
Evolving Ensembles of Dispatching Rules Using
Genetic Programming for Job Shop Scheduling

John Park1(B), Su Nguyen1,2, Mengjie Zhang1(B), and Mark Johnston1

1 Evolutionary Computation Research Group,
Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand

{John.Park,Su.Nguyen,Mengjie.Zhang}@ecs.vuw.ac.nz,
Mark.Johnston@msor.vuw.ac.nz

2 International University - VNU HCMC, Ho Chi Minh City, Vietnam

Abstract. Job shop scheduling (JSS) problems are important optimisa-
tion problems that have been studied extensively in the literature due to
their applicability and computational difficulty. This paper considers sta-
tic JSS problems with makespan minimisation, which are NP-complete
for more than two machines. Because finding optimal solutions can be dif-
ficult for large problem instances, many heuristic approaches have been
proposed in the literature. However, designing effective heuristics for dif-
ferent JSS problem domains is difficult. As a result, hyper-heuristics
(HHs) have been proposed as an approach to automating the design of
heuristics. The evolved heuristics have mainly been priority based dis-
patching rules (DRs). To improve the robustness of evolved heuristics
generated by HHs, this paper proposes a new approach where an ensem-
ble of rules are evolved using Genetic Programming (GP) and cooper-
ative coevolution, denoted as Ensemble Genetic Programming for Job
Shop Scheduling (EGP-JSS). The results show that EGP-JSS generally
produces more robust rules than the single rule GP.

Keywords: Genetic programming · Job shop scheduling · Hyper-heuris-
tics · Ensemble learning · Cooperative coevolution · Robustness · Dis-
patching rules · Combinatorial optimisation · Evolutionary computation

1 Introduction

Job shop scheduling (JSS) problems are important optimisation problems that
have been studied for over 50 years. JSS is still studied extensively due to its
complexity and wide applications. JSS problems involve determining the optimal
sequence to process jobs on the machines in a manufacturing system. For a JSS
problem instance, each job has operations that need to be completed on different
machines in a given sequence. However, a machine cannot process more than one
job at a time. All operations must be processed by the machines to get a schedule,
and the ‘quality’ of the solution generated for the JSS problem instance is given
by the objective function. There are a number of existing approaches to solving
JSS problems. Mathematical optimisation techniques give optimal solutions for
c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 92–104, 2015.
DOI: 10.1007/978-3-319-16501-1 8

Evolving Ensembles of Dispatching Rules Using Genetic Programming 93

static JSS problem instances. On the other hand, heuristic approaches, such as
dispatching rules (DRs), have been applied to JSS to produce good solutions for
large problem instances. Dispatching rules [12] are local decision makers which
iteratively decide a sequence of jobs to be processed by a machine. In addition,
meta-heuristic approaches [10,17] have also been applied to JSS. However, an
issue with heuristic approaches to JSS is that they need to be carefully designed.
Heuristic approaches also tend to be problem domain specific. Heuristics that are
effective in one domain are not necessarily effective in other domains. Because of
this, hyper-heuristics (HHs) [2] aim to automate the generation of heuristics such
as DRs. However, DRs are limited as they make a single decision for choosing
the next job to be processed by a machine. The myopic nature of DRs, combined
with the fact that complex decisions need to be made for JSS problems, means
that it is possible that DRs make bad decisions for certain situations within a
particular JSS problem instance.

In classification, similar issues arise as single constituent rules cannot rep-
resent the noisy and complex decision boundaries between different classes suf-
ficiently [13]. Because of this, ensemble approaches have been proposed [1,4],
which have successfully been applied to difficult classification problems [13]. In
an ensemble, a group of small constituent rules ‘vote’ on the outcomes. For
example, the class labels represent the outcomes that can be ‘voted’ for in clas-
sification problem. It may be possible that ensembles of DRs can be used to
deal with the complex decisions of selecting jobs better than single DRs, and
improve the robustness of rules for JSS. However, ensemble approaches have not
been seriously investigated for JSS.

The goal of this paper is to determine whether ensemble approaches can be
used effectively for static JSS problem instances. An evaluation scheme is needed
that allows a diverse set of rules to be evolved, as diversity is a cornerstone of
ensemble approaches [13]. We denote this approach as Ensemble Genetic Pro-
gramming for Job Shop Scheduling (EGP-JSS). This will be compared with an
approach of evolving a single priority rule, denoted Genetic Programming for
Job Shop Scheduling (GP-JSS). GP-JSS makes minor adjustments from a pre-
vious approach [11] of evolving DRs from GP by modifying the terminal set.
Specific research objectives in this paper are:

(a) Developing a job selection procedure for the ensemble of rules for JSS.
(b) Developing a new fitness function for EGP-JSS to ensure that a diverse set

of rules are evolved.
(c) Comparing the evolved ensemble rules by EGP-JSS and GP-JSS with the

benchmark DRs.

2 Background

This section briefly describes some background on the JSS problem with previous
approaches for JSS, and the hyper-heuristic approaches that have been applied
to JSS.

94 J. Park et al.

2.1 Job Shop Scheduling Problem

A JSS problem instance consists of N jobs and M machines, and a list of oper-
ations for each job. Compared to dynamic JSS problems, static JSS problems
have all attributes of jobs, machines and operations known from the beginning,
and do not contain any stochastic elements. An operation σij in a JSS problem
instance is the ith operation of job j, and M(σij) denotes the machine that the
operation is processed on. An operation σij can only be carried out when oper-
ation σi−1j has been completed (with σ1j being the first operation of a job j),
and when the machine to be processed on (M(σij)) is available. The time when
a machine i is available is denoted as RMi

. Each job j has a ready time r(σ1j) for
when its first operation is available, and each operation σ has processing time
p(σ), and setup time s(σ). The number of operations for job j is Nj , and the
total remaining processing time is

∑Nj

k=i p(σkj). For this paper, we focus on the
static JSS problem with makespan minimisation, i.e., minimising the maximum
completion time Cmax. This is denoted as Jm||Cmax.

Jm||Cmax for M = 2 machines can be solved optimally via Jackson’s algo-
rithm [12]. However, Garey et al. [5] showed that the JSS makespan minimisation
problem is NP-complete for M > 2. In JSS problems with instances that have
hundreds of jobs and a large number of machines [15], exact optimisation is
too computationally expensive. For such JSS problem instances, the primary
approaches use heuristics, such as DRs [12] and meta-heuristics. DRs range in
complexity from basic first-in-first-out (FIFO) rules, which processes the jobs in
the order they arrive, to more complex composite dispatching rules (CDRs) [9],
which combine smaller heuristics to form custom made priority functions. On
the other hand, a wide range of meta-heuristic approaches have been proposed in
the literature. Meta-heuristic approaches include Simulated Annealing [10] and
Genetic Algorithms (GA) [17].

2.2 Genetic Programming Based Hyper-Heuristic Approaches

In conjunction with heuristic and meta-heuristic approaches, hyper-heuristics
(HHs) [2] have also been investigated for JSS. Instead of searching the solution
space directly, HHs are given heuristic components to generate heuristics with,
and a fitness measure to evaluate how well generated heuristics perform. It then
searches for a good heuristic, optimising over the fitness measure. A number of
HH approaches to JSS in the literature use Genetic Programming (GP) [2].

Dimopoulos and Zalzala [3] use GP to evolve priority based DRs for a sin-
gle machine JSS problem. An arithmetic representation consisting of mathe-
matical operators and job attributes are used to represent the individuals in
the GP system. They showed that the evolved rules performed better than the
man-made benchmark DRs. Geiger et al. [6] use GP to evolve priority based
DRs for various single machine JSS problems in both static and dynamic envi-
ronments. They showed that GP can evolve DRs that can generate optimal
solutions for some special static single machine JSS problems with polynomial
time exact algorithms, and evolve effective rules for NP-hard JSS problems.

Evolving Ensembles of Dispatching Rules Using Genetic Programming 95

Jakobovic et al. [8] proposed a GP based hyper-heuristic approach to evolv-
ing priority based DRs for the multi-machine static and dynamic JSS problems
ranging from 3 to 20 machines. Tay and Ho [16] proposed a priority based GP
approach to multi-objective flexible job-shop problems, and showed that the
evolved rules outperformed other simple DRs. However, later examination [7]
showed that Tay and Ho’s approach [16] does not perform as well in different
dynamic job shop scenarios. Nguyen et al. [11] compared three different represen-
tations for GP to evolve DRs for static JSS problems. The first representation
they propose is a decision tree representation (R1), where the individuals are
given DRs and make decisions on which rule to use for dispatch jobs onto avail-
able machines. The second representation is an arithmetic representation (R2)
where the individuals represent priority function trees. The third representation
(R3) combines both R1 and R2 representations, where an individual can define
its own priority function tree that is used in conjunction with the decision tree.
They showed that out of the three GP representations, R3 performed better than
both R1 and R2. In addition, they showed that the evolved rules are competitive
with meta-heuristics such as a hybrid GA [17] proposed in the literature.

3 The New Approaches

This section proposes two approaches. The first approach evolves simple priority
based dispatching rules denoted Genetic Programming for Job Shop Scheduling
(GP-JSS) approach. This extends Nguyen et al.’s [11] arithmetic representation
for GP to evolve dispatching rules, and will be used as a benchmark. The second
approach is EGP-JSS, which evolves an ensemble of priority rules simultaneously.

3.1 GP Representation

For both GP-JSS and EGP-JSS, the dispatching rules generated are non-delay.
In a non-delay schedule, a job is selected to be processed on machine i as soon
as machine i is ready to process a new job if there are any jobs waiting to
be processed at that machine. We denote the number of idle jobs waiting at a
machine i as Wi. Tree-based GP is used, and the individuals in the GP population
represent arithmetic function trees. The function trees generate priorities for the
jobs waiting to be processed by machine i. How these priorities are used to select
the job to process differs between GP-JSS and EGP-JSS, and is discussed further
below.

The terminal set consists of the properties of the job shop scheduling environ-
ment discussed in Sect. 2.1. These are shown in Table 1. These extend the terminal
set used by Nguyen et al. [11] in their comparison of different GP representations.
The new added terminals are the number of waiting jobs (NJ), and a sufficiently
large value (LV). The function set consists of the operators +, −, ×, protected
division /, and if . For the ternary if operator, the value of the second subtree if
will be returned if the value of the first subtree representing the conditional is ≥ 0;
otherwise, the value of the third subtree else is returned.

96 J. Park et al.

Table 1. The terminal set used for the GP representations, where job j is one of the
job waiting to be processed as soon as machine i is ready.

Terminal Description Value

RJ Operation ready time r(σji)

RO Remaining number of operations of job j Nj − i + 1

RT Remaining total processing times of job j
∑Nj

k=i p(σjk)

PR Operation processing time p(σji)

RM Machine ready time RMi

NJ Idle jobs waiting at machine Wi

Constant Uniform[0,1]

LV Sufficiently large value ∞

To evaluate an individual x in the GP population, the individual is used
as a non-delay dispatching rule to generate solutions on Ttrain sample training
JSS problem instances. For each JSS problem instance I, a lower bound LBI is
calculated for the makespan as specified by Taillard [15]. From the solution, the
makespan objective, Obj(x, I), is calculated and the deviation devI of Obj(x, I)
from LBI , as shown in Eq. (1), is used as the fitness value for individual x for
the specific problem instance I. The average fitness fitnessavg(x) of individual
x over the entire training set Ttrain is given by Eq. (2).

fitness(x, I) = devI =
Obj(x, I) − LBI

LBI
(1)

fitnessavg(x) =
1

Ttrain

Ttrain∑

t=1

fitness(x, It) (2)

For the EGP-JSS approach, we use two fitness functions. The first fitness
function is simply the one used for GP-JSS, where fitness(x) = fitnessavg(x).
This is denoted as ‘No Fitness Modification’ (NFM). The second fitness function
takes diversity of the indviduals in the ensemble into account by penalising
similar individuals, and is denoted as ‘With Fitness Modification’ (WFM). WFM
is covered in detail in Sect. 3.3.

3.2 Genetic Programming for Job Shop Scheduling (GP-JSS)

The GP-JSS approach uses a GP population of individuals to evolve a single
tree as its output. GP-JSS is an extension of the R2 representation proposed by
Nguyen et al. [11] that uses the extended set of terminals provided in Table 1.
How a job is selected in a non-delay priority based DR is illustrated in Fig. 1.
When selecting which job to process for a free machine, an individual in the
population is used to assign priority values to each of the idle jobs waiting to be
processed by the machine. The job with the highest priority is then selected to
be processed. This continues until all operations have been completed.

Evolving Ensembles of Dispatching Rules Using Genetic Programming 97

Fig. 1. Priority based dispatching rule job selection for available machine.

3.3 Ensemble Genetic Programming for Job Shop Scheduling
(EGP-JSS)

EGP-JSS evolves dispatching rules which are used in an ensemble of priority rules
to determine which job to process for a ready machine. However, using a single
population for ensembles will require a carefully designed grouping scheme to
group the individuals together, along with a complementary evaluation scheme
to evaluate the grouped individuals. Instead of doing this, we consider an app-
roach where we partition the population into S smaller subpopulations. Each
subpopulation has size K. EGP-JSS groups the individuals from the different
subpopulations together to form an ensemble. This approach of splitting the
population into smaller subpopulations that work together to solve a problem
is known as cooperative coevolution [14]. By using cooperative coevolution, we
allow for the subcomponents of the ensemble to apply crossover, mutation and
reproduction separately, and allow for diversity between the different subcom-
ponents.

In cooperative coevolution, individuals in a subpopulation only interact with
representatives of the other subpopulations when they are being evaluated for
their fitness. A representative is defined as the individual with the best fitness in
a subpopulation. Initially, before the first fitness evaluation, the representative of
each subpopulation is chosen randomly. Unlike Potter and De Jong’s [14] coop-
erative coevolution approach, we do not destroy unproductive subpopulations,
as destroying and regenerating a new subpopulation of individuals will require
a large number of generations for it to be effective.

The pseudocode of the EGP-JSS approach is shown in Algorithm1. The job
selection procedure and the fitness evaluation scheme is discussed further below.

Job Selection Procedure. As shown in Fig. 2, for rules evolved using EGP-
JSS, the decision of choosing a job for a ready machine is carried out by the
individual from the different subpopulations ‘voting’ on the jobs, and taking
the job with the most votes. An individual ‘votes’ for the job if the job has
the highest priority assigned to it by the individual. An individual’s ‘voting’
procedure works similar to the job selection procedure for priority based DR
described for GP-JSS.

98 J. Park et al.

Data: S, K, Ttrain, number of generations G, fitness evaluation scheme eval
Result: Representative individuals x′

1, . . . , x
′
S

Initialise GP subpopulations ∇1, . . . , ∇S

for each subpopulation ∇1 to ∇S do
x′
i ← random individual from ∇i

end
while G number of generations has not yet passed do

for each subpopulation ∇1 to ∇S do
for each individual x in ∇i do

form an ensemble E = {x, x′
1, . . . , x

′
S} − {x′

i}
for each instance I in training Ttrain do

/* solve I using E as a non-delay dispatching rule */

while leftover operations remaining do
if machine i is available then

j ← selection(E, j1, . . . , jWi)
process job j on machine i

end

end
fitness(x, I) ← fitness of solution

end
/* eval denotes the fitness evaluation scheme */

fitness(x) ← eval(fitness(x, I1), . . . , fitness(x, ITtrain))
update x′

i if fitness(x) > fitness(x′
i)

end

end

end

Algorithm 1. The pseudocode for the EGP-JSS approach.

If there is a tie in the votes, e.g., two jobs, j1 and j2 have the same number of
votes as each other, a tie-breaker scheme is carried out. For an individual rule x,
let δx(j1), . . . , δx(jWi

) be the priorities assigned to jobs j1, . . . , jWi
waiting to be

processed at a machine. The normalised priority of a job j, is defined by Eq. (3),
where f(j) = 1

1+e−δx(j) .

δ′
x(j) =

f(j)
∑Wi

r=1 f(jr)
(3)

Afterward, the job with the highest sum of priority values over all ensemble
members out of the top voted jobs is then selected for processing.

With Fitness Modification (WFM) Evaluation Scheme. The WFM fit-
ness function, which takes diversity of individuals into account, is defined as
follows. To evaluate the diversity of an individual, the phenotype of individu-
als in a subpopulation are compared against the representative individuals of
the other subpopulations. In this case, the phenotype is defined as the list (of
length LI) of all the priorities that are calculated for the jobs as the solution for

Evolving Ensembles of Dispatching Rules Using Genetic Programming 99

Fig. 2. Example of ensemble job selection process for an available machine.

the problem instance I is being generated. This includes the priorities that are
calculated for waiting jobs that were not selected for processing at a particular
moment of decision. These are normalised on the interval [0, 1] using a sigmoid
function g(x, z) = 1

1+e−δx(z) , where x is the GP individual being evaluated, and
δx(z) is the zth priority calculated by x.

After all the priorities are normalised, the penalty is the average of the
squared differences between the priorities of the individual x of a subpopula-
tion to the representative individuals y of the other subpopulations, as shown
by Eq. (4).

penalty(x, I) = 1 −
S∑

y=1,y �=x

LI∑

z=1

(g(x, z) − g(y, z))2

(S − 1)LI
(4)

To incorporate the penalty into the fitness evaluation of an individual x in the
subpopulation, the average penalty of the individual penaltyavg(x) is calculated
over all problem instances by taking the mean of penalties. The average fitness
from Eq. (2) is then multiplied by one plus the average penalty to get the final
fitness fitness(x) = fitnessavg(x)(1 + penaltyavg(x)). This means that when
an individual x from a subpopulation is very different from the representatives
of the other subpopulations, the penaltyavg(x) ≈ 0, and hence fitness(x) ≈
fitnessavg(x).

4 Experimental Design

For training and testing, we use the JSS benchmark dataset proposed by Taillard
[15]. The dataset consists of 8 sets of 10 problem instances broken up by the
number of jobs and the number of machines. All jobs in each problem instance
have zero release times and setup times, and must be processed on all machines.

For training, we use three separate sets of JSS problem instances from the
Taillard dataset. The first training set Δ1 is the first five problem instances
from the set of data containing N = 15 jobs and M = 15 machines. The sec-
ond training set Δ2 is the first five problem instances from the set of data

100 J. Park et al.

containing N = 30 jobs and M = 20 machines. The third training set Δ3 is
the first five problem instances from the set of data containing N = 100 jobs
and M = 20 machines. The standard GP-JSS approach has population size of
1024. For the EGP-JSS approach, given a fixed number of subpopulations S,
the subpopulation size is given by K = � 1024

S �. This gives us a total number of
individuals in the EGP-JSS approach that is approximately equal to the pop-
ulation size of the GP-JSS approach. For S = 3, 4, 5, 6, 7, 8, 9, 10, this gives us
K = 341, 256, 204, 170, 146, 128, 113, 102 respectively. These are shown in Table 2
with the notation 〈S,K〉, along with the other parameters used for GP. The GP-
JSS and the EGP-JSS approaches were run over each training set 30 times using
different seeds, resulting in 30 evolved dispatching rules over each training set.
For testing, the problem instances that are not used in the training sets Δ1, Δ2

or Δ3 are used, meaning that there are 65 problem instances in the test set.

Table 2. GP parameters used for evolving rules

Parameter GP-JSS Value EGP-JSS Value

〈Subpopulations, 〈1, 1024〉 〈3, 341〉, 〈4, 256〉, 〈5, 204〉, 〈6, 170〉,
Subpopulation sizes〉 〈7, 146〉, 〈8, 128〉, 〈9, 113〉, 〈10, 102〉
Crossover rate 80 % 80 %

Mutation rate 10 % 10 %

Reproduction rate 10 % 10 %

Generations 51 51

Max-depth 8 8

Selection method tournament selection tournament selection

Selection size 7 7

Initialisation ramped-half-and-half ramped-half-and-half

The R2 representation proposed by Nguyen et al. [11] is used as a benchmark
for GP-JSS and EGP-JSS. R2 will have the same parameter settings as the
GP-JSS approach. As a benchmark, the R2 representation proposed by Nguyen
et al. [11] is used to compare the robustness of the rules evolved using GP-
JSS and EGP-JSS. Afterward, the GP-JSS and the EGP-JSS approaches are
compared against benchmark DRs. The first two benchmarks are simple non-
delay schedules that select jobs to process on an available machine by the order
of their arrival (FIFO); and selecting jobs by the shortest processing time (SPT).
The other benchmarks are the best rules evolved by Nguyen et al. [11] for their
R1, R2 and R3 representations, which are used as non-delay dispatching rules.
As evolved rules from EGP-JSS are not improvement heuristics, they are not
compared against state-of-the-art meta-heuristic approaches to static JSS which
compensate for long running time by producing very good solutions to static
JSS problem instances.

Evolving Ensembles of Dispatching Rules Using Genetic Programming 101

5 Results

The solution’s deviation devI (see Eq. (1)) from the lower bound is used for
measuring the quality of the solution generated by the DRs. Afterward, the
average of all the problem instances, denoted as devavg, is used for evaluating
the DRs over the entire test set. In the tables that follow, sets of rules evolved
by EGP-JSS that perform significantly better than the rules evolved by GP-JSS
and R2 are marked with †. The standard z-test is used to compare the DRs
against each other. One set of evolved rules is considered significantly better
than another if the obtained p-value under the statistical test is less than 0.05.

5.1 Parameter Settings Evaluation

First, the different 〈Subpopulations, Subpopulation sizes〉 in Table 2 are com-
pared against each other to find the ‘best’ configuration. In addition, we com-
pare WFM and NFM against each other to see whether the modified evaluation
scheme (WFM) improves the performance of the evolved rules. The preferred
configuration for EGP-JSS is used for comparison against the other benchmarks.
This is shown in Table 3.

From the results of Table 3, we can see that the results of EGP-JSS under
different parameter settings are similar to each other. No configuration is signif-
icantly better than other configurations. This means that when K scales with

Table 3. devavg of evolved rules from EGP-JSS for the Taillard’s dataset for different
〈S, K〉 and for the fitness functions WFM and NFM

Δ1 Δ2 Δ3 Testing

WFM 〈3, 341〉 0.47 ± 0.07 0.36 ± 0.08 0.06 ± 0.05 0.28 ± 0.06

〈4, 256〉 0.45 ± 0.03 0.33 ± 0.04 0.05 ± 0.02 0.26 ± 0.03

〈5, 204〉 0.45 ± 0.04 0.34 ± 0.03 0.05 ± 0.02 0.26 ± 0.02

〈6, 170〉 0.47 ± 0.04 0.35 ± 0.05 0.06 ± 0.04 0.27 ± 0.04

〈7, 146〉 0.46 ± 0.04 0.34 ± 0.04 0.06 ± 0.03 0.27 ± 0.03

〈8, 128〉 0.47 ± 0.05 0.35 ± 0.04 0.06 ± 0.03 0.27 ± 0.03

〈9, 113〉 0.46 ± 0.03 0.35 ± 0.04 0.06 ± 0.03 0.27 ± 0.03

〈10, 102〉 0.46 ± 0.03 0.35 ± 0.04 0.06 ± 0.02 0.27 ± 0.02

NFM 〈3, 341〉 0.49 ± 0.08 0.36 ± 0.08 0.07 ± 0.06 0.29 ± 0.07

〈4, 256〉 0.47 ± 0.07 0.35 ± 0.07 0.06 ± 0.05 0.27 ± 0.06

〈5, 204〉 0.46 ± 0.05 0.35 ± 0.05 0.06 ± 0.04 0.27 ± 0.05

〈6, 170〉 0.46 ± 0.05 0.35 ± 0.05 0.06 ± 0.03 0.27 ± 0.04

〈7, 146〉 0.45 ± 0.02 0.34 ± 0.03 0.05 ± 0.02 0.26 ± 0.02

〈8, 128〉 0.45 ± 0.04 0.34 ± 0.04 0.05 ± 0.03 0.26 ± 0.03

〈9, 113〉 0.45 ± 0.02 0.34 ± 0.02 0.05 ± 0.01 0.26 ± 0.01

〈10, 102〉 0.46 ± 0.03 0.34 ± 0.03 0.05 ± 0.02 0.26 ± 0.02

102 J. Park et al.

S, the value of S is not significant to the performance of the evolved rules under
the EGP-JSS approach.

5.2 GP-JSS and EGP-JSS

From the results of Sect. 5.1, we selected the configuration with 〈4, 256〉 that uses
the modified fitness measure WFM to be compared against the GP-JSS and R2

approaches. Although 〈4, 256〉 with WFM is not significantly better than the
other configurations, it had the lowest mean deviation for the test set. For each
approach, 30 rules are evolved using the training sets Δ1, Δ2 and Δ3, and their
performances over training runs and the test runs over the respective training
and the test sets are used. This is shown in Table 4.

Table 4. devavg of evolved rules from GP-JSS and EGP-JSS for Jm||Cmax.

Training Testing

R2 GP-JSS EGP-JSS R2 GP-JSS EGP-JSS

Δ1 0.59 ± 0.15 0.57 ± 0.11 0.45 ± 0.03† 0.37 ± 0.13 0.36 ± 0.12 0.26 ± 0.04†

Δ2 0.40 ± 0.15 0.40 ± 0.11 0.33 ± 0.04† 0.32 ± 0.13 0.32 ± 0.10 0.26 ± 0.03†

Δ3 0.11 ± 0.10 0.12 ± 0.10 0.06 ± 0.01† 0.32 ± 0.13 0.34 ± 0.12 0.26 ± 0.01†

Although the GP-JSS extended the R2 approach by adding more terminals
to the terminal set, we can see in Table 4 that it did not improve on the original
approach significantly. It is likely that the added terminals representing the
number of idle jobs waiting at the machine (NJ) and sufficiently large value
(LV) are not important to the sequencing decisions that are made by the DRs.

However, we can see that the rules evolved using EGP-JSS perform signif-
icantly better than the rules evolved using the GP-JSS and R2 approaches,
outperforming the other rules evolved under the three training sets Δ1, Δ2 and
Δ3. In addition, the rules evolved with EGP-JSS have much lower standard devi-
ations, meaning that the evolved rules mostly performed similar to each other
and are more stable than those evolved with GP-JSS and R2. The results show
that EGP-JSS can potentially produce more robust rules than the “standard”
approach.

5.3 Evolved Rules and Benchmark Dispatching Rules

The final evaluation compares the best rules evolved from each training set using
GP-JSS and EGP-JSS against other dispatching rules over the training and the
test sets. The best evolved rules from GP-JSS and EGP-JSS are denoted as ΘGP

1

and ΘEGP
1 respectively, where the subscript on Θ denotes each training set (e.g.

Θ1 means best rule trained over Δ1). The first two benchmarks are non-delay
FIFO and SPT dispatching rules. The three other benchmarks are rules evolved

Evolving Ensembles of Dispatching Rules Using Genetic Programming 103

by Nguyen et al. [11] using the three different representations for individuals in
the GP population. The best rule from their R1 representation, R2 and R3 are
denoted as Θc1

R1
, Θc2

R2
and Θc3

R3
respectively. This is shown in Table 5.

Table 5. Deviation of the DRs against the lower bound for the training sets (Δ1, Δ2,
Δ3) and the entire dataset.

From the results of Table 5, we can see that the best rules from the GP-JSS
and the EGP-JSS approaches perform significantly better than the two simple
DRs. This reinforces the idea that evolved rules outperform the simple DRs for
JSS problems literature [3,6,11]. On the other hand, the best rules for GP-JSS
and EGP-JSS perform similarly to Θc1

R1
, Θc2

R2
and Θc3

R3
.

6 Conclusions

In this paper, we proposed a novel approach (EGP-JSS) of evolving an ensemble
of DRs using GP and cooperative coevolution. The experimental results show
that the ensemble of rules evolved from the EGP-JSS approach perform signif-
icantly better than the benchmark GP-JSS and R2 approaches. Including the
two new terminals in GP-JSS does not significantly improve the performance
over R2. The rules evolved by EGP-JSS are more robust than the simple con-
ventional rules FIFO and SPT.

For future work, extending the ensemble approach to dynamic JSS problem
would be very interesting. In dynamic JSS problems properties of jobs are not
known before they arrive at the shop floor. Because of this, global optimisation
techniques used in static JSS do not work in dynamic JSS. Good robust dispatch-
ing rule approach will be required to handle the uncertainity in conjunction with
the standard sequencing decisions in dynamic JSS. In addition, developing a GP
based ensemble approach that uses a single population would also be very use-
ful, as it removes the need to define the number of subpopulations and their
respective sizes.

104 J. Park et al.

References

1. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
2. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu,

R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12),
1695–1724 (2013)

3. Dimopoulos, C., Zalzala, A.M.S.: Investigating the use of genetic programming for
a classic one-machine scheduling problem. Adv. Eng. Softw. 32(6), 489–498 (2001)

4. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and
an application to boosting. In: Vitányi, P. (ed.) Computational Learning Theory.
Lecture Notes in Computer Science, pp. 23–37. Springer, Berlin (1995)

5. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

6. Geiger, C.D., Uzsoy, R., Aytu, H.: Rapid modeling and discovery of priority dis-
patching rules: an autonomous learning approach. J. Sched. 9(1), 7–34 (2006)

7. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules
for complex shop floor scenarios: a genetic programming approach. In: Proceedings
of the 12th Annual Conference on Genetic and Evolutionary Computation, pp.
257–264 (2010)

8. Jakobovi, D., Jelenkovi, L., Budin, L.: Genetic programming heuristics for multiple
machine scheduling. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-
Alcázar, A.I. (eds.) Genetic Programming. Lecture Notes in Computer Science, vol.
4445, pp. 321–330. Springer, Heidelberg (2007)

9. Jayamohan, M.S., Rajendran, C.: New dispatching rules for shop scheduling: a step
forward. Int. J. Prod. Res. 38(3), 563–586 (2000)

10. Kreipl, S.: A large step random walk for minimizing total weighted tardiness in a
job shop. J. Sched. 3(3), 125–138 (2000)

11. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: A computational study of rep-
resentations in genetic programming to evolve dispatching rules for the job shop
scheduling problem. IEEE Trans. Evol. Comput. 17(5), 621–639 (2013)

12. Pinedo, M.L.: Scheduling: theory, algorithms and systems development. In:
Gaul, W., Bachem, A., Habenicht, W., Runge, W., Stahl, W.W. (eds.) Operations
Research Proceedings 1991. Operations Research Proceedings 1991, vol. 1991, 3rd
edn, pp. 35–42. Springer, Heidelberg (2012)

13. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag.
6(3), 21–45 (2006)

14. Potter, M.A., De Jong, K.A.: Cooperative coevolution: an architecture for evolving
coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

15. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993)

16. Tay, J.C., Ho, N.B.: Evolving dispatching rules using genetic programming for
solving multi-objective flexible job-shop problems. Comput. Ind. Eng. 54(3),
453–473 (2008)

17. Zhou, H., Cheung, W., Leung, L.C.: Minimizing weighted tardiness of job-shop
scheduling using a hybrid genetic algorithm. Eur. J. Oper. Res. 194(3), 637–649
(2009)

	Evolving Ensembles of Dispatching Rules Using Genetic Programming for Job Shop Scheduling
	1 Introduction
	2 Background
	2.1 Job Shop Scheduling Problem
	2.2 Genetic Programming Based Hyper-Heuristic Approaches

	3 The New Approaches
	3.1 GP Representation
	3.2 Genetic Programming for Job Shop Scheduling (GP-JSS)
	3.3 Ensemble Genetic Programming for Job Shop Scheduling (EGP-JSS)

	4 Experimental Design
	5 Results
	5.1 Parameter Settings Evaluation
	5.2 GP-JSS and EGP-JSS
	5.3 Evolved Rules and Benchmark Dispatching Rules

	6 Conclusions
	References

