and Parsons 1999; Fitzjohn

et al. 2008).

Another attractive therapeutic avenue to rescue age-related memory deficits is

the potentiation of NMDAR activity via the glycine-binding site (Baxter

et al. 1994). Glycine or glycine-like substance such as D-serine acts as a

co-agonist of glutamate to open the NMDAR channel (Johnson and Ascher 1987;

Kleckner and Dingledine 1988; Mothet et al. 2000) and NMDAR full activation

requires agonist binding at two glycine and two glutamate sites of the

heterotetramer complex (Benveniste and Mayer 1991; Clements and Westbrook

1991). Age-associated changes in D-serine signaling could contribute to cognitive

decline in aging (Billard and Rouaud 2007; Potier et al. 2010). Finally, other

glutamatergic receptors such as α-amino-3-hydroxy-5-methyl-4-isoxazole-

propionic acid (AMPA) and group 1 metabotropic glutamate receptors (mGluR)

interact physically with NMDAR regulating, to some extent, its activity.

3.1.2 AMPA Receptors
Like NMDAR, ionotropic AMPAR consists of four subunits (GluA1–4) that form

heteromeric tetrameric complexes (Traynelis et al. 2010; Huganir and Nicoll 2013).

GluA1–4 subunits can be phosphorylated on serine, threonine, and tyrosine residues

by several protein kinases including Ca2+/calmodulin-dependent protein kinase II

(CaMKII) and protein kinase C (PKC) on over 20 different phosphorylation sites

(Shepherd and Huganir 2007; Lu and Roche 2012). Phosphorylation of AMPAR

subunits regulates its function and intracellular trafficking, raising the hypothesis

that posttranslational modifications could mediate synaptic plasticity (Isaac

et al. 1995; Liao et al. 1995; Barria et al. 1997; Lee et al. 1998, 2000; Derkach

et al. 1999). AMPAR trafficking between the plasma membrane and intracellular

compartments is highly dynamic and can be modified by short-term and long-term

changes in neuronal activity (for a review, see Bredt and Nicoll 2003; Huganir and

Nicoll 2013). Synaptic scaling which is a homeostatic response to long-term

changes in a network activity has been associated with AMPAR trafficking regula-

tion by intrinsic activity (for a review, see Turrigiano 2008). Furthermore, AMPAR

are mobile within the plasma membrane (Opazo and Choquet 2011), but their

mobility decreases when entering the synapse (Borgdorff and Choquet 2002).

AMPAR synaptic levels and responsiveness can be modulated with various

pharmacological agents including inhibitors [(2R)-amino-5-phosphonopentanoate,

APV; 6-cyano-7-nitroquinoxaline-2,3-dione, CNQX; tetrodotoxin, TTX] and

activators (bicuculline, picrotoxin) (Lissin et al. 1998; O’Brien et al. 1998;

Turrigiano et al. 1998). Auxiliary subunits, known as transmembrane AMPAR

regulatory proteins (TARPs), bind to the receptors and ensure proper maturation

and delivery at the membrane and synapses (Tomita et al. 2003). TARPs can also

affect biophysical and pharmacological properties of AMPAR (Priel et al. 2005;

Menuz et al. 2007). For example, in the presence of TARPs, the antagonist CNQX
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acts as a partial agonist (Menuz et al. 2007). Experiments conducted with

ampakines, a class of compounds strongly interacting with AMPAR, suggest that

region-specific expression of GluA1–4 and TARPs may explain the variations

reported in experimental drug activity (Montgomery et al. 2009). Ampakines

potentiate AMPAR-mediated synaptic currents by slowing the receptor deactiva-

tion and, consequently, enhance synaptic responses and LTP (Staubli et al. 1994;

Arai and Kessler 2007). Early on, ampakines were targeted as cognition-enhancing

drugs (Davis et al. 1997; Hampson et al. 1998a, b). Interestingly in pilot

experiments, ampakines improved recall memory in aged humans (Lynch

et al. 1997).

3.1.3 mGlu Receptors
Our group and others have recently highlighted the importance of group 1 mGluR-

related synaptic plasticity in successful cognitive aging (Menard and Quirion

2012b; Menard et al. 2013b, 2014b; Yang et al. 2013a). Eight mGluR have been

identified and divided into three groups: group 1 includes postsynaptic mGluR1 and

mGluR5, while group 2 (mGluR2, mGluR3) and group 3 (mGluR4, mGluR6,

mGluR7, mGluR8) are mainly presynaptic (for a review, see Nicoletti

et al. 2011). Activation of presynaptic mGluR2/3 following an excess of glutamate

release from neurons or astrocytes inhibits neurotransmitter release, regulating

synaptic plasticity and excitatory synaptic transmission (Yokoi et al. 1996;

Altinbilek and Manahan-Vaughan 2009). Group 3 mGluRs are localized at the

active zone of neurotransmitter release negatively autoregulating glutamate release

(Niswender and Conn 2010). Postsynaptic mGluR1s are concentrated in

perisynaptic and extrasynaptic areas and coupled to Gq/G11 proteins. Their activa-

tion stimulates phospholipase C and intracellular second messenger release, such as

inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) (Nicoletti et al. 2011).

Finally, mGluR5s are also coupled to Gq/G11 protein, but their activation

stimulates polyphosphoinositide (PI) hydrolysis. These receptors can functionally

interact with NMDA receptor GluN2 subunits through a chain of interacting

proteins including PSD-95, Shank, and Homer (Tu et al. 1999; Collett and

Collingridge 2004).

Group 1 mGluRs are abundant in the hippocampus and cerebral cortex of the

adult rat brain (Romano et al. 1996) and involved in hippocampus-dependent

spatial learning and LTP (Balschun et al. 1999). Accordingly, mice lacking

mGluR5 have reduced LTP and are characterized by cognitive deficits in the

MWM task (Lu et al. 1997). Furthermore, spatial memory impairments are

exacerbated in a reversal learning paradigm (Xu et al. 2009). This type of memory

involves efficient pattern separation and inhibitory learning processes which can be

affected by aging (Burke et al. 2010; Menard and Quirion 2012b; Menard

et al. 2013b). Stimulation of group 1 mGluRs could act as a molecular switch to

facilitate synaptic plasticity (Bortolotto et al. 2005; Manahan-Vaughan and

Braunewell 2005; Bikbaev et al. 2008; Neyman and Manahan-Vaughan 2008)

particularly in the aging brain (Menard and Quirion 2012a, b; Menard

et al. 2013b, 2014b; Yang et al. 2013a).
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Long-term depression (LTD), a form of synaptic plasticity involved in learning

and memory processes (Ge et al. 2010; Dong et al. 2013; Menard et al. 2013b), can

be induced by the group 1 mGluR-specific agonist 3,5-dihydroxyphenylglycine

(DHPG) (Palmer et al. 1997). Age-related cognitive deficits have been associated

with a reduction of DPHG-induced mGluR-LTD in old mice (Menard et al. 2013b).

Over the years, multiple mGluR5 enhancers have been developed (for a review, see

Cleva and Olive 2011; Nicoletti et al. 2011). Indeed, positive allosteric modulators

can facilitate mGluR-related synaptic plasticity and improve spatial learning (Ayala

et al. 2009; Menard et al. 2013b) possibly through NMDAR interaction

(Rosenbrock et al. 2010) and/or AMPAR regulation (Uslaner et al. 2009). Con-

versely, mGluR5 antagonists impair learning and memory in adult (Christoffersen

et al. 2008) and aged rodents (Menard et al. 2013b). Nevertheless, negative

allosteric modulators are under clinical development because overactive mGluR

functioning is thought to play a role in neurological disorders such as Alzheimer’s

disease and Fragile X syndrome (Luscher and Huber 2010).

3.2 Intracellular Glutamatergic Signaling

Learning and memory processes involve multiple signaling pathways triggered by

glutamatergic receptor activation. Following Ca2+ entry in the neuron, cascades of

kinases become phosphorylated leading to transcription factor activation and gene

expression. The next section highlights several proteins essential for long-term

synaptic plasticity establishment and maintenance.

3.2.1 CaMKII
The hypothesis that phosphorylation/dephosphorylation of AMPAR subunits

regulates receptor function and modulates synaptic transmission was proposed in

the early 1990s (Swope et al. 1992; Soderling 1993). Data from a number of studies

have shown that protein kinase activity, particularly CaMKII, is required for LTP

induction (Malenka et al. 1989; Malinow et al. 1989; Wyllie and Nicoll 1994).

CaMKII is considered to be the primary downstream target following Ca2+ entry

through NMDAR activation and associated with LTP, AMPAR trafficking, and

memory formation (Anggono and Huganir 2012; Lisman et al. 2012). In fact,

elevation of Ca2+ level in the cytoplasm induces recruitment of CaMKII to the

PSD where it binds to NMDAR GluN2B subunits (Barria and Malinow 2005; Zhou

et al. 2007; Halt et al. 2012) and phosphorylates multiple targets, notably GluN2B,

AMPAR GluA1, and PSD-95 (Yoshimura et al. 2000, 2002; Dosemeci and Jaffe

2010). However, activation of CaMKII during LTP lasts only a few minutes (Lee

et al. 2009), suggesting that downstream signaling cascades are required for LTP

maintenance and memory consolidation.

3.2.2 PKC
Twelve PKC isoforms have been identified in mammals (Sun and Alkon 2010).

These serine–threonine kinases are central to many signal transduction pathways
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and densely expressed in the brain (Saito et al. 1988). PKC isoforms seem to play an

essential role in multiple forms of learning and memory processes (Bank

et al. 1988; Olds et al. 1989; Coalombo et al. 1997; Colombo and Gallagher

2002; Nelson et al. 2008; Nithianantharajah and Murphy 2009; Zhang et al. 2009;

Menard and Quirion 2012b). Inhibition of kinases such as PKC can block LTP

induction (Malinow et al. 1989). Phosphorylation of GluA1 by PKC controls

synaptic incorporation of GluA1-containing AMPAR into the synapses during

LTP (Boehm et al. 2006). Moreover, GluA2 phosphorylation by PKC modifies its

binding to scaffolding proteins (Matsuda et al. 1999; Chung et al. 2000) and appears

to be essential for LTD (Chung et al. 2000). Activation of both ionotropic and

metabotropic glutamate receptors stimulate PKCγ activity (Codazzi et al. 2006).

Moreover, mGluR activity can enhance NMDAR currents via a PKC-dependent

mechanism (Tyszkiewicz et al. 2004). For example, following training in a spatial

memory task PKC gamma (γ) expression increases (Nithianantharajah and Murphy

2009). This kinase was linked to the individual differences observed in the cogni-

tive status of aging rats (Coalombo et al. 1997; Colombo and Gallagher 2002;

Menard and Quirion 2012b), and its activation in small groups of hippocampal or

cortical neurons improves old rat performances in the MWM task (Zhang

et al. 2009). PKCγ activity may promote neuronal interconnections (Menard

et al. 2013a) and synaptogenesis (Hongpaisan and Alkon 2007) and protects against

neurodegeneration (for a review, see Sun and Alkon 2010). PKC enzymes can be

activated by Ca2+, DAG, arachidonic acid, phospholipids, and phorbol esters. The

development of cognition-enhancing drugs based on PKC isoform pharmacology

was proposed to treat dementias (for a review, see Sun and Alkon 2010).

3.2.3 ERK
The extracellular signal-regulated kinases (ERKs) signaling pathway plays a cru-

cial role in neuronal processes including long-term synaptic plasticity and memory

formation (English and Sweatt 1996; Blum et al. 1999; Thomas and Huganir 2004;

Davis and Laroche 2006; Ciccarelli and Giustetto 2014). ERKs activities regulate

AMPAR transmission, potentiation by CaMKII, and insertion into synapses (Zhu

et al. 2002). When activated by phosphorylation, ERKs translocate to the nucleus

where they activate downstream transcription factors and immediate early genes

(IEG) expression (Thomas and Huganir 2004; Davis and Laroche 2006; Menard

and Quirion 2012a; Yang et al. 2013b). Long-term synaptic plasticity can last for

weeks and the late phase is dependent on gene transcription activation and synthesis

of new proteins (Bliss and Collingridge 1993; Lynch 2004). Following NMDAR or

voltage-gated calcium channel activation, Ca2+ level increases in the cytoplasm

activating ERK through Ras signaling (Rosen et al. 1994). However, Ras GTPases

signaling can be induced by other stimuli including activation of tyrosine receptor

kinase (Trk receptor) or G-protein-coupled receptors (GPCR) (Ciccarelli and

Giustetto 2014). Ca2+-independent co-activation of NMDAR and mGluR5 can

also lead to ERK phosphorylation and IEG expression (Yang et al. 2004). ERK

signaling is necessary to establish mGluR-LTD in the hippocampus (Gallagher

et al. 2004) and seems to be affected by aging (Williams et al. 2006), possibly
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through age-related changes in Ca2+ homeostasis (Burke and Barnes 2010) leading

to cognitive deficits (Menard and Quirion 2012b).

3.2.4 mTOR
The mammalian target of rapamycin (mTOR) serine/threonine kinase is another

kinase regulating several translation regulatory factors and promoting protein

synthesis (Page et al. 2006; Costa-Mattioli et al. 2009). Similarly to ERKs,

mTOR inhibition blocks long-term synaptic plasticity and memory formation

(Tang et al. 2002; Stoica et al. 2011). mTOR activation via phosphorylation can

be triggered by various synaptic signals including glutamatergic agonists and

neurotrophic factors such as insulin-like growth factor (IGF) or brain-derived

neurotrophic factor (BDNF) (Costa-Mattioli et al. 2009; Costa-Mattioli and

Monteggia 2013). mTOR complex 1 (mTORC1) has been associated with transla-

tional control, while mTORC2 seems to be involved in the cytoskeleton actin

dynamics (for a review, see Costa-Mattioli and Monteggia 2013). Activation of

NMDAR and mGluR modulates activity-dependent dendritic synthesis through

mTOR activity in hippocampal neurons (Gong et al. 2006). Inhibition of mTOR

prevents DHPG-induced mGluR-LTD (Hou and Klann 2004), while maintenance

of good performances in the MWM spatial memory task was positively correlated

with mTOR phosphorylation in aged rats (Menard and Quirion 2012b). Formation

and stability of long-term fear memory is also compromised when mTOR activa-

tion is altered (Parsons et al. 2006). Altogether, mTOR function appears to be an

attractive target in the cognition-enhancing target space. However, in addition to

protein synthesis and actin polymerization, mTOR is involved in autophagy, lipid

synthesis, ribosome biogenesis, nutrient support, and other growth-related pro-

cesses (Costa-Mattioli and Monteggia 2013). Therefore, a better understanding of

the various cell mechanisms associated with mTOR activity is necessary if one is to

develop highly selective compounds that will improve cognition.

3.2.5 CREB
The transcription factor cAMP response element-binding protein (CREB) has

probably been the most intensively studied kinase substrate with regard to cognition

(for a review, see Alberini 2009). In fact, CREB-dependent transcription is essential

for multiple forms of learning and memory such as fear conditioning and social

recognition (Josselyn et al. 2001; Kida et al. 2002; Lonze and Ginty 2002; West

et al. 2002; Han et al. 2007; Suzuki et al. 2011). Phosphorylation of CREB at the

residue Ser133 regulates gene transcription (Shaywitz and Greenberg 1999) and

this posttranslational modification is prevented by ERK inhibition (Wu et al. 2001;

Hardingham et al. 2001). CaMKIV can also activate CREB-dependent transcription

(Sun et al. 1996). Lower phosphorylation and total protein levels of CREB have

been linked to age-related memory impairments in rats (Brightwell et al. 2004;

Monti et al. 2005; Menard and Quirion 2012b). Compounds potentiating CREB

activation have been identified as potential cognition-enhancing drugs (Tully

et al. 2003; Xia et al. 2009). However, like mTOR, CREB is expressed ubiquitously

and involved in several critical functions limiting its usefulness (Barco et al. 2003).
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An alternative strategy might be to manipulate CREB primary gene targets and

therefore, enhance treatment specificity.

3.3 Gene Expression

As mentioned previously, behavioral experience-induced activation of neuronal

transmission and subsequent synaptic plasticity require the transcription of essential

IEGs for long-term memory formation and consolidation (Marrone et al. 2008).

These genes affect cell signaling, cytoskeletal dynamics, protein trafficking and

degradation, and posttranslational modifications. In the following sections, the roles

of five out of the growing list of genes involved in cognition (Benoit et al. 2011) are

discussed.

3.3.1 Arc
The IEG activity-regulated cytoskeleton-associated protein (Arc) (Link et al. 1995;

Lyford et al. 1995) is considered a master regulator of synaptic plasticity (Bramham

et al. 2008; Shepherd and Bear 2011). In fact, cellular imaging of Arc mRNA and

protein induction is currently used to detect the neuronal networks involved in

behavioral encoding (Guzowski et al. 2005). Spatial exploration, for example,

induces Arc transcription in ~40 % of hippocampal neurons of the hippocampus

CA1 region after only 5 min (Guzowski et al. 2005). Several kinases and transcrip-

tion factors are implicated in Arc expression including CaMKII, ERK, and CREB

(Waltereit et al. 2001; Vazdarjanova et al. 2006; Shepherd and Bear 2011). Inter-

estingly, Arc protein can be found in PSD and co-purified with NMDAR (Husi

et al. 2000; Steward and Worley 2001). However NMDAR-independent synaptic

transmission, notably through group 1 mGluR activity, can also regulate Arc

transcription (Park et al. 2008). Our group reported higher Arc expression in

memory-unimpaired old mice characterized by intact mGluR-LTD in comparison

to aged mice for which mGluR-LTD and cognition were altered (Menard

et al. 2013b). Arc mRNA is enriched in the dendrites of active synapses (Steward

et al. 1998) possibly to facilitate protein expression, synaptic plasticity, and spine

remodeling (Messaoudi et al. 2007). Downregulation of the Arc gene blocks

consolidation of spatial memory (Guzowski et al. 2000) and fear conditioning

(Ploski et al. 2008) while Arc knockout (KO) mice exhibit impaired long-term

memory (Plath et al. 2006). Arc seems also crucial for the late phases and mainte-

nance of LTP (Guzowski et al. 2000). Furthermore, mGluR-LTD requires Arc

translation (Waung et al. 2008) which is impaired in Arc KO mice (Park

et al. 2008). In fact, Arc affects AMPAR trafficking through interactions with the

endocytic machinery (Chowdhury et al. 2006; Waung et al. 2008) and activity-

dependent Arc induction is involved in AMPAR-mediated neuronal homeostasis

(Shepherd et al. 2006; Beique et al. 2011). Development of cognition-enhancing

drugs targeting Arc expression in specific area of the brain may therefore become a

promising research avenue.
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3.3.2 Homer 1a
Homer 1a is another interesting IEG dynamically regulated in response to synaptic

activity and closely related to learning and memory formation (Vazdarjanova

et al. 2002; Szumlinski et al. 2004; Celikel et al. 2007; Menard and Quirion

2012b; Menard et al. 2013b, 2014b). As mentioned previously, NMDARs directly

interact with mGluRs through PSD-95, Shank, and Homer scaffolding proteins

(Tu et al. 1999; Collett and Collingridge 2004). In fact, Homer proteins act as both

scaffolding and transduction molecules (Brakeman et al. 1997; Ciruela et al. 2000;

Ango et al. 2002; Fagni et al. 2002). Long Homer isoforms are constitutively

expressed, enriched in PSD where they form synaptic clusters (Xiao et al. 1998)

and facilitate signal transduction (Duncan et al. 2005; Shiraishi-Yamaguchi and

Furuichi 2007). In contrast, the Homer 1a short isoform is an IEG produced

following neuronal activity (Brakeman et al. 1997; Vazdarjanova et al. 2002) and

when bound to mGluRs disrupts the protein clusters by dominant negative compet-

itive binding (Kammermeier and Worley 2007). Homer 1a can also inhibit

NMDAR currents by altering Homer–Shank complexes (Bertaso et al. 2010).

Overexpression of Homer 1a in the hippocampus impairs LTP maintenance and

spatial memory in adult mice (Celikel et al. 2007). Furthermore, elevated Homer 1a

protein level has been correlated with cognitive deficits in aged rodents (Menard

and Quirion 2012b; Menard et al. 2013b), which may be related to persistent

uncoupling of mGluRs with its downstream signaling effectors (Menard and

Quirion 2012b). To our knowledge, no drug has been proposed so far to directly

modulate Homer protein expression or function.

3.3.3 Zif268
Induction of LTP is associated with a rapid and robust transcription of the IEG

Zif268 in the hippocampus (Cole et al. 1989; Wisden et al. 1990; Jones et al. 2001;

Alberini 2009). Learning-related increases in Zif268 expression have been reported

for spatial (Guzowski et al. 2001) and fear memory (Hall et al. 2001). In mice

lacking the Zif268 gene, LTP early phases are intact but late LTP is absent, and

long-term memory is impaired in multiple tasks after a 24-h delay (Jones

et al. 2001). Thus, expression of Zif268 may be critical for LTP persistence and

memory consolidation (Abraham et al. 1993; Jones et al. 2001; Alberini 2009).

Interestingly, learning task repetitions seem to reduce Zif268 expression (Guzowski

et al. 2001). This observation is in line with similar Zif268 protein levels in aged

rats trained for several consecutive weeks in the MWM task despite individual

difference in cognitive status (Menard and Quirion 2012b). In a recent study, we

reported a negative correlation between NMDAR, mGluR5, Arc, and Zif268

protein levels in old rats, suggesting that persistent transcription of this IEG may

be involved in age-related cognitive deficits (Menard et al. 2014b). Such as for

Homer 1a, no drug is currently available to modulate Zif268 expression or function.

3.3.4 IGF
As mentioned earlier, mTOR activity can be triggered by the binding of the

neurotrophic factor IGF to Trk receptors, initiating intracellular signaling (Costa-
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Mattioli et al. 2009; Costa-Mattioli and Monteggia 2013). PKC activity modulates

IGF-1-induced activation of the serine–threonine protein kinase Akt (Zheng

et al. 2000), a major actor of neuronal survival regulation (Dudek et al. 1997).

IGFs play an important role in development, tissue repair, apoptosis, and regenera-

tion (Dore et al. 1997; Werther et al. 1998; Russo et al. 2005) as well as in memory

formation, consolidation, enhancement and extinction (Svensson et al. 2006; Agis-

Balboa et al. 2011; Chen et al. 2011; Stern et al. 2014). IGF-I and IGF-II are

growth-promoting peptides acting on plasma membrane Trk receptors on the cell

surface, the type I IGF receptors (IGF-IR) (Russo et al. 2005). IGF binding to the

IGF-IR promotes the activation of downstream signaling cascades including ERK

(Russo et al. 2005). IGF-II is the most abundantly expressed IGF in the adult brain

and is particularly concentrated in the hippocampus (Kar et al. 1993). Interestingly,

an IGF-II polymorphism has been associated with cognitive functions in humans

(Alfimova et al. 2012) and IGF-II expression declines with aging (Kitraki

et al. 1993). Intra-hippocampal injection of recombinant IGF-II enhances memory

retention and prevents forgetting via an increase of AMPAR GluA1 subunits and

generation of persistent LTP (Chen et al. 2011). Moreover, systemic treatment with

IGF-II increases Arc and Zif268 expression in the hippocampus (Stern et al. 2014).

These recent studies suggest that IGF-II may represent an attractive target to

develop cognition-enhancing drugs.

3.3.5 BDNF
Age-related cognitive deficits might be related to impaired LTP stability (Deupree

et al. 1993; Burke and Barnes 2010). Synaptic transmission stimulates the release of

BDNF (Balkowiec and Katz 2002; Aicardi et al. 2004), which is associated with

rapid modifications of spine actin networks and LTP consolidation (Rex

et al. 2007). LTP expression is impaired in BDNF KO mice (Korte et al. 1995),

but this deficit can be completely rescued by recombinant BDNF (Patterson

et al. 1996). Neurotrophins such as BDNF stimulate process outgrowth during

development but also modified the axonal and dendritic cytoskeletons in the mature

nervous system directly controlling synaptic plasticity (for reviews, see Huang and

Reichardt 2001; Miller and Kaplan 2003). Through Trk receptors activation,

neurotrophins regulate CaMKII activity (He et al. 2000) and ERK signaling path-

way (Kaplan and Miller 2000). Exogenous BDNF can directly potentiate synaptic

transmission (Kang and Schuman 1995) and this effect was proposed to be Arc

dependent (Messaoudi et al. 2007). Contextual learning induces a rapid and selec-

tive increase of BDNF expression in the hippocampus (Hall et al. 2000) and BDNF-

mediated signaling is involved in spatial learning (Mizuno et al. 2003) and fear

memory (Andero and Ressler 2012). Physical exercise benefits cognitive processes

and neuronal plasticity and this phenomenon seems to be mediated by IGF-1 and

signaling cascades triggered by BDNF expression (Ding et al. 2006). Clinical trials

have been conducted with BDNF as a therapeutic target for psychiatric diseases

with undesirable side effects (Lynch et al. 2008). An alternative strategy would be

to increase the production of endogenous BDNF. Ampakines, for example, increase
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BDNF production in vitro and in vivo in rodents up to an advanced age (Lauterborn

et al. 2000).

4 Cholinergic System and Cognition

The neurotransmitter acetylcholine (ACh) and its receptors play an active role in

cognitive processes (Sarter and Parikh 2005). ACh action might be mediated

through the regulation of NMDA. Indeed, stimulation of muscarinic ACh receptors

(mAChR) potentiates NMDAR responses in the hippocampus (Markram and Segal

1990) and can facilitate NMDAR-LTP induction (Shinoe et al. 2005). In addition,

mAChR activation can also promote NMDAR-LTD (Kirkwood et al. 1999; Jo

et al. 2010) and induce a NMDAR-independent form of LTD (Dickinson

et al. 2009). This last form of plasticity does not appear to involve the same

mechanisms as mGluR-LTD (Dickinson et al. 2009). ACh can bind and activate

two main classes of receptors: metabotropic mAChRs and nicotinic AChRs

(nAChRs) which are ionotropic and permeable to Na+, K+, and Ca2+ (for a review,

see Deiana et al. 2011). An age-related downregulation of the cholinergic system

has been proposed to explain the progressive impairments of cognitive abilities

associated with normal and pathological aging (Bartus et al. 1982; Bartus 2000;

Auld et al. 2002). In fact, increased activation of the cholinergic system generally

facilitates learning and memory processes (Scali et al. 1997a, b; Bradley

et al. 2010). However, an increased expression of the negative autoreceptor

mACh2 was reported in aged rats exhibiting memory deficits (Aubert et al. 1995)

and inhibition of these receptors may facilitate spatial memory function (Quirion

et al. 1995).

4.1 Impact of AChR Agonists and Antagonists on Memory
Function

Early on, studies showed that muscarinic antagonists such as scopolamine or

atropine impair cognitive abilities in animals and humans (Deutsch 1971;

Drachman 1977). Systemic administration of scopolamine impairs learning acqui-

sition and memory formation in multiple tasks (Aigner and Mishkin 1986; Aigner

et al. 1991; Miller and Desimone 1993; Brouillette et al. 2007). Interestingly, IEG

Homer 1a expression is enhanced in the hippocampus of amnesic scopolamine-

treated rats (Brouillette et al. 2007). Conversely, treatment with a mACh1R alloste-

ric agonist improves cognitive performances (Bradley et al. 2010). Neurotrophins

enhance ACh release through TrkA receptor signaling (Auld et al. 2001) and

activation of the TrkA receptor with a selective partial agonist can rescue

age-related memory deficits in rats through modulation of the cholinergic system

(Bruno et al. 2004). IGFs differentially regulate ACh release: IGF-I acts as an

inhibitor, while IGF-II potentiated ACh-related currents in rat hippocampal slices

(Kar et al. 1997). TTX alters the effect of IGF-I (Kar et al. 1997) suggesting an
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interaction with AMPAR. Treatment of rat cultured olfactory bulb neuronal cells

with carbachol, a cholinergic agonist, increases neuritic outgrowth and this effect is

mediated by nAChR since it can be mimicked with nicotinic agonists (Coronas

et al. 2000). Furthermore, low concentrations of carbachol can potentiate NMDA

responses in the hippocampus (Harvey et al. 1993). These results suggest that

nAChR may be actively involved in neuronal plasticity and could represent an

attractive target to develop cognition-enhancing drugs.

4.2 a-7 Nicotinic ACh Receptor Agonists and Cognitive Deficits

Multiple nAChR agonists have been examined as possible treatments for memory

impairment associated with aging or in psychiatric disorders. In this regard, modu-

lation of the ionotropic α7 nAChR is of particular interest, considering its high

density in the hippocampus and cerebral cortex and its implication in cognitive

processes (Paterson and Nordberg 2000; Levin and Rezvani 2002; Leiser et al. 2009;

Floresco and Jentsch 2011). Treatment with of α7 nAChR agonists such as N-[(3R)-
1-azabicyclo[2.2.2]oct-3-yl]-7-[2-(methoxy)phenyl]-1-benzofuran-2-carboxamide

(ABBF), 5-morpholin-4-yl-pentanoic acid (4-pyridin-3-yl-phenyl)-amide

(SEN12333), or 4-bromophenyl 1,4diazabicyclo (3.2.2) nonane-4-carboxylate,

monohydrochloride (SSR180711) rescue cognitive deficits in spatial (Boess

et al. 2007; Pichat et al. 2007), recognition (Wishka et al. 2006; Boess et al. 2007;

Pichat et al. 2007; Hashimoto et al. 2008; Roncarati et al. 2009), social (Boess

et al. 2007), and fear (Roncarati et al. 2009) memory tasks. Multiple studies have

tested the efficacy of α7 nAChR agonists and demonstrated positive cognitive effects

following activation of these receptors (for a review, see Leiser et al. 2009). Several

clinical trials are currently ongoing notably to treat negative symptoms of schizo-

phrenia (Davis et al. 2014) and Alzheimer’s disease (Geerts 2012).

5 Dynorphinergic System and Memory Function

Dynorphins, a class of endogenous opioids peptides expressed in the brain (for a

review, see Schwarzer 2009), have been linked to learning and memory processes

since the 1990s (McDaniel et al. 1990; Wagner et al. 1993; Sandin et al. 1998).

Intra-hippocampal administration of dynorphin in rats impairs spatial learning

(McDaniel et al. 1990; Sandin et al. 1998). Encoded by the prodynorphin gene

(Pdyn), dynorphin peptides are also involved in emotional control and stress

responses (Schwarzer 2009). In humans, Pdyn gene polymorphisms have been

associated with episodic memory deficits in the elderly (Kolsch et al. 2009). Fur-

thermore, enhanced dynorphins expression might be related to Alzheimer’s disease

pathogenesis (Yakovleva et al. 2007). Surprisingly, dynorphin A-(1–13) injection

can improve scopolamine-induced cognitive deficits in mice by activating kappa-

opioid receptors (KOR) (Itoh et al. 1993) and possibly regulating ACh release

(Hiramatsu et al. 1998; Hiramatsu and Watanabe 2006). Pdyn-derived peptides
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preferentially bind to the postsynaptic GPCR, KOR (Chavkin et al. 1982),

modulating PKC (Barg et al. 1993), and ERK signaling pathway activation

(Belcheva et al. 1998). Presynaptic KOR can act as an autoreceptor and inhibits

the release of dynorphin peptides (Nikolarakis et al. 1989). These peptides can also

interact with other opioid receptors (Quirion and Pert 1981; Schwarzer 2009) and

NMDAR (Shukla and Lemaire 1994; Schwarzer 2009). Release of endogenous

dynorphins inhibits excitatory transmission and blocks LTP induction in the hippo-

campus (Wagner et al. 1993). Furthermore, dynorphins and activation of presynap-

tic KORs suppress glutamate release (Drake et al. 1994; Simmons et al. 1994).

These findings suggest that dampening of the dynorphinergic system may be a

relevant strategy to modulate glutamatergic function and cognition.

5.1 Dynorphins and Age-Related Cognitive Decline

Expression of dynorphins increases with age in the hippocampus of rats (Jiang

et al. 1989; Zhang et al. 1991; Kotz et al. 2004) and mice (Menard et al. 2013b) and

this upregulation may be associated with cognitive deficits generally observed in

old rodents (Jiang et al. 1989; Zhang et al. 1991; Menard et al. 2013b). In line with

this idea, knocking down the Pdyn gene improves spatial learning in middle-aged

mice (Nguyen et al. 2005). Our group has recently shown that elevated Pdyn

expression correlates with age-related body weight gain, memory deficits, and

reduced glutamatergic signaling in rats (Menard et al. 2014b). Furthermore, we

rescued loss of group 1 mGluR function, related signaling, and cognitive decline in

old mice by knocking down the Pdyn gene (Menard et al. 2013b). Whereas aged

wild-type (WT) mice developed spatial and recognition memory deficits, aged

Pdyn KO mice performances were similar to those of young mice in both tasks

(Menard et al. 2013b). Old WT mice performed poorly in an inhibitory learning

acquisition task, which has been related to mGluR5 function (Xu et al. 2009).

Accordingly, group 1 mGluR protein level was increased and mGluR-LTD unal-

tered in old KO mice (Menard et al. 2013b). Intact synaptic plasticity and cognition

were associated with increased expression of IEG Homer 1a and Arc in aged Pdyn

KO mice (Menard et al. 2013b). Pharmacological treatments with 3-cyano-N-
(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB, positive modulator of

mGluR5) or norbinaltorphimine (norBNI), a KOR antagonist, rescued memory

function in old WT mice. These results are in line with previous studies in which

positive modulation of mGluR5 (Uslaner et al. 2009; Reichel et al. 2011; Fowler

et al. 2013) as well as norBNI treatment (Bilkei-Gorzo et al. 2014) promoted

memory formation. Conversely, mGluR5 antagonism impaired spatial memory of

old Pdyn KO mice (Menard et al. 2013b), suggesting that dynorphinergic and

glutamatergic systems closely interact to establish memories in the aging brain

(Menard et al. 2013b, 2014a, b). Gene expression profiling reveals increased Pdyn

expression in the hippocampus of amnesic scopolamine-treated rats (Brouillette

et al. 2007), raising the possibility of complex interactions between these systems in

cognitive functions.
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5.2 Dynorphins and Social Memory

Considering its role in emotional behaviors and stress responses (Schwarzer 2009),

the dynorphinergic system might also regulate the strength of social memories. In

young mice, genetic deletion of the Pdyn gene enhanced partner recognition ability

without affecting recognition memory for objects (Bilkei-Gorzo et al. 2014). Phar-

macological blockade of KOR with norBNI enhanced social memory in control

animals, whereas KOR activation impaired the abilities of transgenic mice (Bilkei-

Gorzo et al. 2014). Emotionally arousing situation such as partner recognition

induces higher expression of dynorphins than novel object recognition (Bilkei-

Gorzo et al. 2014), raising the possibility that stress-related release of these peptides

may affect the formation of social memories.

5.3 Dynorphins, KOR and Stress-Related Memory Deficits

Aging is generally characterized not only by reduced cognitive abilities but also by

increased anxiety-related behaviors (Lenze et al. 2001; Lupien et al. 2009;

Bedrosian et al. 2011; Menard et al. 2013b, 2014b). Stress exposure over a life

span may accelerate cellular aging and promote cognitive dysfunction (Lupien

et al. 2009). Furthermore, exacerbated neurobiological sensitivity to threat may

even increase the risk of developing age-related diseases (for a review, see

O’Donovan et al. 2013). The first association between the dynorphinergic system

and anxious behaviors was observed with naloxone, an opioid partial agonist,

reversing the effect of benzodiazepines (Billingsley and Kubena 1978). Similar to

Pdyn gene deletion, pharmacological treatment with norBNI reduces anxious

behaviors and increases exploratory activity in young (Knoll et al. 2007; Wittmann

et al. 2009) and aged rodents (Menard et al. 2013b). Conversely, treatment with

dynorphin peptides and KOR agonists is anxiogenic (Tsuda et al. 1996; Wittmann

et al. 2009; Smith et al. 2012). Endogenous KOR activation has been linked to

stress-induced learning and memory deficits (Carey et al. 2009). KOR signaling

could also play a role in fear memory extinction (Bilkei-Gorzo et al. 2012). Indeed,

mice lacking Pdyn gene are characterized by enhanced cue-dependent fear condi-

tioning, an effect that can be reproduced by blocking KOR before the extinction

trials (Bilkei-Gorzo et al. 2012). Interestingly, functional imaging has revealed

reduced fear extinction in human volunteers bearing Pdyn polymorphisms

(Bilkei-Gorzo et al. 2012), suggesting that dynorphins might be essential to effi-

cient fear memory consolidation. All these results identify the dynorphinergic

system as a promising target to develop novel cognition-enhancing drugs that

could be efficient in not only in normal but also pathological aging.
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6 Conclusions

In summary, despite memory function involving multiple types and processes at

synaptic, cellular, and molecular levels, promising targets have been identified that

could lead to novel cognition-enhancing drugs. Up to now, glutamatergic and

cholinergic receptor modulators have been extensively studied and, in some

cases, tested in clinical studies with equivocal results. Here we propose novel

targets involved in crucial signaling pathways. Nonetheless, to create efficient

tissue-specific and even cell type-specific compounds, modulating these effectors

remains a challenge at the chemistry, pharmacokinetic, and formulation levels.

However, considering the increase in life span generally observed in various

populations, reduction of age-related cognitive deficits represents a biomedical

issue deserving a multidisciplinary global approach.
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Abstract

Adult hippocampal neurogenesis is a remarkable form of brain structural plas-

ticity by which new functional neurons are generated from adult neural stem

cells/precursors. Although the precise role of this process remains elusive, adult

hippocampal neurogenesis is important for learning and memory and it is

affected in disease conditions associated with cognitive impairment, depression,

and anxiety. Immature neurons in the adult brain exhibit an enhanced structural

and synaptic plasticity during their maturation representing a unique population

of neurons to mediate specific hippocampal function. Compelling preclinical

evidence suggests that hippocampal neurogenesis is modulated by a broad range

of physiological stimuli which are relevant in cognitive and emotional states.

Moreover, multiple pharmacological interventions targeting cognition modulate

adult hippocampal neurogenesis. In addition, recent genetic approaches have

shown that promoting neurogenesis can positively modulate cognition

associated with both physiology and disease. Thus the discovery of signaling

pathways that enhance adult neurogenesis may lead to therapeutic strategies for

improving memory loss due to aging or disease. This chapter endeavors to

review the literature in the field, with particular focus on (1) the role of

hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic

and intrinsic signals that modulate hippocampal neurogenesis with a focus on

pharmacological targets; and (3) efforts toward novel strategies pharmaco-

logically targeting neurogenesis and identification of biomarkers of human

neurogenesis.

Keywords

Adult neurogenesis • Neural stem cell • Hippocampus • Cognition

1 Introduction: Adult Hippocampal Neurogenesis

Purification of prospective neural progenitor cells, which are characterized by their

potential to proliferate and give rise to differentiated neural progeny in vitro, has

been successfully achieved from many regions of the adult mammalian central

nervous system (CNS). However, despite the widespread distribution of neural

precursors throughout the adult brain, adult neurogenesis is maintained in only
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two discrete regions of the adult mammalian brain: the subventricular zone of the

lateral ventricles (Altman 1969; Lois and Alvarez-Buylla 1994; Alvarez-Buylla and

Garcia-Verdugo 2002) and the subgranular zone of the dentate gyrus of the hippo-

campal formation (Kaplan and Hinds 1977; Cameron et al. 1993).

From a neuroscientific perspective, hippocampal adult neurogenesis is of major

interest as (1) the generation of new hippocampal neurons contributes to hippocam-

pal function including learning and memory and mood regulation; (2) hippocampal

neurogenesis is involved in the pathophysiology of depression, schizophrenia,

age-related memory impairment, and multiple neuronal developmental disorders

including autism spectrum disorder; and (3) the process of developing newborn

neurons in a mainly restrictive environment as the adult brain provides an in vivo

model to elucidate the molecular and cellular basis of neural regeneration which

ultimately could be harnessed to develop novel therapies for neurodegenerative

diseases.

The process of generating new granule neurons from adult neural stem cells is a

highly dynamic process and at the same time tightly regulated at multiple develop-

mental stages. Developmental stages include neuronal precursors cell proliferation,

differentiation, survival, migration, and integration into preexisting hippocampal

networks (see Fig. 1). Hippocampal neural stem cells, commonly referred to as

radial Type I cells, have the capacity to self-renew and to differentiate into neurons

and astroglia (Bonaguidi et al. 2011; Encinas et al. 2011; Lugert et al. 2010). They

are localized in the subgranular zone of the dentate gyrus (DG) with a characteristic

radial process spanning through the molecular layer and express the radial-glia

marker GFAP (Seri et al. 2001; Kriegstein and Alvarez-Buylla 2009). Active Type I

cells give rise to transient amplifying neural precursor cells (NPC), referred to as

Type II cells, which then develop into mature granule neurons unless negatively

selected by hippocampus resident microglia (Sierra et al. 2010). Morphological

maturation of newborn granule neurons includes the development of dendritic trees

into the molecular cell layer of the dentate gyrus (DG) and the projection of axons

toward CA3 to become functionally integrated (Hastings and Gould 1999; Toni

et al. 2007). During development, newly generated cells are characterized by a

temporally ordered expression of stage-specific markers and changes in morpho-

logical and functional properties. From a morphological standpoint, differentiating

progenitors located in the subgranular zone show bipolar horizontal processes; after

cell cycle exit they develop the primary apical dendrite toward the molecular cell

layer and axons toward the CA3 region and show progressive increase in the

complexity of the dendritic tree during maturation. Morphological changes are

paralleled by dynamic expression of specific marker proteins. Early in the neuro-

genic lineage transient amplifying Type II cells show the expression of glial

markers including the transcription factor SRY (sex determining region Y)-box2

(Sox2). At later stages differentiating progenitors express neuronal transcription

factors like NeuroD (neurogenic differentiation) (Kronenberg et al. 2003; Seki

2002) and immature neurons express the microtubule-associated protein

doublecortin (DCX) (Brown et al. 2003b).
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The trajectory of functional maturation includes formation of synaptic

connections and the switch from depolarizing to hyperpolarizing action of the

neurotransmitter GABA. In particular, while immature adult-born neurons receive

Fig. 1 Hippocampal neurogenesis in the adult rodent brain follows distinct developmental stages.
(Top) Schematic depiction of developmental stages of hippocampal neurogenesis including

proliferation, differentiation, maturation, and integration of newborn neurons. (Middle) The

morphological development of neurons monitored by GFP expression upon retrovirus-mediated

gene transduction in the adult mouse brain. (Proliferation: left panel, 3 days postinjection (dpi);

differentiation, middle panel, 7 dpi, differentiation, mature granule neurons, right panel, 28 dpi).

Experiments performed by RJ as a fellow in the laboratory of Prof. Dr. Dieter Chichung Lie.

(Bottom) Depiction of known and potential CNS receptors/targets modulating the process of adult

neurogenesis at the proliferation and differentiation stages in vivo
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synaptic excitatory GABA inputs (Ge et al. 2006, 2007; Karten et al. 2006), at later

stages GABAergic inputs become gradually hyperpolarizing (Ge et al. 2006). Con-

comitantly, immature neurons form spines and receive glutamatergic excitatory

inputs and develop mossy fiber boutons around 4–8 weeks after birth (Faulkner

et al. 2008).

Adult hippocampal neurogenesis is not exclusive to rodents, but has repetitively

been shown to occur in humans (Knoth et al. 2010; Eriksson et al. 1998). In adult

humans around 700 new neurons per day are being integrated per dentate gyrus.

This corresponds to an annual turnover rate of 1.75 % of the renewing dentate

granule cell population (Spalding et al. 2013). This significant number of new

hippocampal granule neurons in humans, together with dynamic regulation under

physiological conditions, suggests that adult neurogenesis may be integral to brain

functions.

2 Factors Affecting Hippocampal Neurogenesis
and Plasticity and Correlation to Cognition

Over the past 15 years, substantial converging evidence has indicated that

neurogenesis in the adult hippocampus is functionally relevant to hippocampal-

dependent cognition. Many factors that modulate cognition, including pharmaco-

logical agents and intrinsic pathways involved in brain plasticity, as well as

physiological stimuli such as running, learning, and enriched environment, also

modulate hippocampal neurogenesis. Multiple studies impairing proliferation and

adult neurogenesis in the dentate gyrus using various approaches such as chemi-

cally and irradiation-induced blockade of proliferation, genetic ablations of pro-

genitor cells, and optogenetic physiological silencing have demonstrated that

neurogenesis contributes to hippocampus-dependent learning and memory. In

addition, specifically increasing the amount of newborn neurons in the dentate

gyrus improves cognitive processes associated with the hippocampus. We will

highlight the role of adult neurogenesis in cognition and discuss intrinsic and

extrinsic factors regulating the process of neurogenesis.

2.1 Cognitive Behaviors Dependent on Hippocampal Function

Early evidence of the role of the hippocampus in memory and learning comes from

studies in humans showing that bilateral resection or damage of hippocampus and

hippocampal gyrus leads to memory impairment (Scoville and Milner 1957).

Detailed analysis in animal models using functional imaging approaches, lesioning

of specific areas of the brain, and circuit tracing reveals that the hippocampus is

required for several forms of memory including declarative memory (the ability for

conscious remembering) (Squire 1992), episodic memory (remembering of auto-

biographical events) (Wixted et al. 2014), contextual association memory (Rudy

and Sutherland 1995; Lee et al. 2014), and spatial navigation. The hippocampus
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combines information about spatial and non-spatial items coming from inputs from

the parahippocampal cortex and medial entorhinal cortex and from the perirhinal

and lateral entorhinal areas, respectively. In the hippocampus, the dentate gyrus

region receives inputs from the entorhinal cortex and DG granule cells project

excitatory mossy fibers to the proximal apical dendrites of pyramidal cells in the

CA3 area. The dentate gyrus is characterized by structural and functional heteroge-

neity along the dorso-ventral axis, with the dorsal region being mainly implicated in

the regulation of cognition and memory and the ventral region involved in the

modulation of mood and stress (Kheirbek et al. 2013; Tannenholz et al. 2014). One

major process supported by the dorsal DG is conjunctive encoding which is the

processing of multiple unique sensory spatial and non-spatial inputs from the

perirhinal cortex and lateral and medial entorhinal cortex to form metric spatial

representations (Kesner 2013). Indeed, lesions in the dorsal DG cause impairments

in cue-context associations like the ability to associate environmental cues to

specific odors (Morris et al. 2013).

Different circuits and regions in the hippocampus are instrumental in the pro-

cesses of pattern separation and pattern completion, important mechanisms in

declarative memory (Yassa and Stark 2011). Pattern separation is the ability to

discriminate between similar overlapping representations by differentially

encoding small or weak changes from similar inputs such as between two friend’s

faces (Treves et al. 2008). On the other hand, pattern completion allows accurate

reconstruction of incomplete representations based on previously stored

representations. The dentate gyrus appears to be critical for the process of pattern

separation. This process is facilitated by the distributed pattern of firing activity of

the DG cells and the sparse mossy fiber connections onto CA3 pyramidal cells,

lowering the probability of two CA3 neurons to receive inputs from the same

population of DG neurons (Rolls 1996). On the other hand, local axonal inputs of

neurons in the CA3 onto dendrites of cells in the same regions (also called recurrent

collaterals) appear to mediate the process of pattern completion. The CA3 area of

the hippocampus also receives direct inputs from the entorhinal cortex (perforant

path) which are critical for memory retrieval, while inactivation of mossy fiber

inputs onto CA3 neurons affects encoding and new learning without altering

memory recall (Lassalle et al. 2000; Lee and Kesner 2004; Rolls 2007). In humans,

fMRI studies performed during incidental encoding tasks show a correlation

between level of activity in the CA3/DG and pattern separation tasks, while activity

in CA1, the subiculum, the entorhinal, and parahippocampal cortices correlates

with pattern completion (Bakker et al. 2008).

2.2 The Role of Hippocampal Neurogenesis in Cognition

How does adult neurogenesis contribute to memory and hippocampal function and

why is this so unique to the dentate gyrus? Adult hippocampal neurogenesis has

been implicated in several aspects of contextual and spatial memory. For example,

in aged outbred rats there is direct correlation between performance in the water
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maze test, a hippocampus-dependent spatial learning task, and the amount of

neurogenesis in the dentate gyrus. Notably, high performers have a significantly

higher number of surviving neurons, based on BrdU (bromodeoxyuridine, a syn-

thetic nucleoside analogue of thymidine incorporated in newly synthesized DNA of

replicating cells)-positive cell counting, a readout of proliferation, in the dentate

gyrus after learning (Drapeau et al. 2003). Spatial learning tasks such as the Morris

water maze modulate hippocampal neurogenesis leading to the question of whether

these newborn neurons are integrated in the preexisting memory circuit and

reactivated during memory recall.

The evidence that newborn neurons are actively integrated in circuits during

specific spatial learning tasks comes from studies analyzing the expression of

immediate early genes (like c-fos and arc), a molecular correlate of neuronal firing

activity, in newborn cells generated before or after exposure to spatial learning and

birthdated with specific thymidine analogues. Interestingly, newborn neurons

generated during a specific development window before exposure to the learning

task are preferentially activated upon reexposure to the same spatial learning

paradigm if compared to mature dentate granule neurons. These studies suggest

that the newborn neurons are preferentially recruited in the generation of specific

memory circuits compared to mature dentate granule neurons (Kee et al. 2007;

Ramirez-Amaya et al. 2006; Tashiro et al. 2007). The enhanced plasticity of

newborn young granule cells could potentially facilitate the integration into new

memory circuits and upon maturation the increase in threshold for induction of

synaptic plasticity could render the connectivity more stable. Thus, sustained

hippocampal adult neurogenesis and continuous maturation of pools of immature

neurons allow the DG network to achieve both stable analysis of “old” features and

adaptation to new environments, supporting precise and distinct representations of

new memories throughout life.

To address the causal relationship between neurogenesis and cognition, studies

have focused on the analysis of the effect of neurogenesis ablation or enhancement

on behavioral performances. X-ray irradiation-mediated ablation of neurogenesis,

as well as genetic ablation in the GFAP-TK genetic mouse model (in which a

modified herpes simplex virus gene encoding thymidine kinase under the control of

the GFAP promoter causes dividing cells to die upon administration of the drug

ganciclovir), leads to impairment in context fear conditioning tasks (Saxe

et al. 2006; Drew et al. 2010). In another mouse model, where neurogenesis is

ablated selectively inducing the expression of Bax, a pro-apoptotic protein, in

neural precursors, spatial relational memory is strongly impaired (Dupret

et al. 2008). In a mouse model that allowed a transient reduction of the number

of adult-born DGCs, it has been shown that reduction of immature neurons confers

a deficiency in forming robust, long-term spatial memory and leads to impaired

performance in extinction tasks. These results further substantiate that the maturing

dentate granule neurons are critical in cognition (Deng et al. 2009). These results

were largely confirmed in another study where novel object recognition was

impaired by the elimination of 4- to 6-week-old immature neurons (Denny

et al. 2012). Recent studies looking at the effect of post-training ablation
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(retrograde effects) of newborn neurons and silencing of adult-generated neurons

on hippocampal memory further highlight the importance of this neuronal popula-

tion in formation of memory. Ablation of newborn neurons using a diphtheria toxin-

based strategy after learning leads to degradation of existing contextual fear and

water maze memories, even when the ablation is induced 1 month after learning

(Arruda-Carvalho et al. 2011). Along the same line, using an optogenetic approach,

it has been shown that silencing newborn neurons affects the retrieval of memory

after completion of training. Interestingly, silencing specifically 4-weeks-old but

not younger or older neurons leads to memory impairment. This strongly suggests a

functional role of newly integrated immature neurons in the hippocampal circuit

(Denny et al. 2012) and supports the hypothesis that immature adult-born neurons

contribute to proper cognitive processing.

As cells in the dentate gyrus possess low firing rates and are only activated in a

sparse manner, it has been hypothesized that the dentate gyrus may possess a

supportive function in pattern separation. Indeed, the ablation of neurogenesis

through X-irradiation or Bax overexpression impairs the ability to discriminate

between two contexts with overlapping features (Clelland et al. 2009). Importantly,

by specifically enhancing the survival of newborn neurons through the deletion of

Bax, it has been shown that increase in adult hippocampal neurogenesis does not

affect the ability to distinguish between two different contexts but significantly

improves the ability to discriminate between overlapping contextual

representations (Sahay et al. 2011).

Newborn neurons integrate in preexisting hippocampal circuitry competing with

already established synaptic connections. Thus beyond modulating formation of

novel memory, adult hippocampal neurogenesis may affect memories already

stored in these circuits. Indeed, in many species including humans, during infancy,

when the degree of neurogenesis is highest, the retrieval of hippocampus-dependent

memories is impaired at later time points (Rubin 2000). Recently, a link between

neurogenesis and the ability to forget previously acquired memories has been

provided. In this study, using a combination of genetic, pharmacologic, and behav-

ioral strategies, the authors show that increase in neurogenesis after learning is

responsible for forgetting and leads to the hypothesis that reconfiguration of

hippocampal circuits by newborn neurons may reduce the ability to retrieve previ-

ously acquired patterns of activity (Akers et al. 2014).

In conclusion, although there is a certain variability in the effect of modulation

of neurogenesis on specific behavioral tasks, a number of studies have consistently

shown the causal relationship between neurogenesis and hippocampal-dependent

cognitive processes. In the next section, we will review physiological, pathological,

and pharmacological mechanisms which can modulate neurogenesis and behavior.
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2.3 Intrinsic Factors Which Regulate Hippocampal Neurogenesis
and Implications in Cognition

Neurogenesis is controlled by interaction of neural progenitor cells and newborn

neurons with several components of the dentate gyrus microenvironment, including

astrocytes, vasculature, mature granule neurons, and GABAergic interneurons

(Song et al. 2002; Palmer et al. 2000; Ma et al. 2009; Ge et al. 2006). Moreover,

neurogenesis is tightly regulated by several endogenous signaling molecules

including hormones and growth factors. In parallel, the activity of the neuronal

network and the release of neurotransmitters from afferent projections onto the

dentate gyrus can modulate several aspects of neuronal development. The con-

certed action of these signaling systems ultimately determines the coordinated

functional integration of new neurons in preexisting circuitry (Pathania

et al. 2010). Below we will highlight key experimental evidence supporting regu-

latory roles for some of these factors which are relevant in both physiologically and

pharmacologically induced neurogenesis.

2.3.1 Neurotransmitters
Neuronal activity strongly modulates various stages of neurogenesis. Lesions of the

entorhinal cortex which is one of the major excitatory afferent on granule cells

increases DG cells proliferation (Cameron et al. 1995; Nacher et al. 2001). Further-

more, electrical induction of LTP at the perforant path/granule cells synapses

promotes proliferation and survival of 1 and 2 weeks old newborn neurons

(Bruel-Jungerman et al. 2006; Chun et al. 2006). Glutamatergic neurotransmission

and specifically NMDA receptor activity regulates proliferation and correct func-

tional maturation/integration and survival of newborn neurons (Pathania

et al. 2010). In tree shrew DG, pharmacological blockade of NMDA receptors

leads to increase in the number of BrdU-positive cells (Gould et al. 1997). Along

the same line, activation and blockade of NMDA receptors reduce or promote cell

proliferation in adult rat DG, respectively. An important question is to what extent

this effect is regulated cell-autonomously rather than indirectly via other signals

elicited by neuronal activity in the dentate gyrus. Immature neurons have NMDA

receptors and express NR1 and NR2B subunits (Nacher and McEwen 2006;

Ambrogini et al. 2004). Deletion of the NMDA subunit NR1 in newborn cells

reduces the number of properly integrating/surviving newborn neurons. This effect

is due to NMDA-dependent regulation of survival during the third week after

neuronal birth and it appears to involve a mechanism of competitive survival

between the incoming immature neurons and the preexisting neurons. Indeed,

global hippocampal reduction in NMDA signaling can rescue the loss of cells.

Importantly, maturing neurons (4–6 weeks after neuronal birth) show increased

plasticity and reduced threshold for induction of LTP, a process in part mediated by

NR2B (Ge et al. 2007). This suggests that glutamatergic signaling plays multiple

roles in modulating neurogenesis and controlling the precise integration of newborn

neurons into the hippocampal network.
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In the SGZ, GABA neurotransmitter, released by specific populations of

interneurons, modulates several aspects of neurogenesis, including precursor

cells’ proliferation, differentiation, and subsequent neuronal maturation. Like in

development, there is a switch between depolarization and hyperpolarization

effects of GABA while the newborn cells are maturing and this may alter properties

of immature neurons including their synaptic plasticity (Ge et al. 2006). The

enhanced synaptic plasticity of immature neurons is likely in part due to a lack of

strong GABAergic inhibition (Ge et al. 2008; Markwardt and Overstreet-Wadiche

2008; Pallotto and Deprez 2014). Tonic response of nestin-expressing quiescent

radial glia cells to GABA released from parvalbumin interneurons regulates their

reactivation and entry into the cell cycle. This is mediated by activation of

γ2 containing GABA A receptors since conditional deletion of the subunit induces

exit from quiescence and promotes symmetric self-renewal of type I cells (Song

et al. 2012). The role of tonic GABA transmission on inhibition of cell proliferation

is confirmed in another study upon deletion of the α4 subunit, component of GABA

A receptors mediating tonic (extrasynaptic) response (Duveau et al. 2011). Neural

progenitors’ proliferation is regulated also by GABA B receptors, metabotropic G-

protein-coupled receptors located both on pre- and postsynaptic terminals. Both

pharmacological blockage and genetic deletion of the B1 subunit of GABA B

receptors promote progenitor cells’ proliferation (Felice et al. 2012; Giachino

et al. 2014). GABA-mediated depolarization, due to high concentration of intracel-

lular Cl� in immature neurons, induces neuronal differentiation and NeuroD

expression in transient amplifying neuronal progenitor (type 2) cells (Tozuka

et al. 2005). Deletion of both the α4 and α2 subunits, a component of GABA A

receptors mediating synaptic phasic response, causes reduction of dendritic length

and complexity in newborn neurons, which is revealed at different stages of

differentiation (Duveau et al. 2011). Altering the GABAergic-dependent depolari-

zation/hyperpolarization switch process by genetically modulating the expression

levels of the Cl� importer NKCC1 reveals the key role of this mechanism in the

regulation of proper neuronal morphology, differentiation, and synaptic maturation

(Jagasia et al. 2009; Ge et al. 2006). The effect of GABA transmission on newborn

neurons development is at least in part mediated by activation of downstream

signaling events via activity-dependent transcription factors such as CREB (Jagasia

et al. 2009).

Loss of cholinergic neurons or blockage of acetylcholine (ACh) receptors in the

central nervous system causes learning impairment in experimental and clinical

situations in humans (Drachman and Leavitt 1974; Rasmusson and Dudar 1979).

Newborn neurons in the dentate gyrus are innervated by forebrain cholinergic fibers

(Kaneko et al. 2006) and by septal cholinergic cells as shown using a combination

of rabies virus-mediated retrograde tracing and retroviral labeling of new granule

cells (Vivar et al. 2012). Neurotoxic and immunotoxic lesion of forebrain choliner-

gic projections leads to decreased neurogenesis, increased apoptosis and impaired

spatial memory (Mohapel et al. 2005; Cooper-Kuhn et al. 2004). Modulation of the

cholinergic system using a number of pharmacological approaches further supports

the role of the system in regulation of neurogenesis (Veena et al. 2011a).

108 V. Costa et al.



Table 1 Examples of pharmacological interventions that improve neurogenesis and cognition

Molecule

Effect on

neurogenesis

Effect on

cognition Disease model References

GABA(A) a5

negative

allosteric

modulator

Correction of

hippocampal

synaptic

plasticity and

adult

neurogenesis

defects

Correction of

spatial learning

and memory

deficits

Ts65Dn mouse

model of Down

Syndrome

Martinez-

Cue

et al. (2013)

Isoxazole-9 Enhancement of

proliferation and

differentiation

of neuroblasts,

dendritic

arborization of

immature

neurons

Enhancement of

memory in

Morris Water

Maze

Petrik

et al. (2012)

P7C3 Enhancement of

survival of

newborn

neurons

Improvement of

performance in

Morris water

maze task in

aged rats

Aging Pieper

et al. (2010)

SB216763

(GSK3 beta

inhibitor)

Correction of

neuronal

differentiation

and maturation

deficits

Improvement in

trace

conditioning

learning test and

spatial learning

and memory in

DMNP radial

arm maze

FMR1 ko mouse

model of Fragile X

syndrome

Guo

et al. (2012)

Lithium

(GSK3 beta

inhibitor)

Enhancement of

progenitor cells

proliferation and

differentiation

Improvement of

performance in

Morris Water

maze task and

inhibitory

avoidance task

TgCRND8 mouse

model of AD

Fiorentini

et al. (2010)

Lithium Correction of

hippocampal

synaptic

plasticity and

adult

neurogenesis

defects

Correction of

deficits in

performance in

fear

conditioning,

object location,

novel object

recognition tests

Ts65Dn mouse

model of Down

Syndrome

Contestabile

et al. (2013)

Compound K Partial

correction of

neurogenesis

impairment

Improvement in

passive

avoidance and Y

maze tests

Cyclophosphamide-

treated mice as

model of

chemotherapy

Hou

et al. (2013)

(continued)

Role of Adult Hippocampal Neurogenesis in Cognition in Physiology and. . . 109



Stimulation of cholinergic receptors with the cholinergic agonist physostigmine

and inhibition of acetylcholinesterase using donepezil induces neurogenesis and

promotes proliferation and short-term survival (Mohapel et al. 2005; Kaneko

et al. 2006; Kotani et al. 2006). On the other hand, scopolamine, a cholinergic

muscarinic receptor blocker, decreases the number of BrdU-positive cells in the DG

affecting the survival of newborn neurons (Kotani et al. 2006). Early in their

development, adult-born neurons express homomeric α7-containing nicotinic ace-

tylcholine receptors and cell autonomous genetic ablation leads to impairment in

dendritic maturation and synaptic integration ultimately resulting in reduced sur-

vival (Campbell et al. 2010). In global knockout models of the β2 receptor subunit

there is significant reduction in cell proliferation culminating in a net reduction in

the size of the dentate granule cell layer (Harrist et al. 2004). In vitro, cholinergic

stimulation affects proliferation and survival of rat olfactory bulb and cortical

neural precursor cells (Coronas et al. 2000; Ma et al. 2000). Acetylcholine neuro-

transmission appears to be deregulated with age and in Alzheimer’s disease,

conditions with reduction in both neurogenesis and cognitive capacity. Notably,

pharmacological modulation of the cholinergic activity in aged or stressed animals

promotes NSCs’ proliferation and corrects cognitive alterations (Itou et al. 2011;

Veena et al. 2011b).

The dopaminergic system has been shown to affect proliferation and differenti-

ation of neural progenitor cells during embryonic development and in both adult

neurogenic zones. Lesion and pharmacological studies in the SGZ have yielded

Table 1 (continued)

Molecule

Effect on

neurogenesis

Effect on

cognition Disease model References

Fluoxetine Correction of

progenitor cells

proliferation in

the DG

Improvement in

contextual fear

conditioning

tests

Ts65Dn mouse

model of Down

Syndrome

Bianchi

et al. (2010)

(NB: early

treatment)

Fluoxetine Correction of

reduced

progenitors

proliferation in

the DG

Improvement in

hippocampal-

dependent

spatial working

memory

5-fluorouracil-

treated rats as model

of chemotherapy

ElBeltagy

et al. (2010)

Imipramine Preservation of

proliferation and

survival of

newborn

neurons

Improvement in

novel object

recognition test

Mouse model of

traumatic brain

injury

Han

et al. (2011)

Amitriptyline Increase in

neurogenesis

and BDNF

signaling

Improvement in

short- and long-

term memory

retention

3xTgAD mouse

model of AD

Chadwick

et al. (2011)

Metformin Increase in

neurogenesis

Improvement in

spatial reversal

learning

Wang

et al. (2012)
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discrepancy in results (Veena et al. 2011a). Focusing on the pharmacological

approaches, depletion of dopamine in rodents reduces proliferation of SGZ neuro-

nal precursor cells and this is reversed by treatment with a D2-like receptor agonist

(Hoglinger et al. 2004). Similarly, activation of D2 receptors using quinpirole

promotes NSCs’ proliferation (Yang et al. 2008). However, administration of

haloperidol, a D2-like receptor antagonist, has been reported to induce both positive

and negative effects on neurogenesis in the SGZ (Wakade et al. 2002; Wang

et al. 2004; Keilhoff et al. 2010; Halim et al. 2004). A recent study demonstrates

that dopamine increases adult hippocampal NSCs’ proliferation acting on D1-like

receptors since the effect is phenocopied by a D1-like receptor agonist but not a D2

agonist (Takamura et al. 2014). On the other hand, stimulating the D3 receptor

appears to exert an inhibitory effect on neurogenesis since inhibition of the D3

receptor using the antagonist S33138 increases cell proliferation in the hippocam-

pus and the results are replicated in a D3 KO mouse model (Egeland et al. 2012).

Serotonin and noradrenaline, as well as antidepressant drugs that influence their

neurotransmission, play a key role in the regulation of hippocampal neurogenesis

and hippocampal-dependent behaviors. This class of molecules will be described

more in detail in the section on depression and antidepressant treatments. In Table 1

are listed examples of pharmacological manipulations that have been demonstrated

to induce changes in neurogenesis and cognition.

2.3.2 Wnt/Beta-Catenin Pathway
The Wnt signaling pathway is a highly conserved signaling pathway that has been

implicated in nervous system development and has multiple functions in the adult

brain including a role in hippocampal adult neurogenesis. Disruption of the physio-

logical Wnt signaling pathway has been associated with several CNS pathologies,

including schizophrenia, mood disorders, autism, and Alzheimer’s disease. A

canonical Wnt ligand inhibits glycogen synthase kinase-3β (GSK-3β), which

modulates the degradation of β-catenin. In the presence of extracellular Wnt ligand,

and subsequent receptor activation, stabilized β-catenin enters the nucleus and

associates with TCF/LEF transcription factors, resulting in transcription of

Wnt-target genes (Varela-Nallar and Inestrosa 2013).

Based on in vitro and in vivo results, it has been demonstrated that

Wnt/β-catenin signaling regulates adult hippocampal NPC proliferation and differ-

entiation (Lie et al. 2005; Kalani et al. 2008). In the hippocampus, lentivirus-

mediated expression of Wnt3 or a dominant-negative form of WNT (dnWNT),

respectively, increases and almost abolishes adult neurogenesis. Furthermore,

expression of dnWNT impairs both long-term retention of spatial memory in the

water maze task and performance in a hippocampus-dependent object recognition

task (Jessberger et al. 2009). Importantly, the levels of neurogenesis correlate with

the performance on specific memory tasks.

Wnt signaling is modulated in diverse physiological conditions characterized by

changes in the rate of hippocampal adult neurogenesis. The relationship between

aging, neurogenesis, and cognitive impairment will be described in later sections.

For example, Wnt signaling shows a reduction during aging when neurogenesis is
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decreased and, most importantly, modulation of the pathway can counteract

age-related neurogenesis and cognitive declines. Aged astrocytes show a reduced

expression of multiple canonical Wnt molecules, which in part results in a reduction

of adult hippocampal neurogenesis (Miranda et al. 2012). Moreover, the expression

of the Wnt antagonist Dickkopf-1 (Dkk1) increases with age and inducible deletion

of Dkk1 enhances neurogenesis. Aged mice with a loss of Dkk1 exhibit enhanced

spatial working memory and memory consolidation (Seib et al. 2013). Conversely,

activity-dependent induction of neurogenesis using electroconvulsive shock leads

to reduction in the expression of secreted frizzled-related protein 3 (sFRP3), a

naturally secreted Wnt antagonist, in mature dentate granule neurons (Jang

et al. 2013a). Deletion of sFRP3 induces the proliferation of precursor cells and

promotes newborn neurons maturation, dendritic growth, and dendritic spine for-

mation in the adult mouse hippocampus.

Modulation of Wnt signaling appears to be of therapeutic relevance also in

disease conditions. Indeed, sFRP3 deletion alone is sufficient to induce an

antidepressant-like behavioral response on the same magnitude of known

antidepressants, whose effect, as we will describe later, is at least in part linked to

neurogenesis (Jang et al. 2013b). Moreover, in mouse models of Alzheimer’s

disease characterized by impairment in neurogenesis, treatment with lithium, a

pharmacological activator of Wnt/β-catenin signaling acting via GSK3-β inhibition,
ameliorates memory loss (Toledo and Inestrosa 2010). In a recent study, in vivo

administration of both WASP-1, an activator of Wnt/β-catenin signaling, and

FOXY-5, an activator of both Wnt/JNK and Wnt/Ca2+ signaling, improves

hippocampal-dependent learning and memory processes (Compton et al. 2011).

Wnt signaling enhancers would be potentially highly relevant cognitive therapies

targeting hippocampal neurogenesis.

2.3.3 Neurotrophic Factors: The Role of BDNF
Neurotrophic factors are extracellular signaling proteins that play critical roles in

both the developing nervous system and in adult brain physiology. BDNF and its

role in hippocampal neurogenesis have been studied more extensively than any of

the other neurotrophins. Chronic infusion of BDNF in the hippocampus of adult rats

promotes cell proliferation and neurogenesis (Scharfman et al. 2005). The induction

of neurogenesis by BDNF appears to be region specific since it does not affect the

process in the SVZ, the other neurogenic niche in the adult rodent brain (Galvao

et al. 2008). BDNF affects also later stages of neuronal maturation. Indeed, deletion

of TrkB, the receptor of BDNF, in adult neuronal progenitor cells in the hippocam-

pus leads to impairment in dendritic and synaptic growth in newborn neurons and

deficits in neurogenesis-dependent LTP (Bergami et al. 2008).

BDNF plays a key role in hippocampus-dependent functions associated with

roles in cognition and mood regulation, which will be further discussed in later

sections. For example, in pattern separation inhibition of BDNF by infusion of a

BDNF-blocking antibody or by antisense oligonucleotide-mediated knockdown

impairs the ability to encode and consolidate “pattern separated” memories. On

the other hand, acute infusion of recombinant BDNF enhances the separation of
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representations (Bekinschtein et al. 2013). The effect of BDNF on pattern separa-

tion performance is mediated by newborn immature neurons since BDNF infusion

has no behavioral effect when neurogenesis is reduced by overexpression of

dnWNT (Bekinschtein et al. 2014). As we will describe in more detail later, intact

BDNF signaling is critical for learning, exercise, and antidepressants’ treatment-

induced increase in neurogenesis and effect on behavior (Rossi et al. 2006; Li

et al. 2008). BDNF-based therapies would be highly relevant to increase

neurogenesis activity and hippocampal function associated with cognition.

2.4 Physical Exercise and Learning: Effect on Hippocampal
Neurogenesis, Synaptic Plasticity, and Cognition

The CNS is known to undergo cellular, molecular, and functional changes in

response to external social, cognitive and physical stimuli. Voluntary physical

exercise has been shown to have beneficial effects on memory and cognition in

physiological and pathological conditions in rodents and in humans (Voss

et al. 2013). Interestingly, the cognitive amelioration is paralleled by increase in

hippocampal neurogenesis and synaptic plasticity. In this section, we will review

the effects of exercise on cognitive performance focusing on hippocampal-

dependent behaviors and we will describe the effects on adult neurogenesis and

synaptic plasticity.

2.4.1 Exercise and Enriched Environment in Animals: From Cognition
to Neurogenesis

In adult rodents, physical exercise and exposure to enriched environment (EE), a

complex combination of cognitive, physical and social stimulation, improve cogni-

tive functions. Running and EE ameliorate performance in tasks of contextual fear

conditioning, novel object recognition, and passive avoidance learning and in tasks

assessing hippocampus-dependent memory like spatial memory in the Morris water

maze and pattern separation (Kempermann et al. 1997; Fordyce and Farrar 1991;

Falls et al. 2010; O’Callaghan et al. 2007; Creer et al. 2010). Hippocampal

neurogenesis is one of the most remarkable changes in cellular and synaptic brain

plasticity correlating with cognitive improvements upon exercise and EE. The first

study analyzing the correlation between exercise and neurogenesis demonstrated

that mice housed in an enriched environment with access to a running wheel

exhibited better performance in Morris water maze tasks and have a 15 % increase

in granule cell neurons in the dentate gyrus (Kempermann et al. 1997). BrdU

birthdating experiments in mice show that cell proliferation peaks after 3 days of

running, and the effect is still sustained at 10 days (Kronenberg et al. 2006; van der

Borght et al. 2006). Running affects cell cycle kinetics of various subpopulations of

newborn neurons. It induces both proliferation and cell cycle exit of DCX-positive

type 3 precursors, shortens cell cycle in NeuroD1-positive progenitors, and even

activates proliferation of radial type 1 stem cells (Brandt et al. 2010; Farioli-

Vecchioli et al. 2014; Lugert et al. 2010). Exercise and EE appear to affect specific
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stages of the neurogenic process. In a study dissecting the role of learning and

exercise on neurogenesis, voluntary exercise increases cell proliferation and inte-

gration/survival while exposure to an enriched environment, including access to a

running wheel, only affects newborn neurons integration/survival in mice (van

Praag et al. 1999b). In another study focusing on the effect of different learning

paradigms on neurogenesis, the number of adult-generated neurons doubles in the

dentate gyrus of rats trained on hippocampus-dependent associative learning tasks

like spatial navigation in a Morris water maze and conditioning of the eye blink

response using a trace protocol. Learning tasks that do not require the hippocampus

fail in eliciting neurogenesis changes. These results suggest that to affect

neurogenesis in the hippocampus, animals need to be trained on learning tasks for

which the hippocampus is essential (Gould et al. 1999). The increase in newborn

neurons upon learning appears to be due to enhanced survival and or integration

rather than proliferation (Gould et al. 1999; Kee et al. 2007). Interestingly, a

sequential combination of running and EE in mice leads to a 30 % greater increase

in neurons than either stimulus alone. This suggests that coupling a stimulus like

running which induces precursor cell proliferation to a survival-promoting stimulus

like EE can enhance neurogenic pool and then subsequent integration (Fabel

et al. 2009). Moreover, the effect of physical exercise and learning on neurogenesis

appears to be region specific since generation of new neurons is not observed in the

subventricular zone or in the cortex (Brown et al. 2003a; Gould et al. 1999;

Ehninger and Kempermann 2003). Studies aimed at understanding whether

neurogenesis is necessary for the beneficial effect of exercise and EE on cognition

have yielded contradictory results. Reduction of neurogenesis using the antimitotic

agent methylazoxymethanol acetate (MAM) in rats prevents the improvement in

long-term recognition memory in a novel object recognition task upon EE (Bruel-

Jungerman et al. 2005). In mice, gamma irradiation-mediated reduction in

neurogenesis has a behavior-specific effect: while running-induced improvements

in motor performance (rotarod) and contextual fear conditioning are not affected,

spatial memory amelioration is ablated in the absence of neurogenesis (Clark

et al. 2008). Interestingly, in very old mice (22 months old) with physiological

reduction of neurogenesis which is no longer induced by running, the improvement

in spatial pattern separation by voluntary exercise seen in young mice is lost (Creer

et al. 2010). However, another study in mice shows that the improvement in spatial

learning and the decrease in anxiety-like behavior upon EE are not affected by

irradiation-mediated reduction of neurogenesis (Meshi et al. 2006). While several

methodological and species differences might contribute to the discrepancies, this

work suggests that cognitive improvement might be mediated also by neurogenesis-

independent mechanisms such as increase in neurotrophic factors and induction of

neuronal and synaptic plasticity.

Upon exercise several growth factors relevant for neuronal function and plastic-

ity like NGF (Neeper et al. 1996), IGF-1 (Carro et al. 2000; Trejo et al. 2001), FGF2

(Gomez-Pinilla et al. 1997), and BDNF are upregulated. The levels of BDNF are

increased upon both short- and long-term exercise paradigms (Molteni et al. 2002;

Berchtold et al. 2005; Ding et al. 2011) and the increase is sustained up to 2 weeks
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after exercise has ended in mice (Berchtold et al. 2005). In rats exposed to voluntary

running the expression of BDNF in the hippocampus and neocortex positively

correlates with the mean distance run per night (Neeper et al. 1996). BDNF is

increased in the dentate gyrus also in response to a forced treadmill-running training

and this correlates with improved object recognition learning (O’Callaghan

et al. 2007). Interestingly, while the performance in this learning task is improved

both upon exercise and EE, only exercise can induce an increase in BDNF expres-

sion and cell proliferation (Bechara and Kelly 2013). Importantly, genetic ablation

of the BDNF receptor TrkB in hippocampal neural progenitor cells ablates

neurogenesis in response to exercise (Li et al. 2008). These results indicate that

exercise induces BDNF expression, which results in increased neurogenesis in the

DG. Interestingly, peripheral neutralization of VEGF abolishes running-induced

neurogenesis potentially affecting angiogenesis, a process required in the modula-

tion of the neurogenic niche to sustain greater cell production (discussed below in

more detail) (Fabel et al. 2003).

Exercise-induced increase in BDNF often accompanies changes in synaptic

plasticity and expression of genes important for neuronal activity and synaptic

function (Tong et al. 2001). Voluntary running in rats induces expression of

BDNF, NR2B subunit of NMDA receptor, and glutamate receptor 5 and concomi-

tantly alters the induction threshold for synaptic plasticity leading to enhanced

short- and long-term potentiation (LTP) in the dentate gyrus (Farmer et al. 2004). In

another study, expression analysis in the whole hippocampus after 3 and 7 days of

exercise shows an upregulation of NR2A (Molteni et al. 2002), a subunit shown to

be necessary for exercise-induced neurogenesis in a genetic mouse model

(Kitamura et al. 2003). Similarly, recordings in hippocampal slices from mice

exposed to running show an enhancement of LTP specifically in the dentate gyrus

(van Praag et al. 1999a). Synaptic transmission properties in the DG and the CA1

area of the hippocampus are modified also in response to learning and EE. For

example, electrophysiological recording in freely moving rats shows increase in

fEPSPs and in granule cell excitability in the dentate gyrus upon EE exposure

(Irvine et al. 2006).

Exercise and learning also affect the morphological maturation of newborn

neurons and the structure of already existing neurons in the hippocampus. In

newborn DG neurons, running accelerates the formation of mushroom spines and

alters spines motility early during differentiation without affecting the total spine

density (Zhao et al. 2006). Spatial learning in the Morris water maze increases

dendritic arbor complexity in both immature and mature newborn neurons, between

3 weeks and 4 months after birth (Lemaire et al. 2012). Interestingly, spatial and

non-spatial environmental cues affect spine morphogenesis in a layer-specific

fashion in the DG. Spatial cues induce mushroom spine formation in the middle

molecular layer of newborn neurons that receive inputs from the entorhinal cortex

(EC) providing spatial information. Conversely, non-spatial components increase

mushroom spine formation in the outer molecular layer receiving inputs from the

lateral EC (Zhao et al. 2014). Voluntary exercise affects dendritic complexity and

spine density not only in the DG but also in afferent populations like pyramidal
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neurons in the CA1 and layer III pyramidal neurons of the entorhinal cortex (Redila

and Christie 2006; Stranahan et al. 2007).

Another brain structural change that correlates with and indirectly supports the

increase in neurogenesis is angiogenesis. The brain vasculature is a key component

of the neurogenic niche providing extrinsic signals for progenitor cells that are

closely associated with blood vessels. Moreover, angiogenic factors can stimulate

neurogenesis. Exercise enhances blood flow and blood vessels growth throughout

the brain and in the dentate gyrus (Black et al. 1990; van Praag et al. 2005). The

growth is at least in part supported by increased expression of angiogenic factors

like IGF-1 and VEGF and correlates with increased neurogenesis (Fabel

et al. 2003). Intriguingly, experiments using parabiotic animals have identified

blood-derived factors that directly regulate neurogenesis in a positive or negative

manner, pointing toward systemic factors influencing neurogenesis in adults

(Villeda et al. 2011, 2014; Katsimpardi et al. 2014). Interestingly, MRI studies

show that increased cerebral blood volume (CBV) in the dentate gyrus can be used

as an in vivo correlate of neurogenesis and it is specifically affected by exercise in

mice. These findings are confirmed in human where dentate gyrus CBV correlates

with cardiorespiratory fitness and cognitive function (Pereira et al. 2007). These

data suggest that CBV measurements could represent a correlative biomarker for

neurogenesis in humans.

2.4.2 Human Neurogenesis, Cognition and Exercise
Brain imaging studies support the role of the DG/CA3 subfields of the hippocampus

in pattern separation in humans. In a study combining functional MRI and

ultrahigh-resolution structural MRI, it has been shown that there is a correspon-

dence between CA3 anatomy and functioning and pattern separation, pattern

completion and individual differences in episodic memory recall (Chadwick

et al. 2014). In non-demented older adults, changes in the activity measured by

fMRI in the CA3/DG region correlate with the performance in pattern separation

(Yassa et al. 2011). Moreover, DG/CA3 is also involved in pattern separation of

emotional information and in patients affected by depression the severity of depres-

sive symptoms negatively correlates with DG/CA3 activity (Leal et al. 2014). As in

animals, hippocampal structural changes appear to correlate with training on tasks

dependent on the hippocampus. Indeed, the posterior hippocampus stores spatial

representations of the environment and people with high dependence on naviga-

tional skills like London taxi drivers show increased posterior hippocampal volume

(Maguire et al. 2000). These data support the relevance of hippocampal areas and

their dynamic regulation in specific cognitive tasks in humans. Although animal

studies demonstrate a key role for neurogenesis in pattern separation, the lack of

biomarkers for neurogenesis in humans limits conclusive studies. On the other

hand, studies in cancer patients show that systemic treatment with chemotherapy

agents often results in cognitive impairment and decline in aspects of memory

which require hippocampal function. In animal models it has been shown that

neural stem cells proliferation in the DG is reduced by chemotherapy, suggesting
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this as one of the potential mechanisms underlying some of the cognitive deficits

related to the treatment (Wigmore 2013).

Several studies in human suggest that aerobic exercise has a positive effect on

cognitive performance in healthy individuals and can counteract cognitive

impairment during aging or in pathological conditions (Voss et al. 2013). In the

healthy population, aerobic exercise can improve executive functions like task

switching, selective attention, working memory updating, and inhibitory control

in children and young adults (Guiney and Machado 2013). Cardiovascular fitness

positively associates with intelligence assessed using tests for logical, verbal, and

technical skills (Aberg et al. 2009; Moore et al. 2014), with increased cognitive

flexibility and improved action monitoring process (Themanson et al. 2008;

Hillman et al. 2008), and with improvement in academic achievements

(Chaddock-Heyman et al. 2013; Chaddock et al. 2012).

Exercise has also been shown to specifically improve performance in cognitive

tasks known to critically depend on hippocampal function. Young individuals,

exposed to a long-term aerobic exercise regime and experiencing a change in

fitness, show better performance in visual pattern separation task, visuospatial

memory, and positive affect (Dery et al. 2013; Stroth et al. 2009; Herting and

Nagel 2012), relational memory (e.g., children show higher ability to remember

pairs of faces and houses studied under relational encoding conditions) (Monti

et al. 2012; Chaddock et al. 2010, 2011). Interestingly, magnetic resonance imaging

shows that performance in relational and visuospatial memory tasks positively

correlates with larger hippocampal volumes, suggesting that structural

modifications play a role in improved function (Chaddock et al. 2010; Herting

and Nagel 2012).

Physical activity has beneficial effects on cognition also in older adults and in

conditions associated with cognitive impairment. Older humans exposed to physi-

cal exercise improve executive control processes like planning, scheduling, and

working memory (Kramer et al. 1999). Similarly to that observed in younger adults,

aerobic fitness correlates with increased hippocampal volume and better spatial

memory in older individuals (Erickson et al. 2009). Moreover, a longitudinal study

showed that in adults over the age of 65 years physical activity correlates with

diminished incidence of Alzheimer’s disease. In conditions of memory problems or

cognitive impairment, exercise still improves cognitive function and positive

behavior (Heyn et al. 2004).

Overall these studies support a positive effect of exercise on cognition and on

hippocampus-dependent processes like spatial and relational memory and pattern

separation. Importantly, cognitive improvements correlate with structural changes

in the hippocampus both in animals and in humans. However, a direct link to

neurogenesis in humans is lacking, as currently there is no possibility to measure

neurogenesis in living humans.
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2.5 Depression, Stress, and Antidepressants: Effect
on Neurogenesis and Behavior

2.5.1 Cognitive Impairment in Depression
Depression is a widespread disorder and it presents with symptoms which include,

among others, low mood, feelings of despair, reduced attention capacity, and

suicidal ideation. Patients affected by major depressive disorder (MDD) show

high prevalence of cognitive dysfunction, including hippocampal-dependent cog-

nitive processes. Among the most common deficits are memory disturbances,

difficulty in making decisions, and reduced cognitive flexibility (Fava et al. 2006;

Wagner et al. 2012; Jaeger et al. 2006; McCall and Dunn 2003). Morphometric

analysis in patients diagnosed with first episode MDD shows structural alterations

in hippocampus, amygdala, and corticolimbic regions (Frodl et al. 2002; Zhu

et al. 2011). MDD patients show impaired performance in tests assessing

hippocampal-dependent declarative memory and functional imaging analysis

shows abnormal activation of hippocampus during verbal memory encoding task

(Bremner et al. 2004). As we will describe in detail later, alteration of the

hypothalamic–pituitary–adrenal (HPA) axis and in glucocorticoids (GCs) levels

are hallmarks of depression pathophysiology. Although not confirmed in all studies,

cortisol levels are found to correlate with cognitive deficits in MDD patients and

acute administration of GCs in healthy individuals can compromise long-term

memory retrieval (Schlosser et al. 2010; Wolf et al. 2009).

Taken together, there is increasing evidence supporting a role for hippocampal

dysfunction in cognitive deficits in MDD. Recent anatomical and functional evi-

dence indicates a dissociation of the dorsal and ventral regions of the hippocampus

with the dorsal region being responsible for memory and cognition and the ventral

part playing a key role in regulation of mood. How alterations in cognitive functions

contribute to MDD pathogenesis and to the recovery process is still unclear. In this

sections, we will review the effects of stress and antidepressant treatment on

neurogenesis and will discuss the role of neurogenesis in the onset and recovery

of behavioral phenotypes.

2.5.2 Stress and Neurogenesis
Stressors are considered as experiences and events which challenge the ability of

the individual to adapt. Reponses which promote adaptation to stressors include the

release of hormones and other cellular factors. However, when the response is

deregulated it can induce the activation of pathophysiological processes leading to

the onset of neuropsychiatric disorders (McEwen 1998).

Stress has been demonstrated to have deleterious effects on multiple stages of

hippocampal neurogenesis, newborn neuron maturation, hippocampal neuron plas-

ticity, and dendritic and synaptic density. Exposure of tree shrews to acute conflict

to establish a dominant/subordinate relationship leads to reduction of neurogenesis

in the dentate gyrus in the subordinate animal (Gould et al. 1997). Negative

regulation of neurogenesis is observed also upon chronic stress paradigms in

several animal models. For example, cell proliferation in the dentate gyrus shows
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a significant reduction in mice subjected to repeated intermittent social defeats (Yap

et al. 2006) and in young adult marmosets after forced prolonged social isolation

(Cinini et al. 2014). Besides affecting cell proliferation, chronic stress exposure

impairs newborn neurons’ survival (Tanti et al. 2013; Dagyte et al. 2011) and

induces structural abnormalities like dendritic atrophy in CA3 pyramidal neurons

(Watanabe et al. 1992; Sousa et al. 2000). At the behavioral level, animal models

subjected to chronic stress develop depression-related behaviors. While the effect

of stress on neurogenesis has been widely confirmed in several animal models, the

role of neurogenesis in the onset of depressive-like behaviors is still a matter of

debate. Ablation of neurogenesis in mice via X-ray irradiation of the hippocampus

or via pharmacological intervention does not induce behavioral phenotypes rele-

vant to anxiety or depression (Santarelli et al. 2003; David et al. 2009; Bessa

et al. 2009). Genetic ablation of neurogenesis via overexpression of the

pro-apoptotic protein Bax leads to increase in anxiety-related behaviors while it

does not affect depressive behaviors (Revest et al. 2009). Similarly, cyclin D2

knockout mice which lack neurogenesis do not show impaired performance in the

forced swimming test (Jedynak et al. 2014). Conversely, in a transgenic model

where increase in survival of newborn neurons is achieved by selective deletion of

Bax, there are no differences in anxiety and depressive behaviors (Sahay

et al. 2011). In contrast to these findings, ablation of radial cell precursors in a

GFAP-TK mouse model (expressing under the control of GFAP promoter herpes

simplex virus thymidine kinase which renders mitotic cells sensitive to the antiviral

drug valganciclovir) leads to depressive behavior in control conditions and

increased anxiety in response to stress (Snyder et al. 2011).

2.5.3 Mechanisms Underlying the Effect of Stress on Neurogenesis
and Establishment of Depressive Behavior

Several mechanisms have been proposed to mediate the effect of stress on adult

neurogenesis and establishment of depressive behavior including alteration in the

hypothalamic–pituitary–adrenal (HPA) axis (for a comprehensive review, see

Anacker 2014; Bambico and Belzung 2013). Here we will review the evidence

supporting a causal link between HPA axis dysfunction and alteration in

neurogenesis, synaptic plasticity, and neurotrophic factor signaling in depression.

The hypothalamic–pituitary–adrenal (HPA) axis, part of the neuroendocrine sys-

tem, plays a crucial role in the response to stress and it is deregulated in depression

and chronic stress conditions (Anacker 2014). Upon stress, the hypothalamus releases

corticotropin-releasing factor (CRF) which stimulates the pituitary to release

adrenocorticotropin (ACTH) which ultimately leads to the synthesis and release of

glucocorticoids (GCs) from the adrenal cortex. GCs then bind to their intracellular

receptors, namely mineralocorticoid receptors (MRs) and glucocorticoid receptors

(GRs). Upon chronic stress, the HPA axis is hyperactive and leads to chronically high

levels of glucocorticoids (Anacker and Pariante 2012). Recent anatomical studies

have shown that projections from the ventral hippocampus mediate an inhibitory

effect on the hypothalamus, whereas the dorsal hippocampus projects to cortical areas

where cognitive processes are mediated. Studies in preclinical models support a
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strong causative link between stress, glucocorticoids, and neurogenesis. Exposure of

adult rats to predator odor induces rise in adrenal hormones levels and decrease in

neurogenesis which is prevented blocking the increase of corticosterone by adrenal-

ectomy (Tanapat et al. 2001). Interestingly, chronic corticosterone treatment induces

depressive behavior in rodents (Gourley and Taylor 2009) and affects cell prolifera-

tion reducing the number of BrdU-positive cells in the dentate gyrus in adult mice

(David et al. 2009). Besides reducing neurogenesis, it has been proposed that stress

and corticosterone treatment promote a cell fate switch of nestin-positive neural stem

cells in the DG toward increased oligodendrocytes’ differentiation (Chetty

et al. 2014). Interestingly, corticosteroid levels and expression of the receptors are

also altered during aging, a physiological situation with reduced neurogenesis (Gupta

and Morley 2014).

Patients affected by major depressive disorder (MDD) show increased cortisol

levels, impaired feedback response to GR activators, and correlation between

genetic variation in components of the HPA pathway and clinical manifestations

(Young et al. 1991; Belvederi Murri et al. 2014; Schatzberg et al. 2014). Volumetric

analysis reveals alterations of several brain regions involved in the control of the

HPA axis in MDD patients, like significantly increased volume of adrenal gland and

reduced volume of hippocampus (MacMaster et al. 2014; Sheline et al. 1996). At

the cellular level, expression of synaptic proteins regulating synapse function and

structure as well as glutamate receptor subunits is altered in hippocampi and

prefrontal cortex from MDD patients’ brains (Duric et al. 2013; Fatemi

et al. 2001; Kang et al. 2012). Interestingly, this correlates with alterations in the

expression of neurotrophic factors important for the function and plasticity of

synapses. Expression levels of BDNF, NGF, and their relative receptors are

decreased in hippocampi and PFC from suicide victims (Banerjee et al. 2013;

Pandey et al. 2008) and MDD patients (Dunham et al. 2009). Moreover, serum

levels of micro-RNAs associated with the regulation of expression of BDNF are

altered in depressed patients (Li et al. 2013). Although the mechanisms which link

stress and alterations of neurotrophic factors’ levels are not completely understood,

several studies show that antidepressant treatment corrects neurotrophins levels and

that normal BDNF signaling is necessary for antidepressant action (Castren

et al. 2007; Adachi et al. 2008). This suggests that these factors play an important

role in restoring the physiological function of networks involved in mood disorders

(Duman and Duman 2015).

2.5.4 Antidepressants, Neurogenesis, and Synaptic Plasticity
For long time, one of the dominant hypothesis to explain the mechanisms underly-

ing MDD has been the monoamine hypothesis, mainly supported by the observation

that antidepressants (ADs) exerting a pharmacological action on the central mono-

amine systems (monoamine oxidase A inhibitors/MAOI, tricyclic compounds/

TCA, serotonin and norepinephrine reuptake inhibitors) were effective in relieving

depressive symptoms (Delgado 2000). According to this hypothesis, reduced activ-

ity of monoamine neurotransmission is at the core of the pathophysiology of

depression and correction of this dysfunction alleviates disease symptoms (Asberg
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1976). Through different mechanisms, several ADs classes in clinical use enhance

serotonergic (5-HT) and noradrenergic neurotransmission.

Many preclinical and some human postmortem studies demonstrate that antide-

pressant treatment induces an increase in neurogenesis. Malberg and colleagues

showed that chronic but not acute fluoxetine treatment increases the number of

dividing cells in the dentate gyrus in rats as measured by BrdU incorporation, while

the survival of newborn neurons does not appear to be altered by the treatment

(Malberg et al. 2000). In humans, analysis of postmortem brains from MDD

patients shows that SSRI and TCA chronic treatment increases the number of

neural progenitors in the anterior and mid-dentate gyrus (Boldrini et al. 2009,

2012). However, another study could not replicate these findings (Lucassen

et al. 2010). The precise role of specific serotonergic receptors in SSRI-induced

neurogenesis is still under investigation. Genetic ablation of 5-HT1A receptor in

mouse prevents fluoxetine induction of neurogenesis while a partial reduction is

observed with 5-HT4 receptor-specific antagonist (Santarelli et al. 2003; Mendez-

David et al. 2014). Moreover, pharmacological studies show that 5-HT1A receptors

are involved in regulation of proliferation of neuronal precursors, while 5-HT2

receptors influence proliferation and promote neuronal maturation (Klempin

et al. 2010). Induction of neurogenesis has been reported also upon treatment

with antidepressants which do not act directly through the serotonin system

suggesting some potential convergence in mechanisms of action. For example,

the endocannabinoid receptor ligand cannabidiol (CBD) exerts anxiolytic and

antidepressant effects and induces hippocampal progenitor proliferation and

neurogenesis in mice (Campos et al. 2013). Increase in BrdU-positive cells is

observed in the dentate gyrus of mice treated with an antidepressant antagonist of

group II metabotropic glutamate receptor (Yoshimizu and Chaki 2004). Moreover,

non-pharmacological interventions which elicit an antidepressant response like

electroconvulsive shock strongly promote hippocampal neurogenesis (Malberg

et al. 2000). Altogether these data support a correlation between ADs and

neurogenesis, but is this convergent cellular response necessary for these drugs to

have an effect on behavioral symptoms? Ablation of neurogenesis through

X-irradiation of hippocampus prevented certain behavioral effects of fluoxetine

(SSRI) and imipramine (TCA) in mice (Santarelli et al. 2003). The causal role of

neurogenesis in certain specific behavioral effects of antidepressants has been

confirmed in several studies (Surget et al. 2008, 2011). Fluoxetine treatment

corrects the behavioral and neurogenesis defects in mice exposed to chronic

corticosterone treatment and ablation of neurogenesis impairs amelioration in

novelty suppressed feeding test, while open field and forced swim test

performances are neurogenesis independent (David et al. 2009). Recently, the

antidepressant action of cannabidiol has been shown to require neurogenesis

since its effects are not observed in GFAP-TK mouse models (Campos

et al. 2013). On the other hand, the behavioral effects of a vasopressin V1b

antagonist and a CRF1 antagonist (corticotropin-releasing factor 1) which reverse

stress-induced suppression of neurogenesis in models of depression appear to be

neurogenesis independent (Alonso et al. 2004; Surget et al. 2008).
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Chronic antidepressant treatment leads to an increase in the expression levels of

neurotrophic factors in the hippocampus and cortical regions, including VEGF,

FGF2, and BDNF and its receptor trkB which in turn can positively regulate the

hippocampal cellular response (Warner-Schmidt and Duman 2007; Mallei

et al. 2002). Taking advantage of genetic mouse models designed to have reduced

BDNF signaling (heterozygous BDNF knockout or inducible ablation of trkB

receptor in NPC), it has been demonstrated that a BDNF response is necessary

for modulation of newborn hippocampal neurons upon chronic imipramine treat-

ment (Li et al. 2008; Sairanen et al. 2005). In addition, behavioral response to

antidepressant treatment is impaired in mice with altered BDNF signaling and with

conditional ablation of BDNF in forebrain regions (Saarelainen et al. 2003;

Monteggia et al. 2004). These data suggest that increasing BDNF activity is a key

mechanism mediating antidepressant action.

Interestingly, the BDNF signaling pathway is upregulated in the hippocampus

and PFC shortly after treatment with fast-acting antidepressants (Zhou et al. 2013b;

Yang et al. 2013; Autry et al. 2011) and it is associated with functional synaptic

changes (Tizabi et al. 2012). Ketamine, an antagonist of N-methyl-D-aspartate

(NMDA) receptors, exerts antidepressant action within few hours after administra-

tion with effects lasting up to 2 weeks in depressed patients (Zarate et al. 2006;

Price et al. 2009). Administration of NMDA antagonists leads to rapid translation of

BDNF in mouse hippocampus and the antidepressant effect is ablated in BDNF

conditional knockout mice (Autry et al. 2011). Interestingly, miR-206 regulates the

expression of BDNF in response to ketamine (Yang et al. 2014). In light of the role

of BDNF in modulation of synaptic plasticity and the increase in BDNF in the

hippocampus upon ketamine treatment, it is tempting to speculate that changes in

hippocampal synaptic plasticity may contribute, together with other brain regions,

to rapid-onset antidepressant effect. However, this hypothesis still needs to be

tested.

2.5.5 Antidepressants and Cognitive Impairment
As mentioned above, MDD is associated with alterations in hippocampal-

dependent cognitive processes. Since antidepressant treatments have been shown

to improve BDNF signaling and neurogenesis, key processes in hippocampus-

dependent cognitive functions, antidepressants could potentially ameliorate cogni-

tive symptoms in MDD patients. However, clinical studies have not yielded con-

clusive results and discrepancies are often attributed to limited study design.

Longitudinal studies report persistent cognitive dysfunction in patients after remis-

sion from depressive symptomatology (Trivedi and Greer 2014; Hasselbalch

et al. 2011; Kuny and Stassen 1995; Weiland-Fiedler et al. 2004; Neu

et al. 2005). In one study, cognitive functions have been monitored in patients

treated with escitalopram (SSRI) or duloxetine (SNRI); an improvement in working

memory, processing speed, and visual episodic memory was best observed with

duloxetine (Herrera-Guzman et al. 2009, 2010). To further address the effects of

antidepressants on cognitive improvement more studies are needed and understand-

ing this relationship would help design new and more efficacious therapeutic

122 V. Costa et al.



interventions (Goeldner et al. 2013). Along the same line, more research is needed

to unravel the role of hippocampal network and neurogenesis in the onset and

recovery of cognitive alterations in MDD.

2.6 Cognition and Adult Hippocampal Neurogenic Axis
in Physiological and Pathological Aging

Cognitive functions decline with age and are impaired in pathological conditions

associated with advanced age like Alzheimer’s disease. Impairment of

hippocampus-dependent cognitive processes often correlates with structural and

functional changes in this brain region and with alterations in neurogenesis. This

sections highlights the relevance of neurogenesis in physiological aging and

associated cognitive decline in human and animals. Furthermore, the potential

pathophysiological role of neurogenesis in cognitive deficits in Alzheimer’s disease

is highlighted.

2.6.1 Aging and Cognitive Decline in Human: Correlation
with Hippocampal Changes

In human, aging affects a broad range of cognitive functions like executive

functions (task switching, updating, inhibition) associated with the prefrontal

cortex, episodic memory (memory for events which include specific temporal and

spatial context) associated with prefrontal cortex and medial temporal lobes,

information processing speed, specific aspects of language, and visuospatial

functions (for a review, see Alexander et al. 2012). Several studies report specific

alterations in hippocampus-dependent processes. Older individuals show

impairment in spatial navigation tasks designed to specifically assess

hippocampus-dependent ability to develop a cognitive map (a mental representa-

tion of the landmarks and paths in the environment) and to use it to reach any target

location by any route available (Iaria et al. 2009). These cognitive deficits often

correlate with functional and structural alterations in the hippocampus. For exam-

ple, older individuals tested in a virtual spatial navigation task show differential

activation of several brain areas, as measured by voxel-based analysis, if compared

to younger controls. Among those differences, old participants show a reduced

activation of hippocampus and parahippocampal gyrus (Moffat et al. 2006). Simi-

larly, impairment in hippocampus-dependent spatial and non-spatial functions and

recognition memory has been shown to correlate with decreased hippocampal

volume and neurochemical properties in older individuals (Driscoll et al. 2003).

Along the same line, a specific correlation between hippocampal volume and

wayfinding skills (generation and use of a cognitive map) has been described in

older individuals (Head and Isom 2010). Moreover, older adults show performance

decline compared to younger control individuals in pattern separation task and a

bias toward pattern completion. High-resolution (1.5 mm isotropic) blood-

oxygenation level-dependent fMRI analysis reveals an altered activation in

the CA3/dentate gyrus regions during trials (Yassa et al. 2011). However, a
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meta-analysis of the correlation between hippocampal size and episodic memory in

older adults reveals extremely weak correlation (Van Petten 2004). Moreover,

while some studies show a progressive change in the volume of several brain

regions including shrinkage of the hippocampus (Raz et al. 2010), others show an

age-dependent decline in temporal cortex but not in hippocampal volume (Sullivan

et al. 2005).

Moving from the neuroanatomical to the cellular level, early analysis with

stereological techniques showed no neuronal loss in several areas of the hippocam-

pus during aging (West et al. 1994). On the other hand, neurogenesis appears to

decline with age. The expression of neurogenesis markers and the number of

DCX-positive cells are decreased in the dentate gyrus in post-mortem human brains

from older donors (Knoth et al. 2010). Moreover, birthdating experiments based on

measurements of genomic DNA incorporation of 14C, liberated in the atmosphere

during atom bomb testing, show that adult hippocampal neurogenesis in the human

brain undergoes a modest decline during aging (Spalding et al. 2013). Whether

neurogenesis decline contributes to cognitive deficits in elderly humans remains an

open question, although studies in rodents suggest that it might have a significant

impact.

2.6.2 Age-Related Cognitive and Neurogenesis Decline in Animals
Decline of cognitive functions has been described in aged rodents and non-human

primates. Deficits include impaired performance in spatial learning and memory

(Barnes 1979; Gage et al. 1984; Rapp et al. 1997; Lazarov and Marr 2013).

Structural MRI analysis shows that hippocampal volume does not change with

age (Shamy et al. 2006). However, histologic evaluation shows an imbalance in the

volume of different areas of the hippocampus in aged rats with a relative reduction

of the volume of the middle portion of the molecular layer (Rapp et al. 1999).

Interestingly, early studies demonstrated that in rodents neurogenesis in the

subgranular zone declines with age (Seki and Arai 1995; Kuhn et al. 1996; Ben

Abdallah et al. 2010) with the major decline taking place during adulthood, before

aging (Rao et al. 2005; Demars et al. 2013). Whether the decline in neurogenesis

correlates with cognitive impairment is a matter of debate. Studies show that aged

rats performing better in Morris water maze and hippocampus-dependent tasks

have higher number of proliferating cells and newborn neurons (Driscoll

et al. 2006; Drapeau et al. 2003). On the other hand, others show no correlation

or negative correlation between the number of proliferating cells and performance

in Morris Water Maze in aged rats (Merrill et al. 2003; Bizon et al. 2004). Interest-

ingly, in middle-aged (12 months old) rats, despite the massive reduction of

progenitor cell proliferation and newborn cells survival, no deficits in trace fear

conditioning are observed (Cuppini et al. 2006).

Several hypotheses have been put forward to explain the mechanisms accounting

for neurogenesis decrease in aging and they include both cell-autonomous and non-

cell-autonomous processes. Aging is accompanied by changes in the hippocampal

stem cell niche vasculature (Hattiangady and Shetty 2008) and reduced expression

levels of growth factors important for neurogenesis like VEGF, FGF2, BDNF, and
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WNT signaling activity (Shetty et al. 2005; Hattiangady et al. 2005; Bernal and

Peterson 2011). Glucocorticoid signaling is altered in aged animals and decreasing

corticosterone levels restores the rate of proliferation of neuronal progenitors

(Cameron and McKay 1999; Nichols et al. 2001). A heterochronic parabiosis

experiment, in which the circulatory system of two animals is connected, shows

that blood-borne factors from old mice can induce impairment in synaptic plasticity

and cognitive deficits in young animals. Elevated levels of chemokines, including

CCL11, are observed in aged animals and increasing peripheral levels of CCL11 in

young mice decreases neurogenesis and induces cognitive decline (Villeda

et al. 2011). One of the most robust changes observed during aging is a dramatic

reduction in progenitor cells’ proliferation (Olariu et al. 2007; Walter et al. 2011;

McDonald and Wojtowicz 2005; Bondolfi et al. 2004), with the most prominent

effect in the ventral hippocampus (Jinno 2011). A meta-analysis comparing the

reduction in progenitors’ proliferation between different species of rodents, fox,

and non-human primates shows that the decline is chronologically equal between

species and independent of life span (Amrein et al. 2011). Reduction in

neurogenesis in the aged brain has been associated with depletion of the neural

stem cells pool as a consequence of their division (Encinas et al. 2011) or to a

switch toward a quiescent state (Hattiangady and Shetty 2008; Lugert et al. 2010).

Importantly, pro-neurogenic stimuli such as increasing neuronal activity by induc-

ing seizures lead NSCs to reenter the cell cycle and restore proliferation to a level

comparable to the one observed in young animals (Lugert et al. 2010). Similarly,

exercise and exposure to enriched environment rescue neurogenesis deficits and

improve cognitive functions like spatial memory and place recognition memory

(van Praag et al. 2005; Kronenberg et al. 2006; Siette et al. 2013). Recently, the

chronic administration in aged rats of a blood–brain barrier-permeable peptide

derived from the ciliary neurotrophic factor (CNTF), which is known to have

neuroprotective properties, restores neurogenesis, synaptic plasticity, and memory

(Bolognin et al. 2014). These works suggest that induction of neurogenesis has

beneficial effects on cognition during aging. Moreover, targeting the reactivation of

neural stem cells in the aged brain could be a promising therapeutic approach to

restore cognitive functions. Interestingly, young circulating factors like GDF11, a

member of the BMP/TGFβ family, can restore neurogenesis and proper vasculature

also in the SVZ, the other neurogenic niche in the adult brain, and improve

olfactory discrimination in aged mice (Katsimpardi et al. 2014).

2.6.3 Pathological Aging: Alzheimer’s Disease, Cognitive Impairment,
and Neurogenesis

Alzheimer’s disease (AD) is an age-related neurodegenerative disease

characterized by progressive memory loss and cognitive decline (Caselli

et al. 2006). AD represents the most common cause of dementia in the elderly.

Pathological hallmarks of the disease are extracellular deposition of amyloid-beta

(Aβ) plaques, excessive phosphorylation of the cytoskeletal protein tau, formation

of intraneuronal fibrillary tangles, and neuronal cell loss in the cerebral cortex and

hippocampus (Selkoe 2001; Braak and Braak 1991, 1995). The major
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environmental risk factor for the onset of the disease is aging, while the greatest

genetic factor is apolipoprotein E (ApoE) genotype (Ashford 2004). ApoE exists in

three isoforms, with isoform E3 being the wt form and the most common in the

population, isoform E2 considered to be protective toward AD, and E4 increasing

the risk for the disease and anticipating the age of onset. Hereditary autosomal

dominant forms of the disease are caused by mutations in genes encoding for

amyloid precursor protein (APP) and presenilin-1 and -2, components of the

aspartyl protease γ-secretase complex. Cleavage of APP can follow two pathways:

in the non-amyloidogenic pathway cleavage by the protease complex α-secretase
releases the soluble fragment of APP (sAPPα) and γ-secretase cuts in the

intramembrane domain; in the amyloidogenic pathway cleavage by the aspartyl

protease β-site APP cleaving enzyme I (BACE1) and by γ-secretase leads to the

formation of Aβ (De Strooper and Woodgett 2003; Selkoe and Wolfe 2007).

The hippocampus and the afferent entorhinal cortex show early neuronal loss

that correlates with memory decline (Van Hoesen et al. 1991; Gomez-Isla

et al. 1996; West et al. 1994, 2004). Patients affected by amnesic mild cognitive

impairment (aMCI) and mild AD show reduced performance in hippocampus-

dependent tasks like pattern separation (Ally et al. 2013). Importantly, impairment

in performance correlates with CSF levels of Aβ42 and patients carrying the ApoE4
genotype perform worse than others in difficult pattern separation tasks (Wesnes

et al. 2014). As discussed previously, performance in pattern separation appears to

require hippocampal neurogenesis in the dentate gyrus and growing evidence

supports alterations in the neurogenic process in AD. Several proteins associated

with AD and mutated in familial forms of the disease are directly involved in the

regulation of neural stem cell proliferation and differentiation. Notch1, a master

regulator of neural stem cell physiology, is a substrate of PS1/γ-secretase and it is

cleaved in response to ligand binding (Alexson et al. 2006; LaVoie and Selkoe

2003; De Strooper et al. 1999). Deletion of PSEN1, the gene encoding for PS1 in

mice, leads to aberrant neurogenesis during development (Shen et al. 1997). In

adult animals, lentiviral-mediated knockdown of PS1 in the dentate gyrus leads to

enhanced differentiation of neural stem cells (Gadadhar et al. 2011). Moreover,

Notch1 and EGF receptor ligands are substrates of ADAM10, a component of the

α-secretase complex (Hartmann et al. 2002; LaVoie and Selkoe 2003). Neural stem

cells’ proliferation is regulated also by cleavage products of APP, and the intraven-

tricular injection of sAPPα rescues age-dependent decline in neural progenitors’

proliferation (Caille et al. 2004; Demars et al. 2013; Lazarov and Demars 2012).

Studies in several mouse models of AD suggest a strong correlation between

alterations in neurogenesis, including neural stem cells’ proliferation, newborn

neurons’ survival and maturation, and disease progression. For example, in the

transgenic mouse model Tg2576 which overexpresses the human APP isoform with

the Swedish double mutation and develops cognitive defects and amyloidosis,

aberrant maturation of newborn neurons is observed already in young age

(3 months) and this might lead to altered functional integration of new neurons in

the hippocampal circuits (Krezymon et al. 2013). Recently, spatial learning and

memory impairments have been described in a knock-in mouse model bearing the
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human pathological domain of ApoE4 gene in young age. Neurogenesis appears to

be increased in young animals and decreased with age, while apoptotic markers

indicate enhanced cell death. Interestingly, these early cognitive and cellular

changes take place in the absence of classical AD pathological hallmarks (Adeosun

et al. 2014). In another study, deletion of ApoE in mice results in reduced

neurogenesis and knock-in of the human ApoE4 leads to impaired maturation of

newborn neurons through a mechanism dependent on GABAergic signaling

(Li et al. 2009). Comprehensive reviews of neurogenesis phenotypes in AD models

can be found elsewhere (Lazarov and Marr 2010; Verret et al. 2007; Mu and Gage

2011).

Analysis of postmortem brain samples from senile AD patients reveals increased

expression of newborn neurons markers including DCX in the subgranular zone,

granular layer, and CA1 area. These findings suggest that activation of neurogenesis

might represent a mechanism of compensation and replacement of degenerated

neurons (Jin et al. 2004). In another study, AD brain samples show altered expres-

sion of early progenitor markers in the hippocampus, suggestive of enhanced

proliferation, while the number of newborn neurons does not appear to be affected

(Perry et al. 2012). Plasma and CSF concentrations of stem cell factor, a growth

factor exerting neuroprotective effects and supporting neurogenesis, are decreased

in AD patients and the level inversely correlates with the degree of dementia (Laske

et al. 2008). On the other hand, in pre-senile AD patients no evidence of altered

neurogenesis has been detected, while a proliferative change has been observed in

glia and vasculature cells (Boekhoorn et al. 2006).

As described above, the hippocampus and the neurogenic process are strongly

altered in AD and this might account for some aspects of cognitive decline in

patients. However, growing evidence suggests that molecular and structural

prerequisites for activity-dependent hippocampal plasticity are preserved in models

of AD. Exposure to enriched environment leads to amyloid plaque load reduction

and increased expression of genes involved in protective processes and

neurogenesis in a transgenic AD mouse model (Lazarov et al. 2005). Similarly,

exposure to EE of mice bearing the Swedish mutation in APP reverses spatial

learning and memory deficits and this correlates with restoration of some aspects of

the neurogenic process. As opposed to the previous study, amyloid load is not

affected by EE in this model (Valero et al. 2011). A study dissecting the role of

physical activity and cognitive stimuli on neurogenesis in AD shows that while

exposure to EE improves neurogenesis and water maze performance in the APP23

mouse model, exercise alone does not show beneficial effect (Wolf et al. 2006).

Besides memory and learning impairment, AD is associated with behavioral

symptoms that include anxiety and depression. As described previously, the ventral

hippocampus is involved in regulation of the response to stress and depressive

behavior and neurogenesis might play a role in this process. In a 3xTgAD mouse

model bearing mutations in APP, PS1, and Tau genes, restoration of neurogenesis

through chronic overexpression of Wnt3a in the ventral region of the dentate gyrus

leads to correction of impairments in danger assessment. The effect is neurogenesis
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dependent since ablation of neurogenesis via X-irradiation prevents the recovery

(Shruster and Offen 2014).

Altogether these works suggest that neurogenesis is pathologically impaired in

AD and restoration of the neurogenic process might be a promising therapeutic

approach to reverse behavioral and cognitive symptoms in AD patients. Below is

highlighted the potential of targeting neurogenesis in disease and drug-discovery

approaches for the identification of neurogenic compounds are discussed.

3 Novel Concepts for Targeting Neurogenesis in Cognition
and Disease

As described above, compelling preclinical evidence suggests that hippocampal

neurogenesis is modulated by a broad range of physiological and pharmacological

stimuli, and most excitingly, de novo neurogenesis positively correlates with

improved cognitive and emotional states. Three lines of research are emerging

that suggest that targeting hippocampal neurogenesis will have translational value

in human cognition and warrant future work: (1) recent rodent models demonstrate

a cell-autonomous role of neurogenesis in cognition in both physiology and disease;

(2) drug screening efforts have led to the identification of novel CNS active

compounds with both pro-neurogenic and pro-cognitive effects; and (3) the study

of human neurogenesis will potentially lead to the identification of biomarkers to

monitor the process in mental illnesses for both diagnostic and therapeutic

interventions. Below we highlight discoveries, opportunities, and challenges in

these research domains. Research on the role of hippocampal neurogenesis in

human physiology and disease will ultimately increase the translational value of

this remarkable process of plasticity in the adult human brain.

3.1 Neurogenesis as a Target to Improve Cognition in Physiology
and Disease

Recent studies strongly suggest that the discovery of cell-autonomous signaling

pathways that enhance adult neurogenesis may lead to therapeutic strategies for

improving memory loss due to aging or injury. Here we highlight some of these

pathways relevant for the regulation of neurogenesis and implicated in mental

disability and we describe the effect of their modulation on cognitive functions.

As previously mentioned, the hippocampus plays a key role in declarative memory

functioning as a pattern separator. Genetic modulation of the apoptotic pathway in

neural stem cells in the DG through ablation of the pro-apoptotic protein Bax leads

to increased neurogenesis and improved performance in pattern separation tasks

(Sahay et al. 2011). Future studies using this model in disease-relevant backgrounds

(e.g., AD models) could potentially elucidate whether the enhancement of

neurogenesis changes significantly disease states.
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The ERK pathway is important for the modulation of neurogenesis and cogni-

tion. ERK5 is a member of the MAP kinase family and it plays a role in prenatal

neuronal development and cell fate specification (Cavanaugh et al. 2001; Finegan

et al. 2009; Cundiff et al. 2009). ERK5 is expressed in the adult brain in neurogenic

regions and inducible conditional ablation of ERK5 in neural progenitors in the

adult brain leads to attenuation of hippocampal neurogenesis (Pan et al. 2012a, b).

This correlates with alterations in hippocampus-dependent memory tasks like

contextual fear conditioning, with defects in learning flexibility and deficits in

pattern separation. Conversely, in a genetic mouse model the activation of ERK5

in neuronal progenitors in the DG induces neurogenesis promoting cell survival,

neuronal differentiation, and enhanced dendritic structural complexity. The mor-

phological changes are paralleled by improved spatial learning and memory and

hippocampus-dependent long-term memory persistence (Wang et al. 2014). The

discovery that memory can be prolonged by stimulating adult neurogenesis has

important implications for the development of therapeutic strategies to treat mem-

ory disorders.

Recent studies show that restoring the function of adult neurogenesis in disease

models with clear cognitive dysfunction can reverse the learning deficits. Conse-

quently, treatments directed at this cell population may have a significant impact on

disease-relevant cognitive and learning phenotypes. Fragile X syndrome (FXS) is

the most common cause of inherited intellectual disability and the leading mono-

genic cause of autism spectrum disorders. FXS is a trinucleotide repeat disorder

caused by a CGG repeat expansion in FMR1, which leads to the loss of its protein

product FMRP. Deletion of FMRP in neural stem cells in adult mice affects several

aspects of adult hippocampal neurogenesis leading to deficits in proliferation and

differentiation of newborn neurons. This is accompanied by reduced performance

in hippocampus-dependent learning tasks. Importantly, in FMRP-deficient mice,

restoration of FMRP expression specifically in adult neurogenic compartments can

rescue these learning deficits (Guo et al. 2011). Although more studies are needed

to understand whether postnatal and adult neurogenesis plays a role in the patho-

genesis of intellectual disability, these data suggest that FMRP-dependent aberrant

neurogenesis could potentially contribute in part to the cognitive deficits observed

in Fragile X patients.

Altered neurogenesis appears to contribute to phenotypes observed in DISC1

loss-of-function models. Disrupted-in-schizophrenia 1 (DISC1) is a multifunctional

scaffold protein that has been implicated as a susceptibility gene for major mental

illness including schizophrenia, bipolar disorders, and autism (Chubb et al. 2008).

DISC1 plays an important role in multiple stages of adult neurogenesis in the DG

including proliferation, maturation, migration, and synaptic plasticity of newborn

neurons. Importantly, the levels of neurogenesis correlate with the performance on

specific memory tasks. The cellular phenotypes appear to be in part regulated by

disruption in critical signaling pathways modulating adult neurogenesis including

the AKT-mTOR, GABA, and GSK3β signaling pathways (Kim et al. 2009, 2012).

Indeed, DISC1 has been shown to modulate the proliferation of adult hippocampal

precursor cells by inhibiting GSK3β activity (Mao et al. 2009). Pharmacologically
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targeting these pathways leads to restoration of both neurogenesis and behavioral

phenotypes. Notably, in a DISC1 loss-of-function mouse model, treatment with a

GSK3β inhibitor, SB-216763, normalizes both the neurogenesis deficits and the

schizophrenia- and depression-like behaviors (Mao et al. 2009). In another study,

the downregulation of Disc1 specifically during the development of newborn

neurons results in defective neuronal maturation, neuronal hyperexcitability, and

alteration of neuronal structure. On a molecular level, knockdown of Disc1 results

in increased mTOR signaling. Moreover, Disc1 knockdown induces cognitive and

affective deficits and behavioral abnormalities are reversed by pharmacological

inhibition of the mTOR pathway (Zhou et al. 2013a).

The described roles of adult hippocampal neurogenesis in neurodevelopmental

disorders suggest that treatments targeting the adult neural stem cell population

may have a significant impact on pathophysiology and endophenotypes and can

represent a novel therapeutic approach.

3.2 Potential of Screening for Neurogenic Compounds

Neuro-regenerative approaches aimed at treating pathological cognitive decline

could include both the stimulation of endogenous adult neural stem cell populations

and the transplantation of exogenous stem cells in the brain. Seminal experiments

suggest that both approaches have potential for treating neurological diseases. For

example, in a mouse model of hippocampal neurodegeneration that results in

significant memory impairment, transplanting neural stem cells improves cognition

(Yamasaki et al. 2007). Similarly, transplantation of hippocampal neural stem cells

ameliorates complex cognitive deficits in a model of Alzheimer’s disease

characterized by abundant amyloid/TAU pathology. Interestingly, the behavioral

rescue is achieved despite persistent pathological hallmarks and it is mediated by

BDNF-dependent increase in hippocampal synaptic density (Blurton-Jones

et al. 2009). On the other hand, the ability of neural stem cells to be reactivated

in aging and in disease conditions supports the idea that identification of novel

pharmacological targets/molecules promoting adult hippocampal neurogenesis

represents a promising therapeutic approach.

A search of Thomas Reuter Integrity suggests that there are well over 50 relevant

patents claiming neurogenic molecules. A large number of diverse chemical classes

are neurogenic and have been patented for diverse CNS therapeutic indications

(Rishton 2008). Reported patents claim that besides CNS acting molecules such as

anticonvulsants, cognition modifiers, anxiolytics, and mood-stabilizing agents, also

antidiabetic, blood pressure-lowering, and cholesterol-lowering agents have sur-

prisingly shown neurogenic properties (Rishton 2008). For example, metformin,

which is widely used to treat type II diabetes and other metabolic syndromes, has

been shown to have neurogenic properties (Wang et al. 2012). In vitro work on both

mouse and human cell cultures shows that metformin promotes neurogenesis and

this translates in vivo in increased neurogenesis and enhanced spatial reversal

learning in a water maze task.
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A promising route for the identification of novel neurogenesis-increasing

compounds is the high-throughput screening of chemical libraries using neural

stem cell-based assays. Screens have already demonstrated the potential to eluci-

date known and novel mechanisms regulating adult hippocampal neurogenesis. In

an early study, 1,200 compounds with known pharmacological activity were

screened on rat neurospheres for proliferative and differentiation capacity leading

to the identification of many CNS-relevant targets. Active compounds included

modulators of dopamine, serotonin, opioid, glutamate, and vanilloid signaling

(Diamandis et al. 2007). Besides targeting known receptors relevant for

neurogenesis, molecule screening can help identify novel relevant signal transduc-

tion pathways associated with hippocampal plasticity and cognition. In another

screen the small molecule isoxazole 9 [Isx-9; N-cyclopropyl-5-(thiophen-2-yl)
isoxazole-3-carboxamide] was identified. Isx-9 robustly induces neuronal differen-

tiation in an in vitro model of adult neural stem cells. In addition, Isx-9’s effects

appear to involve myocyte-enhancer factor 2 (Mef2), a family of transcription

factors that had never been linked before to adult neurogenesis in vivo (Schneider

et al. 2008). In a follow-up study, it has been shown that Isx-9 promotes multiple

stages of neurogenesis in vivo and this correlates with enhanced memory in Morris

water maze tasks (Petrik et al. 2012). The mechanism of action of Isx-9 on

hippocampal neurogenesis and cognition is at least in part cell autonomous since

inducible deletion of Mef2 isoforms from neural stem cells and their progeny

thwarts the cognitive enhancing effect. The identification of ISX-9 highlights the

potential of small molecule screening campaigns to identify novel mechanisms of

action relevant to hippocampal neurogenesis and cognition.

A novel in vivo screening campaign has been undertaken identifying a com-

pound called P7C3 with neurogenic properties (Pieper et al. 2010). Further charac-

terization demonstrates that P7C3 can enhance neurogenesis in the dentate gyrus,

can modulate mitochondrial physiology and neuronal survival, can increase synap-

tic activity, and can preserve cognitive capacity in aged rats. The target(s) and

pathway(s) of P7C3 remain unknown, which provides both a challenge as well as an

interesting opportunity to identify new pathways linked to neurogenesis and patho-

logical cognitive decline. Clearly, the mechanisms mediating the effect of P7C3 on

cognition might involve biological processes beyond hippocampal neurogenesis

that could regulate broader aspects of brain plasticity. In follow-up studies,

modified and more potent analogues of P7C3 demonstrated that the compound

class exhibits neuroprotective effect in models of Parkinson’s disease, amyotrophic

lateral sclerosis, traumatic brain injury, and age-related cognitive decline

(MacMillan et al. 2011; Blaya et al. 2014; Walker et al. 2014). Derivatives

appended with immobilizing moieties may reveal the protein targets of the P7C3

class of neuroprotective compounds.

Few classes of neurologically active molecules have been discovered in the last

50 years, at least in part because neuroscience drug discovery efforts have been

dominated by target-based assays. Unlike target-based approaches, phenotype-

based screens can identify compounds hitting on pathways that capture the com-

plexity of the neurobiological tissue. One impressive example of a large-scale HTS
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screening campaign on primary cells has been recently reported, where one million

small-molecule compounds have been screened on primary rat neurospheres,

assessing proliferation and differentiation capacity based on the measurement of

ATP levels (Liu et al. 2009). Over 5,000 primary hits have been identified to induce

proliferation and differentiation. Further characterization of these compounds and a

strategy for target identification will potentially provide novel insight into the

mechanisms involved in the regulation of neural stem cells and adult neurogenesis.

As highlighted above, several neurodevelopmental disorders show adult

neurogenesis alterations that appear to be partly responsible for cognitive deficits.

Recent advances in human-induced pluripotent stem cell (hiPSCs) technologies

allow the use of human cells with patient-specific genetic alterations for in vitro

neuronal disease modeling. In vitro human neuronal differentiation recapitulates

several aspects and stages of in vivo neurogenesis and this system can be used to

characterize specific disease-related phenotypes observed in vivo. Moreover,

hiPSCs represent an unprecedented tool for development of platforms for pheno-

typic screening using human tissue- and disease-relevant models. Despite the

challenges associated with the novelty of the technology and the limited under-

standing of human neuronal differentiation in vitro, hiPSC disease models hold

great promise as tools for innovative drug discovery (Chailangkarn et al. 2012;

Bellin et al. 2012).

3.3 Translational Biomarkers of Human Neurogenesis

In CNS translational research, good translational biomarkers are crucial to identify

pre-symptomatic early disease states, to improve dose finding, and to allow patient

stratification and responder/nonresponders analysis, significantly affecting the suc-

cess in drug development. As described above, increasing preclinical evidence in

animal models of neurodevelopmental disorders, schizophrenia, Alzheimer’s dis-

ease, stress, and depression demonstrates that alterations in neurogenesis correlate

with behavioral and cognitive symptoms. Moreover, multiple pharmacological

interventions targeting cognition modulate adult hippocampal neurogenesis. There-

fore, the identification of a noninvasive biomarker for human neurogenesis is an

area of growing interest and intensive scientific research. The lack of biomarker

currently represents a key limitation in the ability to ultimately demonstrate the

relevance of the neurogenic process in human health and disease and its role in

mediating beneficial effects of therapeutic interventions.

Identification of hippocampal neurogenesis-specific biomarkers in blood or CSF

could serve as a proxy for the rates of neurogenesis in the brain. Immature neuronal

precursors in the adult brain are characterized by specific transcriptomes, cellular

and membrane proteomes, secretomes, metabolomes, and lipidomes (Ramm

et al. 2009; Knolhoff et al. 2013). Unbiased approaches to identify neurogenesis-

specific transcriptomic profiles have led to the identification of several transcripts

expressed during specific stages of adult neurogenesis (Miller et al. 2013;

Couillard-Despres et al. 2006; Lim et al. 2006). Moreover, expression levels of
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miRNA involved in the regulation of neurogenesis appear to be altered in brain

samples from AD patients. Importantly, miRNA can be released and detected in the

CSF, representing a potential biomarker (Cogswell et al. 2008). Similarly, some

neurogenesis-specific proteins are secreted into fluids including the CSF. For

example, doublecortin (DCX), which encodes for a microtubule-associated protein

specifically expressed in newborn neurons, is detected in CSF of both rodents and

humans (Kremer et al. 2013).

Another potential strategy to monitor neurogenesis is brain imaging. A possible

approach would be to identify a PET ligand binding molecular markers of adult

hippocampal neurogenesis. A PET imaging strategy could be feasible based on

anatomical considerations. PET resolution is in the order of 1.5–3 mm, the hippo-

campus volume in human is ~3 cm3, and the dentate gyrus is 90 mm3. It has been

reported that around 0.033 % of granular cells are newborn neurons in old primates

and 0.07 % in old mice (Aizawa et al. 2009). Considering the sensitivity of PET

imaging, shown to reach 30 pM of receptor density for the D2 receptor, the

detection of the newborn cells’ fraction would be feasible (Kessler et al. 1993;

Farde 1996). The challenge is to find a hippocampal neurogenesis-selective protein

with a binding pocket that could serve as a PET tracer. 18F-30-deoxy-30-fluoro-L-
thymidine (FLT) has been described to be a potential PET tracer to monitor neural

stem cell division in the rat hippocampus (Rueger et al. 2010). FLT is a thymidine

analogue that accumulates in dividing cells and it is a common marker to monitor

cell proliferation in tumors. For measurements in the brain, strategies to improve

the signal-to-noise ratio and to reduce radioactive doses would significantly imple-

ment the approach (Rueger et al. 2010). Monitoring neurogenesis targeting imma-

ture neurons could represent another approach considering that in aged macaque

monkeys and mice, immature neurons are 4- to 4.5-fold more abundant than

dividing NPCs (Aizawa et al. 2009).

MRI/MRS technologies could be a potential way to identify biomarkers of

neurogenesis or at least epiphenomena of the process. A conceptually very appeal-

ing study, using MRI-based technologies, suggested relative cerebral blood volume

(rCBV) increases specific to the dentate gyrus as a putative biomarker for

neurogenesis (Pereira et al. 2007). As described previously, neurogenesis and

angiogenesis in the DG are tightly linked processes (Palmer et al. 2000; Louissaint

et al. 2002). However, the specificity of this method is challenged by the fact that

hippocampus hemodynamics observed by fMRI is sensitive to changes due to

disease states and drug treatments (Choi et al. 2006; Littlewood et al. 2006;

Gozzi et al. 2008).

Using proton MRS, a very exciting study identified a particular resonance at

1.28 ppm with enhanced prevalence in NPCs in vitro (Maletic-Savatic et al. 2008;

Manganas et al. 2007). This marker was demonstrated to be a translational bio-

marker in both rats and human subjects, and the putative NPC-specific peak

strongly decreases during brain development from childhood to adulthood

(Manganas et al. 2007). If confirmed, this study provides an unparalleled glimpse

into the human brain with the promise to provide a truly noninvasive biomarker of

adult neurogenesis. Not unexpectedly, this report has aroused a certain amount of
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controversy on technical and study design aspects (Friedman 2008; Hoch

et al. 2008; Jansen et al. 2008; Dong et al. 2009; Ramm et al. 2009). More studies

are needed to demonstrate feasibility and practicality of this approach as a tool to

investigate the role of neurogenesis in a wide variety of human brain disorders.

4 Conclusions

Adult hippocampal neurogenesis is a complex process that provides an excellent

example of the surprising plasticity of the mature brain. Research within the last few

years has identified molecular mechanisms that regulate individual steps in

neurogenesis and has highlighted its function in various neurological disorders.

However, the process of translating basic knowledge into pharmacological

interventions is only at the beginning. Key aspects need to be further clarified to

support targeting of adult neurogenesis for the treatment of neurological and cognitive

disorders in humans: (1) Can results obtained from animal models of neurological

disorders be translated to humans?, (2) Can changes in neurogenesis be assessed in

humans (i.e., is there a biomarker)?, (3) Is it possible to identify chemical entities or

biomolecules to pharmacologicallymodulate neurogenesis in humans? In this chapter,

we have highlighted key studies investigating the role of neurogenesis in cognitive

impairment associated with physiological and disease conditions. Moreover, we have

described endogenous and pharmacological factors that modulate neurogenesis and

have an effect on cognitive functions. Deep understanding of several of these aspects

would enable the development of drugs that target andmodulate adult neurogenesis in

humans to treat patients with neurological disorders.
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Part II

Cognitive Domains for Pharmacological
Intervention: Implications for Neuropsychiatric

and Neurological Illnesses

Introduction

Cognitive enhancement is a treatment goal for a variety of neuropsychiatric and

neurological illnesses that are characterized by deficits in one or more cognitive

domains. Domains include attention, executive function, declarative memory,

emotional memory, and social cognition. A basic premise is that pharmacological

interventions for cognitive enhancement are likely to vary by cognitive domain. A

corollary is that the discovery of a safe and effective cognitive-enhancing thera-

peutic drug for a particular cognitive domain should offer improvement across

neuropsychiatric and neurological illnesses that present with deficits within that

same cognitive domain. Part II provides an overview of clinical and preclinical

research devoted to domain-specific cognitive enhancement. The current status of

that research for selected cognitive domains is presented.

Chapter 5 (Callahan and Terry) provides evidence for the enhancement of

attention, focusing on drugs acting on the cholinergic, dopaminergic, noradrener-

gic, and serotonergic systems. While some promising lead compounds have

emerged from preclinical testing (e.g., nicotine, the α4β2 nicotinic receptor agonist
ABT-418, methylphenidate, the dopamine D1 receptor agonist SKF 38393, the α1
adrenergic receptor agonist St-587, and atomoxetine), it is the case that

improvements in attention sometimes come at the cost of having a negative impact

on either response inhibition or response vigor or being observed only when the

demands of the task are high. In many cases, the compounds that have a proven

benefit in clinical populations are also effective in the preclinical models,

supporting the argument that these models of attention may also have predictive

validity.

Chapter 6 (Talpos and Shoaib) explores executive function through the use of

animal models. Drugs that enhance attentional set shifting and reversal learning are

highlighted. Promising lead compounds that improve extradimensional set-shifting

performance include nicotine, a variety of atypical antipsychotic drugs (e.g.,

http://dx.doi.org/10.1007/978-3-319-16522-6_5
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risperidone, clozapine), and atomoxetine. Notably, the pro-cognitive effects of

these drugs in the attentional set-shifting procedure typically are observed in

lesioned animals or in those first pretreated with psychomimetic drugs (e.g.,

phencyclidine and ketamine). Thus, the opportunity for enhancement in normal

subjects may be limited, or alternatively, the attentional set-shift task in animals

may not be an ideal model for assessing this purpose. Drugs that enhance reversal

learning (mainly by reducing perseverative errors) include methylphenidate,

atomoxetine, the serotonin 2c receptor antagonist SB 242084, and the α2 adrenergic
receptor agonist atipamezole. Interestingly, an improvement in reversal learning

can come at the cost of interference with other aspects of executive functioning

such as working memory.

Chapter 7 (Riedel and Blokland) provides an overview of the enhancement of

declarative memory in tests conducted in humans and animals, with an emphasis on

episodic memory. Drugs influencing dopamine (modafinil, D-amphetamine, meth-

ylphenidate) and acetylcholine (cholinesterase inhibitors) neurotransmission as

well as glucose consumption have the most consistent effects. Findings with

serotonergic and some miscellaneous agents (e.g., polyunsaturated fatty acids) are

mixed. Importantly, when considering human and animal data, there is a great

discrepancy in findings between species. Some of this discrepancy may be related

to type of task used (object recognition in animals vs. verbal learning tests in

humans). At issue for enhancing declarative memory is whether shifting to a

prevention paradigm for treatment in clinical populations (e.g., the prodromal

stage of dementia) or focusing on the memory consolidation stage (e.g., drugs

administered after, not before, learning) might yield better outcomes.

Chapter 8 (Sumiyoshi) focuses on verbal memory, an important aspect of

declarative memory. Much of the research on the enhancement of verbal memory

arises from the study of schizophrenia. Verbal memory in patients with schizophre-

nia is improved to a greater extent following treatment with atypical than typical

antipsychotic drugs. Though studies are few, putative pro-cognitive agents given to

patients treated with antipsychotic drugs improve verbal memory as well. These

include the serotonin 1a receptor partial agonist tandospirone and the acetylcholin-

esterase inhibitor galantamine. More research is needed, as improvement in verbal

memory has a strong link to an improved functional outcome in schizophrenia.

Chapter 9 (Nader) explores emotional memory from the perspective of memory

reactivation (reconsolidation) and its enhancement or disruption by various phar-

macological agents. Most research on emotional memory investigates fear memory

and the ability of protein synthesis inhibitors, NMDA antagonists, beta-adrenergic

antagonists, and other amnestic treatments to block fear memory reconsolidation.

This line of research has implications for treatment of a number of clinical

conditions involving overly intrusive memories and thoughts, such as post-

traumatic stress disorder, obsessive-compulsive disorder, or delusions/

hallucinations. Enhancement of emotional memory in animal models is achieved

by epinephrine and glucocorticoids, and further drug development may offer viable

treatment options for neuropsychiatric and neurological disorders involving

underarousal or flat affect.
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Chapter 10 (Patin and Hurlemann) covers social cognition, a process impacted in

several neuropsychiatric conditions. The pharmacology for the enhancement of

social cognition is diverse and includes treatment with oxytocin,

3,4-methylenedioxymethamphetamine (MDMA), modafinil, methylphenidate, and

D-cycloserine. With some of these agents, there is a disorder-specific usage for

improving social cognition aspects of the illness (e.g., MDMA in post-traumatic

stress disorder), while for other agents, the findings for improvement in social

cognition are mixed and several contraindications prevail (e.g., modafinil in a

range of neuropsychiatric illnesses). An innovative area of investigation is with

oxytocin, which has documented prosocial effects in individuals ranging from

healthy to those with seriously impaired social functioning, such as patients with

autism spectrum disorder and schizophrenia. More standardization of dose, route,

and pretreatment time for oxytocin and of the paradigms used to measure basic

emotions is needed for accurately determining the full therapeutic potential of

oxytocin for the enhancement of social cognition.

From the above overview, it is clear that medication development for cognitive

enhancement across a variety of cognitive domains has focused mainly on mono-

amine and cholinergic systems, with only a few exceptions. More research is

needed and likely will require investigation of additional targets and signaling

pathways before clinically useful agents are available. For many cognitive domains,

animal research may help speed this process, but translatable paradigms in animals

have not yet been developed for all cognitive domains.
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Abstract

The ability to focus one’s attention on important environmental stimuli while

ignoring irrelevant stimuli is fundamental to human cognition and intellectual

function. Attention is inextricably linked to perception, learning and memory,

and executive function; however, it is often impaired in a variety of neuropsy-

chiatric disorders, including Alzheimer’s disease, schizophrenia, depression,

and attention deficit hyperactivity disorder (ADHD). Accordingly, attention is

considered as an important therapeutic target in these disorders. The purpose of
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this chapter is to provide an overview of the most common behavioral paradigms

of attention that have been used in animals (particularly rodents) and to review

the literature where these tasks have been employed to elucidate neurobiological

substrates of attention as well as to evaluate novel pharmacological agents for

their potential as treatments for disorders of attention. These paradigms include

two tasks of sustained attention that were developed as rodent analogues of the

human Continuous Performance Task (CPT), the Five-Choice Serial Reaction

Time Task (5-CSRTT) and the more recently introduced Five-Choice Continu-

ous Performance Task (5C-CPT), and the Signal Detection Task (SDT) which

was designed to emphasize temporal components of attention.

Keywords

Sustained attention • Signal detection • Distractibility • Preclinical • Drug

development • Animal model

1 Introduction

As is often the case in the fields of cognitive psychology and neuroscience, a precise

definition for the concept “attention” is often the subject of debate and controversy.

However, in simple terms, attention could be thought of as the allocation or

concentration of mental resources on specific (environmentally relevant) stimuli

while ignoring other (nonrelevant or less relevant) stimuli. While “attention” is

often used as an umbrella or generic term, most theories in cognitive psychology

describe at least three or four separate (but interrelated) subcategories of attention,

including sustained attention or vigilance (attending to one stimulus over a signifi-

cant period of time), selective attention (focus directed at one stimulus in lieu of

competing, irrelevant stimuli), orienting attention (directional or spatial orientation

toward a particular stimulus), and divided attention (simultaneously attending to

two or more different stimuli or performing multiple tasks) (Posner and Petersen

1990; Robertson et al. 1996; Parasuraman et al. 1998). It is clear that attention is

inextricably linked to intellectual function and the major components of human

cognition including perception, learning and memory, and executive function.

Moreover, attention is often impaired in a variety of neuropsychiatric disorders,

including Alzheimer’s disease (Lawrence and Sahakian 1995; Parasuraman

et al. 1998), schizophrenia (Laurent et al. 1999), depression (Brown et al. 1994),

and attention deficit hyperactivity disorder (ADHD) (Biederman 2005). Accord-

ingly, attention is considered as an important therapeutic target in these disorders.

In selecting preclinical behavioral models of attention, priority should be given

to behavioral paradigms that possess construct validity (i.e., the task accurately and

specifically measures attentional processes and its performance relies on similar

underlying neurophysiological circuitry as in humans), reliability, and task

standardization across laboratories. Several preclinical behavioral tasks meet
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these criteria and have been used extensively to characterize the neural systems

associated with attention as well as to assess pharmacological agents that may have

therapeutic relevance in alleviating attentional impairments observed in neuropsy-

chiatric disorders. For this review, we have chosen to discuss three commonly used

paradigms: (1) the 5-choice serial reaction time task (5-CSRTT; Carli et al. 1983;

Robbins 2002), (2) the 5-choice continuous performance task (5C-CPT; Young

et al. 2009), and (3) the signal detection task (SDT; Bushnell 1995; McGaughy and

Sarter 1995a, b; Rezvani et al. 2002). All of these behavioral tasks have features

that are similar to the continuous performance task (CPT; Rosvold et al. 1956) that

has been used successfully to detect attention deficits in clinical populations such as

ADHD (Riccio et al. 2002; Loo et al. 2004), Alzheimer’s Disease (Levinoff

et al. 2005), and schizophrenia (Nieuwenstein et al. 2001; Lee and Park 2006). In

the CPT, subjects are required to respond to a specific visual stimulus (e.g., the

letter X) within a list of letters. Since the letter X occurs less often, subjects must

remain attentive during the session. When the letter X is presented the subject is

required to press a button or click a computer mouse. This simple response

requirement affords the investigator considerable information in addition to atten-

tion (correct response) such as false alarms (errors made when no X is presented),

processing speed (latency to respond), and impulsivity (responding in the absence

of the X stimulus). The behavioral tasks described below incorporate many of the

CPT test attributes for measuring attention, information processing, and

impulsivity.

2 Five-Choice Serial Reaction Time Task

2.1 Task Description

The 5-CSRTT (see Fig. 1) was developed as a means to assess attention based on

Leonard’s five-choice sustained attention task in humans (Leonard 1959) and is the

preclinical analogue of the CPT task, though there are task dissimilarities (Young

et al. 2009). A large literature base exists for the 5-CSRTT with evidence

demonstrating construct validity as a model of attention. As a test component

within the CANTAB battery, the task has been used in both healthy volunteers

and in subjects suffering from neuropsychiatric disorders (Barnett et al. 2010;

Cambridge Cognition, camcog.com). The behavioral paradigm was originally

developed for rats (Carli et al. 1983), but recently, versions have been developed

for mice (Humby et al. 1999; Sanchez-Roige et al. 2012) and nonhuman primates

(Weed et al. 1999; Spinelli et al. 2004). The 5-CSRTT assesses the subject’s ability

to spatially divide its attention across multiple signal locations (usually five

locations, but fewer can be used) in order to select the correct target stimulus

(light in a single aperture hole location) that, in turn, produces a food reward (see

Higgins and Breysse 2008 for paradigm and training description). This behavioral

task measures attentiveness to multiple locations over time and, thereby, utilizes

both sustained and selective attention (Levin et al. 2011). Selective attention occurs
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when the subject faces multiple stimuli and must make a choice among them; the

choice is defined by the subject’s behavior. In this situation, novelty plays an

important factor in determining the subsequent behavior of the animal and, thus,

its attentional selection. Sustained attention occurs when the subject’s behavior is

controlled by a single stimulus that occurs unpredictably in time and space. While

selective and sustained attention are not independent functions within the

5-CSRTT, these events can be manipulated to preferentially place more “demand”

on one function versus the other. For example, a greater demand on sustained

attention can be achieved by increasing the temporal unpredictability of the stimu-

lus presentation, whereas increasing the number of potential stimulus locations

places greater demand on selective attention. In addition to measuring attention

(choice accuracy), the 5-CSRTT can assess a number of other cognitive domains

such as impulsivity (premature responses), cognitive flexibility/compulsivity (per-

severative and timeout responses), and processing speed (response latency). Task

difficulty can be modified by changing the brightness, duration, and temporal

predictability of the target stimulus and a distractor stimulus (e.g., auditory tone

or white noise) can be interpolated into the protocol to increase task difficulty and

place greater attentional demand on the subject.

2.2 Neural Substrates

Considerable scientific work has been devoted to delineating the neural substrates

involved in modulating 5-CSRTT performance and its response measures (for

reviews, see Robbins 2002; Chudasama and Robbins 2004). Excitotoxic lesions

of different subregions of the rat prefrontal cortex differentially affect the behav-

ioral measures associated with the task. Gross lesions of the medial prefrontal

Fig. 1 Diagram of the five-choice serial reaction time task (5-CSRTT). In the 5-CSRTT, subjects

are required to scan five apertures in an operant chamber for the appearance of a brief light

stimulus (presented pseudorandomly) and to make a nose-poke response in the correct spatial

location (i.e., the aperture where the light stimulus was presented) in order to receive a food reward
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cortex (mPFC) that include the dorsal pre-genual anterior cingulated cortex (area

Cg1), medial prelimbic cortex (PrL), and to some extent the ventral infralimbic

cortex (IL) show profound impairments in choice accuracy, increased perseverative

responding, and slower response latencies (Muir et al. 1996). More selective lesions

within the rat mPFC have identified precise anatomical loci responsible for

controlling specific 5-CSRTT response measures. For example, specific lesions of

the dorsal Cg1 area produce deficits in choice accuracy, whereas PrL and

orbitofrontal cortex (OFC) lesions result in selective increases in perseverative

responding (Passetti et al. 2002; Chudasama et al. 2003). In contrast, increases in

premature responding occur following ventral IL cortical lesions (Chudasama

et al. 2003). There are also data on the effects of specific anatomical loci of the

striatum, subthalamic nucleus, pedunculopontine nucleus, and hippocampus

(Chudasama et al. 2012) providing evidence of a systematic “top-down” anatomical

connectivity in mediating attention, impulsivity and executive function.

Complementing the data from anatomical-based lesion experiments, lesions and

neurochemical evaluations/manipulations focused on neurotransmitter pathways

(e.g., acetylcholine, dopamine, glutamate, noradrenaline, and serotonin) have

provided further insights into the neurobiological substrates of 5-CSRTT perfor-

mance. The outcome from this seminal research highlighted the dissociable roles

that specific neurotransmitter systems have on attention, reaction time, and

response control (see Robbins 2002). Probably the most extensively studied neuro-

transmitter system is the forebrain cholinergic system. Selective lesions of the

nucleus basalis magnocellularis (NbM) with the cholinergic immunotoxin 192 -

lgG-saporin resulted in decreased PFC acetylcholine levels and choline

acetyltransferase activity accompanied by poor choice accuracy, increases in trial

omissions, and disruption in response control performance (McGaughy et al. 2002;

Lehmann et al. 2003). Additional evidence (e.g., intra-NbM infusion of the GABA

agonist muscimol, or intra-PFC infusion of scopolamine) further supported the

importance of the basal forebrain cholinergic system and its innervation of the

PFC to 5-CSRTT performance (Muir et al. 1992; Robbins 2002).

Studies focused on the catecholamine system have indicated that 6-OHDA

depletion of ventral striatal dopamine affects response vigor (i.e., omissions and

response latency) with little to no effect on choice accuracy, whereas dorsal striatal

dopamine lesions affect only response-related processes. In contrast, 6-OHDA

lesions of the mPFC produce minimal effects unless task demands are increased

(Robbins 2002). Likewise, lesions of the ascending dorsal noradrenergic

(NA) bundle impair attention, but only when greater task demands (e.g., use of

distracting stimuli or when the temporal presentation of the stimulus target is

unpredictable) are placed on the subject, thereby requiring heightened awareness

(Carli et al. 1983; Cole and Robbins 1992). Further support for the engagement of

the NA system during challenging situations stems from the observation that

increased mPFC noradrenaline efflux occurs only when task contingencies are

manipulated, but remain unaltered during baseline conditions (Dalley et al. 2001).

Interestingly, the opposite appears to occur for mPFC acetylcholine (i.e., under

baseline conditions acetylcholine levels increase but remain unchanged during high
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task demand) demonstrating a dissociation between the two neurotransmitter

systems in controlling specific aspects of attention (Dalley et al. 2001).

Studies assessing the impact of serotonin (5-HT) depletion have also yielded

dissociable profiles on 5-CSRTT performance (i.e., impulsivity and choice accu-

racy) that are related to the particular neurotoxin (PCPA or 5,7-DHT) and brain

region (forebrain, dorsal or medial raphe nuclei) investigated (Harrison et al. 1997a,

1997b; Puumala and Sirvio 1998; Dalley et al. 2002). While there is clearly a

definitive relationship between 5-HT function and inhibitory control, it appears that

different forms of impulsivity (i.e., impulsive choice vs. impulsive action) are

mediated by specific 5-HT receptor subtypes within distinct brain regions

(Winstanley et al. 2004a, 2004b). Impulsive action (i.e., behavioral inhibition) is

typically measured in the 5-CSRTT, and collectively, evidence has demonstrated

that reductions in 5-HT activity can either induce or inhibit impulsive behavior

which is purely dependent on the 5-HT receptor subtype (i.e., 5-HT2A vs. 5-HT2C)

activated (see below).

2.3 Pharmacology

The 5-CSRTT has also been used extensively to evaluate pharmacological agents in

rodent models for effects on attention and inhibitory control (see Table 1). These

studies have helped to further elucidate the important roles of various neurotrans-

mitter systems on attentional processes and they have facilitated preclinical drug

discovery efforts for neuropsychiatric disorders (e.g., ADHD, Alzheimer’s disease

and schizophrenia). Here we provide an overview of some of the major pharmaco-

logical studies conducted to date (see also comprehensive reviews, Robbins 2002;

Higgins and Breysse 2008; Barak and Weiner 2011; Sanchez-Roige et al. 2012). As

discussed above, considerable evidence from lesion-based experiments supports the

argument that the CNS cholinergic system plays a major role in attention. This

evidence appears to be supported by pharmacologic experimentation as well. For

example, systemic administration of the muscarinic receptor antagonist scopol-

amine impaired several response measures (accuracy and omissions) in rats (Jones

and Higgins 1995; Mirza and Stolerman 2000) and mice (Humby et al. 1999; de

Bruin et al. 2006; Pattij et al. 2007). However, task performance appeared to be

unaltered following the acetylcholinesterase inhibitors (AChE) physostigmine and

donepezil (Mirza and Stolerman 2000; Romberg et al. 2011), the muscarinic M1

receptor agonist oxotremorine (Mirza and Stolerman 2000), and the mixed AChE-

muscarinic M2 receptor antagonist JWS-USC-75-IX (Terry et al. 2011). Interest-

ingly, JWS-USC-75-IX did attenuate the impairments of choice accuracy and

increases in premature responding associated with the NMDA antagonist

MK-801 (Terry et al. 2011). Nicotine has been shown to improve attentional

processing in humans (Sahakian et al. 1989; White and Levin 1999; Min

et al. 2001) and, thus, it has been extensively characterized in the 5-CSRTT in

rats (Mirza and Stolerman 1998; Blondel et al. 2000; Grottick and Higgins 2000;

Stolerman et al. 2000; Grottick et al. 2003; Bizarro et al. 2004; van Gaalen
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et al. 2006; Amitai and Markou 2009) and mice (Young et al. 2004; de Bruin

et al. 2006; Pattij et al. 2007). Collectively, these studies suggest that nicotine

improves choice accuracy and decreases trial omissions and response latencies, but

that it also increases premature responding. Nicotine, therefore, may improve

certain aspects of cognitive performance (processing speed, attention) while nega-

tively affecting other cognitive domains (e.g., response inhibition/impulsivity; see

Amitai and Markou 2009).

A variety of additional experiments have been conducted to further explore the

basis for the effects of nicotine on 5-CSRTT performance. These studies have

included evaluations of the major nicotine metabolite, cotinine, as well as nicotinic

(subtype-selective) ligands and transgenic receptor knockout mice (i.e., to investi-

gate the role of the specific nicotinic receptor subtypes on 5-CSRTT performance).

Cotinine had previously been shown to improve the performance of a standard and

distractor version of a delayed-match-to-sample task (DMTS), a working/short-

term memory task in nonhuman primates (Terry et al. 2005). Moreover, cotinine

reversed the DMTS performance deficits induced by the NMDA antagonist keta-

mine (Buccafusco and Terry 2009). The positive effects of cotinine (particularly in

the distractor version of DMTS) led to further evaluations of cotinine for its effects

on attention in the 5-CSRTT. In these studies, cotinine administered alone did not

alter 5-CSRTT performance in the rat; however it was effective in attenuating the

negative effects of MK-801 on choice accuracy and premature and timeout

responses, suggesting that under particular circumstances cotinine might be thera-

peutically beneficial (Terry et al. 2012).

Studies designed to assess the role of specific nicotinic acetylcholine receptor

(nAChR) subtypes on attention in the 5-CSRTT have sometimes been difficult to

interpret. Both the α4β2 nAChR antagonist di-hydro-β-erythroidine (DHβE) and
the α7 nAChR antagonist methyllycaconitine (MLA) failed to alter task perfor-

mance (Grottick and Higgins 2000), whereas the nonselective nAChR antagonist

mecamylamine was found to decrease choice accuracy and increase trial omissions,

correct response latencies, and perseverative responses in rats, effects opposite to

those produced by nicotine (Grottick and Higgins 2000; Mirza and Stolerman 2000;

Ruotsalainen et al. 2000). Increases in trial omissions and correct response latencies

have also been observed in mice after mecamylamine administration (Pattij

et al. 2007). To support the argument that the effects described above for mecamyl-

amine are expressed via central nAChRs, the peripheral nAChR antagonist hexa-

methonium did not alter any task parameters (Blondel et al. 2000; Grottick and

Higgins 2000). The information provided above might suggest that both high-

affinity (α4β2) and low-affinity (α7) nAChRs (together) are required for detectable

effects on 5-CSRTT performance; however, the α4β2/α7 nAChR agonist

varenicline had no effect on any of the behavioral parameters assessed in the

5-CSRTT with the exception of premature responding, which was increased at

low doses (Wouda et al. 2011).

The results of additional studies designed to investigate the role of the particular

nAChR subtypes (α4β2 vs. α7) in mediating nicotine’s response in 5-CSRTT have

also been somewhat difficult to interpret. Initially, several studies in young and
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aged rats demonstrated that the effects of nicotine were attenuated by

co-administration of either DHβE or mecamylamine, but not MLA, suggesting a

more important role for the α4β2 nAChR subtype in 5-CSRTT performance

(Blondel et al. 2000; Grottick and Higgins 2000; Grottick et al. 2003). However,

more recently, Hahn and colleagues (2011) reported that DHβE was without effect

on task accuracy produced by nicotine and that MLA co-administration

counteracted the behavioral effects, thus defending the premise that α7 nAChRs

have an important role 5-CSRTT performance. Other studies could be used to

support either argument. For example, the important role of α4β2 nAChRs in

attention can be derived from the positive observations with selective α4β2 receptor
agonists (e.g., ABT-418, ABT-594, epibatidine, SIB-1765F) on 5-CSRTT perfor-

mance, whereas the α7 nAChR agonist ARR-17779 lacked effects (Grottick and

Higgins 2000; Grottick et al. 2003; Hahn et al. 2003; Mohler et al. 2010). Addition-

ally, the α4β2 nAChR agonist ABT-418 was found to improve attention in adults

with ADHD (Wilens et al. 1999).

To further explore the contribution of α7 nAChRs to attention, transgenic

knockout mice for the α7 receptor (α7 KO) have been developed and trained in

the 5-CSRTT (Hoyle et al. 2006; Young et al. 2004). Results from Young and

colleagues (2004) indicated that α7 KOmice took significantly longer to acquire the

task and upon reaching stable performance exhibited higher levels of omissions

compared to the aged-matched wild-type mice, but that no group differences were

observed for choice accuracy and correct response latency. In a more detailed

examination, Hoyle and colleagues (2006) demonstrated that α7 KO mice were

less accurate, had slower correct response latencies, earned fewer rewards, and

exhibited higher premature responses than the wild types. Interestingly, nicotine

administration failed to alter 5-CSRTT performance for either genotype. When the

authors refined the original task parameters (i.e., reduced the time allowed to make

a response selection and punished premature responding with a timeout period), the

α7 KO mice demonstrated higher omissions and earned fewer rewards than wild

types, but there were no longer any differences in accuracy, response latency, or

premature responses. Again, nicotine did not alter task performance in either mouse

genotype. Results from these two studies thus suggest a role for α7 nAChRs on

5-CSRTT acquisition and selective task parameters, but additional work will be

required to fully determine their role in sustained attention.

Finally, other studies suggest that additional nAChR subtypes in the brain might

have an important role in 5-CSRTT performance (i.e., studies where the α2-4β4
receptor agonist SIB-1553A was evaluated, Terry et al. 2002).

The evaluation of dopamine (DA) receptor agonists and antagonists in the

5-CSRTT has also revealed important roles of dopamine and its receptors in

attention-related processes. For example, intra-mPFC infusions of the DA D1

receptor agonist SKF 38393 improved choice accuracy and correct response latency

in rats with low baseline accuracy (<75%) but not higher accuracies, effects

blocked by intra-mPFC infusion of the DA D1 receptor antagonist SCH 23390

(Granon et al. 2000). In contrast, infusions into the mPFC with SCH 23390 but not

the DA D2 receptor antagonist sulpiride disrupted choice accuracy in the high
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accuracy animals implicating a role for DA D1 receptors. Interestingly, systemic

administration of sulpiride but not the DA D2 receptor agonists apomorphine or

quinpirole counteracted the mPFC lesion decreases in choice accuracy (Passetti

et al. 2003). Infusions of sulpiride into the nucleus accumbens (NAC) also resulted

in improvements in choice accuracy and impulsivity in mPFC lesioned rats (Pezze

et al. 2009). Moreover, infusion of SKF 38393 into the NAC improved accuracy

and decreased trial omissions in normal animals, whereas intra-NAC injections

with SCH 23390 disrupted task performance and quinpirole increased perseverative

responding (Pezze et al. 2007). Taken together, these data suggest that dopaminer-

gic projections to the rat PFC play a primary role in modulating choice accuracy

and inhibitory control responding. Somewhat surprising, systemic administration of

DA D1 receptor agonists (e.g., SKF 38393) has not been assessed in the 5-CSRTT

and, in contrast to the effects produced by intra-cerebral injection, systemic admin-

istration of DA D2 receptor agonists or D1 and D2 receptor antagonists typically

results in decreased premature responding, increased trial omissions, and slower

response latencies with little to no effect on choice accuracy in normal animals (van

Gaalen et al. 2006; Fernando et al. 2012).

Administration of indirect-acting DA agonists (e.g, amphetamine, cocaine, GBR

12909, and methylphenidate), under specific training conditions, tends to increase

choice accuracy, reduce response latency, and increase premature responding in

both adult and aged rats (Puumala et al. 1996; Grottick and Higgins 2002; Bizarro

et al. 2004; van Gaalen et al. 2006; Paine et al. 2007; Navarra et al. 2008a; Fernando

et al. 2012;) and mice (Loos et al. 2010; Yan et al. 2011). Despite their clinical

utility for ADHD (Bidwell et al. 2011), amphetamine and methylphenidate produce

modest effects on choice accuracy and, in general, psychostimulants appear to more

significantly affect other behavioral measures in 5-CSRTT (e.g., premature

responding and omissions), which may reflect activation of the striatal system

opposed to cortical pathways. Interestingly, modafinil, a wake-promoting drug,

seems to exert its pharmacological effects by acting as a weak DA transport

inhibitor to elevate extracellular DA that, in turn, stimulates catecholamine

receptors to induce arousal (Wisor 2013). The wake-promoting effects of modafinil

in humans have been well documented (Westenson et al. 2002) and modafinil may

have clinical utility for the treatment of cognitive impairments associated with

ADHD (Turner et al. 2004a) and schizophrenia (Turner et al. 2004b; Scoriels

et al. 2012). Despite the clinical interest of modafinil, very few studies have

characterized its preclinical effects on sustained attention (Waters et al. 2005;

Morgan et al. 2007). Using a 3-choice task, Morgan and colleagues (2007) found

dose-dependent improvements in choice accuracy and premature responding with

shorter response latencies in middle-aged rats, whereas Waters and colleagues

(2005) using the 5-choice task under standard and high task demand conditions

found no significant effects of modafinil on any behavioral measure under either

task condition. Clearly, further work with modafinil on sustained attention is

warranted to resolve these findings. Given the positive preclinical findings with

intra-cerebrally administered DA D1 receptor agonists and the clinical success with

amphetamine, methylphenidate, and modafinil, additional research is required to
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understand the relationship between changes in cortical DA and attentional

processing especially as it relates to attention and impulse control deficits observed

in various clinical populations.

The noradrenergic (NA) system is well documented to be involved in arousal,

attention, and impulsivity and pharmacological compounds modulating NA activity

have been developed for the successful treatment of ADHD (Evenden 1999;

Brennan and Arnsten 2008; Bidwell et al. 2011). Additionally, NA compounds

may have clinical utility in other patient populations (e.g., Alzheimer’s disease and

schizophrenia) with similar symptoms (Egeland et al. 2003; Levinoff et al. 2005). It

is thought that by increasing NA function through direct or indirect activation of α1
and α2 adrenoceptors, attention and impulsivity impairments may be diminished.

Assessment of NA receptor ligands in the 5-CSRTT has indicated that α1
adrenoceptor agonists (e.g., St-587 and phenylephrine) tend to improve choice

accuracy and decrease premature responding, but increase omissions and correct

response latency (Puumala et al. 1997; Pattij et al. 2012). Co-administration of the

α1 adrenoceptor antagonist prazosin blocked the St-587-induced improvement in

accuracy, but premature responding was unaltered and prazosin alone tended to

decrease task performance. Results with α2 adrenoceptor agonists and antagonists

have also indicated an important role for this adrenergic receptor subtype in certain

aspects of 5-CSRTT performance. For example, the α2 agonists clonidine,

dexmedetomidine, and guanfacine primarily decrease premature responding (Sirvio

et al. 1994; Fernando et al. 2012; Pattij et al. 2012), whereas α2 antagonists (e.g.,

atipamezole and yohimbine) increase premature responding (Sirvio et al. 1993; Sun

et al. 2010). At higher doses, possibly reflecting sedation, α2 agonists tend to

increase response latencies and trial omissions (Sirvio et al. 1994; Fernando

et al. 2012). Interestingly, the α2 antagonist atipamezole was reported to improve

choice accuracy under specific task parameter manipulation (i.e., reducing bright-

ness of the visual stimulus) presumably by increasing norepinephrine (NE) levels

via blockade of inhibitory autoreceptors on NA neurons leading to a state of

enhanced arousal (Sirvio et al. 1993). Administration of the β2 adrenoceptor agonist
clenbuterol also improved accuracy and decreased impulsivity at test doses that did

not impair other task parameters (Pattij et al. 2012). Clenbuterol has previously

shown beneficial effects, though modest, on working memory deficits in aged

animals (Ramos et al. 2008). Based on the notion that increased NE levels leads

to improvements of attentional processing (Carli et al. 1983; Dalley et al. 2001),

studies have evaluated the ability of NE reuptake inhibitors (e.g., atomoxetine,

desipramine, and reboxetine) to modulate 5-CSRTT performance under standard

(van Gaalen et al. 2006; Paine et al. 2007; Robinson et al. 2008a; Fernando

et al. 2012; Pattij et al. 2012) and high task demand conditions (Navarra

et al. 2008a; Paterson et al. 2011; Robinson 2012). Overall, the findings demon-

strate a consistent reduction in premature responding (impulsivity) and when the

task became more challenging atomoxetine and reboxetine improved choice accu-

racy, though this effect was only observed in poorer performing subjects (Navarra
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et al. 2008a; Robinson 2012). The efficacy of NE reuptake inhibitors in modulating

attention and impulsivity is thought to be related to their ability to increase

extracellular catecholamine levels and simultaneously activate cortical postsynap-

tic DA D1 receptors and α2 adrenoceptors. These neurochemical actions may also

underlie the beneficial therapeutic effects of atomoxetine and guanfacine on core

symptoms of ADHD (Bidwell et al. 2011).

Serotonin (5-HT) receptor systems are well documented to be important for

learning and memory (for a review, see Seyedabadi et al. 2014) and they also have

been shown to play an important role in modulating 5-CSRTT accuracy and

behavioral response inhibition (Winstanley et al. 2004a). Assessment of 5-HT

receptor agonists and antagonists in the 5-CSRTT reveals a complex pattern of

effects on the various behavioral measures. Infusion of the 5-HT1A receptor agonist

8-OH-DPAT into the mPFC enhanced choice accuracy, which was blocked by the

selective 5-HT1A receptor antagonist WAY 100635 implicating 5-HT1A receptors

on attentional processing (Winstanley et al. 2003). However, systemic administra-

tion of 8-OH-DPAT leads to impaired accuracy and increased omissions and

premature responses (Carli and Samanin 2000). These divergent effects may reflect

the activation of presynaptic vs. postsynaptic 5-HT1A receptors (or both simulta-

neously). The 5-HT2 receptor family has also been extensively studied due to its

involvement in impulsivity (i.e., premature responding). Opposing roles have been

described for 5-HT2A and 5-HT2C receptor compounds such that 5-HT2A receptor

agonists (e.g., DOI) and 5-HT2C receptor antagonists (e.g., SB 242084) increase

inhibitory control responding, whereas 5-HT2A receptor antagonists (e.g.,

M1000907 and ketanserin) and 5-HT2C receptor agonists (e.g., Ro60-0175;

WAY-163909) reduce impulsivity in both rats and mice irrespective of whether

the test compounds are infused directly into specific brain regions (e.g., mPFC,

PrL-cortex, IL-cortex, or NAC; Koskinen and Sirvio 2001; Winstanley et al. 2003,

2004b; Robinson et al. 2008b) or administered systemically (Koskinen and Sirvio

2001; Fletcher et al. 2007; Navarra et al. 2008b; Quarta et al. 2012). Moreover,

5-HT2A receptor antagonists and 5-HT2C receptor agonists are efficacious in

reversing psychostimulant (amphetamine and cocaine) and NMDA receptor antag-

onist MK-801 induced increases in 5-CSRTT premature responding (Fletcher

et al. 2011) as well as cocaine seeking behavior (Neisewander and Acosta 2007)

suggesting clinical utility for impulsivity and substance abuse. The recent FDA

approval of the 5-HT2C receptor agonist lorcaserin for obesity may afford new

opportunities to evaluate this compound as well as other 5-HT2C ligands for

additional clinical indications (e.g., ADHD, smoking cessation, and substance

abuse; see Higgins et al. 2013). To date, studies with 5-HT reuptake inhibitors

(Humpston et al. 2013), 5-HT3 receptor antagonists (Kirkby et al. 1996), and 5-HT6

receptor antagonists (de Bruin et al. 2013) on 5-CSRTT performance have not

indicated that these classes of compounds significantly affect sustained attention

(or the other outcome measures assessed in this task); however, additional studies

are warranted.
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3 Five-Choice Continuous Performance Task

3.1 Task Description

The 5C-CPT (see Fig. 2) has recently been developed for rats (Barnes et al. 2012),

mice (Young et al. 2009), and humans (Eyler et al. 2011; Young et al. 2011a). Like

the 5-CSRTT, the 5C-CPT assesses the subject’s ability to spatially divide its

attention across five signal locations and when illumination of a single aperture

(correct target) occurs the subject must choose that hole in order to receive a

reward. However, the 5C-CPT adds a nontarget component in which all five

aperture holes are illuminated, thus requiring the subject to inhibit choice selection.

The addition of nontarget trials with correct target trials increases task similarity to

the human CPT version (Young et al. 2009) and allows analysis of additional

outcome measures such as hits or misses during target trials and correct rejections

or false alarms during nontarget trials, thereby adding signal detection theory

analysis along with the standard 5-CSRTT measurements (i.e., accuracy,

omissions, premature, perseverative, and timeout responding, as well as response

latency). It has been suggested that due to the absence of nontarget trials within the

5-CSRTT protocol the task may not accurately detect subtle differences that exist

between vigilance and sustained attention especially as it relates to human vigilance

(Robbins 1998). Consequently, the 5C-CPT was developed to overcome the

limitations of the 5-CSRTT, thus increasing its translational value to human

research (Young et al. 2009).

Fig. 2 Diagram of the five-choice continuous performance task (5C-CPT). In the 5C-CPT (like

the 5-CSRTT), subjects are required to scan five apertures in an operant chamber for the

appearance of a brief light stimulus (presented pseudorandomly) and to make a nose-poke

response in the correct spatial location (i.e., the aperture where the light stimulus was presented)

in order to receive a food reward (Go-Trials). However, unlike the 5-CSRTT, in the 5C-CPT, on

some trials visual stimuli are presented in all five locations simultaneously and for these trials the

subject must learn to withhold a response (NoGo-trials)
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3.2 Neural Substrates

Given the relatively recent development of the 5C-CPT, there are no lesion- or

neurochemical-based experimental data yet available to elucidate the neuroanatom-

ical and neurobiological substrates of task performance. However, since the

5C-CPT utilizes methodological components found in both the 5-CSRTT and the

operant 2-lever SDT, similar neuronal pathways (e.g., mPFC, striatum, and hippo-

campus) are likely involved (Robbins 2002; Sarter et al. 2005; Demeter et al. 2008).

Despite this preclinical limitation, functional magnetic resonance imaging (fMRI)

studies have demonstrated activation of fronto-striatal and parietal cerebral systems

in humans performing the 5C-CPT (Eyler et al. 2011), which is in agreement with

other CPT assessments in humans (Schneider et al. 2010).

3.3 Pharmacology

Several pharmacological studies have provided insight into the neurotransmitter

systems involved in 5C-CPT performance in rats and mice (see Table 1). For

example, improvements in choice accuracy of the 5C-CPT have been observed

following mPFC infusions (Granon et al. 2000) as well as systemic administration

(Barnes et al. 2012) of the DA D1 receptor agonist SKF 38393. While SKF 38393

diminished task performance under baseline conditions, the drug improved atten-

tion when the task became more challenging (Barnes et al. 2012). By employing an

extended variable intertrial-interval (vITI) procedure which altered standard base-

line measurements (e.g., reductions in % correct, % omissions, hit rate, and

sensitivity index, along with increased premature responding) SKF 38393 adminis-

tration was able to reverse performance deficits such that improvements were seen

in % omissions, correct response latency, premature responding, hit rate, and the

sensitivity index. These results suggest that under high task demands activation of

the DA D1 receptor system can improve attention/vigilance. Further support for an

important role of DA receptors in attention/vigilance is evident in the results of

experiments with DA D4 receptor knockout (D4R-KO) mice (Young et al. 2011b).

D4R-KO mice exhibited an increase in false alarm responding during nontarget

trials without any increases in premature responding suggesting a selective defi-

ciency in response inhibition. The authors were able to further differentiate

response inhibition and premature responding by administering the 5-HT2C recep-

tor antagonist SB 242084 to these D4R-KO mice. As expected SB 242084

increased premature responding and this effect occurred in the absence of increases

in false alarm responding, providing evidence that the 5C-CPT can dissociate

impulsive actions from response inhibition. Young and colleagues (2013) have

also examined the effects of cholinergic manipulation on 5C-CPT performance in

C57BL/6N mice. Administration of nicotine or the α4β2 nicotinic receptor agonist

ABT-418 alone or in combination with scopolamine improved task performance,

thus providing additional support for an important role of α4β2 nAChRs in

sustained attention. In contrast, the α7 nAChR agonist PNU 282987 failed to
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show improvements supporting previous 5-CSRTT data in rats (Grottick and

Higgins 2000; Hahn et al. 2003). Thus, while pharmacological characterizations

in the 5C-CPT are limited, the results obtained to date are encouraging and likely to

inspire further work.

4 Signal Detection Task

4.1 Task Description

The SDT (see Fig. 3) was designed to emphasize temporal components of attention

by presenting a target stimulus repeatedly in a single spatial location and varying

the timing of its presentation (see Bushnell et al. 2003). The SDT thus differs from

the 5-CSRTT in that the SDT requires the detection of a single centrally presented

visual signal instead of detection of a target stimulus across multiple-choice

locations (Bushnell 1995; McGaughy and Sarter 1995a, 1995b; Rezvani

et al. 2002; Echevarria et al. 2005). Briefly, the SDT requires the subject to monitor

a central panel for the presence (signal trial) or absence (non-signal or blank trial) of

a visual light stimulus that varies in time and intensity. Following the trial (signal or

non-signal) presentation and a short variable delay, two response levers are

extended into the operant chamber and the subject must press the appropriately

designated lever, based on trial type presented, to receive a reward. The SDT

generates four main outcome measures: (1) hits, correct lever press for signal

trial; (2) misses, incorrect lever press on the blank trial following a signal trial;

(3) correct rejections, correct lever press for a blank trial; and (4) false alarms,

Fig. 3 Diagram of the signal detection task (SDT). In the SDT, subjects are required to monitor a

central panel in an operant chamber for the presence (signal trial) or absence (non-signal or blank

trial) of a light stimulus that varies in time and intensity. Following the trial (signal or non-signal)

presentation and a short variable delay, two response levers are extended into the operant chamber

and the subject must press the appropriately designated lever (based on the trial type presented) to

receive a reward
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incorrect lever press on the designated signal lever when the target signal did not

occur. Response omissions (no lever selection after presentation of either trial type)

and response latencies can also be assessed. The paradigm also affords the investi-

gator with the ability to alter stimulus duration, intensity, and modality which can

place greater cognitive load on the subject in order to better assess sensory function

and attentiveness. Distraction (e.g., flashing house light) can be added to the

protocol to further increase task demands. The SDT has been used extensively to

study the neuronal networks associated with attentional processing in rats (Gill

et al. 2000; Rezvani et al. 2002; Sarter et al. 2005), mice (Mohler et al. 2001; St

Peters et al. 2011) and humans (Bushnell et al. 2003; Demeter et al. 2008).

4.2 Neural Substrates

Much of the work devoted to determining the neurobiological substrates of SDT

performance to date has focused on basal forebrain cholinergic inputs to the PFC

and other basal forebrain neurons (e.g., glutamatergic and GABAergic neurons)

that are known to modulate activity of the cholinergic inputs to the PFC (for

reviews, see Sarter et al. 2005; Hasselmo and Sarter 2011). The results of these

experiments have revealed a complex interplay of neuronal phenotypes in

modulating discrete attentional processes. For example, 192 IgG-saporin infusion

into the basal forebrain (which selectively destroys cholinergic neurons while

leaving GABAergic and glutamatergic neurons intact) resulted in decreases in hit

rate performance without affecting correct rejection and false alarm performance

(McGaughy et al. 1996). Conversely, infusion of NMDA into the basal forebrain

(which leads to cholinergic overactivity specifically when a behavioral stimulus is

encountered) increased false alarm performance without affecting hit rate perfor-

mance. Notably, the opposite effect occurred following infusion of the NMDA

receptor antagonist DL-2-amino-5-phosphonovaleric acid (APV; Turchi and Sarter

2001). Similar dissociations between the attentional functions mediated by basal

forebrain cholinergic and GABAergic neurons have been observed. For example,

basal forebrain lesions produced with ibotenic acid (which primarily destroy

non-cholinergic, particularly GABAergic neurons) also led to a selective increase

in false alarms, as opposed to affecting hit rate performance (Burk and Sarter 2001).

4.3 Pharmacology

As with the 5-CSRTT, the SDT has undergone considerable pharmacological

examination to identify not only the underlying neurochemical pathways associated

with performance of the task, but also to evaluate potential therapies for attention-

related disorders (see Table 1). Similar to the findings with the 5-CSRTT and the

5C-CPT, administration of the muscarinic antagonist scopolamine, the NMDA

glutamate antagonists ketamine and MK-801, as well as the nicotinic antagonist

mecamylamine impair SDT performance by altering several behavioral measures
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of attention such as hit rates, correct rejections, false alarms, and omissions

(McGaughy and Sarter 1995a, 1995b; Turchi et al. 1995; Bushnell et al. 1997;

Presburger and Robinson 1999; Nelson et al. 2002; Rezvani et al. 2002, 2009a),

thereby confirming the importance of cholinergic and glutamatergic systems in

attentional processes. Performance impairments have also been observed with

alcohol (Rezvani and Levin 2003), typical and atypical antipsychotics (e.g., cloza-

pine, haloperidol, and raclopride; Rezvani and Levin 2004; Hillhouse and Prus

2013), benzodiazepines (e.g., chlordiazepoxide; McGaughy and Sarter 1995a, b;

Bushnell et al. 1994, 1997), and organic chemical toxins (e.g., chlorpyrifos and

toluene; Samsam et al. 2005). Deficits in attention produced by these drug classes

afford the investigator with a means to (1) pharmacologically model specific

disease states (e.g., Alzheimer’s disease, schizophrenia, or chemical poisoning)

and (2) elucidate the underlying mechanism(s) associated with investigational

compounds which should, in turn, lead to the development and evaluation of new

therapeutic agents. The SDT is also capable of detecting pharmacological effects in

normal, aged, or genetically altered subjects (e.g., spontaneous hypertensive rats

(SHR) or receptor knockout mice). Through task contingency manipulation, greater

cognitive demand can be placed on the subject that decreases attentional perfor-

mance and this may also mimic dysfunctions in human attention. Drugs (e.g.,

methylphenidate, nicotine, ABT-418) that have beneficial effects on human atten-

tion (White and Levin 1999; Wilens et al. 1999; Min et al. 2001; Bidwell

et al. 2011) have also been found to improve SDT performance (McGaughy

et al. 1999; Rezvani et al. 2002, 2009a; Hillhouse and Prus 2013). Methylphenidate

and nicotine also attenuated scopolamine- and MK-801-induced SDT performance

deficits (Rezvani et al. 2008, 2009a). Collectively, the above findings demonstrate

the predictive validity as well as the versatility of the SDT model. However, it

should be noted that the complementary findings in the animal studies cited above

for methylphenidate and nicotine (i.e., observations of positive “stand-alone”

effects and the ability to attenuate “pharmacologic-induced” impairments) have

not always been observed. For example, methylphenidate, nicotine, and α4β2
nAChR agonists (e.g., ABT-418, A-82695, AZD 3480, sazetidine, and S-38232)

failed to demonstrate positive “stand-alone” effects in the standard SDT version

(Turchi et al. 1995; McGaughy et al. 1999; Howe et al. 2010; Rezvani et al. 2011,

2012). Yet, by decreasing attentional performance of the subject with either phar-

macologic impairment (e.g., scopolamine and MK-801) or the use of the distractor

version of the SDT (dSDT) α4β2 nAChR agonists were able to improve task

performance (Howe et al. 2010; Rezvani et al. 2011, 2012). Howe and colleagues

(2010) also suggested that some of the inconsistency with nicotine on sustained

attention might be due to its activation at α7 nAChRs. In their experiments (as noted

above) nicotine administered alone failed to improve performance of the dSDT,

whereas nicotine combined with the nAChR antagonist MLA was beneficial. These

results led the authors to suggest that activation of α4β2 nAChRs alone is sufficient
to improve attention and that co-activation α7 nAChRs might actually be undesir-

able. Interestingly, however, the α7 nAChR agonist/5-HT3 receptor antagonist
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RG3487 (MEM3454) produced “stand-alone” improvements on sustained attention

(Rezvani et al. 2009b).

Acetylcholinesterase inhibitors (e.g., donepezil and physostigmine) have also

been evaluated in the SDT and despite their positive clinical effects on attention

(Foldi et al. 2005; Bentley et al. 2011), they failed to alter sustained attention when

administered alone in animals (McGaughy and Sarter 1998; Rezvani et al. 2012).

However, donepezil was efficacious in reversing MK-801 impairments (Rezvani

et al. 2012).

5 Conclusion

The behavioral paradigms discussed in this chapter (5-CSRTT, 5C-CPT, and SDT)

have been very useful for elucidating the neuroanatomical structures and pathways

as well as the neurotransmitter systems that contribute to attentional processes and

there appears to be general agreement that the construct validity of these tasks is

reasonable. The tasks have also been used extensively to evaluate a variety of

pharmacological agents for their potential as therapeutic agents for diseases where

attention is impaired. In many cases the compounds that have a proven benefit in

clinical populations are also effective in the preclinical models, supporting the

argument that they may also have predictive validity. However, there are certainly

exceptions to this statement and due to the number of recent clinical trials failures

of novel compounds developed for neuropsychiatric disorders, the predictive valid-

ity of animal models and well as the tasks designed to assess behaviors in animal

models is coming under increasing scrutiny. Thus, while it is unlikely that any

behavioral task or animal model will enjoy universal acceptance as having predic-

tive validity, it is important that additional studies be conducted to resolve conflicts

in the literature where possible.
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Abstract

Components of human executive function, like rule generation and selection in

response to stimuli (attention set-shifting) or overcoming a habit (reversal

learning), can be reliably modelled in rodents. The rodent paradigms are based

upon tasks that assess cognitive flexibility in clinical populations and have been

effective in distinguishing the neurobiological substrates and the underlying

neurotransmitter systems relevant to executive function. A review of the litera-

ture on the attentional set-shifting task highlights a prominent role for the medial

region of the prefrontal cortex in the ability to adapt to a new rule

(extradimensional shift) while the orbitofrontal cortex has been associated
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with the reversal learning component of the task. In other paradigms specifically

developed to examine reversal learning in rodents, the orbitofrontal cortex also

plays a prominent role. Modulation of dopamine, serotonin, and glutamatergic

receptors can disrupt executive function, a feature commonly exploited to

develop concepts underlying psychiatric disorders. While these paradigms do

have excellent translational construct validity, they have been less effective as

predictive preclinical models for cognitive enhancers, especially for cognition in

health subjects. Accordingly, a more diverse battery of tasks may be necessary to

model normal human executive function in the rodent for drug development.

Keywords

Executive function • Cognitive flexibility • Reversal learning • Prefrontal cortex

1 Introduction

Executive function is one of the most widely studied aspects of human cognition. It

is small wonder since the ability to evaluate a range of scenarios that we have never

experienced, and adjust our behaviour to achieve our desired outcome, is in many

ways at the centre of the human experience. However from a more pragmatic view

many psychological disorders also express themselves in part by abnormalities in

executive function. Treating these abnormalities in disorders such as schizophrenia,

Alzheimer’s disease, and Autism, just to name a few, should improve the quality of

life for tens of millions of people worldwide. Yet, what about the remaining seven

billion cognitively “normal” people, does evidence exist to suggest that executive

function can be enhanced in the population at large? Clinical evidence can be found

to support the first-hand reports from the hundreds of millions who find that psycho-

stimulants improve attention and alertness under specific conditions (Wood

et al. 2014). Anecdotal evidence suggests that for some people creativity can be

enhanced via alcohol, marijuana, LSD, or other psychoactive substances. The fact

that functioning in these other domains can be enhanced suggests that the same may

be possible for executive function. However does our current understanding of the

neurobiology of executive function suggest this is possible, and is there any

experimental evidence suggesting such an enhancement can be achieved?

Despite being central to the human experience executive function is difficult to

define. Perhaps the simplest definition is that executive function is necessary when

routine behaviours will not be effective at dealing with the task in hand. In this vein,

the textbook example given by Shallice and Norman may provide the best examples

of when the recruitment of executive functions is crucial (Normans and Shallice

1980). These are situations that involve planning or informed decision-making:

error correction and troubleshooting; situations where the responses are novel,

dangerous, or technically difficult; and situations that require the overcoming of a

strong habitual response. What most of these examples have in common is rapid
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generation of behaviour in response to a novel situation. Accordingly, for the sake

of this review executive function will be defined as rule generation and selection in

response to stimuli, as well as a rapid change in behaviour in response to that

stimulus.

The methods used to study executive function in a clinical setting are varied. Yet

relatively few of these measures can be adapted to a preclinical setting. From the

outside, the experimental psychologist may seem obsessed with rodents. Despite

the many differences in physiology and complexity of behaviours produced by the

human and rodent brain, there are even more similarities. Accordingly the rodent

can be used to “model” many aspects of human cognition and central nervous

system function. Using what has become known as the “translational” approach,

certain behaviours are reduced to their core elements, and if these are dependent

upon overlapping neurobiology, then the preclinical species can be used to model

certain aspects of human biology (for a recent review on this approach, see Talpos

and Steckler 2013). The validity of the translational approach has been especially

well supported for executive function and processes within the prefrontal cortex

(PFC; Keeler and Robbins 2011). Despite the wide variety of methods that are used

to study executive function in a clinical setting, those that are of greatest interest are

the ones that have a rodent analogue. By testing rodents in a “human”-like fashion,

it is possible to gain insight into how a similar manipulation might affect human

cognition. Unfortunately only a handful of tests have been developed that are

thought to measure executive function in the rodent. Generally, these tasks fall

into three categories, those that require rule generation and selection (attentional

set-shifting), those that require overcoming a habit (reversal learning), and finally

those that require the rapid adaptation of a behavioural response to incoming

stimuli (stop signal reaction time and the continuous performance task). Despite

each being a measure of executive function, it is thought that each of these tasks is

dependent upon partially dissociable brain regions and may have unique pharma-

cology. In this chapter, we will focus on rule generation and overcoming a habit.

This is not to discount the importance of the rapid adjustment of behaviour.

However rapid adjustment of behaviour is so dependent on levels of attention and

impulsivity that it can be difficult to distinguish effects on executive function from

other cognitive abilities.

The prefrontal cortex (PFC) is a complex structure and while there has been

significant progress in understanding its function in the normal brain, greater

success has been achieved in restoring compromised performance produced by

either neurotoxin lesions (Dalley et al. 2004) or treatment with phencyclidine and

related NMDA receptor antagonists (Floresco and Jentsch 2011; Neill et al. 2010).

In a clinical setting treatments for cognitive impairments associated with

Alzheimer’s disease or attention deficit hyperactivity disorder are available,

although these do not improve executive function per se. Moreover these treatments

are generally less effective or even disruptive in a non-clinical population. Yet as

we learn more about the neurobiological processes underlying executive function in

normal and abnormal cognition, the possibility of enhancing these abilities by

pharmacological modulation seems a scientific possibility. This will be a significant
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advancement from the first generation of nootropics, such as piracetam, which

showed only minimal efficacy and lacked any specific pharmacological basis for

their action. Since cognition can be more defined into domains such as attention,

working memory, executive function, and inhibitory control, it becomes feasible to

utilise animal models to develop the new generation of cognitive enhancers. Which

transmitter systems should be targeted? Since the prefrontal cortex has been

implicated in many of these cognitive domains (Dalley et al. 2004) and is

innervated by multiple neurotransmitter systems, notably dopamine, serotonin,

noradrenaline, and glutamate, opportunities to modulate these systems provide a

starting point to develop novel cognitive enhancers. To facilitate this, it is impera-

tive to understand the interplay between these neurotransmitter systems and how

they influence executive control using appropriate animal models.

2 Attentional Flexibility

Attentional flexibility is commonly measured clinically using the Wisconsin card

sorting test (WCST; Milner 1963), as well as intradimensional/extradimensional

shifting tasks like those used as part of the Cambridge Neurological Test Battery

(CANTAB). Deficits on performance in the WCST have been observed in patients

with schizophrenia. Typically, the subjects must sort a series of cards dependent

upon changing rules, such as pattern or colour (Berg 1948). Over the course of the

test, schizophrenia patients can learn simple rules for sorting the cards, but find it

difficult to adapt their behaviour once the relevant category changes (i.e. from

sorting by colour to sorting by number; Egan et al. 2001). Moreover these patients

also demonstrate impaired learning in the simple reversal learning tasks in which

the cues signalling correct and incorrect responses are switched (Leeson et al. 2009;

Waltz and Gold 2007). Many of the abnormalities in responding in patient

populations have been attributed to dysfunction within the frontal cortex (Dias

et al. 1996a, b; Robbins and Keeler 2011).

In rodents executive control can be modelled using the attentional set-shifting

task (ASST) developed by Birrell and Brown (2000). The ASST allows investiga-

tion of the mechanisms underlying both attentional set formation and maintenance

in addition to attentional flexibility and reversal learning. Furthermore, it is for-

mally equivalent to the human and primate versions of the task (Brown and

Bowman 2002; Dias et al. 1996a, b; Owen et al. 1991), but uses more species

appropriate stimuli such as odour- and tactile-based discriminations. The task

requires the rodent to learn to associate a food reward with a specific dimension,

which is later changed during the task (extradimensional shift: EDS). Birrell and

Brown (2000) observed that rodents took more trials to complete the

extradimensional shift (switching to a previously irrelevant stimulus, whilst ignor-

ing the previously relevant stimulus) component of the task than the

intradimensional shift (switching within the same relevant dimension) component

when rodents had bilateral lesions of the prefrontal cortex (Birrell and Brown

2000). Thus, the ASST assesses a rodent’s ability to shift attention to allow
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investigation of the mechanisms underlying both attentional set formation and

maintenance, in addition to attentional flexibility and reversal learning.

From a procedural perspective, the task requires rodents to be habituated to the

test apparatus prior to the start of testing. This is typically a modified plastic home

cage that has been divided into two sections by Plexiglas panels. At the end of each

section is a ceramic digging bowl. During testing the bowls are filled with different

digging media that are scented with different herbs and spices. The food reward

(half of a cereal Cheerio™; Nestle, UK) is buried beneath the digging media in the

bowl. A removable Perspex divider separates these sections from the rest of the box

so access to both bowls can be controlled during testing. A smaller Perspex divider

is also used when required to block access to either of the bowls individually, for

example when an error was made by the rodent. As part of the “habituation” phase,

rats are trained to dig in bowls of unscented wood chips for the cereal reward. Once

this behaviour has been acquired rats are required to perform simple

discriminations based on odour or medium to earn a food reward (for example

reward is always paired with a specific odour). These simple discriminations

(SD) are carried out in the same order for all rats, and in each only one of two

exemplar choices is rewarded. Therefore in the “medium” SD, food reward is

paired with polystyrene chips but not shredded paper, and in the “odour” SD,

reward is paired with mint but not oregano. The rats are trained to a criterion

performance level of six consecutive correct trials on each of the SDs and these

exemplars are not used again in subsequent tests. A series of seven discriminations

forms the ASST, in the order outlined in Table 1. These discriminations are

presented to each rat in the same order, which encourages the formation of attention

sets that can then be subjected to reversals and dimensional shifts (in the example in

Table 1 this is odour, with nutmeg being the rewarded and cloves the unrewarded

exemplar both in the coarse sawdust medium).

On reaching criterion on the SD phase, testing progresses to the compound

discrimination (CD), where the correct and incorrect exemplars of the relevant

dimension remain the same as in the SD (i.e. nutmeg vs. cloves in the example), but

a second (irrelevant) dimension is introduced (i.e. fine as well as coarse sawdust

medium). The CD is followed by a reversal discrimination (REV1) in which the

exemplars and dimensions are unchanged from the CD, but the previously correct

exemplar is now incorrect and vice versa (i.e. in our example, odour is still relevant,

but it is now cloves not nutmeg which is rewarded; reversal learning will be

discussed in additional detail later in the chapter). The ID shift is then carried

out. New exemplars of the relevant and irrelevant dimensions are presented to the

rat with the same dimension being relevant. In our example it is still odour that is

the relevant dimension; however, we now have cinnamon being rewarded but not

cumin. Accordingly animals are still required to ignore the element of medium, but

must learn a new rule within a dimension (intradimensional shift). The ID shift is

then followed by another reversal discrimination (REV2), whereas in REV1 the

exemplars remain the same as in the ID shift, but the relevant and irrelevant

exemplars within a dimension are reversed (so in our example, it is still odour

that is the relevant dimension, but it is now cumin that is rewarded not cinnamon).
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This is followed by the ED shift stage of the task. As in the ID shift, the rat is

presented with completely novel exemplars of both relevant and irrelevant

dimensions. However in contrast to the ID shift, the previously relevant and

irrelevant dimensions are now reversed, so that for a rat initially trained on

odour, medium becomes the relevant stimulus in the extradimensional, or, “ED”

shift and vice versa. In the example listed in Table 1, the rat has to now attend to

medium as the relevant dimension, with large pebbles being rewarded but not small

pebbles—the odours of paprika and thyme are now irrelevant. The test session

concludes with a final reversal discrimination (REV3) of the ED shift. Subjects are

required to make six consecutive correct responses before moving on to the next

stage. The ED shift is the most challenging aspect of the task and subjects typically

require an increased number of trials to criterion to solve this stage compared to the

ID shift.

2.1 Neural Substrates Underlying Attention Shifting

In their first report on the rodent ASST, Birrell and Brown (2000) demonstrated that

different aspects of attention-shifting in the task are mediated by distinct subregions

of the PFC (Birrell and Brown 2000; McAlonan and Brown 2003). Excitotoxic

lesions of the medial PFC impaired ED shifting in rodents (Brown and Bowman

Table 1 Order of discriminations in the task and exemplar combinations used

Discrimination

Dimensions Example paradigm

Relevant Irrelevant + –

SD Odour Nutmeg/coarse sawdust Cloves/coarse sawdust

CD Odour Medium Nutmeg/coarse sawdust
Nutmeg/fine sawdust

Cloves/coarse sawdust

Cloves/fine sawdust

REV1 Odour Medium Cloves/coarse sawdust
Cloves/fine sawdust

Nutmeg/coarse

sawdust

Nutmeg/fine sawdust

ID Odour Medium Cinnamon/Darjeeling
tea

Cinnamon/Fine tea

Cumin/Darjeeling tea

Cumin/Fine tea

REV2 Odour Medium Cumin/Darjeeling
Cumin/Fine tea

Cinnamon/Darjeeling

Cinnamon/Fine tea

ED Medium Odour Large pebbles/thyme

Large Pebbles/paprika
Small pebbles/thyme

Small pebbles/paprika

REV3 Medium Odour Small pebbles/thyme

Small pebbles/paprika
Large Pebbles/thyme

Large Pebbles/paprika

The table illustrates an example of the combination of exemplar pairs in a rat shifting attentional

set from odour to medium in the ED stage. Equal numbers of rats in each treatment group shifted

set from odour to medium and medium to odour. In every discrimination except SD, both bowls

presented differed along both perceptual dimensions. The rewarded stimulus (in bold type) was

paired with either irrelevant exemplar across trials and discriminations. The order and left/right

presentation of exemplar pairs was also determined pseudorandomly (adapted from Birrell and

Brown 2000)
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2002; Bissonette et al. 2008), while lesions of the orbitofrontal cortex (OFC) could

also impair the reversal learning stages of the ASST (Dias et al. 1996a; Birrell and

Brown 2000). The functional dissociation between these two regions has subse-

quently been confirmed in human studies (Hornak et al. 2004), suggesting that the

rodent and non-human primate versions of the task are effective translational

models of human cognitive flexibility. Furthermore, frontal lobectomy in humans

(Owen et al. 1991), lesions of the primate lateral PFC (Dias et al. 1996a, b, 1997),

and the equivalent prelimbic and infralimbic regions of the rat PFC (Birrell and

Brown 2000) produce specific impairments in ED set-shifting, while lesions of the

OFC selectively impair reversal learning in rodents and non-human primates (Dias

et al. 1996a, b; Schoenbaum et al. 2002; McAlonan and Brown 2003). The neural

substrates mediating the ED shift and reversal learning have been shown to be

functionally dissociated since OFC is thought to be necessary for reversal learning

but not ED shifting (Birrell and Brown 2000; Chase et al. 2012). In addition, lesions

of the cingulate cortex can also impair ED shifting (Ng et al. 2007), although it is

not clear if this type of lesion affects the formation of an attention set. The posterior

parietal cortex (PPC) has also been linked with neuronal activations during an

attentional set-shifting task (Asari et al. 2005) and lesions of the PPC have been

shown to impair set-shifting in rodents (Fox et al. 2003). Using a different approach

to identify the neural basis of ID set-shifting, one study has demonstrated significant

correlations between ID performance in rats in the attentional set-shifting paradigm

and immediate early gene expression in the dorsolateral striatum and the nucleus

accumbens—areas that are involved in stimulus–reward associations (Egerton

et al. 2005a). Therefore it is conceivable that the whole cognitive process may be

more complex and involve other structures and neurotransmitter systems outside of

the PFC. For example, lesions of the dorsomedial striatum have been shown to

impair formation of attentional set in rats (Lindgren et al. 2013), while depletion of

noradrenaline by lesions of the dorsal noradrenergic bundle has been shown to

impair attentional set-shifting in the rat (Tait et al. 2007). Furthermore, the

immunotoxin DβH-saporin that selectively depletes noradrenaline levels also

produces a selective impairment on set-shifting in rats (McGaughy et al. 2008).

These studies suggest that ASST might require inputs from a wider array of brain

regions than initially described, thereby offering further clues as to neurotransmitter

systems that the task may be dependent upon and which could be targeted to

enhance executive function.

2.2 Pharmacological Sensitivity of the Attentional
Set-Shifting Task

There have been very few published studies that have sought to enhance attentional

set-shifting in normal non-compromised animals. Most investigations on pharma-

cological mechanisms have centred on rodent models of mental disease. To date,

only a single published study has reported on the acute effects of a psychoactive

substance for enhancing attentional set-shifting in rats. Nicotine injected both

Executive Function 197



acutely and following repeated pre-exposure significantly improved both

intradimensional and extradimensional set-shifting performance in the task (Allison

and Shoaib 2013). An example of the nicotine-induced improvements on ED

shifting of the dose-related improvements is illustrated in Fig. 1. These findings

implicate the nicotinic receptor system in the mediation of processes underlying

cognitive flexibility and suggest that nicotine improves attentional flexibility in rats,

both within and between perceptual dimensions of a compound stimulus (Allison

and Shoaib 2013). Further studies with more selective nicotinic agonists and

positive allosteric modulators will help to confirm the therapeutic utility of

targeting the cholinergic system. This is further highlighted by a recent study

demonstrating that the cholinesterase inhibitor tacrine can facilitate attention

shifting and age-related impairments on the reversal learning stage of the ASST

(Tait et al. 2013).

The majority of the pharmacological characterisations are based around the

hypo-glutamate hypothesis of schizophrenia; there have been a vast number of

published studies utilising NMDA receptor antagonists to model cognitive deficits

associated with schizophrenia in rodents and non-human primates (Floresco and

Jentsch 2011; Barak and Weiner 2011; Frohlich and Van Horn 2014), with the key

objective of restoring function. Phencyclidine has been commonly administered
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Fig. 1 Effect of administration of acute nicotine in increasing doses on extradimensional set-

shifting (ED). Data expressed as mean� SEM of the number of trials to reach criterion on the

discriminations in the task. All doses of nicotine produced marked improvements in performance

at the ED stage of the task. *p< 0.05, ***p< 0.001 vs. vehicle-treated control. The control rats

require significantly more trials to reach criterion on the ED compared to the ID stage of the task.

###p< 0.001 ID vs. ED in vehicle-treated group (figure reproduced from Allison and Shoaib

2013)
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both acutely (Egerton et al. 2005b) and following subchronic treatment (Rodefer

et al. 2008; McLean et al. 2012), which impairs ED shift performance. Similarly,

ketamine, a related non-competitive NMDA receptor antagonist, has also been

shown to impair ED shifting following acute (Nikiforuk et al. 2010) and subchronic

(Nikiforuk and Popik 2012) treatment. Both of these treatments appear to selec-

tively impair the ED shift in which the number of trials required to complete the ED

task increases significantly, without affecting the other series of discrimination

tasks (McLean et al. 2012; Nikiforuk and Popik 2012). Repeated treatment with

amphetamine can also impair ED shift in rats (Fletcher et al. 2005), providing an

opportunity to investigate dopaminergic mechanisms in attention shifting.

A variety of pharmacological targets have been examined with a view to

reversing impairments on ED shift and reversals. These treatments range from the

clinically effective neuroleptics such as clozapine to more selective compounds

such as allosteric modulators at the AMPA receptor (AMPAkines). In reviewing the

pharmacological sensitivity of ASST, it is apparent that there is a dearth of

systematic studies that have focused on a given neurotransmitter system. For

example, with serotonergic compounds, the 5HT6 receptor antagonist

(SB271046) has been shown to ameliorate PCP-induced ED impairment (Rodefer

et al. 2008). Restoration was also reported for sertindole (Rodefer et al. 2008), a

clinically effective atypical antipsychotic that has both serotonergic and dopami-

nergic activities, in both PCP-treated and ketamine-treated rats (Nikiforuk

et al. 2010). Similarly, risperidone and clozapine have also been shown to restore

PCP-induced ED shift impairments. In a mPFC lesion model of impaired ED shift

performance, asenapine, a second-generation antipsychotic, restored the deficit.

Elevating noradrenaline levels by administering atomoxetine, this reuptake blocker

ameliorated ED shift impairments produced by DβH-saporin NA-specific PFC

lesions (Newman et al. 2008). For a more detailed review of the compounds

evaluated in the ASST, Neill et al. (2010) have compiled an extensive review of

psychoactive compounds tested in animal models of cognitive dysfunction

associated with schizophrenia.

2.3 The Validity of the Attentional Set-Shifting Task
as a Translational Model

The ASST as a rodent model of executive function appears more suited to capture

cognitive deficits associated with chronic exposure to psychotomimetic drugs,

rather than evaluating cognitive enhancements produced by acute exposure to

psychoactive drugs. The increased number of trials to complete the ED shift

produced by drugs like PCP and ketamine provides a large therapeutic window

for amelioration. However, the opportunity for enhancement in normal subjects is

limited and thus the ASST for this purpose may not be ideal. Furthermore, the task

is very demanding to conduct, requiring a relatively large number of subjects per

group (n¼ 12) for a fully counterbalanced design. There is also an element of bias

that comes with scoring the performance during the trials and common recognition
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of what constitutes a “dig”, since this constitutes a choice decision in the ASST that

can vary across laboratories and thus impacts on scientific validity of the task. Thus,

this model of assessing executive function is clearly not suited for purposes of drug

discovery. Certainly, the ASST can be utilised for more targeted, hypothesis-driven

approaches on executive control. Efforts should focus on developing automated

versions of the rodent task that removes the element of subjective scoring and

provides a faster throughput of data.

There are some issues relating to the validity of the ASST as a plausible measure

of executive control. While the ID and ED shifts provide the key measures of

attentional control, the three reversals contained within the ASST can be difficult to

interpret. The sequence of discriminations as originally described by Birrell and

Brown (2000) is restrictive and makes the task of evaluating acute drug effects

difficult due to the varying completion times within groups of rodents and the

difficulty to maintain constant drug levels throughout the ASST. The construct

validity could be improved by focusing on the attention shifts by performing

multiple ID and ED shifts within the ASST to infer on the attention set formations.

Evaluating compounds on cognitive flexibility (see below) would be better suited to

other models specifically based on reversal learning (see below). From the data

generated with putative “cognitive enhancers” in the ASST thus far, very few of

these molecules have not advanced to a stage where they can be tested in the

equivalent version of the set-shifting task in humans; thus the predictive validity has

yet to be fully appraised. Furthermore, many D2 receptor-based antipsychotics

appear to have a pro-cognitive profile within ASST when tested against animal

models of schizophrenia (subchronic administration of NMDA antagonists). While

many of these treatments are associated with improved positive symptoms in

schizophrenia, they have generally been found to have little or no effect against

the cognitive deficits frequently seen in schizophrenia. This draws into question the

predictive validity of the approach, especially when applied to models of

schizophrenia.

3 Reversal Learning

Habitual behaviour is a huge benefit in everyday life. It allows completion of

common tasks while requiring minimal mental involvement, thus freeing cognitive

resources for other pursuits. However habitual behaviours are only of use as long as

conditions remain constant; once contingencies change, habits can become a

hindrance. For example, being able to drive to work without needing to “think”

about finding your way allows you to free mental resources to focus on the traffic,

plan your day, or just listen to the radio. However continuing to drive to your former

place of work when you have a new job would cause some obvious inconveniences.

Reversal learning is the summation of the mental process required to recognise that

contingencies have changed, and update behavioural responses in accordance with

these new contingencies. Classically, reversal learning is studied in the form of a

discrimination. Participants (human, primate, rodent) are required to learn that a
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specific response is associated with a positive reward, whereas the alterative

response is not. In one popular approach used in humans, monkeys, and rodents,

two images are displayed upon a screen and the subject must learn which image is

associated with a reward (for just a few examples, see Brigman et al. 2008; Roberts

et al. 1990; Robbins et al. 1994). Once this response has been robustly acquired the

contingencies are reversed, what was formerly correct is now incorrect, and vice

versa. In the trials immediately following this switch in contingencies, it is expected

that participants will continue to use their old response strategies. However, over

time it should become apparent that the reward contingencies have changed and

that behavioural responses must be altered to effectively operate in a new environ-

ment. In order to do this, it is necessary to (1) detect that the current response is no

longer resulting in reward, (2) inhibit this response, (3) alter behaviour to discover

the current reward contingencies, and (4) ultimately learn the new correct response.

While reversal of the acquired rule will require many of the same processes

required in initial rule acquisition, this need to inhibit the prepotent response should

also selectively engage portions of the frontal cortex that are not necessarily

required for task acquisition. Overwhelming evidence now suggests that reversal

learning is dependent upon the OFC, striatum, and amygdala, but regional involve-

ment may partially depend upon the demands unique to the task being used

(Brigman et al. 2013; Clarke et al. 2008; Robbins and Keeler 2011; Boulougouris

et al. 2007; and many more).

Numerous reversal learning paradigms exist for the rodent. For example

procedures exist that are dependent upon the discrimination of a location, of an

object/image, of an odour or texture (as described in ASST), and even of sound.

Despite the different sensory modalities used, these tasks are generally thought to

still be dependent upon the same brain regions except for those that are modality

specific. For example, spatial reversals have been shown to engage the hippocam-

pus, and one would expect discriminations based on odour to engage the olfactory

bulb and potentially the piriform cortex. The vast majority of rodent reversal

learning studies are done with a “simple” reversal learning procedure. A response

to the rewarded stimulus will always result in reward, whereas a response at the

non-rewarded stimulus will never result in a reward. However, this is not the case in

human studies. Frequently in normal participants, a “probabilistic” reversal

learning paradigm is used. In probabilistic paradigms, a correct response will in

some instances result in a non-rewarded outcome, while an incorrect response will

result in a rewarded outcome (Cools et al. 2007; Hornak et al. 2004) in accordance

with a predetermined reward ratio (e.g. correct response results in a reward 90 % of

the time and an incorrect response results in reward 10 % of the time). This causes

uncertainty as to whether the reward contingencies have changed and will result in a

slower “learning” of the rewarded stimulus and shift away from the former reward

contingencies. As such, probabilistic reversal learning should cause an increase in

responding under the old contingencies and offer a greater opportunity to detect an

increase or decrease in perseverative behaviours. This distinction between simple

and probabilistic reversal learning may only be relevant when studying cognitive

flexibility in normal participants, as many psychiatric conditions are noted for
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apparent impairments in simple reversal learning negating the need of a probabilis-

tic component. Furthermore, rodents are comparatively poor at reversal learning.

“Fast” reversals, such as those dependent upon a spatial locations or odour, will

often require 10s of responses prior to reversal, while “slow” reversals, like those

dependent upon a visual or auditory discrimination, can take 100s of trials and span

days of training. It should be noted that probabilistic reversal learning may engage

additional PFC brain regions, at least in humans (Hornak et al. 2004). Therefore

from a translational point of view, the use of a probabilistic reversal may still be

preferable.

Another consideration that may influence the neural substrates of reversal

learning is the influence of repeated reversals, or serial reversal. After subjects

have been trained on an initial discrimination (A+/B�), and reversed (B+/A�),

then can again be placed on the original discrimination (A+/B�). Evidence

suggests that single and serial reversals alike engage the OFC; however, VLPFC

is not necessary for serial reversals (Rygula et al. 2010; Clarke et al. 2007, 2008,

2011). Numerous frameworks have been proposed to explain the role of the OFC in

reversal learning. A leading theory put forward by Roberts and colleagues views the

OFC as being necessary for making the association between cues and the outcomes

associated with these cues (Roberts et al. 1990; Roberts and Wallis 2000). In this

context, the VLPFC is seen as being necessary for initial rule creation and

generalisation into a new environment. While this is an extremely important

process that allows us to dynamically adjust to our settings, it is, strictly speaking,

not involved with the overcoming of a habitual response.

3.1 Neurobiology of Reversal Learning

A substantial body of work now exists that highlights the importance of the OFC for

reversal learning in humans, monkeys, and rodents. For example, a study by

Hampshire and Owen (2006) that investigated brain activity using event-related

fMRI in a set-shifting task (like those previously described) found increased right

and left OFC activation when reward contingencies changed within a dimension.

Based in part on this finding, they concluded that the lateral OFC “plays a role in

attention that is related to, although more complex than, merely processing negative

feedback”. A series of lesion studies in marmosets has produced data largely in line

with these conclusions. For example, lesions of the OFC were found to have little

effect on the learning phase of reversal (i.e. when performance was above chance),

but did greatly impair performance just after a shift in reward contingencies (Clarke

et al. 2008). Interestingly, an analysis of the trial-by-trial behaviour of the monkeys

found that those with OFC lesions were more likely to shift responding after a

correct result and less likely to shift responding after an incorrect result, as did the

control group. This suggests that lesions of the OFC result in a decreased sensitivity

to both positive and negative rewards, an effect that is present when the same

stimuli are used for repeated reversals and if novel stimuli are used for serial

reversals (Rygula et al. 2010). Lesions of the OFC have also been found to impair
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reversal learning in the rodent but not extradimensional shifting (McAlonan and

Brown 2003; Boulougouris et al. 2007). However, unlike what has been reported in

the marmosets, evidence exists to suggest that this effect is dependent upon

previous task experience (Boulougouris and Robbins 2009). While these

inconsistencies may be the result of task experience, it is also possible they are

the result of species differences, the type of reversal task (spatial versus visual), or

even the “difficulty” of the reversal (errors to criteria). Fewer efforts have been

made to investigate the influence of task type (spatial, visual, olfactory) or reversal

type (repeated, serial, probabilistic) on outcome within the reversal learning litera-

ture. Accordingly it is difficult to determine what are meaningful differences and

what is simple variation between tasks.

Despite the well-documented importance of the OFC in reversal learning, other

areas of the brain also contribute to this multifaceted process. For instance, the

ventrolateral PFC has been shown to be activated during the stage of reversal when

subjects have stopped perseverating and are now “looking for the solution”

associated with the new reward contingencies (Hampshire and Owen 2006; Cools

et al. 2002). Interestingly, marmosets that underwent lesions of the ventrolateral

PFC were impaired in reversal learning only when new stimuli were used and did

not show clear evidence of a perseverative phenotype. Accordingly, the ventrolat-

eral PFC may only be of relevance under novel conditions and strictly speaking is

not necessary for the overcoming of a habitual response, but will be necessary for

optimal performance in a dynamic setting. A role has also been claimed for the

striatum in reversal learning, and while this is very likely the case, it is unclear to

what extent these effects are selective for reversal learning. For instance, a lesion of

the medial striatum (marmoset) was found to impair reversal learning by inducing

impairment in negative feedback learning that was not apparent during the acquisi-

tion phase of the task (Clarke et al. 2008). This result is in line with other findings

where the D2 receptor preferring agonist, quinpirole, was infused directly into the

ventral striatum of rats that were trained to perform a lever-based reversal (Haluk

and Floresco 2009), resulting in a slower behavioural reversal. However an analysis

of c-fos levels at different stages or visual discrimination and reversals shows high

levels of activity associated with both discrimination acquisition and post-reversal

performance (Brigman et al. 2013). Moreover, lesions of the striatum have also

previously been shown to disrupt performance and acquisition of various

discriminations (Broadbent et al. 2007. These later data would support at least

some role for the striatum in task acquisition, which would erode support for a

selective role of the striatum in general in reversal learning. However, this would

not explain the differential effect on negative feedback in acquisition versus

reversal in the study by Clarke et al. (2008).

3.2 Pharmacological Sensitivity of Reversal Learning

Many studies have been performed investigating pharmacological mechanisms that

may enhance reversal learning. However, the vast majority of these have been done
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in conjunction with an impairment model, typically those that are thought to model

aspects of schizophrenia. Far less literature exists examining the effects of neuro-

chemical or pharmacological manipulations in non-clinical humans or unchal-

lenged animals. Of those studies that do exist, the vast majority address the

effects of either dopamine or serotonin. Some of the earliest studies investigated

the effects of temporary 5-HT depletion in healthy volunteers and discovered this

induced impairments in reversal learning (Park et al. 1994; Rogers et al. 1999a, b).

Furthermore, chronic treatment (2 weeks administered in drinking water) with the

selective serotonin reuptake inhibitor fluoxetine was found to decrease persevera-

tive errors in mice (Brigman et al. 2010). More recently, it has been demonstrated

that systemic administration of the 5-HT2a receptor antagonist M100907 will

disrupt reversal learning, while the 5-HT2c receptor antagonist SB 242084 has

been found to decrease perseverative behaviour in a rodent spatial reversal task

(Boulougouris et al. 2007), an effect eventually attributed to the OFC

(Boulougouris and Robbins 2010).

Serotonin clearly plays a role in reversal learning; however, it has also been well

established that 5-HT receptors are crucial in regulating levels of dopamine. As

such, it is not clear to what extent serotonergic manipulations are directly

influencing behaviour versus regulating dopaminergic function. For example,

administration of the D2/3 receptor antagonist raclopride was found to impair

reversal learning while having little impact on discrimination acquisition in

monkeys (Lee et al. 2007). In contrast, a D1/D5 receptor antagonist was not able

to disrupt accuracy without also suppressing behaviour in general. The D2/3

receptor agonist quinpirole was also found to induce perseverative errors in a spatial

reversal task in the rat, while in the same study, raclopride was seen to have no

effect on reversal learning. These apparently conflicting results may be reconciled

by claims that reversal learning is in part dependent upon striatal dopamine levels

(Clatworthy et al. 2009) or striatal D2 receptor availability (Groman et al. 2011). It

is possible that species or task differences could result in different optimal levels of

dopamine or that D2 receptor occupancy having been obtained in each study

resulted in contrasting effects after D2 receptor blockade or activation. All of

these findings would support a primary role for dopamine in reversal learning.

Yet this conclusion is challenged by the results of a study comparing the effects of

OFC depletion of serotonin or dopamine in marmosets performing a reversal task.

In this instance, the lesion of dopaminergic cells had no apparent effect on persev-

eration, arguing for a role of serotonin that is independent of dopamine, at least

within the OFC (Clarke et al. 2007). As a whole these data suggest a complex

interplay between multiple regions within the cortico-striatal loop and the dopami-

nergic and serotonergic systems in support of reversal learning and begin to hint at

potential differences between rodents and primates in optimal levels of perfor-

mance for tasks of executive function.

Despite the clear importance of the dopaminergic and serotonergic system in

reversal learning, evidence also suggests that the noradrenergic system can modu-

late reversal learning performance. For example, the norepinephrine reuptake

inhibitors methylphenidate and atomoxetine were found to enhance reversal
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learning in the monkey and rat (Seu and Jentsch 2009), while additionally desipra-

mine enhanced performance in the rat alone (Seu and Jentsch 2009; Lapiz

et al. 2007). Generally these compounds caused a decrease in perseverative

behaviours, although the exact profile differed from drug to drug. Interestingly

methylphenidate was seen to disrupt performance during the retention phase of the

task in rats and monkeys, while the selective dopamine transport inhibitor GBR-

12909 induced a similar impairment but offered no benefit on reversal learning (Seu

and Jentsch 2009). This could explain the effects with methylphenidate, as it is a

mixed NA/DA reuptake inhibitor. Finally, work by Lapiz and Morilak (2006)

attributes some of the effects seen with norepinephrine reuptake inhibitors to the

a2-adrenergic receptor, as stimulation with the agonist atipamezole has been shown

to selectively enhance the first reversal in a set-shifting paradigm.

From the above data, it is clear that reversal learning is sensitive to a diverse

pharmacology. Besides the aforementioned results, there are also data to suggest

that manipulations of the cholinergic (Tait and Brown 2008; Roberts et al. 1992;

Chen et al. 2004) or glutamatergic (Brigman et al. 2013) systems can influence

reversal learning, as can administration of various cannabinoids (Egerton

et al. 2005a). With this sensitivity to a diverse variety of mechanisms, it is important

to clarify why reversal learning is of interest. The easy answer is because it is a

translational measure of cognitive flexibility. While this is true, it does not mean

that all aspects of reversal learning are of interest. Returning to our original

definition of executive function, reversal learning is of interest because it requires

overriding a prepotent response or habit. Accordingly, manipulations that improve

performance at “chance” level or “late” reversal will be of little relevance, as these

are not contributing to overcoming this habitual response; rather they are evidence

of enhanced learning. For instance, a detailed series of studies by Fellini

et al. (2014) demonstrated that acute PCP impaired the initial acquisition of a

visual discrimination, the acquisition of a second visual discrimination, reversal

of a visual discrimination, and reversal of a second visual discrimination. In this

series of studies, PCP did disrupt reversal learning, but it would not be appropriate

to attribute these results to a deficit in cognitive flexibility. While this is certainly

interesting in its own right, it is not evidence of the change in executive function for

which reversal learning is intended to measure. Similarly, manipulations that

enhance only the first of several reversal sets may not be of interest for this specific

cognitive function for two reasons. First, if the effect is only transitory, then it is

possible that the task has changed from a reversal task with a distinct perseveration

phase to a switching task and a lose shift strategy where animals are no longer

forming true habits to overcome, but instead are adjusting behaviour in response to

the most recent reward outcome. While this can look very similar to reversal

learning, the lack of perseverative behaviour should mean that fundamentally

different neurobiology is involved. Confirmation of this will typically require a

complex behavioural analysis looking at behaviour after correct and incorrect trials

similar to the approach used by Clarke et al. (2008). Second, there is no reason to

think that if a manipulation influences the initial reversal phase by decreasing

perseveration, assuming a habit is still being formed, that it should not do the

Executive Function 205



same on subsequent reversal phases. Indeed manipulations of the dopaminergic and

serotonergic systems can repeatedly influence perseverative behaviour across

reversals (Boulougouris et al. 2009; Clarke et al. 2005, 2011). It is possible that

since the first reversal comes after the compound discrimination stage in attentional

set-shifting tasks, this reversal instead appears more like a set-shift owing to the

recent addition of the irrelevant element. This may engage mPFC processes in the

rodent while manipulations that influence later reversals could be having most of

their effects via the OFC. While this could still be an excellent measure of executive

function and cognitive flexibility, it is still removed from the original purpose of

studying reversal learning—to investigate the ability to overcome a prepotent

response.

3.3 The Validity of Reversal Learning as a Translational Model

As previously mentioned, a variety of approaches can be used to investigate

reversal learning, and depending on the modality of the stimuli, reversal learning

itself can take 10 trials (as seen in bowl digging tasks) or even 1,000 trials (as may

be the case with a visual discrimination). What is unclear is the extent to which

these paradigms are equivalent. For example, direct administration of the NR2B

antagonist RO 25-6981 into the OFC has been shown to induce perseverative errors

in a slowly learned visual discrimination-based reversal (Brigman et al. 2013), and

lesions of the OFC in rodents have on multiple occasions been shown to impair

“quick” reversal learning in bowl digging paradigms. However, control animals

may need only ten errors to perform the reversal, while animals with lesions of the

OFC may show only a minor increase in total errors that is significant in part

because of the high level of baseline accuracy. This is in contrast to the remarkable

effect seen in marmosets after an OFC lesion, where errors may increase by a factor

of 10 as a result of the lesion. Considering the differences in trials required to

complete a reversal and the magnitude of effect, it is difficult to consider all of these

measures of reversal learning as equal. Yet, OFC lesions do cause impairment in all

of these measures, suggesting that much of this circuitry does translate across tasks

and species. To confirm this construct validity, it would be advisable to ensure that

the impairment is from the same part of the learning curve (i.e. just after reversal)

and that similar patterns of reward insensitivity are observed. However, this may be

difficult to do practically in reversal learning assays where ten errors is the

difference between a normal animal and one with an OFC lesion.

The previously mentioned marmoset data highlight another problem with rever-

sal learning as a translational test of behavioural flexibility; primates and especially

humans are very good at detecting a change in reward contingencies under normal

conditions in a pathology-free state. However, this does not appear to be the case for

rodents, with many compounds being shown to enhance some aspect of reversal

learning. To make the task “harder” in humans, parameters are often altered to

include a probabilistic element. Much of the data that have been generated in

preclinical species suggest that this task manipulation results in the recruitment of
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other brain regions not involved with the perseverative element of reversal learning

per se. While this additional mPFC involvement may still be of interest for studying

cognitive flexibility in general, it is of less value for understanding how the brain

overcomes a habitual response. This may represent a limit in reversal learning in the

rodent as a directly translational task of normal human reversal abilities; humans

appear to operate at, or close to optimal, while rodents do not. The Yerkes–Dodson

principle states that varying amounts of arousal are needed to perform tasks at the

highest level and that this level of arousal follows an inverted curve. Our previous

example of driving a car can also be applied here. When driving a familiar route in

light traffic, many individuals will prefer to listen to music or have the radio on. The

increased level of arousal coming from the dashboard will cause us to focus more

effectively on the task at hand and help pass the time while performing an otherwise

mundane task. The additional stimulation is needed to perform at an “optimal”

level. However if traffic levels suddenly change and we drive in unfamiliar terri-

tory, or perhaps it starts to rain heavily, then we will turn off the radio, which has

now become a distraction, and focus completely on driving. We are now function-

ing at “optimal” for this task and any additional arousal (in the form of the radio)

now impairs performance. Such a perspective could explain the results of a 2009

study (Clatworthy et al. 2009) investigating the relationship between D2 receptor

occupancy and performance on a task of reversal learning or working memory after

treatment with methylphenidate. D2 receptor occupancy in the caudate predicted

performance on a reversal learning task, while performance on a task of spatial

working memory was predicted by occupancy in the ventral striatum. Importantly,

enhancement in one domain was often associated with impairment in the other

domain. Behaving in an “optimal” fashion for multiple cognitive domains implies

performing below maximum performance in most cognitive domains. Methylphe-

nidate may have pharmacologically increased arousal/dopamine levels, offering a

benefit to those who were under aroused but inducing a deficit in those suffering

from an optimal level of arousal/D2 receptor occupancy.

Is enhancement of cognitive flexibility in the form of reversal learning possible

in normal subjects? In preclinical species, the answer is undoubtedly yes. In

humans, the answer is perhaps less clear. Humans are naturally very good at

reversal tasks, so in instances where the task is primarily a measure of perseverative

responding and primarily dependent upon the OFC, most people are probably

performing too close to optimal to see much of an improvement. However, it is

very possible that only a sub-selection of normal individuals will see any benefit as

a result of pharmacological intervention and this will come at a cost to other

cognitive functions. Few studies have investigated the effects of potentially pro-

cognitive manipulations in normal humans on reversal learning, although many

studies have been performed in patients suffering from schizophrenia (for a review,

see Barnett et al. 2010). Those few that have been performed, however, have not

resulted in positive findings. Yet the methylphenidate study by Clatworthy

et al. (2009) does act as an example that some small enhancements might be

possible if an individual’s pre-existing neurobiology is taken into consideration.

Moreover, a recent study showing a pro-cognitive effect of modafinil on working
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memory and a complex task of spatial planning indicates that higher order aspects

of executive function can also be enhanced (Muller et al. 2013) if the task is suitably

demanding. While this could limit the utility of using rodents to model normal

human cognitive enhancement, it also highlights the limited availability of mean-

ingful preclinical models of human executive function.

4 Conclusions

ASST and reversal learning in preclinical species have both been effective assays at

modelling the neurobiology of human cognitive flexibility. It does appear that these

tasks are dependent upon similar brain regions and neurochemical modulation as

their clinical counterparts. Yet these paradigms are not without their limitations.

For instance, ASST does have issues with robustness, potential cross-lab consis-

tency, as well as being highly labour intensive. While pro-cognitive effects have

been detected in this assay, none have yet translated to novel clinically effective

therapeutics for individuals with or without psychiatric disorders. Moreover a

number of antipsychotics have proven effective in ASST despite not generally

being associated with improved cognitive ability in a clinical setting. While

ASST might be very effective at understanding the fundamental neurobiology of

cognitive flexibility, it appears to fall short as a predictive preclinical model of

cognitive function, or at least when used in conjunction with existing impairment

models in the rodent. In contrast, reversal learning can be automated, which will

address some of the concerns that exist about the robustness of ASST. However, the

high level of baseline performance seen in normal humans suggests that the assay

may be of little translational value when used in the rodent without a validated

disease model. Despite the fact that the assay can be automated, there are still many

unknowns around this theoretical construct because of the wide variety of

procedures that have been used to study a wide variety of manipulations. Again,

as a research tool for understanding the neurobiology of cognitive flexibility

reversal learning has been a powerful tool, but has fallen short as a translational

model of normal functioning for the search for nootropic compounds. While it has

been suggested that probabilistic reversal learning might increase the relevance of

the task to a clinical setting, it is also important to consider how this might alter the

underlying neurobiological constructs of the task. Like ASST, the validity of

reversal learning as a translational model of cognitive flexibility is likely dependent

upon the validity of the impairment model being used. Counter-intuitively, the

normal rodent might have some utility in modelling a compromised human owing

to how slowly rodents reverse on some reversal tasks and their comparatively

underdeveloped frontal cortex.

Executive function is not just reversal learning and attentional set-shifting. Even

if these two tasks were to completely predict a clinical setting, they certainly would

not encompass all aspects of executive function. Accordingly, it is clear that this is

an area in need of additional task development and creation. Recent work by

Brigman and colleagues has demonstrated the potential power of the touch-screen
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approach for studying reversal learning. Excitingly, through the use of a touch-

screen-based visual discrimination, they were able to show different structural

engagement and pharmacological sensitivities at different stages within the reversal

stage. This ability to detect differential neurobiological engagement that likely

corresponds to different psychological processes will be extremely important for

understanding cognitive flexibility and necessary to selectively target these pro-

cesses with novel pharmacological agents. Moreover, an exhaustive series of

studies by Fellini et al. shows how this same process can be used to compare

learning, relearning, and reversal learning, and the effects of prior experience with a

reversal, all in a highly comparative manner. This is a crucial step in determining

what is specific to reversal learning as opposed to necessary for learning in general.

Also, visual discriminations can be adapted to make use of multiple stimuli

allowing further dissection of behaviour during reversal learning. Another advan-

tage of the touch-screen approach is that through manipulating the stimuli, the rate

of reversal can be increased or decreased. For example, reversal of a visual

discrimination generally takes days or weeks depending on the discernibility of

the stimuli, whereas the reversal of a spatial discrimination can occur several times

within a session. Yet both paradigms have the same basic response requirements

and yield highly comparable measurements. This improved comparability

addresses one of the biggest problems with the current reversal learning literature,

the extent to which results seen in once experimental setting can be extended to

another.

On the surface the touch-screen approach seems like it could be ideal to address

the problems with standardisation and throughput associated with the ASST.

Unfortunately, attempts to address ASST to the TS environment have generally

not been successful to date. Rodents have little colour vision and poor visual acuity,

making the use of multidimensional complex stimuli difficult. Furthermore, rodents

will often generalise across discriminations, resulting in various biases when

progressing through the stages of the task. This combined with the general slow

rate at which animals learn and reverse visual discriminations suggests that

throughput gains made via automation may be offset by the extended duration of

a given experiment. However, efforts are still ongoing to use this technology to

improve upon the ASST, and it is possible that the approach may also be useful in

developing other tasks of executive function, for instance a Stroop task. Adaptation

of a wider variety of clinical tests of executive function into a preclinical setting

will be necessary if we want to go from beginning to understand the neurobiology

of executive function to actually enhancing executive function. As preclinical

methods become more powerful and more “human-like”, hopefully an increased

variety of preclinical models of executive function will become available. As

preclinical researchers make more progress in understanding executive function,

it is hoped that clinical researchers will increasingly see the value of preclinical

research and transition to tests and measures that can be more easily adapted to a

preclinical setting. Such will be necessary to further enhance our understanding of

neurobiology and develop pharmacological treatments capable of improving nor-

mal or abnormal cognitive function.
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effects of potential cognition-enhancing substances—medicinal drugs or

nutrients. A number of cognitive performance tests assessing declarative epi-

sodic memory tapping verbal learning, logical memory, pattern recognition

memory, and paired associates learning are described. These tests have been

used as outcome variables in 34 studies in humans that have been described in

the literature in the past 10 years. Also, the use of episodic tests in animal

research is discussed also in relation to the drug effects in these tasks. The results

show that nutritional supplementation of polyunsaturated fatty acids has been

investigated most abundantly and, in a number of cases, but not all, show

indications of positive effects on declarative memory, more so in elderly than

in young subjects. Studies investigating effects of registered anti-Alzheimer

drugs, cholinesterase inhibitors in mild cognitive impairment, show positive

and negative effects on declarative memory. Studies mainly carried out in

healthy volunteers investigating the effects of acute dopamine stimulation indi-

cate enhanced memory consolidation as manifested specifically by better

delayed recall, especially at time points long after learning and more so when

drug is administered after learning and if word lists are longer. The animal

studies reveal a different picture with respect to the effects of different drugs on

memory performance. This suggests that at least for episodic memory tasks, the

translational value is rather poor. For the human studies, detailed parameters of

the compositions of word lists for declarative memory tests are discussed and it

is concluded that tailored adaptations of tests to fit the hypothesis under study,

rather than “off-the-shelf” use of existing tests, are recommended.

Keywords

Declarative memory • Episodic memory • Cognition-enhancing drugs

1 Introduction

Declarative memory involves the acquisition and retention of information demand-

ing conscious or explicit learning (Lezak 2004; Squire 1987). Episodic memory is

memory for events and experiences and semantic memory is memory for factual

knowledge (Squire 1987; Tulving 1972). Both facts and events are encoded by

Medial Temporal Lobe structures which comprise a unitary memory system (Squire

2004), as can be seen in Fig. 1. Episodic memory is responsible for storing

information about events (or episodes) we have experienced, whereas semantic

memory is for storing information about the world, such as the meaning of words.

While semantic memory is required to understand and thus encode the words in the

first place, remembering a list of words requires episodic memory.

Although historically Tulving (1972) thought that word list learning paradigms,

measuring free recall of learnt words, were a typical example of tests of episodic

and not semantic memory, he later revised his original definition (Tulving 2002)
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stating that episodic memory consists of “what,” “where,” and “when” aspects and

that free recall of word lists is almost exclusively drawing on the “what” aspect of

episodic memory. The distinction between episodic and semantic memory became

somewhat less clear in this respect (Tulving 2002).

Semantic memory involves the learning of factual knowledge (Squire 2004).

The most common assessment of semantic memory is the verbal fluency task where

participants list off as many words possible beginning with a certain letter. Verbal

fluency tasks are considered a measure of strategy-driven retrieval from semantic

memory stores and thus they also demand executive functions. Semantic memory is

difficult to translate from/to preclinical species, so in this chapter we focus on

studies of drug effects aimed at cognition enhancement primarily assessing declar-

ative memory by means of performance tests assessing episodic memory.

2 How Declarative Episodic Memory Is Measured

The knowledge of drug effects on declarative memory in humans is largely based

on studies of cognition-enhancing drugs utilizing tasks assessing episodic memory

function:

– Verbal tasks such as logical memory tasks (LM) probing recall of distinct events

in a short story and verbal learning tasks (VLT) probing recall of word lists

– Nonverbal tasks such as Picture or Pattern Recognition Memory (PRM) probing

recognition of pictures or patterns belonging to a list and Paired Associates

Learning (PAL), probing object-location recognition

Fig. 1 Taxonomy of mammalian memory systems (after: Squire 2004)
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Episodic memory tasks typically involve three processes: encoding, consolida-

tion, and retrieval (Lezak 2004). During the encoding phase, the information

presented is acquired and learned. Consolidation is the processing of encoded

information into long-term storage for later retrieval. Stored information is then

either recognized through prompting or recalled spontaneously during the retrieval

phase.

2.1 Verbal Memory

2.1.1 Verbal Learning Tests
Verbal learning tasks exist in many well-known variants such as Rey’s Auditory

Verbal Learning Test (Lezak 2004; Rey 1958) and the California Verbal Learning

Test (Delis et al. 1987). Verbal learning tasks can assess short-term memory

(immediate recall) or long-term episodic memory (delayed recall and recognition).

Consolidation, or conversely decay, can be inferred from the differential of imme-

diate and delayed recall or recognition. While these tests, using word lists of

respectively 15 or 16 words, may be appropriate to diagnose memory deficits,

memory testing in neuropsychological and psychopharmacological research often

involves normal young or healthy elderly volunteers, who might perform at ceiling

level.

As can be seen in Table 1, 24 out of the 34 studies reviewed in this chapter used a

VLT to assess declarative memory. List length varies considerably between studies.

One study used a 12-word list, seven studies used a 15-word list as in the Rey

Auditory Verbal Learning Task (Rey 1958), two studies used a 16-word list as in

the California Verbal Learning Task (Delis et al. 1987), two studies used a 20-word

list, nine studies used a 30-word list, and two studies used a 70-word list. The latter

two probed recognition whereas all former probed free recall. It is beyond the scope

of the chapter to list all details of task parameters, so we chose to provide a

description of the most used VLT. Ideally a VLT should allow translation from

drug effects in healthy young volunteers to drug effects in elderly suffering from

memory impairment. Riedel et al. (1999) developed an adapted version of Rey’s

Auditory Verbal Learning test using 30-word lists (Klaassen et al. 2002; Riedel

et al. 1999). In this test, 30 monosyllabic words are visually presented during 1 s at a

rate of 1 per 2 s followed by a 1-min period of immediate verbal recall, a procedure

that is repeated three times in total. After a 30-min delay in which other (nonverbal)

cognitive tests are performed, there is another verbal recall and a recognition test.

2.1.2 Logical Memory
There is one study that uses a formal memory task that has all the hallmarks of a

logical memory test (Izquierdo et al. 2008). The generic Logical Memory test, as in

the Wechsler Memory Scale III (Wechsler 1997), consists of two stories (A read

once and B read twice) that are read to the participant who is probed for recall of

free and thematic units. Delayed free recall for both A and B is probed 30 min later.

A standard cue is provided if the participant has no memory of a story. The recall
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and thematic unit scores are again recorded. Fifteen yes/no recognition memory

questions are then asked about each story and the recognition memory scores are

recorded. The formal memory task used by Izquierdo et al. involved asking the

subjects to study a 15-line text with factual information on the 1954 World Cup

Soccer for 10 min and then to respond to a questionnaire 2 or 7 days later on 10 of

the factual items of the text (Izquierdo et al. 2008).

2.2 Nonverbal Memory

2.2.1 Pattern Recognition Memory
Studies utilized the Pattern Recognition Memory Task or similar variations in

which participants identified familiar or new patterns (Muller et al. 2013; Randall

et al. 2005; Schmitt et al. 2005). PRM measures the ability to encode and subse-

quently recognize visual information and is said to provide an assay of medial

temporal lobe function (Sahakian et al. 1988). In the encoding phase, 16 patterns

appear sequentially on the screen, one at a time, and participants are instructed to

remember them. Immediately following the encoding phase, participants carry out a

recognition test, in which each pattern from the encoding phase is presented with

another pattern of similar form and color, and participants must touch the pattern

they saw previously. Twenty minutes following this first recognition test, a second

delayed recognition test is administered.

2.2.2 Paired Associate Learning
Boxes are displayed on the screen and open in turn to reveal a number of patterns.

Participants are instructed to try to remember the location in which each pattern was

shown. After all the boxes have been opened, each pattern is then shown in the

center of the screen in a randomized order, and the participant touches the box in

which the pattern was located. If an error is made, all the patterns are re-presented to

remind the participant of their locations. As the test progresses, the stages become

more difficult as the number of patterns to be remembered increases. Performance

of the Paired Associates Learning (PAL) test activates the bilateral hippocampi in

the Medial Temporal lobe (de Rover et al. 2011).

2.3 How to Measure Declarative Episodic Memory in Animals

By definition declarative memory assumes that memories can be declared, which in

humans is the ability to verbalize or to consciously recall information. Clearly,

there is no clear evidence that animals can have these abilities (Templer and

Hampton 2013). However, as mentioned above, episodic memory has also been

defined in terms of “what,” “where,” and “when” (Tulving). When considering this

definition it has been shown that animals do have an episodic(like) memory

(Clayton et al. 2003). Whether this is directly comparable to humans will be

difficult to demonstrate, but it appears that similar brain regions do support the
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episodic memory in humans and animals (Allen and Fortin 2013; Morris 2001). So,

there appear to be good arguments to state that animals do have an episodic

memory, but there may be some differences between animals and humans.

Different tests have been used as models of episodic memory tasks in rodents

(for a review, see Fouquet et al. 2010). The most used tasks are the object recogni-

tion task, and variations thereof (Dere et al. 2006; Ennaceur and Delacour 1988;

Kesner et al. 2008). Other examples are specific procedures in radial mazes (Crystal

2013), odor recognition (Eichenbaum et al. 2010), and some procedures in the

classic Morris water task (Zhang et al. 2008). For all these test mentioned, the

“what,” “where,” and “when” can be applied. The PAL test has also been developed

for rodents by using a touch-screen device (Talpos et al. 2009). However, it has not

been claimed that this task could be considered as an episodic test for rodents.

This short overview shows that there are several episodic memory tests for

rodents. Although these tests can be defined as an episodic test in animals, the

comparability with human episodic tests is limited. Some tests seem not to be

translatable to animal studies (i.e., VLT and LM) and some tests are considered

episodic memory tests for which not such a claim has been made in animal research

(i.e., PAL and spatial Morris task (only specific protocols)). The object recognition

task is the most widely task in animal research to test episodic memory. However,

there is not a clear human equivalent for this task in human research. Taken

together, this indicates that the translation of episodic memory tasks is rather

limited.

3 Overview of Studies

3.1 How Searched

For the human studies we searched for publications in the past 10 years, i.e., from

2005 to the end of 2014, about cognition-enhancing substance (either drug or

nutrient) effects on at least one test of declarative memory. Most of these

publications also contained reports about drug effects on other tests assessed

simultaneously, but in this chapter we exclusively focus on the results concerning

declarative or episodic memory. We searched PubMed using the search terms:

(episodic OR declarative) drug* cogni* enhanc*

verbal cogni* drug* enhance*

cogni* enhanc* drug* learn* paired*

In addition, publications that also fulfilled the content criterion (cognition-

enhancing drug effects on tests of declarative memory) and that were already

known to us or became known to us after asking around were added. For the animal

studies there is a vast amount of studies in which the effects of many different drugs

have been tested. Mostly, the object recognition test has been used for these
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purposes. Therefore, we refer to selective (review) studies in which drug effects

have been examined.

3.2 Studies

A total of 34 studies were obtained and these are listed and categorized in Table 1.

At large, the studies can be categorized on the basis of:

– Mechanism(s) of the substance under investigation

– Single-dose or repeated dose studies. The latter are more important when

attributing the clinical meaning of the results, whereas acute single-dose studies

are usually focused on a proof-of-principle type of question

– Population sample of subjects. Most studies on cognition-enhancing drugs are

carried out in healthy volunteers, although in several instances these are samples

described by a particular vulnerability factor, such as elderly with memory

deficits or complaints, genotype, relative deficiency of omega-3 fatty acids in

the diet, premenstrual syndrome, and scopolamine pretreatment

– Number of items to memorize or memory load. For example, word lists used in

the different studies comprised of 12, 15, 16, 20, 30, or 70 words and the number

of times they were repeatedly presented was once, twice, three times, or five

times. Pattern recognition memory tests likewise present a sequence of patterns

or pictures. If the pictures are concrete the test is considered verbal because

pictures will be primarily verbalized. Abstract patterns, as used in the PRM and

PAL, are more difficult to verbalize and are therefore considered nonverbal.

Both are considered tests of episodic memory however. The memory load in

PAL is increased in stepwise fashion (2, 3, 6, 8, 10, 12) until subjects reach the

highest level or fail

– Number of subjects. Larger studies more often are repeated dose studies and

these are deemed more important than smaller sample studies

3.2.1 PUFAs
Nine of the studies are investigating the effect of omega-3 (or n-3) polyunsaturated

fatty acids (PUFAs) on declarative memory. All nine are repeated dose studies over

a relatively longer period of time. However, not all treatments are the same in that

the composition of PUFAs differs and also the age of the groups studied differs.

From the four studies in young volunteers, one was negative (Benton et al. 2013),

one found no effects (Jackson et al. 2012), and two found at best marginal positive

effects (Karr et al. 2012; Stonehouse et al. 2013). In elderly, two trials were positive

(Lee et al. 2013; Yurko-Mauro et al. 2010), one where phosphatidylserine was

added was marginally positive (Vakhapova et al. 2010) and two found no difference

(Dangour et al. 2010; Stough et al. 2012). Although different doses and different

compositions of the relative contributions of EFA and DHA were used, there was

no obvious relation with dose. Positive effects, if present, were mainly attributed

to DHA.
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3.2.2 Dopamine
Eleven studies were investigating substances that were thought to be primarily

affecting dopamine (DA) of which two studies investigating modafinil are also

included. All but one were single-dose studies and all but one were investigating

samples of young healthy volunteers. Three were investigating single doses of

d-amphetamine of which all three reported positive effects on delayed recall or

recognition (Zeeuws et al. 2010a, b; Zeeuws and Soetens 2007). Four were

investigating single doses of methylphenidate of which two reported positive

effects on delayed recall memory (Izquierdo et al. 2008; Linssen et al. 2012) and

two found no difference (Hermens et al. 2007; Kuypers and Ramaekers 2005). The

studies that reported positive effects had in common that they were using consider-

ably longer word lists (20, 30, 70 words) opposed to the studies not reporting

positive effects (12 and 15 words) and were looking at late stage memory

consolidation.

Two studies on modafinil in young healthy volunteers both reported positive

effects on pattern memory recognition (Muller et al. 2013; Randall et al. 2005). A

study looking at L-Dopa found no effects (Linssen et al. 2014). One study looking at

the COMT inhibitor tolcapone found an interaction between drug and COMT

(val158met) genotype such that tolcapone tended to improve word recall in healthy

subjects with val/val genotype and tended to impair word recall in subjects with

met/met genotype (Apud et al. 2007).

3.2.3 Acetylcholine
Five studies reported investigations of subchronic doses of substances where

acetylcholine stimulation was the primary hypothesized mechanism of action,

although one of them concerned a combination preparation where other

mechanisms might also have played a role. Three of these were in elderly subjects,

one of these concerned subjects with Mild Cognitive Impairment. Three studies

reported improved episodic memory performance (Gron et al. 2006, 2005; Stough

et al. 2009), whereas one reported impaired episodic memory performance

(Balsters et al. 2011). The latter was in healthy elderly subjects and the only clear

factor in which this study was different than the other three reporting positive

effects of cholinesterase inhibitors was that Balsters et al. were using PAL, a

nonverbal episodic memory task, whereas the other studies were using Word List

tests. One study investigated the cholinesterase inhibitor rivastigmine after

pretreatment with cannabis, which induced significant impairment of declarative

memory performance and observed that a single dose of rivastigmine 3 mg

attenuated cannabis-induced impairment (Theunissen et al. 2014).

3.2.4 5-HT
One study successfully demonstrated that cognitive deficits reported as symptoms,

among which impaired declarative memory performance, in Premenstrual Syn-

drome (PMS), can be improved by treatment with a protein mixture called alpha-

lactalbumin containing relatively high amounts of the serotonin precursor trypto-

phan (Schmitt et al. 2005). Three studies in healthy volunteers investigating acute
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and subchronic effects of the serotonergic antidepressants citalopram (Sambeth

et al. 2014), escitalopram (Wingen et al. 2006), and vortioxetine (Theunissen

et al. 2013) on declarative memory performance found no drug effects on word

recall.

3.2.5 Miscellaneous (Glycine, Histamine, PDE5, Glucose)
Two studies investigating novel glycine reuptake inhibitors, hypothesized to

improve glutamatergic neurotransmission in patients with schizophrenia, were

described (Christmas et al. 2014; Liem-Moolenaar et al. 2010). Both were still in

the early stage of human drug development investigating safety and mechanism of

action. Neither improved or impaired declarative memory, and in both cases the

drug may not have been in the dose window leading to an effective concentration to

either confirm or reject the hypothesis.

One study hypothesized histamine augmentation to improve declarative memory

by means of administration of betahistine to healthy volunteers (van Ruitenbeek

and Mehta 2013). No changes were observed on declarative memory performance.

Two studies investigated the effects of acute doses of 10 and 20 mg of the

phosphodiesterase-5 inhibitor (PDE5) vardenafil on declarative memory and both

found no differences with placebo. One was in healthy volunteers (Reneerkens

et al. 2013) and one was in healthy volunteers after pretreatment with cannabis

(Theunissen et al. 2014).

One study showed that a drink containing 25 g of glucose improved paired

associate learning in young and elderly volunteers. Glucose is thought to act

primarily on the hippocampal region in the medial temporal cortex, known to

support episodic memory (Riby et al. 2006).

3.3 Translational Issues

At large, there are three hypotheses underlying the majority of the studies reported

in Table 1. These include:

• Dietary polyunsaturated fatty acid supplements improve declarative memory

– Dietary essential fatty acids include omega-3 (n-3) and omega-6 (n-6) poly-

unsaturated fatty acids (PUFA). Two specific n-3 PUFAs, docosahexaenoic

acid (DHA), the principal long-chain PUFA comprising 40 % of brain lipids,

and eicosapentaenoic acid (EPA) have specifically been investigated. Both

are important in the central nervous system, with 50 % of neuronal

membranes and 70 % of myelin composed of lipids. DHA status is dependent

on dietary intake, and when low, supplementation is hypothesized to improve

cognitive function. The most used dietary manipulation is that of fish oil

(containing a mixture of EPA and DHA) or DHA alone (Karr et al. 2012;

Yurko-Mauro et al. 2010).

• Cholinesterase inhibition improves declarative memory
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– Cholinesterase inhibitors are a registered category of drugs against cognitive

symptoms of Alzheimer’s disease. Cholinergic decline is considered to occur

relatively late in the gradual time span of age-related cognitive decline after

conversion to clinical diagnosis of probable Alzheimer’s disease. It is subject

of considerable debate whether boosting cholinergic function by cholinester-

ase inhibitors is useful in earlier stages, i.e., mild cognitive impairment.

• Enhancement of dopaminergic neurotransmission improves aspects of declara-

tive memory

– Substances promoting dopamine may have in common that they facilitate

memory consolidation. The hippocampus plays a key role in memory consol-

idation, which relies on novelty. The Ventral Tegmental Area (VTA) projects

to the hippocampus through dopaminergic fibers acting on D1 receptors,

where it enhances long-term potentiation (LTP) and learning. The

hippocampal-VTA loop has been found to be important for novelty detection,

for hippocampal LTP, and for memory consolidation (Izquierdo et al. 2008).

3.3.1 Prediction of Results by Preclinical Studies
When examining data from animal studies, evidence for an improvement in object

recognition can be found for various drugs classes. Pro-cholinergic drugs like

nicotinic agonists and acetylcholinesterase inhibitors improve performance

(de Bruin and Pouzet 2006; Prickaerts et al. 2005; Sambeth et al. 2007). There

are a limited number of studies using dopaminergic drugs. Most studies tested

dopaminergic drugs in deficit models and transgenic animals. One study showed

that especially dopamine type-1 receptor agonists can improve object memory

(de Lima et al. 2011). Interestingly, acute methylphenidate treatment impaired

object recognition performance in healthy animals (Chuhan and Taukulis 2006).

Also for serotonergic drugs, many studies examined the effects in deficit models.

SSRIs seemed to have no effects on object recognition performance (Naudon

et al. 2007; Valluzzi and Chan 2007). In animal studies there has been special

interest in the 5-HT1A and the 5-HT6 receptors in cognition. Interestingly,

although 5-HT1A agonists were found to improve memory performance in other

tasks (Cole et al. 1994), a 5-HT1A receptor antagonist was found to improve

memory performance in the object recognition task (Pitsikas et al. 2003). Also,

5-HT6 antagonists were found to improve memory performance (King et al. 2004;

Lieben et al. 2005). There have been many studies that examined the effect of PDE

inhibitors on memory performance and all these drugs have been found to improve

object memory performance (Reneerkens et al. 2009). Finally, one study was found

in which the effects of a PUFA were tested in the object recognition memory

(Cutuli et al. 2014). Here an improved memory performance was found in aged

animals after 8 weeks of treatment.

Although this is a restricted overview of studies in which the effects of drugs on

object memory were examined, it appears that most drugs improve the performance

in this task. SSRI appear to be ineffective in this task and one task showed an

impaired object memory performance after methylphenidate treatment. When
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considering the human data, there seems to be a great discrepancy in findings

between species.

3.3.2 Generalizability of Results to Clinical Therapeutic Areas
Impairments of episodic memory have been described in a wide variety of

neuropsychiatric diseases: ADHD and schizophrenia (Mehta and Riedel 2006),

mild cognitive impairment and dementia (Riedel 2014), as well as affective

disorders (Rock et al. 2014). In Table 1, we have indicated clinical significance

by referring the meaning of the results to the therapeutic areas under study. Ten

studies were in elderly subjects either or not with established memory impairment

or complaints. Seven of these studies noted treatment-induced improvement of

declarative memory against one that noted impairment whereas two showed no

change. One study in females with premenstrual symptoms including poorer per-

formance on episodic memory tasks resulted in observed treatment-induced

improvement of episodic memory performance.

Eighteen studies were in young healthy volunteers with no indication of direct

clinical relevance as far as a specific population is concerned. However, results

indicating treatment-induced enhancement of cognition bear the relevance that the

substance is active and is therefore bearing indirect clinical relevance not specifi-

cally linked to one therapeutic area. Healthy volunteer studies are mostly relevant in

uncovering principles that may be worth pursuing such as the putative manipula-

bility of memory consolidation by means of substances boosting dopamine.

4 Conclusions

In sum, what this review of cognition-enhancing drug studies in the past 10 years

shows is that tests of declarative memory are sensitive to indicate effects of

cognition-enhancing treatments. There are three different areas of interest at

large: (1) dietary effects of PUFAs which seem to work better in elderly groups

than in young participants; (2) effects of “symptomatic” cholinergic drugs appear to

be effective in supposedly prodromal or preclinical stages of Alzheimer’s disease;

and (3) enhancement of declarative memory consolidation by means of dopaminer-

gic stimulation relatively late after learning, in normal young and elderly

volunteers.

Enhancement of declarative memory is perhaps one of the most aspired clinical

aims in a variety of recognized therapeutic areas such as dementia and its prodromal

stages, ADHD, schizophrenia, and affective disorders. However, non-recognized

“therapeutic” conditions such as normal aging and even young healthy volunteers

aspire enhancement of declarative memory as well. It is clear that this “therapeutic

goal” is wider than fulfilling only urgent medical needs. The latter may apply in the

case of dementia; however, even in this area, because attention is shifting to

prodromal and preclinical stages of dementia (which are characterized by absence

of functional impairment and almost no, or completely no symptoms, but presence

of amyloid plaques—putative neural substrate of future disease), the boundaries are
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fading and the classic medical model of treating disease appears to be shifting to a

“prevention paradigm.” As said, this primarily applies to dementia where no proven

disease modifying treatment exists, yet is anticipated, so there is an urgent need for

early detection of clinical symptoms of which impairment of declarative memory is

the very first manifesting symptom. Measuring declarative memory can therefore

be applied as a diagnostic and also as a marker of disease progression and the

effects of treatments thereon. In that context, the conclusion of the present review

can be: there is enough evidence that impairment and enhancement of declarative

memory can be measured precisely. There is just no effective treatment yet to

prevent age-related cognitive decline, mild cognitive impairment, and Alzheimer’s

dementia. This also can be taken to mean that the positive effects of substances such

as PUFAs and cholinesterase inhibitors in elderly with mild cognitive impairment

are significant, yet of marginal clinical relevance.

We observed that verbal learning tests are among the most frequently used

paradigms to assess declarative episodic memory performance. There are pros

and cons to each of these tests/dependent variables (LM, VLT, PRM, and PAL)

reviewed in this chapter. As said, the most frequently used paradigm VLT seems to

be the most sensitive, but according to Tulving (2002) could be considered too

selective to be a good general index of declarative episodic memory because it

addresses only the “what” aspect of memory and not the “where” and “when.” This

also applies to PRM. In PAL, “where” and “what” is probed. LM is the only

paradigm that allows “what,” “where,” and “when” encoding of memory. Another

objection to VLT that is sometimes heard is that VLT and therefore also LM are too

language-dependent and can therefore only be applied within single language areas.

It is true that there may be practical advantages to language-free tests of declarative

memory such as PAL or PRM, but verbal memory encoding can be considered

essential for mankind and therefore it could be a huge omission not to probe it when

investigating efficacy of treatments that claim to enhance declarative memory. It

can be easily argued that humans can and will verbalize even the most abstract

visual information. For example, if subjects are able to employ a strategy to quickly

associate each pattern in PAL with a compass heading (e.g., in clockwise direction:

North, North-North-East, North-East, East-North-East, etc.), PAL performance

becomes an index of verbal declarative memory encoding. Furthermore, there are

numerous validated versions of VLT in different languages. In addition, even

within one language area, one needs multiple comparable or parallel versions of

the same word list in order to be able to apply it repeatedly within the same cohort

of subjects over time or in a crossover design. More importantly, there are some

other even more specific parameters, which are rarely considered that allow opti-

mization fitted to testing a specific hypothesis. These are:

– Number of words in the list (in the present review this varies between 12 and 70)

– Number of times word list is presented and immediate recall is repeated (1–5)

– Number of syllables per word (monosyllabic, controlled multisyllabic, or

uncontrolled)

– Word length (5, 5–7 letters, or uncontrolled)
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– Interval between immediate and delayed recall is usually 20–30 min but can be

much longer up to multiple days

– Presentation time, inter-stimulus interval, and response-stimulus interval which

determine whether the test is paced or self-paced and what the pace is (1 word

per second to 1 word/4 s in the studies reviewed here). These parameters are of

key importance whether attentional circuits in the brain are triggered. The faster

the pace, the more declarative memory performance will become dependent on

attentional constraints (or in essence: time constraints)

– Associability—words within one list are usually controlled for high interrelat-

edness (e.g., no shoe and foot in one list)

– Recall or recognition—most studies probe free recall, but two studies by Zeeuws

et al. (2010a, b) use very long lists and only probe recognition; PRM tests also

only probe recognition

This review has shown that positive effects of dopaminergic stimulation on

declarative memory performance seem to be best measurable using longer word

lists with monosyllabic words. Drugs need to be administered not before but after

learning and times of assessment of recall or recognition should be long after

learning when effects of treatment on consolidation are most manifest. It remains

to be shown how such effects on consolidation should be applied beyond single-

dose designs at a longer timescale. What we learn from these studies is that tests

need always to be tailored to the specifically predicted effects of drugs. There seems

to be no off-the-shelf recipe for cognitive tests.

The prediction of animal studies with respect to episodic memory tasks appears

to be very limited. First, the comparison on the level of the episodic tasks is poor.

Secondly, there are clear species differences in the effects of drugs on episodic

memory. Recently, some critical remarks have been made on the translational value

of animal models of memory and the comparability of the effects of drugs across

species (Blokland et al. 2014; Brodziak et al. 2014). At present, the translational

value of episodic tasks appears to be rather poor.
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Abstract

Verbal memory is impaired in neurological and psychiatric conditions and

provides one of the main targets of intervention. Specifically, this cognitive

domain has been shown to provide a major determinant of outcome in schizo-

phrenia and mood disorders. Therefore, verbal memory disturbances should be

focused in the development of novel pharmacological and psychosocial thera-

peutics. Effective integration between preclinical and clinical studies should

provide a key to the pursuit of drugs enhancing verbal memory.
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1 Introduction

Memory is generally classified into short-term memory and long-term memory,

with the latter divided into episodic, semantic, and procedural memory (Tulving

and Fergus 2000). Sometimes, the former two aspects of long-term (or secondary)

memory are jointly categorized as declarative memory (Parkin 1999). Verbal

memory, representing declarative memory, is vulnerable in neurological and psy-

chiatric conditions, and provides one of the main targets of intervention.

While impairment of verbal memory is most pronounced in dementias (e.g.,

Alzheimer’s disease), this cognitive domain has also been shown to provide a major

determinant of outcome in psychiatric diseases, such as schizophrenia (Sumiyoshi

2015) and mood disorders (Yatham et al. 2010). This chapter provides an overview

on preclinical and clinical evidence for the effects of cognitive enhancers on verbal

(learning) memory in these psychiatric illnesses, particularly schizophrenia.

2 Verbal Memory Impairment in Schizophrenia

Patients with schizophrenia exhibit about a 1–2.5 SD decline in a range of cognitive

functions, e.g., several types of memory, executive function, verbal fluency, and

attention/information processing (Keefe and Fenton 2007). A lesser degree of

cognitive impairment is present in mood disorders, e.g., bipolar disorder and

major depression. As demonstrated in Fig. 1, verbal memory is one of the cognitive

domains most profoundly impaired in these major psychiatric diseases. This
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Fig. 1 Cognitive profiles in schizophrenia, major depression, and euthymic bipolar disorder.

Healthy group mean¼ 0. Verb Mem (D), delayed verbal memory; Verb Mem (I), immediate

verbal memory; Vis Mem, visual memory; Trails B, Trail Making Test, B; WCST, Wisconsin

Card Sorting Test; BD, Wechsler Adult Intelligence Scale (WAIS) block design test; Voc, WAIS

vocabulary. Among these cognitive domains, verbal memory is most profoundly affected in

schizophrenia and bipolar disorder (Keefe et al. Schizophr Bull 33:912–920, 2007; permission

obtained from Oxford University Press)
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cognitive domain is included in comprehensive neurocognitive test batteries devel-

oped for the assessment of therapeutic effects, e.g., the MATRICS Comprehensive

Cognitive Battery (MCCB) (Nuechterlein and Green 2006), the CogState Schizo-

phrenia Battery (Maruff et al. 2009), and the Brief Assessment of Cognition in

Schizophrenia (BACS) (Keefe et al. 2004).

Neuropsychological performance is related to community, residential, and inter-

personal functioning (Harvey et al. 2011; Leifker et al. 2011). In this context, verbal

memory, among several cognitive domains, has been suggested to be most strongly

linked to functional outcomes, i.e., community activities, social problem solving,

and psychosocial skill acquisition (Green et al. 2000) (Fig. 2).

2.1 Antipsychotic Drugs and Verbal Memory

The utility of antipsychotic drugs as a cognitive enhancer has been intensively

discussed (Meltzer and Sumiyoshi 2003; Woodward et al. 2005; Goldberg

et al. 2007; Sumiyoshi et al. 2013). Woodward et al. (2005) conducted a meta-

analysis on the effect of atypical antipsychotic drugs (AAPDs), including cloza-

pine, olanzapine, quetiapine, and risperidone, on cognition in schizophrenia in

comparison with typical antipsychotic drugs (TAPDs), such as haloperidol. They

found superiority of AAPDs, specifically for improving verbal and visual learning

memory, with effect sizes �0.4 both in controlled and uncontrolled studies

(Woodward et al. 2005).

On the other hand, there have been challenges to the pro-cognitive efficacy of

AAPDs. Specifically, improvement of verbal memory by treatment with

Card Sorling
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Paychosoclal
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Immedlate Verbal
Memory

Vigllance

Fig. 2 Neurocognitive prediction of functional outcome. Verbal memory has been suggested to

be substantially related with several key aspects of social function. A heavy arrow indicates that at

least four separate studies found a significant relationship between the neurocognitive construct

and the outcome domain. The smaller arrows indicate that two or three studies reported a

significant relationship (Green et al. Schizophr Bull 26:119–136, 2000; permission obtained

from Oxford University Press)
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risperidone or olanzapine has been suggested to be no better than that of practice

effect (or more precisely, test-retest effect) in normal controls (Goldberg

et al. 2007). Since no data were presented in that study as to whether schizophrenia

patients not receiving these AAPDs would have elicited the same degree of

improvement as that in treated patients, it may not be legitimate to reject the

concept that AAPDs improve cognition functions, such as verbal memory

(Sumiyoshi et al. 2013).

Also, the effect of TAPDs on verbal memory has been investigated. Thus,

Woodward et al. (2007) conducted a meta-analysis of cognitive change with

haloperidol in schizophrenia and found small but significant effects on verbal

memory tests, even restricting to studies that used alternate test forms (effect

sizes 0.27–0.28). This finding challenges the notion that the cognitive

improvements observed with AAPDs reflect an avoidance of a deleterious effect

of haloperidol on cognitive function (Woodward et al. 2007).

The above considerations are consistent with the results from some large-scale

multicenter studies to compare the effectiveness of AAPDs and TAPDs. Specifi-

cally, data from patients with first-episode schizophrenia were reported in the

European First Episode Schizophrenia Trial (EUFEST) that used a randomized

trial design among AAPDs (olanzapine, quetiapine, amisulpride, and ziprasidone)

and haloperidol (TAPD) (Davidson et al. 2009). Verbal memory, measured by a

word-list learning test, was found to be improved across the tested drugs, as shown

in Fig. 3. Specifically, a z-score greater than 0.5 SD was indicated for olanzapine

and ziprasidone (Davidson et al. 2009) (Fig. 3), two AAPDs that have been reported

to also improve the semantic aspect of verbal memory (Sumiyoshi et al. 2006a). On

the other hand, the benefit of AAPDs may not be evident in patients with chronic

phase of schizophrenia, as in the CATIE Trial (Keefe et al. 2007).

Fig. 3 Changes in verbal memory from baseline to 6 months of antipsychotic treatment in the

EUFEST study (produced by T. Sumiyoshi based on data from Davidson et al. Am J Psychiatry
166:675–682, 2009)
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The combination of neuropsychological and electrophysiological methods may

be beneficial for understanding the mechanisms of enhancement of verbal memory

by antipsychotic drugs (Sumiyoshi et al. 2011, 2013). Accordingly, we sought to

determine the effect of olanzapine on verbal memory and P300 in patients with

schizophrenia (Sumiyoshi et al. 2006b; Higuchi et al. 2008). P300 is one of the

event-related potentials that have been used as a marker of attentive cognitive

processes. The amplitudes of P300 have been shown to be decreased in patients

with schizophrenia (Sumiyoshi et al. 2011). Specifically, we reported the effect of

olanzapine on P300 current source density in discrete brain areas (Sumiyoshi

et al. 2006b; Higuchi et al. 2008). At baseline, P300 current density in the left

superior temporal gyrus (STG) was decreased in patients (Higuchi et al. 2008)

(Fig. 4, left panel). Six-month treatment with olanzapine increased P300 current

density in the left STG, accompanied with enhancement of verbal memory

(Sumiyoshi et al. 2006b; Higuchi et al. 2008). In fact, this left-dominant pattern

of P300 current density is similar to that for control subjects (Higuchi et al. 2008)

(Fig. 4, left panel).

Importantly, the increase in P300 current density in the left STG was positively

correlated with the improvement of verbal memory (Fig. 4, right panel). These

Fig. 4 (Left) LORETA images of P300 grand average in normal controls (upper panel) and
patients at baseline (middle panel) and after 6-month treatment with olanzapine (lower panel).
P300 current source density (as represented by LORETA value in red) in the left superior temporal

gyrus (STG) in patients at baseline were reduced (indicated by arrows in the middle panel)
compared to normal control subjects. Six-month treatment with olanzapine enhanced the current

source density in the left STG of patients (indicated by arrows in the lower panel), which made the

distribution pattern of P300 current density similar to that of normal controls. (Right) Scatter plots
and least squares regression lines depicting the relationship between changes of score of the

Japanese Verbal Learning Test (JVLT) vs. changes of P300 LORETA value in the left STG

(Higuchi et al. Schizophr Res 101:320, 2008; permission obtained from Elsevier)
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observations suggest that AAPDs ameliorate verbal memory impairment by

correcting three-dimensional distribution of electrophysiological activity in the

brain (Sumiyoshi et al. 2006b, 2009; Higuchi et al. 2008).

2.2 Preclinical Evaluation of Cognitive Enhancers

The assessment of behaviors related to cognition in animals is likely to facilitate the

development of compounds to enhance cognitive performance in psychiatric

illnesses. Specifically, novel objects recognition (NOR) in rodents represents rec-

ognition memory, and is considered to provide an animal model of declarative

(learning) memory in humans (reviewed in Meltzer et al. 2011). NOR is non-

rewarded and based on the rodent’s memory for a familiar object and its natural

propensity to explore novel objects to avoid harm and seek rewards. In commonly

used NOR protocols, each test consists of two trials. In the first trial (acquisition),

the rodents are exposed to two identical objects. In the second trial (retention), after

an interval (ranging from 1 min to 2 days), the rodents are exposed to a familiar

object from the first trial and a new object. Normal rodents spend more time

exploring the new object in the retention trial (Meltzer et al. 2011).

Rodents treated with N-methyl-D-aspartate (NMDA) receptor antagonists, e.g.,

phencyclidine, ketamine, and MK-801, are unable to discriminate between novel

and familiar objects, even after short intervals. AAPDs, such as aripiprazole (Nagai

et al. 2009), perospirone (a ziprasidone-like compound) (Hagiwara et al. 2008), and

lurasidone (Horiguchi et al. 2012; Horiguchi and Meltzer 2012), have been reported

to ameliorate deficits in NOR induced by NMDA antagonists. These results suggest

that the NOR test following treatment with an NMDA antagonist may provide a

useful model for learning memory impairment in schizophrenia, and also a valuable

method to screen for potential agents to treat verbal (learning) memory deficits in

schizophrenia (Meltzer et al. 2011). The recent development of three-dimensional

video analysis of the NOR test in rats (Matsumoto et al. 2014) (Fig. 5) is likely to

add to these efforts.

2.3 Augmentation Therapy

As discussed, AAPDs have been shown to produce moderate effects on verbal

memory in schizophrenia. Another approach has been the so-called augmentation

therapy, in which a putative “pro-cognitive agent” is given to patients treated with

antipsychotic drugs. Currently, this strategy is the mainstream in pharmacological

cognitive enhancement, and a variety of compounds, derived from preclinical

findings, have been tested (Harvey 2009; Michalopoulou et al. 2013).

One of the initial endeavors was a series of studies on the effects of the addition

of the azapirone derivative tandospirone, a serotonin-5-HT1A receptor partial ago-

nist, to ongoing treatment with small to moderate doses of TAPDs (mainly halo-

peridol) (Sumiyoshi et al. 2000, 2001a, b). The addition of tandospirone (30 mg/
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Fig. 5 3D video analysis of

the novel object recognition

test in rats. Experimental

setup and algorithms for nose

contact detection are

demonstrated. (a)
Experimental setup. (b) An
example of a captured 3D

image. Points represent the

surface of objects and a rat.

Two types of objects (cone
shaped and snowman shaped)
were used. (c) An example of

estimated positions of a rat

and objects. The rat model

consists of four connected
spheres, corresponding to

head, neck, trunk, and hip.

The white cross indicates the
estimated position of the

nose. (d) An example of a

trajectory made up of

estimated nose positions

occurring in a trial. Solid and

dotted lines indicate
trajectories with and without

contact with an object,

respectively (Matsumoto

et al. Behav Brain Res
272:16–24, 2014; permission

obtained from Elsevier)
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day), but not placebo for 4–6 weeks, was found to improve verbal learning memory

(measured by the Wechsler Memory Scale-Revised) (Sumiyoshi et al. 2001a, b), as

well as the semantic aspect of verbal memory (Sumiyoshi et al. 2001b), in patients

with schizophrenia. Also, a subsequent study with galantamine, an acetylcholine

esterase inhibitor, showed an improvement in verbal memory (Buchanan

et al. 2008).

So far, few psychotropic agents have been shown to elicit apparent cognition-

enhancing effects (Harvey 2009; Michalopoulou et al. 2013), and further efforts are

required.

3 Verbal Memory in Mood Disorders

Cognitive disturbances in mood disorders, such as bipolar disorder and major

depression, have been reported (Hellvin et al. 2012; Bourne et al. 2013). The degree

of impairment in these psychiatric conditions has been demonstrated to be less than

that for schizophrenia (Fig. 1) (Keefe and Fenton 2007). This concept has been

confirmed by assessments with the MCCB (Burdick et al. 2011) and BACS (Hill

et al. 2013), in line with the notion that the cognitive decline in mood disorders,

particularly bipolar disorder, is qualitatively similar to that in schizophrenia (Hill

et al. 2013).

On the other hand, there is a suggestion that these test batteries, originally

developed for the assessment of cognitive disturbances of schizophrenia, may not

be sensitive enough to detect impairment of patients with mood disorders (Yatham

et al. 2010). With regard to verbal memory, the Hopkins Verbal Learning Test

included in the MCCB has been recommended to be replaced by the California

Verbal Learning Test that is more strenuous (Yatham et al. 2010).

Cognitive impairment in bipolar disorder has been associated with daily-living

capacity and social function (Torres et al. 2011; Depp et al. 2012). Specifically, a

longitudinal observation reports that verbal memory at baseline has been shown to

correlate with functional outcome 6 months later in patients with bipolar I disorder

(Torres et al. 2011). These lines of evidence indicate a need for the development of

cognitive enhancers for mood disorders.

4 Conclusions

Several psychiatric illnesses, such as schizophrenia, are associated with

disturbances of verbal memory. Due to its influence on social outcomes, this

domain of cognition should be focused in the development of novel pharmacologi-

cal and psychosocial therapeutics. Effective integration between preclinical and

clinical studies, or translational research, should provide a key to the pursuit of

drugs enhancing verbal memory.

244 T. Sumiyoshi



Acknowledgment This work was supported by grants-in-aid for Scientific Research from Japan

Society for the Promotion of Science (No. 26461761), Health and Labour Sciences Research

Grants for Comprehensive Research on Disability, Health, and Welfare (H24-Seishin-Ippan-002

and H26-Seishin-Ippan-011), and Intramural Research Grant for Neurological and Psychiatric

Disorders of NCNP.

The author thanks Drs. Herbert Y. Meltzer, Philip D. Harvey, Richard Keefe, and Sohee Park

for the discussions.

References

Bourne C, Aydemir O, Balanza-Martinez V, Bora E, Brissos S, Cavanagh JT, Clark L,

Cubukcuoglu Z, Dias VV, Dittmann S, Ferrier IN, Fleck DE, Frangou S, Gallagher P,

Jones L, Kieseppa T, Martinez-Aran A, Melle I, Moore PB, Mur M, Pfennig A, Raust A,

Senturk V, Simonsen C, Smith DJ, Bio DS, Soeiro-de-Souza MG, Stoddart SD, Sundet K,

Szoke A, Thompson JM, Torrent C, Zalla T, Craddock N, Andreassen OA, Leboyer M,

Vieta E, Bauer M, Worhunsky PD, Tzagarakis C, Rogers RD, Geddes JR, Goodwin GM

(2013) Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: an

individual patient data meta-analysis. Acta Psychiatr Scand 128:149–162

Buchanan RW, Conley RR, Dickinson D, Ball MP, Feldman S, Gold JM, McMahon RP (2008)

Galantamine for the treatment of cognitive impairments in people with schizophrenia. Am J

Psychiatry 165:82–89

Burdick KE, Goldberg TE, Cornblatt BA, Keefe RS, Gopin CB, Derosse P, Braga RJ, Malhotra

AK (2011) The MATRICS consensus cognitive battery in patients with bipolar I disorder.

Neuropsychopharmacology 36:1587–1592

Davidson M, Galderisi S, Weiser M, Werbeloff N, Fleischhacker WW, Keefe RS, Boter H, Keet

IP, Prelipceanu D, Rybakowski JK, Libiger J, Hummer M, Dollfus S, Lopez-Ibor JJ, Hranov

LG, Gaebel W, Peuskens J, Lindefors N, Riecher-Rossler A, Kahn RS (2009) Cognitive effects

of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: a

randomized, open-label clinical trial (EUFEST). Am J Psychiatry 166:675–682

Depp CA, Mausbach BT, Harmell AL, Savla GN, Bowie CR, Harvey PD, Patterson TL (2012)

Meta-analysis of the association between cognitive abilities and everyday functioning in

bipolar disorder. Bipolar Disord 14:217–226

Goldberg TE, Goldman RS, Burdick KE, Malhotra AK, Lencz T, Patel RC, Woerner MG,

Schooler NR, Kane JM, Robinson DG (2007) Cognitive improvement after treatment with

second-generation antipsychotic medications in first-episode schizophrenia: is it a practice

effect? Arch Gen Psychiatry 64:1115–1122

Green MF, Kern RS, Braff DL, Mintz J (2000) Neurocognitive deficits and functional outcome in

schizophrenia: are we measuring the “right stuff”? Schizophr Bull 26:119–136

Hagiwara H, Fujita Y, Ishima T, Kunitachi S, Shirayama Y, Iyo M, Hashimoto K (2008)

Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic

administration of the antipsychotic drug perospirone: role of serotonin 5-HT1A receptors.

Eur Neuropsychopharmacol 18:448–454

Harvey PD (2009) Pharmacological cognitive enhancement in schizophrenia. Neuropsychol Rev

19:324–335

Harvey PD, Raykov T, Twamley EW, Vella L, Heaton RK, Patterson TL (2011) Validating the

measurement of real-world functional outcomes: phase I results of the VALERO study. Am J

Psychiatry 168:1195–1201

Hellvin T, Sundet K, Simonsen C, Aminoff SR, Lagerberg TV, Andreassen OA, Melle I (2012)

Neurocognitive functioning in patients recently diagnosed with bipolar disorder. Bipolar

Disord 14:227–238

Verbal Memory 245



Higuchi Y, Sumiyoshi T, Kawasaki Y, Matsui M, Arai H, Kurachi M (2008) Electrophysiological

basis for the ability of olanzapine to improve verbal memory and functional outcome in

patients with schizophrenia: a LORETA analysis of P300. Schizophr Res 101:320–330

Hill SK, Reilly JL, Keefe RS, Gold JM, Bishop JR, Gershon ES, Tamminga CA, Pearlson GD,

Keshavan MS, Sweeney JA (2013) Neuropsychological impairments in schizophrenia and

psychotic bipolar disorder: findings from the Bipolar-Schizophrenia Network on Intermediate

Phenotypes (B-SNIP) Study. Am J Psychiatry 170:1275–1284

Horiguchi M, Meltzer HY (2012) The role of 5-HT1A receptors in phencyclidine (PCP)-induced

novel object recognition deficits in rats. Psychopharmacology (Berl) 221:205–215

Horiguchi M, Hannaway KE, Adelekun AE, Jayathilake K, Meltzer HY (2012) Prevention of the

phencyclidine-induced impairment in novel object recognition in female rats by

co-administration of lurasidone or tandospirone, a 5-HT(1A) partial agonist. Neuropsycho-

pharmacology 37:2175–2183

Keefe RS, Fenton WS (2007) How should DSM-V criteria for schizophrenia include cognitive

impairment? Schizophr Bull 33:912–920

Keefe RS, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L (2004) The brief

assessment of cognition in schizophrenia: reliability, sensitivity, and comparison with a

standard neurocognitive battery. Schizophr Res 68:283–297

Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, Meltzer HY, Green MF,

Capuano G, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Davis CE, Hsiao

JK, Lieberman JA (2007) Neurocognitive effects of antipsychotic medications in patients with

chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry 64:633–647

Leifker FR, Patterson TL, Heaton RK, Harvey PD (2011) Validating measures of real-world

outcome: the results of the VALERO expert survey and RAND panel. Schizophr Bull

37:334–343

Maruff P, Thomas E, Cysique L, Brew B, Collie A, Snyder P, Pietrzak RH (2009) Validity of the

CogState brief battery: relationship to standardized tests and sensitivity to cognitive

impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex.

Arch Clin Neuropsychol 24:165–178

Matsumoto J, Uehara T, Urakawa S, Takamura Y, Sumiyoshi T, Suzuki M, Ono T, Nishijo H

(2014) 3D video analysis of the novel object recognition test in rats. Behav Brain Res

272:16–24

Meltzer HY, Sumiyoshi T (2003) Atypical antipsychotic drugs improve cognition in schizophre-

nia. Biol Psychiatry 53:265–267, author reply 267–268

Meltzer HY, Horiguchi M, Massey BW (2011) The role of serotonin in the NMDA receptor

antagonist models of psychosis and cognitive impairment. Psychopharmacology (Berl)

213:289–305

Michalopoulou PG, Lewis SW, Wykes T, Jaeger J, Kapur S (2013) Treating impaired cognition in

schizophrenia: the case for combining cognitive-enhancing drugs with cognitive remediation.

Eur Neuropsychopharmacol 23:790–798

Nagai T, Murai R, Matsui K, Kamei H, Noda Y, Furukawa H, Nabeshima T (2009) Aripiprazole

ameliorates phencyclidine-induced impairment of recognition memory through dopamine D1

and serotonin 5-HT1A receptors. Psychopharmacology (Berl) 202:315–328

Nuechterlein KH, Green MF (2006) MATRICS consensus cognitive battery. MATRICS Assess-

ment, Los Angeles, CA

Parkin AJ (1999) Memory: a guide for professionals. Wiley, West Sussex

Sumiyoshi T (2015) Cognitive impairment in schizophrenia. In: Stolerman I, Price LH (eds)

Encyclopedia of Psychopharmacology, 2nd edn. Springer, New York

Sumiyoshi T, Matsui M, Yamashita I, Nohara S, Uehara T, Kurachi M, Meltzer HY (2000) Effect

of adjunctive treatment with serotonin-1A agonist tandospirone on memory functions in

schizophrenia [letter]. J Clin Psychopharmacol 20:386–388

246 T. Sumiyoshi



Sumiyoshi T, Matsui M, Nohara S, Yamashita I, Kurachi M, Sumiyoshi C, Jayathilake K, Meltzer

HY (2001a) Enhancement of cognitive performance in schizophrenia by addition of

tandospirone to neuroleptic treatment. Am J Psychiatry 158:1722–1725

Sumiyoshi T, Matsui M, Yamashita I, Nohara S, Kurachi M, Uehara T, Sumiyoshi S, Sumiyoshi C,

Meltzer HY (2001b) The effect of tandospirone, a serotonin(1A) agonist, on memory function

in schizophrenia. Biol Psychiatry 49:861–868

Sumiyoshi C, Sumiyoshi T, Roy A, Jayathilake K, Meltzer HY (2006a) Atypical antipsychotic

drugs and organization of long-term semantic memory: multidimensional scaling and cluster

analyses of category fluency performance in schizophrenia. Int J Neuropsychopharmacol

9:677–683

Sumiyoshi T, Higuchi Y, Kawasaki Y, Matsui M, Kato K, Yuuki H, Arai H, Kurachi M (2006b)

Electrical brain activity and response to olanzapine in schizophrenia: a study with LORETA

images of P300. Prog Neuropsychopharmacol Biol Psychiatry 30:1299–1303

Sumiyoshi T, Higuchi Y, Itoh T, Matsui M, Arai H, Suzuki M, Kurachi M, Sumiyoshi C, Kawasaki

Y (2009) Effect of perospirone on P300 electrophysiological activity and social cognition in

schizophrenia: a three-dimensional analysis with sloreta. Psychiatry Res 172:180–183

Sumiyoshi T, Higuchi Y, Itoh T, Kawasaki Y (2011) Electrophysiological imaging evaluation of

schizophrenia and treatment response. In: Risner MS (ed) Handbook of schizophrenia spec-

trum disorders, vol 3. Springer, New York

Sumiyoshi T, Higuchi Y, Uehara T (2013) Neural basis for the ability of atypical antipsychotic

drugs to improve cognition in schizophrenia. Front Behav Neurosci 7:140

Torres IJ, DeFreitas CM, DeFreitas VG, Bond DJ, Kunz M, Honer WG, Lam RW, Yatham LN

(2011) Relationship between cognitive functioning and 6-month clinical and functional out-

come in patients with first manic episode bipolar I disorder. Psychol Med 41:971–982

Tulving EC, Fergus IM (2000) The Oxford handbook of memory. Oxford University Press, Oxford

Woodward ND, Purdon SE, Meltzer HY, Zald DH (2005) A meta-analysis of neuropsychological

change to clozapine, olanzapine, quetiapine, and risperidone in schizophrenia. Int J Neuropsy-

chopharmacol 8:457–472

Woodward ND, Purdon SE, Meltzer HY, Zald DH (2007) A meta-analysis of cognitive change

with haloperidol in clinical trials of atypical antipsychotics: dose effects and comparison to

practice effects. Schizophr Res 89:211–224

Yatham LN, Torres IJ, Malhi GS, Frangou S, Glahn DC, Bearden CE, Burdick KE, Martinez-

Aran A, Dittmann S, Goldberg JF, Ozerdem A, Aydemir O, Chengappa KN (2010) The

International Society for Bipolar Disorders-Battery for Assessment of Neurocognition

(ISBD-BANC). Bipolar Disord 12:351–363

Verbal Memory 247



Emotional Memory

Karim Nader

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

2 Consolidation: The Dominant Model of Memory Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

3 Evidence for a Reconsolidation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

3.1 Behavioral Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

3.2 Alternative Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

3.3 Evidence for Reconsolidation Across Levels of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 254

3.4 Can Mechanisms Mediating Presynaptic Plasticity Undergo Reconsolidation? . . . 257

4 Reconsolidation Is Not Universal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

4.1 Does Reconsolidation Imply an Exact Recapitulation of Consolidation? . . . . . . . . . . 263

5 Clinical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

5.1 Emotional Memory Enhancements via Reconsolidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Abstract

Research on the reconsolidation effect was greatly revitalized by the highly

analytic demonstration of memory reconsolidation (Nader et al. Nature

406:722–726, 2000) in a well-defined behavioral protocol (auditory fear condi-

tioning in the rat). Since this study, reconsolidation has been demonstrated in

hundreds of studies over a range of species, tasks, and amnesic agents. Evidence

for reconsolidation does not come solely from the behavioral level of analysis.

Cellular and molecular correlates of reconsolidation have also been found. In

this chapter, I will first define the evidence on which reconsolidation is

concluded to exist. I will then discuss some of the conceptual issues facing the
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field in determining when reconsolidation does and does not occur. Lastly I will

explain the clinical implications of this effect.

Keywords

Fear • Amygdala • Memory erasure • Memory enhancements

1 Introduction

This is an exciting time in the study of learning and memory. Typically, in any

learning and memory study, scientists broadly differentiate between certain phases

of learning and memory: learning phase in which information is acquired, stabili-

zation phase in which specific mechanisms are engaged to stabilize initially unsta-

ble new information [referred to as synaptic consolidation] (Glickman 1961;

McGaugh 1966), maintenance phase during which other mechanisms are involved

to maintain the memory, and retrieval phase in which specific mechanisms will

permit a memory to be retrieved (Miller and Springer 1973; Spear 1973). Prior to

the year 2000, from a neurobiological perspective, only acquisition and memory

stabilization (Martin et al. 2000; Kandel 2001; Dudai 2004) were considered to be

active phases, in the sense that neurons had to perform certain computations or

synthesize new RNA and proteins in order for these phases of memory processing

to be carried out successfully. After acquisition and stabilization, all other phases

were implicitly thought to be passive readout of changes in the circuits mediating

the long-term memory (LTM).

Since the publication of Nader et al. (2000)’s study demonstrating that a

consolidated LTM memory can become un-stored and restored, a process coined

“reconsolidation” (Nader et al. 2000), about 807 research papers have been published

with this term in the title. There are now cellular and molecular models of this

time-dependent memory phase including exciting, rich psychopharmacological

work.

This chapter will first describe the logic of the findings that brought the

existence of the consolidation process into light. I will then describe how we

concluded that a consolidated memory undergoes reconsolidation in a well-

defined behavioral protocol involving emotional memory (auditory fear condi-

tioning in the rat). I will then discuss the range of species, tasks, and treatments in

which reconsolidation of this type has been reported. One aspect of

reconsolidation that has attracted experimental attention involves the finding

that there seem to be conditions that facilitate or inhibit reconsolidation from

occurring. While this is an extremely exciting aspect of the phenomenon, contro-

versy surrounds the experimental procedures that have been employed to investi-

gate these conditions. I present a logical approach that could help to identify the

veracity of such conditions. Then, I will discuss the often underappreciated data
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showing memories can be enhanced. Lastly, I will discuss clinical implications of

reconsolidation and briefly review some of the results of the published clinical

studies to date.

2 Consolidation: The Dominant Model of Memory Storage

Consolidation is defined as a time-dependent stabilization process leading eventu-

ally to the permanent stabilization of newly acquired memory (Ebbinghaus 1885;

Müller and Pilzecker 1900; Glickman 1961; McGaugh 1966) (Fig. 1ai). At the level

of the synapse, this process referred to as synaptic consolidation is thought to be a

universal property of neurons.

The existence of the consolidation process has been shown from various lines of

evidence demonstrating the presence of a post-acquisition time interval during

which new memories are labile/unstable and sensitive to challenges (Fig. 1ai).

First, performance can be impaired by amnesic treatments, such as electroconvul-

sive shock (Duncan 1949), protein synthesis inhibitors (Flexner et al. 1965), or by

new learning (Gordon and Spear 1973). Second, retention can be enhanced by

administration of certain compounds, such as strychnine (McGaugh and Krivanek

1970). Crucially, these manipulations are only effective when administered shortly

after new learning, but not when given after a few hours. These types of results led

to the conclusion that memory exists in two states: when susceptible to enhance-

ment or impairment, memory resides in a labile state, but if it is insensitive to these

treatments, memory is stable and, by definition, consolidated (McGaugh 1966;

Dudai 2004).

This same logic was employed by Schafe and colleagues to test for the existence

of a consolidation process in the lateral and basal amygdala (LBA) for auditory fear

memory. When the protein synthesis inhibitor anisomycin is infused into the LBA

shortly after training, short-term memory (STM) is intact but LTM is impaired

(Schafe and LeDoux 2000) (Fig. 1aii); however, LTM remains intact when the

infusion is delayed for 6 h. This pattern of results conforms to the operational

definition of consolidation in the sense that the aspect of fear-conditioning memory

that requires protein synthesis within the LBA is consolidated within at most 6 h

after learning. In addition, we assume that the experiment manipulation induced

amnesia for those computations that the LBA supposedly mediates, i.e., the associ-

ation between the conditioned (the tone; CS) and the unconditioned stimulus (the

foot shock; US) (Rodrigues et al. 2009).

One of the basic tenets of the cellular consolidation model is that learning

induces changes in synaptic efficacy, suggesting that the physiological “unit” of

cellular consolidation is the synapse. Two main candidate mechanisms that were

postulated to implement these changes are long-term potentiation (LTP) and long-

term depression (LTD) (Malenka and Nicoll 1999; Martin et al. 2000). In parallel to

the distinction of STM and LTM, with the latter being consolidated by a protein
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synthesis-dependent process, LTP is also divided into an early transient phase

(E-LTP) and a stabilized, RNA- and protein synthesis-dependent late phase

(L-LTP) (Goelet et al. 1986).

Fig. 1 (ai) Textbook account of consolidation demonstrating that memories consolidate over time

into LTM. The critical point is to show that once a memory is in LTM it is thought to remain fixed

or permanent (Glickman 1961; McGaugh 1966). (aii) A typical demonstration of a consolidation

blockade (Schafe and LeDoux 2000). Intact STM and impaired LTM, a pattern of impairment that

defines consolidation impairment (Dudai 2004; McGaugh 2004). (bi) A typical demonstration of a

reconsolidation blockade. Intact post-reactivation STM (PR-STM) and impaired LTM,

(PR-LTM), meeting the definitions for a consolidation blockade (Dudai 2004; McGaugh 2004).

(bii) An alternate model of memory that incorporates the findings of consolidation and

reconsolidation datasets proposed by Lewis (1979). Consolidation theory cannot explain the

reconsolidation dataset. New and reactivated memories are in an active state and then over time

they stabilize and exist in an inactive memory state. When a memory in an inactive memory state is

remembered, it returns to an active memory state
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3 Evidence for a Reconsolidation Process

3.1 Behavioral Evidence

The existence of a reconsolidation process in the LBA for consolidated, i.e., long-

term, auditory fear memory, has been concluded from a study that in logic and

design followed those for consolidation as described in Schafe and LeDoux (2000).

One day after conditioning, at a time when, according to the results from Schafe and

LeDoux (2000) study, memory should be fully stabilized and immune to the

amnesic agent, we reminded animals of the conditioning session by exposing

them again to the CS, i.e., the tone (Nader et al. 2000). Anisomycin, at the same

dose, concentration, and rate as in the Schafe and colleagues’ consolidation study

was then either immediately or later infused into the LBA. When anisomycin was

administered immediately, anisomycin-treated animals show intact post-

reactivation-STM (PR-STM) but impaired PR-LTM (Fig. 1bi), a pattern of results

that is identical to what is found when blocking consolidation (Schafe and LeDoux

2000) (Fig. 1aii). However, if the post-reactivation infusion was delayed by 6 h,

anisomycin had no effect, demonstrating that the reactivation-induced instability/

lability was transient. Importantly, animals that were not reminded of the CS prior

to anisomycin infusions had intact memory.

Staying strictly within the commonly accepted consolidation framework, and

applying only the definitions on which this framework is based, the following four

conclusions can be drawn from the results of these experiments. First, the observa-

tion that the memory was insensitive to anisomycin when it was not reactivated

demonstrates that it was “consolidated” 24 h after training—at least with regard to

the specific amnesic treatment applied. Second, that only the reactivated memory

was sensitive to anisomycin disruption demonstrates that memory was in a labile

state after reactivation. Third, the observation that the anisomycin-treated animals

showed intact STM and impaired LTM after reactivation implies that a

consolidation-like process is triggered by reactivation. And finally, given the

amnesic treatment was ineffective 6 h after reactivation, this post-reactivation

re-stabilization process is, like consolidation, a time-dependent process. Taken

together, these four conclusions yield the interpretation that reactivation of a

consolidated memory returns it again to a labile state from which the memory has

to undergo stabilization (i.e., reconsolidate) over time (Nader et al. 2000).

Consolidation and reconsolidation are thus both deduced from the evidence of a

transient period of instability. In the case of consolidation, this window is initiated

after acquisition of new information; in the case of reconsolidation, it is initiated

after reactivation of an existing, consolidated memory representation. As is the case

for consolidation, only during the reconsolidation phase can memory be boosted by

“memory enhancers” (Gordon 1977b; Rodriguez et al. 1993; Horne et al. 1997;

Rodriguez et al. 1999), or impaired by amnesic treatments (Misanin et al. 1968) and

interfering new learning (Gordon 1977a). These treatments are ineffective when

reconsolidation is complete, which is also the case for consolidation.
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The term “reconsolidation” was introduced as early as 1973, in the context of a

discussion on memory retrieval. Spear asked “. . .how will the dynamic aspects of

memory [will] be handled, that is, with successive learning trials or related succes-

sive experiences does the entire memory reconsolidate anew or merely the new

information?” (Spear 1973, p. 188). As a consequence of the perceived inability of

the consolidation hypothesis to account for reconsolidation, new memory models

were developed that treated new and reactivated consolidated memories in similar

ways (Spear 1973; Lewis 1979) (Fig. 1bii).

Since Nader et al. (2000)’s report, reconsolidation has been shown across a

variety of species, tasks, and amnesic treatments (Table 1). In light of this evidence,

it is therefore postulated that reconsolidation represents a fundamental memory

process (Nader and Hardt 2009).

One of the most striking findings in this literature is a study by Lee (2008), who

devised specific tools to block consolidation or reconsolidation mechanisms (Lee

2008). Most students of memory would assume that presenting additional learning

trials to a consolidated memory would engage consolidation mechanisms, which will

make the memory stronger. However, the evidence from Lee (2008)’s study suggests

that a memory has to undergo reconsolidation to be strengthened.Moreover, memory

strengthening by new learning was mediated by reconsolidation and not consolida-

tion mechanisms. This evidence suggests that a recently acquired memory will

be mediated by consolidation mechanisms within a time window of approximately

5 h. However, for the rest of the memory’s lifetime, the memory will engage

reconsolidation mechanisms. Therefore, based on this evidence, consolidation but

not reconsolidation can be considered as the atypical memory process (Lee 2009).

3.2 Alternative Interpretations

Reconsolidation, as we discussed above, has been defined by applying the very

standards that define consolidation. Therefore, certain nonspecific interpretations of

the reconsolidation hypothesis pose the same challenges to the consolidation

hypothesis, a consequence that is rarely acknowledged. The complexity of the

data poses a problem for alternative interpretations, which should not merely

provide new explanations for the reconsolidation dataset, but need to allow for

predictions that are different from those offered by the reconsolidation model. For

this reason, we will not address all the previous alternative interpretation here. A

detailed discussion of these alternative interpretations including facilitation of

extinction, transient retrieval impairment, nonspecific effects, state-dependent

learning, and new learning is presented in Nader and Hardt (2009).

3.3 Evidence for Reconsolidation Across Levels of Analysis

Evidence for reconsolidation does not come solely from the behavioral level of

analysis. A cellular phenomenon akin to reconsolidation was shown for L-LTP
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(Fonseca et al. 2006). In this study, the authors report that when anisomycin is

added 2 h after the induction of L-LTP it has no effect on L-LTP maintenance. If,

however, the potentiated pathway is reactivated by administering test pulses that

inhibit protein synthesis, the potentiation is intact shortly after reactivation but

Table 1 Some of the paradigms in which reconsolidation has been reported

Experimental

paradigm

Habituation (Rose and Rankin 2006)

Auditory fear conditioning (Nader et al. 2000)

Contextual fear conditioning (Debiec et al. 2002)

Instrumental learning (Sangha et al. 2003), but see Hernandez and

Kelley (2004)

Inhibitory avoidance (Anokhin et al. 2002; Milekic and Alberini 2002)

Conditioned aversion learning (Eisenberg et al. 2003)

Motor sequence learning (Walker et al. 2003)

Incentive learning (Wang et al. 2005)

Object recognition (Kelly et al. 2003)

Spatial memory (Suzuki et al. 2004; Morris et al. 2006)

Memory for drug reward (Lee et al. 2005; Miller and Marshall 2005;

Valjent et al. 2006)

Episodic memory (Hupbach et al. 2007)

Treatment Protein synthesis inhibition (Nader et al. 2000)

RNA synthesis inhibition (Sangha et al. 2003)

Inhibition of kinase activity (Kelly et al. 2003; Duvarci et al. 2005)

Protein-knockout mice (Bozon et al. 2003)

Anti-sense (Taubenfeld et al. 2001; Lee et al. 2004)

Inducible knockout mice (Kida et al. 2002)

Receptor antagonists (Przybyslawski et al. 1999; Debiec and Ledoux 2004;

Suzuki et al. 2004)

Interference by new learning (Walker et al. 2003; Hupbach et al. 2007)

Potentiated reconsolidation by increase in kinase activity (Tronson

et al. 2006)

Species Aplysia (Cai et al. 2012; Lee et al. 2012)

Nematodes (Rose and Rankin 2006)

Honeybees (Stollhoff et al. 2005)

Snails (Sangha et al. 2003)

Sea slugs (Child et al. 2003)

Fish (Eisenberg et al. 2003)

Crabs (Pedreira et al. 2002)

Chicks (Anokhin et al. 2002)

Mice (Kida et al. 2002)

Rats (Nader et al. 2000); rat pups (Gruest et al. 2004)

Humans (Walker et al. 2003; Hupbach et al. 2007; Kindt et al. 2009;

Schiller et al. 2010)

This table lists some examples from various experimental paradigms, treatments, and species for

studies reporting evidence for a reconsolidation process since the year 2000
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becomes impaired over time. This suggests that reactivation of stabilized L-LTP

returns its substrate to a labile state, in which it can be disrupted by inhibiting

protein synthesis. This is consistent with the suggestion that the mechanisms

mediating plasticity are stabilized (Finnie and Nader 2012) over time, just like

consolidation (Goelet et al. 1986). Other evidence includes reports that

reconsolidation blockade reverses increases in field potentials induced by fear

conditioning in the LA in intact animals (Doyere et al. 2007). In sum, this evidence

suggests the presence of a cellular correlate of the behaviorally demonstrated

reconsolidation impairment.

More recently, two papers using classic paradigm of Aplysia to study sensitiza-

tion and long-term facilitation (LTF) reported that reconsolidation affects these

kinds of processes. Indeed, when reconsolidation was blocked, the sensory-motor

synaptic enhancement typically observed after LTF was reversed (Cai et al. 2012;

Lee et al. 2012).

At the molecular level, interfering with reconsolidation can, in a time-

dependent manner, remove molecular correlates of memory induced by learning

and subsequent consolidation. Miller and Marshall (2005) showed that place-

preference learning activates the extracellular signal-regulated kinase (ERK) in

the nucleus accumbens (Miller and Marshall 2005). Blocking the activated ERK in

the nucleus accumbens after reactivation results in intact PR-STM but impaired

PR-LTM. In these amnesic animals, this also leads to the absence of ERK and its

downstream transcription factors in the nucleus accumbens [see also Valjent

et al. (2006) who demonstrate reduction in ERK and GluA1 phosphorylation

using a similar procedure]. Studying mechanisms of long-term habituation in

C. elegans, Rose and Rankin (2006) showed that administering heat-shock or the

non-NMDA glutamatergic antagonist, DMQX, after reactivation of a consolidated

memory dramatically returns expression of AMPA receptors in the mechano-

sensory neuron to a level typical for naı̈ve animals (Rose and Rankin 2006).

Importantly, the reconsolidation effects in all of these studies were contingent on

memory reactivation—in the absence of a reminder the amnesic treatments were

ineffective.

Another study by Kaang’s group described, at the level of postsynaptic α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptors, the biochemical pro-

cess that destabilizes a consolidated memory and the subsequent reconsolidation

process. Learning is thought to lead to AMPA receptor trafficking: calcium-

permeable AMPA receptors are inserted into the postsynaptic density (PSD) and

then over time replaced by calcium-impermeable receptors (Rumpel et al. 2005).

Kaang’s group asked what the AMPA receptor dynamics would be when a memory

is destabilized and then reconsolidated. These authors reported that memory desta-

bilization is associated with calcium-permeable AMPA receptors. Indeed, blocking

the introduction of calcium-permeable AMPA receptors into the PSD prevented the

memory from being un-stored (Hong et al. 2013). Thus, they found that the

replacement of calcium-permeable AMPA receptors by calcium-impermeable

AMPA receptors mediated the process of reconsolidation.
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These studies are a small sample of the datasets that provide striking evidence

for the existence of a transient post-reactivation period of memory plasticity, i.e.,

memory reconsolidation, on the behavioral, physiological, and molecular levels of

analysis.

3.4 Can Mechanisms Mediating Presynaptic Plasticity Undergo
Reconsolidation?

Synapses usually have presynaptic and postsynaptic compartments. The electrical

signal is conducted from the presynaptic to the postsynaptic compartment. One

theory on the locus of memory posits that presynaptic changes are critical for LTM

and L-LTP (Bliss and Collingridge 1993). These presynaptic changes are thought to

increase the probability of vesicle release.

In all the studies that examined cellular or molecular correlates of consolidation

or reconsolidation, blocking the respective memory processes reversed the

learning-induced molecular/cellular correlates. For example, in a study, Bailey

and colleagues (1993) reported that the blockade of consolidation in an Aplysia
preparation with a protein synthesis inhibitor prevented the increase in the number

of synapses to the point where the amount compared to levels of synapses in naı̈ve

animals. The same pattern of results has been shown in reconsolidation studies, as

can be seen in the previous section.

Tsvetkov et al. (2002) have previously demonstrated that auditory fear condi-

tioning induces predominantly presynaptic enhancements in both inputs to the

lateral amygdala thought to mediate fear learning (Tsvetkov et al. 2002).

Recently, this group assessed what would happen to these learning-induced

presynaptic enhancements after blocking reconsolidation with rapamycin, a pro-

tein synthesis inhibitor. They reported that these presynaptic enhancements were

not reduced, but that a reduction in postsynaptic AMPA receptors correlated with

the behavioral impairments (Li et al. 2013). This finding suggests that the

postsynaptic mechanisms must detect how much potential exists on the presyn-

aptic terminals and reduce the postsynaptic AMPA receptors below baseline PSD

levels.

There are two theoretical implications of these findings for reconsolidation.

First, perhaps, presynaptic mechanisms of long-term plasticity are independent of

reconsolidation. This would entail that only the postsynaptic mechanisms of long-

term memory could be susceptible to reconsolidation blockade. The second possi-

bility is that presynaptic mechanisms are affected by reconsolidation, but the

amnesic treatment used, a protein synthesis inhibitor (PSI), was not appropriate to

target the presynaptic mechanisms mediating reconsolidation. We know that pre-

synaptic enhancements are not affected by PSIs. Therefore, a tool transiently

challenging the mechanisms mediating long-term presynaptic efficacy would be

needed to test this hypothesis.
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4 Reconsolidation Is Not Universal

The fact that memory reconsolidation has been found across levels of analysis does

not imply that reconsolidation is universal, i.e., observed under any circumstance.

Another variation of the theme that reconsolidation is not a universal property of

memory is the concept of constraints on this phenomenon, or “boundary

conditions.” These are situations of physiological, environmental, or psychological

nature, in which memories that normally would reconsolidate no longer does.

Several boundary conditions have been proposed, such as extinction consolidation

(Eisenberg et al. 2003; Pederia and Maldonado 2003; Suzuki et al. 2004), memory

age (Milekic and Alberini 2002; Suzuki et al. 2004), predictability of the reactiva-

tion stimulus (Pedreira et al. 2004; Morris et al. 2006), and training intensity

(Suzuki et al. 2004). Others, however, have not identified similar boundary

conditions in other protocols [for extinction] (Stollhoff et al. 2005; Duvarci

et al. 2006), old memories (Debiec et al. 2002; Lee et al. 2005), predictability of

the reactivation stimulus (Pedreira et al. 2002; Bozon et al. 2003; Sangha

et al. 2003; Valjent et al. 2006), or strength of training (Debiec et al. 2002; Lee

et al. 2005). Whether additional parameters moderate boundary conditions remains

to be seen.

The observed inconsistencies in the identification of the boundary conditions

might be due to the absence of agreed-upon, standard experimental parameters

required to test the presence of such boundary conditions. For example, if

memory disruption is not observed within a set of experimental parameters,

then it is concluded that the memory does not undergo reconsolidation under

those conditions. A number of reports, however, have demonstrated that a mem-

ory may undergo reconsolidation only under specific reactivation conditions

(De Vietti and Holiday 1972; Bozon et al. 2003; Suzuki et al. 2004). The

implication of these findings is that it is extremely difficult to conclude based

on behavioral studies that a memory never undergoes reconsolidation. Therefore

the question remains whether the negative effects upon which the boundary

conditions are based imply that a given memory never undergoes reconsolidation

under those conditions, or the memory is still capable of undergoing

reconsolidation with another reactivation protocol (Fig. 2). Given that the param-

eter space of possible reactivation procedures is essentially infinite, a real bound-

ary condition is very difficult to prove at the behavioral level. This is likely part

of why there is so much inconsistency in the field of boundary conditions

(Dreyfuss et al. 2009).

Wang et al. (2009) took a complementary approach to identify some of the

molecular mechanisms that are induced by boundary conditions to inhibit the

occurrence of reconsolidation (Wang et al. 2009). If molecular or cellular indicators

of when memories stop undergoing reconsolidation were identified, then we could

make strong predictions concerning when we should see these mechanisms

expressed (Fig. 3).

Specifically, if strong memories, old memories, or extinction represent real

boundary conditions, then the putative mechanisms mediating boundary conditions
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should be fully expressed within the respective memory system. Conversely, under

conditions when a memory does undergo reconsolidation (e.g., weak training, little

extinction, or young memories), then the mechanism mediating boundary

conditions should be minimized. This strategy would significantly complement

the behavioral studies described above in their search for true boundary conditions

and help resolve some of the conflicting findings in the field.

An understanding of how boundary conditions are mediated across levels of

analysis is critical because targeting reconsolidation of traumatic memories has

been proposed to be a potential treatment for posttraumatic stress disorder (PTSD)

Fig. 2 Possible functions describing the constraints on reconsolidation. It is still an open question

if the functions are linear or exponential. Different experimental conditions may produce different

functions. The experimental space to the left of the curve is determined by examples in which the

memory undergoes reconsolidation as demonstrated in the schematic behavioral impairment. The

evidence for constraints on reconsolidation is derived from negative findings as shown in the

schematic on the right. That is a logical limitation of the behavioral approach to this issue.

Therefore, we suggested that a complementary approach to help resolve this issue would be to

identify a molecular correlate for the absence of reconsolidation. This would act as positive

evidence for the existence of the constraint
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(Przybyslawski and Sara 1997; Debiec et al. 2002; Schiller et al. 2010). Specifi-

cally, blocking the reconsolidation of traumatic memories might weaken the long-

term maintenance of these traumatic memories, in turn, reducing PTSD pathology.

However, if strong aversive experiences act as boundary conditions on

reconsolidation (Suzuki et al. 2004), then this would suggest that the traumatic

memories in PTSD patients may be resistant to undergoing reconsolidation, thereby

negating reconsolidation as a potential therapeutic target. Therefore, understanding

boundary conditions, such as strength of training, is critical to ensure we know if it

is possible to target reconsolidation of very strong fear memories, and if so, what

Fig. 3 Conceptual diagram demonstrating how boundary conditions could inhibit memories from

undergoing reconsolidation across memories types and memory systems. (a) Under experimental

conditions when a memory undergoes reconsolidation, the mechanisms allowing a memory to be

transformed from a consolidated to a labile active state (AS) must be present and functional at the

synapse (“?” in figure). These mechanisms, of course, will involve more than surface receptors and

will likely include a number of molecular processes that have yet to be identified. (b) Experimental

conditions that begin to inhibit memories from undergoing reconsolidation may lead to a partial

reduction in a mechanism that is critical for the induction of reconsolidation. The partial reduction

might be sufficient to prevent the induction of reconsolidation when a standard protocol is used.

However, there may still be sufficient amounts of this mechanism to permit the memory to undergo

reconsolidation when a stronger reactivation is used. (c) Under conditions when the memory does

not undergo reconsolidation, a boundary condition, a necessary mechanism for the induction of

reconsolidation, is reduced to the point that alternative reactivation protocols cannot induce the

memory to undergo reconsolidation
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the optimal conditions are to allow an extremely strong fear memory to undergo

reconsolidation.

To this end, Wang et al. (2009) found that strong auditory training produced

memories that initially did not undergo reconsolidation, but they did so over time

on the order of 1 month. This suggests that boundary condition induced by strong

training is transient (Fig. 4a). This in itself is striking, as the implicit assumption is

that once a memory stops undergoing reconsolidation it will never begin again. This

was the first demonstration that a putative boundary condition could be transient

(Wang et al. 2009).

Wang et al. (2009) hypothesized that one principle that could mediate bound-

ary conditions is to downregulate the mechanisms that allow memories to

undergo reconsolidation. What could be the molecular mechanism to inhibit

reconsolidation of strong memories for up to 30 days after training in the LBA?

Ben Mamou et al. (2006) demonstrated the NMDA receptor antagonists for the

NR2B subunits are necessary in reactivation-induced destabilization, but that this

destabilization does not get expressed at the behavioral level. Specifically,

pre-reactivation infusion of ifenprodil (a NR2B antagonist) prevented the mem-

ory from being impaired by post-reactivation anisomycin; however, it had no

effect on the expression of freezing. New strong memories show similar

properties: normal expression of freezing during reactivation but insensitivity to

post-reactivation anisomycin. Ben Mamou et al. (2006) reasoned that strong

training may downregulate NR2B expression in the LBA, thereby making the

memory insensitive to post-reactivation anisomycin infusions but capable of

being expressed normally. It was hypothesized that NR2B expression in the

LBA should be reduced under conditions when memories did not undergo

reconsolidation but should remain normal when memories underwent

reconsolidation. That was exactly what was observed. NR2B levels were normal

when the memory underwent reconsolidation, but drastically reduced under the

conditions in which the memory did not undergo reconsolidation (Fig. 4b). The

reduction was subunit selective, with NR1 subunits constant at all time points.

The suggested role of the NR2B subunits in regulating when fear memory in the

LBA will undergo reconsolidation may not generalize to all memory systems or

types of memory. Currently, there are four studies that have examined the

mechanisms involved in transforming a consolidated memory to a labile state.

While we have demonstrated that NR2B subunit is critical for memories to return

to a labile state within the LBA for fear conditioning (Ben Mamou et al. 2006),

NMDA receptors in the hippocampus and within the amygdala for appetitive

memories are thought to play a role in re-stabilization process (Milton

et al. 2008; Suzuki et al. 2008). In the hippocampus, voltage-gated calcium

channels (VGCC) (Suzuki et al. 2008) and protein degradation (Lee et al. 2008)

are critical for a memory to return to a labile state.
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Fig. 4 (a) Strong memories undergo reconsolidation at 30 and 60, but not 7, days after training

(taken from Wang et al. 2009). The top panel of each sub-figure represents the behavior protocol.

Separate groups of animals were LBA cannulated and trained with 10 tone–footshock pairings.
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4.1 Does Reconsolidation Imply an Exact Recapitulation
of Consolidation?

An important but somewhat neglected aspect of this debate is that the protocols

used to study reconsolidation are different from those used to study consolidation,

which renders direct comparison of results problematic. For example, in auditory

fear conditioning, both CS and US are presented, leading to the activation of

afferents that relay auditory and pain information to the amygdala. Neurons that

are thought to be the site of plasticity in the LBA are proposed to receive concurrent

activation by these afferents (Blair et al. 2001). As a consequence, a series of

second messenger systems are activated that are thought to lead to transcription and

translation of proteins required for consolidation (Maren 2001; Schafe et al. 2001).

In reconsolidation studies, however, typically only the CS is presented to reactivate

and induce plasticity in consolidated memory. Thus, consolidation studies examine

the neurobiological changes after a CS and US are presented together, while

reconsolidation studies examine neurobiological changes that happen after presen-

tation of a CS alone. For this reason, at the brain systems/circuits and molecular

level, consolidation and reconsolidation must be different, as only the former

directly activates the pathways that relay US information to the amygdala. There-

fore, the demonstration of differences in brain regions or circuits mediating consol-

idation and reconsolidation may be rather trivial (Nader et al. 2005). It remains

unclear which of the reported differences between consolidation and

reconsolidation actually reflect genuine differences between the two processes as

opposed to differences in the protocols used to induce them. A study in which

differences between reconsolidation and consolidation were not attributable to

differences in the protocols is the first to shed some light on this issue (Lee

et al. 2004). The authors reported a double dissociation, separating the mechanisms

mediating consolidation from those that mediate reconsolidation (Lee et al. 2004)

[see also the work by Giese and colleagues (von Hertzen and Giese 2005)].

�

Fig. 4 (continued) The memory was reactivated at 7, 30, or 60 days after training. The freezing

ration was computed as (PR-LTM� PR-STM)/PR-STM)� 100 %. Intra-LBA anisomycin infu-

sion impaired the PR-LTM only when the strong memory was reactivated at 30- and 60-days after

training. The asterisk indicates significant group differences. (b) NR2B-subunit levels, assessed by
immunohistochemistry (IHC), are inversely related to the ability of the strong memories to

undergo reconsolidation over time. (i) Animals received 10 tone–footshock pairings (10P),

1 pairing (1P), or 1 footshock followed by an unpaired tone (UP). They were sacrificed 2 days

after training, a time when the memory does not undergo reconsolidation, and their brains were

later processed for IHC. The left panel represents the actual staining in regions of interest (ROI) in
lateral and basal amygdala (LA, BA) in individual groups (n¼ 4/group). The graph shows the

quantification of NR2B-positive cell numbers in each ROI. While 1P and UP animals showed

similar level of NR2B-immunostained cells, 10P animals showed significantly less stained cells in

either LA or BA. The asterisk indicates significant group differences. (ii) Animals received either

10P or 1P. They were sacrificed 60 days after training, a time when the memory does undergo

reconsolidation, and their brains were later processed for IHC. Both groups show similar level of

NR2B-positive cells in LA and BA. The scalar bar represents 80 μm. All pictures in the left panel
are in the same scale. Each data point is represented in mean +/� s.e.m
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5 Clinical Implications

Consolidation and reconsolidation are processes ubiquitous to all neurons (not just

those in memory systems) (Kandel 2001). The finding that consolidated memories

return to a labile state and have to be restored has significant implications for a

number of clinical conditions such as posttraumatic stress disorder (PTSD), addic-

tion, obsessive–compulsive disorder (OCD), or delusions/hallucinations. An under-

standing of the mechanisms mediating reconsolidation could provide the basis for

developing new or refining old therapeutic tools to successfully manage, if not cure,

some of these conditions. As an example of how this could be applied, imagine a

patient with PTSD whose symptoms were resistant to both drugs and psychother-

apy. A new way of treating this condition could be to reactivate the patient’s

traumatic memory and block its reconsolidation. Theoretically, this should lead to

a “cure” within a single session. Although finding a cure in the removal of a

memory in a single session may sound worthy of a fictional reality, early studies

on patients using electroconvulsive therapy (ECT) demonstrate that this possibility

may not be incompatible with real life.

Franks and colleagues (Rubin et al. 1969; Rubin 1976) treated patients suffering

from hallucinations, delusions, major depression, or OCD. In contrast to other

studies that administered ECT when the subjects were anesthetized, Rubin and

colleagues kept the patients awake and directed them to focus on the objects of their

compulsions or hallucinations. This experimental procedure reactivated the neural

mechanisms mediating those memories when the ECT was delivered. All of the

subjects were reportedly “cured” of their condition, even though some had had up to

30 previous ECT treatments while under anesthesia. The majority remained symp-

tom free for the 2-year period between the treatment and the publication of the

manuscript. The fact that ECT was effective only when the memories were

reactivated, but not when the memory reactivation was omitted (i.e., when the

patient was anesthetized), suggests in principle that reconsolidation occurs in

humans. Furthermore, this study provides evidence that the possibility of curing

someone by removing a memory in a single session may not be so remote.

Today’s treatments tend to be less intrusive than ECT. For example, beta-

adrenergic antagonists such as propranolol have few side effects and are known

to block reconsolidation of aversive and appetitive memories preferentially stored

in the amygdala. The first attempt to target reconsolidation in patients with enduring

PTSD symptoms reported a reduction in the strength of traumatic memories after a

15 min intervention (Brunet et al. 2008). It is important to note that some of these

patients had been suffering from these PTSD symptoms for close to 30 years.

Furthermore, it is remarkable that a single reactivation caused an old and

consolidated memory to become un-stored again. Drug craving (Xue et al. 2012;

Saladin et al. 2013) and PTSD (Brunet et al. 2008; Menzies 2012) are two clinical

conditions in which it has been demonstrated that targeting their underlying main-

tenance mechanisms through reconsolidation can lead to significant clinical

improvement. For a more extended discussion of these issues, please see a recent

review by Nader et al. (2013).
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For other clinical conditions, such as OCD/major depression, that may involve

multiple maintaining mechanisms not mediated by a single brain area, a new form

of ECT has been shown to block reconsolidation (Kroes et al. 2014).

5.1 Emotional Memory Enhancements via Reconsolidation

As previously discussed in this chapter, one property of new memories is that they

can be enhanced. “Significance” facilitates “remembrance.” We are more likely to

remember significant life events than trivial ones. Evolution appears to have

accomplished this feat of adaptation by natural selection of modulatory effects

exerted by stress hormones on the consolidation of memory traces (McGaugh

2004). Thus, emotional memories trigger mechanisms that modulate consolida-

tion—neutral memories do not. This effect is time dependent, i.e., the enhancement

is greater when the injections are administered in temporal proximity to the

training.

There have been more than a dozen of papers reporting that memory strength can

be enhanced via a process of reconsolidation. This is demonstrated by observing

intact PR-STM and enhanced PR-LTM. The first modern example demonstration of

this effect came from the work of Tronson et al. (2006). After targeting the second

messenger system protein kinase A (PKA), which is implicated in LTP, the authors

showed that inhibition of PKA’s activity impaired PR-LTM; facilitation of that

kinase’s activity enhanced PR-LTM. One recent demonstration of this equal ele-

gance comes from Satoshi Kida’ group, who identify the mechanisms of memory

enhancement at the molecular and brain systems levels.

6 Conclusion

Reconsolidation as a memory process is a relatively recent entry in the domain of

memory research. Reconsolidation has changed our view of memory from a passive

to an active neurobiological process. The evidence for reconsolidation comes from

a spectrum of species, amnesic agents, and reinforcers, spanning all levels of

analysis from molecular, physiological, and behavioral levels, thereby suggesting

that reconsolidation is a fundamental property of memory. What is more indicative

of the status of reconsolidation in memory research is that evidence from both

human and rodent studies has grown exponentially in the recent years.

Reconsolidation remains a topic of intensive research. One area of investigation

that is being studied involves the identification of boundary conditions in

reconsolidation. I have described a major limitation of the current approach to

identify such boundary conditions and suggested a complementary approach to help

resolve this important issue. Specifically, identifying a molecular or cellular indi-

cator of when memories undergo reconsolidation represents this complementary

approach.
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There is a growing interest in utilizing reconsolidation blockage as a therapeutic

tool in several clinical conditions, most importantly PTSD. Although most of the

studies to date do not report significant clinical effects from targeting

reconsolidation, evidence from these studies provides proof-of-concept

demonstrations of the usefulness of reconsolidation paradigm in clinical research.

Particularly, the evidence demonstrating the effectiveness of blocking

reconsolidation of traumatic memories as old as 30 years is a cause for optimism.

Nonetheless, future clinical research will undoubtedly benefit from advances in

basic research, such as an increased understanding of the boundary conditions of

reconsolidation, amongst others.
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Abstract

Social cognition is a major problem underlying deficiencies in interpersonal

relationships in several psychiatric populations. And yet there is currently no

gold standard for pharmacological treatment of psychiatric illness that directly

targets these social cognitive areas. This chapter serves to illustrate some of the

most innovative attempts at pharmacological modulation of social cognition in

psychiatric illnesses including schizophrenia, borderline personality disorder,

autism spectrum disorders, antisocial personality disorder and psychopathy,

social anxiety disorder, and posttraumatic stress disorder. Pharmacological

modulation includes studies administering oxytocin, ecstasy (MDMA),

modafinil, methylphenidate, and D-cycloserine. Furthermore, some background

on social cognition research in healthy individuals, which could be helpful in

developing future treatments, is provided as well as the potential for each drug as

a long-term treatment option.

Keywords

Social cognition • Schizophrenia • Anxiety disorders • Autism spectrum

disorder • Oxytocin

1 Introduction

1.1 What Is Social Cognition?

Although the concepts on their own are relatively well integrated into the language

of everyday literature, when put together the term social cognition is suddenly more

difficult to clearly define. In a review of social behavior in humans, Ralph Adolphs

describes the problem as being one of inclusion: “If the social is ubiquitous, we face

the problem of including all aspects of cognition as social” (Adolphs 2003, p. 165).

At the base of social cognition traditionally lies emotion recognition, which has

been argued to be the key to understanding how another person feels, what they are

intending to do, or how they will react to a stimulus (Elfenbein and Ambady 2002).

Included in the definition of social cognition for purposes of this chapter are also,

among others, empathy and theory of mind, or the ability to infer feelings and

emotions in another, cooperation, trust, and social feedback-based learning.
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A further important facet of social cognition is reciprocity: it is not enough to

merely perceive and understand social cues, but one must be able to give appropri-

ate signals and reactions as well (Roepke et al. 2013).

1.2 Brain Regions Involved in Social Cognition

Although related, the neural networks involved in different social cognition

domains are distinct. Face processing, for instance, involves the fusiform gyrus,

or fusiform face area, for processing static features, the superior temporal sulcus for

processing mimicry and dynamic changes in the face, and the amygdala (Adolphs

2003; Haxby et al. 2000). The amygdala, alongside the ventromedial prefrontal

cortex, is also of great interest to social cognition researchers as they share rich

functional connections and have been found to play a role in psychopathy, depres-

sion, anxiety disorders, autism, and schizophrenia (Tudusciuc and Adolphs 2013).

Social cognition as a broader concept appears to have its roots in a network

involving the prefrontal cortex (PFC), amygdala, cingulate gyrus, fusiform gyrus,

insula and further regions in the somatosensory cortex, superior temporal sulcus,

and the supramarginal gyrus (Tudusciuc and Adolphs 2013).

2 Illnesses Characterized by Low Social Cognition

A lack of social cognition is a cornerstone of several illnesses characterized by the

inability to interact with others at a normal, healthy level. Specifically, emotion

recognition has consistently correlated with characteristics such as social anxiety

and avoidance, distress, depression, antisocial behavior, and psychopathy (McClure

and Nowicki Jr 2001). Both healthy and patient populations show the importance of

social cognition to interpersonal interactions. For instance, healthy participants

have shown a link between fear recognition ability and an increased desire toward

altruistic behavior (Marsh et al. 2007), as well as report having better relationships

and a lower depression rate (Carton et al. 1999). In patient populations, social

cognition has been found to have a predictive value, and autism or psychosis

patients with lower social cognitive abilities statistically show lower social function

(Bertrand et al. 2007; Losh et al. 2009).

There are indications in the literature that therapeutic augmentation with phar-

macological modulation can be used to support social cognition in healthy

participants, and one common theme among these is the emerging possibility of

beneficial treatments for patients with schizophrenia, antisocial disorders, and

social anxiety. Moreover, there have been several approaches toward enhancing

social cognition in psychiatric illness. For one, cognitive enhancement therapy

(CET) involves neurocognitive and social cognitive improvements based on a

computer-based training in attention, memory, and problem solving and further

exercises in perspective taking, gistfulness, social context appraisal, and other areas

of social cognition (Eack 2013).
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2.1 Schizophrenia

According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5),

schizophrenia is a disorder within the schizophrenia spectrum and is characterized

in part by negative symptoms, which make up a large part of the clinical manifes-

tation of schizophrenia and have a direct effect on social cognition. They include

diminished emotional expression, avolition (a reduced motivation for self-initiated

activity), alogia (reduction in speech output), anhedonia (a reduced ability to gain

pleasure from positive stimuli), and asociality (reduced interest in social interac-

tion). Particularly salient in schizophrenia are diminished emotional expression and

avolition (American Psychiatric Association 2013).

One debilitating consequence of schizophrenia is social and occupational dys-

function, although patients may well possess the cognitive ability to complete

required tasks (American Psychiatric Association 2013). Initial studies directly

aiming to improve social cognitive skills in individuals with schizophrenia have

shown an increase in theory of mind following training (Bechi et al. 2012; Bechi

et al. 2013), as well as focusing on concrete social cognition, such as in CET (Eack

2013). Patients with schizophrenia usually experience their first symptoms early on

in adult life, and a large minority of patients show an onset before they reach

19 years of age (Cullen et al. 2008), and the disease affects 0.3–0.7 % of adults

overall (van Os and Kapur 2009). Other findings report a much higher prevalence of

schizophrenia and related categories of illness of 2–3 % (Perälä et al. 2007).

Schizophrenic individuals die 12–15 years before the average population, mostly

due to unhealthy lifestyles (Saha et al. 2007).

Men are affected with the disease more often than women (Roy et al. 2001). As

of yet, no single cause has been pinpointed, although there is a strong evidence for a

genetic predisposition (van Os and Kapur 2009). Twin studies show that there is a

heritability rate of up to 80 % (van Os and Kapur 2009). The typical pharmacologi-

cal treatment involves antipsychotic drugs working antagonistically at the D2

receptor, but this is usually made in addition to psychological treatment as well

as social support systems (van Os and Kapur 2009).

Cognitive impairments are a common manifestation of schizophrenia, including

memory, attention, and executive function (Fioravanti et al. 2005). Indeed, schizo-

phrenia was first known as dementia praecox at its discovery precisely because of

these deficits (Kraepelin 1971; van Os and Kapur 2009). Individuals with schizo-

phrenia show a much higher use of drugs than the general population, and alcohol

or nicotine use is found in half to over half the population (Mueser et al. 1992;

Šagud et al. 2009). This introduces the question of whether schizophrenic

individuals use substances such as nicotine as an effort to support cognitive

enhancement and are perhaps lacking this support in conventional therapeutic

regimes. Structural and functional neural abnormalities have been found in several

cases in schizophrenic individuals, including neuroinflammation in orbitofrontal

white matter and decreased astroglial density in the subgenual cingulate white

matter (Najjar and Pearlman 2015), as well as abnormal functional hub density in

the frontal and limbic association areas, for example, suggesting difficulty in
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information integration over different neural regions (Bassett et al. 2008; Zhang

et al. 2012).

2.2 Borderline Personality Disorder

While borderline personality disorder (BPD) affects 1–3 % of adults (Trull

et al. 2010), it affects a much larger rate of 10–20 % of psychiatric patient

populations (Korzekwa et al. 2008), making it one of the leading disorders marked

by social cognition deficits. The DSM-5 characterizes BPD individuals as making

great effort to avoid abandonment, having feelings of emptiness, and being in

unstable and intense interpersonal relationships, among other symptoms (American

Psychiatric Association 2013). These are symptoms that directly reflect difficulties

in social cognition, as they are illustrative of difficulties patients have in under-

standing and dealing with others.

From very early on in social cognition research, it became apparent that patients

with BPD showed a negative bias toward judging the intentions of others as

malevolent (Lerner and St. Peter 1984; Stuart et al. 1990). A lack in both cognitive

and emotional empathy could also serve as a major underpinning for BPD

individuals’ difficulties in interactions (Roepke et al. 2013). Further studies have

shown that BPD individuals have difficulties with perceiving, processing, and

responding to social cues from others (Brodsky et al. 2006; Gunderson and

Lyons-Ruth 2008; Stiglmayr et al. 2005).

The underlying mechanism for these deficits is difficult to discern, but there is

growing support for the idea that emotional hypervigilance disrupts normal

processing of emotional stimuli, specifically in terms of emotion recognition

(Domes et al. 2009; Linehan 1995). This idea is in support of findings showing

that BPD individuals have greater sensitivity when faced with social rejection

(Staebler et al. 2011; Stiglmayr et al. 2005).

Structural and functional abnormalities have been found in the amygdala for

one, suggesting that this is an important neural region for therapeutic approaches

(Domes et al. 2009) focusing on cognitive and emotional empathy, emotion recog-

nition, trust and rejection processing, and moral judgments, all of which show

strong deficits in BPD individuals (Herpertz and Bertsch 2014; Roepke et al. 2013).

2.3 Autism Spectrum Disorders

Autism spectrum disorder (ASD) patients are strongly influenced by social cogni-

tive deficits; in terms of diagnostics, the DSM-5 characterizes ASD individuals by

verbal and nonverbal communication difficulties, difficulties when interacting with

others, and repetitive movements or behaviors, among others (American Psychiat-

ric Association 2014). All of these traits make normal social relationships close to

impossible, but the first two are specifically concerned with social cognition per se,

thus making ASD a leading candidate for social cognition treatment development.
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Patients with autism suffer from a difficulty in judging the value of social signals

and struggle with emotion recognition, making interpersonal interaction difficult

(Gross 2004; Hill and Frith 2003). One underlying mechanism could involve

reduced activation of the fusiform face gyrus, inferior occipital gyrus, superior

temporal sulcus, and amygdala, and an increased response by the frontal cortex and

primary visual cortex, during face processing in autism patients (Pierce et al. 2001).

Early findings have indicated that autistic children lack a theory of mind (Baron-

Cohen et al. 1985). Structural as well as functional deficits in autistic individuals

during social cognitive tasks often include the amygdala (Baron-Cohen et al. 1999,

2000; Pierce et al. 2001), although there is currently no single identifiable neural

region or network responsible for the disorder.

2.4 Antisocial Personality Disorder and Psychopathy

According to the DSM-5, antisocial personality disorder (ASPD) is at times

manifested in social cognitive symptoms such as a lack of remorse, deceitfulness,

and failure to conform to social norms (American Psychiatric Association 2013).

The underlying mechanisms for social cognition deficiencies, however, are not

entirely clear.

Psychopathy is associated with ASPD, though not interchangeable with it (Hare

and Neumann 2006). One popular model of psychopathy is the Violence Inhibition

Mechanism (VIM) model, which describes an inability to read and react to social

signals of submission, such as facial expressions of fear, sadness, or shame (Blair

2001; Blair et al. 1997). This inability to react appropriately has the effect that

individuals with ASPD or psychopathy do not empathize with victims, and the

inhibiting force normally stopping violence or antisocial behavior is removed.

Here, too, the underlying cause for this extreme lack of empathy is not clear, though

it could depend on reduced neural responses following emotional stimuli (Meffert

et al. 2013).

A meta-analysis of antisocial personality disorder showed that one of the

strongest characteristics of patients is the inability to recognize fearful faces and

emotional stimuli in general (Sterzer et al. 2005), which is able to be tracked to

amygdala dysfunction (Birbaumer et al. 2005; Kiehl et al. 2001; Marsh and Blair

2008; Veit et al. 2013). An additional area of interest is the ventromedial PFC (Blair

2008), as both areas have shown abnormal activation during social cognitive tasks,

such as emotional memory (Kiehl et al. 2001). In terms of intra-amygdala activity,

individuals with psychopathy show increased activation in the central amygdala

and reduced activation in the basolateral amygdala during emotional processing

tasks (Moul et al. 2012).

As opposed to a specific site of trauma or lesion, the amygdala and ventromedial

PFC, among other areas, make up a network in which the exact location or nature of

the dysfunction is not easy to pin down (Blair 2008). Psychopathy is progressive in

nature (Lynam et al. 2007), making treatment early on in life a worthwhile pursuit.

Interestingly, one study found that while psychopathic individuals do not show pure
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executive function deficits, they do show lower levels of executive functioning

when an emotional component is included (Lapierre et al. 1995). This supports the

argument that social cognition, rather than pure cognition, is lacking in ASPD and

psychopathic patients.

2.5 Social Anxiety Disorder

With a lifetime prevalence of approx. 12 % (Kessler et al. 2005), social anxiety

disorder (SAD) affects millions of people worldwide. According to the DSM-5,

SAD is characterized by symptoms such as disabling anxiety in social settings in

which the individual will be under observation by others, and even complete

avoidance of social situations, among other symptoms (American Psychiatric

Association 2013).

Studies investigating the underlying mechanisms of these symptoms have shown

a cognitive bias toward interpreting social cues to be more negative as well as

toward negative self-representation (Constans et al. 1999; Hirsch and Clark 2004;

Mogg et al. 2004; Rapee and Abbott 2006; Stopa and Clark 2000; Voncken

et al. 2003). Furthermore, socially anxious individuals show lower theory of mind

ability than non-socially anxious individuals, even independently of an interpreta-

tion bias (Hezel and McNally 2014).

2.6 Posttraumatic Stress Disorder

A highly misunderstood and prevalent disease following a traumatic event is

posttraumatic stress disorder, with a lifetime prevalence of 6.8–9.2 %, depending

on age (Kessler et al. 2005). Among lifetime PTSD individuals, almost half of both

women and men suffer from a major depressive episode following the trauma, and

over 50 % of males and almost 28 % of females will meet the criteria for alcohol

abuse or alcohol dependence (Kessler et al. 1995). According to the DSM-5, PTSD

individuals are also characterized by social cognition deficits, for example, persis-

tent and exaggerated negative beliefs regarding themselves or the world around

them, feelings of detachment or estrangement, hypervigilance, or an exaggerated

startle response (American Psychiatric Association 2013).

3 The Effect of Pharmacological Modulation of Social
Cognition

As illustrated above, deficits in social cognition are a common theme throughout

psychiatric illnesses, and they are arguably the underlying reason for many of the

socially debilitating consequences of disease. There is unfortunately no single

pharmacological gold standard currently available for the treatment of social

cognitive deficits. However, there have been several innovative efforts to develop
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treatments to combat these symptoms. This chapter should serve to illuminate these

efforts and findings.

3.1 Oxytocin

Pharmacological properties of OT

Oxytocin (OT) research has climbed exponentially in recent years, for the

most part due to the interest spawned by its effects on social cognition and

social behavior as a neuromodulator. Originally named for its hormonal

properties in inducing uterine contractions during birth, stemming from the

Greek words ὀξύς (swift) and τ�oκoς (birth), OT has rapidly become a drug of

choice when exploring social cognition. For the most part, following synthe-

sis in the supraoptic and paraventricular nuclei of the hypothalamus, OT

proceeds via axonal transport to the neurohypophysis, where it is stored in

secretory vesicles together with the OT carrier protein neurophysin I and

secreted into the bloodstream (Brownstein et al. 1980).

Synthesis of OT is regulated by the OT gene located on chromosome 20 in

humans. OT is mainly produced in the supraorbital (SON) and

paraventricular (PVN) hypothalamic nuclei. The magnocellular cells of the

PVN terminate in the neurohypophysis, amygdala, and nucleus accumbens,

while the parvocellular cells of the PVN terminate in other CNS regions

(Knobloch et al. 2012). OT secretion is dependent on neuronal depolarization

and subsequent Ca2+-dependent exocytosis of the vesicles (Brownstein

et al. 1980; Gimpl and Fahrenholz 2001). OT central release also shows

effects of priming (Ludwig and Leng 2006). Additionally, OT is synthesized

in much smaller quantities peripherally in the uterus, placenta, amnion,

corpus luteum, testis, and heart, for example (Gimpl and Fahrenholz 2001).

OT was synthetically synthesized for the first time in 1953 by Vincent du

Vigneaud and was thus the first polypeptide hormone to be sequenced and

synthesized (Pitocin, Syntocinon; cys–tyr–ile–gln–asn–cys–pro–leu–gly–

NH2) (du Vigneaud et al. 1953, 1954).

There is currently only one known OT receptor (OTR). The OTR is a

Gq-protein-coupled receptor of the rhodopsin-type (class I), coded for by the

OTR gene located on chromosome 3 (Gimpl and Fahrenholz 2001; Simmons

Jr et al. 1995). The OTR has been found in the human brain in the central and

basolateral amygdala, medial preoptic area, anterior and ventromedial hypo-

thalamus, olfactory nucleus, vertical limb of the diagonal band, ventrolateral

septum, anterior cingulate and hypoglossal and solitary nuclei, the basal

nucleus of Meynert, and at times in the globus pallidus and ventral pallidum

(Boccia et al. 2013; Loup et al. 1991). Social animals show high rates of OT

receptor density in the nucleus accumbens and the prelimbic cortex, which

(continued)
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modulate feelings of reward (Lim et al. 2004), as well as in the amygdala

(Huber et al. 2005).

The exact mechanism of how or whether OT completely crosses the

blood–brain barrier is unknown (Banks and Kastin 1985; Ermisch

et al. 1985a, b; Meisenberg and Simmons 1983). Animal studies have

shown that intravenous injection of OT results in approximately 0.01 % of

OT actually crossing the blood–brain barrier (Kendrick et al. 1991). Because

of this, there is most likely no correlation between endocrine OT release at the

neurohypophysis and cerebrospinal fluid (CSF) levels, which are most likely

influenced by neurons reaching into the third ventricle, limbic system, brain

stem, and spinal cord (Altemus et al. 2004; Gimpl and Fahrenholz 2001;

Kagerbauer et al. 2013; Martin et al. 2014; Striepens et al. 2013).

The exact pharmacokinetics of OT in humans are not yet completely

settled. The half-life of OT ranges from roughly 2 min in plasma (Jones

and Robinson 1982; Meyer et al. 1987) to 3–5 min in women in vitro (Rydén

and Sj€oholm 1969) and 20 min in CSF (Mens et al. 1983). OT is rapidly

degraded in vitro following the addition of plasma from pregnant women,

showing an 85 % reduction in OT concentration in the course of 1 h, but not in

nonpregnant women or men (Leake et al. 1980). Twenty-four international

units (IU) of intranasal OT has been shown to increase plasma OT levels to

their highest levels 15 min following administration, whereas cerebrospinal

fluid peak levels were reached 75 min later (Striepens et al. 2013).

3.1.1 OT in Healthy Individuals
Earlier studies exploring the effects of OT as a neurotransmitter focused mainly on

prosocial effects of OT. However, initial groundbreaking studies soon illustrated a

far more complex picture: a single dose of 24 IU of OT in healthy subjects, latency

45 min, not only enhanced prosocial behavior, but also negative emotions, such as

schadenfreude and envy (Shamay-Tsoory et al. 2009). Likewise, OT has been

found to enhance protective responses, evident in a potentiated acoustic startle

response to negative stimuli and increased recollection of negative stimuli

(Striepens et al. 2012). In this vein, the literature has strived to explore the various

facets of OT in social settings, and several strides have been made in social

cognitive domains. One of these domains is theory of mind, also called cognitive

empathy. This ability has been suggested to increase emotional empathy, or the

ability to feel what the other person is feeling, also known as putting oneself in

another’s shoes. Further findings show that OT increases responses to emotional

faces (Shahrestani et al. 2013; Van IJzendoorn and Bakermans-Kranenburg 2012),

as well as emotional empathy ratings (single dose, 24 IU, latency 45 min)

(Hurlemann et al. 2010) in healthy participants.

The ability to transfer this recognition of emotion to a judgment of how the other

person will likely act, a process known as “mind reading” (Siegal and Varley 2002;
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Stone et al. 2003), is also increased following OT administration (single dose,

24 IU, latency 45 min) (Domes et al. 2007), suggesting a wide spectrum of areas

related to emotion recognition sensitive to OT effects. At an intersection of

cognitive and emotional domains, OT (single dose, 24 IU, 45 min latency) was

shown to increase the effect of positive versus negative social feedback on learning

during a declarative memory task in healthy males (Hurlemann et al. 2010).

In a further area of social cognition, healthy subjects given OT showed that they

were more trusting during social interaction and responded less to social stress, as

well as more cooperative (Bartz et al. 2011b; Heinrichs et al. 2003; Kosfeld

et al. 2005). Furthermore, OT appears to increase social approach and protective

behavior (Lim and Young 2006; Preckel et al. 2014; Scheele et al. 2012). The

underlying mechanism for this effect could be a reduced amygdala response to

vague or threatening stimuli (Baumgartner et al. 2008; Meyer-Lindenberg 2008).

As such, OT appears to counteract social transmission of fear via social signals of

anxiety inducing stimuli and could thus hold therapeutic potential for patients with

anxiety disorders (Eckstein and Hurlemann 2013).

3.1.2 OT in Psychiatric Illness

ASD
Patient populations have shown that OT is a promising area of research in terms of

treatment augmentation. For instance, ASD subjects are found to have reduced

plasma OT levels (Green et al. 2001; Modahl et al. 1998; but see also Jansen

et al. 2006). Furthermore, several studies have found a likely correlation between

susceptibility to ASD and genetic variations in the OT receptor gene (Auranen

et al. 2002; Shao et al. 2002; Wermter et al. 2010; Wu et al. 2005).

Exogenous OT administration in participants with ASD has been shown to

increase comprehension and memory for the social-emotional words happy,

angry, or sad (continuous infusion of 10 U/ml OT in 1.0 l of saline over 4 h per

indwelling intravenous catheter; infusion rate titrated 25 ml every 15 min in the first

hour, 50 ml in the second, 100 ml in the third, and infused at a constant rate of

700 ml/h in the fourth hour; testing was completed at baseline just before the

infusion, 30, 60, 120, 180, and 240 min during infusion) (Hollander et al. 2007).

In an innovative study of skin conductance response (SCR) to human versus

nonhuman sounds, a single dose of 24 IU OT (latency 1 h) resulted in an overall

reduction in SCRs in healthy controls to all sounds, but an increase in SCRs to

human sounds relative to nonhuman sounds (Lin et al. 2014). Patients under

placebo showed a similar SCR pattern toward both sounds, but a similar pattern

to OT-treated controls following OT administration. Thus, OT apparently worked

to assimilate the patterns and levels of SCR in patients versus controls. Finally,

SCR differences toward human versus nonhuman sounds following OT correlated

with the patients’ social function and interpersonal reactivity.

In terms of face perception, a study examining the differential neural response to

emotions versus nonsocial objects found that OT enhanced neural response while

processing emotions (single dose; 25 IU for participants aged 16–19 years, 18 IU
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for ages 12–15, 12 IU for ages 7–11; latency 45 min) (Gordon et al. 2013). A single

dose of 24 IU OT, 45 min prior to testing, increased amygdala response to

emotional faces (Domes et al. 2013), and a study of high-functioning ASD and

Asperger patients was found to show increased social interaction and more normal

face processing following a single dose of 24 IU OT 50 min prior to task completion

(Andari et al. 2010). Recognition of nonverbal, information-based judgments of

emotional faces was increased in ASD patients following a single dose of 24 IU OT

(latency 40 min), and authors furthermore found that abnormal medial PFC activity

was improved following OT (Watanabe et al. 2014).

More specifically, emotion recognition was increased following single dose of

either 24 IU (participants aged 16–19) or 18 IU (ages 12–15) OT administration,

latency of 45 min, in young participants with Asperger’s disorder (Guastella

et al. 2010). Emotion recognition, as well as emotional well-being, was also

increased following a 6-week administration in ASD adults (24 IU twice daily)

(Anagnostou et al. 2012). In a more long-term study, OT showed positive effects on

social cognition areas including social recognition, empathic accuracy, and theory

of mind in a 12-week treatment course (dosage 0.2, 0.26, 0.33, and 0.4 IU/kg/dose,

twice daily) (Anagnostou et al. 2014).

Although the above studies were not successful in showing behavioral changes,

a recent meta-analysis of intranasal OT as potential treatment for ASD found a

moderate effect size of OT and suggested it is thus worth pursuing for therapeutic

use (Bakermans-Kranenburg and van IJzendoorn 2013).

Schizophrenia
Endogenous OT in schizophrenic individuals has been found to correlate with

symptom severity (Rubin et al. 2010) as well as social cognitive bias (Walss-Bass

et al. 2013), and plasma OT levels in patients positively correlate with emotion

recognition (Goldman et al. 2008). Additionally, there is evidence for a strong

interaction between OT and other neurotransmitters such as serotonin, for instance

(Lee et al. 2003; Mottolese et al. 2014).

Several studies examining the effects of exogenous OT administration in

schizophrenic patients, both following a single dose as well as more long-term

use, have been completed. In an augmentation study, patients received 40 IU OT for

6 weeks 30 min prior to a twice weekly social cognitive skills training sessions

(Davis et al. 2014). The authors reported significant improvements in empathic

accuracy both 1 week following the final training session and 1 month later. A

second study employing a 6-week regimen of 24 IU OT twice daily examined

participant response to social cognitive measures as well as social skills and clinical

symptoms 50 min after the final morning dose at the end of week 6 (Gibson

et al. 2014). Findings included improved theory of mind and fear recognition, and

increased perspective taking.

Improved emotion recognition was also found in two further studies following a

single dose of 24 IU OT after 45 min (fear recognition) (Fischer-Shofty et al. 2013)

and after 50 min (Averbeck et al. 2012). Following a much higher single dose of

40 IU and a latency of 30 min, schizophrenic individuals showed significantly
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improved ability for controlled social cognition, or the ability to perceive and

understand indirectly expressed emotions or intentions over long time periods

(Woolley et al. 2014). In a further study using a single dose of 40 IU (latency

30 min), schizophrenic individuals increased performance on higher-level social

cognition assessments, including detection of sarcasm and deception and empathy,

but not on lower-level assessments, such as facial affect perception, social percep-

tion, and detection of lies (Davis et al. 2013). Thus, it appears that improvements in

schizophrenia positively benefit from a higher dosage of OT, and it would be

interesting to find out in further research under what conditions this correlation

applies.

Interestingly, along the same vein, whereas a low single dose of 10 IU OT

(latency 45 min) was detrimental to emotion recognition, a higher single dose of

20 IU (latency 45 min) improved emotion recognition in polydipsic patients,

specifically reducing a bias toward fear perception (Goldman et al. 2011).

Supporting these findings, 24 IU OT twice daily improved theory of mind following

a 14-day treatment (latency 50 min) (Pedersen et al. 2011). Nonsignificant findings

from the same study showed that schizophrenic volunteers additionally showed

increased trust.

BPD
Endogenous OT levels have been found to be lower in women with BPD and

negatively correlated with aggressiveness and symptom severity (Bertsch

et al. 2013).

Exogenous OT administration in patients with BPD has shown mixed effects.

For one, OT apparently obstructed trust and cooperation in a study of BPD

individuals given a single dose of 40 IU OT and tested 35 min later, apparently

due to an increased desire to punish the other player in a social dilemma game

(Bartz et al. 2011a; Ebert et al. 2013).

On the other hand, BPD individuals showed a lowered stress response following

40 IU OT (latency 60 min) than placebo, manifested in a relative absence of both

dysphoria and cortisol in response to the Trier Social Stress Test (Simeon

et al. 2011). A study examining avoidance reactions showed that, while placebo-

treated BPD individuals revealed an avoidance reaction to angry faces, BPD

individuals treated with 24 IU OT (single dose, latency 45 min) did not, thus

suggesting that OT abolished the hypervigilance for threatening stimuli in BPD

individuals (Brüne et al. 2013). Similarly, female BPD patients given 26 IU OT

(single dose, latency 45 min) were found to normalize their perception of angry

faces, including reduced abnormal fixation changes to the eyes as well as the

absence of hyperactive amygdala response to angry faces, indicating that the

characteristic BPD hypersensitivity was abolished under OT (Bertsch et al. 2013).

ASPD and psychopathy
The literature concerning OT and psychopathy is limited, but shows some highly

interesting findings. Studies of the OTR gene have found it to be influential to

psychopathic traits: in one study, the rs1042778 genotype TT was linked to high

levels of callous-unemotional traits in children diagnosed with disruptive
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behavioral problems (Dadds et al. 2014b). A further study of 4- to 16-year-old

males diagnosed with oppositional-defiant or conduct disorder linked increased

methylation of the OTR gene as well as with lower endogenous OT levels in older

male participants to high levels of callous-unemotional traits, and reported that

higher methylation correlated with low endogenous OT (Dadds et al. 2014a).

Exogenous intracerebroventricular OT in rats resulted in reduced aggressive

behavior and increased social exploration (5 μl OTR peptidergic antagonist

{desGly-NH2,d(CH2)5[Tyr(Me)2,Thr4]OVT}, latency 10 min) (Calcagnoli

et al. 2013). In a recent meta-analysis of the effect of OT on emotion recognition

in healthy participants, OT was found to improve overall performance on

recognizing facial expressions, first and foremost for happy and fearful faces

(Shahrestani et al. 2013). As the authors suggest based on previous findings in

this area, this could be vital to interpersonal communication, as fear recognition is

key to feeling empathy for the pain of another being, blocking antisocial impulses

and thus important for illnesses characterized by these (Marsh and Blair 2008;

Shahrestani et al. 2013).

As of yet, no augmentation therapy has been attempted with emotional training

and OT.

SAD
Endogenous OT findings in SAD patients paint an interesting picture. In one study,

plasma OT was found to be similar in patients and healthy controls, but differences

emerged within the patient group (Hoge et al. 2008). For one, OT levels positively

correlated with symptom severity and were furthermore linked to dissatisfaction in

social relationships. The authors explained this finding by suggesting that social

deficits in anxiety or autistic disorders may be associated with increased levels of

OT as a compensatory mechanism following OTR dysfunction.

Exogenous, intranasal administration of 24 IU OT 45–90 min prior to exposure

therapy (four sessions) resulted in patients reporting a reduced negative bias toward

negative metal representations of self as well as toward their speech performance

and appearance (Guastella et al. 2009).

A further study showed that generalized SAD individuals given OT showed

increased functional connectivity between the amygdala and bilateral insula and

middle cingulate/dorsal anterior cingulate gyrus when processing fearful faces,

bringing them closer to connectivity patterns shown by healthy controls (Gorka

et al. 2014). OT was also shown to normalize resting state functional connectivity

of the left and right amygdala with the rostral anterior cingulate cortex/medial PFC

following a single dose of 24 IU OT in another generalized SAD patient population

(Dodhia et al. 2014). Additionally, the study found that the more severe the social

anxiety in patients, the greater amygdala-frontal connectivity was increased.

In a further study, amygdala hyperactivity in generalized SAD patients in

response to fearful faces compared to healthy controls was shown to normalize

following a single dose of 24 IU OT (latency 45 min) (Labuschagne et al. 2010).

Additionally, an increased medial PFC and left anterior cingulate cortex response to

sad faces was also improved following 24 IU OT (single dose, 50 min latency)

(Labuschagne et al. 2012).
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PTSD
Two studies have found that the OT receptor variation rs53576 allele is associated

with posttraumatic stress and the ability to cope (Bradley et al. 2013; Lucas-

Thompson and Holman 2013). Only one study has administered exogenous OT to

PTSD individuals, and showed that physiologic responses during a combat imagery

task were lower following 20 IU OT than placebo (single dose, latency 1 h) (Pitman

et al. 1993).

3.1.3 Conclusions: Potential for OT as a Viable Long-Term
Treatment Option

Although there is great promise for the success of OT as a long-term treatment

option in psychiatric illness, there is still a great deal of research needed. As the

authors of a comprehensive review of OT effects on social behavior report, the

majority of OT studies on social cognition report that drug effects represent an

interplay with stimulus or task, and that the question thus becomes, which

conditions allow for an effect of OT to shine through (Bartz et al. 2011b).

For one, the pharmacodynamics of OT have yet to be explored experimentally.

The optimal dosage and latency for pharmacological experiments remain unclear.

This makes setting up a proper paradigm, as well as interpreting OT’s effects on

studies to separate from differences in paradigm more difficult. The effects are well

illustrated in the finding that a lower vs. higher doses of OT can have the complete

opposite effect in social cognition (Goldman et al. 2011) and can differentially

influence aggressive behavior (Calcagnoli et al. 2013).

In order to measure accurately the effects of OT on social cognition, and

therefore for OT to be used as a valid therapeutic method in illnesses marked by

lower social cognition, there needs to be a standardization of the literature. For

instance, optimal dosage and latency should be empirically determined for healthy

participants (Shahrestani et al. 2013). Furthermore, response to exogenous OT

should be measured in terms of standardized markers (Shahrestani et al. 2013),

and intranasal administration should be standardized (Guastella et al. 2013).

In terms of emotion recognition, paradigms need to be standardized to include

all basic emotions presented in a similar format to aid comparison across studies

showing an effect of OT (Shahrestani et al. 2013). Currently, the literature is

strongly focused on male participants. However, if OT is to become a viable

treatment option, females need to be considered equally. Initial findings have

shown that emotional processing is differentially affected by OT in females com-

pared to males (Domes et al. 2010), and this remains an area to be further explored.

Additional genetic testing would be beneficial to expanding the understanding of

OT in both healthy and patient groups. CD38, for example, a protein generally

associated with cancer markers, has been linked in several cases to the OT receptor

and the uptake of exogenous OT (Higashida et al. 2010; Higashida et al. 2011).

Another therapeutically important example is the common OT receptor single

nucleotide polymorphism, rs53576, which has been associated with the ability to

benefit from social support under psychosocial stress (Chen et al. 2011). These are

not the only potentially game-changing genetic differences that could influence the
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course of therapeutic OT administration, and more research is needed to determine

how differences would affect different patients during treatment.

The possibility of OT for therapeutic use should not be ruled out due to these

difficulties. OT remains an extremely powerful mediator of social bonds, and thus

highly important for research in psychiatric illness characterized by a lack of these

bonds (Scheele et al. 2013). For example, autistic children show normal response in

the fusiform face gyrus when presented with their mother’s face, but not when

viewing other adults’ faces (Pierce and Redcay 2008). OT has been long understood

as a crucial element in maternal bonding (Kendrick 2004; Kendrick et al. 1997), and

could thus present an important clue to the differential face processing in autistic

children versus adults (Pierce et al. 2001; Pierce and Redcay 2008).

3.2 3,4-Methylenedioxymethamphetamine (Ecstasy)

Pharmacological properties of MDMA

It is not exactly clear how 3,4-methylenedioxymethamphetamine (MDMA)

produces its effects, but there have been several studies documenting its

potential mechanisms. Structurally, MDMA is a ring-substituted amphet-

amine similar to mescaline and methamphetamine (de la Torre et al. 2004).

It works as an agonist to the trace amine-associated receptor 1 (TAAR1), thus

working toward monoamine transporter reuptake inhibition (Miller 2011).

The S(+) isomer of MDMA is a psychostimulant and has an effect on

empathy, while the R isomer has hallucinogenic effects (de la Torre

et al. 2004).

MDMA works mainly as a serotonin (5-HT), dopamine (DA), and nor-

adrenaline (NA) reuptake inhibitor and/or releaser; the mechanism is one of

membrane transport reversal and subsequent flow of 5-HT, DA, and NA into

the synaptic cleft and to the postsynaptic membrane (de la Torre et al. 2004).

Emotional excitation following 1.5 mg/kg MDMA was blocked by both a

single oral dose of 50 mg of the 5-HT2A receptor antagonist ketanserin and

1.4 mg of intravenous haloperidol, a D2 receptor antagonist, implicating both

serotonergic and dopaminergic influences in euphoric mood changes under

MDMA (Liechti and Vollenweider 2001). MDMA also acts to increase

cortisol, prolactin, ADH, and ACTH secretion (de la Torre et al. 2004).

The pharmacokinetics following a single dose of 75, 100, and 125 mg

MDMA in humans are listed in Table 1. MDMA follows a nonlinear pattern,

with lower doses being associated with higher urinary recovery and higher

doses with lower recovery (de la Torre et al. 2004). Repeat doses show an

exponential rate of plasma concentration of MDMA, with a Cmax of 29 %

following two successive doses of 100 mg MDMA over 24 h (Farre

et al. 2004). Blood concentrations show a peak at 1–2 h following adminis-

tration and a return to baseline after 4–6 h (Mas et al. 1999).
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3.2.1 MDMA in Healthy Individuals
The literature regarding MDMA is far less developed than OT; however, some

important observations have been documented in regard to social cognition. One

study reported reduced fear recognition alongside increased self-reported loving

feelings and friendliness following 1.5 mg/kg MDMA over 4 weekly sessions

(latency 65 min) (Bedi et al. 2010). Similar results were reported in a study

examining response to emotion recognition, which showed that 125 mg MDMA

led to increased recognition of positive emotions, but decreased recognition of

negative emotions (Hysek et al. 2012).

Behaviorally, 2 mg/kg MDMA (single dose, latency up to 5 h) resulted in

increased friendliness, sociability, and talkativeness (Tancer and Johanson 2003).

A further study found differential dose-dependent neural responses: the amygdala

showed a dampened response to angry facial expressions following 1.5 mg/kg

MDMA, while the ventral striatum showed an increased response to happy faces

following 0.75 mg/kg MDMA (single dose, latency 45 min) (Bedi et al. 2009).

Likely mechanisms for MDMA’s effects can be found in studies showing that

MDMA acts as a stimulant for endogenous OT release (Dumont et al. 2009, 100 mg

MDMA, single dose; Hysek et al. 2012; Kirkpatrick et al. 2014, 1.5 mg/kg MDMA,

single dose, peak at 90–120 min latency; Thompson et al. 2007, injection of 5 mg/

kg MDMA in rats) and could thus work as a potentiating force during prosocial

behavior. Because there have been some contradictory findings (Kuypers

et al. 2014), however, much more research is needed.

3.2.2 MDMA in Psychiatric Illness
Currently, there are no patient studies implementing MDMA for social cognitive

improvement. However, MDMA is interesting when considering psychiatric

illnesses marked by the inability to form meaningful, intimate relationships,

because it increases prosocial function in healthy individuals (Bedi et al. 2009;

Dumont et al. 2009). On the other hand, MDMA has been shown to significantly

reduce cognitive function in many different areas in nonpsychiatric populations, as

well as increase negative mood states (Parrott 2013), suggesting that it could be a

difficult route of treatment development for psychiatric illness.

One area in which MDMA is surprisingly well researched relative to other

illnesses is in individuals with PTSD, as an augmentation for psychotherapy. In

an initial study, PTSD patients received single, initial dose of 125 mgMDMA and a

Table 1 Pharmacokinetics of different single oral doses of MDMA

Single dosage (mg) Cmax (ng/ml) tmax (h) t1/2 (h) ka (h
�1)

75 mga 130.9 1.8 7.86 2.3835

100 mgb 225.5� 26.1 2.3� 1.1 9.0� 2.3 2.7� 1.5

125 mga 236.4 2.4 8.73 2.1253

n¼ 8 for all results; Cmax, peak plasma concentration; tmax, time until peak plasma concentration;

t1/2, elimination half-life; ka, absorption constant; ng, nanograms
aMas et al. (1999)
bde la Torre et al. (2004)
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supplemental, optional dose of 62.5 mg 2–2.5 h after and relaxed while

participating in therapeutic discussion with a therapist over 2 sessions interspersed

among 17 sessions total (latency not applicable, onset of MDMA effects 45–75 min

following initial dose, peak at 2–2.5 h, duration 4–5 h following single dose, 5–6 h

following supplemental dose) (Mithoefer et al. 2011). Subjects who received

MDMA showed an 83 % clinical response rate following psychotherapy compared

to 25 % in the placebo group. A follow-up of the same patients showed that the vast

majority still showed clinical improvements (Mithoefer et al. 2013). A further study

found that a single dose of 125 mg + 62.5 mg supplemental dose MDMA over three

sessions of psychotherapy (alongside 12 nondrug therapy sessions) lowered self-

reported symptoms of PTSD (Oehen et al. 2013). Though these studies do not show

a specific improvement in social cognition per se, they do imply an improvement in

social interaction, as the therapy is necessarily led by a therapist, thus dependent on

a social influence.

3.2.3 Conclusions: Potential for MDMA as a Viable
Long-Term Treatment Option

More than other pharmacological interventions, MDMA as a potential treatment

option for psychiatric illness is made much more difficult due to the legality of its

use. In addition, studies regarding its effects are lacking, and contradictory findings

have been shown. That said, MDMA does show promise in several areas of

emotional processing relevant to social cognition and would thus be well worth

pursuing as a possible augmentation for therapy.

3.3 Modafinil

Pharmacological properties of modafinil

Modafinil (2-[(diphenylmethyl)sulfinyl] acetamide; Vigil) is a

psychostimulant which works indirectly on the glutamate and GABA

receptors. Additional indirect modulation of neurotransmission includes an

increase in dopamine, noradrenaline, and serotonin secretion. Pharmacoki-

netics are tmax 2–3 h, t1/2 10–12 h, or 15 h steady state following repeated

doses. Oral bioavailability is 11–52 % and plasma protein binding 62 %.

Modafinil is mainly used as a waking agent for sleeping disorders. Typical

dosage ranges from 200 to 400 mg/day. (Benkert et al. 2013) Further uses for

modafinil include treatment for depression (Fava et al. 2007), depressive

episodes in bipolar disorder (Calabrese et al. 2010; Frye et al. 2007), cocaine

addiction (Dackis et al. 2004), and attention deficit/hyperactivity disorder

(ADHD) (Biederman and Pliszka 2008), among other disorders.
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3.3.1 Modafinil in Healthy Individuals
Healthy participants in studies investigating cognitive enhancement benefits of

modafinil have shown that it improves attention, memory, spatial planning, and

executive functions, but this seems to have a dose-dependent influence (Kelley

et al. 2012; Repantis et al. 2010). Cognitive enhancement has also been shown in

some psychiatric illnesses, such as schizophrenia (Saavedra-Velez et al. 2009;

Turner et al. 2004; Wittkampf et al. 2012).

3.3.2 Modafinil in Psychiatric Illness
Findings in psychiatric participants are mixed. In terms of emotional processing,

200 mg modafinil (single dose, latency 2 h) improved recognition of emotional

faces, and significantly sad faces, but did not increase sensitivity to reward or

punishment or performance in cognitive tasks with emotional components or

improve mood in first episode psychosis (Scoriels et al. 2011). Unfortunately,

findings are few and far between for modafinil and social cognition in psychiatric

illness. Potential for the drug in the future is dependent on more research and is

made more difficult by contraindications such as addiction disorders (absolute

contraindication) or anxiety and psychosis (relative contraindications) (Benkert

et al. 2013), which plague a large portion of psychiatric patients.

3.3.3 Conclusions: Potential for Modafinil as a Viable Long-Term
Treatment Option

Modafinil acts in several areas of the brain including the amygdala, lending support

to the drug as a worthwhile treatment for illnesses characterized by amygdala

dysfunction. However, because a single dose of 100 mg modafinil (latency 3 h)

has been shown to cause increased anxiety in healthy volunteers depending on

dosage (Randall et al. 2003), this would need to be closely observed in psychiatric

populations characterized by hypervigilance or anxiety, for example. Furthermore,

there is evidence that modafinil can create a tolerance in the user as well as have

addictive properties (Volkow et al. 2009), thus creating problems as a long-term

treatment option.

3.4 Methylphenidate (Ritalin)

Pharmacological properties of MPH

Methylphenidate (MPH) (methyl phenyl(piperidin-2-yl)acetate; Ritalin,

Concerta, Methylin, Equasym XL, among others) is a psychostimulant used

for treating ADHD in children over 6 years of age and adolescents and

narcolepsy. Pharmacokinetics are as follows: tmax 2 h, t1/2 2.4 h in children,

2.1 h in adults. Oral bioavailability is 30 % and plasma protein binding

approx. 20 %. Its effects are felt quickly, within 15–30 min. Following

(continued)
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decay, patients sometimes report feeling the symptoms in stronger intensity

(rebound phenomenon), but this disappears after further administration.

Administration of MPH must be started gradually. Initial dosage is 5–

10 mg/day, building up to max 60 mg/day for ADHD in children as well as

narcolepsy. MPH has the potential to become addictive (Benkert et al. 2013).

3.4.1 MPH in Psychiatric Illness
MPH has been for the most part restricted to use in ADHD, and the effects of MPH

in social cognition are limited to early studies showing benefits of MPH in class-

room and social settings in hyperactive youth. Unfortunately, pharmacological data

are not available in detail for all studies; methodological data are reported here

where available. Findings include fewer negative interactions with peers in a social

setting (Hinshaw et al. 1984a), greater self-control following a MPH + self-control

training when confronted with a stressful and socially threatening situation

(Hinshaw et al. 1984b), as well as reduced intensity of negative behaviors (both

studies occurred over a 3-week period of adjunct treatment in addition to daily

medication; dosages for morning administration were 5–40 mg and 0.15–1.16 mg/

kg for the first study and midday administration range 5–20 mg and 0.44–0.55 mg/

kg for the second) (Hinshaw et al. 1984b). Further findings supported these results

and showed less disruptive behavior and improved social behavior following 10 mg

MPH twice daily (Pelham et al. 1987). All studies above included adolescent boys

diagnosed with ADHD, hyperactive disorder, or a similar diagnosis; unfortunately,

it is not possible to provide a standard diagnosis because some studies were

completed prior to current standards.

In a recent study of school children diagnosed with ADHD and comorbid social

phobia, a daily dose of 0.5–1.0 mg/kg MPH per day (dose did not exceed 60 mg/

day) for 12 weeks resulted in significant reductions in school-related anxiety

(Golubchik et al. 2014).

In terms of aggressive behavior, MPH reduces verbal and nonverbal aggression

in groups of adolescent males diagnosed with both high and low aggression levels,

and, to a lesser extent, reduces aggressive response following provocation follow-

ing 0.3 mg/kg MPH twice daily between 5 and 9 days over the course of 5 weeks

(Murphy et al. 1992). Furthermore, MPH has been attributed to an increase in

positive social interactions in ADHD patients (Hinshaw et al. 1984a). One recent

study showed that MPH increased both theory of mind and empathy ratings in

children with ADHD (regularly prescribed medication, latency 1–5 h) (Maoz

et al. 2014). A study examining emotion recognition in ADHD children following

4-week treatment with mean 24.1 mg/day MPH (range 10–60 mg/day) 60 min prior

to testing showed improved anger and fear recognition skills (Williams et al. 2008).
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3.4.2 Conclusions: Potential for MPH as a Viable
Long-Term Treatment Option

Unfortunately, the effects on social cognition following MPH have been researched

only in a very small pool of studies and therefore are lacking in generalizability.

Furthermore, a large portion of the research was completed prior to modern

diagnoses, thus limiting the ability to understand results in a more modern context.

Lastly, the effects of MPH on social cognition in healthy individuals could shed

valuable light on the mechanisms by which this drug could help patient populations.

3.5 D-Cycloserine

Pharmacological properties of DCS

D-cycloserine (DCS) (D-4-amino-3-isoxazolidone) is a partial N-methyl-D-

aspartate (NMDA) receptor agonist, thus expressing a glutamatergic (excit-

atory) influence. The NMDA receptor also holds a glycine-binding site, and

which must also be co-activated to allow for NMDA receptor signaling.

(Johnson and Ascher 1987; Kleckner and Dingledine 1988) Plasma

concentrations are detectable within 1 h of ingestion. Peak plasma levels

are 10 mg/l, reached after 3–4 h. Elimination half-life of DCS is 8–12 h.

Bioavailability is excellent, and CSF levels are roughly 80–100 % of peak

plasma concentrations (Holdiness 1985; Nair et al. 1956).

3.5.1 DCS in Psychiatric Illness
Traditionally an antibiotic to fight Mycobacterium tuberculosis, DCS has emerged

as a powerful tool used in fear extinction and thus anxiety disorders, as well as

cognitive functions such as memory (Onur et al. 2010). Social cognition findings,

however, are limited to psychiatric populations. In individually housed mice, DCS

was shown to increase social investigation and sexual behavior and decrease

aggression following the introduction on an intruder (McAllister 1994). In balb/c

mice reflecting behaviors mirroring those of individuals with autism, DCS led to

improved sociability at a young age (Deutsch et al. 2011, 2012). Both findings

suggest wide-reaching benefits of DCS in psychiatric illness in humans.

ASD
In humans, DCS has been shown to reduce withdrawal in autistic individuals, as

well as generally improve clinical symptoms (Posey et al. 2004).

Schizophrenia
DCS was shown to augment cognitive remediation training (50 mg DCS adminis-

tration 60 min prior to training over 8 weekly sessions) (Cain et al. 2014).
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SAD
DCS has been tested as an augmentation for psychotherapy to treat SAD in initial

studies. Two studies showed a greater reduction of symptoms in patients

administered with 50 mg DCS 1 h prior to 4 weekly sessions employing exposure

therapy than following placebo (Guastella et al. 2008; Hofmann et al. 2006).

Another study, however, examining cognitive behavioral therapy (CBT) response

found no benefit to 50 mg DCS 1 h prior to five exposure sessions as a part of a

12-week CBT program in terms of completion, response, or remission rate

(Hofmann et al. 2013).

These findings could be explained by effects due to patient differences, as shown

by two further studies. In the first, successful DCS augmentation of a 12-week CBT

program, in which patients received 50 mg DCS 1 h prior to five exposure sessions,

was found only for patients showing low conscientiousness and high agreeableness

ratings, but not for all patients (Smits et al. 2013a). The second also used 50 mg

DCS 1 h prior to five exposure sessions and found that the success of each exposure

session was critical to the effect of DCS: patients who reported low fear following a

session were more likely to show a greater clinical improvement at the next session

if they had received DCS as opposed to placebo (Smits et al. 2013b). Likewise, the

authors found that patients who received DCS and reported high fear levels

following a session showed less improvement at the next session than compared

to those in the placebo group. At posttreatment evaluations (week 13), patients who

received DCS showed improved clinical symptoms only when they had reported

low to moderate average fear levels throughout the course of treatment.

PTSD
Because of its influence on fear extinction learning, DCS has been pursued in PTSD

treatment research as an augmentation to therapy. In one study, 50 mg DCS was

given 30 min prior to four exposure therapy sessions, and resulted in a lower

symptom reduction than patients experienced following placebo (Litz et al. 2012).

In another study, PTSD patients were given 50 mg DCS 30 min prior to a virtual

reality exposure therapy over five sessions (Rothbaum et al. 2014). Primary analysis

showed no difference in clinical symptoms following DCS, but when more in-depth

analysis was completed, DCS was shown to increase symptom outcomes in those

patients who had increased between-session learning. In a study using 50 mg DCS

over 8–10 weekly exposure sessions (latency 1 h), participants showed no overall

effect of having received DCS; however, DCS did show a greater reduction of

symptoms in more severely affected patients (de Kleine et al. 2012). In a study

examining personality differences in response to DCS, highly conscientious

participants showed a better outcome following exposure therapy, as did patients

with low extraversion (50 mg DCS, single dose prior to each session over ten

sessions, latency n/a) (de Kleine et al. 2014).
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3.5.2 Conclusions: Potential for DCS as a Viable Long-Term Treatment
Option

In terms of psychiatric and psychological findings, the NMDA receptor has been

implicated as having a crucial role in synaptic plasticity (Fan et al. 2014; Lee and

Silva 2009; Li and Tsien 2009), and also in long-term potentiation (LTP) (Bear and

Malenka 1994; Bliss and Collingridge 1993). Fear learning and fear extinction are

directly dependent on LTP and thus the NMDA receptor (Blair et al. 2001;

Fanselow and LeDoux 1999; Lee et al. 2001; Li et al. 1995; Walker and Davis

2002). Fear extinction is often used in therapeutic situations, and while not purely

within the realm of social cognition, the social element of the therapist as a key part

of treatment is supported by pharmacological modulation. A recent meta-analysis

supports this and showed positive effects of DCS on exposure therapy in anxiety

disorders (Rodrigues et al. 2014).
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de la Torre R, Farré M, Roset PN, Pizarro N, Abanades S, Segura M et al (2004) Human

pharmacology of MDMA: pharmacokinetics, metabolism, and disposition. Ther Drug Monit

26(2):137–144

Deutsch SI, Burket JA, Jacome LF, Cannon WR, Herndon AL (2011) d-Cycloserine improves the

impaired sociability of the Balb/c mouse. Brain Res Bull 84(1):8–11

Deutsch SI, Pepe GJ, Burket JA, Winebarger EE, Herndon AL, Benson AD (2012) d-cycloserine

improves sociability and spontaneous stereotypic behaviors in 4-week old mice. Brain Res

1439:96–107, http://dx.doi.org/10.1016/j.brainres.2011.12.040

Dodhia S, Hosanagar A, Fitzgerald DA, Labuschagne I, Wood AG, Nathan PJ, Phan KL (2014)

Modulation of resting-state amygdala-frontal functional connectivity by oxytocin in

generalized social anxiety disorder [original article]. Neuropsychopharmacology.

doi:10.1038/npp.2014.53

Domes G, Heinrichs M, Michel A, Berger C, Herpertz SC (2007) Oxytocin improves “mind-

reading” in humans. Biol Psychiatry 61(6):731–733. doi:10.1016/j.biopsych.2006.07.015

Domes G, Schulze L, Herpertz SC (2009) Emotion recognition in borderline personality disor-

der—a review of the literature. J Pers Disord 23(1):6–19. doi:10.1521/pedi.2009.23.1.6

Domes G, Lischke A, Berger C, Grossmann A, Hauenstein K, Heinrichs M (2010) Effects of

intranasal oxytocin on emotional face processing in women. Psychoneuroendocrinology 35

(1):83–93. doi:10.1016/j.psyneuen.2009.06.016

Domes G, Heinrichs M, Kumbier E, Grossmann A, Hauenstein K, Herpertz SC (2013) Effects of

intranasal oxytocin on the neural basis of face processing in autism spectrum disorder. Biol

Psychiatry 74(3):164–171. doi:10.1016/j.biopsych.2013.02.007

du Vigneaud V, Ressler C, Swan CJM, Roberts CW, Katsoyannis PG, Gordon S (1953) The

synthesis of an octapeptide amide with the hormonal activity of oxytocin. J Am Chem Soc 75

(19):4879–4880. doi:10.1021/ja01115a553

du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG (1954) The synthesis of

oxytocin1. J Am Chem Soc 76(12):3115–3121. doi:10.1021/ja01641a004

Dumont GJ, Sweep FC, van der Steen R, Hermsen R, Donders AR, Touw DJ et al (2009) Increased

oxytocin concentrations and prosocial feelings in humans after ecstasy

(3,4-methylenedioxymethamphetamine) administration. Soc Neurosci 4(4):359–366.

doi:10.1080/17470910802649470

Eack SM (2013) Cognitive enhancement therapy. In: Roberts DL, Penn DL (eds) Social cognition

in schizophrenia. Oxford University Press, New York

Ebert A, Kolb M, Heller J, Edel M-A, Roser P, Brüne M (2013) Modulation of interpersonal trust
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Part III

Developmental Disorders, Alternative
Approaches, and Emerging Technologies

Introduction

The final goal of this volume is to provide perspectives on multiple special topics

ranging from therapeutic drug use to enhance cognition in children, emerging

technologies, pharmacological disruption of maladaptive memory, and nonpharma-

cological approaches to cognitive enhancement. Although the range of special

topics is not all-inclusive, they serve to ignite awareness of special populations

that may benefit from cognitive enhancement or, in some cases, disruption and to

inspire scientists to embrace innovative technologies and approaches in their quests

for cognitive enhancement in neuropsychiatric and neurological disorders.

Chapter 11 (Vahabzadeh, Landino, Finger, Carlezon, and McDougle) details

much of the relevant progress in the field of autism research. Autism spectrum

disorder has come to the forefront in a major way over the past 10 years at least in

part due to enhanced diagnosis and public awareness. A complex behavioral

disorder, autism, is likely the result of numerous environmental and genetic

factors—some, albeit few, are known. Of the many attributes associated with

patients with autism, foremost is a deficit in social cognition. Social cognition

can be enhanced by oxytocin and modulated by glutamatergic tone, and both neural

systems have been studied preclinically and clinically with select pharmacological

tools. Another field of focus is neuroinflammation as it may be a contributing factor

to the etiology of autism. Together, learning more about the networks that control

communication will be critical to understanding autism and developing potential

medicines for this disorder, particularly in the area of social cognition.

Chapter 12 (Fernandez and Reeves) discusses many of the recent advances in

Down syndrome research. It is quite clear that the clinical phenotypes, although

overlapping somewhat, are quite variable. This is due in part to the diverse number

of brain regions affected in the disorder, resulting in divergent effects on various

cognitive domains in individuals with Down syndrome. The effects of the

triplication of human chromosome 21 are certainly not limited to those in the

http://dx.doi.org/10.1007/978-3-319-16522-6_11
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central nervous system. These people often present with disorders such as

hypothyroidism and congenital heart disease, and are predisposed to early aging

in general. Thus, multiple biochemical and physiologic networks are altered. The

expression of the various phenotypes is likely related to dysregulation of

GABAergic networks, apolipoprotein E, or the processing of amyloid peptides.

All these lead to certain difficulties for the conduct of clinical research studies, and

thus, clinical trial design for studies with people having Down syndrome requires

unique attention.

Chapter 13 (Taylor and Torregrossa) outlines the disorders of maladaptive

memory and how a range of pharmaceutical agents can weaken the strength of

these memories if used in conjunction with techniques that target memory

reconsolidation. Disorders range from post-traumatic stress disorder to disorders

of addiction, schizophrenia, and mood. Several categories of drugs have been

investigated since the pioneering work showing that inhibition of protein synthesis

at the time of memory reactivation can disrupt its reconsolidation and weaken its

strength. The most well-studied drugs in both animal and human subjects include

beta-adrenergic receptor antagonists and glucocorticoid antagonists. Preclinical

research is currently discovering the relevant intracellular signaling pathways

involved in memory reconsolidation, potentially giving rise to new and improved

targets for treating disorders of maladaptive memory (e.g., inhibitors of PKA, ERK,

mTOR, GSK3, NFkB, and histone acetylation). Parallel to the discovery of new

compounds is the need to unveil the optimal reactivation conditions for

reconsolidation manipulations of newer as well as older (remote) memories.

Chapter 14 (Kelly) describes the use and benefits of incorporating nonpharma-

cological cognitive enhancers that involve lifestyle interventions. In particular,

aerobic exercise and environmental enrichment have strong empirical support,

with proven efficacy in humans and in animal models. For example, in healthy

humans, aerobic exercise can improve learning, response inhibition, and working

memory. In the elderly, exercise has neuroprotective effects and reduces the

incidence of cognitive impairment and dementia. People with depression benefit

as well. Most research with environmental enrichment has been conducted in

animals, and though it naturally varies to a degree in how it is implemented in

people vs. animals, most investigators agree that cognitive stimulation and social

stimulation offer an enriching experience in childhood through adulthood.

Computerized training programs are a relatively recently developed source of

targeted cognitive stimulation. Positive effects have been reported in the elderly

and in Parkinson’s disease patients. However, the persistence of enhancement and

the transfer of the learned skills to real-life situations have not yet been

demonstrated.

Chapter 15 (Kondabolu, Kowalski, Roberts, and Han) focuses on two emerging

technologies that can impact, in a rather precise manner, brain networks. These are

optogenetics and deep brain stimulation. Optogenetics is a revolutionary technol-

ogy that allows one to control or modulate highly specific neural circuits. As it has

been introduced only recently, it is still primarily in a research phase now, and

clinical applications, although approachable, have not yet been realized. In practice
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for much longer than optogenetics, deep brain stimulation has shown therapeutic

efficacy in disorders such as Parkinson’s disease and depression. Although not

specifically designed for cognition enhancement, the use of these technologies

should allow the field to assess brain circuits that impact specific domains of

cognition.

Chapter 16 (Kantak and Wettstein) provides closing thoughts for this volume on

cognitive enhancement. The status of cognitive enhancement is first summarized to

suggest the availability of therapeutics for improving attention and dementia, but

that more research is needed to develop effective therapeutics for improving these

and other cognitive domains. The advances that have been made in translational

models of cognitive enhancement and in the neurobiology of learning and memory

are major achievements from the past 20 years, and these achievements will help

speed the availability of cognitive-enhancing (or disrupting) therapeutics for

neuropsychiatric and neurological disorders. The availability of such therapeutics

raises several ethical questions regarding cognitive enhancement or its disruption.

Should cognitive enhancers be available for everyone, or should they be limited to

special or medically defined populations? Who will be the gatekeepers dictating

how and when cognitive enhancement is permissible? Scientific questions also

persist, particularly the question of whether cognitive enhancement is better

achieved via pharmacological vs. nonpharmacological means. There is a need to

develop rational policies for the use of cognitive enhancers.
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Abstract

The purpose of this chapter is to present results from recent research on social

cognition in autism spectrum disorder (ASD). The clinical phenomenology and

neuroanatomical circuitry of ASD are first briefly described. The neuropharma-

cology of social cognition in animal models of ASD and humans is then

addressed. Next, preclinical and clinical research on the neurohormone oxytocin

is reviewed. This is followed by a presentation of results from preclinical and

clinical studies on the excitatory amino acid glutamate. Finally, the role of

neuroinflammation in ASD is addressed from the perspectives of preclinical

neuroscience and research involving humans with ASD.

Keywords

Autism • Social cognition • Neuropharmacology • Preclinical • Oxytocin •

Glutamate • Neuroinflammation

1 Introduction to Autism Spectrum Disorder

Autism spectrum disorder (ASD) is a group of childhood-onset neurodeve-

lopmental disorders characterized by deficits in social communication and social

interaction, along with restricted, repetitive patterns of behavior, interests, or

activities (American Psychiatric Association 2013).

There has been growing scientific and societal interest in ASD, in part, as a result

of its increasing prevalence. According to the Centers for Disease Control (CDC),

one in 68 children born in the United States 8 years of age has an ASD (Baio 2012).

The precise reasons behind this surge remain unknown, although enhanced aware-

ness and diagnosis are likely to be key contributors.

The etiology of ASD has yet to be fully elucidated. A combination of genetic and

environmental factors is thought to underlie its causes, with approximately 10 % of

cases being attributed to a known genetic condition, such as fragile X syndrome

(FXS) (Schaefer and Mendelsohn 2013). At present, there is no specific medical

diagnostic test for ASD, with diagnosis being established through both clinical

interview and observation.

Symptoms of ASD arise in early childhood and are grouped into two key

symptom clusters, namely, impairments in social communication coupled with a

pattern of repetitive behaviors and restricted interests. The first cluster, and argu-

ably the most indicative of ASD, focuses on deficits in social communication.
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Examples of these deficits include a lack of social–emotional reciprocity, an

impaired ability to approach another person in a socially acceptable manner, and

difficulty engaging in a back-and-forth conversation. A reduced capacity to initiate

or respond to social interactions, including the ability to share emotions and

interests, may also be demonstrated. ASD also manifests in limited nonverbal

communication, including reduced eye contact and difficulty in interpreting body

language. Individuals may lack imaginative play and may show reduced interest in

engaging with peers.

The second primary symptom cluster of ASD focuses on restricted, repetitive

behaviors and interests. Individuals with ASD may exhibit repetitive motor

movements or types of play, for example, lining up toys in a particular way.

Individuals may also have an insistence on adhering to a set daily routine, with

even small deviations eliciting a disproportionate amount of distress. Examples of

routines could include the need to get dressed in a particular sequence, or the

insistence on having the same type of food for every meal. This second symptom

cluster can also include the development of highly restricted but intense fixed

interests that can affect an individual’s daily functioning. Finally, individuals

may also have unusual sensitivities to the sensory aspects of their environment,

for example, a fascination with particular textures or an aversion to certain sounds

(American Psychiatric Association 2013).

2 Social Cognitive Deficits in Autism Spectrum Disorder

Social interaction and communication are integral to every aspect of human life.

ASD, however, is characterized by substantial impairments in social communica-

tive processes. Research has aimed to identify specific brain mechanisms that may

lead to this aberrant social cognition in ASD. Social cognition refers to a series of

highly phylogenetically preserved processes that are used to interpret social inter-

action (Frith 2008). In humans, these cognitive processes develop rapidly from birth

and include facial and facial affect recognition, identification of social sounds,

orientation to biological motion, and the analysis of eye gaze (McCall and Singer

2012). These processes allow an individual to integrate large amounts of sensory

data to produce a succinct, coherent understanding of the social world around them.

Central to understanding the social world is the ability to analyze the facial

features of others. Facial expressions and eye movements reveal affective states and

help predict the future behavior of others. Such information can be gleaned through

establishing mutual eye gaze (eye contact), the most powerful method of commu-

nication between humans (Farroni et al. 2002). Eye gaze allows for the nonverbal

transmission of important social communication and helps reveal an individual’s

intent or focus. Human infants develop the ability to identify familiar faces within a

few weeks of birth (Haith et al. 1977), and they preferentially look at faces that

engage them in mutual gaze (Farroni et al. 2002). Eye gaze also allows for the

initiation or response to “joint attention.” Joint attention is a process by which an
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individual uses nonverbal cues to alert another individual to an object or event.

Joint attention is an essential skill in social communication and learning.

A range of deficits in social cognition has been identified in ASD (see Table 1).

Individuals with ASD have demonstrated impaired facial recognition (Klin

et al. 1999; Weigelt et al. 2012), impaired facial affect recognition (Uljarevic and

Hamilton 2013), reduced orientation to biological motion (Annaz et al. 2012; Klin

et al. 2009), and aberrant eye gaze (Grice et al. 2005; Jones et al. 2008). Individuals

with ASD have also demonstrated difficulty in responding to or initiating joint

attention (Mundy et al. 2009).

Attempts have been made to identify the underlying neurobiology of these

deficits in social cognition. Multiple interconnected brain regions are believed to

be involved in ASD. Neuroimaging has identified abnormal functioning of several

of these regions, including the fusiform gyrus, the superior temporal sulcus, the

medial prefrontal cortex, and the amygdala (Dalton et al. 2005; Pelphrey

et al. 2004; Lynch et al. 2013). Recent research has also demonstrated abnormal

neural connectivity in ASD, although both hypoconnectivity and hyperconnectivity

have been reported (Gotts et al. 2012; Just et al. 2012; Lynch et al. 2013; Supekar

et al. 2013). Reduced connectivity of brain regions associated with social cognition

has been identified in several studies of adolescents and adults with ASD (Gotts

et al. 2012; von dem Hagen et al. 2013). Hyperconnectivity has also been

demonstrated, albeit in children with ASD. In a large multisite study involving

110 children with ASD aged 7–13 years, widespread brain functional hypercon-

nectivity was reported, with greater hyperconnectivity correlated with the highest

degree of social impairment (Supekar et al. 2013).

3 Social Cognitive Deficits in Other Neurodevelopmental
Disorders

Impairments in social cognitive processes are not limited to ASD but are also

present in disorders such as schizophrenia. Schizophrenia is a psychiatric disorder

characterized by delusions, hallucinations, and disorganized behavior and speech,

the so-called positive symptoms (American Psychiatric Association 2013). “Nega-

tive symptoms” may also be present and include diminished emotional expression

and social engagement. Like ASD, studies of schizophrenia have identified

Table 1 Social cognition and associated brain regions

Social cognitive processes seen in autism spectrum

disorder

Associated brain regions and

processes

Impaired facial recognition Fusiform gyrus

Impaired facial affect recognition Superior Temporal sulcus

Aberrant eye gaze Medial prefrontal cortex

Limited ability to detect biological motion Amygdala

Difficulty in initiating/responding to joint attention Aberrant neural connectivity
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difficulty in social interaction, communication, and emotional processing (Cheung

et al. 2010). Further evidence of a link between these conditions has arisen as a

result of their shared genetic underpinnings (Carroll and Owen 2009; Crespi

et al. 2010). Social cognitive deficits transcend clinically determined diagnostic

boundaries and can be identified in both disorders. Directly comparing ASD and

schizophrenia can help uncover shared mechanisms underlying the social cognitive

deficits seen in both conditions (Sasson et al. 2011).

4 Preclinical Studies of Social Cognition Related to Autism
Spectrum Disorder

Behavioral findings from studies conducted in laboratory animals have provided a

foundation for neuropharmacological models of social cognition and influenced

human research (McCall and Singer 2012). However, preclinical models of ASD

investigate social behavior in a broad context when compared to the human social

cognitive processes described above. Rodent social behavior in ASD research is

assessed using a variety of social paradigms such as social interaction, recognition,

preference, approach, and learning, as well as social odor discrimination, social

novelty recognition, and tests of ultrasonic vocalizations.

5 Neuropharmacology of Social Cognition in Animal Models
of Autism Spectrum Disorder and Humans

5.1 Oxytocin

5.1.1 Preclinical Research
Oxytocin, known as the “bonding hormone,” is a nonapeptide synthesized in the

paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Oxytocin

exerts its primary action via the oxytocin receptor (OXTR), a G-protein-coupled

receptor, regulating prosocial behaviors.

Oxytocin plays a modulatory role in a wide range of socially relevant behaviors,

including pair bonding, anxiety, stress reactivity, aggression, maternal behavior,

sexual behavior, social interaction behavior, and social recognition (Bielsky and

Young 2004; Donaldson and Young 2008; Lim et al. 2005; Lukas and Neumann

2013). For these reasons, oxytocin is a target of high interest in disorders

characterized by pathological symptoms in social cognition and behavior such as

ASD. In rodents, social behavior can be assessed in an array of tests. Social

communication and mother–infant bonding are measured in the maternal isolation

test. In this procedure, pups at an early postnatal stage are removed from the nest

and placed into a recording chamber to detect ultrasonic calls. In models mimicking

ASD-like behavior, the number of pup vocalizations is reduced (Malkova

et al. 2012). Reduced vocalizations at the pup stage in the maternal isolation test

have been reported in lines of mutant mice with alterations in oxytocin systems,
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such as oxytocin-knockout mice, OXTR-knockout mice, and CD38 (an enzyme

involved in oxytocin secretion)-knockout mice (Ferguson et al. 2000, 2001;

Higashida et al. 2011, 2012; Liu et al. 2008; Takayanagi et al. 2005; Winslow

and Insel 2002; Winslow et al. 2000), suggesting communication deficits at pup

stage in all three mouse lines.

During adulthood, social cognition can be measured in rodents employing social

preference and social recognition tasks. The social preference test measures prefer-

ence for a social target (conspecific) over a nonsocial target (inanimate object),

whereas the social recognition task assesses memory for a previously investigated

versus a novel social target.

Oxytocin-, OXTR-, and CD38-knockout mice all exhibit deficits in social

preference, as well as in social recognition, which can be reversed by acute

intracerebroventricular administration of oxytocin (Ferguson et al. 2001; Jin

et al. 2007; Sala et al. 2011).

Furthermore, there are inbred mouse lines with low sociability, such as the

BALB/cByJ and C58/J strains, which may be useful in modeling the social deficits

seen in ASD. Acute peripheral administration of oxytocin does not improve social

behavior, whereas subacute dosing of oxytocin increases social behavior in the

social preference task in both strains (Teng et al. 2013), indicating a modulatory

role of the oxytocin system in social preference behavior in these mouse strains of

low sociability. Although several causative genetic models for ASD, such as the

FMR1- and MeCP2-mutant lines, show deficits in social cognition (Ey et al. 2011),

there is a lack of studies addressing the direct role of oxytocin in these phenotypes.

While acute administration of oxytocin tends to yield prosocial effects, recent

studies have described opposing effects following chronic administration of oxyto-

cin. Repeated intranasal administration of oxytocin in C57BL/6 mice reduced

social interaction behavior and ultrasonic vocalizations (Huang et al. 2014). Similar

effects of chronic administration of oxytocin were described in the prairie vole,

where chronic intranasal administration of oxytocin reduced pair bonding (Bales

et al. 2013). Further studies will be necessary to evaluate the safety and efficacy of

chronic oxytocin on socially relevant behavior. Considering that both of the

abovementioned studies were carried out in animals with a normally functioning

oxytocin system, future studies should examine the effects of chronic oxytocin

administration in animal models of ASD-like behavior that carry alterations in

oxytocin system function.

5.1.2 Clinical Research
Given the role of oxytocin in facilitating social behavior in animals, studies in

humans have begun to explore the effects of oxytocin on human sociability and

related behaviors. A recent meta-analysis of studies using healthy participants

found that intranasal oxytocin enhanced emotion recognition of human faces, in

particular faces that demonstrated happiness or fear (Shahrestani et al. 2013). In

ASD populations, several studies have found that oxytocin not only can enhance

facial affect identification but also improve eye gaze toward the eye region of faces
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and improve reciprocal social behavior (Andari et al. 2010; Domes et al. 2013;

Hollander et al. 2007).

There have been a number of published studies of oxytocin administration to

human subjects with ASD. A study of intravenous oxytocin utilized a randomized

double-blind, placebo-controlled, single administration crossover design and

involved 15 adults with ASD (aged 19–56 years) (Hollander et al. 2007).

Participants were initially randomized to receive oxytocin or placebo infusion,

followed 1 week later by administration of the other agent. The oxytocin adminis-

tration consisted of an intravenous infusion of oxytocin (10 units) or normal saline

over a 4-h time period. Individuals were given an affective speech comprehension

task just prior to the infusion, and it was repeated at 30, 60, 120, 180, and 240 min

after the infusion. Oxytocin was associated with improvement in affective speech

comprehension from pre-administration levels, regardless of whether given first or

second in order of the crossover (Hollander et al. 2007). Participants who received

oxytocin first, when compared to those who received placebo first, were noted to

have an improved ability to identify affective speech when assessed after a 1-week

delay. The same study had also reported that oxytocin resulted in a significant

reduction in ASD-associated repetitive behaviors compared to placebo (Hollander

et al. 2003).

There have been far more studies of intranasal oxytocin administration than

intravenous administration (Veening and Olivier 2013). Two primary reasons

underlie this shift. First, there is a concern that oxytocin in the periphery may not

cross the blood–brain barrier. Second, intranasal administration is thought to

increase the half-life of oxytocin compared to intravenous administration, with

oxytocin having a half-life of 28 min in the cerebrospinal fluid (CSF) and extracel-

lular space of the brain but less than 2 min in the blood (Mens et al. 1983; Robinson

and Jones 1982; Seckl and Lightman 1988).

Studies utilizing intranasal oxytocin in ASD have found that it can improve

performance on the “Reading the Mind in the Eyes Task” (RMET), a measure of the

ability to identify affective states from standardized pictures of eyes and their

surrounding facial areas (Guastella et al. 2010). The RMET is one of the most

widely used tests of affective recognition in ASD research (Haxby et al. 2002).

A randomized double-blind, placebo-controlled, single administration crossover

study in 16 males with ASD (aged 12–19 years, mean age 14.9 years) demonstrated

significant improvement in the RMET with intranasal oxytocin (Guastella

et al. 2010). Participants were randomized to receive one dose of oxytocin nasal

spray [18 or 24 international units (IU) based on age] or placebo and then the other

agent at separate administration sessions. The RMET was presented 45 min after

drug administration. Oxytocin was found to significantly improve RMET perfor-

mance in both younger and older participants who received 18 IU or 24 IU of

oxytocin, respectively. Oxytocin was well tolerated with tiredness/relaxation noted

in 25 % (n¼ 4) and sweating in 6 % (n¼ 1) of participants.

A randomized double-blind, placebo-controlled study evaluated the repeated

administration of intranasal oxytocin in 19 adults with ASD (16 males, 3 females;

mean age 33.2 years) (Anagnostou et al. 2012). Active treatment consisted of 24 IU
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of oxytocin administered twice a day for a period of 6 weeks. A variety of social and

behavioral outcome measures were collected. Six weeks of oxytocin led to signifi-

cantly improved performance on the RMET, a secondary social cognition outcome

measure, when compared to placebo. No significant improvement was observed on

the primary outcome measures of repetitive behavior (Yale-Brown Obsessive

Compulsive Scale and Repetitive Behavior Scale—Revised) or social cognition

(Diagnostic Analysis of Nonverbal Accuracy). Oxytocin was well tolerated with no

serious adverse effects. Two individuals in the oxytocin group developed mild–

moderate irritability, and two participants had increased allergy symptoms. Mild

fatigue, headaches, leg shaking, and increased energy were reported by single

participants in the oxytocin group. No clinically significant differences were seen

between the oxytocin and placebo groups in regard to laboratory or clinical tests,

including complete blood count, liver and renal function, serum osmolality, and

electrocardiogram.

For over a decade, abnormal visual scanning of faces has been identified in ASD

(Pelphrey et al. 2002). Individuals with ASD spend less time visually attending to

the eye region of others compared to non-ASD controls (Boraston et al. 2008;

Dalton et al. 2005; Sterling et al. 2008). In healthy adults, oxytocin has been shown

to increase gaze toward the eye region of faces, potentially improving emotion

recognition and social communication (Guastella et al. 2008). Several studies have

also shown that oxytocin may enhance emotion recognition and improve eye region

directed gaze in adults with ASD (Domes et al. 2013).

A randomized double-blind, placebo-controlled, single administration crossover

study has demonstrated that intranasal oxytocin improves gaze toward the eye

region among participants with ASD. In the study, 13 adolescents and adults with

ASD (aged 17–20 years, mean age 26 years) received either 24 IU of intranasal

oxytocin or placebo, followed by a 1-week washout period prior to receiving the

other agent. A set of facial perception tasks coupled with eye tracking was

undertaken 50 min after dose administration. Compared to placebo, oxytocin

significantly increased the length of time ASD participants gazed at facial stimuli,

mostly toward the eye region. Despite oxytocin, significantly reduced facial and eye

region gaze duration persisted in ASD compared to non-ASD control subjects

(Andari et al. 2010).

Another randomized double-blind, placebo-controlled, single administration

crossover study examined the effects of intranasal oxytocin in individuals with

ASD using a facial emotion recognition task coupled with functional and structural

brain magnetic resonance imaging (MRI) (Domes et al. 2013). A total of 14 adults

with ASD (mean age 24 years) received 12 IU of intranasal oxytocin or placebo

followed by a facial emotion recognition task and brain MRI 45 min after adminis-

tration. Compared to controls, participants with ASD had impaired baseline emo-

tion recognition. The use of a single intranasal oxytocin dose led to improved

performance in the emotion recognition task in those with ASD. Oxytocin did not

result in any significant changes in mood, wakefulness, or calmness when compared

to placebo. Oxytocin was associated with an increase in amygdala reactivity and

activation to facial stimuli in ASD participants, further implicating the amygdala in
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emotion recognition (Domes et al. 2013). Reports of amygdalar activity during

facial perception tasks in ASD have been mixed, with both increased (Monk

et al. 2010; Weng et al. 2011) and reduced (Kleinhans et al. 2011; Perlman

et al. 2011) activity being reported.

The effects of oxytocin on brain activity could vary depending on the social

significance of the stimuli being encountered. One randomized double-blind, single

administration crossover study evaluated the effects of intranasal oxytocin in

children with ASD using functional MRI (fMRI) (Gordon et al. 2013). The study

examined the impact of a single dose of intranasal oxytocin on 17 children and

adolescents with ASD (aged 8–16.5 years). The participants were given an intrana-

sal oxytocin dose that was dependent on their age. The oxytocin dose was 12 IU for

those aged 7–11 years, 18 IU for those between 12 and 15 years, and 24 IU for

individuals aged 16–19 years. Oxytocin was found to modulate brain activity based

on the social meaningfulness (salience) of the images presented. Socially meaning-

ful stimuli (eyes) resulted in increased activity in the striatum, nucleus accumbens,

left posterior superior temporal sulcus, and left premotor cortex. In contrast, the

same brain regions demonstrated decreased activity with oxytocin exposure when

nonsocially salient images (vehicles) were shown.

A randomized, double-blind, placebo-controlled, single administration cross-

over study in 40 adult males with ASD (mean age 28.5 years) reported improved

decision-making ability in response to nonverbal information (Watanabe

et al. 2013). Intranasal oxytocin (24 IU) was associated with improved performance

on a social psychological task based on the interpretation of conflicting nonverbal

and verbal information. Imaging data gathered using fMRI demonstrated dimin-

ished medial prefrontal cortex activity at baseline among the participants with

ASD. Oxytocin was found to alter these activity patterns so that they more closely

resembled those found in healthy adults. The degree of neural change seen with

oxytocin was correlated with improvement on the psychological task performance.

5.2 Glutamate

5.2.1 Preclinical Research
Glutamate is the most prevalent neurotransmitter in the brain, mediating fast

excitatory neurotransmission and plasticity. There are three families of ionotropic

glutamate receptors (iGluRs, including AMPA [α-amino-3-hydroxy-5-methyl-4-

isozolepropionic acid], NMDA [N-methyl-D-aspartate], and kainate), as well as

three groups of metabotropic glutamate receptors (mGluRs I-III) (Traynelis

et al. 2010). Mutations in genes encoding both AMPA and NMDA receptor

subunits, which play critical roles in regulating synaptic transmission and plasticity,

have been associated with ASD (Soto et al. 2014). Additionally, genetic mutations

found in some cases of ASD result in alterations in postsynaptic proteins necessary

for receptor scaffolding and crosstalk between mGluRs and the iGluRs AMPA and

NMDA (O’Connor et al. 2014). Taken together, this genome-based research
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supports the hypothesis that abnormalities in genes involved in glutamate receptors

and regulation of glutamate pathways may be directly involved in ASD pathology.

In preclinical models, various aspects of glutamate signaling pathways have

been disrupted to investigate the role of glutamate transmission on ASD-related

phenotypes. For example, mice lacking Shank2, a postsynaptic scaffolding protein,

show decreases in social preference and ultrasonic vocalizations (Won et al. 2012).

There are a variety of transgenic lines with disrupted glutamatergic function, via

altered receptors or postsynaptic proteins linking mGluRs and iGluRs, that display

disrupted social behavior analogous to the social impairment in ASD [see (Carlson

2012; O’Connor et al. 2014) for review].

Consistent with studies directly targeting glutamatergic pathways, alterations in

glutamate function have also been observed in other widely used ASD models. In

the rat valproic acid (VPA) model, pregnant rats are exposed to a single injection of

VPA, a known teratogen. Offspring of pregnant rats exposed to a single injection of

VPA display behavioral symptoms observed in ASD, including impaired social

interactions, increased repetitive behaviors, and elevations in anxiety-like

behaviors (Markram et al. 2008; Schneider and Przewlocki 2005). These offspring

display alterations in the glutamatergic system, including increased expression of

the NMDA receptor subunits NRX and NRY, as well as alterations in the expres-

sion of the second messenger CaMKII (Rinaldi et al. 2007). Prenatal injection with

polyinosinic–polycytidylic acid (poly I:C), which produces an immune response

similar to that caused by viral infection, reduces NR1 expression in the hippocam-

pus (Meyer et al. 2008). Together, these studies further highlight the importance of

glutamatergic neurotransmission in social cognition related to ASD.

Although dysfunction of glutamate systems can contribute to ASD-like social

impairments, few preclinical studies have investigated whether glutamatergic

agents can rescue social impairments. One such study utilized mice lacking the

mu opioid receptor gene that display abnormal social behavior, including defective

recognition of a novel social partner and decreased social preference in direct and

three-chamber versions of the social interaction test (Becker et al. 2014). Chronic

treatment with VU0155041, an mGluR4 positive allosteric modulator, was more

effective than the atypical antipsychotic risperidone in improving the social deficits

without causing sedative side effects. Specific mutation of the fragile X mental

retardation 1 (FMR1) gene has been strongly linked to FXS, a leading cause of

inherited intellectual disability that is associated with various social disabilities

leading to a high prevalence of comorbid ASD (Kaytor and Orr 2001). FMR1-

knockout mice are widely used as a model of FXS. Loss of FMR1 disrupts mRNA

translation repression, which results in upregulation of mGluR5 (Bear et al. 2004;

Kaytor and Orr 2001). Chronic administration of AFQ056/mavoglurant, a selective

mGluR5 antagonist, restores social behavior in FMR1-knockout mice (Gantois

et al. 2013). This small body of literature demonstrates that pharmacological agents

targeting the glutamate system alleviate social deficits in some animal models of

ASD. While these investigations support the therapeutic potential of glutamatergic

agents, it is clear that the specificity and direction of glutamate dysfunction vary
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depending on the model. Thus, it seems likely that etiological subtypes of ASD will

require different glutamate agents in order to alleviate social abnormalities.

5.2.2 Clinical Research
Excitatory glutamate and inhibitory gamma-aminobutyric acid (GABA) activity

work to balance brain function in order to regulate cognitive and emotional

processes, among other functions. Regional brain glutamate levels can be measured

with the combined glutamate/glutamine (Glx) signal using proton magnetic reso-

nance spectroscopy ([1H]MRS). Research suggests that ASD is associated with

abnormal regional levels of glutamate (using Glx). Three studies of adults with

ASD have measured Glx using [1H]MRS. Adults with ASD were found to have

increased Glx concentration in the right amygdala–hippocampal complex (Page

et al. 2006) and reduced Glx concentration in the right anterior cingulate (Bernardi

et al. 2011) and basal ganglia (Horder et al. 2013). Lower Glx concentration in the

basal ganglia has been significantly correlated with increased social communication

deficits (Horder et al. 2013). Studies measuring Glx in children with ASD have been

less remarkable, with three studies finding no significant differences compared to

controls (Friedman et al. 2006; Harada et al. 2011; Hardan et al. 2008), and one

demonstrating lower cortical Glx concentration (DeVito et al. 2007).

ASD has been hypothesized to be a hypoglutamatergic disorder, based on both

human and animal data (Blaylock and Strunecka 2009; Carlsson 1998; Smith

et al. 2011). There have been a small number of clinical trials in ASD using agents

that have a glutamatergic mode of action, including D-cycloserine (DCS) and

memantine (Akhondzadeh et al. 2008; Chez et al. 2007; Ghaleiha et al. 2013;

Owley et al. 2006; Posey et al. 2004;). Outcome measures in these studies have

included subjective clinical ratings as opposed to specific cognitive tests. However,

the assessment of clinician-rated improvements in social responsiveness and inter-

action is thought to be indicative of improved social cognition.

DCS is a partial agonist at the glycine site of the NMDA glutamate receptor.

Several studies have suggested that DCS may be beneficial in the treatment of the

negative symptoms of schizophrenia, symptoms with an underlying neurobiology

that may be of significance in ASD (Evins et al. 2002; Goff et al. 2008; Heresco-

Levy and Javitt 2004). One prospective single-blind, placebo lead-in study

investigated the role of DCS in ASD (Posey et al. 2004). A total of ten individuals

with ASD (aged 5–27 years, mean age 10.0 years) were given a daily dose of DCS

over 6 weeks. The dose of DCS was increased every 2 weeks, progressing from 0.7

to 1.4 mg, and then 2.8 mg/kg/day. All ten individuals completed the 6-week trial of

DCS. Compared to baseline, DCS was associated with a statistically significant

improvement in social withdrawal (as measured by the Aberrant Behavior Check-

list (ABC) Social Withdrawal subscale). DCS at the highest dose (2.8 mg/kg/day)

was associated with a 60 % decrease in social withdrawal symptom severity. DCS

was well tolerated although two participants encountered adverse effects at the

highest dose, with one experiencing a transient motor tic and the other having

increased echolalia.
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Memantine is an NMDA glutamate receptor antagonist that is used in the

treatment of Alzheimer’s dementia and other cognitive disorders (Peng

et al. 2013). A group of open-label studies of memantine in ASD has reported

improvements in memory (Owley et al. 2006) and social interaction/withdrawal

(Chez et al. 2007; Erickson et al. 2007; Owley et al. 2006), although not all

memantine studies have demonstrated improvements in social withdrawal

(Ghaleiha et al. 2013; Niederhofer 2007).

In one large open-label add-on study, 151 patients (aged 2.58–26.33 years, mean

age 9.31 years) with a diagnosis of ASD were given memantine with the dose

titrated based on clinical response (range of dose 2.5–30 mg/day, mean dose

12.67 mg/day) (Chez et al. 2007). Clinically significant improvement in social

interaction and language, as defined by a rating of “much improved” or “very

much improved” on the Clinical Global Impression–-Improvement (CGI-I) scale,

was seen in 70 % of patients. Some patients were noted to have deterioration in

language function or social interaction with memantine, although this occurred in

only 2 % and 12 % of patients, respectively. Adverse effects encountered with

memantine included agitation or manic-like behavior. Adverse effects led to 15 %

of participants discontinuing memantine.

One 8-week prospective open-label study involving 14 children with ASD (aged

3–12 years, mean age 7.8 years) investigated the use of memantine (Owley

et al. 2006). The dosing schedule involved a gradual stepwise increase of 5 mg of

memantine per week up to a final target dose of 0.4 mg/kg/day. Study participants

were noted to have significant improvement in memory as tested by the Children’s

Memory Scale—The Dot Locations Subtest, which is a test of visual/nonverbal

memory. Significant improvements in social withdrawal and inappropriate speech,

as measured by two subscales of the ABC, were also recorded. Significant improve-

ment was also seen with memantine on measures of irritability, hyperactivity, and

stereotypy, based upon the ABC.

A retrospective open-label study of memantine in children and adolescents with

ASD also yielded promising results. A total of 18 participants (aged 6–19 years,

mean age 11.4 years) received memantine (mean dose 10.1 mg/day, range of dose

2.5–20 mg/day) (Erickson et al. 2007). The duration of treatment varied from 1.5 to

56 weeks (mean duration 19.3 weeks). Significant symptom improvement, predom-

inately in social withdrawal and inattention, was found in 61 % of participants.

Adverse effects were seen in 39 % of participants, with 22 % requiring drug

discontinuation.

5.3 Neuroinflammation

5.3.1 Preclinical Research
Findings from preclinical studies of ASD support the long-standing hypothesis that

immunological factors may play a key role in a subgroup of individuals with ASD.

Environmental manipulations that trigger immune responses during critical periods

of development result in the core behavioral symptoms of ASD. This observation
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provides the foundation for animal models of ASD involving inflammatory pro-

cesses. One approach often used to represent environmental manipulations in

animal models of ASD is in utero immune stimulation in the maternal immune

activation (MIA) model. There is now considerable evidence that maternal immune

responses can induce ASD-like behaviors in the offspring, including social

impairment, communication deficits, and stereotypic behavior. Administration of

a variety of immune-activating agents has been utilized in MIA, including influenza

virus, poly I:C, VPA, and the bacterial endotoxin lipopolysaccharide (LPS)

(Malkova et al. 2012; Oskvig et al. 2012; Schneider and Przewlocki 2005; Shi

et al. 2003). While these agents stimulate the immune system by varying

mechanisms, they all induce social deficits in the offspring and have been used in

both rat and mouse models. Many MIA protocols have demonstrated that MIA

induces inflammatory alterations in the offspring, including long-lasting and

region-specific changes in brain cytokines, chemokines, and microglia, and inflam-

matory macrophage activation and other measures of neuroinflammation (Borrell

et al. 2002; Garay et al. 2013; Kannan et al. 2007; Kimura et al. 1994; Meyer

et al. 2006; 2008; Onore et al. 2014). Collectively, these findings support the

hypothesis that disruptions in immune function influence the behavioral

abnormalities observed in MIA models of ASD.

A single maternal injection of the cytokine interleukin-6 (IL-6) has been shown

to cause some of the behavioral deficits observed in poly I:C MIA offspring (Smith

et al. 2007). Additionally, maternal injection of poly I:C has no effect on social

interaction in the IL-6-knockout mouse (Patterson 2009). Together, these findings

suggest that IL-6 is critical in mediating some of the behavioral changes observed in

poly I:C MIA offspring and identify IL-6 as a potential therapeutic target.

Coadministration of a neutralizing anti-IL-6 antibody with poly I:C blocks the

effects of MIA on the offspring behavior, thus preventing social deficits (Patterson

2009; Smith et al. 2007). Further investigation with knockout mice can be used to

investigate the role of specific cytokines in the social deficits observed in ASD.

Recent progress in preclinical ASD research provides evidence for immunolog-

ical involvement in ASD, at least in a subgroup of patients. Future work will

continue to delineate the specific mechanisms through which these immune-based

models cause social deficits in the offspring. With these models in place,

investigations of drug therapies that target the immune system can now be tested

as a potential means to treat or prevent certain types of ASD.

5.3.2 Clinical Research
One area of investigation that has attracted significant attention in research in ASD,

as well as other neuropsychiatric disorders, is that of neuroimmune interactions,

including the processes of microglia activation and neuroinflammation (McDougle

and Carlezon 2013). Results from a recent brain imaging study using positron

emission tomography (PET) found evidence for greater inflammation in the brains

of adults with ASD compared to matched healthy controls (Suzuki et al. 2013).

Considering these data alongside a large number of previously published studies of

immune function in ASD (see Stigler et al. 2009 for review) suggests that aberrant
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neuroimmune processes may contribute to the development and ongoing patho-

physiology of a significant subgroup of those with ASDs.

In response to evidence implicating immune dysfunction and inflammation in

some patients with ASD, a published literature pertaining to the use of anti-

inflammatory and immune-modulating drugs in this population is beginning to

emerge. As the field moves forward, it may be that some of these treatments will

be studied in a rigorous double-blind, placebo-controlled manner, specifically in

those patients where prominent, aberrant neuroimmune processes may be involved.

Corticosteroids are anti-inflammatory and immunosuppressive agents that

inhibit pro-inflammatory cytokine production, alter T lymphocyte activity, and

may also modulate microglial activation (Ros-Bernal et al. 2011; Schweingruber

et al. 2012). Corticosteroids are efficacious treatments for a wide variety of auto-

immune conditions, including inflammatory bowel disease, asthma, inflammatory

arthritis, and neurological conditions such as multiple sclerosis. Corticosteroids are,

however, associated with a diverse range of adverse effects, including neuropsy-

chiatric symptoms such as alterations in mood, cognition, sleep, and behavior

(Kenna et al. 2011). Several promising accounts of improvements in symptoms of

ASD with the use of corticosteroids have been reported. Research findings are,

however, limited to case reports and open-label studies in children.

One case report of a boy aged 2 years, 7 months with regressive ASD and an

autoimmune lymphoproliferative condition described improved social interaction

and vocalization with chronic oral prednisolone treatment (Shenoy et al. 2000).

Previously, he had shown marked regression in social communication, including

speech, at the age of 18 months. In order to treat the autoimmune condition, he

initially received prednisolone at a dose of 2 mg/kg/day for a period of 10 weeks.

Within the first month of treatment, the boy was described as having increased

social interaction. The initial dose of prednisolone was associated with irritability

that subsided as the prednisolone dosage was reduced to 0.5 mg/kg/day. Subse-

quently, his prednisolone dose was further reduced to 0.4 mg/kg every other day.

However, this resulted in re-emergence of autoimmune symptoms, including diar-

rhea. Eventually, the dose of 0.5 mg/kg every other day was found to be an effective

maintenance dose for treatment of the autoimmune condition, as well as the ASD

symptoms. Continuing improvements in speech were noted over the subsequent

12 months of treatment with the emergence of a vocabulary of over 200 words.

Improvements were also seen in gesturing, nonverbal communication, and lan-

guage expression and comprehension as assessed by the Rossetti Infant–Toddler

Language Scale.

A second case report described a 6-year-old boy with ASD who also improved

with prednisolone treatment. The patient had demonstrated evidence of temporal

and frontal lobe dysfunction based on a single-photon emission computed tomog-

raphy (SPECT) scan and steady-state auditory evoked potential readings

(Stefanatos et al. 1995). There were no electroencephalographic (EEG)

abnormalities, making the diagnosis of Landau-Kleffner syndrome (LKS) unlikely.

The patient was diagnosed with ASD based on prominent language and behavioral

regression at the age of 22 months, with persistent impaired social interactions,
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motor stereotypies, and echolalia. He began a 28-week course of prednisolone, with

an initial dose of 2 mg/kg/day for the first 4 weeks. Between weeks 4 and 12, the

prednisolone dose was reduced by 0.5 mg/kg/day every 4 weeks. From week

12 through week 28, the prednisolone was administered on alternate days with

continuing reduction of 0.25 mg/kg/day every 4 weeks. Within a few weeks of

treatment, significant improvement in social communication was noted. By the end

of treatment, he made relative gains of 26–36 months in expressive and receptive

vocabulary in less than 18 months.

A report of two cases of children with ASD and neurologic symptoms, including

seizures and motor deficits, treated with prednisolone has also been published

(Mordekar et al. 2009). The children (one male and one female, both aged

4.5 years) were given a course of prednisolone (initial dose 2 mg/kg/day) for

10 weeks and 3 weeks, respectively. Both patients demonstrated a return of

previously lost spoken language with a reduction in psychomotor agitation. They

reportedly maintained this improvement following the discontinuation of the

treatment.

An open-label study was used to investigate high-dose corticosteroid treatment

in 44 children with ASD and evidence of abnormal epileptiform activity (mean age

5.6 years) (Chez et al. 1998). In these children, high-dose corticosteroid (either

prednisolone or methylprednisolone at 10 mg/kg/week for 18 months) was added to

ongoing treatment with divalproex sodium. Only 25 children had clinical and EEG

outcomes reported after addition of a corticosteroid. Among these children, clinical

improvements in speech and EEG were noted in 82 and 60 % of cases, respectively.

Corticosteroid treatment was well tolerated with no significant adverse effects,

including no cushingoid complications being observed even after 18 months of

treatment.

Adrenocorticotropic hormone (ACTH) is produced by the anterior pituitary

gland and stimulates the release of corticosteroids from adrenal cells. Children

with ASD have been reported to have both abnormal circulating levels and physio-

logic responses to ACTH (Hamza et al. 2010; Marinovic-Curin et al. 2008). Several

controlled trials have reported ACTH to be well tolerated and result in improve-

ment in ASD symptoms in some children (Buitelaar et al. 1990, 1992a, b).

An 8-week controlled crossover trial investigated the use of synthetic ACTH

(40 mg/day) in 21 children with ASD (Buitelaar et al. 1992a). The participants were

aged 5–15 years, with 4 females and 17 males being enrolled. One male dropped out

of the study due to gastrointestinal complaints prior to receiving ACTH. Significant

improvement was seen in overall ASD severity as measured by the CGI severity

(CGI-S) scale alongside improvements in specific symptoms of ASD, in particular

social interaction, as measured by the ABC Social Withdrawal subscale score.

While use of ACTH was generally well tolerated, six children had an increase in

mood lability and “inner tension” by parent or teacher report compared to only two

children experiencing the same while on placebo. Significant improvement in social

interaction and eye gaze was observed. These findings supported the results of a

previous double-blind, placebo-controlled crossover trial involving 14 children

(aged 5–13 years) with ASD. Treatment with ACTH (20 mg/day) was noted to
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improve stereotypic behaviors and enhance social interaction in the subjects

(Buitelaar et al. 1990, 1992b).

Celecoxib, a cyclooxygenase-2 inhibitor with anti-inflammatory effects, has

been shown to have some beneficial effects on ASD symptoms, as reported in

one 10-week randomized double-blind, placebo-controlled trial (Asadabadi

et al. 2013). In the study, 40 children with ASD (aged 5–11 years) were assigned

to risperidone combined with either celecoxib or placebo. Celecoxib was initiated

at 100 mg/day and titrated to either 200 or 300 mg/day depending on body weight

(limited to 200 mg/day if child weighed less than 30 kg). Risperidone was started at

a dose of 0.5 mg/day with an increase of 0.5 mg/week to 2–3 mg/day, depending on

body weight. Outcomes were measured using the subscales of the ABC at 2, 4,

6, and 10 weeks. By the end of the study, the risperidone plus celecoxib arm

demonstrated significant improvement in irritability, social withdrawal, and stereo-

typic behavior when compared to risperidone plus placebo. Additionally, while

risperidone plus placebo resulted in a treatment response in 20 % of patients, a

significantly higher percentage, 55 %, responded to risperidone plus celecoxib.

Response was defined as a 50 % reduction in the ABC Irritability subscale score.

Adverse effects were similar between treatment groups, with extrapyramidal

symptoms, likely due to risperidone use, being reported in half of participants

(45 % placebo group, 50 % celecoxib group). Abdominal pain was reported in

three patients receiving risperidone plus celecoxib compared to only one patient

given risperidone plus placebo, although this difference was not statistically signif-

icant (Fig. 1).

Altered plasma immunoglobulin levels have been reported in ASD, although

conflicting results have been found. For example, both IgM and IgG have been

found to be increased (Trajkovski et al. 2004) and decreased (Heuer et al. 2008) in

individuals with ASD.

Studies have investigated the use of oral human immunoglobulin (IGOH) and

intravenous human immunoglobulin (IVIG) in the treatment of ASD. However,

they have yielded divergent findings. One 8-week open-label trial of IGOH

Fig. 1 Repeated measure graph for comparison of irritability, lethargy/social withdrawal, and

stereotypic behavior subscales of Aberrant Behavior Checklist—Community (ABC-C;
mean� standard error of the mean) over time between the celecoxib and the placebo group.

*P< 0.05; **P< 0.01; ***P< 0.001. P values represent results of unpaired t test for comparison

of the changes from baseline scores to that time point between the two groups. Reprinted with

permission of Springer Science and Business Media
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(420 mg/day) in 12 male children (aged 3–7 years) with ASD and gastrointestinal

disturbances found 50 % of those treated had symptomatic improvement of both

conditions (Schneider et al. 2006). Gastrointestinal outcomes were measured using

the Gastrointestinal Severity Index, while symptoms of ASD were measured with

the CGI-I, CGI-S, and ABC. Significant improvement in ASD symptoms, as

measured by the ABC, was not only seen at 8 weeks but also at 30 days after

discontinuation of medication. Three of the children withdrew from the study while

receiving IGOH following the development of vomiting and fever, vomiting and

nausea, and rash, respectively. There has been one double-blind, placebo-con-

trolled, randomized trial of IGOH in the treatment of ASD (Handen et al. 2009).

This study involved 125 children with ASD and chronic gastrointestinal symptoms.

The treatment phase was 12 weeks long with four treatment arms, including

placebo and three different dosages of IGOH (140 mg, 420 mg, and 840 mg/day).

In contrast to the open-label study, IGOH was not found to be beneficial in reducing

ASD or gastrointestinal symptoms in this controlled trial.

Several open-label studies examining the effects of IVIG in ASD have yielded

mixed results. One study involving seven children with ASD, aged 3.5–6 years,

reported on the effects of IVIG given at monthly intervals for 6 months (400 mg/kg/

month) (DelGiudice-Asch et al. 1999). Two children did not finish the study as in

one case a diagnosis of LKS was suspected, and in the other case, the family

received the last 2 months of IVIG outside of the study. There was no significant

improvement in behavior or ASD severity as measured by several scales including

the Children’s Yale-Brown Obsessive Compulsive Scale, the Ritvo–Freeman Real

Life Rating Scale, and the CGI-I. In a study involving ten children with ASD (aged

4–17 years) and documented immunologic abnormalities, IVIG was administered

every 6 weeks for a total of 4 infusions (dose 200–400 mg/kg) (Plioplys 1998).

Eight of the ten children had been noted to have had ASD diagnosed following a

period of regression in early life. In this study, five children did not have any change

in symptoms, four children had minor improvements that the authors suggested

could have been due to placebo effect, and one child had an “almost total amelio-

ration” of ASD symptoms with treatment. The improvements were temporary, with

symptoms returning to their baseline levels 5 months after treatment cessation. The

authors concluded the response rate of 10 % was too low to justify the high

economic costs associated with immunologic testing and IVIG administration.

There have, however, been more favorable reports of IVIG, including one by

Gupta et al. (1996a) who described ten children with ASD and immunological

abnormalities. The children were given IVIG on a monthly basis for 6 months (dose

400 mg/kg). Following treatment, half of the children (n¼ 5) were deemed to have

had a marked (n¼ 4) or striking (n¼ 1) clinical improvement. Enhanced language

use and eye contact and a reduction in agitation were specifically identified.

Additionally, favorable reports were obtained from one open-label retrospective

study involving 26 children with ASD who were treated with IVIG for 6 months

(dose 400 mg/kg/month) (Boris et al. 2005). Treatment resulted in a significant

decrease in the total ABC score alongside each of the ABC subscales (Irritability,

Lethargy/Social Withdrawal, Stereotypy, Hyperactivity, and Inappropriate
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Speech). Biochemical investigation of the participants revealed evidence of sub-

stantial immunological and inflammatory abnormalities, including 54 % having an

elevated erythrocyte sedimentation rate (ESR), 65 % having antibodies to myelin,

and 31 % having thyroid antibodies.

6 Summary

Accumulating evidence indicates that both environmental and genetic factors can

play crucial roles in the etiology of ASD. Basic research on the factors that regulate

communication—both between animals and, more fundamentally, nerve cells in the

brain—has led to clinical trials of treatments that act by altering oxytocin or

glutamate function. These approaches have been of variable success for improving

social cognition in some individuals with ASD. Along other lines, it is becoming

clear that many individuals with ASD have a family history of inflammation-

associated conditions, often autoimmune in nature, and the core behavioral features

of ASD can be produced in laboratory animals by inducing inflammatory responses

during key periods of development. While it is unlikely that all cases of ASD have a

common cause that would be sensitive to a single therapeutic approach, a better

understanding of the ways in which environment and genetics interact may enable

the development of personalized interventions that target specific etiologies.
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Abstract

Experimental research over just the past decade has raised the possibility that

learning deficits connected to Down syndrome (DS) might be effectively man-

aged by medication. In the current chapter, we touch on some of the work that

paved the way for these advances and discuss the challenges associated with

translating them. In particular, we highlight sources of phenotypic variability in

the DS population that are likely to impact performance assessments. Through-

out, suggestions are made on how to detect meaningful changes in cognitive–

adaptive function in people with DS during drug treatment. The importance of

within-subjects evaluation is emphasized.

Keywords

Down syndrome • Intellectual disability • Clinical trial • Cognition • Adaptive

behavior • Drug treatment

1 Introduction

1.1 Down Syndrome: Background and Etiology

Down syndrome results from the gametic triplication of human chromosome

21 (meiotic nondisjunction, Hsa21; Sherman et al. 2007). From this event, it is

reasonable to assume that the physical presence of an extra nuclear chromosome

and dosage imbalance of approximately 170 protein-coding trisomic genes change

the constitution and regulatory environment of the genome (Hattori et al. 2000;

Patterson 2007; Reeves 2001). Elevated levels of categorically diverse Hsa21

transcripts and finer alterations in disomic allelic expression likely influence devel-

opmental trajectories from conception, reprogramming rates of symmetric and

asymmetric cell division and undermining the temporal stability of transient

populations that guide cellular migration or cue terminal differentiation

(Chakrabarti et al. 2010; Tyler and Haydar 2013). Ultimately, the accumulated

effects of trisomy reshape the size and properties of every tissue system in the body

in a way that is inwardly and outwardly recognizable. In mature systems, approxi-

mately 1.5-fold steady-state overexpression of Hsa21 transcripts and fluctuations in

Hsa21 proteins and signaling pathways further modify the autonomous/nonautono-

mous function of adult cells and their response to experience (Begenisic et al. 2011;

Chakrabarti et al. 2011; Kahlem et al. 2004; Roper and Reeves 2006; Sultan

et al. 2007).

Upon birth, infants with Down syndrome (DS) exhibit a panoply of several

dozen clinical features that vary, sometimes widely, in severity or expressivity

(Steingass et al. 2011; Weijerman and de Winter 2010). The penetrance for these

phenotypes has been thought to be equally variable, but technical diagnostic

advances capable of discerning more subtle pathology suggest that trisomy
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21 produces a few “common” features. The typical child with DS will show a

flattened facial profile due to brachycephaly of the skull, upslanting palpebral

fissures and ring-like brushfield spots of connective tissue across the eyes, smaller

dysplastic ears, and characteristic changes in form to the upper and lower

extremities including a palmar crease on the hands, exaggerated curvature of the

fifth finger, and a wide space between the first and second toes known as “sandal

gap” (Baum et al. 2008). Further examination of the muscles will reveal hypotonia

and joint laxity. More involved procedures will reveal impairments in the visual and

auditory systems (Al-Bagdady et al. 2011; Blaser et al. 2006; Courage et al. 1997;

Hassmann et al. 1998; Raut et al. 2011; Shott et al. 2001), septation defects in the

heart (Dennis et al. 2010; Park et al. 1977), and pulmonary hypoplasia of the lungs

(Bertrand et al. 2003; McDowell and Craven 2011) in a significant fraction of

individuals.

The hallmark of the DS phenotype is intellectual disability or cognitive

impairment (Edgin 2013; Nadel 2003), which refers to a suite of deficits in how

information is sought, attended or oriented to, and manipulated for short and long

periods of time to effect learning and memory and ascendant functions such as

reasoning, problem-solving, and planning. Perhaps nonintuitively, many

anatomical aspects of the brain and its function appear normal soon after birth.

As development of the nervous system ensues, young children with DS exhibit

slowing trajectories of developmental quotient (DQ) and intelligence quotient

(IQ) growth that compromise language acquisition and expansion of cognitive

skill sets (Abbeduto et al. 2007; Carr 1970, 1988; Chapman 1997; Patterson

et al. 2013). Lacking these proper tools, people with DS are hindered in important

aspects of their adaptive function (e.g., self-help skills) and participation in society

(e.g., social-interpretative skills) (Sigman et al. 1999). The endpoint of having three

copies of Hsa21 instead of two is, arguably, the absence of a sense of personal

agency that is uncomfortably felt over the entire lifespan in those with DS and their

families.

The period within the first few years of life during which children with DS begin

a terminal IQ decline provides a window into the brain mechanisms responsible for

chronic problems in declarative-episodic memory (i.e., those processes that encode

the contextual and factual details of everyday experiences). In a long-running series

of elegant investigations, Wishart and colleagues found that children with trisomy

21 could perform four sequentially more difficult levels of an object concept task,

but over time, performance was erratic (1986, 1993, 2001). Longitudinal profiles of

the same children showed that early success at the lower- or higher-level variations

of the test could be followed up by failures at older ages. Within individual sessions,

curious patterns of performance also emerged where the children could execute

more difficult parts of the test but not less difficult ones. These findings suggested

that the development of the various sub-domains comprising episodic memory was

not integrated in people with DS the way that they are in the typically developing

population. In Sect. 2.1 below, we lay out evidence to suggest that this unstable

integration is a byproduct of altered connectivity loops between parts of the brain

Assessing Cognitive Improvement in People with Down Syndrome: Important. . . 337



known to be strongly affected by DS, namely, the cerebellum and frontotemporal

lobes.

The last decade has seen steady progress toward characterizing pharmacological

interventions that might improve phenotypes related to the brain and cognition of

individuals with DS. We describe the origins of these drug treatments, starting with

some background discussion of the advent of the Ts65Dn mouse, an animal model

of trisomy 21 that has catalyzed a deeper understanding of DS biology and left an

indelible mark on DS translational research. We go on to systematically document

the variability of several clinical and psychological features of DS that would be

predicted to interfere with assessments of cognitive improvement in drug-efficacy

trials and stipulate that the least imperfect methodological design for such trials is a

within-subjects assessment. Further considerations are made with regard to the US

Food and Drug Administration (FDA) approval process and some lessons that have

been gleaned from ongoing efforts to bring drugs to market for the treatment of

autism spectrum disorders. People born with trisomy 21 display a tremendous

amount of phenotypic variation stemming from the genetic background in which

aneuploidy occurs and environmental factors at work in caregiver and educational

support. Despite expectations to the contrary, they are not a homogeneous group,

and efforts to treat the physical and mental health of individuals with DS should

give careful thought to this diversity.

1.2 Use of Trisomic Mouse Models as Platforms for Therapeutics
Discovery

Can a mouse be used as an informative model of DS, a human condition caused by

the presence of a supernumerary human chromosome and typified by deficits in

quintessential human qualities such as cognition and language? Is there a genetic

state that could be engineered in a mouse so that it, in turn, logically reproduces the

trajectory and range of genetic, cellular, and larger phenotypic effects observed in

people with DS? These were contentious questions over three decades ago as

modern techniques in molecular biology and murine genetics were beginning to

be implemented in DS research (Epstein et al. 1982, 1985). To put them in some

perspective, little comparative mapping had been done between the two species to

indicate how material from Hsa21 was distributed in the mouse genome. If, for

instance, segments of Hsa21 were scattered in small blocks across several different

mouse chromosomes (Mmu’s), then the likelihood that an animal model could be

devised was poor to nonexistent. If these segments were better consolidated to a few

Mmu’s, then problems might still remain because of disparities in how individual

gene-coding regions were ordered or how they were subject to regulation and

transcription. There was not even a guarantee that the biological function of each

Hsa21 gene would be conserved in its mouse ortholog. By the mid 1980s, several

genes had been located to both Hsa21 and Mmu16, improving the prospects that a

large degree of synteny was shared between Hsa21 and a single Mmu (Reeves

et al. 1986). Later efforts employing linkage analysis of restriction fragment length
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polymorphisms (RFLPs) and high-resolution physical mapping using contigs

constructed from yeast artificial chromosome (YAC) libraries showed particular

stretches of homology between Hsa21 and the distal portions of Mmu16 (Cabin

et al. 1998; Pletcher et al. 2001; Reeves et al. 1997). Against this backdrop, it

became increasingly clear—from both published and unpublished work—that the

q-arm of Mmu16 housed many Hsa21 orthologs, had preserved their organization

and spacing (i.e., the genes were found in the same sequential order and, presum-

ably, with the same regulatory elements in between), and could be targeted to

engineer a mouse counterpart to DS.

In a tour de force project to develop the first postnatally viable mammalian

model of DS, Davisson, Reeves, and colleagues screened hundreds of irradiated

male mice for translocations involving Mmu16 and used these animals to generate

mice segmentally trisomic for most of the Hsa21 homologous region (Davisson

et al. 1993). These mice are now referred to as Ts65Dn (Reeves et al. 1995).

Though they do not comprehensively reproduce the range of human symptoms in

people with DS, their study has elucidated many impressive parallels in how Hsa21

gene dosage impacts the three-dimensional construction of the craniofacial skeleton

(Richtsmeier et al. 2000), septation of the heart (Moore 2006; Williams et al. 2008),

solid tumor growth (Sussan et al. 2008; Yang and Reeves 2011), the function of

sensory-motor systems (Hampton et al. 2004; Han et al. 2009; Scott-McKean

et al. 2010), and sleep (Colas et al. 2008). This fidelity has extended to the

prediction of brain phenotypes in people with DS that were first discovered in

Ts65Dnmice (Baxter et al. 2000). The corpus of work in Ts65Dn has suggested that

selective overexpression of Hsa21 orthologs under physiological control can phe-
nocopy significant aspects of DS in animals and that the mice themselves might be

platforms for the discovery of drugs that mitigate intellectual disability in children

and adults born with trisomy (Fernandez and Garner 2008; Hyde et al. 2001; Smith

et al. 2014). Since the mid 2000s, several different drug classes have shown an

ability to improve rudimentary behavioral indices of declarative learning and

memory in the Ts65Dn model, including GABA antagonists (Fernandez

et al. 2007) and inverse agonists (Braudeau et al. 2011a, b), open-channel

antagonists of the NMDA receptor (Costa et al. 2008), Smoothened agonists

(SAG; Das et al. 2013), compounds that stimulate norepinephrine (Dang

et al. 2014; Salehi et al. 2009), and dietary choline (Moon et al. 2010). It remains

to be seen whether any of these agents will prove to be similarly efficacious in

people, though some early signs are encouraging. For the rest of the chapter, we

discuss the finer points of these translational endeavors.
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2 Variability of Clinical Phenotypes in Individuals
with Down Syndrome

2.1 Neurocognitive Development

A modern understanding of neurocognitive function in DS was established in the

1986 work “Down syndrome in Neurobiological Perspective” by Nadel, who

suggested that intellectual disabilities gradually arose in early childhood from

developmental arrest of late-maturing brain structures, including the prefrontal

cortex, hippocampus, and cerebellum. Prenatal brain development is characterized

by a series of explosive additive events, where large populations of cells undergo

brisk division, migration, and neural or glial differentiation. Upon birth, the brain

undergoes a more deliberative mix of additive events (such as myelination) and

regressive events, where many neurons are lost through apoptosis or refined in their

connectivity via activity-dependent pruning of the dendritic tree and elimination of

synaptic contacts (Gogtay et al. 2004; Huttenlocher 1979; Huttenlocher et al. 1982;

Lebel et al. 2008; Petanjek et al. 2011). Several large-scale analyses of DS fetal

brain tissue suggest that prenatal growth is similar to that of the typically develop-

ing population. There are no differences in weight or lipid metabolism (Brooksbank

et al. 1989; Mito et al. 1991; Schmidt-Sidor et al. 1990), and cells appear to have the

same morphology, dendritic branching, spine numbers (Cragg 1975; Takashima

et al. 1981), and apposition length and ratios of asymmetric/symmetric junctions

(Petit et al. 1984). The situation shifts postnatally as changes in phylogenetically

older motor-sensory areas of the brain can be observed within the first year of age in

infants with DS. The changes signify an overindulgence in mechanisms that

generate regressive events. Trisomic neurons in layers of the visual, auditory, and

somatosensory cortex are culled more than euploid neurons (Ross et al. 1984;

Schmidt-Sidor et al. 1990; Wisniewski et al. 1984), and the dendritic perimeter of

the remaining cells is pared back to a greater extent (Becker et al. 1986; Golden and

Hyman 1994; Takashima et al. 1981). Readouts of connectivity in older children

and adults with DS indicate that, in light of this, local circuits are organized

normally, but longer range networks are less synchronized (Ábrahám et al. 2012;

Anderson et al. 2013; Elul et al. 1975).

Exaggerated regressive events hit the hippocampus and cerebellum especially

hard because important functional pockets within them are still proliferating after

birth. In the case of the hippocampus, granule cells of the dentate gyrus (or fascia
dentata) are still dividing to sculpt a niche that will act as the main portal for

information flow from areas of adult neocortex to the hippocampal formation. In the

case of the cerebellum, a much larger group of granule neurons is actively dividing

(and migrating) to establish the fundamental wiring of the structure and its interface

with circuit loops to and from the frontotemporal lobes. Both proliferating areas

eventually become impoverished in the brains of individuals with DS (Baxter

et al. 2000; Contestabile et al. 2007; Guidi et al. 2008, 2011; Insausti et al. 1998;

Lorenzi and Reeves 2006; Roper et al. 2006).
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The prefrontal cortex (PFC)—the single largest region in the human brain

comprising up to one-third of the entire cerebral cortex—remains an ornate chrysa-

lis over the first three decades of life, undergoing repeated waves of developmental

remodeling that fine-tune its properties (Petanjek et al. 2011; Spencer-Smith and

Anderson 2009). Given the conditions of the postnatal DS brain, it would be

prudent to assume that the nature and sophistication of this remodeling are perma-

nently altered (Jernigan et al. 1993; L€ogdberg and Brun 1993; Raz et al. 1995;

Wang 1996). Reduced complexity is initially evident within the shape and outer

surface of the frontal lobes. The fronto-occipital diameter shortens, as if growth on

the leading edges of the brain has grounded to a halt (Schmidt-Sidor et al. 1990).

The cortical surface, usually elaborated with tiles of sulci and gyri, also flattens with

shallower primary and fewer secondary sulci. Later, myelination of the PFC is poor

and interferes with timely communication in a regional network that is the most

interconnected of any in the adult central nervous system (Fuster 1989; Wisniewski

and Schmidt-Sidor 1989).

Incomplete development of the PFC, hippocampus, and cerebellum has a variety

of effects on DS cognition. In a bit of a departure from the Nadel doctrine, we argue

that these effects are best conceptualized from the standpoint of interactive spe-
cialization—the idea that although cognitive modules can work semiautonomously

if pressed, in an intact state, they do not (Johnson 2001). As such, most cognitive

skill sets emerge not just from activity in one brain region or another but also from

patterns of connectivity between them. Vis-à-vis DS, intellectual disabilities might

stem from the failure to build an interregional axis between the PFC–hippocampus–

cerebellum during the larger progression of general development that sweeps from

the posterior aspects of the brain to the anterior. The suggestion that the Nadel

doctrine presents an untenable dichotomy (i.e., mental development arises from

either the elaboration of a single capacity or the specification of several “separate”

and “autonomous” modules) has ramifications for how we approach treating intel-

lectual disabilities in people with DS.

2.1.1 Prefrontal Cortex
Historically, the PFC has been thought to oversee a hierarchical array of cognitive

abilities collectively referred to as executive function (EF; Miller and Cohen 2001).

The earliest developing component of EF and a necessary prerequisite for other EF

skills is (1) attentional control, which is the ability to monitor and filter sensory

information over an extended period of time without distraction (Anderson 2002;

Ridderinkhof and Van der Stelt 2000). A closely related subcomponent to atten-

tional control is behavioral inhibition—the practice of suppressing an otherwise

knee-jerk or preconditioned response within an inappropriate context (Rueda

et al. 2005). Corollaries to it include self-monitoring and self-regulation (i.e.,

adaptive management of thoughts, feelings, and actions; Kochanska et al. 2001).

Younger children with DS demonstrate problems with behavioral inhibition that are

overcome with age. While 3- to 4-year-olds show significantly shorter latencies to

touch a prohibited toy relative to age-matched controls (Kopp et al. 1983),

teenagers with DS perform at levels commensurate with their overall intellectual

Assessing Cognitive Improvement in People with Down Syndrome: Important. . . 341



development in a digital “stopping” task where they are asked to respond to the

visual presentation of a letter only in the presence/absence of an auditory tone

(Pennington et al. 2003). These psychometrics suggest that the PFC might develop

to a point where it can subserve some indices of attentional control. However,

maturation stops here (Campbell et al. 2013).

Attentional control lays the foundation for more complex domains like (2) cog-

nitive flexibility and (3) problem-solving (Campbell et al. 2013; Klenberg

et al. 2001). Cognitive flexibility, itself, incorporates the concepts of working

memory and set-shifting behavior (Garon et al. 2008; Oh et al. 2014). Working

memory permits the transient evaluation and synthesis of multimodal material from

strings of information being acquired in real time with knowledge that has been

stored long term (Baddeley and Jarrold 2007; Laws 2002). Individuals engage in

set-shifting behavior when they switch from one adaptive response strategy to

another depending on the demands of a particular task (Rowe et al. 2006; Weed

et al. 2008). Together, these “flexible” processes allow for planning and problem-

solving (Lee et al. 2011).

Individuals with DS experience significant deficits in verbal working or serial

order memory as revealed in assessments where they are asked to repeat the

sequence of a list of words that are spoken to them. Over two decades of careful

study, Jarrold has found that the deficits occur selectively in verbal short-term

memory (Brock and Jarrold 2004, 2005; Jarrold and Baddeley 1997, 2001; Jarrold

et al. 2000, 2002), with less impact in visuospatial processing (though see Spanò,

Lanfranchi and colleagues for further clarification of this distinction; Lanfranchi

et al. 2009). The working memory difficulties of those with DS are accompanied by

difficulties in set-shifting attention as exemplified in variations of the Dimensional

Change Card Sorting (DCCS) task (Pennington et al. 2003; Zelazo et al. 1996).

Here, children or adults are asked to sort cards across various rules, for instance, by

color vs. by object category. People with DS can often execute the first session of

the task when sorting requires an understanding of one novel rule. Once they have

grown accustomed to this requirement, however, they show an inability to segre-

gate the cards in observation of a second rule. This underlying perseveration or

cognitive rigidity surfaces in problem-solving situations where toddlers with DS

cannot adapt unsuccessful strategies into successful ones so as to achieve a desired

outcome (Fidler et al. 2005b). Overall, the profile of the PFC in DS suggests that

there is broken hierarchical elaboration of attentional control to fuller expressions

of EF skills like cognitive flexibility and that this arrest precludes real-world

abilities to creatively troubleshoot and overcome problems.

2.1.2 The Hippocampus and Episodic Memory
The hippocampus functions at the core of a web of neural circuitry in the medial

temporal lobe that processes and encodes the contextual and factual details of

everyday life for later conscious recollection (Squire et al. 2004). Historically, it

has been associated with the concepts of explicit long-term memory and informa-

tion storage, but pioneering work throughout the 1970s by O’Keefe and Nadel

demonstrated that it also constructs internal two-dimensional representations of
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three-dimensional space (1978). Research has unequivocally shown that

individuals with DS are impaired in verbal and nonverbal assessments of interme-

diate or long-term memory (e.g., in the verbal domain, deficits in delayed word

recognition and prose recall; in the non-verbal domain, deficits in picture, object, or

visuospatial recognition; Carlesimo et al. 1997; Ellis et al. 1989; Katz and Ellis

1991; Vicari et al. 2000, 2005). Teenagers and adults also have trouble navigating

in real environments when forced to use geometric and layout information (Edgin

et al. 2012) and cannot use digital cues to improvise on previously learned routes

through a virtual environment (i.e., wayfinding behavior; Courbois et al. 2013). In

other words, while they maintain a semblance of direction and can pick up infor-

mation related to space, they are impaired in the use of these facilities to create a

consolidated map of the world around them.

Another conceptualization of the hippocampus is that of a powerful associative

mnemonic device that is capable of binding various temporal and contextual

features of a momentary episode and overlaying them with internal states related

to motivation and affect (Cox et al. 2014; Retailleau et al. 2012; Wolosin

et al. 2012; Yonelinas 2013). The hippocampus takes snapshots of moment-by-

moment episodes (Jacobs et al. 2013), fuses them to construct a uniform “past”

experience (Olsen et al. 2012), and records the subjective qualities of these

experiences—for instance, whether they were reinforcing or aversive (Wimmer

and Shohamy 2012). This conceptualization might be more particular to its function

than just that of a reservoir from which information is categorized and stored. Many

of the activities associated with memory encoding and retrieval that have been

ascribed to the hippocampus have been empirically shown to tap the PFC in

humans. Clinicians have noted memory deficits in patients with PFC lesions

(Shimamura 1995), and ongoing investigations by Ranganath and colleagues

have reported significant activation of dorsolateral and ventrolateral PFC during

performance of tasks requiring long-term memory for faces or words (Blumenfeld

and Ranganath 2007; Jenkins and Ranganath 2010; Murray and Ranganath 2007;

Ranganath et al. 2003).

In light of these data, one should consider the possibility that childhood devel-

opment is marked by a carefully orchestrated “melding” of the frontal and temporal

lobes into a uniform episodic memory system. Under this model, the

hippocampus’s extraordinary associative properties are subjugated by the PFC as

the latter structure continues its decades-long refinement. The PFC carries some

oversight capacity that is able to modulate the valence of some of the information

that the episodic system is encoding (De Saint et al. 2013; Dolcos et al. 2004), string

episodes temporally together when there are quick or unexpected changes to

context (Kesner et al. 1994; Gutchess et al. 2007; Murty and Adcock 2013), and

prioritize overlapping associations between memory representations (i.e., offset

proactive interference; Shimamura et al. 1995). This view of frontotemporal devel-

opment suggests that the emergence of cognition in people born with trisomy

21 could be turbulent. At first, skills in early childhood would accrue as individual

regions of the brain mature, but as integration becomes necessary (i.e., via some

genetically predetermined timetable), these skills might disappear or be
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significantly compromised. What follows is a situation not unlike what Wishart

described in her longitudinal studies on object permanence in toddlers with DS

(1986, 1993, 2001).

2.1.3 The Cerebellum and Interactive Specialization
Per conventional thinking, the cerebellum acts as a filter for aggregated sensorimo-

tor information that is used to maintain coordination and counteract fine changes to

vestibular balance (Massaquoi 2012). Difficulties with gross motor coordination are

nuanced in individuals with DS, despite overt structural pathology in the cerebel-

lum including low density of granule cells and reduced volume (Aylward

et al. 1997; Baxter et al. 2000). While older children and adults with DS display

atypical patterns of movement and problems with handwriting and other tasks that

require use of fine digits (Galli et al. 2010; Latash et al. 2002), it has not been

determined whether these problems result from altered cerebellar function or

originate from poor functioning of, perhaps, the motor cortex (Dmitriev 2001).

How stunted cerebellar growth manifests clinically in those with DS beyond

diminished optokinetic and vestibular reflexes remains an open question (Costa

2011a, b), although recent work in mice and humans suggests critical contributions

to navigation and verbal working memory (Burguière et al. 2005, 2010; Marvel and

Desmond 2010; Paulesu et al. 1993; Passot et al. 2012; Rochefort et al. 2011, 2013).

Understanding the role of the cerebellum in hippocampal spatial operation has

evolved over just the past several years. An elegant series of experiments has been

conducted with L7-PKCI, a mouse model in which synaptic plasticity at the parallel

fiber–Purkinje cell circuit is specifically ablated without disrupting the electrophys-

iological properties of individual granule or Purkinje cells, the structural integrity

of the cerebellum, or the behavioral sensorimotor reflexes of the animals.

Rochefort, Rondi-Reig, and their colleagues found that L7-PKCI cannot maintain

stable spatial or “place field” maps in a water maze task (2011). The authors have

suggested that when learning a new environment, the contextual self-motion infor-

mation that the cerebellum normally collects to coordinate movement is co-opted

by the hippocampus to perfect cognitive representations of space. This way, maps

can be continually compared with online ambulatory experience and primed bidi-

rectionally with activity in either brain region. The use of individual movement to

compute spatial relationships has been described in the human literature and is

termed “spatial updating” (Burgess 2006). A role for the cerebellum and vestibular

system in this phenomenon has been well characterized (Jahn et al. 2012; Smith

1997).

Though several polysynaptic pathways are likely, the establishment of more

direct connections between the cerebellum and hippocampus has proven challeng-

ing. A small corpus of anatomical work and electrophysiology in awake animals

during the 1960s–1970s suggests projection of the fastigial nucleus bilaterally to

the dentate gyrus and CA3 subfield of rhesus monkeys, cats, and rats (Harper and

Heath 1973; Heath 1973; Heath et al. 1978, 1980; Heath and Harper 1974; Newman

and Reza 1979; Paul et al. 1973; Snider and Maiti 1975, 1976). In one report,

stimulation of the fastigial nucleus produced evoked potentials in the hippocampus
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with a latency of as little as 1–2 ms (Heath and Harper 1974). Since no limbic

connections of any sort are evident from the lateral cerebellar hemispheres or other

deep output nuclei such as the dentate nucleus, these data suggest that the fastigial

nucleus might represent a unique pathway by which the cerebellum instructs

hippocampal function, though this supposition is only theoretical at the moment.

What has been made clear is that the vestibular system makes significant

contributions to human spatial processing (Smith 1997); loss of the system results

in selective hippocampal atrophy and spatial memory deficits (Brandt et al. 2005).

Lackluster development of the cerebellum and hippocampus implies a double hit

on how people with DS gain knowledge of space and contextualize (i.e., bind)

objects and faces within memory. It might not be a coincidence that researchers

have charted IQ declines in children with DS that begin around the time toddlers

learn to walk. However, a larger dysfunctional axis is also implicated between the

cerebellum and frontotemporal lobes as cognition stagnates. The ventral cerebellum

normally exhibits protracted maturation in lobules VI/Crus1, VIIB, and VIII and

has been shown to subserve inner speech processes essential for verbal working

memory (Marvel and Desmond 2010; Menghini et al. 2011; Tiemeier et al. 2010).

fMRI (functional magnetic resonance imaging) activation of VI occurs when

individuals see verbal materials like alphabetical letters relative to nonverbal

symbols (Ravizza et al. 2004, 2006). Activation of VIIB/VIII occurs when this

information has to be maintained across a delay and retrieved (Chen and Desmond

2005; Ghosh et al. 2008). Several histological studies have demonstrated cerebellar

connections to multiple divisions of the PFC; the circuitry is thought to solidify

gradually over the course of adolescence (Middleton and Strick 2001; for review,

please reference Ramnani 2006). As individuals age, they likely depend more on

frontotemporal–cerebellum networks for verbal working memory (Diamond 2000).

The fact that people with DS struggle so significantly with this aspect of cognition

might be explained by failures to bridge nodes within these networks.

2.1.4 Posterior–Anterior Shift with Aging
Cognition deteriorates to varying degrees in typically developing individuals as

they enter advanced age. Older adults who maintain successful performance—even

with accumulating pathology—will often display increased bilateral recruitment of

the left and right hemispheres and engage additional neural circuitry immediately

adjacent to that utilized in younger individuals for task performance (Grady 2012;

Reuter-Lorenz and Lustig 2005). They will also show “migration” of activity from

perceptual and medial-temporal regions of the brain to the frontal lobe (Dalton

et al. 2014; Eyler et al. 2011). This phenomenon, termed the posterior–anterior shift

with aging (PASA; Davis et al. 2008), has been reported across several behavioral

measures of working memory, object recognition, and visuospatial processing

(Ansado et al. 2012; Grady et al. 2005; Gutchess et al. 2005; Park et al. 2003). It

likely reflects attempts by the episodic memory system to compensate for hippo-

campal damage usually inflicted through decades of living. Synaptic loss, atrophy,

and decreased efficiency of activation are all observed in the hippocampus of

normally aging individuals as they get older.
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Given that the hippocampus is impaired much earlier in people born with

trisomy 21, one might predict to see premature signs of PASA in neuroimaging

and psychometric studies. Early data suggest this might be the case. One investiga-

tion found that teenagers and twentysomethings with DS strongly activated the

frontal cortex during an object semantic task that recruited primarily the occipital

and parietal lobes in chronological age-matched (CA) controls (Jacola et al. 2011).

Another, using a similarly comprised DS cohort, documented increased metabolic

rates of glucose in the frontal lobe at rest relative to CA young adults (age range,

20–35 years; Horwitz et al. 1990). The prospect of regional activity compensation

in the DS brain has been noted by Edgin and colleagues who characterized

inappropriate developmental patterns of contextual object recognition in

individuals with the condition (2014). In concert, these findings point to the

likelihood that some with DS might appear to have steady “hippocampal” function

even in the presence of severe temporal lobe disease. They further underscore two

thematic points of this section: (1) drug development for intellectual disabilities

should not be solely based on modular-centric approaches but also take into account

interplays between the PFC, hippocampus, and cerebellum and (2) brain imaging

biomarkers in DS might shift with age in ways that are hard to reconcile with

behavioral measures and might not bear any relationship to drug efficacy or lack

thereof.

2.2 Early-Onset Hypothyroidism

Inclusion and exclusion criteria and group-matching designs reported in the DS

clinical trials literature codify a number of obvious factors that might introduce

performance variability among people with DS. Conspicuous or “loud” factors that

could interfere with the assessment of cognitive improvement during drug treat-

ment include differences in baseline global or linguistic function (Abbeduto

et al. 2008; Chapman et al. 1998) and sufficiency of hearing and vision (Austeng

et al. 2013; Cregg et al. 2003; Felius et al. 2014; John et al. 2004; Libb et al. 1985;

Suttle and Lloyd 2005; Woodhouse et al. 2000), along with any personal history of

neurological events such as infantile spasms (Eisermann et al. 2003; Silva

et al. 1996), epilepsy (Arya et al. 2011; Goldberg-Stern et al. 2001), or sleep

apnea (Rosen 2011). In the sections that follow, we will discuss a few “silent”

factors that are not usually considered. The first of these, congenital hypothyroid-

ism and heart disease, cannot be adequately controlled for in assessments of the

adult population. The latter, including APOE (apolipoprotein E) status and secre-

tion of amyloid-beta peptides from amyloid precursor protein (APP) cleavage, can

be screened and evaluated for their effects on treatment response. The complex

matrix of known and unknown phenotypes concealed in the average person with DS

has the potential to create a false sense of security in clinical trial settings where

matched-group assignments are based on loud variability factors alone and might

interfere with efforts to make informative cross-group comparisons of drug

efficacy.
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People with DS show biochemical markers of thyroid dysfunction across the

lifespan, with an adult prevalence of up to 54 % (Hawli et al. 2009; King et al. 2014;

Pueschel et al. 1991). The thyroid gland is a butterfly-shaped organ that develops

within the anterior side of the neck, with physical attachment to underlying tracheal

cartilage. It responds to pituitary secretion of thyroid-stimulating hormone (TSH)

by augmenting the synthesis and release of two chemicals, thyroxine (T4) and

triiodothyronine (T3), which go on to regulate anabolic energy metabolism and

hormone sensitivity throughout the body (Stenzel and Huttner 2013). The brain is

one of the primary sites of action for T4/T3 during development and adulthood

(Kester et al. 2004). The clinical significance of adult- or acute-onset hypothyroid-

ism on cognitive function (e.g., episodic memory) and mental health has been

established in the general population, and exclusion criteria for the participation

of individuals with DS in drug-efficacy trials often specify removing those with

active thyroid problems (e.g., Boada et al. 2012). However, the impact of congenital

hypothyroidism on later adult cognition and behavior—and its bearing on DS

clinical trial enrollment—has received less attention.

Animal research has long shown that maternal or postnatal thyroid deficiency

decreases neurogenesis, synaptogenesis, and myelination in the fetal–neonatal

brain. In humans, maternal hypothyroxinemia caused by low intake of dietary

iodine or untreated congenital hypothyroidism (CH) produces a severe intellectual

disability syndrome. Despite American Academy of Pediatrics guidelines advising
thyroid screening in newborns and young children with DS (i.e., as embodied in

their policy statement “Health Supervision for Children with Down syndrome”), a

recent study estimated that only about 40 % of children receive all required exams

(Fergeson et al. 2009). Medical detection is often complicated by the overlap of

features shared by impaired thyroid function and DS, such as poor intellectual or

physical growth and muscle fatigue (Hardy et al. 2004).

Around birth, many infants with DS will exhibit a mild hypothyroid state defined

by compensatory elevations of TSH and decreased concentrations of circulating T4

that are left-shifted relative to the normal population distribution (Luton et al. 2012;

Sarici et al. 2012; Van Trotsenburg et al. 2003, 2006). This form of CH is insidious

because it cannot be easily diagnosed and generates ambiguity as to whether it

should be formally treated (Graber et al. 2012). To evaluate whether thyroid

supplementation would improve basic indices of mental and motor development

in DS without a diagnosis of CH, Van Trotsenburg et al. conducted a randomized,

double-blind trial in which the investigators treated ~200 neonates with DS daily

with T4 or placebo (2005). By 2 years of age, toddlers given T4 from birth displayed

significantly smaller delays in motor development and smaller delays in mental

development that reached borderline statistical significance (see Kowalczyk

et al. 2013 for additional data on thyroxine-mediated growth improvement).

These results suggest the existence of an underlying hypothyroid disorder that

might variably affect a wide swath of the DS population within the first few years

of brain maturation (Tenenbaum et al. 2012). It may or may not be addressed, and

its effects on later developmental trajectories have not been comprehensively

studied.
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2.3 Congenital Heart Disease

Congenital heart disease (CHD) occurs in nearly half of people born with trisomy

21 (Freeman et al. 1998; Li et al. 2012; Mogra et al. 2011; Paladini et al. 2000; Vis

et al. 2009; Wells et al. 1994). The term refers to a suite of developmental defects

that arise in the septation of the heart into four distinct chambers: the right atrium/

right ventricle and the left atrium/left ventricle. These chambers normally function

at the intersection of a systemic and pulmonary circuit that conveys low-oxygen

blood from general circulation to the right side of the heart to the lungs, and

oxygen-rich blood from the lungs to the left side of the heart back out to the rest

of the body. Incomplete closure of the septal walls can allow mixing of deoxygen-

ated and oxygenated blood, forming a left-to-right shunt that will increase pulmo-

nary artery pressure (McDowell and Craven 2011; Suzuki et al. 2000) and heart

failure if not surgically corrected (Fudge et al. 2010; Majdalany et al. 2010).

Children with DS are screened for CHD soon after birth using Doppler echocar-

diography and electrocardiography; these noninvasive diagnostics yield anatomical

and functional information (Dennis et al. 2010; Ghaffar et al. 2005). Echocardiog-

raphy uses ultrasounds to image the structural integrity of the heart tissue and its

blood vessels and, via the Doppler effect, estimates the velocity and direction of

blood flow (Turan et al. 2014). Electrocardiography (EKG) uses a system of surface

electrodes placed on the torso and limbs to record electrical impulses created when

the heart beats (Vetter et al. 2011). The resulting waveforms visualize whether the

activity is rhythmic (healthy) or arrhythmic (unhealthy) and can be analyzed in

ways that will provide estimates of heart rate and the size or relative position of

each of the four chambers.

A few studies suggest that individuals with DS exhibit patterns of cardiovascular

pathology that cannot be fully ascertained by one-time echocardiography or EKG.

In one, Al-Biltagi et al. found that children with DS who had been previously

determined to have no anatomical changes to the heart still showed left and right

ventricular systolic/diastolic blood pressure differences relative to controls under

closer scrutiny of Doppler ultrasounds (2013). Higher pulmonary artery pressure

was noted. In another, Narchi found that some 2-day-old infants with DS could have

normal EKG readings, but show anatomical evidence of CHD with echocardiogra-

phy (1999). These findings suggest that there are individuals in the DS population

who might be “asymptomatic” for CHD at birth, but still carry structural defects

that slowly create conditions favoring a left-to-right shunt with increases in pulmo-

nary hypertension as development proceeds. Presumably, pulmonary vascular

damage and poor transport of oxygenated blood to the periphery and brain could

ensue—a chilling proposition given that ~40 % of those with DS are already at

much greater risk of respiratory distress from airway anomalies, lung hypoplasia,

and subpleural cysts (Biko et al. 2008; Bloemers et al. 2007, 2010a, b). Any

idiosyncratic variability introduced by altered developmental trajectories in the

heart, lungs, and brain would be uncharted at the time people with DS are recruited

for clinical trial participation (Hilton et al. 1999; Mogra et al. 2011; Shah

et al. 2004; Shapiro et al. 2000). This variability could influence cognitive outcome
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measures as overt, surgically corrected CHD in DS has been shown to account for

some individual differences in expressive language delay (Visootsak et al. 2013).

2.4 Premature Aging

2.4.1 Triplication of APP Drives Abeta Production
People with DS are trisomic for APP, a gene at the center of a major model for how

neuropathology and cognitive impairment occur in Alzheimer’s disease (AD). The

amyloid hypothesis posits that elevated cleavage of APP by β- and γ-secretase
produces toxic accumulation of beta amyloid (Aβ) peptides in the extracellular

space between neurons. APP fragments, like Aβ1–42, polymerize into diffusible

oligomers that can self-aggregate into fibrils and thick plaque deposits that then

interfere with synaptic transmission and, over time, cause localized brain damage.

Support for this hypothesis has been bookended by two landmark observations

published in 1991 and 2012, in which researchers uncovered genetic mutations

around the protease β-site in APP that either promoted Aβ production and early-

onset dementia or impeded generation of both in the elderly (Chartier-Harlin

et al. 1991; Jonsson et al. 2012; Murrell et al. 1991).

By virtue of APP overexpression, individuals with DS secrete larger quantities

of Aβ. Immunoreactivity and metabolic signatures for the presence of soluble Aβ
have appeared in the brains of the youngest children with DS surveyed, from

5 months gestation to 8 years of age (Cataldo et al. 2000; Leverenz and Raskind

1998; Mori et al. 2002; Teller et al. 1996). At about 10 years of age, plasma levels of

Aβ1–42 are significantly increased relative to slightly older siblings (32 pg/ml versus

23 pg/ml), as are levels of Aβ1–40, which are nearly doubled (277 pg/ml versus

155 pg/ml) (Mehta et al. 2007). These trends in plasma concentration are remark-

ably well maintained throughout the first five decades of life (Aβ1–42, DS median

range [20–35 pg/ml], control median range [15–17 pg/ml]; Aβ1–40, DS median

range [150–200 pg/ml], control median range [75–125 pg/ml]) (Jones et al. 2009;

Mehta et al. 2003; Prasher et al. 2010; Schupf et al. 2001).

Stepping back from the numbers, a few things stand out about the development

of the DS brain. First, Aβ is generated during the fetal period at a time when

available data suggest that it should not be. Though full-length APP has defined

roles in neurodifferentiation and synaptogenesis (Apelt et al. 1997), secretory

cleavage of it is practically undetectable in euploid fetal neurons, astrocytes, and

microglia (Haass et al. 1991; Hung et al. 1992). Aβ serves a homeostatic function in

adult neural circuits. The peptide gets processed for exocytotic release from

activity-driven increases in APP internalization (Bero et al. 2011; Cirrito

et al. 2005) and, in turn, decreases excitatory synaptic currents via AMPA and

NMDA receptor endocytosis (Hsieh et al. 2006; Snyder et al. 2005). To effect this,

oligomers of Aβ bind leukocyte immunoglobulin-like receptor B2, leading to a

signaling cascade that breaks down the actin cytoskeleton encasing the postsynaptic

density (Kim et al. 2013). Amid the latter part of gestation and within the first few

years after birth, the brain wires local and distal assortments of neurons observing a
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number of activity- and NMDA-dependent rules. Precocious accumulation of Aβ in
DS might therefore handicap formation of neural circuits and have a hand in some

of the exaggerated regressive events (i.e., apoptosis, dendritic atrophy) routinely

noted during this developmental window.

The second item worthy of attention is the observation that the episodic memory

system in the DS brain begins to weather AD-like neuropathology at much earlier

time points than the typically maturing euploid one. Plaque deposits materialize

during adolescence and the early twenties in the trisomic PFC and hippocampus

when connectivity between these regions should be consolidated, not divided (Hof

et al. 1995; Lemere et al. 1996; Motte and Williams 1989). This scenario clouds the

historical distinction made between developmental trajectories associated with

growing neurocognitive sophistication in school-aged children and disease

trajectories associated with cognitive decline starting in middle age. Both collide

in younger people with DS. It is likely that individual differences in Aβ peptide

secretion (e.g., disomic genetic modifiers of APP metabolism) scale the degree of

overlap between these events (Patel et al. 2011). For example, higher adolescent

production of Aβ could predispose subsets of individuals with DS to an earlier

version of mild cognitive impairment that would be difficult to distinguish from

preexisting intellectual disabilities. Given the uncertainties regarding how AD

processes impinge on development, clinical trial organizers might be advised to

consider screening participants for Aβ levels prior to enrollment or group assign-

ment. Whether amyloid-modifying treatments should be prescribed from childhood

on to normalize plasma Aβ and, possibly, improve cognitive outcomes is another

provocative question.

2.4.2 APOE Status
APOE is a constituent of low-density lipoproteins (LDLs), which bind and shuttle

excess cholesterol and other triglycerides from the blood to the liver. In the brain, it

is mainly secreted by astrocytes and can be found circulating in the interstitial space

and cerebrospinal fluid. Further roles in restorative processes linked to phospholipid

redistribution and cell membrane repair (including maintenance of the blood–brain

barrier) have been hypothesized (for review, see Zlokovic 2013). Allelic variants of

APOE differing by single-amino acid substitutions at two residues exhibit

divergences in conformational stability that impact vascular clearance of Aβ from

the brain. While APOE ε2 and APOE ε3 interact strongly with LDL receptor-

related protein 1, which directs rapid clearance of Aβ peptides, APOE ε4 interacts

only weakly with the protein (Deane et al. 2008). As a result, APOE ε4 will often

shunt Aβ removal to other disposal mechanisms that work 2- to 3-fold less effi-

ciently (Castellano et al. 2011; Deane et al. 2008). These dynamics have real-world

consequences on AD progression. Carriers of two ε4 alleles are at increased risk of

developing sporadic, age-related AD by 1,000 % (Tanzi 2012).

In the typical population, APOE status correlates with brain differences early in

life. Infants carrying ε4 alleles have less white and gray matter in areas of the

parietal and temporal lobes, but more frontal lobe matter (a phenomenon showing

some thematic resemblance to PASA; Dean et al. 2014). Despite its long-held
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connection to dementia onset in the DS population (Coppus et al. 2008; Deb

et al. 2000; Forte et al. 2007; Hardy et al. 1994; Lai et al. 1999; Lambert

et al. 1996; Prasher et al. 1997, 2008; Royston et al. 1994, 1996), APOE status

might also affect the course of neurocognitive growth and decline in those with

trisomy 21. Linear regression analysis of performance IQ from 5 to 30 years of age

suggests that subgroups of individuals with DS positive for only ε2/ε3 are protected
from worsening function compared to subgroups with an ε4 allele (Del Bo

et al. 1997). These data argue that the APOE AD susceptibility locus might shape

structural and functional outcomes in the brain to a degree meriting attention

irrespective of the age of the cohort being tested. This could be particularly relevant

for clinical trials in people with DS, in whom development and aging is conflated by

genetic triplication of APP and Aβ overexpression.

3 Trisomy 21: A Syndrome-Specific Behavioral Profile That
Limits Learning Opportunities

People with DS will perform differently from one another in structured assessments

of learning and memory. Whatever their scores, there is a general expectation that

test performance accurately reflects underlying competence. This assumption might

be strained by psychological factors that are inextricably tied to the DS behavioral

profile. Infants and toddlers born with trisomy 21 start life with deficits in mastery

motivation (MM), an intrinsic quality that compels very young children to explore

and gain control over the surrounding environment (Niccols et al. 2003). In older

children, MM drives the individual to build new and ever more complicated skill

sets and to solve challenging tasks that require perseverance. Behaviors associated

with MM are inherently satisfying and “pleasurable,” as they occur independent of

any immediate external reinforcement. Ultimately, they allow for the child’s mental

construction of the world and their sense of personal efficacy within it (Cuskelly

et al. 1998; Vlachou and Farrell 2000).

Experiments done by Wishart in the 1980s provide an elegant case study in how

MM never seems to materialize in 0- to 2-year-olds with DS (1993). The children

were trained on a contingency in which a footkick across a light sensor activated

rotation of a colorful baby mobile—an event that children generally find appealing.

When noncontingent activation of the mobile was available but at a very reduced

frequency relative to what could have been provided by a footkick, infants with DS

were content to passively watch random turns. It was only when the contingency

had been fully reinstated that they rushed to pair their movements once again to the

movement of the toy. This situation contrasted to that observed in typically

developing infants, who sought to gain maximal activation of the mobile

irrespective of whether “free” turns were offered or not. On the surface, Wishart’s

findings suggest that infants with DS might be satisfied or satiated by lower levels

of stimulation. More careful insight would suggest that they derived the same

pleasure as typically developing children from seeing the mobile move, but did
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not experience the added satisfaction of being the agent to prod it (i.e., to be an

agent of change in their environment). Passivity at this early age has been

documented in the play behavior of toddlers with DS as well. When maternal

attention is directed to a particular object, they will often just hold the object rather

than manipulate it to see how it works (Landry and Chapieski 1989).

Deficits in MM cripple the emergence of means–end, or instrumental learning, in

those with DS (Fidler 2006; Fidler et al. 2005b). Instrumental learning occurs

whenever a child links a series of behaviors together so as to achieve a desired

outcome. It serves as the developmental foundation for adult strategic thinking.

Infants with DS take longer than CA controls to move from shorter chains of

continuous goal-directed behaviors to longer chains and are less “happy” when

performing more complex chain linking (Dunst 1988; Ruskin et al. 1994). Gradu-

ally, motivational issues exacerbate the cognitive disabilities that arise from poor

brain development (Cicchetti and Sroufe 1976).

Three- to five-year-olds with DS begin to realize that they do not have the

faculties to support smooth execution of learning and memory tasks. Wishart

observed the endpoints of this budding awareness in her tests of object permanence,

in which children with DS would avoid harder portions of the task by refusing to

comply with them, electing to fail by default by routinely choosing the same answer

on each trial, or distracting attention away from the examination using social ploys

(e.g., amused hand clapping or other party gestures, feigning interest in other

things, attempts at charming discussion, etc). Left to their own devices, children

and young adults with DS eventually avoid putting themselves in strenuous

situations that involve learning difficult-to-grasp concepts or engaging new

environments so as to obviate the possibility of failure (Fidler 2006; Gilmore

et al. 2003; Schwethelm and Mahoney 1986; Wishart 2001). Instead, they grow

to rely on caregivers and others to take personal initiatives for them, asking for help

even when assistance might not be of use (Berry and Gunn 1984; Pitcairn and

Wishart 1994). Kasari and Freeman provided a compelling laboratory demonstra-

tion of this neediness when they asked older children and preteens with DS to

assemble puzzles of different complexity (2001). Regardless of how easy the puzzle

could be solved, those with DS looked to the experimenter more often than children

with other forms of intellectual disability and requested more help.

Individuals with DS participate in special education or mainstream schooling.

Despite efforts to the contrary, they are exposed to significant cognitive difficulties

in these settings that will end in only some limited success and skills achievement.

Less-than-favorable learning histories and dependence on caregivers might create

the impression of diminishing returns on further educational activities. The result is

seclusion from peers and negative self-perceptions that prime feelings of inade-

quacy and depression (Ali et al. 2012; Capone et al. 2006; Dykens et al. 2002; Fidler

et al. 2005a, 2006). In those subgroups of individuals with DS that become

discouraged, preexisting problems with speech intelligibility and autobiographical

memory can complicate identifying mental health conditions (i.e., diagnostic

overshadowing; Reiss et al. 1982). People with DS have trouble conveying their

emotional struggles and will tend to exhibit negative affective symptoms such as
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psychomotor retardation and withdrawal (Dykens et al. 2002; Stein et al. 2013;

Visootsak and Sherman 2007). For some with DS, the psychological impact of

intellectual disability weighs heavily and might influence how they approach

formal testing.

In light of this behavioral orientation and the challenging learning style that

accompanies it, clinical trial organizers might be advised to consider not only the

suitability of their cognitive outcome measures but the manner in which their

neuropsychological assessments are administered. Drawing on almost two decades

worth of experience conducting clinical trials in the DS population, Heller,

Kishnani, and colleagues stipulate that performance changes in people with DS

will be best detected in regimented testing sessions that (1) maintain the same

examiner, who is introduced to the participants in advance of any formal assess-

ment; (2) are held under the same environmental conditions, in the same orientation

within a familiar room with a fixed decor; (3) are identically scheduled, with

organized times for breaks, snacks, and meals; (4) limit distractions from noise,

interruptions, or secondary observers; and (5) employ a clinical research team with

experience testing people with intellectual abilities and who are capable of

maintaining positive encouragement throughout the study so as to avoid artificial

plateaus in subject performance (2006). People with DS are three-dimensional

individuals who happen to have been born with a debilitating cognitive disorder.

Their reactions to this condition are on par with what might be expected in those

with early stage AD or anyone suffering from sudden onset cognitive impairment

due to stroke or other trauma. Sensitivity is recommended when partnering with this

population in experimental clinical trials for a new therapeutic drug.

4 Clinical Trials in the Down Syndrome Population

4.1 Within-Subjects Design

In many ways, DS represents a soft-spectrum disorder. The DS community is

comprised of an eclectic mix of individuals whose neurocognitive development

has been variably steered by interactions between several tissue systems, including

the brain, skeleton, thyroid, and heart. These interactions translate into unique but

greatly overlapping intellectual outcomes. Despite the surface similarity in what the

average person with DS can and cannot do, it is likely that a particular level of

performance is arrived at by different developmental trajectories from one individ-

ual to the next (D’Souza and Karmiloff-Smith 2011; Karmiloff-Smith 1998). One

subgroup of those with DS might have overt or silent CHD that is compensated for

by disomic modifiers that restrain APP metabolism. Another might see precocious

elevations of Aβ in the brain that are not further augmented by obstructive sleep

apnea or respiratory distress. Still, a third subgroup may buffer the regressive loss of

neurons in the hippocampus and cerebellum with better-than-expected thyroid

function. What this suggests, in some cases, is that people with DS who share a

particular range of IQ scores cannot be directly compared to one another. Corollary
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to this, they might not be predicted to show the same performance responses to the

same pharmacological treatment.

One of the standard designs for establishing drug efficacy in clinical trials

involves matching individuals for various factors that are highly likely to influence

performance in their own right (Kover and Atwood 2013). Some of these factors are

obvious but, even here, are not always recognized when making group assignments.

An example of the matched-pairs design in a clinical trial of people with DS is

highlighted in a study led by Costa (Boada et al. 2012). Here, the researchers

evaluated whether the NMDA open-channel blocker memantine could improve

measures of episodic memory relative to placebo. Groups receiving drug or mock

placebo tablets were balanced according to age, gender, baseline intelligence

scores, verbal ability, socioeconomic status (SES), hypothyroidism, body-mass

index, diabetes, and the incidence of sleep apnea. The Costa trial illustrates the

lengths that a research team can go to minimize nuisance variables that will

interfere with an interpretation of drug efficacy. Yet, in doing so, it ironically

makes clear that not all possible confounds could ever be controlled for in a

population with DS, where the amount of known medical information is decisively

outweighed by unknowns regarding developmental trajectories (Mervis and

Robinson 1999).

An alternative approach that reduces variance associated with individual

differences is the within-subjects design (for textbook description, see Kim

2010). Rather than assigning separate pools of individuals with DS to a control or

treatment group, all of the people in the study go through a phase where they are

given the placebo pill and a phase where they are allotted the drug. The same

cognitive outcomes are assessed repeatedly under both conditions. Under this

design, those participating in the clinical trial serve as their own controls. Group

changes in performance, thus, cannot be attributed to nebulous differences that

could potentially exist in the larger pool of subjects that happened to be recruited

for the trial or how they were randomized; all unexplained baseline variables not

relating to the treatment response are now removed. The magnitude of the response

can also be comfortably dissected from person to person as a function of their own

medical history.

Two additional strengths of the within-subjects approach are universally noted

and particularly relevant for conducting clinical trials in the DS population. First,

subtle therapeutic effects that might have been statistically hidden in a between-

groups comparison are now magnified to improve detection, requiring less post hoc

analysis and facilitating decisions about whether a clinical investigation should

advance to subsequent stages or expand to more domestic or international sites.

Secondly, statistical power is increased. Enrollment of individuals with DS into

clinical trials is complicated by the total number of individuals available for long-

term study and cultural attitudes in the DS community that might shun the idea of

cognitive pharmacotherapy (Inglis et al. 2014). Because participants serve as their

own controls in a within-subjects assessment, the total number of people required

for the trial is cut by half.

354 F. Fernandez and R.H. Reeves



The within-subjects design has some disadvantages. Repeated testing of subjects

might create practice effects that contribute to better performance in the latter half

of the trial relative to previous sessions (e.g., Acosta et al. 2011; Edwards

et al. 1996). Trend analysis can be used to isolate these effects and to model

whether they occur linearly or quadratically (i.e., whether performance improves

by some fixed increment with each exposure or whether the magnitude of the

improvement grows with more testing). Fatigue effects that impair performance

are also possible due to the fact that subjects are required to double their time

commitments to the trial. People with DS suffer from muscle weakness, have

problems getting quality sleep, and are known to have a hard time staying on

task. When employing a within-subjects design, it might be necessary to break up

testing sessions into shorter periods and to motivate continuing participation when

subjects are at home in between visits (Berry-Kravis et al. 2008).

Crossover strategies that randomize the order in which the participants receive

treatment can mitigate practice and fatigue effects. In the initial phase of a trial, for

instance, half the individuals might be randomly chosen to receive the drug, while

the other half receives placebo. After a sizable wash-out period, the groups then

switch to the other treatment condition. The most ideal structure for a clinical trial

involving people with DS should assume, however, that practice and fatigue effects

will occur (naturally) even with attempts at controlling for them via

counterbalancing. To completely unmask them for statistical analysis and correc-

tion, one might design a within-subjects assessment with four discrete phases. The

first phase would act as an introductory baseline to allow all of the individuals to

familiarize themselves with the testing routine and to collect control data. The

second and third phases would encompass the traditional crossover period, in which

the subjects alternate between the placebo and drug treatments. The fourth would

act as a “debriefing” baseline condition. Here, fatigue effects can be assessed in the

subgroup that was initially allotted drug so that trends in performance sans phar-
macotherapy can be assessed across two sequential phases like in those participants

initially receiving placebo. Carryover effects specific to transitioning from the

study medication to placebo can now be assessed in both subgroups as well.

Implicit in the within-subjects design is a sampling bias. Individuals do not get

recruited for lengthy clinical trials; families do. Caregivers take on extensive

responsibilities when participating in drug-efficacy studies, often tantamount to a

second job. They attend multiple onsite visits that might require long-distance

travel, are responsible for the appropriate timing and dosing of medication, and

are dispatched as surrogate examiners during the study to record elements of the

subject’s behavior that will shed light on FDA-relevant outcome measures like

adaptive function (see Sect. 4.2.2). These requirements, codified in most trial

inclusion criteria, select for families high on the SES scale, who likewise tend to

be more highly educated. Not much, if anything, can be done about the selection

process and what it might portend for the generalizability of drug effects to other

cohorts of people with DS with lower IQ’s or those who reside in less affluent

families (Fernald 2010; Fernald et al. 2013; Hoff 2003; Mani et al. 2013; Tomalski

et al. 2013). A positive demonstration that a drug can improve cognitive function in
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any person with DS nevertheless establishes an important proof of principle that

would materially benefit the entire community.

We have suggested the possibility that clinical trial organizers adopt a within-

subjects rather than a randomized or paired between-subjects design to assess

cognitive interventions in people with DS. The within-subjects approach eliminates

variability arising from individual differences in development, but introduces

performance artifacts arising from repeated learning and memory assessments.

We contend that this trade-off is worthwhile, because it exchanges unknown factors

that cannot be controlled for factors that are acknowledged and open to systematic

correction. No drug will be a panacea for every individual with DS, and as such, the

within-subjects design affords the added benefit of scrutinizing personalized medi-

cal information that can inform future therapeutic opportunities.

4.2 Cognitive Outcome Measures: General Principles

4.2.1 Fundamental Learning and Memory Systems as Early Indicators
of Cognitive Improvement

A fine line separates whether an experimental drug can improve cognitive outcomes

for people with DS in a regimented “laboratory setting” and whether these perfor-

mance gains are indicative of real-world efficacy. The compound might raise scores

on a particular memory assessment and do so by a magnitude predicted by clinical

trial organizers, but does this endpoint mean anything for the ability of the treated

individuals to live more independently—to acquire additional cognitive–adaptive

and communication skills that will permit them to hold down a job and have a better

quality of life? Away from the academic debate about suitable response measures

for those with intellectual disability and what facets of cognition might be changed

with pharmacotherapeutic intervention, establishing clinical relevance is the over-
arching, FDA-mandated goal of any clinical study. It allows for the results of the

trial to be authenticated, so that the drug can now be prescribed by a primary care or

specialty physician as a medication indicated for the management of learning

disabilities in those born with trisomy 21.

Pharmaceutical companies typically address clinical relevance in one of two

ways. They can elect to use (1) normed psychometric batteries like full-scale IQ

tests (Facon 2008), which have been historically linked to practical educational and

achievement outcomes (e.g., assimilating language). These assessments are

standardized in the typically developing population and factor out validity and

reliability issues that crop up during psychological testing (Dacey et al. 1999), yet

are difficult to interpret in people with intellectual disabilities because they invari-

ably fall on the extreme end of the performance distribution below the first

percentile (Couzens et al. 2004; Hessl et al. 2009; Nelson and Dacey 1999). At

the tail end of the scales, estimates of performance are significantly less accurate,

and there is narrower resolution to detect meaningful change (Couzens et al. 2004;

Silverman et al. 2010; Spinks et al. 2009). Normative testing misses a key point in

understanding how cognitive improvement might occur in an individual with DS;
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this improvement might be better compared to other people with DS, less so to the

function of the everyday person.

Medication can do little to compensate for the widespread developmental

abnormalities wrought by an extra Hsa21. Seen in that light, comparisons between

individuals with and without trisomy 21 might not be informative. Instead, a drug

likely to be approved by the FDA will enhance daily function in a treated person
with DS beyond that which could reasonably be expected for the average untreated
person with the condition. (2) Anchoring is the other strategy employed by trial

organizers to establish clinical relevance (Crosby et al. 2003). It associates raw

scores on learning and memory assessments to ratings on adaptive behavior scales,

thus allowing the scores to be used as endpoints with external validity. Because

errors or the number of items correct on a memory test will vary across a normal

distribution (i.e., without appreciable floor or ceiling effects), the performance of an

individual with DS can be tracked with respect to past performance and to that of

peers in a larger cohort under study (see Hall et al. 2008 for an elegant demonstra-

tion of this approach). Whole distribution shifts for a group participating in a

clinical trial can also be ascertained if a test has been validated well enough in a

representative sample of the general DS population.

The ability to use raw scores from cognitive assessments as an outcome measure

for drug efficacy gives a research team flexibility when crafting an up-to-date DS

neuropsychological battery. Many norm-referenced tests were standardized with

sample groups that may no longer be indicative of the typically developing popula-

tion, let alone any specific individual with DS. Pending proper characterization,

trial organizers have the advantage of being able to modify their assessments over

time to reflect what knowledge has been gained about trisomy 21 and its effects on

neurocognitive development. Thought, in turn, can be allocated to crafting an

instrument that reflects the unique cognitive strengths and weaknesses of those in

the DS community.

Edgin et al. designed what is arguably the first cognitive test battery to capture

snapshots of performance in older children and young adults with DS (2010a) as

part of the Down Syndrome Cognition Project (DSCP), a multi-institutional effort

seeking to identify genotypic and phenotypic factors that influence the course of

intellectual disability in DS. The Arizona Cognitive Test Battery (ACTB) was

compiled from tasks that tap either the PFC (i.e., set shifting, modified DOTS
task), hippocampus (paired-associates learning, virtual navigation), or cerebellum

(i.e., reaction time, finger tapping). While individuals with DS showed deficits in

each cognitive domain relative to mentally aged-matched controls, the DSCP study

found that performance across the domains was interrelated. How an individual

with DS fared on paired-associates learning predicted how they would score on EF

tasks, such as set shifting and DOTS, and on tests of cerebellar function.

Correlations occurred among several measures but could also be quite specific. In

particular, a unique association was found between navigation success in the

computer arena and levels of coordination achieved during finger tapping—a

hippocampal–cerebellar link that might be expected given animal work with

L7-PKCI mice in the Morris water maze (2010a).
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The gestalt of these findings is consistent with the interpretation of an episodic

memory axis from cerebellum to the frontotemporal lobes and with reports describ-

ing co-activation of the PFC and hippocampus in tasks originally thought to isolate

contributions from either brain region. Human fMRI studies indicate BOLD

responses from the PFC–hippocampus during the encoding phase of the paired-

associates test (De Rover et al. 2011) as well as during performance of the

Wisconsin Card Sorting Task when the dimensional rule for organizing the cards

is first identified (Graham et al. 2009). The ACTB articulates an important theoreti-

cal principle in devising performance criteria for people with DS in a clinical trial,

namely, that the memory assessments chosen should triangulate activity as best as

possible from all elements of the episodic memory system. Edgin couches the point

astutely in a recent treatise on the cognitive neuroscience of DS, in which the author

emphasizes that modular or brain region-specific theories of cognitive delay have

not held up to scrutiny upon assessment in those with DS and that the condition is

more accurately described by computational inefficiencies in dialogue between the

frontal and temporal lobes (2013).

The endowment of neuropsychological information that has been built from

decades of academic study of people with DS strongly suggests that these

individuals cannot adequately process verbal short-term memory (Baddeley and

Jarrold 2007; Næss et al. 2011), an ability that hinges on proper and timely feedback

between the PFC (Andreasen et al. 1995; Bunge et al. 2000; Cabeza et al. 1997;

Cohen et al. 1994; Hashimoto and Sakai 2002; Paulesu et al. 1993), hippocampus

(Ekstrom 2014; Karlsgodt et al. 2005; Miller et al. 2013; Mueller et al. 2011;

Schmidt-Wilcke et al. 2009; Travis et al. 2014), and cerebellum (Andreasen

et al. 1995; Chen and Desmond 2005; Ghosh et al. 2008; Paulesu et al. 1993;

Ravizza et al. 2004, 2006). Deficient verbal memory might be, in fact, one of the

signature cognitive deficits of DS, and work by several investigators has clarified

that performance of individuals with trisomy is not an artifact of impaired hearing,

phonetic discrimination/speech perception, language competence, cultural back-

ground, general forgetting, or word learning capacity (Brock and Jarrold 2004;

Jarrold and Baddeley 1997; Frenkel and Bourdin 2009; Jarrold et al. 2002; Laws

2002; Marcell and Cohen 1992; Marcell and Weeks 1988; Mosse and Jarrold 2010;

Purser and Jarrold 2005, 2013).

Considering this strong historical record and the fact that these tasks tap

networks encompassing the cerebellum–frontotemporal lobes, clinical trial

organizers might seek to use visual or auditory verbal short-term memory

(VSTM) batteries as early litmus tests for cognitive therapeutic efficacy. Normed

assessments that evaluate verbal performance, like components of the Repeatable

Battery for the Assessment of Neuropsychological Status (RBANS; Berry-Kravis

et al. 2008; Randolph 1998), are available but lock researchers into tests that cannot

be modified as experience dictates. Chronic rehabilitation of verbal memory func-

tion in people with DS will likely contribute to hard-won but stable gains in

language assimilation that will relate to measures of adaptive behavior (Laws and

Gunn 2004; Miles and Chapman 2002; Miolo et al. 2005). Via anchoring, clinical

researchers might be free, thus, to devise paradigms that look at various aspects of
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VSTM. Brock and Jarrold have suggested that one particular VSTM weakness is

verbal serial order reconstruction, a form of memory that is accessed when

participants are asked to remember the correct sequence of a list of words or

numbers (2005). Vicari and colleagues have also documented disproportionately

lower verbal backward spans in teenagers with DS relative to a mentally and

chronologically aged-matched group with intellectual disability of different etiol-

ogy (1995). Doubtless, other VSTM mechanics could be evaluated such as word-

length, repetition, and context or cross-modality effects (e.g., Duarte et al. 2011;

Edgin et al. 2010b; Kanno and Ikeda 2002). To our knowledge, a comprehensive

VSTM battery—comprised of several informative subtests with derivatives that

scale in executive difficulty—has not been devised for people with DS. This might

be a good place to start when devising an “early warning” detection system that will

signal the real-world efficacy of a new medication.

4.2.2 Adaptive Behavior: Parent Tailored Measures
Adaptive behavior is a deceptively simple term that embodies a deeper operational

meaning. It is an integral part of functional intelligence, the ability to translate

underlying competencies into consistent daily habits that enable self-sufficiency.

Skill sets associated with adaptive behavior are organized along three domains:

(1) conceptual skills, which refer to language-oriented abilities like reading and

writing and computational ones like counting money or telling time; (2) practical

skills, which refer to everyday activities such as using a computer, navigating

public transit, or preparing a meal; and (3) social skills, which involve interpersonal

awareness and communication, social reasoning, and an understanding of customs

and laws (for review, see Tassé et al. 2012). Estimates of functional intelligence

factor into formal legal definitions of learning disability and, in many countries,

determine whether an individual is eligible for governmental health and educational

services. Because of this and its obvious relationship to quality of life, performance

on adaptive behavior scales is a credible primary endpoint and “anchor” for a

clinical trial. Scores on memory assessments often correlate significantly with

adaptive performance as measured by instruments such as the Vineland or the

Scales of Independent Behavior-Revised (Edgin et al. 2010a; Hessl et al. 2009;

Sparrow et al. 1984).

People with DS climb a wall of function to achieve some level of independence

by young adulthood (Carr 1994; Van Gameren-Oosterom et al. 2013). While IQ

relative to the typically developing population drops steadily throughout life,

evidence suggests that those with DS continue to learn and improve on extant

cognitive abilities until about 50 years of age (Berry et al. 1984; Hawkins

et al. 2003). There is tremendous room to maneuver from baselines that often

leave many teenage adults with DS unable to live autonomously outside of highly

scripted settings—to bathe, dress, eat meals, read correspondence, pay bills, and

interact with the community (Sloper and Turner 1996). What is slowing them

during this journey? Are the issues similar from one person to the next?

The FDA has emphasized that regulatory approval for a new drug must be

accompanied by outcome measures in a clinical trial that are germane to the
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condition to be treated. In other words, endpoints with external validity, such as

adaptive behavior, should be specific to those problems that keep people with DS

from having a better quality of life. This perspective deserves a moment of pause.

As we have discussed in the current chapter, individuals born with trisomy

21 exhibit significant heterogeneity in how they develop and adapt to their social

and educational environments. They do not comprise a uniform block, and it might

be heuristic to assume that one general-purpose diagnostic instrument will accu-

rately chronicle the daily intellectual struggles of every single person with DS and

the therapeutic influence of medication. This being the case, clinical and academic

researchers should consider the possibility of designing a circumscribed set of

adaptive behavior scales (e.g., 2–3 separate inventories) built around pragmatic

observations that have been made in children with DS that relate to core problems

likely to affect most of the DS population. From a practical standpoint, this effort

would be paid off in the scales’ subsequent ease of use, minimal expense, and

reliability across sites in an international trial. Parents would be instructed on what

behavioral variability looks like across many children and young adults with DS,

not just their own son or daughter, and then work with investigators to identify

divisions within the questionnaires that are especially relevant to the issues they see

in their child’s daily function. All three informant-based questionnaires would be

completed but, for the purposes of evaluating drug efficacy, would be rolled into a

single composite primary outcome measure that is weighted differently in each

participant in accordance to those weaknesses that were prespecified.

What skills or constructs might a DS adaptive behavior battery cover? One

instrument could assess “cognitive behavior” in a similar fashion to the Behavior

Rating Inventory of Executive Function (BRIEF; Gioia et al. 2000), a caregiver

report that surveys real-world instances of EF skills such as emotional control/

inhibition (Is the person impulsive? Do they overreact to minor setbacks?), set

shifting (Does the person acclimate well to new friends, schools, or changes in

routine?), working memory (Does the person finish tasks that they start, especially

ones with multiple steps?), and planning (Is the person organized? Is the person

punctual? Can they easily find possessions?). The BRIEF has been validated in the

typically developing population and has versions that are age-appropriate for young

children, teenagers, and adults but might not be directly applicable to those with

DS, who show a wide range of abilities that could be better described in the

preschool version of the instrument, the school-age version, or in a mixture of the

two (Lee et al. 2011). Some work is needed to refine a more universally relevant EF

scale for DS.

Another section of the adaptive battery could operationalize the concept of

mastery motivation by creating an inventory of goal-directed activities or behaviors

that one might expect to see practiced in a home or school setting. Pulling from

many of the studies canvassed in Sect. 3 (Fidler et al. 2005b; Kasari and Freeman

2001; Landry and Chapieski 1989), one might ask whether children with DS show

more sustained bouts of object exploration and tinkering with new toys, whether

they take the initiative to start puzzles or games or whether they are more effusive in

their questioning about the world (Do their questions strike caregivers as being
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more inquisitive?). In teenagers and young adults with DS, one might further ask

how self-reliant they are in starting and maintaining a homework schedule, taking

on new hobbies, or sticking with tough problems and improvising on them. A key

common thread in this survey would be to track the degree to which a person with

DS will persevere with daily tasks and interests even when their ability to accom-

plish or profit from them might not necessarily be assured.

A final element of the adaptive battery could monitor instances of collaborative

problem-solving, a skill which is becoming increasingly significant in modern

professional life. Despite the widespread perception that people born with trisomy

21 are extroverted and socially adept, empirical studies suggest that children with

the condition are reserved in their interactions with peers, have difficulty

interpreting the social rules and cues that accompany these engagements, and

need coaxing to get involved with group projects (Guralnick et al. 2009, 2011).

Wishart and colleagues have examined how older children with DS approach

collaborative learning situations. In contrast to the learning facilitation that

occurred in pairings between two typically developing children or in children

with nonspecific intellectual disability, the researchers found that dyads that

included a student with DS did not benefit from collaborating on a set of object-

sorting tasks (Wishart 2007; Wishart et al. 2007). From viewing interactions among

~100 children with DS and those with other kinds of disability, it was noted that the

students with DS simply did not engage their partners, preferring to work in parallel

with little “chitchat” or task-related communication. This style of interaction, if

addressed in some way with drug treatment, might positively foreshadow additional

benefits on language, which is a phenomenon that requires joint attention and

willful attempts at shared understanding.

5 Conclusions

Drug efficacy for any intellectual disability is a very personalized matter that should

be assessed over a lifetime. Clinical researchers can orient group outcome measures

toward highly responsive phenotypes with real-world applicability, but the tangible

benefits of medication on a specific person’s ongoing daily life are hard to predict a

priori. In fact, this might be an impossible feat for conditions that are heterogeneous

in both their causes (i.e., developmental trajectories) and symptoms. The FDA

authenticates the efficacy of an experimental drug through the lens of one and

only one primary endpoint. As we have stated, there is a dangerous assertion

embedded in this approach that assumes that a single performance metric can be

devised that will apply equally to most participants in a clinical trial. This assump-

tion, phrased alternatively, is that if a psychotropic drug “works,” then it should

work the same exact way in each and every individual with a defined learning

disability. Unfortunately, treating a learning disorder is not as straightforward a

proposition as treating high blood pressure. It is possible that the FDA’s regulatory

practices will need to be reconsidered in light of advances in neuroscience and
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psychiatry that have laid the groundwork for efforts to address cognitive

impairment in spectrum conditions like autism or DS.

The conundrum that ensues is illustrated by recent efforts to bring a medication

to market for some of the core symptoms of Fragile X syndrome. During a phase II–

III study of arbaclofen in people with Fragile X (Berry-Kravis et al. 2012),

investigators from Roche and Seaside Therapeutics noted significant improvements

in adaptive behavior measures on the Vineland II and Aberrant Behavior Checklist

(ABC) Socialization scales, but no significant treatment advantage over placebo on

the trial’s primary endpoint, the ABC’s Irritability subscale. Only mild adverse

effects were reported for the subjects taking the drug. By many personal accounts,

the study was successful. Children and teenagers receiving arbaclofen exhibited

social awakenings, sharing moments and requesting hugs from their caregivers for

the first time, becoming interested in making friends, and displaying eagerness to go

on social outings (Pollack 2013; Rubin 2013). Yet, clinical trials seeking to purpose

the drug for neurobehavioral deficits in Fragile X were halted due to failures to meet

the stated primary objective (ibid.; ClinicalTrials.gov Identifier NCT01013480).

The aftermath of the Roche–Seaside arbaclofen affair posits a closing consider-

ation for drug-efficacy trials of cognitive rehabilitation in DS. How does one

package a primary outcome measure to withstand the phenotypic and response

variability that is bound to exist in the subject pool? Though no simple answers are

available, some of the suggestions made in the current chapter, such as using a

within-subjects design and primary endpoint composites that are weighted differ-

ently among the participants depending on problem areas nominated by parents,

might be employed to mitigate the risk that a real treatment effect will not be

sufficiently documented to garner FDA approval. The challenges of running clinical

trials in the DS population should remind us just how far we have come in the

discussion on how to improve the everyday quality of life in those suffering from

the ill effects of having three copies of Hsa21. We are witnessing exciting times that

might soon herald better integration of people with DS as independent members of

society. Now is the time to see these challenges through.
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Abstract

Many psychiatric disorders are characterized by intrusive, distracting, and

disturbing memories that either perpetuate the illness or hinder successful

treatment. For example, posttraumatic stress disorder (PTSD) involves such

strong reemergence of memories associated with a traumatic event that the

individual feels like the event is happening again. Furthermore, drug addiction

is characterized by compulsive use and repeated relapse that is often driven by

internal memories of drug use and/or by exposure to external stimuli that were

associated with drug use. Therefore, identifying pharmacological methods to

weaken the strength of maladaptive memories is a major goal of research efforts

aimed at finding new treatments for these disorders. The primary mechanism by

which memories could be pharmacologically disrupted or altered is through

manipulation of memory reconsolidation. Reconsolidation occurs when an

established memory is remembered or reactivated, reentering a labile state

before again being consolidated into long-term memory storage. Memories are

subject to disruption during this labile state. In this chapter we will discuss the

preclinical and clinical studies identifying potential pharmacological methods

for disrupting the integrity of maladaptive memory to treat mental illness.

Keywords

Maladaptive memory • Reconsolidation • Posttraumatic stress disorder •

Addictive disorders • Memory-disrupting drugs

1 Introduction: Fundamentals of Memory

The ability to learn, retain, and retrieve information is critical to survival. Individ-

ual organisms must learn where to find food, how to prepare it, how to build

shelters, and what predators to avoid. The formation of all types of memory

involves multiple distinct phases (Fig. 13.1). First, the memory must be acquired

or encoded. Most learning paradigms involve an acquisition phase where the animal

learns a behavior over the course of multiple “trials” or encounters with the

situation. A variety of factors can affect how effectively an individual acquires

new information including availability of attentional resources, motivation, arousal,

etc. During learning, new information is held in short-term or working memory to

maintain ongoing behavior. Once new information or skills are acquired, they must

be stored in long-term memory so that the information can be retrieved when

needed at a later date. The process of storing newly learned information is known

as consolidation (Abel and Lattal 2001). Memory consolidation occurs over the

course of several hours, requires glutamatergic receptor activity, RNA transcrip-

tion, and protein synthesis. Disruption of these signaling events or molecular

processes immediately following acquisition can prevent consolidation of the

memory into long-term storage, as evidenced by subsequent impairments in
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memory retrieval (Wang et al. 2006). Retrieval is the last stage of the learning and

memory process where information is brought back into working memory from

long-term storage so that it can be used to guide behavior. The retrieval process can

also be disrupted by lesioning or inactivating specific brain regions or by pharma-

cological manipulations.

Traditionally, acquisition, consolidation, and retrieval have been considered the

three cornerstones of the learning and memory process. However, in the past couple

of decades, a lot of attention has been focused on what happens to memories during

and after retrieval. First, recent research has established that in the process of

retrieving information from long-term storage, the memory becomes

“destabilized.” That is, the molecular mechanisms supporting the memory are

reactivated, and the memory becomes labile and subject to disruption. Once the

memory is destabilized, it is then restored or “restabilized” in long-term memory in

a process termed reconsolidation, which requires many of the same molecular

mechanisms essential for initial consolidation (Nader et al. 2000b; Duvarci and

Nader 2004; Tronson and Taylor 2007; Taylor et al. 2009). In general, when

memories are consolidated or reconsolidated and are currently not actively being

used, they are considered stable and not subject to disruption by pharmacological

manipulations. Though, it should be noted that a non-reactivated memory can still

be lost if the brain region responsible for long-term storage is lesioned or otherwise

damaged. Pharmacological manipulations can affect all phases of memory to either

enhance or strengthen the memory or to make it weaker or even forgotten. How-

ever, treating disorders of maladaptive memory with pharmacological

manipulations is likely going to be most realistic clinically by focusing on memory

reconsolidation processes. In this chapter we will primarily focus on the preclinical

and clinical evidence for using pharmacological methods to disrupt reconsolidation,

though the possibility of affecting other phases of memory will be discussed.

Fig. 13.1 Illustration of the different phases of learning and memory. The figure shows how

behavior improves with learning during memory acquisition and that the memory then undergoes

consolidation into long-term storage. The memory can then be retrieved at a later date to guide

behavior, and as it is retrieved, the memory is destabilized. Once the memory is no longer needed

to guide behavior, it is stored again in a process called reconsolidation
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2 Disorders of Maladaptive Memory

In order to understand why one might want to use pharmacological tools to disrupt

maladaptive memory, we first need to discuss the diseases or disorders that are

characterized by maladaptive memories. For the purposes of this chapter, we are

concentrating on psychiatric disorders that are perpetuated by disruptive memories

such as posttraumatic stress disorder and addiction. We are not going to discuss

disorders of memory loss such as Alzheimer’s disease, dementia, or amnesia. There

may be ways to pharmacologically prevent memory loss or improve memory in

these disorders, but the point of this chapter is not to discuss memory loss, but rather

how one might disrupt maladaptive memory.

2.1 Posttraumatic Stress Disorder

Posttraumatic stress disorder or PTSD is the prototypical example of a psychiatric

memory disorder characterized by pathological reoccurrence of fear and fear

memories after a traumatic event. PTSD is associated with deficits in maintaining

extinction of the traumatic memories, generalization of fear to safe contexts, and

enhancement rather than degradation of fear and anxiety as time elapses after the

traumatic event (Pitman et al. 2012; Parsons and Ressler 2013). People suffering

from PTSD also often report that unwanted memories of the traumatic event enter

their thoughts unbidden and that the memories can be so strong that they feel like

they are re-experiencing the traumatic event. From these descriptions it is reason-

able to conclude that PTSD may involve disruptions at multiple phases of learning

and memory. Due to genetic and/or environmental factors, the individual may have

acquired the traumatic memory more readily. The memory may have undergone

stronger consolidation into long-term storage, creating a more stable memory trace.

Retrieval mechanisms certainly also appear to be dysfunctional as the traumatic

memory is spuriously retrieved at inappropriate times and in inappropriate contexts.

Finally, reconsolidation mechanisms also seem to be enhanced in PTSD, with

repeated memory reactivations leading to a progressively stronger memory. Indeed,

health professionals now recommend that individuals not be asked to recount the

details of a traumatic event immediately after so as not to invoke overly robust

reconsolidation mechanisms. Thus, finding ways to weaken the intensity of trau-

matic memories so the memories are either less frightening or less intrusive is a

major goal of PTSD treatment research.

2.2 Other Anxiety Disorders

In addition to PTSD, most other anxiety disorders, including generalized anxiety

disorder (GAD), phobias, and obsessive-compulsive disorder (OCD), potentially

involve maladaptive learning and memory processes (Zlomuzica et al. 2014). GAD

and phobias are associated with an unnaturally high fear response in situations that
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should be interpreted as safe. In other words, normal fear responses are expressed in

situations where the individual has never explicitly learned that they should be

frightened. Exposing these individuals to the triggers that induce fear and then

pharmacologically interfering with reconsolidation has the potential to short-circuit

the induction of feelings of anxiety when the trigger is encountered again. OCD is

also characterized by feelings of anxiety induced by certain triggers that require the

individual to perform specific compulsive behaviors. These obsessions and the

compulsive behaviors required to deal with the obsessions can make it very difficult

for these individuals to function well within society. As with the other anxiety

disorders described, it may be possible to expose these individuals to the triggers

that “reactivate” the obsessive memory and interfere with the reconsolidation

process so that the obsessive thoughts are less likely to be retrieved again in the

future. Most studies suggest that if you could get rid of the obsessions, then the

compulsive behaviors would be unnecessary and the individual would be less

anxious and better able to perform daily activities. One potential caveat to this

theory is that the compulsive behavior may be based on implicit procedural

learning; that is, the behavior is habitual. Less research has explicitly investigated

mechanisms for disrupting reconsolidation of procedural memories that are

associated with stimulus-driven habitual behavior, and it is possible that different

treatment strategies may be necessary in these situations. However, addictive

disorders (see below) are also thought to have a compulsive and/or habitual

component, and there is evidence that reconsolidation disruption can be beneficial

in these disorders.

2.3 Addictive Disorders

When we discuss addictive disorders, we will generally be talking about drug

addiction or alcoholism. However, the principles that we apply to drug addiction

should also be true for other disorders that have an addictive component such as

compulsive gambling or binge-eating disorder. All addictive disorders are

characterized by compulsive use or consumption despite adverse consequences to

health or well-being. The majority of individuals suffering from an addiction

recognize that they have a problem and will quit and abstain from use for some

time. Unfortunately, most individuals eventually relapse and ultimately endure

multiple cycles of abstinence and relapse throughout their lives. One of the primary

drivers of relapse is exposure to the environmental stimuli or cues (i.e., the people,

places, and things) that were associated with drug use. These cues are able to induce

relapse because of the strong memories that were formed over long periods of

associating the stimulus with the effects of the drug. The cues can initiate craving or

drug “wanting” and/or initiate the subconscious habitual behaviors associated with

obtaining and taking drugs (Torregrossa et al. 2011; Tronson and Taylor 2013).

Like PTSD, addictive disorders are thought to involve disruptions in multiple

aspects of learning and memory. First, the initial acquisition and consolidation of

memories associated with drug use are thought to be more robust or stronger than
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the acquisition of nondrug, reward-associated memories. Due to the fact that drugs

of abuse potently increase dopamine release and the activity of brain circuits

responsible for normal learning and memory, new learning while under the influ-

ence of most drugs of abuse tends to occur more quickly and may be consolidated

more strongly (Torregrossa et al. 2011; Milton and Everitt 2012; Gipson

et al. 2013). Indeed, in a study comparing brain response of cocaine-using

individuals to controls when confronted with a sexually arousing stimulus versus

a cocaine stimulus, the cocaine-using individuals showed a greatly diminished

response to the sexual stimulus relative to controls but showed robust brain activa-

tion when presented with a cocaine-associated stimulus (Garavan et al. 2000). Thus,

cocaine-associated memories may be so strong that they overshadow those of

natural rewards. In addition, the ability to retrieve drug-associated memories may

also be enhanced, such that thoughts of drug use are also likely to come to mind

more readily than other memories. Finally, every time a drug-associated memory is

retrieved and reconsolidated into long-term memory, the reconsolidation process

may also be stronger resulting in progressively more invasive drug-associated

memories with repeated use (Sara 2000; Tronson and Taylor 2007; Sorg 2012).

Ultimately, this may make drug-associated memories particularly difficult to dis-

rupt but amenable to pharmacological methods for inhibiting the reconsolidation

process.

2.4 Schizophrenia and Mood Disorders

Psychiatric disorders like schizophrenia, major depression, and bipolar disorder

may also include dysregulated learning and memory systems. In general, maladap-

tive memory in these disorders has been studied to a lesser extent than PTSD and

addiction, but there are compelling theoretical reasons, and in some cases direct

experimental evidence, to suggest that these disorders are influenced by maladap-

tive memories that could be targets for therapeutic intervention. Schizophrenia is

characterized by positive, negative, and cognitive symptoms. The cognitive

symptoms are unquestionably characterized by disruptions in learning and memory

(e.g., working memory) that could benefit from cognitive-enhancing agents. How-

ever, the positive symptoms, specifically the formation and persistence of elaborate

delusions, may also arise from the formation of maladaptive memories that we have

argued involve aberrant reconsolidation mechanisms (Corlett et al. 2009, 2010). For

example, several studies have found that the psychotomimetic drug ketamine can

disrupt processing of learning-based prediction errors in frontocortical regions and

that the degree of activation to prediction errors under placebo conditions predicted

the severity of delusional thoughts experienced under ketamine (e.g., Corlett

et al. 2006; Corlett and Fletcher 2012). Specifically, the persistence of delusions

may be due to overactive memory reconsolidation systems that persistently

strengthen and reinforce the bizarre beliefs despite little evidence for the accuracy

of these beliefs. Indeed, evidence for this hypothesis was supported by the finding

that when fear memories are reactivated under the influence of ketamine, they are
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stronger when recalled the following day, suggesting that memories may be more

likely to undergo reconsolidation in the psychotic state (Corlett et al. 2013). There-

fore, there is a possibility that unpleasant delusions may in fact represent maladap-

tive memories that could be subject to pharmacological disruption, which might

improve the social function and quality of life of those with schizophrenia.

Depressive disorders, on the other hand, are characterized by negative affect,

lack of motivation, anhedonia, and persistent rumination, defined as repeated

negative thoughts about one’s self (Nejad et al. 2013). The persistence of these

cycles of negative thought could be interpreted as repeated memory reactivation

and reconsolidation events and that with repetition negative memories become

stronger and stronger, perpetuating the depressive episode. While this hypothesis

of rumination as aberrant reconsolidation has not been directly tested, there is

evidence that depressed subjects show heightened amygdala reactivity to negative

stimuli (Jaworska et al. 2014). The amygdala has consistently been shown to be the

locus of fear memory reconsolidation (Duvarci and Nader 2004; Tronson and

Taylor 2007); thus, heightened reactivity of this region may represent an increased

likelihood that thoughts and images with negative valence will be strongly

reconsolidated. Moreover, memories for negative life events may initially be

more robustly consolidated and thus have greater cognitive representation than in

healthy subjects.

Finally, bipolar disorder is the cycling of depressive symptoms, as just

described, and symptoms of mania. Manic phases include enhanced hedonic

responses, sleeplessness, impulsivity/risk-taking, and delusions of grandeur (Phil-

lips and Swartz 2014). Many potential mechanisms could lead to this cluster of

symptoms, though the extreme focus on positive outcomes could also be due to

disruptions in amygdala/ventral striatal consolidation/reconsolidation mechanisms

that enhance the expression of memories with positive valence. While this hypoth-

esis is highly speculative, it may be possible to test clinically. The prediction would

be that disruption of reconsolidation of grandiose memories may help someone

cycle out of mania, or at least be less likely to act on their emotions. In general,

many psychiatric disorders involve potential disruptions in learning and memory

process and often result in the formation of maladaptive memories. Thus,

identifying pharmacological methods for specifically interfering with maladaptive

memories could lead to improved therapeutic outcomes for many, hard-to-treat

psychiatric disorders.

3 Anatomy of Reconsolidation

The ultimate goal of studies aimed at identifying pharmacological tools for

disrupting maladaptive memories in psychiatric disorders is to find targets that

can be manipulated safely and effectively after oral administration of a drug. Of

course, such a drug would affect both the periphery and the whole brain. Unfortu-

nately, many of the studies that will be discussed in the next section that have

identified potential mechanisms of memory disruption have only been examined in
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a specific brain region. Therefore, it is unclear if any of the manipulations that will

be discussed below are realistic targets for clinical intervention. Brain region-

specific studies do provide insight into relevant neurobiological mechanisms and

consequently what targets might be clinically relevant. Notably, there are several

examples of drugs that are effective by both central and systemic routes of admin-

istration. In addition, complex maladaptive memories may be represented by a

network ensemble of brain circuits that may even be more easily disrupted through

systemic manipulations (Kandel et al. 2014). Here we will discuss generally what is

known about the brain loci required for reconsolidation of different types of

memory (Fig 13.2).

3.1 Hippocampus

The hippocampus has long been established as a critical region for acquiring and

consolidating multiple types of memory. The hippocampus is responsible for spatial

and contextual-based learning. In addition, the hippocampus is required for the

acquisition of new episodic and declarative memories. Interestingly, once enough

Fig. 13.2 Schematic illustrating the approximate anatomical locations of brain regions required

for the reconsolidation of different types of memories
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time passes from the formation of an episodic or declarative memory, the memory

is no longer stored in the hippocampus, but is “transferred” to the frontal cortex. In

addition, there is evidence that contextual memories no longer engage the hippo-

campus once sufficient time has passed (Hall et al. 2001). Therefore, memories for

past traumatic events may be more likely to be disrupted by amygdala/cortical

manipulations as opposed to the hippocampus. Nevertheless, there have been

numerous studies demonstrating that interfering with reconsolidation processes in

the hippocampus can disrupt contextual and spatial memories. Moreover, several

maladaptive memories have a contextual component. For example, the places, or

contexts, where drugs of abuse are commonly ingested are strong drivers of relapse

and are thought to be stored in the hippocampus. In animal models of drug

addiction, reconsolidation of a contextual memory associated with drug self-

administration or feelings of drug reward can be disrupted by manipulations of

the hippocampus (cf. Brown et al. 2007; Raybuck and Lattal 2014; Shi et al. 2014).

However, while reconsolidation of a memory for a context associated with cocaine

self-administration can be disrupted by inactivation with tetrodotoxin (TTX), this

form of memory was not affected by protein synthesis inhibition, suggesting that

dorsal hippocampal activity may drive protein synthesis-dependent reconsolidation

in another region, such as the amygdala (Ramirez et al. 2009; Wells et al. 2011).

Finally, it should be noted that many studies of hippocampal mediation of

reconsolidation have focused on the dorsal hippocampus, but the ventral hippocam-

pus is much more intricately linked with the parts of the brain that regulated

emotion, like the amygdala and nucleus accumbens, and, thus, would be more

likely to regulate maladaptive memories. Fewer studies have manipulated the

ventral hippocampus specifically because it is a difficult target, but future research

is likely to find an important role for the ventral hippocampus in the reconsolidation

of maladaptive memory. Nevertheless, many of the potential mechanisms for

disrupting memory reconsolidation in general were discovered using contextual

fear conditioning and manipulations of the dorsal hippocampus. Thus, maladaptive

fear memories in PTSD or other anxiety disorders may have their root in the

hippocampal dysfunction.

3.2 Amygdala

The amygdala is critical for the reconsolidation of many types of emotional

memory (Duvarci and Nader 2004). Manipulations of the amygdala disrupt

reconsolidation of negative fear-related memories and positive cue/context

memories associated with drug use. Generally speaking the amygdala is critical

for the reconsolidation of any cued associative learning-based memory. So, if a cue

is paired with foot shock or drug reward, reconsolidation of this memory will

require activity in the amygdala. In addition, both contextual fear and drug-

associated memories that necessitate activity in the hippocampus for

reconsolidation also require at least some forms of signaling in the amygdala.

There are several examples of signaling molecules that are important for
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reconsolidation of memory in one brain region, but not in another. For example,

Ras-related C3 botulinum toxin substrate (Rac) signaling is critical in the amygdala

for reconsolidation of a cued fear conditioning memory, but not a contextual

memory, while the CA1 of the hippocampus is required for contextual but not

cued fear memory reconsolidation (Wu et al. 2014a). On the other hand, contextual

fear memory reconsolidation does appear to involve cAMP response element-

binding protein (CREB) activation and protein synthesis in the amygdala (Mamiya

et al. 2009). Moreover, several studies have found that reconsolidation of drug-

associated contextual memories can be disrupted by manipulations in the amygdala,

including inhibition of protein synthesis or cAMP-dependent protein kinase A

(PKA) (Fuchs et al. 2009; Arguello et al. 2013). Finally, it should be noted that

the amygdala is made up of multiple subregions including the lateral amygdala,

basal amygdala, and central amygdala. The vast majority of research has focused on

the role of the basolateral amygdala complex in regulating memory reconsolidation.

Due to the difficulty in selectively targeting anatomical regions that are so close

together, it is hard to know whether one specific part of this complex is more or less

responsible for memory reconsolidation. Distinguishing between the basolateral

and central amygdala is a bit more feasible, and most studies seem to indicate that

the central amygdala is less involved in memory reconsolidation (Thomas

et al. 2003; Wang et al. 2008, 2012; Li et al. 2010; Si et al. 2012; Wu

et al. 2014a). However, reconsolidation of alcohol-associated cue memories does

involve mammalian (aka mechanistic) target of rapamycin complex 1 (mTORC1)

signaling in the central amygdala (Barak et al. 2013). Furthermore, the central

amygdala may be required to at least orient to or pay attention to conditioned cues

during retrieval to initiate reconsolidation processes, particularly for appetitive

reinforcers (Olshavsky et al. 2013), but whether or not the central amygdala is

responsible for reconsolidation itself is less evident.

3.3 Nucleus Accumbens

In addition to the amygdala, the nucleus accumbens has also been implicated in the

reconsolidation of emotional memories and may be particularly important for the

reconsolidation of drug-associated memories. The nucleus accumbens receives

glutamatergic inputs from the amygdala, hippocampus, and frontal cortex and

projects GABAergic outputs to structures responsible for motoric behavior. The

nucleus accumbens is thus known as the limbic-motor interface. Therefore, the

nucleus accumbens is poised to act on the information provided by memories after

retrieval. Interestingly, evidence suggests that the nucleus accumbens is not only

responsible for behavioral response output but also participates in the consolidation

and reconsolidation of certain types of memory. For example, Hernandez and

colleagues (2002) found that consolidation of memory for an instrumental learning

task where rats learned to press a lever for food requires protein synthesis in the

nucleus accumbens. In this study, the authors did not find an effect of nucleus

accumbens protein synthesis inhibition on reconsolidation of the instrumental
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learning memory; however, the reactivation session used was the same as a regular

training session, and there is evidence that reconsolidation processes are not

efficiently initiated without the introduction of novelty during the reactivation

event (Sevenster et al. 2012, 2013). Miller and Marshall (2005) went on to show

that reconsolidation of cocaine conditioned place preference memory did require

activation of the extracellular-regulated kinase (ERK) within the nucleus

accumbens. A subsequent study of cocaine conditioned reward also found that

manipulating the nucleus accumbens, this time via an antisense oligonucleotide

targeting the immediate early gene zif268, could inhibit reconsolidation of a place

preference memory, but did not affect the conditioned rewarding properties of a

cocaine-paired cue when assessed in an instrumental paradigm (Théberge

et al. 2010). These data suggest that the nucleus accumbens is either more involved

in storing the contextual/spatial aspects of reward than Pavlovian conditioned

aspects of reward or that zif268 in the accumbens is not required for Pavlovian

cue reconsolidation. Interestingly, using a cocaine self-administration model,

which involves an instrumental behavioral component that is lacking in place

preference studies, ERK activity in the nucleus accumbens was not found to be

necessary for reconsolidation of cocaine-context memory. However, ERK inhibi-

tion in the amygdala was able to inhibit this form of reconsolidation (Wells

et al. 2013). Therefore, memories associated with instrumental responding may

require the nucleus accumbens for execution of behavior, but not for restabilization

of the memory. Nevertheless, several other studies have confirmed the importance

of the nucleus accumbens for contextual conditioned reward for opioids and

stimulants (Milekic et al. 2006; Ren et al. 2012; Wu et al. 2012; Shi et al. 2014).

There is less evidence that the nucleus accumbens is important for the

reconsolidation of fear-associated memories; however, one study has found an

upregulation in zif268 expression in the nucleus accumbens after reactivation of

cued and contextual fear memories. Interestingly, in this study contextual memories

seemed to engage the nucleus accumbens shell more than the core, while cued

memories engaged both subregions of the accumbens (Thomas et al. 2002).

3.4 Frontal Cortex

To date, fewer studies have dissected whether disrupting signaling in various

frontal cortical regions, such as the anterior cingulate, prelimbic, infralimbic, or

orbitofrontal cortices can interfere with the reconsolidation of memories. However,

it is known that once a memory is well established, that is, that the memory has

existed for many days, weeks, or years, lesions of the hippocampus can no longer

disrupt the memory. Further studies have shown that these “remote” memories have

been transferred to the cortex through relatively unknown mechanisms. In addition,

there are certain forms of learning that engage the frontal cortex even at the

consolidation stage, such as object recognition memory. Indeed, inhibition of

protein synthesis or NMDA receptors in the ventromedial prefrontal cortex is

able to block both the consolidation and reconsolidation of object recognition
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memory (Akirav and Maroun 2006). However, this is the sort of “good” memory

that we would prefer not to disrupt with pharmacological manipulations. There is

somewhat less evidence that the prefrontal cortex regulates the reconsolidation of

maladaptive memories associated with psychiatric disorders. Although, the alpha-

1-adrenergic receptor antagonist prazosin infused in the prelimbic prefrontal cortex

can inhibit reconsolidation of an olfactory-based fear memory (Do Monte

et al. 2013). On the other hand, trace fear conditioning, even when the memory is

remote, does not undergo protein synthesis-dependent reconsolidation in the medial

prefrontal cortex (Blum et al. 2006). Moreover, while retrieval of a cocaine

conditioned place preference memory can be persistently disrupted by intra-

prelimbic PFC beta-adrenergic receptor blockade, reconsolidation of the memory

requires the amygdala and not the PFC (Otis et al. 2013). Thus, while there may be

instances where specific remote, fear-associated memories could be disrupted by

prefrontal manipulations, the evidence to date suggests that most beneficial effects

of reconsolidation blockade on maladaptive memory are mediated by the amygdala.

However, the ventromedial PFC is critical for the extinction of maladaptive

memories (Peters et al. 2009), and pharmacological manipulations that facilitate

extinction could also be useful pharmacotherapies. Mechanisms for facilitating

extinction have been discussed extensively in several reviews (Taylor et al. 2009;

Myers and Carlezon 2012; Torregrossa and Taylor 2012).

4 Mechanisms for Disrupting Reconsolidation

In this section, we will discuss the current state of knowledge on receptor and

signaling systems that can be targeted pharmacologically to disrupt maladaptive

memories based on studies using animal models. Depending on whether the study

employed a classical fear conditioning, contextual fear conditioning, inhibitory

avoidance, drug self-administration, or conditioned place preference paradigm,

different brain regions may have been targeted in specific experiments. Because

we are particularly interested in manipulations that may be effective clinically, we

will highlight when a systemic route of administration was used.

4.1 Methodology

In order to investigate mechanisms for pharmacologically disrupting maladaptive

memories, a paradigm that reliably reactivates a memory and returns the memory to

a labile state had to be developed. Researchers had already determined many of the

molecular mechanisms that are required for initial fear memory consolidation,
which include protein synthesis and glutamatergic activation of NMDA receptors.

In order to study reconsolidation, researchers had to first establish a known

consolidated memory that could be reactivated by a reminder event and potentially

disrupted. Early studies by Judge and Quartermain (1982) and later by

Przybyslawski and Sara (1997) demonstrated that this could be accomplished by
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training animals in an approach-avoidance task or in an eight-arm maze to retrieve

palatable food reinforcers. The consolidated avoidance learning could be disrupted

by post-retrieval protein synthesis inhibition, while the spatial memory could be

disrupted when an NMDA antagonist was given within 2 h of memory retrieval.

Subsequently, Nader and colleagues (2000) used fear conditioning, where a tone is

paired with foot shock to establish a conditioned fear response to the tone, to

determine if fear memories could undergo reconsolidation that could be disrupted

by inhibition of protein synthesis. In support of the conclusion that established

memories do undergo reconsolidation after reactivation, this study found that when

the conditioned tone was presented in the absence of foot shock either one or

14 days after initial conditioning, post-reactivation administration of a protein

synthesis inhibitor greatly reduced expression of conditioned fear the following

day. The manipulation was not effective if the memory was not reactivated or if the

inhibitor was given 6 h after reactivation when the reconsolidation process was

presumed to be complete, similar to previous studies. The manipulation also did not

affect short-term memory for the tone. Thus, the majority of subsequent studies

exploring mechanisms of reconsolidation have used similar experimental designs

and include many of the same control conditions as used in these pivotal

publications. Follow-up studies have also established some of the parameters

required to induce destabilization and reconsolidation of memory, such as the

need for new or surprising information to be present that violates expectations,

such as experiencing a conditioned cue in a new context and/or without presentation

of the US (Pedreira et al. 2004). The studies also pointed to the potential clinical

value in disrupting unwanted fear-associated memories. In particular, that

reconsolidation disruption can be dissociated from memory extinction by the lack

of renewal or reinstatement of memory (cf. Monfils et al. 2009; though also see

Lattal and Wood 2013). Figure 13.3 illustrates the general accepted design for

experiments testing mechanisms of reconsolidation and/or methods for pharmaco-

logically disrupting maladaptive memories. Many laboratories have used the

conditioned fear paradigm to study reconsolidation, and the paradigm has been

adapted to study several other forms of memory, including additional types of

aversive memory and drug-associated memories. The results from many of these

studies will be presented in the following sections.

4.2 NMDA Receptors and Protein Synthesis

First, it is well established that reconsolidation of just about all forms of memory

can be disrupted by either intracranial or systemic administration of protein synthe-

sis inhibitors (Nader et al. 2000a; Milekic and Alberini 2002; Pedreira and

Maldonado 2003; Valjent et al. 2006) or glutamatergic NMDA receptor antagonists

(Torras-Garcia et al. 2005; Przybyslawski and Sara 1997; Akirav and Maroun 2006;

Lee et al. 2006; Sadler et al. 2007; Lee and Everitt 2008; Milton et al. 2008a, 2012;

Wu et al. 2012; Alaghband and Marshall 2013). These referenced citations have

established the effectiveness of NMDAR blockade in attenuating reconsolidation in
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multiple models of conditioned or contextual fear, odor memories, and taste

memories and in multiple models of drug addiction. Manipulations of protein

synthesis and NMDAR signaling have generally been used to establish that specific

forms of memory actually undergo reconsolidation. Neither manipulation has been

tested in a clinical treatment setting, primarily due to the risk of side effects, though

one study examining the effects of the NMDAR antagonist ketamine on human

conditioned fear reconsolidation will be discussed in the clinical section below.

4.3 Adrenergic/Noradrenergic Signaling

Manipulations of adrenergic or noradrenergic signaling are probably the next most

commonly studied mechanism of memory reconsolidation. Research on

mechanisms of fear memory consolidation established that stimulation of beta-

adrenergic receptors (β-AR) during conditioning can make fear memories stronger

and that disruption of adrenergic signaling during conditioning can make fear

memories weaker (LaLumiere et al. 2003; Roozendaal et al. 2006a, b; McReynolds

et al. 2010). The sympathetic nervous system is activated by stressful situations,

such as by foot shock, and the degree of norepinephrine and epinephrine release is

associated with the degree of arousal and fright. Therefore, it is thought that

adrenergic signaling is responsible for the strength of fearful memories, so that

the most arousing and dangerous experiences are remembered best and avoided in

the future (McGaugh 2013). However, researchers have found that not only is

adrenergic signaling important for initial conditioning but that reconsolidation of

memories also required β-AR signaling. Moreover, there are several reports of non-

fear-related memories that could be disrupted by β-AR antagonists like propranolol.

Indeed, the first report of adrenergic modulation of memory reconsolidation

came from a study by Roullet and Sara (1998), which found that reconsolidation of

spatial memory on a radial arm maze was blocked by intracerebroventricular

administration of a β-AR antagonist. A follow-up study found that post-retrieval

systemic administration of the centrally acting β-AR antagonist was also sufficient

to disrupt spatial and passive avoidance memory reconsolidation (Przybyslawski

et al. 1999). Interestingly, the time after reactivation required for effective disrup-

tion was different for the two routes of administration between the two studies, with

Fig. 13.3 Schematic of typical experimental paradigm utilized to assess whether a pharmacolog-

ical manipulation can interfere with memory reconsolidation. Solid coloring in the boxes

represents a more stabile, consolidated memory, with the lighter color representing relative

memory instability or weakness. Positive findings require performance of several control

experiments to verify results are dependent upon memory reconsolidation

394 J.R. Taylor and M.M. Torregrossa



the best results after systemic administration found if the β-AR antagonist is given

5 min after memory retrieval. Moreover, the authors found that there was significant

“savings” in learning upon reacquisition, suggesting that β-AR blockade did not

produce complete amnesia, but rather only produced either a temporary or partial

effect. Subsequently, many other studies have examined the ability of systemic

β-AR antagonism to prevent the reconsolidation of potentially maladaptive

memories.

With regard to fear-related memories, systemic β-AR blockade has been shown

to inhibit reconsolidation of auditory fear conditioning (Debiec and Ledoux 2004;

Muravieva and Alberini 2010) and inhibitory avoidance as described above

(Przybyslawski et al. 1999). Debiec and LeDoux (2004) even found that memory

for a remote fear memory (reactivated 60 days after conditioning) could be reduced

by post-retrieval propranolol, thus providing evidence for potential therapeutic

utility. However, another study was not able to detect an effect of post-retrieval

β-AR blockade on reconsolidation of inhibitory avoidance learning (Muravieva and

Alberini 2010). The contradictory findings are likely due to methodological

differences in the way memory fidelity was assessed, but the studies do agree that

propranolol does not produce a complete loss of fear.

A large number of studies have also tested the ability of β-AR antagonists to

prevent reconsolidation of appetitive memories, particularly those associated with

drugs of abuse. Some of these studies have also found contradictory results. First,

however, studies examining whether propranolol could block reconsolidation of

sucrose or cocaine-associated cue or contextual memories have been largely con-

sistent and have found an effect of propranolol in reducing memory reconsolidation

through systemic or intra-amygdalar manipulation (Bernardi et al. 2006;

Diergaarde et al. 2006; Milton et al. 2008b; Otis et al. 2013). On the other hand,

one study examining the reconsolidation of food-associated cue memories used to

support Pavlovian-to-instrumental transfer (PIT) or Pavlovian approach found no

effect of pre-retrieval propranolol administration (Lee and Everitt 2008). This study

suggests that the timing of drug administration relative to memory reactivation may

affect the efficacy of the manipulation. On the other hand, the ability of propranolol

to disrupt the reconsolidation of memories associated with other drugs of abuse has

been much more equivocal. Several studies have examined the ability of proprano-

lol to disrupt morphine conditioned place preference (CPP) memories. Robinson

and Franklin (2007) first reported that propranolol blocks morphine memory

reconsolidation through a central mechanism, but subsequent studies found that

this was only true for the first retrieval of a morphine CPP memory and that there

was no effect at all if the animals had received prior chronic morphine treatment or

if the memory was recently formed and more strongly conditioned (Robinson and

Franklin 2007, 2010; Robinson et al. 2011a, b). Moreover, another study also found

no effect on morphine CPP, while they did see a blockade of memory for morphine-

withdrawal-induced place aversion memory (Wu et al. 2014b). Therefore, the

ability of propranolol to disrupt the reconsolidation of memories associated with

opioids may be limited. Likewise, attempts to disrupt alcohol-associated memories

have also been largely unsuccessful in preclinical models. Propranolol had no effect
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on the reconsolidation of memories for discrete cues or contextual stimuli

associated with alcohol (Milton et al. 2012). However, one study did find that

alcohol cue memories could be disrupted, but only with repeated reactivation/

propranolol exposure events (Wouda et al. 2010). Thus, alcohol-associated

memories may also require a different strategy if disruption of reconsolidation is

to be an effective method for preventing relapse. The reason for the different results

depending on the type of memory or drug of abuse is unclear. In some cases, the

timing of propranolol administration may have prevented an effect from being

observed. In addition, it may be that stimulants and passive fear conditioning

paradigms are more arousing and induce more adrenergic receptor activity, which

makes these memories more dependent on β-AR signaling for future

reconsolidation.

4.4 Glucocorticoid Receptors

Glucocorticoid receptors (GR) are activated by the corticosteroid hormones

(CORT) released from the adrenal gland in response to stress. Glucocorticoids

are released in a circadian pattern throughout the day and night and can also bind

to the higher affinity mineralocorticoid receptors (MR); however, due to the higher

affinity of MR over GR for CORT, they are generally fully occupied by circulating

levels of CORT. Thus, most of the learning and memory-related effects of stress are

generally attributed to activation of GR. Like the adrenergic system, stimulation of

GR by CORT during or after learning, especially fear-related learning, facilitates

memory consolidation. Thus, highly arousing, stressful events are encoded more

strongly than less arousing events. Indeed, the combination of GR and adrenergic

receptor stimulation creates a strong and enduring memory, and stimulation of these

receptors and subsequent plasticity may underlie the development of PTSD. How-

ever, while the case for CORT facilitating memory consolidation is strong, there are

also reports of acute stress or CORT inhibiting memory, particularly post-retrieval

manipulations that presumably affect reconsolidation processes. In contextual fear

conditioning paradigms, acute post-retrieval administration of CORT or exposure

to a stress, such as cold-water swim, impairs subsequent expression of fear (Cai

et al. 2006; Abrari et al. 2008; Yang et al. 2013). A similar result has been found for

novel object recognition memory (Maroun and Akirav 2008) and memory for a

morphine CPP (Wang et al. 2008). On the other hand, several other studies have

found that blockade of GR with the antagonist RU38486, either systemically or in

the amygdala, inhibits the reconsolidation of auditory fear memory (Jin et al. 2007;

Pitman et al. 2011), inhibitory avoidance memory (Taubenfeld et al. 2009; Nikzad

et al. 2011), and morphine CPP memory (Fan et al. 2013). The reason for these

apparently opposing results that both activation and blockade of GR are able to

inhibit reconsolidation is not clear. One possibility is that normal memory is only

retained at optimal levels of GR signaling, such that too little or too much is

disruptive. However, the studies that have found that acute stress or CORT can

inhibit reconsolidation have found somewhat modest results in general and have
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reported that these memory disruptions are subject to spontaneous recovery (i.e.,

the memory returns with time) and are sensitive to reinstatement. These results are

more consistent with an interpretation that post-retrieval GR activation facilitates

extinction of memory, rather than inhibiting reconsolidation. Extinction involves

learning that a cue or context is no longer predictive of shock or reward and this new

learning has its own consolidation phase. Generally speaking, most manipulations

used to induce retrieval and reconsolidation are not strong enough or long enough to

induce sufficient extinction learning. However, in contextual fear conditioning,

every exposure to the context without being shocked could induce some degree

of extinction learning, and consequently CORT could facilitate the consolidation of

this learning. Facilitation of consolidation is an interpretation that is more consis-

tent with the extensive literature on CORT facilitating initial memory consolida-

tion. On the other hand, impairments in novel object recognition memory cannot be

explained by facilitated extinction. In this paradigm, animals just need to remember

what objects they’ve seen before, and the retrieval event should strengthen this

memory, not weaken it. However, remembering objects that have previously been

explored are not as arousing or important for survival, as memories for fearful or

rewarding events. Therefore, GR regulation of this type of memory may be opposite

to that of arousing memories because the brain may divert resources away from

these everyday declarative memories in the face of stress. It is more important for

the animal to remember the stressful event than the object. Future studies will have

to clarify the role of GR in memory reconsolidation, but to date the preclinical

literature is more supportive of the use of GR antagonists to disrupt maladaptive

memories.

4.5 GABA

Gamma-amino butyric acid (GABA) is the primary inhibitory neurotransmitter in

the brain, so one would predict that facilitating GABA signaling could interfere

with the activity of cells necessary for retrieving and reconsolidating maladaptive

memories. Therefore, it is somewhat surprising that only a few studies have tested

the ability of GABA manipulations to disrupt reconsolidation and they have almost

all occurred in the study of contextual fear conditioning. The GABAA receptor

agonist at the benzodiazepine binding site, midazolam, given systemically during

the post-retrieval component of a contextual fear memory paradigm can disrupt

reconsolidation to reduce fear (Bustos et al. 2006; Zhang and Cranney 2008).

Subsequent studies found that the effect of midazolam is mediated by GABAA

receptors and that a GABAA antagonist can actually slightly facilitate memory

reconsolidation (Zhang and Cranney 2008). Moreover, remote memories are more

resistant to disruption by midazolam, requiring higher doses and longer retrieval

periods (Bustos et al. 2009). Prior stress can also make memories resistant to

midazolam but this can be overcome by pre-retrieval administration of the

NMDA glycine site partial agonist, D-cycloserine, which presumably facilitated

retrieval and induction of the memory destabilization process (Bustos et al. 2010).
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Therefore, for GABAA receptor manipulations to be clinically effective, a lot of

factors will need to be taken into consideration, including the age of the memory,

the patient’s stress levels, and the conditions that are required to induce retrieval. In

addition, another study found that injections of ethanol given after retrieval of a

contextual fear memory actually enhanced reconsolidation, increasing freezing on

subsequent testing. Ethanol affects multiple neurotransmitter and signaling

systems, but one of its primary mechanisms of action is as a GABAA receptor

agonist, and the authors found that the reconsolidation enhancing effect of ethanol

could be blocked by the GABAA antagonist picrotoxin (Nomura and Matsuki

2008). Thus, it appears that GABAA receptor positive modulation could potentially

facilitate or inhibit reconsolidation. Furthermore, midazolam can block consolida-

tion of extinction, if the retrieval event is long enough to induce extinction (Bustos

et al. 2009). Thus, the effect of ethanol could possibly be attributed to extinction

blockade rather than inhibition of reconsolidation. Therefore, clinical interventions

would also need to ensure that individuals are not extinguishing the memory. The

efficacy of midazolam or other GABA manipulations at interfering with

reconsolidation of other types of maladaptive memory, such as for addictive

drugs, to our knowledge, has not been reported.

4.6 Intracellular Signaling Molecules

In addition to the major neurotransmitter systems, the requirement for many

downstream intracellular signaling molecules in memory reconsolidation has

been tested extensively. Several kinase and signaling cascades have been

implicated in the formation and maintenance of maladaptive memories, but rather

than create an exhaustive list, we will focus on those signaling systems that have

been reported to regulate multiple forms of memory by multiple laboratories. For

the most part these studies have focused on infusing inhibitors or activators in

specific brain regions, so it is not clear yet whether any of these manipulations will

be translatable to clinical treatment. Nevertheless, we will discuss some of the

targets that are most clearly relevant to the reconsolidation of maladaptive

memories.

First, the adrenergic receptors discussed above are positively coupled to cAMP,

which means that their stimulation leads to increases in cAMP and stimulation of

cAMP-dependent kinases like PKA. Tronson and colleagues (2006) found that

post-retrieval administration of a PKA inhibitor in the amygdala could inhibit

reconsolidation of a conditioned fear memory. Conversely, repeated reactivation

followed by administration of a PKA activator could make the memory stronger,

consistent with the effects of β-AR blockade and stimulation, respectively (Tronson

et al. 2006). PKA inhibition has also been shown to block reconsolidation of

memory for a discrete cue (Sanchez et al. 2010) or a context (Arguello

et al. 2013) associated with cocaine self-administration.

Several other kinase cascades have been implicated in learning and memory in

general, and are required for memory reconsolidation. Extracellular-signal-
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regulated kinases (ERKs) in various brain regions are required for the

reconsolidation of CPP memory for drugs of abuse (Miller and Marshall 2005;

Valjent et al. 2006), cocaine-context-response memory (Wells et al. 2013), and

auditory fear conditioned memory (Duvarci et al. 2005). Moreover, fear memory

can be disrupted with systemic administration of an ERK inhibitor (Cestari

et al. 2006), which raises the possibility of clinical utility. However, ERK inhibition

has also been reported to impair reconsolidation of object recognition memory

(Kelly et al. 2003), which means that non-maladaptive, potentially important

memories could unintentionally be disrupted. Manipulations of ERK are also likely

to affect many other systems, making it less likely that they will ultimately be used

clinically.

Another intracellular signaling cascade that has received a lot of attention

recently, as noted above, is the mTOR pathway. mTOR regulates protein transla-

tion, and inhibition of mTOR with rapamycin or inhibition of its upstream

activators Akt or glycogen synthase kinase 3 (GSK3) can disrupt many types of

memory. Rapamycin or a GSK3 inhibitor infused into a specific brain region,

usually the amygdala or hippocampus, post-retrieval can disrupt reconsolidation

of auditory, contextual, and inhibitory avoidance fear-based memories (Kimura

et al. 2008; Gafford et al. 2011; Jobim et al. 2012; Mac Callum et al. 2013) and

could block reconsolidation of morphine-, cocaine-, and alcohol-associated

memories (Wang et al. 2010; Wu et al. 2011; Barak et al. 2013; Lin et al. 2014;

Shi et al. 2014). Systemic inhibition of mTOR has also been reported to disrupt

reconsolidation of a contextual fear memory, though it was ineffective for a cued

fear memory (Glover et al. 2010). Nevertheless, the mTOR signaling pathway

appears to be critically involved in almost all forms of memory reconsolidation,

which may not be surprising due to requirement for protein synthesis for

reconsolidation of memory, though these studies do suggest that the mTOR path-

way is the specific initiator of protein translation that is required to maintain

memory. Systemic rapamycin has not been tested clinically for the disruption of

maladaptive memory and would likely have unwanted side effects, but it may be

possible to find other ways to manipulate this signaling cascade that could be

valuable pharmacological targets.

Finally, the downstream target of most kinase signaling cascades is the activa-

tion or inhibition of transcription factors that regulate gene expression. The cAMP

response element-binding protein (CREB) and nuclear factor kappa B (NFkB) are

two transcription factors that have been implicated in learning and memory pro-

cesses. Activation of CREB is downstream of PKA signaling, so it is not surprising

that CREB is important in the regulation of memory. NFkB, on the other hand, is

actually most known for its activation by immune system signaling. Therefore, one

might not expect NFkB to regulate learning and memory processes. However, the

role of immune signaling molecules and NFkB in the brain is becoming increas-

ingly appreciated. Inhibition of NFkB activity in the hippocampus has been shown

to interfere with the reconsolidation of contextual fear memory and inhibitory

avoidance memory (Boccia et al. 2007; Lubin and Sweatt 2007; de la Fuente

et al. 2011) and a morphine CPP memory (Yang et al. 2011). In addition, inhibiting
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NFkB in the amygdala can disrupt reconsolidation of auditory fear memory

(Si et al. 2012). Lubin and Sweatt (2007) found that reconsolidation disruption

could occur through inhibition of binding of the NFkB complex to DNA and

through interference with I kappa kinase alpha (IKKalpha)-mediated acetylation

of histone H3, which is important for altering chromatin structure to allow gene

transcription. In fact, reconsolidation of memory occurred normally if a histone

deacetylase inhibitor, which rescued histone acetylation, was combined with an

IKK inhibitor. Thus, this study indicates that memory can be regulated by the

IKK/NFkB signaling cascade via two distinct mechanisms and points to the impor-

tance of chromatin remodeling in memory reconsolidation. Indeed, other studies

have shown that inhibiting histone acetylation in general, either through inhibition

of DNAmethyltransferase (Maddox and Schafe 2011) or histone acetyl transferases

(HATs) can disrupt reconsolidation of auditory fear memories (Federman

et al. 2012; Maddox et al. 2013a, b). Therefore, manipulations of the IKK/NFkB

system and general disruptions in chromatin remodeling provide interesting new

avenues for disrupting maladaptive memories. Clinical testing may even be possi-

ble as one of the HAT inhibitors was found to be naturally occurring from the rind

of the fruit of the kokum tree (Maddox et al. 2013a). However, the clinical utility

may be somewhat limited depending on the age of the memory, as one study did

find that remote memories may not engage histone acetylation processes as much as

recent memories (Gräff et al. 2014).

In summary, a vast amount of preclinical research has been conducted in the last

10+ years that have elucidated many of the neurotransmitter systems and intracel-

lular signaling cascades that regulate the reconsolidation of memory in general and

that also apply to maladaptive memories. While the above discussion is certainly

not an exhaustive list of the signaling systems that have been reported to modulate

reconsolidation, it points to many potential avenues for treatment of clinical

disorders involving maladaptive memory. In the next section we will discuss

what is known about methods for disrupting the reconsolidation of memories in

human subjects.

5 Clinical Efficacy of Reconsolidation Disruption

5.1 Reconsolidation in Healthy Subjects

The vast majority of studies investigating reconsolidation processes in humans have

been conducted in healthy subjects. Therefore, most of the experiments we will

describe do not necessarily reflect manipulations of maladaptive memory. How-

ever, quite a few studies have used human fear conditioning paradigms that are very

similar to those used in rodents and many involve an emotionally arousing memory.

In addition, many studies in humans have investigated the ability of retrieval or

reactivation of memories to induce updating or strengthening mechanisms to, for

example, improve memory by repeated studying prior to a test (e.g., Forcato

et al. 2011). For the most part we will limit our discussion to studies showing that
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a pharmacological agent can potentially disrupt memory reconsolidation, though

experiments that identify mechanisms of memory strengthening could also be

valuable in determining how to avoid unintentionally strengthening maladaptive

memories.

One of the clearest demonstrations of memory reconsolidation in humans came

from a laboratory study in healthy subjects. Individuals without a history of

psychiatric illness underwent a fear conditioning procedure where otherwise neutral

stimuli (cues) were paired with an aversive stimulus. After conditioning, subjects

returned to the laboratory and were given propranolol or placebo and then either

had the fear memory reactivated by presenting the cue or had no memory reactiva-

tion. In a later test, the participants were again presented with the conditioned cue,

and their expression of anxiety and fear was assessed. Interestingly, the study found

that only subjects who received propranolol and experienced memory reactivation

reported a reduction in anxiety to the cue. However, while anxiety was reduced, the

declarative memory about the relationship between the cue and the aversive

stimulus was not changed (Kindt et al. 2009). Thus, while propranolol could

potentially inhibit reconsolidation of the emotional component of the memory,

explicit knowledge of the association between the cue and aversive stimulus was

left intact. The dissociation between effects on emotional and declarative memories

and the fact that there is no effect when memory is not reactivated suggests that

propranolol +memory reactivation has potential to be a very efficacious treatment

strategy with little to no side effects, particularly on the potentially worrisome

effects on unreactivated or “important” memories that one would not want to lose.

Moreover, the procedure appears to allow the individual to remember that particu-

lar traumatic events happened but reduces the negative emotional component of

that memory.

The study by Kindt and colleagues has been replicated and expanded in several

subsequent publications. The effect of propranolol +memory reactivation has been

shown to persist for at least 1 month with a continued dissociation between the

emotional and declarative aspects of memory (Soeter and Kindt 2010). The effect

can also be observed if propranolol is given after the memory reactivation session

(Soeter and Kindt 2012a) and propranolol is effective even if the initial fear

learning occurred under conditions of enhanced adrenergic activity (yohimbine

administration), which makes memories stronger and resistant to extinction (Soeter

and Kindt 2012b). Likewise, the enhanced level of memory that is associated with

an emotional episodic memory relative to a neutral memory can be reduced by

retrieval after propranolol administration (Schwabe et al. 2013). Furthermore,

functional imaging studies of human fear memory have shown activation of the

amygdala that is absent after disruption of reconsolidation (Agren et al. 2012). In

addition, similar to what has been found in animal studies, only the emotional

aspects of the memory trace were associated with amygdala activation, while the

declarative aspects were associated with the hippocampus (Soeter and Kindt 2010;

Schwabe et al. 2012).

However, there are some reports in the literature that found no effect of propran-

olol, which point to several boundary conditions that need to be taken into account
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when designing reconsolidation disruption experiments to treat a disorder. First,

propranolol has been reported to interfere with extinction of memory, at least at the

cognitive level, making it important to not give propranolol under extinction

conditions (Bos et al. 2012). In addition, research has shown that a memory must

be successfully reactivated for it to undergo reconsolidation, and that if reactivation

does not occur, propranolol is ineffective. What is successful reactivation? Suc-

cessful reactivation is a reminder event that is sufficient enough to activate the

memory trace, destabilize the memory, and initiate the molecular cascades required

for restabilization. Research suggests that successful reactivation requires that the

memory reminder session involves some sort of novelty or violation of predicted

outcomes (Pedreira et al. 2004). This is often referred to as prediction error, and the

reason why prediction error is required may be because reconsolidation is funda-

mentally a memory-updating mechanism, such that if nothing new is being learned,

the memory is not reactivated. In animal models, memory reactivation sessions

generally involve novelty in terms of either a context shift and/or a presentation of

the cue or context in the absence of the shock or reward. Since the cue was

conditioned to be predictive of shock or reward, the absence of these outcomes

produces a prediction error and allows for memory updating. In experiments in

humans, the same principle was found to exist (Sevenster et al. 2012, 2013). If

humans were conditioned that a cue was predictive of a shock, which required

electrode leads to be hooked up, then when the cue was presented under the same

conditions but no shock was given, propranolol could disrupt reconsolidation.

However, if the electrode leads were not hooked up during the reminder cue,

propranolol was ineffective, presumably because the lack of shock was completely

predicted in that situation, so the memory required no updating.

Finally, two studies by Tollenaar and colleagues found no effect of propranolol

given prior to re-imagining disturbing memories or prior to retrieving emotional or

neutral information on the later integrity of those memories (Tollenaar et al. 2009a,

b). In one of the studies, the reactivation session occurred 7 days after the initial

learning and testing occurred 7 days after reactivation. Thus, the timing difference

between this and other studies may account for the differing results. Alternatively,

one could argue that the memory reactivation sessions were not adequately novel,

that is, they did not produce a prediction error, so the memory did not destabilize

sufficiently. Regardless of the interpretation, more studies in clinical populations

suffering from disorders of maladaptive memory are warranted.

In addition to propranolol, a few other studies into manipulations of

reconsolidation in healthy human subjects have been conducted, and they have

almost all used stress or cortisol as the manipulation. As mentioned above, both

cortisol/stress and GR antagonists can potentially inhibit memory reconsolidation,

but unfortunately to date only stress or cortisol has been tested in humans, while the

effects of GR antagonists are yet to be determined. Nevertheless, stress applied after

verbal episodic memory recall or after recall of neutral autobiographical memories

impairs later memory recall (Schwabe and Wolf 2010; Strange et al. 2010). Inter-

estingly, no effect was found for autobiographical memories with positive or

negative valence (Schwabe and Wolf 2010). Moreover, cortisol administered
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immediately prior to retrieval of a memory can inhibit initial retrieval, but the

reduction in memory persists even after a 1-week washout, suggesting that cortisol

can either produce a long-lasting memory retrieval impairment or that cortisol can

also disrupt reconsolidation (Tollenaar et al. 2009b). Post-retrieval stress has also

been shown to prevent memory updating in the form of incorporating new informa-

tion into an established memory trace (Dongaonkar et al. 2013). This could also be

interpreted as an inhibition of the memory destabilization process. In addition to

studies in healthy subjects, the effects of stress and cortisol, as well as propranolol,

on maladaptive memories in psychiatric disorders have also been explored and will

be discussed in the next sections.

5.2 Reconsolidation Disruption in PTSD and Anxiety Disorders

In contrast to studies of memory reconsolidation in healthy subjects, relatively few

studies have examined the ability of pharmacological manipulations to improve

symptoms of PTSD or other psychiatric disorders. However, the first randomized,

double-blind, placebo-controlled trial of propranolol in subjects with PTSD was

very promising. Subjects were asked to describe the traumatic event that led to their

PTSD in a script preparation exercise. Immediately following this recall session,

subjects received either placebo or propranolol. A week later physiological

responses to the script were measured, and a reduction in heart rate, skin conduc-

tance, and EMG was found in the propranolol treatment group (Brunet et al. 2008).

A follow-up open-label study found that both male and female subjects given

6 reactivations+propranolol exhibited markedly reduced PTSD symptoms, even

to the point of not being clinically diagnosable (Brunet et al. 2011). Finally, another

open-label trial examined other markers of clinical efficacy of memory reactivation

+propranolol to treat PTSD and found an overall improvement in most measures

including quality of life and depression symptoms. This study also found that the

age of the memory or other comorbidities did not reduce the efficacy of treatment,

though women may respond more than men (Poundja et al. 2012). Overall, this

series of experiments strongly suggests that reactivation-dependent propranolol

administration is a viable treatment strategy.

The effects of cortisol on phobia-based anxiety disorders and PTSD have also

been examined. Experiments using cortisol have all given cortisol prior to exposure

to the fearful stimulus or reactivation of the traumatic memory. Thus, there have

been no experiments that explicitly test the ability of cortisol to interfere with

memory reconsolidation. Nevertheless, cortisol has been reported to reduce general

feelings of fear, and the reduction in fear is maintained when subjects are exposed

to the phobic stimulus (social stress or spider) (Soravia et al. 2006). Fear of heights

is also reduced when cortisol is administered prior to exposure therapy sessions

(de Quervain et al. 2011). Finally, one month of cortisol treatment in PTSD subjects

reduced symptoms overall and reduced the incidence of daily traumatic memories

(Aerni et al. 2004). Taken together these studies suggest that cortisol can reduce

fear and the intrusion of fear-associated maladaptive memories; however, the

Pharmacological Disruption of Maladaptive Memory 403



mechanism is unclear. The most parsimonious interpretation is that cortisol some-

how interferes with memory retrieval rather than inhibiting reconsolidation. In the

studies where cortisol was given in conjunction with exposure therapy, it is possible

that extinction of the memory was facilitated, which is an interpretation supported

by some of the preclinical studies discussed above. Regardless of the mechanism,

the promising effect of cortisol in reducing anxiety disorders warrants further

investigation.

Finally, the other major pharmaceutical agents that inhibit reconsolidation in

animal models have not been tested in clinical populations, primarily due to

potential toxic or other side effects. For example, protein synthesis inhibitors and

NMDA antagonists are generally not considered viable clinical therapeutics. How-

ever, rapamycin (aka sirolimus) is an mTOR inhibitor that is approved for human

use as an immunosuppressive agent that helps prevent organ rejection. An immuno-

suppressive agent would not be good to give to individuals with psychiatric

disorders on a long-term basis, but it is plausible that a one-time administration

after reactivation of traumatic or fearful memories could be therapeutic with

minimal side effects. Thus, one study in combat veterans has been conducted

where sirolimus was administered immediately after individuals were asked to

remember a traumatic event. Veterans from the Vietnam War era, who presumably

had much older traumatic memories, received no benefit from sirolimus treatment.

On the other hand, veterans from more recent wars did demonstrate a reduction in

symptoms after treatment (Surı́s et al. 2013). Therefore, the age of a memory—as a

boundary condition—may be an important factor in designing treatments. Older

traumatic memories may need to be reactivated multiple times or may require

disruption with different pharmacological agents than more recent memories.

In summary, PTSD and other anxiety disorders such as social phobia show

promise for treatment using a reconsolidation disruption strategy or even by

inhibiting memory retrieval. Clinical assessment of mechanisms for

reconsolidation disruption is still in an early phase. There is a need for more

double-blind, placebo-controlled trials of agents like propranolol and sirolimus

and a need to identify new pharmacological targets for reconsolidation disruption

that maximize effectiveness and minimize side effects.

5.3 Addictive Disorders

The other major psychiatric disorder that has received some clinical attention with

regard to reconsolidation disruption as a treatment strategy is addiction. These

studies are still in their infancy, but some experiments have been done to at least

establish a proof of principle. Two studies of heroin-dependent subjects have

examined the ability of social stress and propranolol to disrupt memory

reconsolidation. In these experiments, the individuals are asked to learn word lists

that contain either neutral words or words associated with heroin that could have

either a positive or negative valence. Post-retrieval social stress (Zhao et al. 2009)

and pre-retrieval propranolol (Zhao et al. 2011) were both able to reduce later
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memory for heroin-associated words, suggesting disruption of reconsolidation.

Unfortunately, these studies were not designed to look at whether disrupting

heroin-associated memories could reduce later drug use. A more recent study in

cocaine-dependent individuals found that post-cocaine memory retrieval adminis-

tration of propranolol was able to reduce reported cocaine craving a day later. In

this experiment the subjects were brought back a week later to assess craving again,

and reported drug use was measured. The propranolol-treated group showed no

significant reduction in craving after 7 days, and there was no significant reduction

in cocaine use; however, the authors report that the study was not powered

sufficiently to make any strong claims about effects on drug use. While the results

from this study were not dramatic, they do at least point to some short-term

effectiveness of post-retrieval propranolol on craving (Saladin et al. 2013). Future

studies would need to test the effects of propranolol on a larger sample size, use

multiple doses of propranolol, and determine if efficacy can be increased by

multiple reactivation sessions as was observed for PTSD symptoms. Finally, drug

addiction may be treated more effectively by manipulations other than propranolol,

making it imperative that additional pharmaceuticals be identified and tested.

5.4 Other Psychiatric Disorders

In this section, we will briefly note what is known about reconsolidation processes

that may be associated with other psychiatric disorders and the potential for using

reconsolidation disruption as a therapeutic strategy. First, we are unaware of any

studies that have specifically tested the possibility that a pharmacological disruption

of reconsolidation could treat disorders like depression, bipolar disorder, or schizo-

phrenia. However, the treatment of depression with electroconvulsive shock ther-

apy (ECT) is actually what gave scientists the first clues that memories are labile

and subject to disruption soon after they are acquired, because ECT produced

retrograde amnesia for events that occurred right before the therapy session.

Thus, ECT appeared able to disrupt memory consolidation (Squire et al. 1976),

and some evidence was even reported for clinical benefit from reactivation-

dependent amnesia (Rubin 1976). While this has been established for over

50 years, only recently have researchers begun to more specifically test the hypoth-

esis that reconsolidation blockade could be beneficial in depression. In one study,

depressed subjects were asked to recall an emotional episodic memory prior to

ECT. Control subjects were given ECT but did not reactivate the memory before-

hand. The results showed that ECT disrupted reconsolidation of the memory only in

the reactivation condition (Kroes et al. 2014). Therefore, emotional memories can

be disrupted in depressed subjects using reconsolidation blockade. It will be

interesting in future studies to determine if blocking the reconsolidation of

memories associated with the negative thoughts and ruminations that characterize

depression can improve treatment.

Schizophrenia is a disorder that involves impaired cognition and disordered

thoughts that can lead to the formation of bizarre associations and beliefs that
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impair an individual’s ability to function. One could envision a scenario where

memory for these bizarre beliefs is disrupted through interfering with

reconsolidation of the memory and that this could improve overall functioning.

On the other hand, dysfunctional memory consolidation and reconsolidation pro-

cesses could lead to the creation of these bizarre beliefs, so it may also be possible

to improve function by normalizing learning and memory circuitry. While these

hypotheses have not been tested directly, one study has examined whether induc-

tion of a psychotic-like state can alter memory reconsolidation. Corlett and

colleagues gave healthy subjects a subanesthetic, mildly psychotogenic dose of

ketamine prior to retrieval of a previously learned fear memory. Ketamine pro-

duced dissociative and slight psychosis-like effects that mimicked some of the

features of psychosis in schizophrenia. The subjects whose memory was reactivated

under ketamine had stronger fear memories the following day in the absence of

ketamine than subjects whose reactivated the memory after placebo administration

(Corlett et al. 2013). The conclusion from this study is that conditions that produce a

psychotic-like state favor enhancement of reconsolidation, which could lead to the

abnormal strengthening of delusional thoughts, turning these thoughts into strong

beliefs. The learning theory of delusions is intriguing, and future studies will have

to validate these results, preferably in subjects with schizophrenia. The mechanism

of the effect is also unclear because ketamine is an NMDA antagonist, which, as

described above, almost always disrupts memory reconsolidation rather than

facilitating it. However, in the clinical study, ketamine was given before the

reactivation session, creating a psychotogenic state before the memory was

reactivated that may have enhanced destabilization of the memory. It may be that

a post-reactivation infusion would disrupt reconsolidation by altering memory

restabilization, and indeed, we have unpublished data that suggests this is the

case (Honsberger, Corlett, and Taylor, in submission). Ketamine also acts on

other neurotransmitter systems, raising the possibility that the effect was not solely

mediated by NMDA receptor blockade.

In summary, the use of pharmacological methods to disruptive maladaptive

memories in psychiatric disorders is in its infancy, but the few studies described

here point to many exciting areas for future research. It will be especially interest-

ing to develop methods for treating disorders like depression and schizophrenia

through manipulations of learning and memory, which could provide a whole new

avenue for therapeutic development that could overcome the many downsides of

the few, only mildly effective treatments that currently exist.

6 Conclusions

Memory reconsolidation, the process by which memories are restabilized after

retrieval, is argued to have special relevance to several psychiatric disorders both

for the treatment potential and as a mechanism for maladaptive maintenance and

strengthening of memory. The study of reconsolidation has been rejuvenated in

recent years, and evidence from a variety of memory tasks, and indeed species, has
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revealed several important implications for biological psychiatry. First, if memories

can be disrupted after retrieval, then this has significant potential for treatment of

persistent or exaggerated memory in PTSD, addiction, and other psychiatric

disorders. Second, given the parallels between the initial storage of memory and

an active reconsolidation process after retrieval, it is possible that reconsolidation

may not only maintain but also update or strengthen memories after retrieval.

Specifically, this latter possibility may be a means by which memories become

exaggerated over time, even without additional training trials (or exposures to the

reinforcer) and thus may contribute to the etiology of disorders such as PTSD and

addiction. Neurobiological studies of reconsolidation have begun to describe the

signal transduction and transcription events required for post-retrieval stabilization

of memory. In this review, we have discussed these findings and how understanding

the behavioral conditions, anatomical substrates, and molecular mechanisms

required for reconsolidation will inform our conceptualization of reconsolidation,

its relationship with memory consolidation, and its potential role in both treatment

and the persistence of pathology in several psychiatric disorders. Specifically, we

have argued that the enhancement of memory after retrieval supports the hypothesis

that reconsolidation is a real, specific process that maintains, strengthens, and

possibly updates memory. Evidence suggests that dysregulation of cellular and

molecular mechanisms may lead to ongoing strengthening of memory and poten-

tially cause dysfunctional emotional and behavioral responses, a hallmark of

several psychiatric disorders. These findings argue that dysfunctional

reconsolidation processes are involved in the etiology of psychiatric disorders.

Several important issues, however, remain. Do stressors or drugs alter destabili-

zation as well as restabilization mechanisms, and how might these processes

interact? What are the optimal reactivation conditions for reconsolidation

manipulations of newer versus older memories? Do reconsolidation and extinction

processes interact? Are there critical age-related constraints or vulnerabilities for

maladaptive memory reconsolidation processes and/or therapeutic windows for

intervention? Could the development of maladaptive memory processes be

prevented pharmacologically? In considering how and why some memories

become abnormally strong, and others do not, we have argued that it may be

important to distinguish the role of reconsolidation in normal memories versus

pathological memories. Under normal conditions, reconsolidation may act to

update and maintain memories. In contrast, under altered conditions due to acute

or chronic drug use, stress, or genetic predisposition, reconsolidation may act to

enhance memories contributing to persistent maladaptive memories. The idea that

maladaptive memories are a core feature of most psychiatric disorders may also

explain the lack of behavioral and cognitive flexibility, impaired plasticity, gener-

alization, and resistance to extinction of cues and contexts. The rediscovery of

memory reconsolidation and its status as a vibrant research area has renewed

interest in its potential as a therapeutic target. We, of course, advise that careful

attention be given—and additional basic and translational research be targeted—to

the nuances and boundaries of reconsolidation processes. Potentials for memory

strengthening and hence symptom worsening are critical factors for serious
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consideration. Nonetheless, the dynamic nature of memory reconsolidation paints a

picture that is encouraging for translation into viable treatments and, in our opinion,

inspires basic neuroscience research.
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Pedreira ME, Pérez-Cuesta LM, Maldonado H (2004) Mismatch between what is expected and

what actually occurs triggers memory reconsolidation or extinction. Learn Mem 11:579–585

Peters J, Kalivas PW, Quirk GJ (2009) Extinction circuits for fear and addiction overlap in

prefrontal cortex. Learn Mem 16:279–288

Phillips ML, Swartz HA (2014) A critical appraisal of neuroimaging studies of bipolar disorder:

toward a new conceptualization of underlying neural circuitry and a road map for future

research. Am J Psychiatry 171(8):829–843

Pitman RK, Milad MR, Igoe SA, Vangel MG, Orr SP, Tsareva A, Gamache K, Nader K (2011)

Systemic mifepristone blocks reconsolidation of cue-conditioned fear; propranolol prevents

this effect. Behav Neurosci 125:632–638

Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, Milad MR, Liberzon

I (2012) Biological studies of post-traumatic stress disorder. Nat Rev Neurosci 13:769–787

Poundja J, Sanche S, Tremblay J, Brunet A (2012) Trauma reactivation under the influence of

propranolol: an examination of clinical predictors. Eur J Psychotraumatol 3

Przybyslawski J, Sara SJ (1997) Reconsolidation of memory after its reactivation. Behav Brain

Res 84:241–246

Przybyslawski J, Roullet P, Sara SJ (1999) Attenuation of emotional and nonemotional memories

after their reactivation: role of beta adrenergic receptors. J Neurosci 19:6623–6628

Ramirez DR, Bell GH, Lasseter HC, Xie X, Traina SA, Fuchs RA (2009) Dorsal hippocampal

regulation of memory reconsolidation processes that facilitate drug context-induced cocaine-

seeking behavior in rats. Eur J Neurosci 30:901–912

Raybuck JD, Lattal KM (2014) Differential effects of dorsal hippocampal inactivation on expres-

sion of recent and remote drug and fear memory. Neurosci Lett 569:1–5

Ren Z-Y, Liu M-M, Xue Y-X, Ding Z-B, Xue L-F, Zhai S-D, Lu L (2012) A critical role for

protein degradation in the nucleus accumbens core in cocaine reward memory. Neuropsycho-

pharmacology 38:778–790

Robinson MJF, Franklin KBJ (2007) Central but not peripheral beta-adrenergic antagonism blocks

reconsolidation for a morphine place preference. Behav Brain Res 182:129–134

412 J.R. Taylor and M.M. Torregrossa



Robinson MJF, Franklin KBJ (2010) Reconsolidation of a morphine place preference: impact of

the strength and age of memory on disruption by propranolol and midazolam. Behav Brain Res

213:201–207

Robinson MJF, Armson M, Franklin KBJ (2011a) The effect of propranolol and midazolam on the

reconsolidation of a morphine place preference in chronically treated rats. Front Behav

Neurosci 5:42

Robinson MJF, Ross EC, Franklin KBJ (2011b) The effect of propranolol dose and novelty of the

reactivation procedure on the reconsolidation of a morphine place preference. Behav Brain Res

216:281–284

Roozendaal B, Hui GK, Hui IR, Berlau DJ, McGaugh JL, Weinberger NM (2006a) Basolateral

amygdala noradrenergic activity mediates corticosterone-induced enhancement of auditory

fear conditioning. Neurobiol Learn Mem 86:249–255

Roozendaal B, Okuda S, Van der Zee EA, McGaugh JL (2006b) Glucocorticoid enhancement of

memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proc

Natl Acad Sci USA 103:6741–6746

Roullet P, Sara S (1998) Consolidation of memory after its reactivation: involvement of beta

noradrenergic receptors in the late phase. Neural Plast 6:63–68

Rubin RD (1976) Clinical use of retrograde amnesia produced by electroconvulsive shock. A

conditioning hypothesis. Can Psychiatr Assoc J 21:87–90

Sadler R, Herzig V, Schmidt WJ (2007) Repeated treatment with the NMDA antagonist MK-801

disrupts reconsolidation of memory for amphetamine-conditioned place preference. Behav

Pharmacol 18:699–703

Saladin ME, Gray KM, McRae-Clark AL, Larowe SD, Yeatts SD, Baker NL, Hartwell KJ, Brady

KT (2013) A double blind, placebo-controlled study of the effects of post-retrieval propranolol

on reconsolidation of memory for craving and cue reactivity in cocaine dependent humans.

Psychopharmacology (Berl) 226:721–737

Sanchez H, Quinn JJ, Torregrossa MM, Taylor JR (2010) Reconsolidation of a cocaine-associated

stimulus requires amygdalar protein kinase A. J Neurosci 30:4401–4407

Sara SJ (2000) Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem

7:73–84

Schwabe L, Wolf OT (2010) Stress impairs the reconsolidation of autobiographical memories.

Neurobiol Learn Mem 94:153–157

Schwabe L, Nader K, Wolf OT, Beaudry T, Pruessner JC (2012) Neural signature of

reconsolidation impairments by propranolol in humans. Biol Psychiatry 71:380–386

Schwabe L, Nader K, Pruessner JC (2013) β-Adrenergic blockade during reactivation reduces the

subjective feeling of remembering associated with emotional episodic memories. Biol Psychol

92:227–232

Sevenster D, Beckers T, Kindt M (2012) Retrieval per se is not sufficient to trigger reconsolidation

of human fear memory. Neurobiol Learn Mem 97:338–345

Sevenster D, Beckers T, Kindt M (2013) Prediction error governs pharmacologically induced

amnesia for learned fear. Science 339:830–833

Shi X, Miller JS, Harper LJ, Poole RL, Gould TJ, Unterwald EM (2014) Reactivation of cocaine

reward memory engages the Akt/GSK3/mTOR signaling pathway and can be disrupted by

GSK3 inhibition. Psychopharmacology (Berl) 231(16):3109–3118

Si J, Yang J, Xue L, Yang C, Luo Y, Shi H, Lu L (2012) Activation of NF-κB in basolateral

amygdala is required for memory reconsolidation in auditory fear conditioning. PLoS One 7:

e43973

Soeter M, Kindt M (2010) Dissociating response systems: erasing fear from memory. Neurobiol

Learn Mem 94:30–41

Soeter M, Kindt M (2012a) Erasing fear for an imagined threat event. Psychoneuroendocrinology

37:1769–1779

Pharmacological Disruption of Maladaptive Memory 413



Soeter M, Kindt M (2012b) Stimulation of the noradrenergic system during memory formation

impairs extinction learning but not the disruption of reconsolidation. Neuropsychophar-

macology 37:1204–1215

Soravia LM, Heinrichs M, Aerni A, Maroni C, Schelling G, Ehlert U, Roozendaal B, de Quervain

DJ-F (2006) Glucocorticoids reduce phobic fear in humans. Proc Natl Acad Sci USA

103:5585–5590

Sorg BA (2012) Reconsolidation of drug memories. Neurosci Biobehav Rev 36:1400–1417

Squire LB, Chace PM, Slater PC (1976) Retrograde amnesia following electroconvulsive therapy.

Nature 260:775–777

Strange BA, Kroes MCW, Fan JE, Dolan RJ (2010) Emotion causes targeted forgetting of

established memories. Front Behav Neurosci 4:175

Surı́s A, Smith J, Powell C, North CS (2013) Interfering with the reconsolidation of traumatic

memory: sirolimus as a novel agent for treating veterans with posttraumatic stress disorder.

Ann Clin Psychiatry 25:33–40

Taubenfeld SM, Riceberg JS, New AS, Alberini CM (2009) Preclinical assessment for selectively

disrupting a traumatic memory via postretrieval inhibition of glucocorticoid receptors. Biol

Psychiatry 65:249–257

Taylor JR, Olausson P, Quinn JJ, Torregrossa MM (2009) Targeting extinction and

reconsolidation mechanisms to combat the impact of drug cues on addiction. Neuropharma-

cology 56(Suppl 1):186–195
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Abstract

Pharmaceuticals and medical devices hold the promise of enhancing brain

function, not only of those suffering from neurodevelopmental, neuropsychiatric

or neurodegenerative illnesses, but also of healthy individuals. However, a

number of lifestyle interventions are proven cognitive enhancers, improving
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attention, problem solving, reasoning, learning and memory or even mood.

Several of these interventions, such as physical exercise, cognitive, mental and

social stimulation, may be described as environmental enrichments of varying

types. Use of these non-pharmacological cognitive enhancers circumvents some

of the ethical considerations associated with pharmaceutical or technological

cognitive enhancement, being low in cost, available to the general population

and presenting low risk to health and well-being. In this chapter, there will be

particular focus on the effects of exercise and enrichment on learning and

memory and the evidence supporting their efficacy in humans and in animal

models will be described.

Keywords

Cognitive enhancement • Physical activity • Environmental enrichment •

Neurogenesis • BDNF

1 Introduction

1.1 Exercise

Physical inactivity is a risk factor for development of several non-communicable

diseases including cardiovascular disease, type 2 diabetes and certain types of

cancer and is associated with a decrease in life expectancy (Lee et al. 2012).

While regular exercise enhances and preserves general health, it also confers

specific benefits on the nervous system that result in measurable cognitive improve-

ment. Such improvements have been seen both in cognitively impaired and in

healthy subjects, indicating the potential of exercise to act as a neurotherapeutic

(Lautenschlager et al. 2008), a neuroprotectant (Kramer and Erickson 2007a; Rovio

et al. 2005) and an enhancer of normal cognitive performance (Griffin et al. 2011).

While most forms of exercise promote good health, it appears that aerobic exercise

is a more robust enhancer of brain health when compared with static or resistance

exercise. The use of rodent models is allowing the cellular and molecular

mechanisms underlying these improvements to be characterised (Voss

et al. 2013). Increased expression of several growth factors, particularly brain-

derived neurotrophic factor (BDNF), is consistently associated with exercise-

induced cognitive enhancement (Vaynman and Gomez-Pinilla 2006), while the

ability of exercise to remodel brain morphology via angiogenesis, synaptogenesis

and neurogenesis may underpin its cognitive-enhancing efficacy (Lista and

Sorrentino 2010).
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1.2 Enrichment

Environmental enrichment in laboratory rodents is easily defined; it simply means

the addition of sources of stimulation to the standard housing environment.

Depending on the experiment, this may include sources of social stimulation,

such as an increased number of cagemates, physical stimulation such as running

wheels or a larger cage environment in which to move around or mental stimulation

such as provision of novel objects and toys or participation in learning experiments

(van Praag et al. 2000). When reviewing the literature on environmental enrich-

ment, one must be mindful of the profound effects of exercise on brain function;

thus care must be taken to distinguish between experimental conditions that include

opportunities to engage in increased physical activity, such as provision of running

wheels or participation in treadmill running, and those that do not (Bechara and

Kelly 2013). What does enrichment mean in the case of humans? Possible sources

of enrichment include mental stimulation such as reading, playing chess, solving

puzzles or engagement in formal education, social stimulation such as participation

in group activities and interaction with family, friends, neighbours and the wider

community or, more recently, participation in targeted cognitive training, including

computerized training programmes. Again, animal models are proving useful in

characterising the biological underpinnings of the cognitive effects of enrichment,

at least some of which may be shared with exercise (Pang and Hannan 2013; Brown

et al. 2003).

2 Non-pharmacological Cognitive Enhancement in Animals

2.1 Exercise as a Cognitive Enhancer in Rodents

There is a vast and growing literature reporting the ability of exercise to enhance

cognitive function, especially learning and memory, in animals and humans (Voss

et al. 2013; Gomez-Pinilla and Hillman 2013). The use of rats and mice as experi-

mental subjects has allowed the mechanisms underlying exercise-induced cognitive

enhancement to be investigated at cellular and molecular levels. The many

published studies have employed different forms of exercise including forced

treadmill running and voluntary wheel running, while various tasks such as object

recognition memory, spatial learning in mazes and contextual fear conditioning

have been used to assess cognitive performance (Voss et al. 2013). At the cellular

level, the impact of exercise on forms of synaptic plasticity, particularly long-term

potentiation (LTP), has been widely investigated. Exercise appears to have particu-

larly powerful effects on the function of the hippocampus, a region of the medial

temporal lobe crucial to spatial navigation and memory formation and one of the

few brain regions in which new neurons can develop, a process known as adult

hippocampal neurogenesis. The fact that exercise acts as a powerful stimulator of

neurogenesis in the dentate gyrus subfield of the hippocampus may explain, at least

Non-pharmacological Approaches to Cognitive Enhancement 419



in part, its profound effects on hippocampus-dependent memory (van Praag

et al. 1999b; Creer et al. 2010).

Short-term and long-term exercise protocols, using both forced and voluntary

exercise, result in enhanced cognitive performance and synaptic plasticity in

rodents at different stages of the life span. Voluntary wheel running enhances

LTP and spatial learning in the Morris water maze (van Praag et al. 1999a) and

spatial pattern separation (Creer et al. 2010) in young adult mice, while wheel

running enhances LTP (Farmer et al. 2004) water maze learning (Vaynman

et al. 2004b; Gomez-Pinilla et al. 2008; Ding et al. 2006), fear conditioning

(Hopkins and Bucci 2010b) and recognition memory (Hopkins and Bucci 2010a)

in young rats. One week of forced treadmill running improves expression of LTP

and recognition memory in young rats (Bechara et al. 2014; O’Callaghan

et al. 2007; Griffin et al. 2009), while several months of forced exercise enhances

water maze learning in the young (Cassilhas et al. 2012) and aged (O’Callaghan

et al. 2009; Albeck et al. 2006) rat. It must be noted that in some studies exercise

failed to enhance cognitive function (Kennard andWoodruff-Pak 2012), suggesting

that the effects of exercise on cognition may depend on variable factors such as the

duration of exercise exposure, the modality of the exercise undertaken (forced

versus voluntary) and the intensity of the exercise, along with the nature and

difficulty of the cognitive task (Berchtold et al. 2010). However, the overall weight

of evidence gives powerful support to the hypothesis that exercise is a cognitive

enhancer in both young and aged rodents (Vaynman and Gomez-Pinilla 2006).

2.2 Enrichment as a Cognitive Enhancer in Rodents

A complex cage environment that includes provision of running wheels is proven to

enhance learning in laboratory rodents (Rosenzweig and Bennett 1996; van Praag

et al. 2000, 2002; Pang and Hannan 2013). Such enrichment can also protect against

the normal decline in memory associated with ageing and a number of different

neurological and psychological pathologies such as depression, Huntington’s dis-

ease and Alzheimer’s disease in both humans and animal models (Mora et al. 2007;

Laviola et al. 2008; Brenes et al. 2009; Nithianantharajah and Hannan 2011).

Animals housed in enriched environments have improved recognition and spatial

memory compared with standard housed controls, while enrichment can rescue

cognitive deficits induced by experimentally induced ischaemia or surgical lesions

(Gobbo and O’Mara 2004; Mandolesi et al. 2008). It has been suggested that

enrichment in early adulthood and throughout one’s life might increase the resil-

ience of the brain in old age, resulting in the concept of ‘cognitive reserve’

(Nithianantharajah and Hannan 2009).

Each different stimulatory factor present in a typical enriched environment may

contribute to the resulting improvement in cognitive function; indeed, it has been

suggested that different aspects of the environment can induce the same

improvements via dissociable pathways (Olson et al. 2006). Several studies have

assessed the effects of enrichment in the absence of exercise on various aspects of
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cognitive function. This type of enrichment is linked with reduced anxiety in

rodents (Galani et al. 2007) and has been shown to enhance object recognition

and spatial memory in a time-dependent manner in the rat; continuous housing in an

enriched environment was necessary for at least 3 weeks before cognitive benefit

was detectable (Birch et al. 2013). Other studies have shown that enrichment

induces cognitive benefit in middle-aged, but not young, mice, indicating that

enrichment may have the particular ability to improve memory where cognitive

impairment exists (Harburger et al. 2007a, b). Such observations have also been

reported in rats, indicating that enrichment in the absence of exercise may be an

efficacious cognitive enhancer in aged animals (Kumar et al. 2012), but a less

robust enhancer of cognition in young animals (Gobbo and O’Mara 2004). These

observations may be of translational relevance; it is gratifying to note that cognitive

stimulation may enhance brain function in older subjects, where participation in

regular physical activity may be difficult due to frailty or illness.

2.3 The Potential Mechanisms Underlying Exercise
and Enrichment-Induced Cognitive Enhancement

2.3.1 Neurotrophins and Growth Factors
Numerous studies have shown that exercise significantly increases the expression of

the neurotrophic factor BDNF in the hippocampus and several neocortical regions

(Molteni et al. 2002; Neeper et al. 1996; Vaynman et al. 2004a; Griffin et al. 2009;

Ding et al. 2011). BDNF plays a vital role in neurodevelopment, but is now

accepted to be a key regulator of synaptic plasticity in the developing and adult

brain (Bekinschtein et al. 2014). Exogenous BDNF can induce a form of LTP

(Bramham and Panja 2014) and improve hippocampus-dependent learning (Griffin

et al. 2009; Bechara et al. 2014), potentially via its ability to stimulate plasticity-

related intracellular signalling pathways following binding to its receptor, TrkB

(Bekinschtein et al. 2014). BDNF can depolarize neurons, leading to increased

neurotransmitter release and therefore rapid modulation of neuronal communica-

tion (Lessmann 1998). Some studies have noted significant changes in BDNF

mRNA expression within as little as 2 h following exercise (Huang et al. 2006;

Soya et al. 2007). Since BDNF expression can be upregulated rapidly and it is

released in an activity-dependent manner, it has been proposed that BDNF mediates

the rapidly observed aspects of cognitive enhancement induced by exercise

(Bechara et al. 2014). It has also been suggested that exercise may increase the

brain’s resistance to damage and degeneration through the ability of BDNF to

regulate neuronal growth and survival (Neeper et al. 1996). Other growth factors

may mediate exercise-induced improvements in cognitive function. Some evidence

suggests that nerve growth factor (NGF) expression in the hippocampus is

increased following exercise (Neeper et al. 1996), and exercise has been shown to

ameliorate the age-related decline in expression of both BDNF and NGF, concomi-

tant with improved spatial learning (O’Callaghan et al. 2009). NGF, though first

identified as a key regulator of embryonic development of the nervous system, also
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plays important roles in the adult nervous system, including modulation of hippo-

campal plasticity (Conner et al. 2009). Enrichment in the absence of exercise also

induces a neurotrophic response in the hippocampus, with exposure to an enriched

environment increasing expression of NGF (Birch et al. 2013), but not BDNF

(Bindu et al. 2007; Kumar et al. 2012). Exogenous NGF has been shown to

mimic the cognitive effects of enrichment in young rats (Birch and Kelly 2013).

Peripherally produced growth factors such as insulin-like growth factor 1 (IGF-1)

may be a link between the systemic and the central changes induced by exercise.

IGF-1 receptors are abundantly expressed in the hippocampus and blocking these

receptors during exercise has been shown to inhibit exercise-induced enhancements

in memory (Ding et al. 2006). Furthermore, spatial memory impairments displayed

by serum IGF-1 deficient mice are ameliorated by exogenous IGF-1 administration

(Trejo et al. 2008).

2.3.2 Synaptogenesis and Neurogenesis
The formation of new synapses is likely to be critical to storage of new information

in the brain and is among the neuroplastic changes induced by physical activity and

enrichment. There are several reports of increased expression of the synaptic

vesicle proteins synaptophysin and synapsin-I following exercise and some evi-

dence indicates that exercise-induced synaptogenesis may be a BDNF-dependent

process (Vaynman et al. 2004a; Ding et al. 2006; Quirie et al. 2012). Voluntary

running increases the density of dendritic spines in granule and CA1 pyramidal

neurons of the dentate gyrus and layer III pyramidal neurons of the entorhinal

cortex (Stranahan et al. 2007), while both forced and voluntary running increase

mossy fibre sprouting (Toscano-Silva et al. 2010). Voluntary wheel running

increases the expression of the AMPA receptor subunits GluR2/3 and phosphory-

lation of the NMDA receptor subunits GluN1 and GluN2B (Dietrich et al. 2005),

providing further evidence that enhancement of synaptic efficacy may underpin the

cognitive enhancements induced by exercise. Enrichment in the absence of physical

activity increases expression of synaptic vesicle proteins, indicating that cognitive

and social stimulation can also stimulate synaptogenesis (Birch et al. 2013).

Adult hippocampal neurogenesis is defined as the process of generating func-

tional neurons from neuronal precursors in the subgranular zone of the dentate

gyrus (Ming and Song 2011). The process involves proliferation of neural precursor

cells and their differentiation, migration and integration into the granule cell

network of the dentate gyrus (Aimone et al. 2006), a process that takes 3–4

weeks. The majority of proliferating cells are not integrated into the hippocampal

circuitry and undergo apoptosis; thus neurogenesis depends on increased cell

proliferation in tandem with conditions conducive to cell survival. By the time

adult-born neurons are 4–8 weeks old, they are preferentially recruited into circuits

supporting spatial memory compared with existing granule cells, consistent with

their decreased threshold for plasticity (Kee et al. 2007). Therefore, as adult-

generated neurons mature they are increasingly likely to be incorporated into

circuits supporting spatial memory (Kee et al. 2007). Although the contribution

of neurogenesis to hippocampus-dependent learning and memory has yet to be fully
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elucidated, it is being increasingly accepted that neurogenesis may be of functional

relevance to learning and memory (Gage and Temple 2013). Exercise is by far the

most robust neurogenic stimulus yet identified (van Praag 2009). Considering the

time frame of the entire process, neurogenesis is a longer-term neuroplastic effect

of exercise compared with the rapidly induced effects of exercise on synaptic

transmission and plasticity. However, the onset of the neurogenic effect of exercise

is rapid with cell genesis reportedly peaking following 3 days of voluntary exercise

(Kronenberg et al. 2006) and remaining elevated for up to 32 days before returning

to baseline. Numerous other studies have shown that both voluntary and forced

exercise can induce an increase in cell proliferation in the dentate gyrus, the

survival of neural progenitor cells and their differentiation into neurons rather

than glial cells (van Praag et al. 1999a; Fabel et al. 2003; Van der Borght

et al. 2009; Wu et al. 2008; Creer et al. 2010). A direct comparison of both exercise

modalities indicated that forced exercise is a significantly more robust neurogenic

stimulus compared with wheel running, an observation that may explain some of

the conflicting results reported in the literature relating to exercise and cognition

(Leasure and Jones 2008). The potent effects of exercise on neurogenesis have been

observed in the hippocampus of young, middle-aged and aged animals indicating

that the brain retains at least some neurogenic ability throughout the life span (van

Praag et al. 1999a, 2005; Wu et al. 2008).

Both exercise and cognitive enrichment can bring about similar improvements in

learning and memory, at least in aged animals, but it is unclear whether they do so

via similar neuroplastic mechanisms, including neurogenesis. An early study in this

area demonstrated that enrichment affected cell survival and not cell proliferation

whereas exercise increased cell division and net neuronal survival in mice (van

Praag et al. 1999a). It has been proposed that enrichment does not stimulate an

increase in proliferation per se but promotes increased survival of neuronal progen-

itor cells and hence increases the number of young neurons available to functionally

integrate into neuronal networks (Kempermann and Gage 1999). This would

suggest that cell survival and cell proliferation may be regulated by differing

mechanisms that can be affected by behavioural and environmental factors

(Olson et al. 2006). In contrast, enrichment in the absence of exercise has been

shown to increase hippocampus-dependent learning, cell proliferation, but not

survival, in the dentate gyrus of the rat (Birch et al. 2013). Another recent study

failed to observe any effect of enrichment alone on neurogenesis, but no cognitive

measures were assessed in parallel (Gregoire et al. 2014). The relative contribution

of the different aspects of an enriched environment to the cognitive enhancement

that it stimulates is a complex question that has yet to be answered, but it seems that

exercise is the most important element, at least in the case of young animals (Kobilo

et al. 2011). Where a cognitive impairment exists, as in the aged or diseased brain,

there may be greater capacity for other environmental stimuli such as social and

cognitive stimulation to induce a cognitive benefit (Lazarov et al. 2010).
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2.3.3 Angiogenesis and Vascular Growth Factors
Physical exercise influences the vasculature, with vasodilation the most obvious

and rapid change. Although the brain was originally believed to maintain a constant

blood supply in the face of changes in mean arterial pressure, there is now

overwhelming evidence to support an exercise-induced increase in cerebral blood

flow, possibly due to an increase in brain metabolism (Querido and Sheel 2007). At

a cellular level, physical activity has been linked with angiogenesis, the growth of

new capillaries from pre-existing blood vessels, in several brain regions including

the hippocampus, motor cortex and cerebellum (Isaacs et al. 1992; Swain

et al. 2003; Clark et al. 2009; Van der Borght et al. 2009). Vascular endothelial

growth factor (VEGF), a hypoxia-inducible secreted protein, plays an important

role in the angiogenic effects of exercise (Ferrara 2009; van Praag 2009). VEGF

expression is increased in skeletal muscle and hippocampus following a single bout

of moderate intensity exercise (Tang et al. 2010), while pharmacological blockade

of angiogenesis in the hippocampus impairs spatial learning in the water maze (Kerr

et al. 2010). However, other studies report minimal effects of exercise on VEGF

expression in the hippocampus suggesting that this angiogenic growth factor must

cross the blood–brain barrier (BBB) to induce angiogenesis in the brain (Fabel

et al. 2003). Some reports indicate that the BBB permeability may increase in

response to exercise, providing a potential route for signaling proteins to enter the

brain parenchyma from the circulation (Sharma et al. 1991; Watson et al. 2006). It

has also been suggested that increased circulation may permit delivery of more

nutrient metabolites, hormones, growth factors and oxygen to the hippocampus

while also facilitating metabolic waste disposal, leading to increased cell survival

and enhanced neurogenesis (Olson et al. 2006). In humans, cerebral blood volume

changes in the dentate gyrus have been correlated with aerobic fitness and cognitive

function (Pereira et al. 2007). Collectively, these experiments show that the hippo-

campus displays remarkable angiogenic plasticity and that the cerebral vasculature

responds to physical activity; thus vascular adaptations could be another key

mechanism underlying exercise-induced improvement in cognitive function.

Unsurprisingly, it appears that angiogenesis may be a more important factor in

mediating exercise-induced cognitive enhancement when compared with enrich-

ment in the absence of exercise. However, there is some evidence of modest

angiogenic activity in the hippocampus of environmentally enriched rats (Ekstrand

et al. 2008). Environmental enrichment that includes access to exercise equipment

is widely reported to induce angiogenesis, and it is likely that the major angiogenic

stimulus in such complex environments is increased physical activity.

The positive effects of exercise on cognitive function have been attributed to a

number of neuroplastic changes in the hippocampus including increased expression

of and signaling via growth factors, enhanced synaptic plasticity, synaptogenesis,

angiogenesis and neurogenesis. At least some of the cellular mechanisms underly-

ing each of these changes are likely to be shared. For example, administration of

BDNF, VEGF and IGF-1 has been shown to increase neurogenesis in the dentate

gyrus, while peripheral blockade of VEGF abolishes exercise-induced hippocampal

neurogenesis (Fabel et al. 2003). Certainly, it appears that several growth factors
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whose expression is upregulated by exercise and enrichment have both angiogenic

and neurogenic properties, and that both processes may be necessary for at least

some of the cognitive-enhancing effects of these non-pharmacological lifestyle

factors to be manifested.

3 Non-pharmacological Cognitive Enhancement
in the Healthy Human

Regular exercise confers long-term benefits on brain health, but evidence exists to

show that those with healthy brain function may also reap short-term cognitive

benefits of physical activity. A single bout of exercise can improve cognitive

performance in subject groups that are not cognitively impaired (Tomporowski

2003; Lambourne and Tomporowski 2010; Chang et al. 2012). In young healthy

adults, high-intensity running is reported to improve vocabulary learning (Winter

et al. 2007), while cycling improves performance of the frontal lobe-dependent

Stroop colour-word task (Ferris et al. 2007) and the hippocampus-dependent face-

name pairs (Griffin et al. 2011) and map recognition tasks (Grego et al. 2005).

Aerobic and resistance exercise make different physiological demands on the

cardiovascular, musculoskeletal, endocrine and respiratory systems and have been

reported to exert different effects on cognitive function; for example aerobic, but

not resistance, exercise enhances working memory in young people (Pontifex

et al. 2009). This suggests that exercise-induced enhancements in cognitive func-

tion are likely to be dependent on exercise modality, intensity and duration as well

as the physical fitness of subjects (Grego et al. 2004). During prolonged exercise,

fatigue-related factors such as heat stress, dehydration and hypoglycaemia can

impair short-term memory (Cian et al. 2001) while fatigue-related increases in

circulating cortisol and adrenaline reduced event-related potentials, a measure of

cortical activity (Grego et al. 2004). Thus it appears that exercise can enhance or

impair cognitive performance in a manner dependent on exercise intensity and

duration. Certainly, acute bouts of exercise can confer a cognitive advantage, at

least in the short term, since the persistence of these rapid exercise-induced effects

is as yet unknown (Griffin et al. 2011; Schmidt-Kassow et al. 2013). Physical

activity in children is linked with cognitive development; exercise appears to be

of particular benefit to development of executive function (Tomporowski

et al. 2011). In addition to physical activity, both cognitive and social stimulation

are crucial for normal development in childhood. Additional cognitive stimulation

for children from lower socioeconomic backgrounds, at home or in a preschool

setting, can significantly improve their academic achievements (Crosnoe

et al. 2010).

Evidence from experiments in animals has provided insights into the

mechanisms by which exercise may enhance brain function in humans. There are

several reports of an increase in circulating BDNF concentration in response to

exercise (Gold et al. 2003; Rojas Vega et al. 2006; Goekint et al. 2008; Tang

et al. 2008; Rasmussen et al. 2009; Cho et al. 2012); in some studies, a parallel

Non-pharmacological Approaches to Cognitive Enhancement 425



enhancement of cognitive function was observed (Ferris et al. 2007; Griffin

et al. 2011). These changes in BDNF concentration appear to be detectable only

after aerobic exercise, since resistance training has no such effect (Schiffer

et al. 2009; Goekint et al. 2010); hence it may be the case that the inability of

resistance exercise to increase BDNF concentration underlies its inability to

enhance cognitive function in several studies. Several studies indicate that

circulating NGF and IGF-1 do not increase in response to exercise (Gold

et al. 2003; Schiffer et al. 2009; Griffin et al. 2011).

The cellular origin of the exercise-induced BDNF response remains to be

elucidated. Several reports indicate that the brain itself may be the main contributor

of BDNF to the circulation during endurance exercise (Seifert et al. 2010;

Rasmussen et al. 2009) although muscle (Matthews et al. 2009), endothelial cells

(Nakahashi et al. 2000) and platelets (Fujimura et al. 2002) are also potential

sources. The correlation between exercise, cognitive function and BDNF is strong,

but the functional relationship between these elements is not yet understood. Based

on data from the animal literature, it may be speculated that candidate mechanisms

mediating the effects of exercise in humans would include short-term effects on

plasticity induced by neurotrophins, angiogenesis, synaptogenesis and

neurogenesis. For obvious reasons, direct assessment of these measures in humans

is technically difficult; however, it has recently been confirmed that adult hippo-

campal neurogenesis occurs in humans (Spalding et al. 2013). MRI analysis has

revealed that exercise increases blood volume in the dentate gyrus concomitant

with improved cognitive function (Pereira et al. 2007); the authors suggest that this

may be a correlate of neurogenesis.

4 Cognitive Enhancement in the Cognitively Impaired

Every human will experience some form of physical and mental decline in old age

but for many, age-related cognitive decline progresses from mild cognitive

impairment to vascular dementia, Alzheimer’s disease (AD) and other forms of

dementia that impair or even destroy quality of life and the ability to live indepen-

dently. Others struggle with the cognitive impairment that accompanies

Parkinson’s Disease (PD), depression, schizophrenia and other mental disorders.

The identification and implementation of strategies that promote healthy aging and

that improve cognitive performance in specific patient groups, such as physical

activity and mental and social stimulation, is thus of broad societal and economic

benefit. Worryingly, recent data on lifestyle trends in the United States show that,

on average, individuals older than 15 years of age spend almost 55 % of their leisure

time watching television, compared with 20 % of free time spent engaging in

cognitively stimulating activities such as reading or socializing and only 6 % of

their leisure time exercising (American Time Use Study, U.S. Bureau of Labor

Statistics 2013); similar trends have been observed globally (Heath et al. 2012;

Olafsdottir et al. 2014), with parallel increases in overweight and obesity. Given the

impact that a cognitively and physically active lifestyle can have on the health of
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the mind and body, a lack of stimulation may be causing detrimental effects in the

general population that will impact on future mental health.

4.1 Age-Related Cognitive Decline and Dementia

The link between a healthy lifestyle and a healthy old age is indisputable and

exercise is a key element of this relationship. The decreased incidence of cognitive

impairment and dementia observed in elderly persons who undertake regular

physical activity is strong evidence of the neuroprotective effects of exercise

(Geda et al. 2010; Laurin et al. 2001; Colcombe et al. 2004). In older adults without

dementia the volume of the hippocampus shrinks 1–2 % annually (Raz et al. 2005);

such atrophy increases the risk of memory impairment in late adulthood (Jack

et al. 2010). The smaller hippocampal volume and poorer memory performance

associated with increasing age are paralleled by reduced levels of serum BDNF

(Erickson et al. 2010). Exercise in those aged over 65 years reduces the incidence of

dementia relative to sedentary controls (Rovio et al. 2005; Larson et al. 2006), and

higher levels of aerobic fitness have also been associated with increased hippocam-

pal volume in elderly adults (Erickson et al. 2009), indicating the importance of

physical fitness throughout the life span. A 1-year aerobic intervention was shown

to increase hippocampal volume by 2 %, effectively offsetting the age-related loss

in volume by 1–2 years and improving memory, providing evidence that exercise

can act as a neurotherapeutic as well as a neuroprotectant (Erickson et al. 2011).

This improvement in function was associated with higher circulating BDNF in

these subjects. Meta-analyses of the literature that reveal the rehabilitating effects

of exercise in elderly patients suffering from dementia and Alzheimer’s disease

(Heyn et al. 2004; Farina et al. 2014; Kramer and Erickson 2007b) underline the

capacity of exercise to reverse as well as prevent cognitive decline. Cerebral

vasoactivity has been correlated with aerobic capacity in older adults, providing a

possible physiological mechanism by which exercise impacts cognitive function in

old age (Barnes et al. 2013b). The animal literature shows a specific benefit of

enrichment and exercise in aged animals (O’Callaghan et al. 2009) and in mouse

models of Alzheimer’s disease (Valero et al. 2011), delaying or reversing the

impairments in neurogenesis and resulting in prevention or reversal of cognitive

impairment (Speisman et al. 2013; Lazarov et al. 2010).

Clearly, there may be certain people who are unable to participate in exercise for

reasons of frailty, physical infirmity or circumstance and the fact that social and

intellectual enrichment can also protect against, delay or reverse age-related cogni-

tive decline is of particular relevance to such individuals. One comprehensive study

showed that participation in cognitively stimulating activity by elderly members of

Catholic religious orders was associated with a decreased incidence of AD (Wilson

et al. 2002c), while participation in leisure activities such as reading and playing

board games is correlated with a lower risk of development of dementia in the

elderly (Verghese et al. 2003; Wilson et al. 2002b). The number of years spent in

formal education is negatively correlated with the risk of dementia (Anstey
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et al. 2000); conversely, loneliness, social isolation, depression and apathy are

increasingly acknowledged risk factors for development of age-related cognitive

impairment and dementia (Robert et al. 2008; Shankar et al. 2013; Holwerda

et al. 2014; Wilson et al. 2002a). Computerized training programmes are a rela-

tively recently developed source of targeted cognitive stimulation that may enhance

brain plasticity in older subjects (Mahncke et al. 2006; Tardif and Simard 2011).

These programmes variously target spatial skills, attention, visual skills, working

memory and other cognitive functions (Schmiedek et al. 2010; Smith et al. 2009;

Nouchi et al. 2012). However, the persistence of these effects and the transfer of the

learned skills to real-life situations have not yet been demonstrated.

Taken together, the weight of evidence suggests that in populations with existing

cognitive impairment, physical and intellectual activity may help to delay the

progression toward more severe dementia. A randomized control trial of the effects

of 12 weeks of mental and physical activity in inactive, community-residing older

adults with cognitive complaints resulted in significant improvements in global

cognitive function in all participants, regardless of whether the exercise interven-

tion was aerobic or anaerobic or whether the mental stimulation consisted of

challenging, computer-based activity or watching educational DVDs (Barnes

et al. 2013a). These results suggest that regular participation in any type of

stimulating physical or mental activity can translate to functional improvement in

such groups. It is a reassuring illustration of the capacity of the brain to remain

plastic throughout the life span and that exercise or novel intellectual activities

begun late in life can result in improved cognitive outcome.

4.2 Parkinson’s Disease, Schizophrenia and Depression

The well-known motor symptoms that characterize Parkinson’s disease (PD) are

often accompanied by cognitive impairment. Despite the motor impairments suf-

fered by PD patients, many retain the ability to participate in exercise activity

(Earhart 2013), in some cases resulting in demonstrable cognitive benefit. In a

community-dwelling group of PD patients, regular walking resulted in improved

motor function, cognition and general quality of life (Uc et al. 2014), while exercise

improved cued reaction time, indicative of cognitive improvement, in another

group of PD patients (Ebersbach et al. 2014). Another study demonstrated that

exercise can increase BDNF in the circulation of PD patients (Frazzitta et al. 2014).

A systematic review of the literature has identified a cognitive benefit of exercise

training in PD patients, but highlights the need for further research in this promising

area (Hindle et al. 2013). With regard to other forms of cognitive enhancement,

computer-based cognitive training has benefitted learning and memory in PD

patients (Naismith et al. 2013). Exercise and enrichment in animal models of PD

can benefit cognitive performance (Faherty et al. 2005; Pothakos et al. 2009;

Petzinger et al. 2013) and increase BDNF expression in the brain (Tuon et al. 2012).

Schizophrenia is a major psychiatric disorder whose negative symptoms include

cognitive impairments affecting memory, executive functioning and attention.
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Pharmacotherapy with antipsychotic medication is of course the most effective

treatment for the positive symptoms of this disorder, but there may be cognitive

benefit to patients of interventions such as exercise therapy as an adjunct to

pharmacotherapy and psychotherapy. Some reports indicate that exercise increases

hippocampal volume (Vancampfort et al. 2014; Pajonk et al. 2010) and improves

verbal, visual and working memory (Vancampfort et al. 2014; Pajonk et al. 2010;

Oertel-Knochel et al. 2014) in people with schizophrenia. In contrast, computer-

based brain training improved performance of computer-based tasks, but did not

translate to general cognitive benefit in schizophrenic patients (Dickinson

et al. 2010). The ability to employ exercise as a cognitive enhancer in those

suffering from schizophrenia may be confounded by their lower reported levels

of activity (Laursen et al. 2012) and lower cardiorespiratory fitness (Ozbulut

et al. 2013). However, participation in sports has been shown to positively affect

physical and psychiatric symptoms in schizophrenic patients (Takahashi

et al. 2012). Aberrant neurogenesis has been implicated in schizophrenia and thus

this process may be a viable clinical target; postmortem analysis demonstrated that

cell proliferation was diminished in the dentate gyrus of people who suffered from

schizophrenia (Reif et al. 2006), while there is evidence that antipsychotic drugs

have neurogenic properties (Keilhoff et al. 2012). Evidence from studies in a mouse

model of schizophrenia indicates the ability of exercise to increase neurogenesis

and improve behavioural deficits (Wolf et al. 2011).

Depression, and its accompanying cognitive impairment, may present as a

primary psychiatric disorder or may be comorbid with conditions such as AD, PD

or schizophrenia. Depression is often associated with low levels of physical activ-

ity; adults with depression are reported to spend significantly less time in either

light or moderate physical activity than non-depressed adults (Song et al. 2012).

There is a vast and growing literature on the potential benefits of exercise in the

prevention (Mammen and Faulkner 2013) and treatment (Cooney et al. 2013) of

depression. Indeed, the UK National Institute for Health and Clinical Excellence

recommends structured exercise, three times a week for 10–14 weeks, for the

treatment of mild to moderate depression (NICE guidelines [CG90], 2009). A

recent Cochrane Review revealed that exercise is associated with a greater reduc-

tion in symptoms of depression compared with no treatment, placebo, or active

control interventions such as relaxation or meditation (Cooney et al. 2013); though

the authors emphasize that the benefits are of small magnitude, any reduction in

clinical symptoms is to be welcomed. Reduced expression of BDNF in the brain is

associated with depression, a finding that has led to the examination of the efficacy

of interventions that may upregulate BDNF as antidepressant strategies (Castren

and Rantamaki 2010). While antidepressant medication increases BDNF expres-

sion (Russo-Neustadt and Chen 2005), exercise, alone or in combination with

antidepressant treatment, is reported to increase BDNF expression and reduce

depressive symptoms in animal models of depression (Marais et al. 2009; Sigwalt

et al. 2011; Russo-Neustadt et al. 2001; Garza et al. 2004). Antidepressant drugs are

also potent stimulators of neurogenesis (Duman et al. 2001; Ota and Duman 2013);

thus neurogenesis has been suggested as a key biological mechanism mediating
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their cognitive effects (Ernst et al. 2006). The links between exercise, BDNF,

neurogenesis and cognitive function in the healthy brain are mirrored in depression

and major depressive disorder and may explain the ability of exercise to ameliorate

at least some of the cognitive dysfunction associated with depression (Ota and

Duman 2013).

5 Conclusions

While interventions such as exercise and enrichment are effective cognitive

enhancers in their own right, they may also be useful adjuncts to pharmacological

treatments of disease, as is the case in depression. Elucidation of the cellular

mechanisms underlying cognitive enhancements induced by these

non-pharmacological interventions may allow novel molecular drug targets that

exploit the same cellular pathways to be developed.

Clinicians routinely recommend or prescribe exercise to those with conditions

such as obesity, diabetes and cardiovascular disease. The proven ability of exercise

and other forms of environmental stimulation to protect against or treat cognitive

impairment associated with normal aging or specific neurodegenerative or

neuropsychiatric disorders render these interventions of potential clinical impor-

tance. It may be envisaged that current recommendations of physical, mental or

social activity for the purpose of maintaining general health may translate to

prescription of activity for the specific benefit of brain health. However the optimal

type, intensity, frequency and duration of exercise that will benefit specific

populations or patient groups have not yet been identified.

While some of these non-pharmacological approaches have shown specific

benefits to cognition, especially learning and memory, a generally healthy lifestyle

that includes regular exercise, social engagement and mental stimulation has wider

impacts on the general health of the individual that also benefits society as a whole.

The side effects of the non-pharmacological strategies for cognitive enhancement

outlined here are broadly positive.
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Abstract

Brain neural network is composed of densely packed, intricately wired neurons

whose activity patterns ultimately give rise to every behavior, thought, or

emotion that we experience. Over the past decade, a novel neurotechnique,

optogenetics that combines light and genetic methods to control or monitor

neural activity patterns, has proven to be revolutionary in understanding the

functional role of specific neural circuits. We here briefly describe recent

advance in optogenetics and compare optogenetics with deep brain stimulation

technology that holds the promise for treating many neurological and psychiatric

disorders.
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1 Optogenetics

Optogenetics combines light and genetic methods to control or monitor cellular

activities. For rhodopsin based optogenetic control techniques, light-sensitive rho-

dopsin molecules were genetically introduced into otherwise not-light-sensitive

neurons. Upon light illumination, genetically modified neurons that express

rhodopsins can then be precisely controlled. Three major classes of rhodopsins,

all microbial rhodopsins, have been developed as optogenetic molecular sensors,

channelrhodopsins, halorhodopsins, and archaerhodopsins (Fig. 1) (Han 2012a).

Because of their small sizes, these rhodopsins can be easily expressed in neurons,

and thus, optogenetics has been successfully applied in almost all experiment neural

systems, from Caenorhabditis elegans, rodents, to nonhuman primates, as well as

human retina. With the ability to rapidly and reversibly activate or silence geneti-

cally transduced cells, optogenetics has enabled the examination of the causal role

of specific cells in neural computation, behavior, and brain disorders. A number of

recent reviews and books have summarized various aspects of the current state of

this field (Bernstein and Boyden 2011; Miesenbock 2011; Yizhar et al. 2011; Zhang

et al. 2011; Chow et al. 2012; Han 2012a, b; Knopfel and Boyden 2012). In parallel,

a new generation of genetically encoded calcium/activity optogenetic sensors are

being improved, with which neural activity patterns can now be monitored with

high spatiotemporal resolution (i.e. Chen et al. 2013). We here will focus our

discussion on optogenetic control technologies that are rhodopsin based, and will

not further discuss other calcium/activity sensors.

1.1 Rhodopsin Based Optogenetic Sensors

Microbial rhodopsins are photoactive proteins with seven transmembrane domains.

They are widely spread in archaea, bacteria, algae, and fungi, where they are

critical for light-sensing or photosynthetic functions. Each rhodopsin molecule

consists of a protein domain, opsin that binds to the photoactive cofactor

all-trans-retinal, and thus, rhodopsin refers to the combination of the opsin protein

and the bound retinal (Spudich et al. 2000; Spudich 2006). Light-induced

photoisomerization of all-trans-retinal to 13-cis-retinal leads to opsin protein con-

formational changes that result in direct ion conductance across the membrane.

Rhodopsins have been studied since 1970s (Oesterhelt and Stoeckenius 1971;

1973), but they were only recently adopted as optogenetic sensors.

Channelrhodopsin-2 (ChR-2), cloned from green algae Chlamydomonas
reinhardtii, is the first optogenetic sensor adapted to activate neurons (Boyden

et al. 2005). Light-induced photoisomerization of all-trans-retinal results in protein
conformational changes that lead to a passive conductance to both monovalent and

divalent cations such as Na+, K+, H+, and Ca2+. The duration of ion flow is

determined by the subsequent ChR2 conformation changes that led to channel

closure (Nagel et al. 2003). Because ion flow is independent of photon absorption,

engineered ChR2 mutants that alter the process of light-induced protein
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conformational changes have led to a number of variants that operate on varying

timescales from milliseconds to minutes, and present varying permeability to

different ions (Bamann et al. 2010; Gunaydin et al. 2010; Berndt et al. 2011,

2014; Wietek et al. 2014).

Two classes of light-activated ion pumps have been used to silence neurons,

halorhodopsins, and Archaerhodopsins. Halorhodopsins, such as that from

Natronomonas pharaonis (Halo, NpHR), are light-activated inward chloride

pumps (Han and Boyden 2007; Zhang et al. 2007). Archaerhodopsin, such as that

from Halorubrum sodomense (Arch), are light-activated outward proton pumps

(Chow et al. 2010; Han et al. 2011). These light-activated pumps lead to a net

outward current flow in neurons, thereby silencing neural activities. For Halo and

Arch, photonic energy is directly coupled to ion transport, and thus photo current

depends upon continuous light illumination.

Much effort has been directed to enhance the efficiency, temporal precision, and

spectrum properties of these rhodopsin molecules. While it remains to be

established whether these optogenetic molecules from archeabacteria or algea

produce any side effects in neurons, these molecules are widely used and have so

far proven safe and effective in most neural systems.

1.2 Target Rhodopsin Expression Though Genetic Modification

A major advantage of optogenetic technologies over other brain stimulation

technologies is the ability to control specific cells with distinct genetic markers.

Such specificity is achieved by expressing rhodopsins in desired cell populations

through genetic modification. Because of the intrinsic difficulty in transducing

neurons, genetic modification of neurons is mainly limited to whole animal trans-

genic approaches and viral based gene delivery approaches (Han 2012a, b).

N

Cl- H+

H+Cl-

H+

H+

Cl-

Cl-

Na+ H+ K+ Ca2+

Channelrhodopsins ArchaerhodopsinsHalorhodopsins

N

Extracellular

N

Intracellular

a b c

Fig. 1 Optogenetic molecular sensors. Upon light illumination, channelrhodopsins passively

transport Na+, K+, H+, Ca2+ down their electrochemical gradients to depolarize neurons (a);
halorhodopsins actively pump Cl� into the cell to hyperpolarize neurons (b); archaerhodopsins
actively pump H+ out of the cell to hyperpolarize neurons (c) (Han 2012a)
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Transgenic mice represent a versatile and powerful platform to target a variety of

distinct cells of interest, in particular in conjunction with the phage-derived

Cre-LoxP recombination technology (Sauer and Henderson 1988; Tsien

et al. 1996). Cre recombinase selectively catalyzes the recombination between a

pair of LoxP recognition DNA sequences. Through strategic placement of LoxP

sequences, a specific gene, such as rhodopsins, can be expressed only in the

presence of Cre enzymes. A large number of Cre transgenic mice are available

with targeted Cre expression in specific cells. Upon injection of a virus that

mediates Cre-dependent expression of rhodopsin molecules, one can selectively

express rhodopsins only in cells that also express Cre. Alternatively, Cre transgenic

mice can be crossed with transgenic mice with Cre-dependent rhodopsin

expressions (Madisen et al. 2012).

In genetically intractable species, viruses remain the most effective methods to

transduce brain cells. Over the years, viral based gene delivery methods have been

well established and are widely used in basic research and in human gene

therapy clinical trials (Waehler et al. 2007; Han 2012a, b). The most commonly

used viral vectors, lentivirus and adeno-associated virus (AAV), have been

engineered to exhibit little or no toxicity, with excellent transduction efficiency.

However, two major limitations remain for viral vectors. First, the packaging ability

of a virus is limited, which cannot be easily overcome due to the intrinsic stability

of viral particles. Second, different viruses display distinct tropism, likely because

specific membrane receptors are required for viral entry into target cells. As a result,

it remains difficult to target specific cells with virus, which has presented a major

challenge in realizing the full potential of optogenetics in genetically intractable

species.

A number of non-viral methods have been developed for gene delivery, i.e. using

cationic lipids, cationic polymers, nanoparticles, carbon nanotubes, gene guns, or

calcium phosphate (Luo and Saltzman 2000). Although these methods exhibit

excellent transduction efficiency in a number of cells, they have largely failed to

transduce neurons effectively. A potential advantage of non-viral-based gene deliv-

ery method is the ability to introduce large pieces of DNAs into cells, and thus may

enable improved targeting to specific cells. However, further optimization of

non-viral gene delivery methods is necessary for the use of these methods in the

brain.

1.3 Light Illumination of Cells Expressing Rhodopsins

Optogenetic control of neural activities critically relies on the amount of light

reaching a neuron, the number of rhodopsin molecules present on the plasma

membrane, and the light sensitivity of the rhodopsins. The effectiveness of

optogenetic control may also be influenced by the intrinsic neuronal membrane

biophysical properties and the surrounding neural network environment—factors

that cannot be controlled by experimenters. Having discussed the genetic modifica-

tion methods that control the expression level of rhodopsin on the plasma
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membrane, and the molecular properties that dictate a rhodopsin’s light sensitivity,

we here describe the consideration of light illumination.

Rhodopsins typically operate at visible wavelength light (450–650 nm) that are

also highly absorbed by blood hemoglobin. Monte Carlo simulations (Mobley and

Vo-Dinh 2003), along with experimental evidence, demonstrated that tissue pene-

tration by visible light drops sharply to less than 10 % within the first few hundred

microns (Bernstein et al. 2008; Chow et al. 2010). To circumvent this, rhodopsins

with red- and far-red light sensitivity (>650 nm) have been developed to allow for

more efficient illumination of brain tissue, thereby improving stimulation volume

and reducing possible risk of heat-induced tissue damage associated with high-

intensity light illumination (Zhao et al. 2008; Chuong et al. 2014).

A variety of light sources with decent light power are well suited for illuminating

neurons expressing rhodopsins. For example, lasers and LEDs that are low cost and

easy to handle can provide excellent light illumination for in vivo optogenetic

experiments. When coupled with fiberoptics, they allow the delivery of light with a

narrow wavelength and high spatiotemporal resolution. The use of thin fibers or

fiber arrays is advantageous in reducing mechanical tissue damage (Bernstein

et al. 2012). Light-induced tissue heating may alter tissue integrity, cell metabo-

lism, and neuronal excitability (Wells et al. 2005), and thus, the amount of light

delivered into brain tissue needs to be properly evaluated and controlled during an

optogenetic experiment. Another consideration when using optogenetics in con-

junction with metal recording electrode is laser-induced electrical artifact due to

photoelectric effects (Han et al. 2009, 2011). Development of novel electrode

materials may overcome some of these photoelectric problems (Zorzos et al. 2009).

1.4 Application of Optogenetics

Optogenetics has been used in experimental organisms from C. elegans and

zebrafish to mice and primates to analyze neural circuits relevant for many

behaviors, from motor behavior (Cavanaugh et al. 2012) to learning and memory

(Liu et al. 2012). With the proof of principle demonstration that optogenetics can be

safely performed in nonhuman primates (Han et al. 2009), optogenetics has

been explored for its translational potential in treating blindness (Doroudchi

et al. 2011).

2 Deep Brain Stimulation

Deep brain stimulation (DBS) represents a revolutionary brain region-specific

neuromodulation therapy that first gained FDA approval in 1997 for treating

essential tremor and Parkinson’s disease (PD) tremor, and later in 2002 for PD

and in 2003 for dystonia. Though invasive, DBS has been proven to be highly

effective, and is now actively explored as therapies for a number of brain disorders.
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Because of the greater understanding of DBS, we will focus the following discus-

sion on DBS, and compare DBS to optogenetics.

A set of other noninvasive electrical brain stimulation technologies have been

historically applied to treat neurological and psychiatric disorders, such as

transcranial magnetic stimulation (TMS), transcranial direct current stimulation

(tDCS), and transcranial alternating current stimulation (tACS). These noninvasive

technologies stimulate a large and often distributed neural network with

little spatial resolution, and thus it has been difficult to pinpoint their action

mechanisms. However, the noninvasive nature of these technologies attracts

much enthusiasm on their therapeutic potentials, and there is much effort on

improving the spatial resolution of these tools. Recently, TMS gained FDA

approval in the United States for treating migraine in 2013.

2.1 Discovery of DBS Therapy

The use of electrical stimulation can be traced back to Fritsch and Hitzip in the

1870s, and later in the 1940s, Penfield systematically stimulated different parts of

the human brain and established the map of human motor and sensory cortices that

remain instrumental in our understanding of the functional organization of the

brain. With the advance of stereotaxic surgeries and the establishment of

Parkinson’s disease animal models, much research and clinical effort have finally

led to the FDA approval of DBS for treating PD, in 1997 for stimulating thalamus

and in 2002 for stimulating STN and GPi.

Current DBS electrode designs consist of four contacts that are 0.5 mm or

1.5 mm apart. Electrical currents are controlled via an integrated pulse generator

that can stimulate electrode contacts at certain polarity, amplitude, pulse width, and

frequencies. A specific set of stimulation parameters is determined through trial and

error for each patient to achieve optimal clinical efficacy with minimal side effects

(Volkmann et al. 2006). While DBS has been remarkable in treating several key

motor symptoms presented in PD patients, such as bradykinesia, akinesia, and

tremor (Anderson et al. 2005; Rodriguez-Oroz et al. 2005), it is often associated

with other side effects, such as mood disorders, depression, and impulsivity (Uc and

Follett 2007).

2.2 Therapeutic Mechanisms of DBS for PD

The therapeutic mechanisms of DBS for PD remain largely unclear. There are

several promising hypothesis. DBS may achieve its therapeutic effects through

inhibiting the brain structures being stimulated. This hypothesis is largely based on

the understanding that the brain regions targeted by DBS, i.e., STN, thalamus, and

GPi, when surgically lesioned, are equally effective in treating PD. This hypothesis

is further supported by the observation that the firing rates of STN neurons

decreased drastically upon local STN DBS (Dostrovsky et al. 2000; Welter
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et al. 2004; Foffani et al. 2006). However, electrical stimulation also stimulates the

fibers of passage, as well as neurons that project to the site of stimulation antidrom-

ically. Thus, while DBS may inhibit local brain structures under stimulation, its

effects likely extend to other brain regions that connect to the site of stimulation or

have fibers bypassing the stimulation sites.

A second hypothesis is that DBS may reduce pathological oscillations. Implan-

tation of DBS electrodes provides a unique opportunity for recording neural

activities from PD brains. Much evidence has suggested the presence of

exaggerated oscillations in the cortical–basal ganglion circuit at beta frequencies

(oscillations around 20 Hz). Exaggerated beta oscillations closely parallel the key

PD motor deficits, bradykinesia, rigidity, akinesia, and tremor (Levy et al. 2000,

2002b; Brown et al. 2001; Boraud et al. 2005; Weinberger et al. 2009a, b), and are

largely suppressed by effective dopamine replacement treatment (Brown

et al. 2001; Levy et al. 2002a; Williams et al. 2002; Priori et al. 2004; Silberstein

et al. 2005) and DBS (Wingeier et al. 2006; Kuhn et al. 2008; Kuhn et al. 2009;

Lehmkuhle et al. 2009). It has thus been suggested that DBS therapeutic effect is

through reducing beta oscillations. However, it remains unknown whether the

exaggerated beta oscillation is a cause or a correlate of motor deficits, and where

and how beta oscillations arise in PD.

Finally, it has also been hypothesized that placement of DBS electrodes could

recruit glia-related neurotransmission to inhibit neuron activities at the target brain

structures (Bekar et al. 2008). While the surgical placement of DBS electrodes

presents serious risks intrinsic to any surgery, interestingly electrode implantation

within STN may be neuroprotective and could slow down dopamine neuron

degeneration in SNpc, as demonstrated in MPTP monkey PD models (Doroudchi

et al. 2011). With the development of optogenetics, researchers are now able to start

to investigate the specific neural circuit mechanisms underlying DBS therapeutic

actions.

3 Optogenetics and DBS

The amazing efficacy of DBS in treating PD has motivated much effort in develop-

ing DBS based therapy for many neurological and psychiatric disorders beyond

motor deficits, such as major depression, obsessive and compulsive disorders, and

Alzheimer’s disease. Because of the nonselective nature of electrical stimulation,

DBS may not be able to stimulate any specific cell type, or avoid the stimulation of

fiber of passages. However, with the simplicity of electrode placement, and the

superb resolution of the spatiotemporal specificity, DBS represents a new genera-

tion of site-specific neuromodulation therapies, and could revolutionize the treat-

ment of neurological and psychiatric diseases.

Optogenetics however requires both gene therapy to express light activated

rhodopsin proteins in neurons and the delivery of light illumination to target

neurons. While much progress has been made in improving the efficacy of

optogenetics, its clinical translation may be limited by the requirement of gene
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therapy, and any potential damage from light illumination. In addition, optogenetics

controls neuron activities through altering the biophysical properties of a neuron by

adding an exogenous light-sensitive ion conductance, and thus the precision may

not be as superb as that achieved with DBS. For example, DBS can stimulate at very

high frequencies, i.e., >120 Hz, to achieve therapeutic effects for PD, and indeed

DBS often needs to be delivered at >120 Hz to be effective. However, it is difficult

for optogenetics to stimulate neurons at such high frequency. But as a research tool,

optogenetics holds the promise to provide mechanistic understanding of neural

circuits underlying behavioral and therapies, and for certain systems, such as the

retinal, optogenetics may be proven effective as a therapy.
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Abstract

The wide-ranging field of cognition enhancing research along with its ethics as it

stands today is summarized. In the forefront are potentially novel drugs and

non-pharmacological treatments for cognitive impairment across many different

psychiatric and neurologic indications. Today’s research will bring new drugs to

patients tomorrow, and tomorrow’s research will bring new molecular targets to

clinical development that should be cognitive domain-specific. There is the

likelihood that special populations may be better treated and that personalized

medicine for cognitive impairment could become a reality. It is conceivable that

with the current research effort, cognition enhancing drugs will become avail-

able to wide-ranging populations of people with neuropsychiatric illness and to

those that are healthy. In some cultures, there is a push in society to be more
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intelligent or have more cognitive prowess. Thus, the ethical use of cognitive

enhancing drugs should be an area of debate and communication. Neuroethics is

a growing field and it intends to bring together key contributors such as

physicians, disease experts, regulatory officials, and policy makers to discuss

how such medicines can or should be made available. Together with this, one has

to consider the possibility that no single medicine or technology will have a great

impact on cognition and, therefore, combination therapy of drugs plus other

approaches like exercise or transcranial direct-current stimulation may be the

path forward. This is another area of scientific inquiry and debate, and the results

should be fruitful and helpful to patients. The science of cognition is advancing

at a rapid rate, and communication of its progress along with the development of

rational and ethical policies for use of cognitive enhancers will be beneficial.
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1 Current and Future Status of Cognitive Enhancement

1.1 Targets of Today

Cognitive enhancement, whether achieved through pharmacological or

non-pharmacological means, is a reality. Among the drugs approved by the FDA

over the past two decades for neuropsychiatric and neurological disorders, 11 are

used for the treatment of Attention Deficit Hyperactivity Disorder and 8 for the

treatment of Alzheimer’s dementia (CenterWatch). Nonetheless, continued

research is necessary to achieve functional improvement in all cognitive domains

and to ensure specific and lasting changes. It is encouraging that several new

clinical trials are underway for improving cognition in Alzheimer’s disease, Atten-

tion Deficit Hyperactivity Disorder, Autism, Multiple Sclerosis, Parkinson’s dis-

ease, schizophrenia, and traumatic brain injury (CenterWatch). These trials support

the possibility that treatment options for improving attention, executive function,

declarative memory, emotional memory, and social cognition may be forthcoming.

With a few exceptions (e.g., drugs to reduce beta-amyloid proteins in Alzheimer’s

disease or oxytocin to enhance social cognition in Autism), most new drugs in

current clinical trials focus mainly on altering monoamine and cholinergic systems

for improving cognition. The considerable amount of preclinical and clinical

laboratory research conducted over the past 2–3 decades supports an approach

targeting these mechanisms (reviewed in Callahan and Terry 2015; Talpos and

Shoaib 2015; Riedel and Blokland 2015; Sumiyoshi 2015; Nader 2015; Patin and

Hurlemann 2015). One striking aspect of the clinical trials now in progress is the

evaluation of several non-pharmacological strategies to improve cognition.

Strategies include targeted cognitive training, exercise, and transcranial direct-

current stimulation. Research in non-pharmacological approaches to improve
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cognition has escalated over the past decade (reviewed in Kelly 2015). New

non-pharmacological technologies, such as deep brain stimulation and

optogenetics, are emerging to impact, in a rather precise manner, brain networks

that support cognition (reviewed in Kondabolu et al. 2015). Future research may

reveal that pharmacological and non-pharmacological approaches may target dif-

ferent cellular and network processes that, when combined, have complementary

actions that, in concert, improve cognition more effectively than either approach

alone.

1.2 Targets of Tomorrow

Although progress has been made to improve cognition, the development of novel

pro-cognitive compounds has not caught up with the advances that have been made

in the neurobiology of learning and memory (reviewed in Ménard et al. 2015).

Glutamate receptors have been pharmacological targets to improve cognition for

decades and drugs that safely and effectively modify NMDAR, AMPAR, and

mGluR activity are under development currently. One example is with the class

of drugs that potentiate NMDAR activity at the glycine co-agonist binding site,

either directly with agonist treatment or indirectly via treatment with a glycine

transporter-1 inhibitor. Perhaps the largest explosion of knowledge gained from

research in the neurobiology of learning and memory is in the identification of

downstream targets that are activated following NMADR and AMPAR stimulation.

Targets of interest for cognitive enhancement include: CaMKII, PKC, ERK, and

CREB signaling molecules; Arc, Homer 1a, Zif268, and mTOR immediate early

genes; and neurotrophins such as BDNF, which all play important roles in

neuroplasticity. Neurogenesis is another target of interest; however, adult

neurogenesis is maintained in only two discrete regions of the adult mammalian

brain: the subventricular zone of the lateral ventricles and the subgranular zone of

the dentate gyrus of the hippocampal formation (reviewed in Costa et al. 2015).

Thus, drug treatments that increase neurogenesis to improve cognition may only be

possible for processes that require the hippocampus (declarative memory, contex-

tual associative memory, and spatial navigation) and therefore be of importance for

certain disease states. Development of drugs that interact with these various targets

is needed. Once identified, the advances that have been made in elucidating

translational animal models of cognitive enhancement (reviewed in Wallace

et al. 2015) and in detecting cognitive enhancement in human participants

(reviewed in Harvey and Keefe 2015) will help speed the availability of

cognitive-enhancing therapeutics for neuropsychiatric and neurological disorders.

1.3 Special Populations

Cognitive improvement in special populations is not always straightforward. Mal-

adaptive memory such as that presenting in individuals with posttraumatic stress

disorder and substance use disorder may require treatments and approaches that
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disrupt memory (reviewed in Taylor and Torregrossa 2015). Mechanistically, this

involves the use of drugs with actions that oppose those needed for cognitive

enhancement and applying them with cue exposure during the reconsolidation

stage of learning. Unclear at this time is whether remote (old) memories can be

disrupted as effectively as recent (new) memories when targeting reconsolidation.

An alternate approach for lessening the impact of maladaptive memory is to

incorporate cognitive enhancing drugs and strategies with cue exposure during

the extinction stage of learning. However, if treatment takes place in a clinic setting,

then the transfer of facilitated extinction learning to a home environment may be

precluded unless the context dependency of the treatment effect also is addressed.

Cognitive enhancement in special populations often involves children, as in the

case of Autism Spectrum Disorder (reviewed in Vahabzadeh et al. 2015) and Down

syndrome (reviewed in Fernandez and Reeves 2015). Improvement in social cog-

nition is a primary goal for Autism Spectrum Disorder, and many candidate

medications are available for testing. Cognitive enhancement for Down syndrome

presents a more complicated picture due to diverse brain region impacted and the

fact that the effects of the chromosome 21 abnormality are not limited to the central

nervous system. Clinical trial designs will be difficult and not without ethical

challenges. The medical community’s long history of treating Attentional Deficit

Hyperactivity Disorder in children with stimulant and non-stimulant cognitive

enhancing medications should play an important role in establishing ways to safely

and ethically proceed in the testing and treating of other special populations of

children with cognition-altering drugs.

2 Neuroethics of Cognitive Enhancement

In some sense, cognition enhancers have been in use for centuries. These were of

plant origin and primarily of the psychostimulant type. Three of the better-known

examples are caffeine, coca, and nicotine. Much later, drugs of the amphetamine

class became available. These substances have minor and relatively nonspecific

effects on cognition yet do influence attention and vigilance. Because of their abuse

liability, there is an obvious ethical issue with the use of coca extract and

amphetamines, and, therefore, these substances are scheduled drugs in most

countries, although amphetamines are now widely prescribed for Attention Deficit

Hyperactivity Disorder. An important distinction here is that amphetamines for

Attention Deficit Hyperactivity Disorder are used at doses much lower than those

needed to support abuse.

One of the first focused and successful efforts at finding a drug that was designed

to treat memory loss in a disease state was that with relatively selective and brain

penetrant acetylcholinesterase inhibitors in the late 1980s and 1990s for patients

with Alzheimer’s disease. The first of these drugs, tacrine, had what many consid-

ered, at best, limited efficacy along with a number of unwanted side effects. Helping

it reach market status was public opinion and public demand for drugs to treat

Alzheimer’s disease. Thus, one could imagine that both the public and the media
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had at least some influence, albeit indirect, over regulatory agencies. Fortunately

for patients, the next generation of cholinesterase inhibitors was an improvement

over tacrine, yet many of the side effects remained and efficacy was limited. What

has happened, however, is that one of these compounds, donepezil, is being

publicized as a cognitive enhancer for healthy people. This, in light of less than

stellar clinical results, could be due in part to the magnification of data in media and

academic literature (Wade et al. 2014). As with the development of cholinesterase

inhibitors for Alzheimer’s, in which the risk:benefit ratio was scrutinized, one

wonders if that barrier will be lowered, rather than heightened, for a cognitive

enhancer in the general public, thus, exposing more people to risk from a drug.

Table 1 summarizes these and other ethical issues surrounding the use of cognitive

enhancing drugs and strategies, and each issue is detailed below.

Small molecule drugs and invasive technologies like deep brain stimulation are

associated with risk in the form of safety and toxicology. As cognition enhancers

become available for individual diseases such as those in the psychiatric area, it is

highly likely that these drugs or interventions will be used outside of their regu-

latory approved indication(s). Although there is reasonably good control of what

indications a drug can be used for, neither the respective pharmaceutical company,

regulatory organization nor policy maker directly controls the prescribing practices

and the lay-media news that may influence public opinion. Thus, in the case of

cognitive enhancers perhaps increased scrutiny of safety and toxicology is neces-

sary so that the consumer, the patient, the parents, and the caregivers can be

informed and at least have a chance to understand the risks associated with these

new drugs and technologies. Physicians will be in the forefront on this ethical issue

as they are the chief prescribers. Fortunately, as shown in a survey of physicians in

Canada and the USA, physicians, when queried on attitudes towards cognitive

enhancers, tended to place the greatest weight on the safety aspects of a given

medicine (Banjo et al. 2010).

Table 1 Ethical issues

associated or arising with

cognitive enhancers

•Evolving regulatory environment

•Widespread use, overuse, or abuse

•Role of the media and academic literature

•Safety after long-term use

•Safety in healthy individuals

•Use in children

•Parental control and decision making

•Incidental findings

•Access

•Payment and reimbursement

•Need for co-therapy

•Future reality of personalized medicine

•Terminology
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Associated with risk, of course, is benefit. Specific attention should be given to

the real effectiveness of any treatment albeit drug or technology. It is possible that

with just a glimmer of positive data in one clinical trial or in a few patients, the

media or particular patient advocacy group could blow out of proportion a certain

finding when it is in fact not medically justified or truly effective. How this can be

controlled is unclear but all sources that relate to public policy, communication, and

the contemporary field of neuroethics need to be engaged (Shook et al. 2014). Via

advances in pharmacogenomics, going forward, the benefit of cognitive enhancing

drugs may be tied closely with an individual’s genetic predisposition and, thus,

effective and safe treatment may be specifically targeted to that patient (Mohamed

and Sahakian 2012); this is the lure of personalized medicine.

Of specific and current interest today is the use of cognitive enhancers in

children, particularly those with neurodevelopmental disorders. In disorders such

as Autism, Fragile X, or Down syndrome, there is cognitive impairment early on in

life. It may seem clear that early, preventive treatment may be the course of action

to take so that brain development is not further retarded. However, as a child’s

central nervous system is still undergoing development, any number of drugs or

therapies, although perhaps having a positive effect on one domain of cognition,

may have deleterious effects on other domains or on brain maturation, in general.

Moreover, one also has to consider the peripheral side effects of such a medication

when given to young children. This places parents in rather a precarious role, as

they need to be concerned with the promotion of overall health and not be coercive

in their approach to cognitive enhancement (Ball and Wolbring 2014).

Over the past 30 years, there has been substantial progress in understanding the

dimensions of cognition and the domains that one needs to focus on in individual

diseases. The advent of fMRI and the promise of optogenetics will help develop this

field at a much quicker pace now. This brings up the likelihood that during the

research process, one may identify a drug that is specific for a unique cognitive

domain such as executive function. Executive function is markedly impaired in

schizophrenia, Autism, and Attention Deficit Hyperactivity Disorder, yet less so in

other psychiatric disorders (Millan et al. 2012). This raises practical issues at the

clinical development level where study conduct time is lengthy and more ethical

issues on the regulatory side during which those organizations must decide on the

quality and quantity of data necessary to make a new drug approval across many

illnesses. Related to the use of informative technologies like MRI, which allows

viewing of the brain in a noninvasive manner, and cognition test batteries is the risk

that either brain structural abnormalities or cognitive weaknesses, previously

unidentified, may be uncovered. A framework for the handling and communication

of such incidental findings is necessary today as there is more research now directed

towards generating new knowledge on cognition and cognitive circuitry specifically

related to healthy individuals and what might comprise a normal brain and its

function. Awareness of this ethical situation is growing and should be manageable

(Scott et al. 2012; Di Pietro and Illes 2013).

In disorders of the brain ranging from Parkinson’s disease to posttraumatic stress

disorder, there are gaps in cognitive processing and function, so it is clear that smart
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drugs are needed (Sahakian and Morein-Zamir 2011). Both the patients themselves

and their caregivers stand the chance to profit by such new drug development. In

such an important area, cognition, one wonder how medicines will be distributed

so, therein, treatments should be made available to everyone; general access to the

appropriate medicines will be important. This opens up questions related to who

pays for these treatments and what might be the various country-specific reimburse-

ment structures.

Drugs for cognition enhancement, although possibly marginally effective after a

single dose, are likely to affect cognitive domains only after many weeks or months

of treatment. Moreover, these domain-specific drugs may not be effective without

some kind of co-therapy like cognitive behavioral therapy, biofeedback, or other

type of psychotherapy. Not to be discounted in the cognition treatment paradigm is

education and the use of exercise as it has a positive effect on neurogenesis and

synaptic plasticity (Costa et al. 2015).

As has been identified earlier, the simple use of the phrase “cognition enhancer”

may be problematic and is of ethical concern (Wade et al. 2014). What is its

definition? The two words alone suggest something positive or beneficial, whereas

the drug or treatment under consideration may still be experimental. So, the naming

of these drugs is in itself an issue going forward. Nevertheless, with the advances in

science today, there is the real possibility that cognitive enhancers will have a

significant impact on society, especially in view of the likelihood that such drugs

will gain traction as lifestyle-type medicines having broad reach across not only ill

but healthy individuals (Forlini et al. 2013; Cabrera 2015). It is possible with

correct communication and discussion between policy makers, regulatory

authorities, physicians, and disease area experts that many of the ethical issues

that are associated with cognition can be addressed and be made open to the general

public in an informative and educative manner.

3 Conclusions

The science of cognitive enhancement is likely to soon reach new milestones.

Hence ethicists, social scientists, and other policy makers need to join this conver-

sation and work alongside scientists and clinical investigators to develop rational

policies for the use of cognitive enhancers in the treatment of neuropsychiatric and

neurological disorders as well as in healthy individuals.
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