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Preface

The 18th European Conference on Genetic Programming (EuroGP) took place during
April 8–10, 2015. Copenhagen, Denmark was the setting, and the Nationalmuseet was
the venue. EuroGP is the only conference exclusively devoted to the evolutionary
generation of computer programs and attracts scholars from all over the world. The
maturity of the event is in part reflected by the fact that ‘Google Scholar’ now lists
EuroGP as one of the top 20 venues in Evolutionary Computation with an h5-index and
h5-median of 15 and 18 respectively.1 Collectively, over 10,000 articles now appear in
the online GP bibliography maintained by William B. Langdon.2

The unique character of genetic programming has been recognized from its very
beginning. EuroGP has had an essential impact on the success of the field, by serving
as an important forum for expressing new ideas, meeting fellow researchers, and
starting collaborations. Indeed, EuroGP represents the single largest venue at which
genetic programming results are published. Many success stories have been witnessed
by the 18 editions of EuroGP. To date, genetic programming is essentially the only
approach that has demonstrated the ability to automatically generate, repair, and
improve computer code in a wide variety of problem areas. It is also one of the leading
methodologies that can be used to ‘automate’ science, helping researchers to induce
hidden complex models from observed phenomena. Furthermore, genetic programming
has been applied to many problems of practical significance, and has produced human-
competitive solutions.

EuroGP 2015 received 36 submissions from 21 different countries across five
continents. The papers underwent a rigorous double-blind peer-review process, each
being reviewed by at least three members of the international Program Committee from
23 countries. The selection process resulted in this volume, with 12 papers accepted for
oral presentation (33.3 % acceptance rate) and 6 for poster presentation (50 % global
acceptance rate for talks and posters combined). The wide range of topics in this
volume reflects the current state of research in the field. Thus, we see topics as diverse
as semantic methods, recursive programs, grammatical methods, coevolution, Cartesian
GP, feature selection, initialization procedures, ensemble methods, and search objec-
tives; and applications including text processing, cryptography, numerical modeling,
software parallelization, creation and optimization of circuits, multi-class classification,
scheduling, and artificial intelligence.

Together with three other colocated evolutionary computation conferences (Evo-
COP 2015, EvoMUSART 2015, and EvoApplications 2015), EuroGP 2015 was part
of the Evo* 2015 event. This meeting could not have taken place without the help of
many people.

1 http://scholar.google.com/citations?view_op=top_venues&vq=eng_evolutionarycomputation.
2 http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html.
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http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html


First to be thanked is the great community of researchers and practitioners who
contributed to the conference by both submitting their work and reviewing others’ as
part of the Program Committee. Their hard work, in evolutionary terms, provided both
variation and selection, without which progress in the field would not be possible!

The papers were submitted, reviewed, and selected using the MyReview conference
management software. We are sincerely grateful to Marc Schoenauer of Inria, France,
for his great assistance in providing, hosting, and managing the software.

We would like to thank the local organising team: Paolo Burelli from the Faculty of
Engineering and Science, Aalborg University and Sebastian Risi, codirector of the
Robotics, Evolution and Art Laboratory at the IT University of Copenhagen.

We thank Kevin Sim from the Institute for Informatics & Digital Information,
Edinburgh Napier University for creating and maintaining the official Evo* 2014
website, and Pablo Garía-Sánchez (Universidad de Granada, Spain) and Mauro Castelli
(Universidade Nova de Lisboa, Portugal) for being responsible for Evo* 2014
publicity.

We would also like to express our sincerest gratitude to our invited speakers, who
gave inspiring keynote talks: Professor Paulien Hogeweg of the Bioinformatics group,
Utrecht University, The Netherlands, and Dr. Pierre-Yves Oudeyer, Research Director
at Inria, Paris, France.

We especially want to express our genuine gratitude to Jennifer Willies of the
Institute for Informatics and Digital Innovation at Edinburgh Napier University, UK.
Her dedicated and continued involvement in Evo* since 1998 has been and remains
essential for building the image, status, and unique atmosphere of this series of events.

April 2015 Penousal Machado
Malcolm I. Heywood

James McDermott
Mauro Castelli

Pablo García-Sánchez
Paolo Burelli
Kevin Sim

VI Preface



Organization

Administrative details were handled by Jennifer Willies, Institute for Informatics and
Digital Innovation, Edinburgh Napier University, Scotland, UK.

Organizing Committee

Program Co-chairs

Penousal Machado University of Coimbra, Portugal
Malcolm I. Heywood Dalhousie University, Canada

Publication Chair

James McDermott University College Dublin, Ireland

Publicity Chairs

Mauro Castelli Universidade Nova de Lisboa, Portugal
Pablo García-Sánchez Universidad de Granada, Spain

Local Chairs

Paolo Burelli Aalborg University, Denmark
Sebastian Risi IT University of Copenhagen, Denmark

Webmaster

Kevin Sim Edinburgh Napier University, UK

Program Committee

Alexandros Agapitos University College Dublin, Ireland
Lee Altenberg University of Hawaii at Manoa, USA
R. Muhammad Atif Azad University of Limerick, Ireland
Ignacio Arnaldo Massachusetts Institute of Technology, USA
Douglas Augusto LNCC/UFJF, Brazil
Wolfgang Banzhaf Memorial University of Newfoundland, Canada
Mohamed Bahy Bader University of Portsmouth, UK
Helio Barbosa LNCC/UFJF, Brazil
Heder Bernardino LNCC/UFJF, Brazil
Anthony Brabazon University College Dublin, Ireland
Nicolas Bredeche Université Pierre et Marie Curie, France
Stefano Cagnoni University of Parma, Italy
Ernesto Costa University of Coimbra, Portugal
Luis Da Costa Université Paris-Sud XI, France
Antonio Della Cioppa University of Salerno, Italy



Federico Divina Pablo de Olavide University, Spain
Marc Ebner Ernst-Moritz-Arndt Universität Greifswald,

Germany
Aniko Ekart Aston University, UK
Francisco Fernández de Vega Universidad de Extremadura, Spain
Gianluigi Folino ICAR-CNR, Italy
James A. Foster University of Idaho, USA
Christian Gagné Université Laval, Québec, Canada
Steven Gustafson GE Global Research, USA
Jin-Kao Hao LERIA, University of Angers, France
Inman Harvey University of Sussex, UK
Erik Hemberg Massachusetts Institute of Technology, USA
Malcolm I. Heywood Dalhousie University, Canada
Ting Hu Dartmouth College, USA
David Jackson University of Liverpool, UK
Colin Johnson University of Kent, UK
Tatiana Kalganova Brunel University, UK
Ahmed Kattan Umm Al-Qura University, Saudi Arabia
Graham Kendall University of Nottingham, UK
Michael Korns Korns Associates, USA
Jan Koutnik IDSIA Dalle Molle Institute for Artificial

Intelligence, Switzerland
Krzysztof Krawiec Poznan University of Technology, Poland
Jiri Kubalik Czech Technical University in Prague,

Czech Republic
William B. Langdon University College London, UK
Kwong Sak Leung The Chinese University of Hong Kong, China
John Levine University of Strathclyde, UK
Evelyne Lutton Inria, France
Penousal Machado University of Coimbra, Portugal
Radek Matousek Brno University of Technology, Czech Republic
James McDermott University College Dublin, Ireland
Andrew McIntyre Dalhousie University, Canada
Bob McKay Seoul National University, Korea
Jorn Mehnen Cranfield University, UK
Julian Miller University of York, UK
Alberto Moraglio University of Exeter, UK
Xuan Hoai Nguyen Hanoi University, Vietnam
Miguel Nicolau University College Dublin, Ireland
Julio Cesar Nievola Pontificia Universidade Católica do Paraná, Brazil
Michael O’Neill University College Dublin, Ireland
Una-May O’Reilly Massachusetts Institute of Technology, USA
Fernando Otero University of Kent, UK
Ender Ozcan University of Nottingham, UK
Andrew J. Parkes University of Nottingham, UK
Gisele Pappa Federal University of Minas Gerais, Brazil

VIII Organization



Tomasz Pawlak Poznan University of Technology, Poland
Clara Pizzuti Institute for High Performance Computing

and Networking, Italy
Thomas Ray University of Oklahoma, USA
Peter Rockett University of Sheffield, UK
Denis Robilliard Université Lille Nord de France, France
Conor Ryan University of Limerick, Ireland
Marc Schoenauer Inria, France
Lukas Sekanina Brno University of Technology, Czech Republic
Yin Shan Medicare, Australia
Sara Silva INESC-ID Lisboa, Portugal
Moshe Sipper Ben-Gurion University, Israel
Alexei N. Skurikhin Los Alamos National Laboratory, USA
Terence Soule University of Idaho, USA
Lee Spector Hampshire College, USA
Ivan Tanev Doshisha University, Japan
Ernesto Tarantino ICAR-CNR, Italy
Jorge Tavares Microsoft, Germany
Leonardo Trujillo Instituto Tecnológico de Tijuana, Mexico
Leonardo Vanneschi Universidade Nova de Lisboa, Portugal,

and University of Milano-Bicocca, Italy
Man Leung Wong Lingnan University, Hong Kong
Lidia Yamamoto University of Strasbourg, France
Mengjie Zhang Victoria University of Wellington, New Zealand

Organization IX



Contents

Regular Papers

The Effect of Distinct Geometric Semantic Crossover Operators
in Regression Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Julio Albinati, Gisele L. Pappa, Fernando E.B. Otero,
and Luiz Otávio V.B. Oliveira

Learning Text Patterns Using Separate-and-Conquer Genetic Programming. . . . 16
Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao

Improving Geometric Semantic Genetic Programming with Safe
Tree Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Grant Dick

On the Generalization Ability of Geometric Semantic Genetic Programming . . . . . . 41
Ivo Gonçalves, Sara Silva, and Carlos M. Fonseca

Automatic Derivation of Search Objectives for Test-Based
Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Krzysztof Krawiec and Paweł Liskowski

Evolutionary Design of Transistor Level Digital Circuits
Using Discrete Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Vojtech Mrazek and Zdenek Vasicek

M3GP – Multiclass Classification with GP. . . . . . . . . . . . . . . . . . . . . . . . . 78
Luis Muñoz, Sara Silva, and Leonardo Trujillo

Evolving Ensembles of Dispatching Rules Using Genetic Programming
for Job Shop Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

John Park, Su Nguyen, Mengjie Zhang, and Mark Johnston

Attributed Grammatical Evolution Using Shared Memory Spaces
and Dynamically Typed Semantic Function Specification . . . . . . . . . . . . . . . 105

James Vincent Patten and Conor Ryan

Indirectly Encoded Fitness Predictors Coevolved with Cartesian Programs . . . 113
Michaela Sikulova, Jiri Hulva, and Lukas Sekanina

Tapped Delay Lines for GP Streaming Data Classification
with Label Budgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Ali Vahdat, Jillian Morgan, Andrew R. McIntyre, Malcolm I. Heywood,
and A. Nur Zincir-Heywood

http://dx.doi.org/10.1007/978-3-319-16501-1_1
http://dx.doi.org/10.1007/978-3-319-16501-1_1
http://dx.doi.org/10.1007/978-3-319-16501-1_2
http://dx.doi.org/10.1007/978-3-319-16501-1_3
http://dx.doi.org/10.1007/978-3-319-16501-1_3
http://dx.doi.org/10.1007/978-3-319-16501-1_4
http://dx.doi.org/10.1007/978-3-319-16501-1_5
http://dx.doi.org/10.1007/978-3-319-16501-1_5
http://dx.doi.org/10.1007/978-3-319-16501-1_6
http://dx.doi.org/10.1007/978-3-319-16501-1_6
http://dx.doi.org/10.1007/978-3-319-16501-1_7
http://dx.doi.org/10.1007/978-3-319-16501-1_8
http://dx.doi.org/10.1007/978-3-319-16501-1_8
http://dx.doi.org/10.1007/978-3-319-16501-1_9
http://dx.doi.org/10.1007/978-3-319-16501-1_9
http://dx.doi.org/10.1007/978-3-319-16501-1_10
http://dx.doi.org/10.1007/978-3-319-16501-1_11
http://dx.doi.org/10.1007/978-3-319-16501-1_11


Cartesian GP in Optimization of Combinational Circuits with Hundreds
of Inputs and Thousands of Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Zdenek Vasicek

Posters

Genetic Programming for Feature Selection and Question-Answer Ranking
in IBM Watson. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Urvesh Bhowan and D.J. McCloskey

Automatic Evolution of Parallel Recursive Programs . . . . . . . . . . . . . . . . . . 167
Gopinath Chennupati, R. Muhammad Atif Azad, and Conor Ryan

Proposal and Preliminary Investigation of a Fitness Function for Partial
Differential Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Igor S. Peretta, Keiji Yamanaka, Paul Bourgine, and Pierre Collet

Evolutionary Methods for the Construction of Cryptographic
Boolean Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Stjepan Picek, Domagoj Jakobovic, Julian F. Miller, Elena Marchiori,
and Lejla Batina

TEMPLAR – A Framework for Template-Method Hyper-Heuristics . . . . . . . . . 205
Jerry Swan and Nathan Burles

Circuit Approximation Using Single- and Multi-objective Cartesian GP . . . . . 217
Zdenek Vasicek and Lukas Sekanina

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

XII Contents

http://dx.doi.org/10.1007/978-3-319-16501-1_12
http://dx.doi.org/10.1007/978-3-319-16501-1_12
http://dx.doi.org/10.1007/978-3-319-16501-1_13
http://dx.doi.org/10.1007/978-3-319-16501-1_13
http://dx.doi.org/10.1007/978-3-319-16501-1_14
http://dx.doi.org/10.1007/978-3-319-16501-1_15
http://dx.doi.org/10.1007/978-3-319-16501-1_15
http://dx.doi.org/10.1007/978-3-319-16501-1_16
http://dx.doi.org/10.1007/978-3-319-16501-1_16
http://dx.doi.org/10.1007/978-3-319-16501-1_17
http://dx.doi.org/10.1007/978-3-319-16501-1_18


Regular Papers



The Effect of Distinct Geometric Semantic
Crossover Operators in Regression Problems

Julio Albinati1(B), Gisele L. Pappa1,
Fernando E.B. Otero2, and Luiz Otávio V.B. Oliveira1,3

1 Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
{jalbinati,glpappa,luizvbo}@dcc.ufmg.br

2 Chatham Maritime, University of Kent, Kent, UK
F.E.B.Otero@kent.ac.uk

3 Instituto Federal Do Sul de Minas Gerais, Poços de Caldas, Brazil

Abstract. This paper investigates the impact of geometric semantic
crossover operators in a wide range of symbolic regression problems.
First, it analyses the impact of using Manhattan and Euclidean dis-
tance geometric semantic crossovers in the learning process. Then, it pro-
poses two strategies to numerically optimize the crossover mask based on
mathematical properties of these operators, instead of simply generating
them randomly. An experimental analysis comparing geometric semantic
crossovers using Euclidean and Manhattan distances and the proposed
strategies is performed in a test bed of twenty datasets. The results
show that the use of different distance functions in the semantic geomet-
ric crossover has little impact on the test error, and that our optimized
crossover masks yield slightly better results. For SGP practitioners, we
suggest the use of the semantic crossover based on the Euclidean dis-
tance, as it achieved similar results to those obtained by more complex
operators.

Keywords: Semantic genetic programming · Crossover · Crossover mask
optimization

1 Introduction

The development of methods that take the semantics of the solutions being
evolved into account is a trend in the genetic programming community, with spe-
cial attention given to methods based on geometric semantic crossover operators
[8,12]. The main reason for researchers interest in geometric semantic crossover
is that, by manipulating directly the semantics of solutions, it behaves in a
much more controlled way since the semantic impact of operators can be easily
bounded. It also has interesting properties regarding control of overfitting, estab-
lishing upper bounds in test error. Furthermore, the fitness landscapes induced
by semantic operators are usually much simpler than regular landscapes, making
optimization easier.

c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 3–15, 2015.
DOI: 10.1007/978-3-319-16501-1 1



4 J. Albinati et al.

This paper is particularly interested in the impact of geometric semantic
crossover operators into symbolic regression problems. Given a set of inputs
I and their respectively expected outputs O, the semantics of a function f
being evolved can be indirectly assessed by a quality measure, such as the error
rate, which calculates the differences between the expected outputs O and the
obtained outputs O′ = f(I). As different functions can map to the same value of
error, we can say this error measure performs a kind of syntactic–semantic (or
genotype-phenotype) mapping.

Considering that the semantics of a solution can be represented by its out-
put vector O′, different ways of measuring the semantic distance between two
functions have been proposed. In the case of symbolic regression, as the outputs
generated return real values, the Manhattan and Euclidean distances are appro-
priate functions for measuring error. These distance metrics can then be used to
measure the semantic distance between pairs of individuals.

Geometric semantic operators were defined to work into different spaces of
functions defined by the distance metrics previously described. In this way, the
geometric crossover is a function of the semantics of their parents. Given two
real-valued functions f1 and f2, a geometric semantic crossover returns a third
real-valued function f3 representing the convex combination of the parents. The
offspring is obtained by multiplying f1 and f2 by a crossover mask, which can
be represented by a constant, in the case of the Euclidean distance or a function
(e.g. logistic [13]), in the case of the Manhattan distance.

This paper investigates the impact of using Manhattan and Euclidean dis-
tance on geometric semantic crossovers in the learning process and proposes two
strategies to numerically optimize the crossover mask based on mathematical
properties of these operators, instead of simply generating them randomly. We
present an experimental analysis in which the different distance metric crossovers
and the proposed strategies are compared on a test bed composed of twenty
datasets with distinct properties from both real and synthetic domains.

The remainder of this paper is organised as follows. Section 2 presents an
overview of the methods that incorporate semantic awareness into GP. Section 3
introduces the two new optimization strategies applied to the crossover masks,
followed by the experimental analysis in the test bed in Sect. 4. Finally, conclu-
sions and perspectives of future work are presented in Sect. 5.

2 Related Work

The study of programs or individuals semantics in GP has been developed
mostly in the last five years [12]. In [12], the authors divide semantic-aware
techniques into three groups: diversity methods, indirect semantic methods and
direct semantic methods.

Diversity methods were the first proposed, aiming to preserve or reinject
diversity throughout evolution. Although methods aiming at GP diversity are
not new, they usually considered only syntactic diversity. In [4], in turn, the
authors studied the impact of semantic diversity during population initializa-
tion, showing that greater diversity leads to improved results. Indirect semantic



The Effect of Distinct Geometric Semantic Crossover Operators 5

methods, on the other hand, use regular GP operator, but only accept individuals
if they respect some semantic-related criteria, such as their semantic difference
to their parents [3] or to a geometric (semantically intermediate) individual of
their parents [6]. Different versions of methods based on this approach were
subsequently proposed [9,10], and although they led to improved results over
traditional crossover operators, they are trial-and-error techniques, without any
guarantees that solutions respecting the criteria established will be actually gen-
erated.

In contrast to indirect methods, direct semantic methods use operators specif-
ically designed to operate in a semantic level, and are our subject of interest.
In [8], the authors proposed geometric semantic crossover and mutation oper-
ators for three domains: boolean, categorical and real-valued. The geometric
semantic crossover operator follows Definition 1, which is essentially a convex
combination of two previously generated solutions. The function that combines
the solutions, c(x), is the crossover mask .

Definition 1. Let F be the set of functions mapping instances to real numbers
and f1(x), f2(x) ∈ F be two previously generated solutions. Then XO : F ×
F → F is called a semantic geometric crossover (for real-valued functions) if
XO(f1(x), f2(x)) = c(x) · f1(x) + (1 − c(x)) · f2(x), where c(x) outputs values
in the interval [0, 1].

Note that for the crossover operator, if c(x) = β for all x, then its geometric
properties will be related to the Euclidean distance in the semantic search space.
However, if c(x) is allowed to output distinct values for distinct instances, then
its geometric properties will be related to the Manhattan distance.

Since the crossover operator performs a convex combination, a solution f3(x)
generated by this operator will be semantically intermediate of its parents f1(x)
and f2(x): dist(f1, f2) = dist(f1, f3)+dist(f3, f2), where dist may be the Euclid-
ean or Manhattan distance in the semantic search space depending on the choice
of crossover mask. For the Euclidean distance, this fact lead to the property that
the error committed by f3(x) is upper bounded by the error of the worst of its
parents. More interestingly, this property holds for both training and test sets,
thus being useful for controlling overfitting [8,11].

Successive applications of the geometric semantic crossover, however, may
lead to an exponential growth in the size of solutions, as pointed out in [8]. In
fact, the number of nodes of a tree T3 obtained as the crossover of two other trees,
T1 and T2, is greater than the number of nodes of T1 and T2 altogether. Although
it is possible to simplify the functions represented by such trees, this would lead
to a large computational effort. In [5], the authors proposed an efficient way
of dealing with this problem by avoiding replicating subtrees that are part of
more than a solution. They also suggested the usage of a sigmoid (logistic)
function c(x) = (1 + e−r(x))−1 (r(x) being a randomly generated function),
which correctly outputs values in the required interval.
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3 Optimized Semantic Crossover Operators

This section proposes two new versions of the semantic crossover operator showed
in Definition 1. These new versions were generated by optimizing the crossover
masks instead of randomly generating them.

3.1 Optimized Convex Geometric Semantic Crossover Operator

The first proposed operator was generated by finding the value of the crossover
mask that leads to the minimum training error. As we show in this section, this
new operator has an interesting property: it is non-degenerative, strengthening
the convex property regarding training error. While the convex property states
that the error of the function being generated will never be larger than the worst
of its parents, we can now state that the error of the function being generated
will never be larger than the best of its parents when considering training error,
as showed below.

Suppose that the crossover mask c(x) is a single constant, i.e., c(x) = β
for all x (and the crossover is based on the Euclidean distance in the semantic
space). Let f1(x), f2(x) be two previously generated solutions, and f3(x) =
XO(f1(x), f2(x)). Then, the sum of squared errors (SSE) of f3 can be expressed
in terms of β:

SSE(β) =
n∑

i=1

[yi − β · f1(xi) − (1 − β) · f2(xi)]2 (1)

where training data is represented as sequence of pairs {(xi, yi)}n
i=1.

Since SSE(β) is continuous, we can calculate the derivative of Eq. 1 and
equals it to zero, finding

β∗ =
∑n

i=1[yi − f2(xi)][f2(xi) − f1(xi)]∑n
i=1[f1(xi) − f2(x2)]2

(2)

such that it minimizes the error of f3(x), as shown in Proposition 1. Note that
calculating the optimized coefficient can be done in O(n), the same time required
for computing the semantic of the offspring. Therefore, the optimization of coef-
ficients does not change the asymptotic complexity of SGP.

However, β∗ as computed in Eq. 2 may not fall in the [0, 1] interval. This will
happen whenever any convex combination of f1 and f2 is worse than f1 and f2.
To enforce the interval constraint, we use a distinct value β∗∗ such that

β∗∗ = max(min(1, β∗), 0) (3)

Proposition 1. The argument β∗∗ as expressed in Eq. 3 minimizes the error
function (Eq. 1) while respecting the interval constraint.
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Proof. Since limβ→c SSE(β) = SSE(c), ∀c ∈ R, SSE(β) is a continuous func-
tion in R and we can compute its derivate with relation to β.

δSSE

δβ
= 2 ·

n∑

i=1

[yi − f2(xi)][f2(xi) − f1(xi)] + β · [f2(xi) − f1(xi)]2

By making the derivative equals to zero, we find a (local) minimum or max-
imum point.

β∗ =
∑n

i=1 [yi − f2(xi)][f1(xi) − f2(xi)]∑n
i=1 [f2(xi) − f1(xi)]2

We now need to show that β∗ is a minimization point. We compute the
second derivative of SSE(β) with relation to β.

δ2SSE(β)
δβ2

=
n∑

i=1

[f2(xi) − f1(xi)]2

≥ 0

Since the second derivative obtained is always non-negative, we prove that
β∗ is a minimization point and SSE(β) is convex. Suppose now that β∗ > 1.
Then, β∗∗ = 1 and it minimizes SSE(β) while being in the interval [0, 1], since
SSE(β) is convex and β∗∗ is the closest point to β∗ in the interval. An analogue
reasoning implies that if β∗ < 0, β∗∗ = 0 minimizes the error function while
being in the required interval. Finally, if 0 ≤ β∗ ≤ 1, then β∗∗ = β∗ and is also a
minimization point in the required interval. Thus, we prove that β∗∗ minimizes
SSE(β) while respecting the interval constraint.

As β is optimized in the closed interval [0, 1], if 0 < β∗∗ < 1, then SSE(β∗∗) ≤
SSE(1) and SSE(β∗∗) ≤ SSE(0). Otherwise, β∗∗ would be 1 or 0 and the best
of the two functions used in crossover would be simply replicated (see Fig. 1).
This shows that the error of the function being generated will never be larger
than the best of its parents. Regarding test error, the geometric property is still
valid, since this modified version is still a convex combinations of functions.

3.2 Optimized Non-Convex Geometric Semantic
Crossover Operator

The convex geometric semantic crossover operator can be very constrained: the
fact that it can only generate solutions semantically intermediate of the functions
being used for crossover implies that the performance can be strongly determined
by the initial population. In order to build a more flexible operator, we propose
the following non-convex crossover operator, based on linear combinations (not
necessarily convex). However, this means increasing the risk of overfitting, as we
now do not have any guarantees regarding test error.

XO(f1(xi), f2(xi)) = β1 · f1(xi) + β2 · f2(xi) (4)
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Fig. 1. Application of the convex semantic geometric crossover over functions Y =
3X + 5 and Y = 2X + 2, and the target function Y = 1.5X. The gray area repre-
sents possible convex combination of the two functions. Note, however, that the target
function is outside of the gray area, meaning that any convex combination is worse (or
equal) than the second function.

Again, we can express the error of a function generated through Eq. 4 in
terms of β1 and β2.

SSE(β1, β2) =
n∑

i=1

[yi − β1 · f1(xi) − β2 · f2(xi)]2 (5)

Since SSE(β1, β2) is continuous in R
2, we can use the same strategy pre-

sented in the previous subsection to find β∗
1 and β∗

2 that minimizes Eq. 5. Let F
be a n-by-2 matrix where Fij = fj(xi) and Y be a column vector of length n
containing the target values of each training instance. Then

(
β∗
1

β∗
2

)
= (F tF )−1

F tY (6)

Note that similar approaches have been already proposed. In [2], the authors
propose to linearly combine subexpressions of programs to re-interpret their
semantics. In this work, however, we propose to apply a linear combination
of two distinct programs.

Proposition 2. The arguments β∗
1 and β∗

2 as expressed in Eq. 6 minimize the
error function (Eq. 5).

Proof. Since lim(β1,β2)→(c1,c2) SSE(β1, β2) = SSE(c1, c2) for an arbitrary pair
(c1, c2) ∈ R

2, SSE(β1, β2) is continuous in R
2 and we can compute its derivative

with relation to β1 and β2.
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δSSE

δβ1
=

n∑

i=1

−2[yi · f1(xi) − β1 · f1(xi)2 − β2 · f1(xi) · f2(xi)]

δSSE

δβ2
=

n∑

i=1

−2[yi · f2(xi) − β1 · f1(xi) · f2(xi) − β2 · f2(xi)2]

Letting F be a n-by-2 matrix where Fij = fj(xi) and Y be a column vector of
length n containing the target values for each training instance. By making the
derivatives above equal to zero, we arrive in the following matrix formulation:

(F tF )
(

β∗
1

β∗
2

)
= F tY ⇒

(
β∗
1

β∗
2

)
= (F tF )−1F tY

Therefore, we only need to show that (β∗
1 , β∗

2) consists of a minimization (and
not maximization) point. For that, we will need second order derivatives of SSE.

δ2SSE

δβ2
1

= 2
n∑

i=1

f1(xi)2

δ2SSE

δβ2
2

= 2
n∑

i=1

f2(xi)2

δ2SSE

δβ1δβ2
= 2

n∑

i=1

f1(xi) · f2(xi)

Since

D =
δ2SSE

δβ2
1

(β∗
1 , β∗

2) · δ2SSE

δβ2
2

(β∗
1 , β∗

2) − [
δ2SSE

δβ1δβ2
(β∗

1 , β∗
2)]2

= 4
n∑

i=1

f1(xi)2
n∑

i=1

f2(xi)2 − 4(
n∑

i=1

f1(xi) · f2(xi))2

> 0

we can conclude that (β∗
1 , β∗

2) is indeed a minimization point.

The operator proposed in this section is also non-degenerative regarding training
error, since we are optimizing parameters over a set that includes (β1 = 1, β2 = 0)
and (β1 = 0, β2 = 1).

4 Experimental Results

The experiments reported in this section were performed to evaluate the role
of geometric semantic crossover on a large set of datasets with distinct prop-
erties. The first experiment (reported in Sect. 4.1) was designed to show that,
different from traditional crossover operators, semantic geometric operators have
nothing to do with a macro mutation [1], as they guarantee their offspring will
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be semantically intermediate to its parents, and they also outperform strictly
mutation-based methods. The second experiment, showed in Sect. 4.2, compares
variations of convex semantic crossover operators using different distances and
optimized coefficients.

For all experiments, we used 20 datasets with distinct properties. Eight of
these dataset are synthetic and were recommended in [7], the others being real-
world datasets. For each real-world dataset, we did a 5-fold cross-validation with
10 replications, making 50 replications. For the synthetic ones (except keijzer-6
and keijzer-7 ), we generated 5 samples and, for each sample, applied the algo-
rithms 10 times, again making 50 replications. For keijzer-6 and keijzer-7, the
test set is fixed, so we simply replicated the executions 50 times.

For all methods, a preliminary parameter study was performed, and we
defined the population size equal to 1,000 individuals, evolved for 2,000 genera-
tions to ensure convergence. The operator set included basic arithmetic opera-
tions: addition, subtraction, multiplication and protected division. The terminal
set included the variables of the problem and constant values in the interval
[−1, 1]. The tournament size was defined as 10. Finally, both probabilities of
crossover and mutation were defined as 0.5.

It is important to point out that, in all Semantic Genetic Programming (SGP)
versions, the semantic mutation operator used was implemented as in [5]. This
is because this mutation operator presented better results in preliminary tests
than the mutation operator proposed in [8]. We believe this difference is due to
the fact that the semantic impact of the latter is still unbounded, which is not
true for the mutation operator used in this work. The mutation step required
by the mutation operator was defined as 10 % of the standard deviation of the
training data. For each algorithm, the following variations of semantic crossover
were tested:

– SGXE: Euclidean-based geometric semantic crossover with random crossover
mask;

– SGXM: Manhattan-based geometric semantic crossover with random cross-
over mask;

– SGXE-C: Optimized convex Euclidean-based geometric semantic crossover
operator (as in Eq. 3);

– SGXE-L: Optimized non-convex Euclidean-based geometric semantic cross-
over operator (as in Eq. 6);

– SGP-Mut: SGP with crossover rate equal to 0.

All statistical tests considered a confidence level of 95 %. Whenever multiple
tests were necessary, a Bonferroni correction was applied to assure that the
required confidence level was maintained.

4.1 Measuring the Impact of Geometric Semantic Crossover

This section compares SGP-Mut and SGXM, the most recent geometric seman-
tic crossover operator proposed in literature. The reason for this comparison is
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Table 1. Median RMSEs (and IQR) obtained after 2,000 generations for each dataset,
considering 50 replications.

Dataset SGP-Mut SGXM

Median IQR Median IQR

airfoil 2.28 0.16 2.65 0.91

bioavailability 33.09 3.39 30.63 4.48

concrete 5.61 0.80 4.92 0.50

cpu 37.22 9.82 30.09 12.42

energyCooling 1.34 0.18 1.19 0.16

energyHeating 0.82 0.14 0.63 0.16

forestfires 59.87 40.37 52.55 46.07

keijzer-5 0.31 0.07 0.08 0.17

keijzer-6 0.44 0.33 0.30 0.40

keijzer-7 0.05 0.02 0.03 0.10

korns-1 207.74 47.61 106.61 138.02

korns-2 476.71 60.66 687.22 2914.61

korns-12 1.13 0.11 1.02 0.01

ppb 32.38 6.27 29.22 4.87

tower 25.46 0.71 19.13 1.01

vlad-1 0.66 2.57 2.00 5.61

vlad-4 0.40 0.15 0.21 1.77

wine-red 0.65 0.07 0.59 0.05

wine-white 0.72 0.02 0.67 0.01

yacht 1.51 0.39 1.31 0.47

that, as already stated, the (semantic) fitness landscape induced by the fitness
function, the distance function and the set of solutions is quite simple: since the
fitness function is actually the distance function, we have that the landscape is
unimodal. This may indicate that methods based on local decisions are sufficient
for achieving good solutions, and hence crossover might have similar effects to
mutation.

Table 1 shows the median results of Root Mean Squared Error (RMSE) fol-
lowed by the Interquartile Range (IQR) obtained by both configurations on the
20 datasets used as benchmarks. The results leave no doubts that SGXM per-
forms better than SGP-Mut. In half of the datasets, SGXM was statistically
better than SGP-Mut, while being statistically worse in only two.

These results indicate that the geometric semantic crossover operator in
SGP is indeed beneficial and has a different effect from using mutation-only
based methods, despite the simplicity of the fitness landscape. The poor results
obtained by the mutation operator might be explained by the fact that the oper-
ator has access only to the observed fitness landscape (training set), and not the
complete one.
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4.2 Comparing Different Distance Functions and Crossover Masks

Given that geometric semantic crossover is indeed necessary, we now turn our
attention to the impact of the crossover operator distance function, as well as
the performance of the two operators proposed here, which work by optimizing
the crossover masks. Therefore, this section compares SGXE, SGXM, SGXE-C
and SGXE-L using the same 20 datasets listed in the last section.

Table 2 shows the final training error obtained by each operator on each
dataset, while Table 4 shows the number of datasets where the operator posi-
tioned in the line beats the operator positioned in the column in the training set,
according to Wilcoxon test. As expected, in most datasets, SGXM and SGXE-C
are statistically better than SGXE. SGXE-L was consistently worse than SGXE-
C (and all other operators) despite considering a larger set of possible combi-
nations. Another interesting point is that SGXM is better than SGXE-C in 11
datasets and worse in 4 datasets, leading to the conclusion that the optimization

Table 2. Median training RMSEs (and IQR) obtained after 2,000 generations for each
dataset, considering 50 replications.

Dataset SGXE SGXM SGXE-C SGXE-L

Median IQR Median IQR Median IQR Median IQR

airfoil 1.82 0.21 1.89 0.46 1.68 0.16 1.66 0.14

bioavailability 5.12 1.17 4.67 1.44 4.77 1.43 6.12 1.01

concrete 3.19 0.14 2.61 0.15 2.96 0.15 4.26 0.17

cpu 3.49 0.61 2.03 0.38 1.80 0.38 7.65 1.57

energyCooling 0.89 0.05 0.70 0.06 0.81 0.05 1.14 0.05

energyHeating 0.42 0.03 0.36 0.06 0.37 0.04 0.65 0.08

forestfires 21.80 3.22 14.43 2.31 18.86 2.98 22.12 4.25

keijzer-5 0.03 0.01 0.03 0.01 0.03 0.01 0.05 0.01

keijzer-6 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00

keijzer-7 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

korns-1 86.67 17.98 78.26 18.67 82.79 26.64 7.27 10.62

korns-2 301.20 437.22 131.13 140.62 228.16 320.80 220.05 268.34

korns-12 0.93 0.01 0.87 0.01 0.91 0.01 0.95 0.01

ppb 0.25 0.03 0.09 0.02 0.08 0.02 1.25 0.17

tower 17.45 0.29 16.58 0.57 16.93 0.29 21.20 0.84

vlad-1 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

vlad-4 0.03 0.00 0.02 0.00 0.03 0.00 0.05 0.00

wine-red 0.36 0.01 0.29 0.01 0.33 0.01 0.38 0.01

wine-white 0.57 0.00 0.53 0.00 0.55 0.00 0.60 0.01

yacht 0.48 0.07 0.38 0.05 0.39 0.07 0.78 0.17
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Table 3. Median test RMSEs (and IQR) obtained after 2000 generations for each
datasets, considering 50 replications.

Dataset SGXE SGXM SGXE-C SGXE-L

Median IQR Median IQR Median IQR Median IQR

airfoil 2.28 0.29 2.65 0.91 2.21 0.27 2.17 0.31

bioavailability 31.06 3.85 30.63 4.48 31.49 4.48 38.06 12.00

concrete 4.82 0.44 4.92 0.50 4.68 0.50 6.19 0.91

cpu 28.95 11.95 30.09 12.42 28.04 15.74 136.51 128.12

energyCooling 1.21 0.14 1.19 0.16 1.20 0.12 1.76 1.12

energyHeating 0.59 0.09 0.63 0.16 0.55 0.07 1.51 2.06

forestfires 51.55 46.68 52.55 46.07 53.00 45.81 105.85 39.83

keijzer-5 0.07 0.19 0.08 0.17 0.09 0.20 0.19 0.35

keijzer-6 0.61 0.39 0.30 0.40 0.50 0.56 0.41 0.25

keijzer-7 0.03 0.03 0.03 0.10 0.02 0.03 8.56 15.89

korns-1 104.13 160.15 106.61 138.02 102.00 147.86 8.75 47.95

korns-2 702.62 3124.15 687.22 2914.61 930.37 3031.87 2263.33 6511.75

korns-12 1.03 0.01 1.02 0.01 1.04 0.01 1.02 0.01

ppb 29.21 5.49 29.38 5.67 30.15 4.97 44.64 54.36

tower 19.36 0.71 19.13 1.01 19.29 0.89 24.36 2.45

vlad-1 1.42 3.76 2.00 5.61 2.91 7.09 6.61 27.17

vlad-4 0.09 0.43 0.21 1.77 0.34 0.60 1.85 5.49

wine-red 0.60 0.05 0.59 0.05 0.60 0.06 0.65 0.06

wine-white 0.68 0.01 0.67 0.01 0.68 0.01 0.71 0.02

yacht 1.15 0.25 1.31 0.47 1.16 0.34 2.01 0.99

is easier when considering the Manhattan distance than when considering the
Euclidean distance, despite optimized coefficients.

Tables 3 and 4 show the same information as the two previous tables, now
considering test error. From these tables, we observe that SGXE-L is by far
the worst operator: it lost in 15 datasets and won in only 2. We attribute these
results to overfitting: for instance, on the cpu dataset, the training error achieved
by SGXE-L was 7.65, while the test error was 105.85. As expected, the removal
of the convex property increased risk of overfitting, as we eliminated any bounds
on the test error.

On the test set, SGXE, SGXM and SGXE-C achieved similar results. These
results indicate that both SGXE-C and SGXM may lead to overfitting, since
the good results obtained in the training set were not replicated in the test set.
In fact, this situation is even worse for SGXM, which obtained results slightly
worse than SGXE-C in the test set despite winning in the majority of datasets
when considering training error.

Therefore, we conclude that the distance function and the use of optimized
coefficients reduce training error drastically, but does not have the same impact
when considering test error. We also observe that the flexibility gained by using



14 J. Albinati et al.

Table 4. Number of datasets where the operator presented in the line was statisti-
cally better than the operator presented in the column according to a Wilcoxon test
considering training and test error.

Training Error Test Error

SGXE SGXM SGXE-C SGXE-L SGXE SGXM SGXE-C SGXE-L

SGXE 0 0 0 14 0 2 1 15

SGXM 19 0 11 17 2 0 2 15

SGXE-C 18 4 0 16 1 6 0 15

SGXE-L 3 3 1 0 2 2 2 0

linear combinations instead of convex combinations in the crossover operator was
not worth the loss of the convex property, which exhibited interesting results
regarding control of overfitting. Based on these results, we suggest the use of
SGXE, as it achieved similar results of more complex operators.

5 Conclusions

This work performed an extensive evaluation of the effects of the use of different
distance functions when defining the semantic distance between two symbolic
regression functions. It also proposed two new versions of the traditional opera-
tors by optimizing the coefficients involved in the convex and linear combinations
of solutions.

Experimental results indicated that the use of a Euclidean or Manhattan dis-
tance function for semantic geometric crossover has little impact on test error,
even when using our proposed versions with optimized coefficients. The use of
linear combinations instead of convex combinations led to poor results, mainly
attributed to the lack of any property regarding generalization. For SGP prac-
titioners, we suggest the use of SGXE, as it achieved similar results to those
obtained by more complex operators.
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Abstract. The problem of extracting knowledge from large volumes
of unstructured textual information has become increasingly important.
We consider the problem of extracting text slices that adhere to a syntac-
tic pattern and propose an approach capable of generating the desired
pattern automatically, from a few annotated examples. Our approach
is based on Genetic Programming and generates extraction patterns in
the form of regular expressions that may be input to existing engines
without any post-processing. Key feature of our proposal is its ability of
discovering automatically whether the extraction task may be solved by a
single pattern, or rather a set of multiple patterns is required. We obtain
this property by means of a separate-and-conquer strategy: once a candi-
date pattern provides adequate performance on a subset of the examples,
the pattern is inserted into the set of final solutions and the evolutionary
search continues on a smaller set of examples including only those not yet
solved adequately. Our proposal outperforms an earlier state-of-the-art
approach on three challenging datasets.

Keywords: Regular expressions · Multiple pattern · Programming by
example · Text extraction

1 Introduction

The problem of extracting knowledge relevant for an end user from large volumes
of unstructured textual information has become increasingly important over the
recent years. This problem has many different facets and widely differing com-
plexity levels, ranging from counting the number of occurrences of a certain word
to extracting entities (e.g., persons and places) and semantics relations between
them (e.g., lives-in). In this work, we are concerned with the extraction of text
slices that adhere to a syntactic pattern. In particular, we investigate the feasi-
bility of a framework where the pattern is to be generated automatically from a
few examples of the desired extraction behavior provided by an end user.

A crucial difficulty involved in actually implementing a framework of this
sort consists in generating a pattern that does not overfit the examples while
at the same time providing high precision and recall on the full dataset to be
processed. This difficulty is magnified when the syntactic features of the examples
c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 16–27, 2015.
DOI: 10.1007/978-3-319-16501-1 2
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are hardly captured adequately by a single pattern. For example, dates may be
expressed in a myriad of different formats and learning a single pattern capable
of expressing all these formats may be very difficult. Similarly, one might want to
extract, e.g., dates and IP addresses, or URLs and Twitter hashtags. The learning
machinery should be able to realize automatically, based on the expressiveness
of the specific pattern formalism used, how many patterns are needed and then
it should generate each of these patterns with an appropriate trade-off between
specificity and generality.

In this paper we describe a system based on Genetic Programming that is
capable of supporting a framework of this sort, by generating automatically text
extractor patterns in the form of regular expressions. The user provides a text file
containing a few text slices to be extracted, which have to be annotated, and the
system automatically generates a set of regular expressions, where each element
is specialized for a partition of the examples: processing a text stream with all
these regular expressions will implement the desired extraction behavior. From
an implementation point of view, our system actually generates a single regular
expression composed of several regular expressions glued together by an OR
operator. This choice allows using the generated expression with existing regex
processing engines, e.g., those commonly used in Java or JavaScript, without
any post-processing.

A key feature of our proposal is that the system does not need any hint from
the user regarding the number of different patterns required for modelling the
provided examples. Depending on the specific extraction task, thus, the system
automatically discovers whether a single pattern suffices or a set of different
patterns is required and, in this case, of which cardinality. We obtain this prop-
erty by implementing a separate-and-conquer approach [10]. Once a candidate
pattern provides adequate performance on a subset of the examples, the pattern
is inserted into the set of final solutions and the evolutionary search continues
on a smaller set of examples including only those not yet solved adequately. Of
course, turning this idea into practice is difficult for a number of reasons, includ-
ing the identification of suitable criteria for identifying the “adequate” level of
performance.

We assess our proposal on several extraction tasks of practical complexity:
dates expressed in many different formats to be extracted from bills enacted
by the US Congress; URLs, Twitter citations, Twitter hashtags to be extracted
from a corpus of Twitter posts; and IP addresses and dates expressed in different
formats to be extracted from email headers. Our approach exhibits very good
performance and significantly improves over a baseline constituted by an earlier
proposal, the improvement being threefold: the generated patterns (i) exhibit
better extraction precision and recall on unseen examples, (ii) are simpler, and
(iii) are obtained with lower computational effort.

This work builds upon an earlier proposal for generating regular expressions
automatically from annotated examples and counterexamples [4]. The cited work
greatly improved over the existing state of the art for automatic generation of
regular expressions for text processing [1,2,6,7,12,15,19]. However, the cited
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proposal was designed for generating a single pattern capable of describing all
the examples: as such, it is unable to effectively cope with scenarios requiring
multiple patterns. The present work extends the cited proposal from a concep-
tual and from a practical point of view: the ability of discovering that multiple
different patterns are required may greatly extend the scope of technologies for
automatic pattern generation from examples.

Our separate-and-conquer approach bears several similarities to earlier
approaches for rule induction, that aimed at synthesizing decision trees for solv-
ing classification problems [3,18]: partial solutions with adequate performance
on some partition are found with an evolutionary search; the data sample is
recursively partitioned according to performance-related heuristics; and, the final
solution is constructed by assembling the partial solutions. In fact, our approach
might be modelled as a single design point amongst those that were analyzed
by hyper-heuristic evolutionary search in the design space of rule induction for
classification [18]. While such a point of view may be useful, it is important
to remark that text classification and text extraction are quite different prob-
lems: the former may allow partitioning input units in two classes, depending
on whether they contain relevant slices (e.g., [5,13,16]); the latter also requires
identifying the boundaries of the slice—or slices—to be extracted.

The learning of text extractor patterns might be seen as a form of program-
ming by examples, where a program in a given programming language is to be
synthesized based on a set of input-output pairs. Notable results in this area
have been obtained for problems of string manipulation solved by means of lan-
guages much richer than regular expressions [11,14,17]. The cited works differ
from this proposal since (i) they output programs rather than regular expres-
sions, (ii) they are tailored to fully specified problems, i.e., they do not need to
worry about overfitting the data, and (iii) they exploit active learning, i.e., they
assume an oracle exists which can mark extraction errors in order to improve
the learning process.

2 Problem Statement

A text pattern p is a predicate defined over strings: we say that a string s matches
the pattern p if and only if p(s) is true.

A slice xs of a string s is a substring of s. A slice is identified by its starting
and final indexes in the associated string. For ease of presentation, we will denote
slices by their starting index and content, and we will specify the associated
string implicitly. For instance, bana0, na2, an3 and na4 are all slices of the string
banana. Slices of the same string are totally ordered by their starting index—
e.g., na2 precedes an3. We say that xs is a superslice of a slice x′

s (and x′
s is

a subslice of xs) if (i) x′
s is shorter than xs, (ii) the starting index of xs is

smaller than or equal to the starting index of x′
s, and (iii) the final index of xs

is greater than or equal to the final index of x′
s—e.g., bana0 is a superslice of

na2. We say that a slice xs overlaps a slice x′
s of the same string if the intervals

of the indexes delimited by their starting and ending indexes have a non empty
intersection—e.g., bana0 overlaps nana2.
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An extraction of a set P of patterns in a string s is a slice xs which meets
the following conditions: (i) xs matches a pattern in P , (ii) for each superslice
x′

s of xs, x′
s does not match any pattern in P , and (ii) for each other slice x′

s

which overlaps xs, either xs precedes x′
s or x′

s does not match any pattern in
P . We denote with e(s, P ) the set of all the extractions of P in s. For instance,
let s = I said I wrote a ShortPaper and P a set of only one pattern which
describes (informally) “a word starting with a capital letter”, then e(s, P ) =
{I0, I7, ShortPaper17}. Note that the slices Short17 and Paper22 do not belong
to e(s, P ), despite matching a pattern in P , as they do not meet the condition
ii and iii above, respectively.

Finally, an example is a pair (s,X) where s is a string and X is a set of
non-overlapping slices of s.

Based on the above definitions, the problem of learning a set of patterns from
examples is defined as follows: given two sets of examples (E,E′), generate a set
P of patterns using only E so that (i) the F-measure of P on E′ is maximized
and (ii) the complexity of P is minimized. The F-measure of P on E′ is the
harmonic mean of precision Prec(P,E′) and recall Rec(P,E′), which are defined
as follows:

Prec(P,E′) :=

∑
(s,X)∈E′ |e(s, P ) ∩ X|
∑

(s,X)∈E′ |e(s, P )| (1)

Rec(P,E′) :=

∑
(s,X)∈E′ |e(s, P ) ∩ X|

∑
(s,X)∈E′ |X| (2)

The complexity of the set P of patterns depends on the formalism which is
used to represents a pattern. In this work, we represent patterns by means of
regular expressions and assume that the complexity of a regular expression is
fully captured by its length. Hence, the complexity of P is given by �(P ) :=∑

p∈P �(p), where �(p) is the length of the regular expression represented by p.

3 Our Approach

We propose the use of Genetic Programming for solving the problem of learning
a set of patterns—in the form of a set of regular expressions—from examples.
An individual of the evolutionary search is a tree which represents a regular
expression and we use common GP operators (crossover and mutation) in order
to generate new individuals.

We learn a set of patterns according to a separate-and-conquer strategy, i.e.,
an iterative procedure in which, at each iteration, we learn a single pattern and
then remove from the set of examples those which are “solved” by the learned
pattern, repeated until no more examples remain “unsolved”. At the end, the
learned set of patterns is composed of the patterns learned at each iteration.

We describe the single evolutionary search (i.e., one iteration) in the next
section and our separate-and-conquer strategy in Sect. 3.2.
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3.1 Pattern Evolutionary Search

A pattern evolutionary search takes as input a training set T and outputs a
single pattern p. The training set is composed of annotated strings, i.e., of tuples
(s,Xd,Xu), where Xd and Xu are sets of non-overlapping slices of string s (i.e.,
no slice in Xd overlaps any slice in Xu). Slices in Xd are desired extractions of
{p} in s, whereas slices in Xu are undesired extractions of {p} in s.

Our pattern evolutionary search is built upon the approaches proposed in
[4,5,8], which we extend in three key aspects: (i) different fitness definitions (we
use three objectives rather than two objectives); (ii) different fitness comparison
criteria (we use a hierarchy between the fitness indexes rather than a Pareto-
ranking); and, (iii) a mechanism for enforcing diversity among individuals.

An individual is a tree which represents a regular expression, i.e., a candi-
date pattern. The set of terminal nodes is composed of: (i) predefined ranges a-z,
A-Z and 0-9; (ii) character classes \w and \d; (iii) digits 0, . . . , 9; (iv) partial
ranges obtained from the slices in

⋃
(s,Xd,Xu)∈T Xd according to the procedure

described in [5]—a partial range being the largest interval of characters occur-
ring in a set of strings (e.g., a-c and l-n are two partial ranges obtained from
{cabin, male}), see the cited paper for full details); (v) other special characters
such as \., :, @, and so on. The set of function nodes is composed of: (i) the
concatenator ••; (ii) the character class [•] and negated character class [^•];
(iii) the possessive quantifiers •*+, •++, •?+ and •{•,•}+; (iv) the non-capturing
group (?:•). A tree represents a string by means of a depth-first post order
visit in which the • symbols in a non-terminal node are replaced by the string
representations of its children.

The initialization of the population of npop individuals is based on the slices in⋃
(s,Xd,Xu)∈T Xd, as follows (similarly to [8]). For each slice xs ∈⋃

(s,Xd,Xu)∈T Xd,
two individuals are built: one whose string representation is equal to the content
of xs where each digit is replaced by \d and each other alphabetic character is
replaced by \w; another individual whose string representation is the same as
the former and where consecutive occurrences of \d (or \w) are replaced by \d++
(or \w++). For instance, the individuals \d-\w\w\w-\d\d and \d-\w++-\d++ are
built from the slice whose content is 7-Feb-2011. If the number of individu-
als generated from T is greater than npop, exceeding individuals are removed
randomly; otherwise, if it is lower than npop, missing individuals are gener-
ated randomly with a Ramped half-and-half method. Whenever an individual
is generated whose string representation is not a valid regular expression, it is
discarded and a new one is generated.

Each individual is a candidate pattern p and is associated, upon creation,
with a fitness tuple f(p) := (Prec(p, T ),Acc(p, T ), �(p))—the first and second
components are based on two operators � and � defined over sets of slices as
follows. Let X1,X2 be two sets of slices of the same string s. We define two
operations between such sets. X1 � X2 is the set of all the slices of s which (i)
are a subslice of or equal to at least one slice in X1, (ii) do not overlap any slice in
X2, and (iii) have not a superslice which meets the two first conditions. X1 �X2

is the set of all the slices of s which (i) are a subslice of or equal to at least one
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slice in X1, (ii) are a subslice of or equal to at least one slice in X2, and (iii)
have not a superslice which meets the two first conditions. For instance, let X1 =
{I0, I7, ShortPaper17} and X2 = {I0, Paper22}, then X1 � X2 = {I7, Short17},
X1 � X2 = {I0, Paper22}.

The first fitness component is the precision on the annotated strings:

Prec(p, T ) :=

∑
(s,Xd,Xu)∈T |e(s, {p}) ∩ Xd|∑

(s,Xd,Xu)∈T |e(s, {p}) � (Xd ∪ Xu)| (3)

The second component Acc(p, T ) is the average of the True Positive Character
Rate (TPCR) and True Negative Character Rate (TNCR):

TPCR(p, T ) :=

∑
(s,Xd,Xu)∈T ‖e(s, {p}) � Xd‖∑

(s,Xd,Xu)∈T ‖Xd‖ (4)

TNCR(p, T ) :=

∑
(s,Xd,Xu)∈T ‖(s � e(s, {p}) � Xu‖

∑
(s,Xd,Xu)∈T ‖Xu‖ (5)

where ‖X‖ is the sum of the length of all the slices in X.
We compare individuals using a lexicographical order on their fitness tuples

(also called multi-layered fitness [9]): between two individuals, the one with the
greatest Prec is considered the best; in case they have the same Prec, the one
with the greatest Acc is considered the best; in case, finally, they have the same
Prec and Acc, the one with the lowest � is considered the best. Figure 1 shows
an example of the fitness of two individuals on an annotated string and shows
which one is the best, according to the comparison criterion here defined.

Fig. 1. Example of the fitness of two individuals p1 and p2 on an annotated string
(s, Xd, Xu): according to our fitness comparison criterion, p1 is better than p2.

The population P is iteratively evolved as follows. At each iteration (genera-
tion), 0.1npop new individuals are generated at random with a Ramped half-and-
half method, 0.1npop new individuals are generated by mutation and 0.8npop are
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generated by crossover. Mutation and crossover are the classic genetic operators
applied to one or two individuals selected in P with a tournament selection:
ntour = 7 individuals are chosen at random in P and the best one is selected.
Whenever an individual is generated whose string representation is the same as
an existing individual, the former is discarded and a new one is generated—i.e.,
we enforce diversity among phenotypes. Among the resulting 2npop individuals,
the best npop are chosen to form the new population. The procedure is stopped
when either ngen iterations have been executed or the fitness tuple of the best
individual has remained unchanged for more than nstop consecutive iterations.

The resulting pattern p is the one corresponding to the best individual at
the end of the evolutionary search.

3.2 Separate-and-Conquer Strategy

We generate a set of patterns according to a separate-and-conquer strategy [10].
We execute an iterative procedure in which, at each iteration, we execute the
pattern evolutionary search described in the previous section and then remove
from the training set the slices correctly extracted by the set of patterns gener-
ated so far.

In order to avoid overfitting (i.e., in order to avoid generating a set P which
performs well on E yet poorly on E′), we partition the set E of examples of
the problem instance in two sets Et and Ev. The partitioning is made just once,
before executing the actual iterative procedure, and is made randomly so that
the number of the slices in the training and validation sets are roughly the
same, i.e.,

∑
(s,X)∈Et

|X| ≈ ∑
(s,X)∈Ev

|X|. The training set Et will be used by
several independent executions of the iterative procedure, whereas Ev will be
used (together with Et) to assess the pattern sets obtained as outcomes of those
executions and select just one pattern set as the final solution.

In detail the iterative procedure is as follows. Initially, let the set of patterns
P be empty and let T include all the examples in the training set Et: for each
(s,X) ∈ Et, a triplet (s,X, {s} � X) is added to T (i.e., Xd := X and Xu :=
{s} � X). Then, the following sequence of steps is repeated.

1. Apply an evolutionary search on T and obtain p.
2. If Prec(p, T ) = 1, then set P := P ∪ {p}, otherwise terminate.
3. For each (s,Xd,Xu) ∈ T , set Xd := Xd \ e(s, {p});
4. If

⋃
(s,Xd,Xu)∈T Xd is empty, then terminate.

In other words, at each iteration we aim at obtaining a pattern p with perfect
precision (step 2). This pattern will thus extract only slices in Xd (i.e., slices
which are indeed to be extracted) but it might miss some other slices. The next
iterations will target the slices which are missed by p (step 3).

We insist on generating a pattern with perfect precision at each iteration
because, if a pattern extracted something wrong, no other pattern could correct
that error. As a consequence, we chose to use a multi-layered fitness during the
evolutionary search, where the most prominent objective is exactly to maximize
Prec(p, T ).
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We execute the above procedure njob independent times by varying the
random seed (the starting set T remains the same) and we obtain njob pos-
sibly different sets of patterns. At the end, we choose the one with the highest
F-measure on E = Et ∪ Ev.

4 Experimental Evaluation

We assessed our approach on three challenging datasets. Bills is composed of
600 examples where each string is a portion of a bill enacted by the US Congress
and the slices corresponds to dates represented in several formats. Tweets is
composed of 50000 examples where each string is the text of a tweet (Twit-
ter post) and the slices corresponds to URLs, Twitter citations and hashtags.
Finally, Headers is composed of 101 examples where each string is the header
of an email message and the slices corresponds to IP addresses and dates rep-
resented in several formats. We built the Bills dataset by crawling the web site
of the US Congress and then applying a set of regular expressions to extract
dates: we made this dataset available online1 for easing comparative analysis.
The Tweets and Headers datasets are derived from those used in [4]: the strings
are the same but the slices are different. Table 1 shows 10 slices for each dataset,
as a sample of the different formats involved.

Table 1. A sample of the slices in the the three datasets.

Bills Tweets Headers

18.12.2013 @joshua seaton 10.236.182.42

2007/01/09 #annoyed Thu, 12 Jan 2012 04:33:34 -0800

23/03/2009 http://t.co/Bw7A5sbI 93.174.66.112

14-09-2011 #Anonymous 209.85.216.53

23,July 2001 @YourAnonNews 24 Jan 2011 09:36:00 -0000

December 31, 2001 @zataz 27 Apr 2011 09:31:01.0953

2000.01.27 @ SweetDiccWilly Mon Oct 1 13:04:58 2012

Dec 31, 1991 http://t.co/bYxJ9NAE Mon, 01 Oct 2012 12:05:40 +0000

1997/12/31 #OpBlitzkrieg 151.76.78.168

1999-01-19 http://t.co/GrqKGECz Mon, 1 Oct 2012 14:04:58 +0200

In order to obtain the slices from each string in a dataset, we manually built
a set P � of regular expressions which we then applied to the strings. Table 2
shows salient information about the datasets, including the number |E ∪ E′| of
examples, the overall length

∑
(s,X)∈E∪E′ �(s) of the strings, the overall number∑

(s,X)∈E∪E′ |X| of slices, the overall length
∑

(s,X)∈E∪E′ ‖X‖ of the slices, and
the number |P �| of regular expressions used to extract the slices.
1 http://regex.inginf.units.it/.

http://regex.inginf.units.it/
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Table 2. Salient information about the datasets.

Dataset Examples Slices |P �|
Number Length Number Length

Bills 600 16510800 3085 38960 3

Tweets 50000 4344275 71621 933646 2

Headers 101 261174 1554 32022 3

We built 15 different problem instances (E,E′) for each dataset, by varying
the overall number

∑
(s,X)∈E |X| of slices in E and the random seed for par-

titioning the available examples in E and E′—25,50,100 slices, each obtained
from 5 different seeds. Then, we applied our method to each problem instance
and measured the F-measure of the generated P on E′. In order to provide a
baseline for the results, we also applied the method proposed in [4]—which itself
significantly improved over previous works on regular expression learning from
examples—to the same problem instances. Since the cited method generates a
single pattern p, for this method we set P := {p}.

We executed the experimental evaluation with the following parameter val-
ues: npop = 500, ngen = 1000, nstop = 200 and njob = 32. We set the same values
for the baseline, with the exception of nstop which is not available in that method.
We found, through an exploratory experimentation, that reasonable variations
in these parameter did not alter the outcome of the comparison between our
method and the baseline, which is summarized in Table 3.

Table 3. Results of the experimental evaluation. Computational Effort (CE) is
expressed in 1010 character evaluations. |P | is always equal to 1 for the baseline. ΔFm
is the relative improvement of F-measure (in percentage) obtained by our method with
respect to the baseline.

Dataset Num. of Our method Baseline ΔFm

slices Prec Rec Fm �(P ) |P | CE Prec Rec Fm �(P ) CE

Bills 25 0.47 0.60 0.49 56.4 3.2 2.3 0.22 0.51 0.24 26.4 2.5 104%

50 0.59 0.69 0.62 76.6 4.0 6.9 0.27 0.51 0.27 97.2 6.9 129%

100 0.68 0.81 0.73 88.6 4.6 11.3 0.41 0.52 0.39 104.6 11.6 87%

Tweets 25 0.99 0.92 0.94 24.6 2.4 0.6 0.90 0.86 0.87 25.6 1.1 8%

50 0.97 0.98 0.96 22.4 2.6 1.6 0.86 0.88 0.85 27.2 2.1 13%

100 0.98 0.99 0.99 25.6 3.0 3.2 0.85 0.96 0.90 46.2 4.1 10%

Headers 25 0.84 0.74 0.79 98.6 3.2 4.6 0.43 0.41 0.41 61.0 5.1 93%

50 0.92 0.88 0.90 116.4 3.6 7.6 0.42 0.46 0.44 54.8 7.7 104%

100 0.94 0.85 0.90 118.2 3.6 15.1 0.52 0.55 0.54 58.4 15.1 67%

The most remarkable finding is the significant improvement of our method
over the baseline, summarized in the rightmost column of Table 3 in the form
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of relative improvement of the F-measure on E′ (we remark that E′ are test
data not available to the learning procedure). Indeed, raw results show that our
method obtained a greater F-measure in each of the 45 problem instances. The
improvement is sharper for the Bills and Headers datasets (0.73 vs. 0.39 and 0.90
vs. 0.54, respectively, with 100 slices in the learning examples). These datasets
exhibit a broad set of formats thus the ability of our approach to automatically
discover the need of different patterns, as well as of actually generating them,
does make a significant difference with respect to the baseline. Furthermore,
there is an improvement also for the Twitter dataset, although the baseline
exhibits very high F-measure for this dataset.

Another interesting finding concerns the complexity of the generated set of
patterns. Though our method may generate, for a given problem instance, a
set composed of more than one pattern, whereas the baseline always generates
exactly one pattern, the overall complexity �(P ) is lower with our method in 5 on
9 problem instances. The difference is more noticeable for the Bills dataset. It is
also important to remark that the average number of patterns discovered and
generated by our method (|P | column of Table 3) is close to the number of pat-
terns used for annotating the dataset (|P �| column of Table 2): our separate-and-
conquer strategy does succeed in appropriately splitting the problem in several
subproblems which can be solved with simpler patterns.

Table 3 shows also the computational effort (CE) averaged across problem
instances with the same number of slices. We define CE as the number of char-
acter evaluations performed by individuals while processing a problem instance—
e.g., a population of 100 individuals applied to a set E including strings totaling
1000 characters for 100 generations corresponds to CE = 107. Note that this
definition is independent of the specific hardware used. It can be seen that our
method does not require a CE larger than the baseline. It can also be seen that for
the Tweets dataset—the one for which the improvement in terms of F-measure
and complexity of the solution was not remarkable—our method required a CE
sensibly lower than the baseline. We think that this finding is motivated by our
early termination criterion (determined by nstop, see Sect. 3.1) which allows to
spare some CE when no improvements are being observed during the evolution-
ary search.

Finally, we provide the execution time for the two methods with 25 slices,
averaged over the 5 repetitions. Our method took 30 min, 3 min, and 29 min for
Bills, Tweets, and Headers, respectively; the baseline took 45 min, 6 min, and
21 min, respectively. Each experiment has been executed on a machine powered
with a 6 core Intel Xeon E5-2440 (2.40 GHz) equipped with 8 GB of RAM.

5 Concluding Remarks

We considered the problem of learning a set of text extractor patterns from
examples. We proposed a method for generating the patterns, in the form of
regular expressions, which is based on Genetic Programming. Each individual
represents a valid regular expression and individuals are evolved in order to meet
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three objectives: maximize the extraction precision on a training set, maximize
the character accuracy on the training set, and minimize the regular expression
length (a proxy for its complexity). Several evolutionary searches are executed
according to a iterative separate-and-conquer strategy: the examples which are
“solved” at a given iteration are removed from the examples set of subsequent
iterations. This strategy allows our method to automatically discover if several
patterns are needed to solve a problem instance and, at the same time, to gen-
erate those patterns.

We assessed our method and compared its performance against an ear-
lier state-of-the-art proposal. The experimental analysis, performed on several
extraction tasks of practical complexity, showed that our method outperforms
the baseline along three dimensions: greater extraction precision and recall on
unseen examples, simpler patterns, and lower computational effort required to
generate them.
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Abstract. Researchers in genetic programming (GP) are increasingly
looking to semantic methods to increase the efficacy of search. Semantic
methods aim to increase the likelihood that a structural change made in
an individual will be correlated with a change in behaviour. Recent work
has promoted the use of geometric semantic methods, where offspring
are generated within a bounded interval of the parents’ behavioural
space. Extensions of this approach use random trees wrapped in logistic
functions to parameterise the blending of parents. This paper identifies
limitations in the logistic wrapper approach, and suggests an alternative
approach based on safe initialisation using interval arithmetic to pro-
duce offspring. The proposed method demonstrates greater search per-
formance than using a logistic wrapper approach, while maintaining an
ability to produce offspring that exhibit good generalisation capabilities.

Keywords: Genetic programming · Semantic methods · Interval arith-
metic · Safe initialisation · Symbolic regression

1 Introduction

One of the key properties of traditional forms of genetic programming (GP) is
the concept of closure: the ability of a given element in a program to be moved
into different parts of the program, or indeed into another program, and pre-
serve its functional correctness [6]. Closure allowed GP to use straightforward
implementations of its search operators, as they did not need to acknowledge
the semantic properties of the subtrees upon which they acted. In their canon-
ical form, crossover and mutation pick, swap, and replace subtrees at random.
By focusing solely on syntactical correctness, rather than preserving semantic
properties, these operators are not designed to produce changes in offspring that
are highly correlated with their parents’ behaviour.

Recently, there has been increased interest in the use of semantic methods to
improve the basic search characteristics of GP. One particular group of semantic
methods, geometric semantic GP (GSGP), make use of specially-designed opera-
tors that are guaranteed to produce offspring that lie within the interval bounded
by their parents’ behaviour [8]. GSGP has been extended by other researchers,

c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 28–40, 2015.
DOI: 10.1007/978-3-319-16501-1 3



Improving Geometric Semantic Genetic Programming 29

specifically by the use of logistic functions that wrap around mutant subtrees,
or parameterise the blending of parents during crossover [4,9].

Previous work in GP has explored the use of interval arithmetic to predict
the range of outputs a parse tree will produce on unseen data [5]. Intervals
are established around the input features of the problem, and used to compute
the intervals of subtrees as they are executed. Typically, these intervals were
used within evaluation to identify individuals that were likely to produce invalid
results on unseen data, and penalise them accordingly.

This paper examines the use of logistic wrappers in GSGP. Specifically, we
highlight limitations encountered through the use of logistic functions to regulate
the shape of offspring produced in GSGP. We then propose a safe initialisation
procedure that uses interval arithmetic to promote the generation of valid off-
spring. Through a number of experiments, we show that this approach is able
to preserve the effective search properties of GSGP while also promoting good
generalisation to previously unseen instances.

The remainder of this paper is structured as follows: Sect. 2 examines relevant
items of previous work; Sect. 3 explores the use of logistic wrappers in GSGP,
and highlights their limitations; Sect. 4 introduces the interval arithmetic-based
safe tree initialisation method; Sect. 5 compares the safe initialisation variant of
GSGP to other GP methods; finally, Sect. 6 concludes the paper with a brief
discussion and suggestions for future work.

2 Semantic Methods in GP

The traditional approach to search in GP is through subtree crossover and muta-
tion. In these operations, subtrees are picked within individuals, and either
replaced with new subtrees, or swapped with subtrees from other individuals
that have be picked via a similar process. This ability of general replacement of
subtrees in standard GP is brought about through the closure requirement that
the outputs of GP subtrees must be functionally interchangeable, and execute
correctly in all contexts [6]. However, the closure requirement says nothing about
the behavioural requirements of subtrees, so while a subtree may produce valid
outputs regardless of its position within a tree, the context in which it resides
may lead it to produce rather specialised outputs. This leads to the undesirable
situation where search performance is compromised when subtrees with differing
semantic properties are interchanged.

Recent work has seen an increased interest in the use of explicit semantic
methods in GP, where search operators are guided in ways that attempt to
preserve behavioural aspects of parents within offspring. There exist a number of
ways that this can be done: a recent review of such methods classifies them into
diversity driven, indirect and direct methods [10]. Insufficient space precludes
an in-depth review of this work, so readers are pointed to this review for more
details on semantic methods.
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2.1 Geometric Semantic Methods in GP

This paper focuses on the direct approach of semantic methods proposed by
Moraglio et al. This approach, typically referred to as geometric semantic GP,
preserves the behavioural aspects of parents by generating offspring that are
guaranteed to exist within the interval bounded by the parents’ behaviours [8].
GSGP operates by encapsulating entire individuals and embedding them directly
in offspring, rather than through direct manipulation of their structure as in
standard GP. This ensures that semantic properties are preserved in offspring.
GSGP was shown to be effective in several problem domains, although in this
paper we will limit discussion to symbolic regression.1

Crossover in GSGP can take on two forms, labelled SGXE and SGXM. SGXE
takes two parent solutions T1 and T2 and produces an offspring according to:

Oc = pT1 + (1 − p)T2, (1)

where p is a random real constant in [0, 1]. SGXM differs slightly from SGXE
in that p is replaced by a random function TR that has a co-domain [0, 1].
Constraining p and TR to this interval ensures that offspring resulting from
crossover lie within the region of behaviour bounded by the selected parents.

Mutation in GSGP was defined by Moraglio et al. as a single operator, SGMR.
The operator generates two mutant trees, R1 and R2 and combines them with
the parent solution T1 using a fixed mutation step (ms) parameter:

Om = T1 + ms (R1 −R2) . (2)

Selection of a suitable ms ensures that offspring lie within a small “ball” of
behaviour centred on the parent’s behaviour.

The encapsulation approach taken by GSGP allows it to guide the evolution-
ary search process towards changes that are behaviourally effective. However,
the encapsulation of entire individuals means that program sizes can grow at
an exponential rate. Moraglio et al. initially proposed the use of program sim-
plification to reduce the complexity of individuals to make execution of GSGP
more feasible. Subsequent research has incorporated memoization and caching
of execution results to make GSGP more computationally efficient [7,9].

3 Logistic Wrappers in GSGP

Recent work has proposed extensions to the basic GSGP model in an attempt
to make it more computationally efficient, and more amenable to general applica-
tion. One such example is GSGP-C++, which caches the results of tree
execution to improve performance [4,9]. Caching is made possible by the encap-
sulating properties of the GSGP operators. Additionally, GSGP-C++ uses a
modified variant of the SGXM operator, and defines a new mutation operator.
1 Given that over a third of GP research investigates or uses symbolic regression

directly, this is not considered a serious limitation [11].
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Both crossover and mutation make extensive use of logistic functions to map
the execution of subtrees into [0, 1] space. In the case of crossover, the logistic
function serves to ensure that offspring are created within the region of behav-
iour bounded by their parents. In the case of mutation, each of the two mutant
subtrees are wrapped in logistic function calls to constrain their outputs to
[0, 1]. This has the effect of promoting small, incremental changes as a result of
mutation: in each mutation, the change in the program’s behaviour is limited to
the interval [−ms, ms].

The logistic function takes two arguments: the input vector X, and a GP
parse tree TR. It then maps the output of TR from processing X into a bounded
[0, 1] space:

logis(TR,X) =
1

1 + e−TR(X)
. (3)

Wrapping the tree TR in the logistic function has a couple of interesting proper-
ties: large positive outputs from TR are mapped close to 1, while large negative
outputs are mapped to 0. Raw outputs close to 0 are mapped around 0.5.

3.1 Limitations of the Logistic Wrapper Approach

At first glance, the use of logistic functions as wrapper around the randomly
generated trees in GSGP seems like a elegant solution. However, further analysis
suggests a number of factors that may present problems with their use:

1. The effective range of the logistic function is in the interval [−5, 5]. At the
extremes of this interval, the logistic function quickly asymptotes to either
0 or 1, meaning that crossover behaves much like a replication operator of
one of the parents, and mutation behaves more like adding a constant value
to the output of the tree. Therefore, the random trees generated in crossover
and mutation are only effective if they regularly produce results in [−5, 5].

2. It is implicitly assumed that the random trees that are created produce results
that are centred around zero.

3. If the distribution of results produced by the underlying trees are centred
around zero, then the crossover operator has a peculiar behaviour that, for
the region below zero, the behaviour of one parent is emphasised, while results
greater than zero will place greater emphasis on the second parent. This is in
contrast to the constant scale approach (SGXE), where the offspring will be
a uniform blend of both parents throughout the entire input space.

4. If the underlying tree produces a non-monotonic function of the input space
(e.g., it incorporates a trigonometric function), then the resulting offspring
will also be a non-monotonic blend of the parents, and resemble a high-order
polynomial. This may run the risk of over-fitting to the underlying data source
and compromise generalisation performance.

The nature of these limitations is visualised in Fig. 1. The visualisations only
examine crossover, but similar behaviour would be observed in mutation as well.
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(a) Input space bounded by [-1,1]
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Fig. 1. Impact of a logistic wrapper over a random function approach in geometric
semantic crossover.

In each plot, the shaded area represents the interval between two parents (indi-
cated by dashed lines) in which GSGP will create offspring (indicated by solid
lines). The top row of each block of figures represents the behaviour of the SGXE
operator under several configurations of p, whereas the second row of each block
demonstrates the behaviour of SGXM when using the logistic wrapper and sev-
eral possible functions. In the first block of figures, the input space is centred
around zero, and has a small overall interval of [−1, 1]. Here, the logistic wrap-
pers behave well and create balanced offspring within the interval of the parents.
The exception to this is the random tree that produces the function 2x + 10,
where the tree produces large outputs, and so the logistic wrapper maps consis-
tently close to one. The result of this is that the offspring is essentially a clone



Improving Geometric Semantic Genetic Programming 33

of one of its parents. In the second block of figures, the width of the interval
is the same, but the interval is now centred on 10. Here, the use of the logistic
wrapper now produces results that bias heavily towards one parent, effectively
negating crossover. The final block of images centres the input space interval
on zero again, but expands the bounds to [−10, 10]. Here, the logistic wrapper
biases towards different parents on each side of zero for most functions, but in
the case of the tree that produces the function sin(x), the non-monotonic nature
of the function becomes apparent, creating a somewhat chaotic looking individ-
ual from the two source parents. It is interesting to note that in all the examples
shown in Fig. 1, the SGXE operator did not demonstrate any sensitivity to the
nature of the input space interval. In practical terms, this would likely result in
easier application to previously unexplored problems, as there would not be the
same requirement to consider the nature of the input space, the likely range of
the outputs, and so on.

The visualisations presented in Fig. 1 are designed to clearly demonstrate
the theoretical limitations of using logistic wrappers. To test the practical
consequences of these limitations, we generated 100 random trees for three bench-
mark regression data sets from previous work. For each of these trees, we exe-
cuted them on the instances in their respective data sets (outlined in Sect. 5),
and then applied the logistic wrapper. The resulting histograms are presented in
Fig. 2. As can be seen, the first data set, Bioavailability, presents the majority
of its outputs at 0.5, which suggests a raw output before logistic wrapping of
zero. This is explained by the anomalous properties of the data set, in which
approximately half the fields in the data set contain no information (they are
completely filled with zeros), so any tree that uses solely these fields as terminals
will always return zero. The second most common value in the bioavailability
outputs was 0.731, which corresponds to a raw output of one. For the other two
data sets — Concrete and Yacht Hydrodynamics — the vast majority of outputs
are in the 0 and 1 bins; in these scenarios, the effect of crossover would be lost
and behaviourally it would resemble reproduction, while for mutation it would
amount to adding a constant to the existing individual.

The conclusion that can be drawn from this exploration is that using logistic
wrappers to constrain random tree outputs to [0, 1] may introduce unwanted con-
sequences that may hinder the search process in GSGP.

Bioavailability Concrete Yacht Hydrodynamics
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Fig. 2. Distributions of outputs emitted by randomly-generated trees, and subse-
quently transformed by a logistic function wrapper, on three different problems.
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4 Interval Arithmetic for Safe Tree Initialisation

The previous section revealed some challenges with using a logistic wrapper
over randomly-generated trees to weight parent components in GSGP. However,
without the logistic wrapper to constrain the space of tree outputs, the default
approach to GSGP proposed by Moraglio et al. shares a significant issue with
standard GP: if the instances supplied to GP for training do not sufficiently
capture the underlying distribution of the input features, then the evolved GP
model may produce uncharacteristically wild outputs on some unseen inputs
(e.g., division by zero). The approach proposed by Castelli et al. alleviates this
problem, but at the expense of search performance. What is needed is a way to
incorporate domain knowledge about the anticipated domains of inputs, and use
this to guide tree construction and search.

Interval arithmetic has been previously used in GP to evolve solutions more
likely to behave sanely on unseen data [5]. Intervals are simply the set of real
numbers that an input can take within a given upper and lower bound. Using
these bounds, we can define the intervals that result from operations such as
addition and division, and define the intervals upon which a given operation
(e.g., division) is valid. We can use basic knowledge of the intervals of a problem’s
input features to guide the search process in GP. For example, interval arithmetic
can be used during tree execution: intervals defined for each input are used to
construct the interval for each subtree (based upon its rooted operation) as it is
executed. When invalid intervals are encountered during execution, the tree can
be flagged as not valid over the entire input space, and penalised accordingly
(e.g., assigned a very poor fitness).

Algorithm 1. BuildTree: the safe initialisation tree generation algorithm.
Require: depth: the current tree depth; maxdepth: the maximum required tree depth;

F : a list of functions for inner nodes; T : a list of terminals (the input features of
the problem); I: the known intervals of the input features

Ensure: A tree that produces output valid within the intervals defined by its subtrees
1: if PickTerminal(depth, maxdepth, |F |, |T |) then
2: op ← random element from T
3: return {root = op, left = ∅, right = ∅, interval = I[op]}
4: else
5: subleft ← BuildTree(depth + 1, maxdepth, F , T , I)
6: subright ← BuildTree(depth + 1, maxdepth, F , T , I)
7: op ← SelectOperation(F , subleft[interval], subright[interval])
8: intop ← UpdateInterval(op, subleft[interval], subright[interval])
9: return {root = op, left = subleft, right = subright, interval = intop}

10: end if

While a similar approach to using interval arithmetic during execution could
be used within the context of GSGP, this paper takes a different approach.
Because the intervals do not depend upon any single instance in the data set,
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they can be used outside of the evaluation process, for example in tree creation.
Typically, tree creation in GP follows a simple process: the operation for a given
node is first selected, and then any required children subtrees are created recur-
sively. If this sequence is reversed (i.e., the children subtrees are created before
the node operation is selected), then interval arithmetic can be used to select an
appropriate operation for the root node, thereby increasing the likelihood of the
tree producing valid outputs over the entire input space. The process for this
is defined in Algorithm 1. Note that although this paper defines the algorithm
for binary operators, extensions to this algorithm for arbitrary arity functions
would be fairly straightforward.

Aside from the reversed order of creating subtrees before selecting the root
node’s operation, the BuildTree method follows a standard tree creation pro-
cedure. The initialisation process described in Algorithm1 makes use of three
support routines PickTerminal, SelectOperation, and UpdateInterval. The
operation PickTerminal is the same as what would be found in any standard
tree generation method and decides whether the current node will be a termi-
nal or a function. The SelectOperation procedure uses the intervals of the new
subtrees to select an operator from our set of options. For example, if the set was
{+,−,×,÷}, and the interval for subright included zero, then we would only pick
from the first three operations. Finally, UpdateInterval computes the overall
interval of the new subtree based upon the operator selected in the previous step
and the intervals of the two subtrees.

5 Results

The performance of GSGP (using the SGXE and SGMR operators described in
Sect. 2.1) with the BuildTree safe initialisation method was compared to the
GSGP-C++ framework of Castelli et al. Additionally, a ‘default’ implementa-
tion of GSGP without safe initialisation (but again using SXGE and SGMR) was
used to provide a baseline comparison.2 The parameters for these experiments
are identical to those described in previous work and are used without modifi-
cation [4]. No attempt to find ideal parameters for each method was performed,
as it was assumed that the default parameters defined by Castelli et al. would
constitute a suitable configuration. We chose a set of seven test problems used in
previous work — refer to this work for more details on these data sets [1]. Addi-
tionally, we use the bioavailability data set from previous work, as it appears to
have been used to guide the development of GSGP-C++ [2,3,9]. For the safe
initialisation approach, we sourced the intervals for the input features directly
from the data sets; in a real-world context defining these intervals could have
also taken into account other domain knowledge, but that was not done here.

To measure the training and generalisation performance, we use the root-
relative-squared-error (RRSE) defined as:

2 Source code for experiments available at: https://github.com/grantdick/libgsgp.

https://github.com/grantdick/libgsgp
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RRSE(y, ŷ) =

√√√√
∑|y|

i=1 (yi − ŷi)
2

∑|y|
i=1 (yi − ȳ)2

, (4)

where y and ŷ are the recorded response values of the data set and the model
predictions, respectively. RRSE is essentially the root-mean-squared error stan-
dardised by the underlying deviance of the response variable, and makes for
easy comparison of the relevance of a model’s performance — an RRSE of one
is functionally equivalent to a model that predicts a fixed value (the mean of
the data) for all inputs, while an RRSE of zero is presented by a perfect model.
Questions should normally be asked of a model-building process that routinely
creates models with an RRSE greater than one. Unless otherwise stated, all
RRSE results presented here are for test results on previously unseen data. To
determine training and testing splits, we used a repeated 10-fold cross-validation
approach. A total of 10 cross-validation processes were performed, for a total of
100 runs for each combination of GP configuration and problem instance.

The evolution of training and testing fitness over time for the three data sets
explored in Sect. 3.1 is shown in Fig. 3; with respect to the logistic wrapper, recall
that the histogram associated with the Yacht Hydrodynamics data set (Fig. 2)
exhibited the most extreme distribution, with almost all values presented being
either zero or one. The Concrete data set was next, with most values being either
zero or one, but with a smaller number presenting a value of 0.5. Finally, the
bioavailability data set presented the least number of extreme values. The results
presented in Figs. 2 and 3 correlate well for the logistic wrapper: on the
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Table 1. Proportion of runs with a test RRSE below a given threshold. Ideally, RRSE
values should be in [0,1], so larger values indicate catastrophic model fitting.

Problem GSGP Method Proportion of runs with RRSE

≤1 ≤10 ≤100 ≤1000 ≤10000

Bioavailability Default 0.03 0.62 0.77 0.82 0.87

Safe Initialisation 0.15 0.92 0.99 0.99 1.00

Logistic Wrapper 0.00 1.00 1.00 1.00 1.00

Concrete Default 0.99 1.00 1.00 1.00 1.00

Safe Initialisation 1.00 1.00 1.00 1.00 1.00

Logistic Wrapper 0.98 1.00 1.00 1.00 1.00

Yacht Hydrodynamics Default 0.79 0.86 0.87 0.88 0.88

Safe Initialisation 1.00 1.00 1.00 1.00 1.00

Logistic Wrapper 0.00 1.00 1.00 1.00 1.00

bioavailability problem, a large number of values around 0.5 will be generated,
which means that crossover and mutation with a logistic wrapper will actually pro-
duce novel offspring, and hence the search is more effective. Conversely, because
the distribution of values in the Yacht Hydrodynamics problem are highly biased
towards zero and one, the search operators (in particular, crossover) will be inef-
fective, and so search will stagnate. The two GSGP approaches that do not use
logistic wrapping demonstrate similar search characteristics to each other, and
demonstrate a faster rate of evolution than the logistic wrapper approach. How-
ever, the GSGP approach without safe initialisation exhibits a high degree of
catastrophic over-fitting on the bioavailability problem. The safe initialisation app-
roach to GSGP does not exhibit such behaviour.

Table 1 characterises the degree to which the three GSGP methods exhibit
over-fitting and poor generalisation. It can be seen that, for the three problems
examined, GSGP with safe initialisation demonstrates the greatest ability to
find solutions with a testing RRSE less than one. Conversely, the GSGP app-
roach using logistic wrappers appears to be adversely affected: while it does not
demonstrate any great degree of catastrophic over-fitting, it also appears to have
difficulty evolving solutions that present a meaningful RRSE below one. Finally,
the default implementation of GSGP demonstrates a high degree of catastrophic
over-fitting on two of the three problems, suggesting that safe initialisation is
effective at controlling this phenomena and promoting good generalisation per-
formance.

Finally, we compare the generalisation performance of the three GSGP meth-
ods on the seven benchmark data sets from previous work. For a point of refer-
ence, a standard GP approach is also included. The results of this analysis are
shown in Table 2. In addition to this analysis, a Kruskal-Wallis rank sum test,
with post hoc test for differences, was performed. The post-hoc tests suggest
that only three of the interactions do not show a significant difference: the safe
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Table 2. Quantiles of the testing RRSE values of the three GSGP methods on known
benchmark problems. Results for standard GP are included for reference.

Problem GSGP Method Testing RRSE Quartiles:

0% 25% 50% 75% 100%

Boston Housing Standard GP 5.31E-01 6.51E-01 7.10E-01 8.08E-01 2.95E+13

Default 3.94E-01 5.04E-01 5.74E-01 7.32E-01 3.17E+00

Safe Initialisation 3.22E-01 4.73E-01 5.18E-01 5.99E-01 3.46E+00

Logistic Wrapper 3.91E-01 6.08E-01 6.78E-01 7.28E-01 9.95E-01

Concrete Standard GP 4.71E-01 6.06E-01 7.63E-01 8.62E-01 2.32E+01

Default 3.62E-01 4.25E-01 4.58E-01 4.91E-01 1.78E+00

Safe Initialisation 3.76E-01 4.41E-01 4.72E-01 5.14E-01 5.89E-01

Logistic Wrapper 7.04E-01 8.10E-01 8.49E-01 9.03E-01 1.12E+00

Dow Chemical Standard GP 7.47E-01 9.34E-01 9.87E-01 1.00E+00 1.52E+01

Default 6.89E-01 7.87E-01 8.66E-01 9.76E-01 9.49E+00

Safe Initialisation 7.08E-01 7.75E-01 8.04E-01 8.42E-01 1.30E+00

Logistic Wrapper 4.84E-01 5.75E-01 2.08E+00 1.02E+01 3.69E+01

Energy Efficiency Standard GP 8.20E-02 1.66E-01 2.21E-01 3.18E-01 4.58E-01

Default 1.32E-01 2.54E-01 2.73E-01 2.95E-01 3.63E-01

Safe Initialisation 2.07E-01 2.59E-01 2.80E-01 3.02E-01 3.53E-01

Logistic Wrapper 1.72E-01 2.56E-01 2.95E-01 3.22E-01 5.05E-01

Parkinsons Standard GP 9.49E-01 9.78E-01 9.98E-01 1.12E+00 3.43E+01

Default 9.34E-01 9.51E-01 9.61E-01 9.83E-01 7.97E+15

Safe Initialisation 9.26E-01 9.39E-01 9.47E-01 9.55E-01 1.00E+00

Logistic Wrapper 9.90E-01 1.02E+00 1.03E+00 1.04E+00 1.07E+00

Wine Quality (Red) Standard GP 8.25E-01 9.02E-01 9.73E-01 1.13E+00 9.47E+10

Default 7.06E-01 8.00E-01 8.27E-01 8.64E-01 2.82E+11

Safe Initialisation 7.25E-01 7.87E-01 8.07E-01 8.42E-01 9.32E-01

Logistic Wrapper 7.67E-01 8.22E-01 8.53E-01 8.83E-01 9.61E-01

Yacht Hydrodynamics Standard GP 8.49E-02 1.54E-01 2.30E-01 3.49E-01 8.98E+12

Default 1.67E-01 3.14E-01 4.07E-01 6.75E-01 3.56E+12

Safe Initialisation 1.87E-01 2.51E-01 3.09E-01 3.49E-01 6.71E-01

Logistic Wrapper 1.04E+00 1.07E+00 1.08E+00 1.10E+00 1.75E+00

initialisation and default GSGP methods on the Concrete data set, the safe ini-
tialisation and default GSGP methods on the Energy Efficiency data set, and
the safe initialisation and logistic wrapper GSGP methods also on the Energy
Efficiency data set. All other comparisons were considered significant to a 95 %
confidence level. Interestingly, for two of the problems, Energy Efficiency and
Yacht Hydrodynamics, none of the GSGP approaches could match the perfor-
mance of standard GP. For the other problems, GSGP with safe initialisation
presented significantly lower RRSE scores.

6 Conclusion and Future Work

Recent work in genetic programming has placed significant emphasis on improv-
ing the efficacy of semantic-based methods. One branch of this work, geometric
semantic genetic programming (GSGP), attempts to increase the semantic con-
nection between parents and offspring by blending fully-encapsulated parents
within the child. This paper examined an extension to the GSGP approach that
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wraps randomly generated trees with logistic functions before embedding them
in offspring. Analysis of this approach uncovered several limitations of the use
of logistic wrapper functions. To improve the search and generalisation perfor-
mance, an alternative approach was developed, based around the use of interval
arithmetic within tree initialisation to promote the construction of valid indi-
viduals that generalise well. When tested on a range of problems, it was shown
to regularly outperform both the standard GSGP model as well as the GSGP
approach using logistic wrappers.

The work presented in this paper opens up several avenues for future research.
GSGP approaches typically create very large individuals that grow at an expo-
nential rate. It would be interesting to see if the safe initialisation method has
any impact on this growth rate. Likewise, it would be interesting to see how the
incorporation of interval arithmetic into the tree execution process (in addition
to safe initialisation) would impact on GSGP performance. The safe initialisation
method is not limited to GSGP, so it would be interesting to measure its impact
on standard GP. Finally, although not fully explored here, there appears to be
a clear relationship between GSGP and additive models — stronger integration
of the concepts of traditional machine learning approaches to GSGP may yield
positive results, and so should be explored in detail.
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Abstract. Geometric Semantic Genetic Programming (GSGP) is a rec-
ently proposed form of Genetic Programming (GP) that searches directly
the space of the underlying semantics of the programs. The fitness land-
scape seen by the GSGP variation operators is unimodal with a linear
slope by construction and, consequently, easy to search. Despite this
advantage, the offspring produced by these operators grow very quickly.
A new implementation of the same operators was proposed that com-
putes the semantics of the offspring without having to explicitly build
their syntax. This allowed GSGP to be used for the first time in real-life
multidimensional datasets. GSGP presented a surprisingly good gener-
alization ability, which was justified by some properties of the geometric
semantic operators. In this paper, we show that the good generalization
ability of GSGP was the result of a small implementation deviation from
the original formulation of the mutation operator, and that without it
the generalization results would be significantly worse. We explain the
reason for this difference, and then we propose two variants of the geo-
metric semantic mutation that deterministically and optimally adapt the
mutation step. They reveal to be more efficient in learning the training
data, and they also achieve a competitive generalization in only a sin-
gle operator application. This provides a competitive alternative when
performing semantic search, particularly since they produce small indi-
viduals and compute fast.

Keywords: Geometric semantic genetic programming · Generalization ·
Overfitting · Pharmacokinetics · Drug discovery

1 Introduction

Geometric Semantic Genetic Programming (GSGP) [8] is a recently proposed
form of Genetic Programming (GP) [6] that searches directly the space of the
underlying semantics of the programs. One of the most interesting properties of
GSGP is that the fitness landscape seen by its variation operators is a cone by
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P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 41–52, 2015.
DOI: 10.1007/978-3-319-16501-1 4
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construction, and consequently easy to search. Despite this advantage, the indi-
viduals produced by these operators are always bigger than their parents. Since
this growth is rather quick, GSGP ends up being hard to use in practice, specially
in real-life multidimensional datasets. To counteract this, a new implementation
of the same geometric semantic operators was proposed by Vanneschi et al. [10].
In this implementation, the semantics of the offspring can be determined without
having to explicitly build their syntax. This allowed GSGP to be used for the
first time in real-life multidimensional datasets. Results have shown that besides
the expected good performance on the training data, GSGP also presented a
surprisingly good generalization ability. This generalization ability was justified
by the authors as a result of some properties of the geometric semantic operators.
However, their implementation of the mutation operator [10] presented a small
deviation from the original definition [8] that is still valid under the geometric
semantic framework. This implementation is available in the free open-source
GSGP C++ library [2]. In our work we study the effect of both implementa-
tions of the geometric semantic mutation on the generalization ability of GSGP.
We also propose and test two new variations of the geometric semantic mutation
which are able to provide an optimal mutation step adaptation.

The paper is organized as follows. Section 2 contextualizes GSGP. Section 3
describes the experimental setup. Section 4 presents and discusses the effect of
both implementations of the mutation operator on the generalization ability of
GSGP. Section 5 proposes and discusses the results of the two new geometric
semantic mutation operators, and Sect. 6 concludes.

2 Geometric Semantic Genetic Programming

Moraglio et al. [8] recently proposed a new GP formulation called Geometric
Semantic Genetic Programming (GSGP). GSGP derives its name from the fact
that it is formulated under a geometric framework [7] and from the fact that
it operates directly in the space of the underlying semantics of the individuals.
In this context, semantics is defined as the outputs of an individual over a set
of data instances. Perhaps the most interesting property of GSGP is that the
fitness landscape seen by its variation operators is always unimodal with a linear
slope (cone landscape) by construction. This implies that there are no local
optima, i.e., with the exception of the global optimum, every point in the search
space has at least one neighbor with better fitness and that neighbor is reachable
through the application of the variation operators. The immediate consequence
of this type of landscape is that it is easy to search. A drawback of GSGP is that
its operators always produce offspring bigger that their parents. Since our work
is on regression problems, the GSGP operators presented here are for real-value
semantics. For proofs and further details the reader is referred to [8].

Definition 1 (Geometric Semantic Crossover). Given two parent functions
T1, T2 : R

n → R, the geometric semantic crossover returns the real function
TXO = (T1 · TR) + ((1 − TR) · T2), where TR is a random real function whose
output values range in the interval [0, 1].
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From the crossover definition it follows that every offspring is bigger than its
parents combined. This leads to exponential individual growth.

Definition 2 (Geometric Semantic Mutation). Given a parent function
T : Rn → R, the geometric semantic mutation with mutation step ms returns
the real function TM = T + ms · (TR1 − TR2), where TR1 and TR2 are random
real functions.

For the mutation operator, the individual growth produced is linear. The contin-
uous individual growth produced by both operators renders GSGP hard to use
in practice, specially in real-life multidimensional datasets. Vanneschi et al. [10]
tackled this issue by providing a different implementation of these operators. In
this implementation, the semantics of the offspring can be determined without
having to explicitly build their syntax. Consequently, Vanneschi et al. [10] were
able to use GSGP for the first time in real-life multidimensional datasets. They
reported competitive performance both on training and testing data. The argu-
ments presented for the good performance on testing data will be presented and
discussed in Sect. 4.2.

However, the implementation of the mutation operator of Vanneschi et al. [10]
had a small deviation from the original definition. Their implementation imposed
that the random subtrees generated (TR1 and TR2), always had a logistic function
as their root node. This implies that the output of each random subtree ranges in
the interval [0, 1] and that, consequently, the output resulting from subtracting
these random subtrees ranges in the interval [−1, 1]. As the mutation operator
applies a mutation step, the final output added to each parent always ranges in
the interval [−ms,ms]. Looking back at the original definition of the geometric
semantic mutation [8], there is no defined range for the outputs of the random
subtrees. It should be noted that this small implementation deviation is still
valid under the geometric semantic framework. This deviation was not explicit
in their work but was confirmed upon contact, and it is also the implementation
made available in the GSGP library [2]. For clarification purposes, we will refer
to the original mutation definition as Unbounded Mutation (UM) and to the
alternative mutation implementation as Bounded Mutation (BM). In the end,
BM applies a structural bound on the perturbation applied to the parent. This
bound holds independently of the data (training or testing). We explore the
effects of using a structural bound in Sect. 4.

3 Experimental Setup

To provide a fair comparison between unbounded and bounded mutation, our
experimental setup is similar to the one of Vanneschi et al. [10]. The experi-
mental parameters are provided in Table 1. The mutation step for GSGP is set
to 1 as this showed better results in the preliminary testing than the value of
0.001 used by Vanneschi et al. [10]. Experiments are run for 500 generations
because that is where the statistical comparisons were made in the mentioned
work. Standard GP and Semantic Stochastic Hill Climber (SSHC) [8] are used



44 I. Gonçalves et al.

as baselines for comparison. GSGP without crossover is also tested (GSGP NC).
As this work studies the effects of unbounded and bounded mutations (UM
and BM respectively), each method is tested with both mutations. Therefore,
the variants tested are: GSGP UM and BM; GSGP NC UM and BM and SSHC
UM and BM. All claims of statistical significance are based on Mann-Whitney U
tests, with Bonferroni correction, and considering a significance level of α = 0.05.
For each dataset 30 different random partitions are used. Each variant uses the
same 30 partitions. Experiments are conducted on the same two multidimen-
sional symbolic regression real-life datasets used by Vanneschi et al. [10]. These
datasets are the Bioavailability (hereafter Bio) and the Plasma Protein Binding
(hereafter PPB). They have, respectively, 359 instances and 241 features, and
131 instances and 626 features. For a detailed description of these datasets the
reader is referred to Archetti et al. [1] and Vanneschi et al. [10].

Table 1. GSGP and Standard GP parameters used in the experiments

Parameter Value

Runs 30

Generations 500

Population size 100

Training - Testing division 70 % - 30 %

Fitness Root Mean Squared Error

GSGP crossover SGXM [8], probability 0.5

GSGP mutation SGMR [8], probability 0.5

Standard GP crossover Standard subtree crossover, probability 0.9

Standard GP mutation Standard subtree mutation, probability 0.1

Tree initialization Ramped Half-and-Half, maximum depth 6

Function set +, -, *, and /, protected as in [9]

Terminal set Input variables, no constants

Parent selection Tournament of size 4

Elitism Best individual always survives

Maximum tree depth None

4 Experimental Study

All the evolution plots presented in the next sections are based on the median
over 30 runs of the training and testing error of the best individuals in the
training data. The median was preferred over the mean since it is more robust
to outliers. Section 4.1 presents the results and Sect. 4.2 discusses the generali-
zation ability.
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4.1 Results

Figure 1 presents the training and testing error evolution plots in both datasets.
This figure also shows the adaptive mutation step variants (SSHC AUM, SSHC
DAUM, SSHC ABM and SSHC DABM) that will be presented and discussed in
Sect. 5.

Starting with the comparisons against Standard GP, it was confirmed that
GSGP BM generalizes better in both datasets (p-values: Bio 1.794 × 10−6 and
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Fig. 1. Bio (top) and PPB (bottom) training and testing error evolution plots
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PPB 5.121×10−4). These same conclusions were already presented by Vanneschi
et al. [10]. In terms of training error, Standard GP is superior to GSGP BM in the
Bio dataset (p-value 5.434×10−5) and no statistically significant differences were
found in the PPB dataset. On the other hand, Standard GP is superior to GSGP
UM in terms of testing error in the Bio dataset (p-value 9.273 × 10−4), while no
statistically significant differences were found in the PPB dataset. GSGP UM
is, however, superior to Standard GP in terms of training error in both datasets
(p-values: Bio 2.872 × 10−11 and PPB 2.872 × 10−11).

It can be observed in evolution plots that Standard GP and GSGP UM
overfit the training data, while GSGP BM generalizes well. In these datasets,
Standard GP is known to overfit (e.g., [4]) and GSGP BM has been recently
shown, and also confirmed here, to generalize well [10]. On the other hand,
there is a clear distinction between GSGP BM and UM, as the latter quickly
overfits the training data. It generalizes even worse than Standard GP in the
Bio dataset. This same distinction between BM and UM occurs with GSGP NC
and with SSHC. As a general trend, the BM variants (GSGP BM, GSGP NC
BM and SSHC BM) generalize well, while the UM variants (GSGP UM, GSGP
NC UM and SSHC UM) overfit the training data. This discrepancy between
the generalization ability of the UM and BM variants is discussed in the next
section.

Vanneschi et al. [10] mentioned that GSGP requires a relatively high muta-
tion probability in order to explore the search space more efficiently. Indeed, our
results show only small differences between using the crossover operator (GSGP
UM and BM) or not using it at all (GSGP NC UM and BM). Statistically,
there are no differences in terms of generalization, in any comparison with the
same mutation operator. In terms of training error the results are not consistent:
GSGP NC BM is significantly better than GSGP BM on the Bio dataset (p-value
3.955×10−5); GSGP UM is significantly better than GSGP NC UM on the PPB
dataset (p-value 4.734 × 10−11); and no other statistically significant differences
were found. However, a possible inefficiency of the crossover operator should be
expected. This operator can only produce an offspring which improves over both
parents when the target semantics are between (even if partially) the semantics
of the parents. Without an explicit semantic diversity control of the population
and a mate selection procedure that takes the target semantics into account, the
crossover operator may be inefficient. This inefficiency may also increase with
larger semantic spaces, i.e., as the number of data instances increases. From these
experiments, it can be concluded that the crossover operator can be skipped alto-
gether since it does not significantly and consistently improve the search outcome
(in testing or training error). It also presents the disadvantage of exponentially
increasing the size of the individuals, as opposed to the linear increase with the
mutation operator.

On a final note, the evolution plots also show that the SSHC variants con-
sistently learn faster than the GSGP and GSGP NC variants with the same
mutation operator. This should be expected as the semantic space has no local
optima and consequently the search can be focused around the best individual
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in the population. This leads to a faster decrease in the training error and, in
the case of SSHC BM, to a faster generalization to unseen data.

4.2 Discussion on Generalization Ability

From the results presented in Sect. 4.1, it is clear that what differentiates the sev-
eral methods in terms of generalization is the usage of a bounded or unbounded
mutation (BM and UM respectively). BM variants generalize well, while UM
variants overfit the training data.

The GSGP implementation of Vanneschi et al. [10] used a BM and reached
the same conclusions regarding its competitive generalization. They justified this
generalization ability by considering some properties of the geometric semantic
operators. Particularly, they remarked that the geometric properties of those
operators hold independently of the data on which the evaluation is taken place
and consequently they also hold on testing data. For the crossover operator this
implies that each offspring produced also stands between its parents in the test-
ing data semantic space. Therefore, in the worst case, each offspring is not worse
than the worst of its parents on testing data. The implication for the mutation
operator is that the perturbation that each offspring produces is bounded, also
in the testing data semantic space, by the mutation step (ms). Specifically, the
semantic variation on the testing data also ranges in the interval [−ms,ms].
Therefore, Vanneschi et al. [10] concluded that the geometric semantic opera-
tors guarantee that a possible worsening of the testing error is bounded and
consequently that these operators help control overfitting.

As seen before, the usage of a bounded or unbounded mutation was crucial in
determining the generalization achieved. The BM operator was able to produce
a competitive generalization by guaranteeing bounded and small perturbations
on the testing data. This was crucial to generalize well. However, it is clear
that perturbations that increase the testing error are always possible. It is also
clear that if these perturbations were a significant majority of the applications
of the operator then overfitting would be inevitable. Therefore, it can be con-
cluded that after reaching what can be thought of as a generalization plateau
(the point where it seems that no further induction can be performed with the
available data), the BM operator generates about half of its perturbations in
the decreasing testing error direction and the other half in the increasing testing
error direction. These perturbations end up compensating each other and there-
fore creating the relatively smooth generalization plateau. On the other hand,
the UM operator performed badly in terms of generalization. Since in this oper-
ator the perturbations produced on the testing data can be arbitrarily large, a
single application of a mutation that results in overfitting (decreases training
error but increases testing error) can have an arbitrarily large increase in the
testing error. This results in considerable uncertainty in the testing error evolu-
tion. This effect may be more noticeable in regression problems since any data
instance can have an arbitrarily large error contribution, as opposed to classi-
fication problems where normally the error is bounded for each data instance.
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For these reasons, the BM operator seems more robust and should be preferred
over the UM operator.

For the reasons already mentioned in Sect. 4.1, the crossover operator had
little effect in the results. However, in principle, the crossover operator should
be riskier in terms of generalization than the BM operator. This is because the
variation in the testing data semantic space, although bounded by the testing
semantics of the parents, can still be arbitrarily large. This results from the fact
that the parents can be, in terms of testing data semantics, very far apart. Since
there is no way of knowing if the parents are close or far apart in the testing
data semantic space, the bounds (defined by the semantics of both parents),
on testing data, are not useful in practice. This is another disadvantage of the
crossover operator, following the exponential growth of the offspring produced
and the low efficiency in terms of search.

Although the generalization achieved by the GSGP with bounded mutation is
very competitive, the issue of the size of the solutions generated by these geomet-
ric semantic operators remains. As mentioned in Sect. 2, using crossover in GSGP
translates into an exponential growth of the individuals. In our experimental
study, individuals in GSGP reach several millions of nodes with only around 20
generations conducted. This raises the question: how can such large/complex
individuals (models) achieve such competitive generalization? Some interpreta-
tions of theories such as Occam’s razor and the Minimum Description Length
principle state that smaller/less complex models generalize better. Consequently,
and in light of this view, this result would be improbable, if not impossible. How
can this be? A possible answer may lie in ensemble learning. Ensemble learn-
ing is a Machine Learning paradigm in which several models are created and
combined to produce a final model. Dietterich [3] provided three reasons as to
why constructing an ensemble of models may be superior to constructing a sin-
gle model. The first two reasons are computational and representational. The
computational reason is related to the difficulties in searching the search space,
such as getting stuck in a local optima. The representational reason arises when
the true target function cannot be represented by any of the hypotheses in the
search space. These first two reasons are not discussed in detail as they are not
relevant to GSGP, respectively because the semantic space has no local optima
and because in GSGP (and in traditional GP) any hypothesis can be represented
that could also be represented by an ensemble. The last reason is the one which
is relevant to GSGP and to generalization in general. It is a statistical reason
and it is related to the fact that several different models can have a similar or
even the same training data performance. This is essentially a model selection
problem. Which model should be chosen? There is no way of knowing which
model will generalize better. Ensemble learning tackles this issue by combin-
ing several accurate models, which reduces the risk of the final model being
overfitted. Even if some overfitted models are present in the ensemble, their neg-
ative contribution to the final model will be reduced since the final model will
also include contributions from models which generalize well. It is a common
result in ensemble learning to have large ensembles which achieve competitive
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generalization. Therefore, and in general, large/complex models (individuals)
can also generalize well depending on how they are constructed.

GSGP can be seen as an ensemble learning method, since its operators always
combine existing individuals independently to produce new individuals. The
crossover operator combines two parents with a randomly generated individual
and the mutation operator combines one parent with another randomly gener-
ated individual (the individual which results from subtracting the two random
subtrees). We can think of these parents and randomly generated individuals
as full models themselves. This interestingly relates back to ensemble learning,
where a necessary condition for its positive outcome is that the ensemble has a
mix of accurate and diverse models [5]. In GSGP we can think of the parents
as the accurate models (as they have survived during the evolution) and the
randomly generated individuals as providing the also needed diversity. GSGP
may derive some of its competitive generalization from this. If, for instance, we
consider the application of two sequential mutations, it follows that:

P + R1 ∗ ms + R2 ∗ ms

where P is the initial parent, R1 and R2 are the two randomly generated indi-
viduals and ms is the mutation step. Consequently, considering only the usage
of the mutation operator, GSGP can be seen as a weighted sum combination of
models (we can consider that the initial parent has a weight of 1).

In the end, GSGP successfully combines elements from ensemble learning
(implicitly) and from the geometric semantic framework. Combining several
models to incrementally produce new models has roots in ensemble learning.
This allows to reduce the model selection risk by offsetting possible bad models.
On the other hand, the combination of a structurally bounded mutation (BM)
and a small mutation step can further reduce the issue of adding bad models by
guaranteeing that their contribution will be small.

5 Adapting the Mutation Step

As discussed in the previous section, the mutation step can play a role in reduc-
ing the risk of overfitting. When it comes to learning more efficiently, the geo-
metric semantic mutation can be improved by adapting its step. It is possible
to deterministically compute the optimal mutation step for each application of
the operator. The description of how this can be accomplished is presented in
Sect. 5.1. Section 5.2 presents and discusses the results.

5.1 Optimal Step Adaptation

The geometric semantic mutation can be seen as a linear combination of two
elements: the parent P, and the random individual RI which results from sub-
tracting the two random subtrees. Since RI is multiplied by the mutation step
ms, we want to find a mutation step such that:

P + RI ∗ ms = t
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where P and RI are semantic vectors and t is the target vector of the data. Since
the parent is not influenced by any weight, we can rewrite this as:

RI ∗ ms = (t − P)

where we reach a general linear system:

Ax = y

The resolution of which can be performed deterministically and optimally by the
application of the Moore-Penrose pseudoinverse (hereafter simply inverse). This
inverse computes the mutation step which minimizes the error in the training
data for each specific combination of RI, P and t. We will call this modification of
the mutation operator as Adaptive Mutation (AM). As this work has studied the
effects of bounded and unbounded mutations, we can divide the AM as: Adaptive
Unbounded Mutation (AUM) and Adaptive Bounded Mutation (ABM).

Following a similar reasoning, another mutation operator can be devised. We
can consider the possibility of adding a weight to the parent and adjusting both
weights with the inverse. Let pw be the parent weight. Consequently:

P ∗ pw + RI ∗ ms = t

This new semantic mutation operator will be called as Doubly Adaptive Muta-
tion (DAM) and it can also be divided as: Doubly Adaptive Unbounded Muta-
tion (DAUM) and Doubly Adaptive Bounded Mutation (DABM). The inverse
method could also be used to perform a linear combination of more than two
weighted individuals.

5.2 Results and Discussion

The newly devised operators were tested with the SSHC (more efficient than
GSGP, see Sect. 4.1) and consequently its variants were named: SSHC AUM,
SSHC DAUM, SSHC ABM and SSHC DABM. Figure 1 (in Sect. 4.1) shows the
evolution of training and testing error for these adaptive variants. They reveal
to be superior in terms of learning the training data when compared to the
SSHC variants without adaptive mutation step (SSHC UM and SSHC BM).
This was expected, since the step adaptation is optimal for each application of
the operators. In terms of generalization, these variants quickly overfit. In light
of the analysis made in Sect. 4.2, this quick overfitting should also be expected,
as there is no structural bound coupled with a small mutation step and con-
sequently no overfitting risk reduction. Since in these variants the weights can
be arbitrarily large, the benefits of using a structural bound (SSHC ABM and
SSHC DABM) are lost.

However, an interesting property can be found when looking closely at the
initial generations. Figure 2 presents the testing error evolution on the first 10
generations. It shows that these variants achieve a competitive generalization
in only a single application of the mutation operators. This is particularly clear
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in the SSHC DAUM and SSHC DABM variants. It was expected that these
two variants fit the training data more easily when compared to the other two
variants (SSHC AUM and SSHC ABM), since they have an extra degree of free-
dom (the parent weight). Further testing is needed to determine if this property
holds across other datasets. If it holds, then these mutation variants become
a competitive alternative when performing semantic search, particularly since
they produce small individuals and compute fast. They also raise no issues in
constructing/reconstructing large individuals, as opposed to what may happen
with the GSGP variants.
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Fig. 2. Bio (left) and PPB (right) testing error evolution plots for the first 10 genera-
tions

6 Conclusions

In this work we have studied the generalization ability of Geometric Semantic
Genetic Programming (GSGP), by analyzing the effects of two different imple-
mentations of the geometric semantic mutation. These implementations differ
on the existence or not of a guaranteed bound on the semantic variation across
both training and unseen data. Results showed that the generalization ability of
GSGP differs significantly depending on whether or not this bound is used. On
the tested datasets, the unbounded mutation highly overfitted the training data,
while the bounded mutation achieved a competitive generalization. We have also
expanded on previously reported geometric semantic arguments as to why GSGP
may generalize well. Furthermore, we provided an explanation as to why such
large solutions like the ones produced by GSGP can generalize competitively, by
discussing how GSGP may relate with ensemble learning.
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We have also proposed two new variants of the geometric semantic muta-
tion. These new operators are able to deterministically compute the optimal
mutation step for each application of the operator. They have shown to be more
efficient in learning the training data, and they also achieve a competitive gen-
eralization in only a single operator application. This provides a competitive
alternative when performing semantic search, particularly since they produce
small individuals and compute fast.
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Abstract. In genetic programming (GP), programs are usually evalu-
ated by applying them to tests, and fitness function indicates only how
many of them have been passed. We posit that scrutinizing the outcomes
of programs’ interactions with individual tests may help making program
synthesis more effective. To this aim, we propose DOC, a method that
autonomously derives new search objectives by clustering the outcomes
of interactions between programs in the population and the tests. The
derived objectives are subsequently used to drive the selection process
in a single- or multiobjective fashion. An extensive experimental assess-
ment on 15 discrete program synthesis tasks representing two domains
shows that DOC significantly outperforms conventional GP and implicit
fitness sharing.

Keywords: Genetic programming · Program synthesis · Test-based
problems · Multiobjective evolutionary computation

1 Introduction

In genetic programming (GP), the quality of a candidate program is usually
assessed by confronting it with a set of tests (fitness cases). The outcomes of
program’s interactions with individual tests are then aggregated by a fitness
function. In discrete domains, this usually boils down to counting the number
of passed tests.

Although employing a fitness function defined in this way may appear natural
at first sight, there are several drawbacks of driving the search purely by the
number of passed tests. Starting from not necessarily the most severe one, for
n tests, fitness will take on n + 1 possible values, and once a search process
identifies good and thus similarly fit solutions, ties become likely. Next, this
quality measure is oblivious to the fact that some tests can be inherently more
difficult to pass than others. But most importantly, aggregation of interaction
outcomes into a single scalar implies compensation: two programs that perform
very differently on particular tests may receive the same fitness and thus become
indiscernible in a subsequent selection phase.

Furthermore, conventional fitness in GP is known to exhibit low fitness-
distance correlation [22], i.e., it does not reflect well the number of search steps
c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 53–65, 2015.
DOI: 10.1007/978-3-319-16501-1 5
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required to reach the optimal solution. As a result, guiding search by a fitness
function defined in this way may be not particularly efficient. In other words,
fitness function, despite embodying the objective quality of candidate solutions
(considered as prospective outcomes of program synthesis process), is not neces-
sarily the best driver to guide the search. Alternative search drivers, meant as
substitutes for objective function, should be sought that correlate better with
distance, possibly by reflecting other aspects of program behavior.

As we argued in [11], the habit of using scalar objective functions in domains
like GP, where more detailed information on solutions’ characteristic is easily
available, seems particularly wasteful. The information on the outcomes of indi-
vidual interactions can and should be exploited more efficiently wherever possi-
ble. In GP, search drivers could be evaluation measures that capture program’s
performance only on a subset of tests.

Various means, reviewed in Sect. 4 of this paper, have been proposed in
the past to address the weaknesses of conventional fitness measure in GP. The
method we propose here and describe in Sect. 3 is inspired by previous work in
coevolutionary algorithms, and builds upon the approach we designed for test-
based problems in [15]. In every generation, the algorithm identifies the groups
of tests on which the programs in the current population behave similarly. Each
such group gives rise to a separate derived objective. Typically, a few such objec-
tives emerge from this process, and we employ them to perform selection on the
current population. We propose two selection procedures that exploit the derived
objectives, one of them involving the NSGA-II method [4]. In an experimental
assessment reported in Sect. 5, the method performs significantly better than
conventional GP and implicit fitness sharing.

2 Background

The task of automated program synthesis by means of genetic programming can
be conveniently phrased as an optimization problem in which the search objec-
tive is to find a candidate solution p∗ = argmaxp∈Pf(p) that maximizes the
objective function f , where P is the space of all candidate programs. In non-
trivial problems, P is large or even infinite, and grows exponentially with the
length of considered programs. Searching the entire space is therefore compu-
tationally infeasible, and one needs resort to a heuristic algorithm that is not
guaranteed to find p∗. In GP, it is common to drive the search process using f
as fitness function. As motivated earlier, this is not always the best approach.

A program to be evolved is typically specified by a set of tests (fitness cases).
Each test is a pair (x, y) ∈ T , where x is the input fed into a program, and y is
the desired outcome of applying it to x. From the machine learning perspective,
T forms the training set. While in general the elements of t ∈ T can be arbitrary
objects, for the purpose of this study, we limit our interest to Boolean and
integer-valued inputs and outputs.

In many problems, fitness cases do not enumerate all possible pairs of pro-
gram inputs and outputs. Ideally, the synthesized program is expected to gen-
eralize beyond the training set which bears resemblance to test-based problems
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G t1 t2 t3 t4 t5
a 1 1 0 1 1
b 0 1 0 1 0
c 1 0 1 1 0
d 0 1 0 0 0

G t1 t2 t3 t4 t5
a 1 1 0 1 1
b 0 1 0 1 0
c 1 0 1 1 0
d 0 1 0 0 0

G′ t1+3 t2+4+5

a 0.5 1
b 0 0.66
c 1 0.33
d 0 0.33

a) Interaction matrix G b) G after clustering c) Derived objectives G′

Fig. 1. Example of deriving search objectives from interaction matrix G (a) using
clustering (b), resulting in the derived objectives shown in (c).

originating from the field of coevolutionary algorithms [1,3]. In test-based prob-
lems, candidate solutions interact with multiple environments – tests. Typically,
the number of such environments is very large, making it infeasible to evaluate
candidate solutions on all of them. Depending on problem domain, tests may
take on the form of, e.g., opponent strategies (when evolving a game-playing
strategy) or simulation environments (when evolving a robot controller).

In this light, it does not take long to notice that also the program synthesis
task can be formulated as a test-based problem, in which passing a test requires
a program to produce the desired output for a given input. In general, we will
assume that an interaction between a program p and a test t produces a scalar
outcome g(p, t) that reflects the capability of the former to pass the latter. In this
paper, we assume that interaction outcome is binary, i.e., g : P × T → {0, 1}.

A GP algorithm solving a test-based problem (program synthesis task) main-
tains a population of programs P ⊂ P. In every generation, each program p ∈ P
interacts with every test (x, y) ∈ T , in which p is applied to x and returns an
output denoted as p(x). If p(x) = y, p is said to solve the test and g(p(x), y) = 1.
If, on the other hand, p(x) �= y, we set g(p(x), y) = 0 and say that p fails (x, y).

As it will become clear in the following, it is convenient to gather the out-
comes of these interactions in an interaction matrix G. For a population of m
programs and |T | = n, G is an m × n matrix where gij is the outcome of inter-
action between the ith program and jth test.

Given this test-based framework, the conventional GP fitness that rewards a
program for the number of passed tests can be written as

f(p) = |{t ∈ T : g(p, t) = 1}|. (1)

3 The DOC Algorithm

The proposed method of discovery of search objectives by clustering (doc)
addresses the shortcomings of conventional evaluation (cf. Sect. 1) by clustering
the interaction outcomes into several derived objectives. Each derived objective
is intended to capture a subset of ‘capabilities’ exhibited by the programs in the
context of other individuals in population. The derived objectives replace then
the conventional fitness function (Eq. 1).

Technically, doc replaces the conventional evaluation stage of GP algorithm
(cf. Sect. 2) in favor of the following steps:
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1. Calculate the m × n interaction matrix G between the programs from the
current population P, |P | = m, and the tests from T, |T | = n.

2. Cluster the tests. We treat every column of G, i.e., the vector of interaction
outcomes of all programs from P with a test t, as a point in an m-dimensional
space. A clustering algorithm of choice is applied to the n points obtained in
this way. The outcome of this step is a partition {T1, . . . , Tk} of the original
n tests in T into k subsets/clusters, where 1 ≤ k ≤ n and Tj �= ∅.

3. Define the derived objectives. For each cluster Tj , we average row-wise the
corresponding columns in G. This results in an m × k derived interaction
matrix G′, with the elements defined as follows:

g′
i,j =

1
|Tj |

∑

t∈Tj

g(si, t) (2)

where si is the program corresponding to the ith row of G, and j = 1, . . . , k.

The columns of G′ implicitly define the k derived objectives that characterize
the programs in P .

The derived objectives form the basis for selecting the most promising pro-
grams from P , which subsequently give rise to the next generation of programs.
The natural avenue here is to apply a multiobjective evolutionary algorithm.
Following our previous work, we employ NSGA-II [4], one of the most popu-
lar method of that sort. This allows programs that feature different behaviors,
reflected in the derived objectives, to coexist in population even if some of them
are clearly better than others in terms of conventional fitness. However, we will
show in the experimental section that such multiobjective selection may involve
certain undesired side-effects, and that driving selection by certain scalar aggre-
gate of the derived objectives can be also an interesting option.

Properties of DOC. An important property of doc is its contextual charac-
ter manifested by the fact that the outcome of evaluation of any program in
P depends not only on the tests in T , but also on the other programs in P .
This is the case because all programs in P together determine the result of clus-
tering and therefore influence the derived objectives. This quite direct interaction
between the programs is not a common feature of GP.

An implication of contextual evaluation is that derived objectives are adap-
tive and driven by the current state of evolving programs. The process of their
discovery repeats in every generation so that they reflect the changes in behav-
iors of the programs in population. The derived objectives are thus subjective in
this sense, which makes them analogue to search drivers used in two-population
coevolution [15], even though the tests does not change with time here.

As clustering partitions the set of tests T (rather than, e.g., selecting some of
them), none of the original tests is discarded in the transformation process. The
more two tests are similar in terms of programs’ performance on them, the more
likely they will end up in the same cluster and contribute to the same derived
objective. In the extreme case, tests that are mutually redundant (i.e., identical
columns in G) are guaranteed to be included in the same derived objective.



Automatic Derivation of Search Objectives 57

For k = 1, doc degenerates to a single-objective approach: all tests form one
cluster, and G′ has a single column that contains solutions’ fitness as defined by
Eq. 1 (albeit normalized). On the other hand, setting k = n implies G′ = G, and
every derived objective being associated with a single test.

4 Related Work

There are two groups of past studies related to this work, those originating in
GP and those originating in research on coevolutionary algorithms. We review
these groups in the following.

In the group of methods that originate in GP, a prominent example of
addressing the issues outlined in Sect. 1 is implicit fitness sharing (IFS) intro-
duced by Smith et al. [20] and further explored for genetic programming by
McKay [16,17]. IFS lets the evolution assess the difficulty of particular tests and
weighs the rewards granted for solving them. Given a set of tests T, the IFS
fitness of a program p in the context of a population P is defined as:

fIFS(p) =
∑

t∈T : g(p,t)=1

1
|P (t)| (3)

where P (t) is the subset of programs in P that solve test t, i.e., P (t) = {p ∈ P :
g(p, t) = 1}. IFS treats tests as limited resources: programs share the rewards for
solving particular tests, each of which can vary from 1

|P | to 1 inclusive. Higher
rewards are provided for solving tests that are rarely solved by population mem-
bers (small P (t)), while importance of tests that are easy (large P (t)) is dimin-
ished. The assessed difficulties of tests change as P evolves, which can help
escaping local minima.

Other methods that reward solutions for having rare characteristics have been
proposed as well. An example is co-solvability [10] that focuses on individual’s
ability to properly handle pairs of fitness cases, and as such can be considered
a ‘second-order’ IFS. Such pairs are treated as elementary competences (skills)
for which solutions can be awarded. Lasarczyk et al. [14] proposed a method for
selection of fitness cases based on a concept similar to co-solvability. The method
maintains a weighted graph that spans fitness cases, where the weight of an edge
reflects the historical frequency of a pair of tests being solved simultaneously.
Fitness cases are then selected based on a sophisticated analysis of that graph.

Last but not least, the relatively recent research on semantic GP [12] can be
also seen as an attempt to provide search process with richer information of pro-
grams’ behavioral characteristics. Similarly, pattern-guided GP and behavioral
evaluation [13] clearly set similar goals.

In the group of studies that originate in coevolutionary algorithms,
Pareto coevolution [6,18] was initially proposed to overcome the drawbacks of
an aggregating fitness function. In Pareto coevolution, aggregation of interaction
outcomes has been abandoned in favor of using each test as a separate objective.
As a result, a test-based problem can be transformed into a multi-objective
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optimization problem. This, in turn, allows adoption of dominance relation — a
candidate solution s1 dominates a candidate solution s2 if and only if s1 performs
at least as good as s2 on all tests. Nevertheless, the number of such elementary
objectives is often prohibitively large due to a huge number of tests present in
typical test-based problems.

It was later observed that certain test-based problems feature an internal
structure comprising groups of tests that examine the same skill of solutions.
Based on this observation, Bucci [1] and de Jong [2] introduced coordinate sys-
tems that compress the elementary objectives into a multidimensional structure,
while preserving the dominance relation between candidate solutions. Because of
the inherent redundancy of tests, the number of so-called underlying objectives
(dimensions) in such a coordinate system is typically lower than the number of
tests. However, even with a moderately large number of tests, it is unlikely for a
candidate solution to dominate any other candidate solution in the population.
From such a sparse dominance relation, it is hard to elicit any information that
would efficiently drive the search process. The coordinate systems introduced in
the cited work do not help in this respect, as they perfectly preserve the domi-
nance relation, and if the dominance in the original space is sparse, they need to
feature very high number of dimensions. Also, the problem of their derivation is
NP-hard [8].

The derived objectives constructed by doc bear certain similarity to the
underlying objectives studied in the above works. However, as shown by the
example in Fig. 1, the derived objectives are not guaranteed to preserve dom-
inance: given a pair of candidate solutions (p1, p2) that do not dominate each
other in the original space of interaction outcomes, one of them may turn out to
dominate the other in the space of resulting derived objectives. For instance,
given the interaction matrix as in Fig. 1a, program c does not dominate d,
however it does so in the space of derived objectives (Fig. 1c). As a result
of clustering, some information about the dominance structure has been lost.
This inconsistency buys us however a critical advantage: the number of resulting
derived objectives is low, so that together they are able to impose an effective
search gradient on the evolving population.

5 Experimental Verification

We examine the capabilities of doc within the domain of tree-based GP. The
compared algorithms implement generational evolutionary algorithm and vary
only in the selection procedure. Otherwise, they share the same parameter set-
tings, with initial population filled with the ramped half-and-half operator,
subtree-replacing mutation engaged with probability 0.1 and subtree-swapping
crossover engaged with probability 0.9. We run two series of experiments: one
with runs lasting up to 200 generations and population size |P | = 500, and with
runs up to 100 generations and population size |P | = 1000. The search process
stops when the assumed number of generation elapses or an ideal program is
found; the latter case is considered a success.
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Table 1. Success rate (percent of successful runs) of best-of-run individuals, averaged
over 30 evolutionary runs. Bold marks the best result for each benchmark

Compared algorithms. The particular implementation of doc used in this
work employs x-means [19], an extension of the popular k-means algorithm that
autonomously adjusts k. Given an admissible range of k, x-means picks the k
that leads to clustering that maximizes the Bayesian Information Criterion. In
this experiment, we allow x-means consider k ∈ [1, 4] and employ the Euclidean
metric to measure the distances between the observations (the columns of G).

We confront doc with several control setups. The first baseline is the con-
ventional Koza-style GP (GP in the following), which employs tournament of
size 7 in the selection phase. The second control is implicit fitness sharing (IFS
[17]) presented in Sect. 4, with fitness defined as in Formula 3 and also with
tournament of size 7. The last control configuration, RAND, is a crippled vari-
ant of doc. In that configuration, the tests, rather than being clustered based
on interaction outcomes as described in Sect. 3, are partitioned into k subsets
at random with k randomly drawn from the interval [2, 4]. rand is intended to
control for the effect of multiobjective selection performed by NSGA-II (which
is known to behave very differently from the tournament selection).

Benchmark problems. In its current form presented in Sect. 3, doc can handle
only binary interaction outcomes, where a program either passes a test or not.
Because of that, we compare the methods on problems with discrete interaction
outcomes. The first group of them are Boolean benchmarks, which employ
instruction set {and, nand, or, nor} and are defined as follows. For an v-bit
comparator Cmp v, a program is required to return true if the v

2 least significant
input bits encode a number that is smaller than the number represented by the
v
2 most significant bits. In case of the majority Maj v problems, true should be
returned if more that half of the input variables are true. For the multiplexer
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Mul v, the state of the addressed input should be returned (6-bit multiplexer uses
two inputs to address the remaining four inputs). In the parity Par v problems,
true should be returned only for an odd number of true inputs.

The second group of benchmarks are the algebra problems from Spector
et al.’s work on evolving algebraic terms [21]. These problems dwell in a ternary
domain: the admissible values of program inputs and outputs are {0, 1, 2}. The
peculiarity of these problems consists of using only one binary instruction in
the programming language, which defines the underlying algebra. For instance,
for the a1 algebra, the semantics of that instruction is defined as in (a) below
(see [21] for the definitions of the remaining four algebras). For each of the five
algebras considered here, we consider two tasks (of four discussed in [21]). In the
discriminator term tasks (Disc in the following), the goal is to synthesize an
expression that accepts three inputs x, y, z and is semantically equivalent to the
one shown in (b) below. There are thus 33 = 27 fitness cases in these benchmarks.
The second tasks (Malcev), consists in evolving a so-called Mal’cev term, i.e., a
ternary term that satisfies the equation (c) below. This condition specifies the
desired program output only for some combinations of inputs: the desired value
for m(x, y, z), where x, y, and z are all distinct, is not determined. As a result,
there are only 15 fitness cases in our Malcev tasks, the lowest of all considered
benchmarks.

Performance. Table 1 reports the success rates of particular algorithms, result-
ing from 30 runs of each configuration on every benchmark. The methods clearly
fair differently on particular benchmarks. To provide an aggregated perspective
on performance, we employ the Friedman’s test for multiple achievements of mul-
tiple subjects [9]. Compared to ANOVA, it does not require the distributions of
variables in question to be normal.

Friedman’s test operates on average ranks, which for the considered methods
are as follows, for |P | = 500 (left) and |P | = 1000 (right):

doc ifs rand gp
1.93 2.20 2.50 3.36

doc ifs rand gp
1.76 2.33 2.60 3.30

The p-value for Friedman test is � 0.001, which strongly indicates that at least
one method performs significantly different from the remaining ones. We con-
ducted post-hoc analysis using symmetry test [7]: bold font marks the methods
that are outranked at 0.05 significance level by the first method in the ranking.
Analysis. Although doc ranks first for both population sizes, it does not seem
to be much better than IFS, a substantially simpler method. We hypothesize that
this may be an effect of overspecialization, which may be likened to focusing, one
of so-called coevolutionary pathologies [5,23]. Even though evolving a program
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Fig. 2. Average hypervolume of programs in population across generations for the
Mux6, Cmp6 and Maj6 benchmarks.

that passes all tests is hard, it may be relatively easy to find programs that
perform well on a certain subset of tests while failing the other tests. For instance,
in the Boolean benchmark Cmp6, the task is to determine whether the number
encoded by the three least significant input bits b0, b1, b2 is smaller than the
number encoded by the three most significant bits b3, b4, b5. A program that
checks if b2 is off and simultaneously b5 is on solves the quarter of 26 = 64 tests
in this task. This can be expressed with a mere few instructions from the assumed
instruction set, e.g., as (b2 nor b2) and b5. It is possible that evolution exploits
this opportunity by synthesizing programs that focus on such easy subproblems.

To verify this hypothesis, we define the hypervolume of program’s perfor-
mance as characterized by the k derived objectives o1, . . . , ok, i.e.,

h(p) =
k∏

i=1

oi(p). (4)

The key property of hypervolume is that it increases as the scores on ois become
more balanced. Consider two programs p1, p2 with the same overall fitness, i.e.,∑

i oi(p1) =
∑

i oi(p2). Assume the scores of p1 on ois vary, while those of p2
are all the same, i.e., oi(p2) =

∑
i oi(p1)/k. In such a case, h(p2) > h(p1). h(p2)

is the maximum hypervolume for all possible distributions of the same scalar
fitness across the derived objectives.

Figure 2 plots the hypervolume of programs in population across generations
for the Mux6, Cmp6 and Maj6 benchmarks, averaged over population and over
90 evolutionary runs. We observe dramatic decline of this measure with evolu-
tion time. With the other benchmarks exhibiting similar characteristics, we can
conclude that indeed the programs evolved by doc tend to overspecialize.
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Promoting uniform progress. The NSGA-II selection procedure operates
on Pareto ranks and as such is agnostic to a more detailed location of a given
point in the multiobjective space that spans ois. As long as two programs have
the same Pareto rank, they will be equally valuable (unless differentiated by
sparsity). This holds even if one of them is on the very extreme of Pareto front,
i.e., attains zero value of one or more objectives. In other words, NSGA-II lacks
mechanisms that would promote achieving balanced performance on all derived
objectives simultaneously.

This observation, combined with the above demonstration of overspecial-
ization, immediately points to a remedy. If hypervolume is a natural measure
of balanced performance on all objectives, why not use it as a search driver?
To verify this idea, we come up with a straightforward variant of doc, called
DOC-P in the following. doc-p aggregates the scores on derived objectives using
Formula 4, and uses the resulting hypervolume as fitness in combination with
tournament selection of size 7, as in the other control configurations.

We also propose a second variant of this idea, DOC-P, which additionally
weights the objectives by the number of tests (columns in G) included in each
objective, i.e.,

hD(p) =
k∏

i=1

|Ti|oi(p). (5)

In effect, hD(p) is based on the number of tests passed by p on each derived
objectives, while h relied on the raw values of oj , i.e., mean test outcomes in
clusters.

The columns in Table 1 marked doc-p and doc-d report the results of these
methods. Below, we present the average ranks of all methods, including these
extensions:

doc-d doc-p ifs doc rand gp
1.70 2.43 3.56 3.63 4.33 5.33

doc-p doc-d doc ifs rand gp
2.20 2.43 3.10 3.66 4.50 5.10

We observe both setups dramatically improving the performance compared to
the original doc. For |P | = 500 (left), the doc-d ranks the best, outperforming
GP, rand and the multiobjective variant of doc in a statistically significant
way. The difference is statistically insignificant for ifs, but both doc-d and
doc-p score higher success rates more often and manage to solve two problems
that remained unsolved by other algorithms, i.e., Disc4 and Disc5.

The result are quite similar when |P | = 1000 (right), however this time doc-
p stands out as the best, albeit its rank is only slightly higher than that of
doc-d. Larger population is also beneficial for multiobjective doc allowing it
to achieve lower rank than ifs and beat GP in a statistically significant way.
We speculate that this effect is directly related to the Pareto-fronts becoming
densely populated, and thus decreasing the risk of over-specialization.

The experimental results clearly indicate that both doc-p and doc-d are
more likely to find an ideal solution than the traditional GP and prove capa-
ble of solving problems that GP struggles with. If a larger population size is
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admissible, multiobjective doc also emerges as a viable alternative to ifs and
conventional GP.

6 Conclusions

In this paper we proposed a method that heuristically derives new search objec-
tives by clustering the outcomes of interactions between the programs in pop-
ulation and the tests. The derived search objectives, either combined with the
NSGA-II or combined into a hypervolume of program’s performance, effectively
enhance conventional GP. doc manages to produce a low number of objectives
that approximately capture the capabilities of evolving programs. Once iden-
tified, doc maintains the presence of such skills in the population, even if the
programs featuring them are inferior according to the conventional fitness. In this
study, the capabilities in question concerned program output; in general, they
may correspond to program behaviors in a broader sense, or reflect whether
they satisfy certain conditions. Such generalizations deserve investigation in the
future work.

When seen from the perspective of the overall evolutionary workflow, doc
broadens the ‘bottleneck of evaluation’ described in Introduction in character-
izing the candidate solutions with multiple objectives rather than with a sin-
gle one. Objectives derived by doc constitute alternative search drivers that
replace the conventional fitness function and guide the search in a single- or
multiobjective fashion. Ultimately, capabilities elaborated by particular individ-
uals have the chance of being fused in their offspring and so ease reaching the
search goal. In this context, there is an interesting relationship between the
derived objectives and the intermediate results produced by programs studied
in behavioral evaluation [12] and pattern-guided genetic programming [13].

Acknowledgments. P. Liskowski acknowledges support from grant no. 09/91/DSPB/
0572.
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Abstract. The objective of the paper is to introduce a new approach to
the evolutionary design of digital circuits conducted directly at transistor
level. In order to improve the time consuming evaluation of candidate
solutions, a discrete event-driven simulator was introduced. The pro-
posed simulator operates on multiple logic levels to achieve reasonable
trade-off between performance and precision. A suitable level of abstrac-
tion reflecting the behaviour of real MOSFET transistors is utilized to
minimize the production of incorrectly working circuits. The proposed
approach is evaluated in evolution of basic logic circuits having more
than 20 transistors. The goal of an evolutionary algorithm is to design
a circuit having the minimal number of transistors and exhibiting the
minimal delay. In addition to that, various parameter settings are inves-
tigated to increase the success rate of the evolutionary design.

Keywords: Evolutionary design · Transistor-level · Digital circuits ·
Cartesian genetic programming

1 Introduction

In recent years, a lot of papers showing the merits of evolutionary design tech-
niques in the field of digital circuits design have been published. Implementation
of various combinational circuits competitive to the circuits designed using con-
ventional approaches have been obtained by using cartesian genetic program-
ming (CGP) which is considered to be the most efficient technique to perform
the gate-level evolutionary design [2–4,7].

However, while the gate-level evolutionary design represents an intensively
studied research area, the synthesis of transistor-level digital circuits remains, in
contrast with design of transistor-level analog circuits, on a peripheral concern
of the researchers despite the fact that even some basic logic expressions can be
implemented much effectively at transistor level. Only few papers were devoted
to evolution of digital circuits directly at transistor level. Zaloudek et al. pub-
lished an approach based on a simple simulator which was designed to quickly
evaluate the candidate solutions [11]. Unfortunately, a rough approximation of
transistor behavior caused that this approach produced many incorrectly work-
ing circuits. Trefzer used another technique to evolve some basic logic gates [6].
c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 66–77, 2015.
DOI: 10.1007/978-3-319-16501-1 6
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Instead of using a time consuming analog circuit simulator, a reconfigurable ana-
log transistor array was employed. However, it was shown that many of the discov-
ered solutions relied on some properties of the utilized reconfigurable array. About
50 % of the evolved circuits failed in the analog simulation. Walker et al. used a
different technique to evolve transistor-level circuits [8]. In order to speed up the
time consuming evaluation of candidate solutions, a cluster of SPICE-based sim-
ulators was utilized. Even if it was possible to evolve correct solutions, only small
problem instances could be investigated due to the overhead of SPICE simulators.

A new approach to the evolutionary design of digital circuits is introduced in
this paper. In this work, the evolutionary approach operates directly at transistor
level. Since the evolutionary-based approach requires generating a large number
of candidate solutions, it is necessary to minimize the time needed to evaluate
the candidate circuits in order to obtain a satisfactory success rate. However,
a reasonable level of abstraction must be applied to avoid production of incor-
rectly working circuits. In order to address this issue, a discrete simulator which
operates on multiple logic levels is proposed. It is expected that this approach
enables to achieve reasonable trade-off between performance and precision.

The paper is organized as follows. Section 2 discusses behavior of real unipolar
transistors. Section 3 introduces the proposed method. Section 4 summarizes and
analyses the obtained results. The analysis of the discovered circuits is performed
using a SPICE simulator. Finally, concluding remarks are given in Sect. 5.

2 Behavior of MOSFET Transistors

Behavior of the MOSFET transistors can be described at various levels of
abstraction.

At the most accurate level, transistor circuits are modeled using a complex
system of equations having tens of parameters that are derived from the under-
lying device physics. In order to accurately simulate the transistor level circuits,
SPICE-based simulators are usually used. Apart from the commercial simulators
such as HSPICE or PSPICE, there exist also academic tools such as ngSPICE.
Even if the SPICE-based simulators provide a wide variety of MOS transistor
models with various trade-offs between complexity and accuracy, the runtime
grows rapidly with the increasing size of the simulated circuits. To reduce the
time of simulation, a multithreaded version of SPICE simulator or an FPGA-
based hardware acceleration can be utilized [1].

On the other hand, so-called switch-level model can be used [10]. A switch-
level simulator models MOS circuits using a network of transistors acting as
switches. Each transistor can be in one of three discrete states – open, closed or
unknown. Compared to the SPICE-based simulators, the speed of the simulation
is improved in orders of a magnitude. This model can acquire aspects that cannot
be expressed at gate model, however, the accuracy is naturally lower compared
to the approach mentioned in the previous paragraph. For example, the value
of threshold voltage influencing state of the transistors is completely ignored.
Moreover, the accuracy of simulation decreases as the transistors shrinks.
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2.1 Discrete Model Suitable for Evolutionary Design

As it was discussed in the Sect. 1, a fast simulator is needed to enable the evo-
lutionary design to sufficiently explore the search space. Simultaneously, reason-
able accuracy is required to evolve the correct circuits that will work in real
environment. In order to meet these requirements, we propose to utilize a dis-
crete simulator which exhibits speed of the switch-level simulators and accuracy
of the SPICE-based simulators. We propose to use a model (abstracted from
dynamic parameters such as power consumption or delay) based on the switch-
level transistor model extended to a threshold drop degradation effect.

Threshold voltage, commonly abbreviated as Vtp (Vtn), is the minimum gate-
to-source voltage differential that is needed to create a conducting path between
the source anddrain terminals.As a consequence of the threshold voltage, degraded
voltage values can be presented in MOS circuits. An open n-MOS transistor is
known to pass logic 0 (i.e. Vss) well but logic 1 (i.e. Vdd) poorly. This loss is known as
threshold drop. An attempt to pass logic 1 never gives value above Vdd −Vtn. Sim-
ilarly, p-MOS transistor is known to pass logic 0 poorly. The reduction in voltage
swing can be beneficial to the power consumption. The designer has to be careful,
however, because the degraded output may cause circuit malfunction.

As a target technology, TSMC with feature size equal to 0.25μm is chosen.
The following parameters of p-MOS and n-MOS transistors will be utilized in
MOS circuits. The length of the n-MOS transistor is LN = 0.25μm, width is
WN = 0.5μm. p-MOS transistors have LP = 0.25μm and WP = 2WN = 1μm.
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Fig. 1. Output waveforms for p-MOS and n-MOS transistors for various voltage applied
to the source and gate terminals. The waveform was obtained using an analog SPICE
simulator, a TSMC 0.25µm technology and 2.5 V power supply. The corresponding
discrete values are shown on the right side.
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According to the simulation, Vtn = 0.987 V and Vtp = 0.717 V . In order to
support various implementations of digital circuits, we will distinguish among
six voltage levels: logic 0 (denoted as ‘0‘), logic 1 (‘1‘), degraded 0 (Vtp, ‘L‘),
degraded 1 (Vdd − Vtn, ‘H‘), high impedance (‘Z‘) and undefined value (‘X‘).
A SPICE-based simulator was used to derive the discrete model. The results
of simulation are given in Fig. 1. The fourth terminal of p-MOS (n-MOS) is
connected to Vdd (Vss). In order to detect high impedance state, outputs of
p-MOS and n-MOS transistors are connected to a voltage divider.

Let us discuss behavior of n-MOS transistor (p-MOS works analogically).
If logic 0 is applied to the gate, the transistor is closed and its output is in a
high impedance state. The similar situation occurs if ‘L‘ is used. However, if
Vgate = ‘L‘ and Vsource = ‘0‘, the transistor is not completely closed. As we do
not want to model strength of the signal values, we need to suppose that the
output is in a high impedance state. This little inaccuracy does not constitute
any serious problem due to the presence of stronger values within a circuit. If
logic 1 or ‘H‘ is applied to the gate, the transistor is open. Logic 0 as well as
‘L‘ connected to the source are fully transferred to output, but logic 1 and ‘H‘
are degraded. As we can see, the double degraded value can not be recognized
from high impedance state. Hence, we have to avoid the double degradations
that may cause malfunctions.

The behaviour of n-MOS and p-MOS transistors which follows the results
obtained from the SPICE-based simulation valid for the chosen technology and
power supply is summarized in Table 1.

Table 1. Behavior of n-MOS and p-MOS transistors modeled using six discrete values.

3 The Proposed Method

3.1 Circuit Representation

In order to evolve complex digital circuits at the transistor level a suitable repre-
sentation enabling to encode bidirectional graph structures containing junctions
is needed. To address this problem, we proposed an encoding inspired by CGP [2].
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Each digital circuit having ni primary inputs and no primary outputs (i.e. a
candidate solution) is represented using an array of nodes arranged in nc columns
and nr rows. Each node consists of two source terminals and one output terminal.
Each node can act as p-MOS transistor, n-MOS transistor, or junction. The uti-
lized nodes are shown in Fig. 2. Source terminals of each node can independently
be connected to the output terminal of a node placed in previous l columns. In
addition to that, source terminals of any transistor node can be connected to
one of the primary circuit inputs.

G
S

D

G
S

D

(a) (b) (c)

Fig. 2. Basic building blocks of transistor-level circuits: (a) p-MOS transistor, (b) n-
MOS transistor, and (c) junction that combines two signals together. If a proper voltage
is applied on the gate electrode denoted as G (Vss for p-mos, Vdd for n-mos), transistor
connects its source electrode (denoted as S) with drain (D). Possible directions of signal
flow which have to be considered during the evaluation are shown.

Presence of the junction node represents the main feature of the proposed
technique. This node is able to combine two input signals and one output signal
together. As a consequence of that, loops and multiple connections are natively
supported.

The following encoding scheme is utilized. The primary inputs and node out-
puts are labeled from 0 to ni + nc · nr − 1. A candidate solution is represented
in the chromosome by nc · nr triplets (x1, x2, f) determining for each node its
function f , and label of nodes x1 and x2 connected to the source terminals.
Apart from that, negative indices −2 − ni < xi ≤ −2 are allowed in case of xi.
The negative value indicates that the inverted primary variable labeled as |xi|
is required. The last part of the chromosome contains no integers specifying the
labels of nodes where the no primary outputs are connected to. The first two
primary inputs are reserved for power supply rails.

Figure 3 demonstrates the principle of utilized encoding on a XNOR circuit
implemented using pass-transistor logic. The shown chromosome encodes a can-
didate circuit using eight nodes, however, only some of them contribute to the
phenotype and are active.

3.2 Evaluation of the Candidate Solutions

Evaluation of the candidate solutions encoded using the proposed representation
consists of two steps.

Firstly, set of active nodes is determined. Only the active nodes are considered
during the evaluation. The inactive nodes are ignored. Potentially unwanted nodes
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Fig. 3. Example of a candidate circuit implementing function XNOR using eight
transistors (four transistors are used to implement inverted variables in.0
and in.1). Parameters are as follows: ni=4 (0,Vdd,in.0,in.1), no=1 (out.0),
nc=3, nr=3, l=2. Chromosome: (2,-3,pmos)(-2,3,pmos)(3,2,nmos)(4,5,junction)
(-3,-2,nmos)(1,2,pmos)(4,8,junction)(9,3,nmos)(5,6,junction)(12).

causing short-circuits can be removed in this step. A node is active if either (a) its
output is connected to any of the primary outputs, or (b) it is a transistor node
and its output is connected to the source of an active node, or (c) it is a junction
node whose source terminal is connected to an active node. The detection of active
nodes can be performed in linear time complexity.

Then, multi-level discrete event-driven simulator is utilized to determine
response for each input combination. The advantage of this approach is that
only necessary nodes are updated if there is a change of a value. The follow-
ing steps are used to determine output value of for a given input combination.
Firstly, outputs of all nodes are initialized to the value ‘Z‘. Then, value 0 and 1
are assigned to the first two primary inputs. This change triggers re-evaluation
of all the nodes connected directly to the power supply rails. Each node deter-
mines its new output value and propagates it to all related nodes. As an open
transistor connect source with drain, bidirectional data-flow have to be utilized.
It means that the new value must be propagated to the nodes connected not only
to the drain but also to source terminal. Similarly, junctions have to propagate
the new value to all terminals. The new value of a junction node is calculated
as the strongest value presented on all the terminals. The new value of a tran-
sistor node is determined according to the value connected to the source as
well as drain. During the evaluation of a new output value of a transistor node,
the new calculated value is compared with current value at drain terminal. If the
values are not compatible, short circuit exception is raised. Otherwise, the
stronger value is propagated to all related nodes. The relation between the dis-
crete values is as follows: ‘Z‘ ≺ ‘L‘ ≺ ‘0‘ ≺ ‘X‘; ‘Z‘ ≺ ‘H‘ ≺ ‘1‘ ≺ ‘X‘. It means
that if at least one of the values is equal to ‘X‘, ‘X‘ is propagated to all related
nodes.
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Each transistor has associated a state which determines whether the transis-
tor is in direct or reverse mode. The current flows from drain to source in reverse
mode. It happens when ‘Z‘ is assigned to source terminal and a value different
from ‘Z‘ is connected to the drain. This state helps to avoid situation in which
a double degradation could happen.

In order to avoid malfunction circuits, final test is performed at the end of
the simulation. If there is at least a single transistor with ‘Z‘ state assigned to
its gate terminal, short circuit exception is raised.

The principle of discrete simulation will be demonstrated for in0 = 1 and
in1 = 0 using the candidate circuit shown in Fig. 3. The primary inputs are
successively initialized to the following values: Vdd (i.e., the primary input with
index 0) ← ‘1‘, Vss(1) ← ‘0‘, in0(2) ← ‘1‘, in1(3) ← ‘0‘. Then the inverted values
are assigned in0(-2) ←‘0‘, in1(-3)←‘1‘ As no power rail is used in the example,
the first two assignments do not trigger any reevaluation. However, assignment
of value ‘1‘ to in0 causes that P1 and N3 are evaluated. Nor P1 nor N3 have
fully specified inputs, thus these changes do not generate any new event. In the
next step, in1 connected to P2 and N3 is assigned. Now, the node N3 has fully
specified inputs and the new calculated value ‘0‘ is propagated through drain to
the node J9. Then, the value of in0 is changed to ‘0‘. As a consequence of that,
P2 is evaluated to ‘L‘ and propagated through J4 to J9. In addition to that, N5
is refreshed. Because there is a stronger value, ‘0‘, assigned to the other pin of J9,
the ‘0‘ is propagated back to the output terminal of transistor P2 and junction
J4. The, in1 becomes to be logical ’1’. Transistor P1 is closed, so the drain is in
high impedance state. This value is propagated to J4, however ’0’ presented at
the second terminal is stronger and it is propagated back to P1 and then to J7.
The last transistor which has to be evaluated is the closed transistor N5 with ‘Z‘
at its output. High impedance state is delivered to J7, but J7 already contains a
stronger value ‘0‘. Primary output is connected to the node J9 which has value
‘0‘ on its output. This value corresponds with the XNOR specification, so the
circuit produces a valid output for the used input vector.

3.3 Search Strategy

As a search algorithm, (1 + λ) evolutionary strategy is utilized [2]. The initial
population is randomly generated. Every new population consists of the best
individual and λ offspring created using a point mutation operator which mod-
ifies h randomly selected genes. In the case when two or more individuals have
received the same fitness score in the previous population, the individual which
did not serve as a parent in the previous population will be selected as a new
parent. This strategy is used to ensure the diversity of population. The evolu-
tion is terminated when a predefined number of generations is exhausted or a
required solution is found.

The search is guided by the fitness function which determines how good the
current candidate circuit is. For evolution of logic circuits, all possible input combi-
nations have to be applied at the candidate circuit inputs. The output values are
collected and the goal is to minimize the difference between obtained responses
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and required Truth table. In order to smooth the search space, the fitness value
is constructed as follows. If an obtained output value equals to the expected one,
5 points are added to the fitness value. If the calculated value exhibits the same
polarity but represents degraded voltage, 2 points are used. Otherwise, no point
is added because the response is invalid. Additional penalties may be applied. If
there is a short-circuit exception asserted during the simulation, the simulation is
terminated and penalty is applied to the total fitness value. Similarly, if the sim-
ulator exceeds the predefined number of steps (i.e. node outputs are not in stable
state), the simulation is terminated and the fitness value is penalized. As soon as
a fully working solution is found, the number of utilized transistors is reduced.
Two points are added for each unused node and one point for node which acts as
junction. Note that the transistors required to implement inverted input of the
utilized variables are considered.

4 Experimental Results

The proposed method was evaluated in the evolution of basic logic circuits as
well as some benchmark circuits whose conventional solutions consist of up to
30 transistors. In particular, we tried to evolve XOR and XNOR gate, 3 bit
majority, 1 bit full adder and benchmark circuits b1, c17, newtag, mc, daio and
lion from LGSynth benchmarks. The goal of the experiments was to evolve fully
functional implementations exhibiting full voltage swing on the outputs.

In order to investigate the effect of array size, three arrangements are used
for each benchmark circuit. The first two configurations utilize a single row of
nodes, while the third uses an array consisting of two rows. The total number of
nodes was chosen according to the number of transistors required to implement
a given function using a conventional design approach.

In addition to that, the impact of various connection possibilities was inves-
tigated. Firstly, the presence of inverted input variables introduced in Sect. 3.1
and its impact on the success-rate was studied. Then, additional restriction to
the connection of source terminal of p-MOS and drain terminal of n-MOS was
applied. We prevent to connect this electrode directly to the primary inputs.
As a consequence of that, implementations with higher operating frequency can
be evolved. This setup is denoted as ‘S/D←N‘, while the unrestricted setup is
denoted as ‘S/D←I+N‘.

The results were obtained from 20 independent runs using the following
experimental setup: λ = 4, l = nc, h = 5. The evolution is terminated after 8 h
or when no improvement was achieved within the last hour. All the successfully
evolved solutions were validated using a SPICE simulator.

The results were compared with a reference implementation described at
gate-level and implemented using standard cells.

The impact of the introduced restriction and the presence of implicit invert-
ers is evaluated by means of a success proportion [9]. Success proportion is the
cumulative probability of success calculated by the number of runs that have
found a solution at or before generation i divided by the total number of runs
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Fig. 4. Success proportion of the evolutionary design of ‘majority‘ and ‘b1‘ benchmark
circuits. The array consisting of a single row and 30 columns for ‘majority‘ and 60
columns for ‘b1‘ are used.

in the experiment. A successful run is such a run in which a fully working solu-
tion was discovered. The results for two chosen benchmark circuits are given in
Fig. 4. As it can be seen, the usage of implicit inverters significantly increased
the performance of the evolutionary design. On the other hand, the restriction
applied to the source (drain) terminals of p-MOS (n-MOS) nodes reduce the
performance of the evolution. Substantially higher number of generations are
needed to achieve the same success rate.

The success rate of the evolutionary design for the chosen digital circuits is
summarized in Table 2. In addition to that, we analyzed the evolved solutions
and determined the number of utilized transistors (see the last two columns).
Similarly to the previous findings, the usage of implicit inverters as well as the
unrestricted possibilities of S/D terminal connections improved the performance
of the evolutionary approach in all cases. Another parameter which can have a
great impact on the success rate is the size of array. Too small array on the one
hand and too large array on the other hand have a negative impact on the success
rate. While the small array may prevent to find a valid solution because there is
not a space to represent a target circuit, large array increases substantially the
search space. Fortunately, it seems that increasing of the number of available
nodes does not increase the size of the evolved circuit.

The discovered circuits were verified and characterized using a SPICE simula-
tor with an accurate transistor model. Except of a single evolved implementation
of ‘b1‘ circuit, all the circuits were valid and operated correctly. Thus we can
conclude that the proposed discrete abstraction is successful.

Table 3 summarizes the basic parameters of the evolved solutions and the
conventional implementations. Apart from the number of utilized transistors,
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Table 2. Success rate for the benchmark circuits for various array sizes, connection
possibilities and availability of inverted primary inputs.

nr × nc S/D←N+I S/D←N # transistors

with inv. w/o inv. with inv. w/o inv min max

xnor 1 × 10 100 % 65 % 0 % 0 % 6 8

1 × 15 100 % 100 % 100 % 5 % 6 12

2 × 15 100 % 100 % 100 % 45 % 6 12

xor 1 × 10 100 % 75 % 0 % 0 % 6 8

1 × 15 100 % 100 % 100 % 5 % 6 12

2 × 20 100 % 100 % 100 % 5 % 6 12

majority 1 × 20 100 % 25 % 0 % 5 % 10 14

1 × 30 100 % 30 % 45 % 10 % 10 16

2 × 30 80 % 35 % 60 % 15 % 10 17

adder-1 1 × 30 30 % 5 % 0 % 0 % 14 20

1 × 40 65 % 0 % 0 % 0 % 18 20

2 × 40 50 % 0 % 5 % 0 % 18 25

b1 1 × 40 100 % 15 % 40 % 0 % 12 19

1 × 60 100 % 20 % 60 % 0 % 12 20

2 × 60 75 % 5 % 25 % 0 % 12 23

c17 1 × 40 5 % 0 % 0 % 0 % 22 24

1 × 60 5 % 0 % 0 % 0 % 25 26

2 × 60 0 % 0 % 5 % 0 % 25 28

delay and maximum operating frequency is given. If we compare the maximum
operating frequency of the evolved circuits with the conventional circuits, we can
see a significant improvement in all cases except the circuit ‘c17‘. This result is
very encouraging, because the delay was not optimized explicitly. We analyzed
the circuits and determined that this improvement was achieved by replacing
traditional gates implemented as CMOS logic with much effective implementa-
tion which utilized so-called transmission-gates. The usage of transmission-gates
increases the speed but simultaneously reduces the number of utilized transistor.

A lot of different implementations were discovered. Example of an evolved
circuit of one bit adder is shown in Fig. 5. The discovered circuit is similar to
low-power full adder consisting of 14 transistors which was introduced in [5]. The
evolution was able to discover an implementation which belongs to the family
of pass-transistor logic. The evolved solution utilizes three transmission gates
to provide fast and compact solution and exhibits approx. 27 % reduction in
power consumption compared to the common CMOS implementation. Carry is
represented by output labeled as out0 and sum is available at out1. Input in2

corresponds to the input carry.
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Table 3. Parameters of the conventional as well as evolved digital circuits. The first
part of the table contains the number of inputs, number of outputs and time and num-
ber of generations required to evolve the solution. Then, the parameters of conventional
implementation are given. (a) Contains parameters of the fastest discovered solution,
while (b) contains parameters of the most compact evolved solution.

xor xnor majority adder-1 b1 c17

Inputs 2 2 3 3 3 5

Outputs 1 1 1 2 2 2

Time of evolution (min) 10 10 10 120 60 480

Max. # generations 14 · 106 14 · 106 5 · 106 45 · 106 30 · 106 80 · 106

Delay (ps) 208.3 180.9 335.2 422.7 360.1 324.0

Frequency (GHz) 4.80 5.53 2.98 2.37 2.78 3.09

Transistors 8 8 22 48 30 28

(a) Delay (ps) 87.5 87.8 271.4 291.4 173.2 355.4

Frequency (GHz) 11.43 11.39 3.68 3.43 5.77 2.81

Transistors 6 8 16 14 16 24

(b) Delay (ps) 87.5 142.4 599.3 291.4 401.5 573.8

Frequency (GHz) 11.43 7.02 1.67 3.43 2.49 1.74

Transistors 6 6 10 14 12 22
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Fig. 5. (a) The most compact and simultaneously the fastest circuit consisting of 14
transistors implementing one-bit full adder. (b) Output waveform obtained using a
SPICE simulator.

5 Conclusion

A new approach suitable to the evolutionary design of digital circuits conducted
directly at transistor level was introduced in this paper. A discrete event-driven
simulatoroperatingonmultiple logic levelswasutilized toachieve reasonable trade-
off between performance and precision. The proposed method was evaluated on a
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set of benchmark circuits. In order to improve the success rate, implicit inverters
were introduced to the encoding.

It was demonstrated that the proposed method is able to produce valid solu-
tions despite the fact that a relative simple discrete model of MOS transistors
(compared to the complex models used in SPICE-based simulators) was utilized.
According to the analysis of the obtained results, we can confirm, that the evo-
lution was able to discover solutions that are based not only on complementary
logic but also on pass-transistor logic.

However, future work has to be conducted to improve the scalability of the
proposed method. One of the possible directions is to introduce more complex
building blocks such as transmission gate.
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Abstract. Data classification is one of the most ubiquitous machine
learning tasks in science and engineering. However, Genetic Program-
ming is still not a popular classification methodology, partially due to its
poor performance in multiclass problems. The recently proposed M2GP -
Multidimensional Multiclass Genetic Programming algorithm achieved
promising results in this area, by evolving mappings of the p-dimensional
data into a d-dimensional space, and applying a minimum Mahalanobis
distance classifier. Despite good performance, M2GP employs a greedy
strategy to set the number of dimensions d for the transformed data, and
fixes it at the start of the search, an approach that is prone to locally
optimal solutions. This work presents the M3GP algorithm, that stands
for M2GP with multidimensional populations. M3GP extends M2GP
by allowing the search process to progressively search for the optimal
number of new dimensions d that maximize the classification accuracy.
Experimental results show that M3GP can automatically determine a
good value for d depending on the problem, and achieves excellent perfor-
mance when compared to state-of-the-art-methods like Random Forests,
Random Subspaces and Multilayer Perceptron on several benchmark and
real-world problems.

Keywords: Genetic programming · Classification · Multiple classes ·
Multidimensional clustering

1 Introduction

Genetic programming (GP) [10] has been used to solve many difficult problems
from various domains, an extensive list of noteworthy examples are reviewed in
[7]. However, probably the most straightforward formulation for a GP search
is to apply it in supervised machine learning problems, particularly symbolic
regression and data classification. In particular, this paper is concerned with the
c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 78–91, 2015.
DOI: 10.1007/978-3-319-16501-1 7
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latter, an area in which a variety of proposals have been developed [3]. Even
though GP has been used to achieve state-of-the-art performance in several
benchmark problems and real-world scenarios, it has been particularly difficult
to use in multiclass problems [5].

In general, for a supervised classification problem some pattern x ∈ R
p has

to be classified in one of M classes ω1, . . . , ωM using a training set X of N
p-dimensional patterns with a known class label. Then, the goal is to build a
mapping g(x) : Rp → M , that assigns each pattern x to a corresponding class
ωi, where g is derived based on the evidence provided by X . In these problems
fitness is usually assigned in two general ways. One approach is to use a wrapper
method, where GP is used as a feature extraction method that performs the
transformation k(x) : Rp → R

d, and then another classifier is used to measure
the quality of the transformation based on accuracy or another performance
measure. The second approach is to use GP to evolve g directly, performing
the feature transformation step implicitly. However, current techniques have left
room for improvement, such as automatically determining the proper value for
d or dealing with multiclass problems (with M > 2).

This paper presents an extension of the recently proposed Multidimensional
Multiclass Genetic Programming (M2GP, from now on M2GP) algorithm [5], a
wrapper-based GP classifier that effectively deals with multiclass problems by
performing a multidimensional transformation of the input data. The M2GP
algorithm uses a fixed number of new feature dimensions d, that must be chosen
and fixed before the run starts. On the other hand, the algorithm proposed in
this paper is able to heuristically determine an appropriate value for d during the
run. To achieve this, the algorithm includes specialized search operators that can
increase or decrease the number of feature dimensions produced by each tree,
and that allow the search to maintain a population of different transformation
functions k that construct a different number of new features dimensions. The
proposed algorithm is named M3GP, which stands for M2GP with multidimen-
sional populations.

The remainder of this paper is organized as follows. Section 2 briefly reviews
previous works related to the present contribution. Section 3 describes the origi-
nal M2GP algorithm, explaining how it works and referring to its strengths and
its major weakness. Section 4 explains the new improved version of the algorithm,
M3GP. Section 5 describes the experiments performed, while Sect. 6 reports and
discusses all the results obtained. Finally, Sect. 7 concludes and describes some
future work.

2 Related Work

Espejo et al. [3] present a comprehensive discussion on GP-based classification
methods, while Ingalalli et al. [5] surveys work specifically focused on multiclass
classification with GP. Here we briefly address previous works that present a
similar goal as the one outlined for M3GP (besides M2GP), highlighting the
main differences to the present contribution.

Lit et al. [8] proposed a layered multipopulation approach, where each
layer has d populations, and each population produces a single transformation
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k(x) : R
p → R, and classification is performed based on a threshold. While

each population is evaluated independently, all of them are combined to gen-
erate new feature vectors of dimension d, which are given as input to a new
layer, and only the final layer has a single population with d = 1. For multiclass
problems a Euclidean distance classifier is used and results show the method
improves the search efficiency and reduces training time. However, the approach
does not improve upon the performance of a standard GP classifier, it is not
tested on problems with many classes (highest is M = 3), and it requires an a
priori setting for the number of layers and populations used in each layer.

Another, more closely related work, is the one presented by Zhang and
Rockett [12], who propose a multidimensional feature extraction method that
uses a similar solution representation to the one used in M2GP and M3GP. How-
ever, the authors set a fixed limit on the maximum number of feature dimensions,
set to d = 50, and initialize the population with trees that use different number
of features within this range. Other important difference is that the authors use a
multiobjective search process considering class separation and solution size, and
do not explicitly consider multiclass problems, instead relying on a hierarchical
nesting of binary classifiers.

3 The M2GP Multiclass Classification Method

M2GP is a recent and innovative method of performing multiclass classification
with GP [5]. It has shown to be competitive with the best state-of-the-art clas-
sifiers in a wide range of benchmark and real-world problems, something that
GP had not achieved.

The algorithm and its strengths. The basic idea of M2GP is to find a trans-
formation, such that the transformed data of each class can be grouped into
unique clusters. In M2GP the number of dimensions in which the clustering is
performed is completely independent from the number of classes, such that high
dimensional datasets may be easily classified by a low dimensional clustering,
while low dimensional datasets may be better classified by a high dimensional
clustering.

In order to achieve this, M2GP uses a representation for the solutions that
allows them to perform the mapping k(x) : R

p → R
d. The representation is

basically the same used for regular tree-based GP, except that the root node
of the tree exists only to define the number of dimensions d of the new space.
Each branch stemming directly from the root performs the mapping in one of
the d dimensions. The genetic operators are the regular subtree crossover and
mutation, except that the root is never chosen as the crossing or mutation node.
However, the truly specialized element of M2GP is the fitness function. Each
individual is evaluated in the following way:

– All the p-dimensional samples of the training set are mapped into the new
d -dimensional space (each branch of the tree is one of the d dimensions).

– On this new space, for each of the M classes in the data, the covariance matrix
and the cluster centroid is calculated from the samples belonging to that class.
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– The Mahalanobis distance between each sample and each of the M centroids
is calculated. Each sample is assigned the class whose centroid is closer. Fit-
ness is the accuracy of this classification (the percentage of samples correctly
classified).

Figure 1 shows an example of clustering of a dataset. The original data,
regardless of how many features, or attributes, it contains, is mapped into a
new 3-dimensional space by a tree whose root note has three branches, each
performing the mapping on each of the three axes X, Y, Z. The fact that the
data contains three classes is purely coincidental - it could contain any number
of classes, regardless of the dimension of the space. On the left, the clustering
was obtained by an individual with low accuracy; on the right, the same data
clustered by an individual with accuracy close to 100 %. The class centroids are
marked with large circles.
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Fig. 1. Example of clustering of a dataset. On the left, clustering obtained by an
individual with low accuracy; on the right, the same data clustered by an individual
with very good accuracy. The large circles represent the centroids.

At the end of the run, the solution given to the user is composed not only of
the tree of the best individual, but also of the respective covariance matrices and
cluster centroids. In order to classify unseen data, M2GP uses the tree to map
the new samples into the new space, and then uses the covariance matrices and
the cluster centroids in order to determine the minimum Mahalanobis distance
between each sample and each centroid. (Note that the covariance matrices and
cluster centroids are not recalculated when classifying new data). The choice of
the Mahalanobis distance instead of the Euclidean distance is not an unnecessary
complication of the algorithm, as it allowed a substantial improvement on the
quality of the results achieved [5].

M2GP produces trees that are not very large (mean solution size for different
problems was reported to range from 24 to 152 nodes [5]), and a higher number
of dimensions does not necessarily translate into larger trees.
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The weakness. Despite its competitiveness, M2GP suffers from a drawback:
how to choose the right number of dimensions for a given problem? M2GP is
incapable of adding or removing dimensions during the evolution, so the number
of dimensions d is fixed in the beginning of the run. M2GP chooses d based on
the observation that the best fitness found in the initial generation is highly
correlated with the best fitness found on the final generation [5].

Therefore, before initiating a run, M2GP runs a procedure that iteratively
initializes different populations with increasing dimensions (we mean the dimen-
sion d mentioned earlier, not the number of individuals in the population) and
checks which of these initial populations achieves the best fitness. Starting with
d = 1, this procedure adds one more dimension and initializes one more popu-
lation as long as the fitness continues to improve from the previous population.
As soon as adding one more dimension degrades fitness, the procedure stops and
the dimension yielding the best initial fitness is chosen.

4 M3GP – M2GP with Multidimensional Populations

As described in the previous section, the original M2GP uses a greedy approach
to determine how many dimensions the evolved solutions should have. It may
happen that by fixing the number of dimensions in the beginning of the run,
the algorithm is being kept from finding better solutions during the search, ones
that may use a different number of dimensions. In our new improved version, the
algorithm evolves a population that may contain individuals of several different
dimensions. The genetic operators may add or remove dimensions, and it is
assumed that selection will be sufficient to discard the worst ones and maintain
the best ones in the population. The next subsections describe M3GP, which
stands for M2GP with multidimensional populations.

Initial population. M3GP starts the evolution with a random population where
all the individuals have only one dimension. This ensures that the evolutionary
search begins looking for simple, one dimensional solutions, before moving towards
higher dimensional solutions, which might also be more complex.

For M2GP, a Ramped Half-and-Half initialization [6] skewed to 25 % Grow
and 75 % Full was recommended [5], suggesting that a higher proportion of full
trees facilitates the initial evolution. Because all the initial M3GP individuals are
unidimensional, it makes sense to believe that the need for bigger initial trees
is even higher. Therefore, all the individuals in the initial M3GP population
are created using the Full initialization method [6]. Additionally to the Full
initialization, there was also an attempt to use deeper initial trees of depth 9
instead of 6. However, preliminary results did not show any improvement, and
therefore the traditional initial depth of 6 levels was used.

Mutation. During the breeding phase, whenever mutation is the chosen genetic
operator, one of three actions is performed, with equal probability: (1) standard
subtree mutation, where a randomly created new tree replaces a randomly cho-
sen branch (excluding the root node) of the parent tree; (2) adding a randomly
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created new tree as a new branch of the root node, effectively adding one dimen-
sion to the parent tree; and (3) randomly removing a complete branch of the
root node, effectively removing one dimension from the parent tree.

As mentioned previously, M3GP begins with a population that only contains
unidimensional individuals. From here, the algorithm has to be able to explore
several different dimensions. In M3GP mutation is the only way of adding and
removing dimensions, and therefore we have increased its probability of occur-
rence from 0.1 (used in M2GP [5]) to 0.5, to guarantee a proper search for the
right dimension. Preliminary results have confirmed that a higher mutation rate
indeed improves the fitness.

Crossover. Whenever crossover is chosen, one of two actions is performed,
with equal probability: (1) standard subtree crossover, where a random node
(excluding the root node) is chosen in each of the parents, and the respective
branches swapped; (2) swapping of dimensions, where a random complete branch
of the root node is chosen in each parent, and swapped between each other,
effectively swapping dimensions between the parents. The second event is just
a particular case of the first, where the crossing nodes are guaranteed to be
directly connected to the root node.

Pruning. Mutation, as described above, makes it easy for M3GP to add dimen-
sions to the solutions. However, many times some of the dimensions actually
degrade the fitness of the individual, so they would be better removed. Muta-
tion can also remove dimensions but, as described above, it does so randomly
and blind to fitness. To maintain the simplicity and complete stochasticity of
the genetic operators, we have decided not to make any of them more ‘intelli-
gent’, and instead we remove the detrimental dimensions by pruning the best
individual after the breeding phase.

The pruning procedure removes the first dimension and reevaluates the tree.
If the fitness improves, the pruned tree replaces the original and goes through
pruning of the next dimension. Otherwise, the pruned tree is discarded and the
original tree goes through pruning of the next dimension. The procedure stops
after pruning the last dimension.

Pruning is applied only to the best individual in each generation. Applying
it to all the individuals in the population could pose two problems: (1) a signifi-
cantly higher computational demand, where a considerable amount of effort would
be spent on individuals that would still be unfit after pruning; (2) although not
confirmed, the danger of causing premature convergence due to excessive removal
of genetic material, the same way that code editing has shown to cause it [4].

Preliminary experiments have revealed that pruning the best individual of
each generation shifts the distribution of the number of dimensions to lower val-
ues (or prevents it from shifting to higher values so easily) during the evolution,
without harming fitness.

Elitism. It was mentioned earlier that, in order to explore solutions of different
dimensions, M3GP relies on mutation to add and remove dimensions from the
individuals, with a fairly high probability. It also has to rely on selection to keep
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the best dimensions in the population and discard the worst ones. The way to do
this is by ensuring some elitism on the survival of the individuals from one gener-
ation to the next. M3GP does not allow the best individual of any generation to
be lost, and always copies it to the next generation. Let us recall that this individ-
ual is already optimized in the sense that it went through pruning. Preliminary
experiments have shown that elitism is indeed able to improve fitness.

5 Experimental Setup

This section describes the experiments performed to assess the performance
of M3GP, in particular when compared to M2GP and other state-of-the-art
classifiers.

Datasets. A set of eight problems was used for the experiments, the same used
for M2GP [5]. This set contains both real world and synthetic data, having
integer and real data types, with varying number of attributes, classes and sam-
ples. The ‘heart’ (HRT), ‘segment’ (SEG), ‘vowel’ (VOW), ‘yeast’ (YST) and
‘movement-libras’ (M-L) datasets can be found at the KEEL dataset reposi-
tory [1], whereas the ‘waveform’ (WAV) dataset is available at [2]. ‘IM-3’ and
‘IM-10’ are the satellite datasets used in [11]. All the original datasets were ran-
domly split in 70 % training and 30 % test sets, the same proportion as with
M2GP [5]. Table 1 summarizes the main characteristics of each dataset.

Table 1. Data sets used for the experimental analysis.

Data Set HRT IM-3 WAV SEG IM-10 YST VOW M-L

No. of classes 2 3 3 7 10 10 11 15

No. of attributes 13 6 40 19 6 8 13 90

No. of samples 270 322 5000 2310 6798 1484 990 360

Tools. A modified version of GPLAB 3 was used to execute all the runs of M3GP.
GPLAB is an open source GP toolbox for MATLAB, freely available at http://
gplab.sourceforge.net. For the comparison with the state-of-the-art classifiers, we
have used Weka 3.6.10. Weka is also open source, and freely available at http://
www.cs.waikato.ac.nz/ml/weka/.

Parameters. Table 2 summarizes the parameters adopted for running M3GP.
Some are the default parameters of GPLAB, unchanged from M2GP, while others
have already been described in the previous section. In Weka we have used the
default parameters and configurations for each algorithm.

6 Results and Discussion

This section presents comparative results between M2GP and M3GP, and also
between M3GP and some of the best state-of-the-art classification methods used
in machine learning.

http://gplab.sourceforge.net
http://gplab.sourceforge.net
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
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Table 2. Running parameters of M3GP.

Runs 30

Population size 500 individuals

Generations 100 generations

Initialization 6-depth Full initialization [6]

Operator probabilities Crossover pc = 0.5, Mutation pµ = 0.5

Function set (+,−,×,÷ protected as in [6])

Terminal set Ephemeral random constants [0,1]

Bloat control 17-depth limit [6]

Selection Lexicographic tournament [9] of size 5

Elitism Keep best individual

6.1 M2GP Versus M3GP

The comparison between M2GP and M3GP will be presented in terms of fitness,
and in terms of number of nodes and number of dimensions of the solutions. When-
ever a result is said to be significantly different (better or worse) from another, it
means the difference is statistically significant according to the Wilcoxon’s rank
sum test for equal medians, performed at the 0.01 significance level.

Figures 2 and 3 show two sets of boxplots. Figure 2 reports the fitness obtained
by the best individuals on each of the 30 training sets, while Fig. 3 reports the
fitness obtained by these same individuals on the respective test sets. From
now on we will call these the training fitness and the test fitness, respectively.
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Fig. 2. Training fitness, given by classification accuracy, of M2GP and M3GP on all
problems.
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Fig. 3. Test fitness, given by classification accuracy, of M2GP and M3GP on all
problems.

We may also call them training accuracy and test accuracy, respectively, since
fitness is the accuracy of the classification. In each of these figures there is one
boxplot for each problem. Each boxplot contains a pair of whiskered boxes, the
first reporting the results of M2GP (most already reported in [5]) and the second
reporting the results of M3GP.

It is clearly visible that M3GP achieves higher training fitness, which means it
learns easier than M2GP, in all problems (in M-L the results of M2GP and M3GP
are equal except for the outlier in M2GP). See Table 3 for numeric results and
their statistical significance. M3GP is also able to achieve higher test fitness than
M2GP in half of the problems. Once again, refer to Table 3 for the significance
of these results.

Table 3 shows some quantitative results regarding the training and test fit-
ness, also adding information on the number of nodes of the best individuals,
as well as their number of dimensions. All these results refer to the median of
the 30 runs. The best approach (between M2GP and M3GP) on each problem
is marked in bold - both are marked when the difference is not statistically sig-
nificant. In terms of size, we also consider lower to be better. However, we do
not evaluate the number of dimensions qualitatively, since a higher number of
dimensions does not necessarily translate into a larger number of nodes and/or
lower interpretability of the solutions. We do include additional information for
the number of dimensions, which is the minimum and maximum values obtained
in the 30 runs.

Table 3 shows that, in terms of training fitness, M3GP is significantly better
than M2GP in all the problems (except the last, M-L, where the results are
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Table 3. Comparison between M2GP and M3GP.

HRT IM-3 WAV SEG IM-10 YST VOW M-L

Training fitness

M2GP 89.4 98.2 87.4 96.8 91.4 62.6 95.9 100

M3GP 94.7 99.6 90.7 98.1 93.0 68.5 100 100

Test fitness

M2GP 80.2 93.8 84.9 95.6 90.2 53.8 85.9 63.0

M3GP 79.0 95.4 84.3 95.6 91.0 56.2 93.8 57.1

Number of nodes

M2GP 37 24 126 43 117 146 49 33

M3GP 110 66 71 111 239 274 53 13

Number of dimensions

M2GP 2.5 (1-8) 2 (1-4) 5 (2-10) 4 (3-8) 7 (4-10) 5.5 (1-13) 9 (4-18) 10 (7-12)

M3GP 12 (1-17) 5 (2-8) 31 (29-37) 11 (5-21) 12 (11-16) 13 (11-18) 20 (16-20) 12 (10-13)

considered the same), while in terms of test fitness M3GP is better or equal to
M2GP in all problems (except M-L). It is interesting to note that it is in the
higher dimensional problems (except M-L) that M3GP achieves better results
than M2GP (the problems are roughly ordered by dimensionality of the data).
Problem M-L had already been identified as yielding a different behavior than
the others [5], and here once again it is often the exception to the rule. Our
explanation for M3GP not being able to perform better on this problem is the
extreme easiness it has in reaching maximal accuracy. Both M2GP and M3GP
achieve 100 % training accuracy, but M3GP does it in only a few generations (not
shown), producing very small and accurate solutions that barely generalize to
unseen data. On the other hand, M2GP does not converge immediately, so in its
effort to learn the characteristics of the data it also evolves some generalization
ability.

Regarding the size of the solutions, in most problems where M3GP brought
improvements, it also brought significantly larger trees, except for WAV and
M-L where the M3GP trees are significantly smaller, and VOW where the sizes
are the same. However, when we split the nodes of the M3GP trees among
their several dimensions, even the largest trees (e.g., in IM-10 and YST) seem
to be simple and manageable (around 20 nodes per dimension), in particular
when we consider that no simplification has been done except for the pruning of
detrimental dimensions (see Sect. 4), and therefore the effective size of the trees
may be even smaller.

Regarding the number of dimensions used in M2GP and M3GP, two things
become clear. The first one is that there seems to be no single optimal number
of dimensions for a given problem, since both M2GP and M3GP may choose
wildly different values, depending on the run. The second one is that M3GP
tends to use a larger number of dimensions than M2GP. What these numbers
do not show is that different problems result in very different behaviors with
respect to the evolution of the number of dimensions. Figure 4 illustrates two
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Fig. 4. Distribution of the number of dimensions in the population in generations 15,
25, 50 and 100 (top to bottom). On the left, a typical run of problem IM-10. On the
right, a typical run of problem VOW.

main types of behavior, described next. In most problems the distribution of
the number of dimensions moves rapidly to higher values in the beginning of
the run, and then remains stable and more or less in the same range until the
end of the run (exemplified on the left in Fig. 4). However, in some problems,
like WAV and VOW, the distribution of the number of dimensions does not
settle during the 100 generations of the run, and instead keeps moving towards
higher values (exemplified on the right in Fig. 4). The WAV problem goes as high
as 37 dimensions, and curiously this is one of the problems where M3GP produces
significantly smaller trees than M2GP. VOW is another of the few problems
where the M3GP trees are not larger than the M2GP trees. The only other such
case is the unique M-L problem.
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6.2 M3GP Versus State-of-the-art

The comparison between M3GP and the state-of-the-art classification methods
is based only on training and test fitness. Based on the comparison previously
done between M2GP and several state-of-the-art methods [5], we have decided
to compare M3GP with a tree based classifier (RF - Random Forests), a meta
classifier (RS - Random Subspace), and a function based classifier (MLP - Multi
Layer Perceptron). The three of them were well ranked in the previous compar-
ison with M2GP [5]. We have also included M2GP in this comparison to check
how much better M3GP compares to the state-of-the-art than M2GP.

Table 4 reports and compares the training and test fitness obtained by RF,
RS, MLP, M2GP and M3GP on the same eight problems, medians of 30 runs.
The best approach on each problem is marked in bold, or several when their
differences are not statistically significant. Looking at the first row, it is undeni-
able that RF is an almost unbeatable method when it comes to training fitness.
Still, it is beaten by M3GP in the last two problems (VOW and M-L). (M2GP
achieves the same feat in only one of them, M-L).

However, training fitness is not important unless accompanied by good test
fitness, suggesting good generalization ability. Although RF is also good in test
fitness, M3GP is able to achieve similar results. Like RF, M3GP is ranked first in
five of the eight problems (M2GP achieves this is only two problems). Like RF,
M3GP is not equaled by any other state-of-the-art method in two problems, WAV
and VOW (M2GP achieves this only in WAV). We recall that these are precisely
the two problems where the number of dimensions keeps growing during the entire
evolution. We wonder if, given more generations, M3GP could distance itself even
more from the other methods on these two problems. Regarding the other meth-
ods, MLP is ranked first in four problems, being the solo winner in one of them
(M-L), while RS is ranked first in only two problems.

Table 4. Comparison between M3GP and state-of-the-art methods.

HRT IM-3 WAV SEG IM-10 YST VOW M-L

Training fitness

RF 98.4 100 99.5 99.9 99.8 98.3 99.9 99.2

RS 88.9 97.1 92.0 98.4 96.3 71.1 97.8 92.3

MLP 98.4 98.7 98.5 97.6 91.0 64.6 91.9 91.3

M2GP 89.4 98.2 87.4 96.8 91.4 62.6 95.9 100

M3GP 94.7 99.6 90.7 98.1 93.0 68.5 100 100

Test fitness

RF 80.2 94.8 81.5 97.3 96.9 57.5 89.4 71.8

RS 81.5 92.8 82.2 96.0 93.9 56.6 82.8 65.7

MLP 80.2 95.9 83.3 96.3 90.2 58.0 82.5 75.9

M2GP 80.2 93.8 84.9 95.6 90.2 53.8 85.9 63.0

M3GP 79.0 95.4 84.3 95.6 91.0 56.2 93.8 57.1
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Besides the remarkable fact that M3GP achieves the same quality of results as
the popular and successful RF in terms of test fitness, it is also worth remarking
that the models provided by M3GP are potentially much easier to interpret than
the ones provided by RF, or by any of the other two state-of-the-art methods.

7 Conclusions and Future Work

This paper addresses the problem of multiclass classification with GP, an area
where previous approaches tended to yield poor performance. In particular, this
paper presents M3GP, an extension of the recently proposed M2GP algorithm, a
classifier that evolves transformations of the form k(x) : Rp → R

d, and applies
a minimum Mahalanobis distance classifier. M3GP allows the search to consider
a single dimension (d = 1) on which to transform the data at the beginning of the
search, and progressively builds more dimensions guided by classifier performance.

The results are very encouraging. M3GP can deal with difficult benchmark
and real-world problems and achieve state-of-the-art performance, comparing
favorably with such methods as Random Forests, Random Subspaces and Mul-
tilayer Perceptron. Moreover, it is clear that M3GP adjusts its search based on
the characteristics of each problem, automatically determining the best number
of new feature dimensions to build in order to maximize accuracy.

Future work must consider a couple of limitations of the approach. First,
M3GP needs to be fitted with some procedure to limit/prevent overfitting when
accuracy on the training cases is easy to optimize (such as in the M-L prob-
lem). Another important aspect is to encourage the evolution of simple and
small solutions, with the inclusion of bloat control or more efficient simplifica-
tion strategies. Nonetheless, for now it is clear that M3GP is a general purpose
and simple algorithm that is well worth pursuing and improving for use in chal-
lenging classification tasks.
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Abstract. Job shop scheduling (JSS) problems are important optimisa-
tion problems that have been studied extensively in the literature due to
their applicability and computational difficulty. This paper considers sta-
tic JSS problems with makespan minimisation, which are NP-complete
for more than two machines. Because finding optimal solutions can be dif-
ficult for large problem instances, many heuristic approaches have been
proposed in the literature. However, designing effective heuristics for dif-
ferent JSS problem domains is difficult. As a result, hyper-heuristics
(HHs) have been proposed as an approach to automating the design of
heuristics. The evolved heuristics have mainly been priority based dis-
patching rules (DRs). To improve the robustness of evolved heuristics
generated by HHs, this paper proposes a new approach where an ensem-
ble of rules are evolved using Genetic Programming (GP) and cooper-
ative coevolution, denoted as Ensemble Genetic Programming for Job
Shop Scheduling (EGP-JSS). The results show that EGP-JSS generally
produces more robust rules than the single rule GP.

Keywords: Genetic programming · Job shop scheduling · Hyper-heuris-
tics · Ensemble learning · Cooperative coevolution · Robustness · Dis-
patching rules · Combinatorial optimisation · Evolutionary computation

1 Introduction

Job shop scheduling (JSS) problems are important optimisation problems that
have been studied for over 50 years. JSS is still studied extensively due to its
complexity and wide applications. JSS problems involve determining the optimal
sequence to process jobs on the machines in a manufacturing system. For a JSS
problem instance, each job has operations that need to be completed on different
machines in a given sequence. However, a machine cannot process more than one
job at a time. All operations must be processed by the machines to get a schedule,
and the ‘quality’ of the solution generated for the JSS problem instance is given
by the objective function. There are a number of existing approaches to solving
JSS problems. Mathematical optimisation techniques give optimal solutions for
c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 92–104, 2015.
DOI: 10.1007/978-3-319-16501-1 8
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static JSS problem instances. On the other hand, heuristic approaches, such as
dispatching rules (DRs), have been applied to JSS to produce good solutions for
large problem instances. Dispatching rules [12] are local decision makers which
iteratively decide a sequence of jobs to be processed by a machine. In addition,
meta-heuristic approaches [10,17] have also been applied to JSS. However, an
issue with heuristic approaches to JSS is that they need to be carefully designed.
Heuristic approaches also tend to be problem domain specific. Heuristics that are
effective in one domain are not necessarily effective in other domains. Because of
this, hyper-heuristics (HHs) [2] aim to automate the generation of heuristics such
as DRs. However, DRs are limited as they make a single decision for choosing
the next job to be processed by a machine. The myopic nature of DRs, combined
with the fact that complex decisions need to be made for JSS problems, means
that it is possible that DRs make bad decisions for certain situations within a
particular JSS problem instance.

In classification, similar issues arise as single constituent rules cannot rep-
resent the noisy and complex decision boundaries between different classes suf-
ficiently [13]. Because of this, ensemble approaches have been proposed [1,4],
which have successfully been applied to difficult classification problems [13]. In
an ensemble, a group of small constituent rules ‘vote’ on the outcomes. For
example, the class labels represent the outcomes that can be ‘voted’ for in clas-
sification problem. It may be possible that ensembles of DRs can be used to
deal with the complex decisions of selecting jobs better than single DRs, and
improve the robustness of rules for JSS. However, ensemble approaches have not
been seriously investigated for JSS.

The goal of this paper is to determine whether ensemble approaches can be
used effectively for static JSS problem instances. An evaluation scheme is needed
that allows a diverse set of rules to be evolved, as diversity is a cornerstone of
ensemble approaches [13]. We denote this approach as Ensemble Genetic Pro-
gramming for Job Shop Scheduling (EGP-JSS). This will be compared with an
approach of evolving a single priority rule, denoted Genetic Programming for
Job Shop Scheduling (GP-JSS). GP-JSS makes minor adjustments from a pre-
vious approach [11] of evolving DRs from GP by modifying the terminal set.
Specific research objectives in this paper are:

(a) Developing a job selection procedure for the ensemble of rules for JSS.
(b) Developing a new fitness function for EGP-JSS to ensure that a diverse set

of rules are evolved.
(c) Comparing the evolved ensemble rules by EGP-JSS and GP-JSS with the

benchmark DRs.

2 Background

This section briefly describes some background on the JSS problem with previous
approaches for JSS, and the hyper-heuristic approaches that have been applied
to JSS.
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2.1 Job Shop Scheduling Problem

A JSS problem instance consists of N jobs and M machines, and a list of oper-
ations for each job. Compared to dynamic JSS problems, static JSS problems
have all attributes of jobs, machines and operations known from the beginning,
and do not contain any stochastic elements. An operation σij in a JSS problem
instance is the ith operation of job j, and M(σij) denotes the machine that the
operation is processed on. An operation σij can only be carried out when oper-
ation σi−1j has been completed (with σ1j being the first operation of a job j),
and when the machine to be processed on (M(σij)) is available. The time when
a machine i is available is denoted as RMi

. Each job j has a ready time r(σ1j) for
when its first operation is available, and each operation σ has processing time
p(σ), and setup time s(σ). The number of operations for job j is Nj , and the
total remaining processing time is

∑Nj

k=i p(σkj). For this paper, we focus on the
static JSS problem with makespan minimisation, i.e., minimising the maximum
completion time Cmax. This is denoted as Jm||Cmax.

Jm||Cmax for M = 2 machines can be solved optimally via Jackson’s algo-
rithm [12]. However, Garey et al. [5] showed that the JSS makespan minimisation
problem is NP-complete for M > 2. In JSS problems with instances that have
hundreds of jobs and a large number of machines [15], exact optimisation is
too computationally expensive. For such JSS problem instances, the primary
approaches use heuristics, such as DRs [12] and meta-heuristics. DRs range in
complexity from basic first-in-first-out (FIFO) rules, which processes the jobs in
the order they arrive, to more complex composite dispatching rules (CDRs) [9],
which combine smaller heuristics to form custom made priority functions. On
the other hand, a wide range of meta-heuristic approaches have been proposed in
the literature. Meta-heuristic approaches include Simulated Annealing [10] and
Genetic Algorithms (GA) [17].

2.2 Genetic Programming Based Hyper-Heuristic Approaches

In conjunction with heuristic and meta-heuristic approaches, hyper-heuristics
(HHs) [2] have also been investigated for JSS. Instead of searching the solution
space directly, HHs are given heuristic components to generate heuristics with,
and a fitness measure to evaluate how well generated heuristics perform. It then
searches for a good heuristic, optimising over the fitness measure. A number of
HH approaches to JSS in the literature use Genetic Programming (GP) [2].

Dimopoulos and Zalzala [3] use GP to evolve priority based DRs for a sin-
gle machine JSS problem. An arithmetic representation consisting of mathe-
matical operators and job attributes are used to represent the individuals in
the GP system. They showed that the evolved rules performed better than the
man-made benchmark DRs. Geiger et al. [6] use GP to evolve priority based
DRs for various single machine JSS problems in both static and dynamic envi-
ronments. They showed that GP can evolve DRs that can generate optimal
solutions for some special static single machine JSS problems with polynomial
time exact algorithms, and evolve effective rules for NP-hard JSS problems.
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Jakobovic et al. [8] proposed a GP based hyper-heuristic approach to evolv-
ing priority based DRs for the multi-machine static and dynamic JSS problems
ranging from 3 to 20 machines. Tay and Ho [16] proposed a priority based GP
approach to multi-objective flexible job-shop problems, and showed that the
evolved rules outperformed other simple DRs. However, later examination [7]
showed that Tay and Ho’s approach [16] does not perform as well in different
dynamic job shop scenarios. Nguyen et al. [11] compared three different represen-
tations for GP to evolve DRs for static JSS problems. The first representation
they propose is a decision tree representation (R1), where the individuals are
given DRs and make decisions on which rule to use for dispatch jobs onto avail-
able machines. The second representation is an arithmetic representation (R2)
where the individuals represent priority function trees. The third representation
(R3) combines both R1 and R2 representations, where an individual can define
its own priority function tree that is used in conjunction with the decision tree.
They showed that out of the three GP representations, R3 performed better than
both R1 and R2. In addition, they showed that the evolved rules are competitive
with meta-heuristics such as a hybrid GA [17] proposed in the literature.

3 The New Approaches

This section proposes two approaches. The first approach evolves simple priority
based dispatching rules denoted Genetic Programming for Job Shop Scheduling
(GP-JSS) approach. This extends Nguyen et al.’s [11] arithmetic representation
for GP to evolve dispatching rules, and will be used as a benchmark. The second
approach is EGP-JSS, which evolves an ensemble of priority rules simultaneously.

3.1 GP Representation

For both GP-JSS and EGP-JSS, the dispatching rules generated are non-delay.
In a non-delay schedule, a job is selected to be processed on machine i as soon
as machine i is ready to process a new job if there are any jobs waiting to
be processed at that machine. We denote the number of idle jobs waiting at a
machine i as Wi. Tree-based GP is used, and the individuals in the GP population
represent arithmetic function trees. The function trees generate priorities for the
jobs waiting to be processed by machine i. How these priorities are used to select
the job to process differs between GP-JSS and EGP-JSS, and is discussed further
below.

The terminal set consists of the properties of the job shop scheduling environ-
ment discussed in Sect. 2.1. These are shown in Table 1. These extend the terminal
set used by Nguyen et al. [11] in their comparison of different GP representations.
The new added terminals are the number of waiting jobs (NJ), and a sufficiently
large value (LV). The function set consists of the operators +, −, ×, protected
division /, and if . For the ternary if operator, the value of the second subtree if
will be returned if the value of the first subtree representing the conditional is ≥ 0;
otherwise, the value of the third subtree else is returned.
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Table 1. The terminal set used for the GP representations, where job j is one of the
job waiting to be processed as soon as machine i is ready.

Terminal Description Value

RJ Operation ready time r(σji)

RO Remaining number of operations of job j Nj − i + 1

RT Remaining total processing times of job j
∑Nj

k=i p(σjk)

PR Operation processing time p(σji)

RM Machine ready time RMi

NJ Idle jobs waiting at machine Wi

# Constant Uniform[0,1]

LV Sufficiently large value ∞

To evaluate an individual x in the GP population, the individual is used
as a non-delay dispatching rule to generate solutions on Ttrain sample training
JSS problem instances. For each JSS problem instance I, a lower bound LBI is
calculated for the makespan as specified by Taillard [15]. From the solution, the
makespan objective, Obj(x, I), is calculated and the deviation devI of Obj(x, I)
from LBI , as shown in Eq. (1), is used as the fitness value for individual x for
the specific problem instance I. The average fitness fitnessavg(x) of individual
x over the entire training set Ttrain is given by Eq. (2).

fitness(x, I) = devI =
Obj(x, I) − LBI

LBI
(1)

fitnessavg(x) =
1

Ttrain

Ttrain∑

t=1

fitness(x, It) (2)

For the EGP-JSS approach, we use two fitness functions. The first fitness
function is simply the one used for GP-JSS, where fitness(x) = fitnessavg(x).
This is denoted as ‘No Fitness Modification’ (NFM). The second fitness function
takes diversity of the indviduals in the ensemble into account by penalising
similar individuals, and is denoted as ‘With Fitness Modification’ (WFM). WFM
is covered in detail in Sect. 3.3.

3.2 Genetic Programming for Job Shop Scheduling (GP-JSS)

The GP-JSS approach uses a GP population of individuals to evolve a single
tree as its output. GP-JSS is an extension of the R2 representation proposed by
Nguyen et al. [11] that uses the extended set of terminals provided in Table 1.
How a job is selected in a non-delay priority based DR is illustrated in Fig. 1.
When selecting which job to process for a free machine, an individual in the
population is used to assign priority values to each of the idle jobs waiting to be
processed by the machine. The job with the highest priority is then selected to
be processed. This continues until all operations have been completed.
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Fig. 1. Priority based dispatching rule job selection for available machine.

3.3 Ensemble Genetic Programming for Job Shop Scheduling
(EGP-JSS)

EGP-JSS evolves dispatching rules which are used in an ensemble of priority rules
to determine which job to process for a ready machine. However, using a single
population for ensembles will require a carefully designed grouping scheme to
group the individuals together, along with a complementary evaluation scheme
to evaluate the grouped individuals. Instead of doing this, we consider an app-
roach where we partition the population into S smaller subpopulations. Each
subpopulation has size K. EGP-JSS groups the individuals from the different
subpopulations together to form an ensemble. This approach of splitting the
population into smaller subpopulations that work together to solve a problem
is known as cooperative coevolution [14]. By using cooperative coevolution, we
allow for the subcomponents of the ensemble to apply crossover, mutation and
reproduction separately, and allow for diversity between the different subcom-
ponents.

In cooperative coevolution, individuals in a subpopulation only interact with
representatives of the other subpopulations when they are being evaluated for
their fitness. A representative is defined as the individual with the best fitness in
a subpopulation. Initially, before the first fitness evaluation, the representative of
each subpopulation is chosen randomly. Unlike Potter and De Jong’s [14] coop-
erative coevolution approach, we do not destroy unproductive subpopulations,
as destroying and regenerating a new subpopulation of individuals will require
a large number of generations for it to be effective.

The pseudocode of the EGP-JSS approach is shown in Algorithm1. The job
selection procedure and the fitness evaluation scheme is discussed further below.

Job Selection Procedure. As shown in Fig. 2, for rules evolved using EGP-
JSS, the decision of choosing a job for a ready machine is carried out by the
individual from the different subpopulations ‘voting’ on the jobs, and taking
the job with the most votes. An individual ‘votes’ for the job if the job has
the highest priority assigned to it by the individual. An individual’s ‘voting’
procedure works similar to the job selection procedure for priority based DR
described for GP-JSS.
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Data: S, K, Ttrain, number of generations G, fitness evaluation scheme eval
Result: Representative individuals x′

1, . . . , x
′
S

Initialise GP subpopulations ∇1, . . . , ∇S

for each subpopulation ∇1 to ∇S do
x′
i ← random individual from ∇i

end
while G number of generations has not yet passed do

for each subpopulation ∇1 to ∇S do
for each individual x in ∇i do

form an ensemble E = {x, x′
1, . . . , x

′
S} − {x′

i}
for each instance I in training Ttrain do

/* solve I using E as a non-delay dispatching rule */

while leftover operations remaining do
if machine i is available then

j ← selection(E, j1, . . . , jWi)
process job j on machine i

end

end
fitness(x, I) ← fitness of solution

end
/* eval denotes the fitness evaluation scheme */

fitness(x) ← eval(fitness(x, I1), . . . , fitness(x, ITtrain))
update x′

i if fitness(x) > fitness(x′
i)

end

end

end

Algorithm 1. The pseudocode for the EGP-JSS approach.

If there is a tie in the votes, e.g., two jobs, j1 and j2 have the same number of
votes as each other, a tie-breaker scheme is carried out. For an individual rule x,
let δx(j1), . . . , δx(jWi

) be the priorities assigned to jobs j1, . . . , jWi
waiting to be

processed at a machine. The normalised priority of a job j, is defined by Eq. (3),
where f(j) = 1

1+e−δx(j) .

δ′
x(j) =

f(j)
∑Wi

r=1 f(jr)
(3)

Afterward, the job with the highest sum of priority values over all ensemble
members out of the top voted jobs is then selected for processing.

With Fitness Modification (WFM) Evaluation Scheme. The WFM fit-
ness function, which takes diversity of individuals into account, is defined as
follows. To evaluate the diversity of an individual, the phenotype of individu-
als in a subpopulation are compared against the representative individuals of
the other subpopulations. In this case, the phenotype is defined as the list (of
length LI) of all the priorities that are calculated for the jobs as the solution for
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Fig. 2. Example of ensemble job selection process for an available machine.

the problem instance I is being generated. This includes the priorities that are
calculated for waiting jobs that were not selected for processing at a particular
moment of decision. These are normalised on the interval [0, 1] using a sigmoid
function g(x, z) = 1

1+e−δx(z) , where x is the GP individual being evaluated, and
δx(z) is the zth priority calculated by x.

After all the priorities are normalised, the penalty is the average of the
squared differences between the priorities of the individual x of a subpopula-
tion to the representative individuals y of the other subpopulations, as shown
by Eq. (4).

penalty(x, I) = 1 −
S∑

y=1,y �=x

LI∑

z=1

(g(x, z) − g(y, z))2

(S − 1)LI
(4)

To incorporate the penalty into the fitness evaluation of an individual x in the
subpopulation, the average penalty of the individual penaltyavg(x) is calculated
over all problem instances by taking the mean of penalties. The average fitness
from Eq. (2) is then multiplied by one plus the average penalty to get the final
fitness fitness(x) = fitnessavg(x)(1 + penaltyavg(x)). This means that when
an individual x from a subpopulation is very different from the representatives
of the other subpopulations, the penaltyavg(x) ≈ 0, and hence fitness(x) ≈
fitnessavg(x).

4 Experimental Design

For training and testing, we use the JSS benchmark dataset proposed by Taillard
[15]. The dataset consists of 8 sets of 10 problem instances broken up by the
number of jobs and the number of machines. All jobs in each problem instance
have zero release times and setup times, and must be processed on all machines.

For training, we use three separate sets of JSS problem instances from the
Taillard dataset. The first training set Δ1 is the first five problem instances
from the set of data containing N = 15 jobs and M = 15 machines. The sec-
ond training set Δ2 is the first five problem instances from the set of data



100 J. Park et al.

containing N = 30 jobs and M = 20 machines. The third training set Δ3 is
the first five problem instances from the set of data containing N = 100 jobs
and M = 20 machines. The standard GP-JSS approach has population size of
1024. For the EGP-JSS approach, given a fixed number of subpopulations S,
the subpopulation size is given by K = � 1024

S �. This gives us a total number of
individuals in the EGP-JSS approach that is approximately equal to the pop-
ulation size of the GP-JSS approach. For S = 3, 4, 5, 6, 7, 8, 9, 10, this gives us
K = 341, 256, 204, 170, 146, 128, 113, 102 respectively. These are shown in Table 2
with the notation 〈S,K〉, along with the other parameters used for GP. The GP-
JSS and the EGP-JSS approaches were run over each training set 30 times using
different seeds, resulting in 30 evolved dispatching rules over each training set.
For testing, the problem instances that are not used in the training sets Δ1, Δ2

or Δ3 are used, meaning that there are 65 problem instances in the test set.

Table 2. GP parameters used for evolving rules

Parameter GP-JSS Value EGP-JSS Value

〈Subpopulations, 〈1, 1024〉 〈3, 341〉, 〈4, 256〉, 〈5, 204〉, 〈6, 170〉,
Subpopulation sizes〉 〈7, 146〉, 〈8, 128〉, 〈9, 113〉, 〈10, 102〉
Crossover rate 80 % 80 %

Mutation rate 10 % 10 %

Reproduction rate 10 % 10 %

Generations 51 51

Max-depth 8 8

Selection method tournament selection tournament selection

Selection size 7 7

Initialisation ramped-half-and-half ramped-half-and-half

The R2 representation proposed by Nguyen et al. [11] is used as a benchmark
for GP-JSS and EGP-JSS. R2 will have the same parameter settings as the
GP-JSS approach. As a benchmark, the R2 representation proposed by Nguyen
et al. [11] is used to compare the robustness of the rules evolved using GP-
JSS and EGP-JSS. Afterward, the GP-JSS and the EGP-JSS approaches are
compared against benchmark DRs. The first two benchmarks are simple non-
delay schedules that select jobs to process on an available machine by the order
of their arrival (FIFO); and selecting jobs by the shortest processing time (SPT).
The other benchmarks are the best rules evolved by Nguyen et al. [11] for their
R1, R2 and R3 representations, which are used as non-delay dispatching rules.
As evolved rules from EGP-JSS are not improvement heuristics, they are not
compared against state-of-the-art meta-heuristic approaches to static JSS which
compensate for long running time by producing very good solutions to static
JSS problem instances.
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5 Results

The solution’s deviation devI (see Eq. (1)) from the lower bound is used for
measuring the quality of the solution generated by the DRs. Afterward, the
average of all the problem instances, denoted as devavg, is used for evaluating
the DRs over the entire test set. In the tables that follow, sets of rules evolved
by EGP-JSS that perform significantly better than the rules evolved by GP-JSS
and R2 are marked with †. The standard z-test is used to compare the DRs
against each other. One set of evolved rules is considered significantly better
than another if the obtained p-value under the statistical test is less than 0.05.

5.1 Parameter Settings Evaluation

First, the different 〈Subpopulations, Subpopulation sizes〉 in Table 2 are com-
pared against each other to find the ‘best’ configuration. In addition, we com-
pare WFM and NFM against each other to see whether the modified evaluation
scheme (WFM) improves the performance of the evolved rules. The preferred
configuration for EGP-JSS is used for comparison against the other benchmarks.
This is shown in Table 3.

From the results of Table 3, we can see that the results of EGP-JSS under
different parameter settings are similar to each other. No configuration is signif-
icantly better than other configurations. This means that when K scales with

Table 3. devavg of evolved rules from EGP-JSS for the Taillard’s dataset for different
〈S, K〉 and for the fitness functions WFM and NFM

Δ1 Δ2 Δ3 Testing

WFM 〈3, 341〉 0.47 ± 0.07 0.36 ± 0.08 0.06 ± 0.05 0.28 ± 0.06

〈4, 256〉 0.45 ± 0.03 0.33 ± 0.04 0.05 ± 0.02 0.26 ± 0.03

〈5, 204〉 0.45 ± 0.04 0.34 ± 0.03 0.05 ± 0.02 0.26 ± 0.02

〈6, 170〉 0.47 ± 0.04 0.35 ± 0.05 0.06 ± 0.04 0.27 ± 0.04

〈7, 146〉 0.46 ± 0.04 0.34 ± 0.04 0.06 ± 0.03 0.27 ± 0.03

〈8, 128〉 0.47 ± 0.05 0.35 ± 0.04 0.06 ± 0.03 0.27 ± 0.03

〈9, 113〉 0.46 ± 0.03 0.35 ± 0.04 0.06 ± 0.03 0.27 ± 0.03

〈10, 102〉 0.46 ± 0.03 0.35 ± 0.04 0.06 ± 0.02 0.27 ± 0.02

NFM 〈3, 341〉 0.49 ± 0.08 0.36 ± 0.08 0.07 ± 0.06 0.29 ± 0.07

〈4, 256〉 0.47 ± 0.07 0.35 ± 0.07 0.06 ± 0.05 0.27 ± 0.06

〈5, 204〉 0.46 ± 0.05 0.35 ± 0.05 0.06 ± 0.04 0.27 ± 0.05

〈6, 170〉 0.46 ± 0.05 0.35 ± 0.05 0.06 ± 0.03 0.27 ± 0.04

〈7, 146〉 0.45 ± 0.02 0.34 ± 0.03 0.05 ± 0.02 0.26 ± 0.02

〈8, 128〉 0.45 ± 0.04 0.34 ± 0.04 0.05 ± 0.03 0.26 ± 0.03

〈9, 113〉 0.45 ± 0.02 0.34 ± 0.02 0.05 ± 0.01 0.26 ± 0.01

〈10, 102〉 0.46 ± 0.03 0.34 ± 0.03 0.05 ± 0.02 0.26 ± 0.02



102 J. Park et al.

S, the value of S is not significant to the performance of the evolved rules under
the EGP-JSS approach.

5.2 GP-JSS and EGP-JSS

From the results of Sect. 5.1, we selected the configuration with 〈4, 256〉 that uses
the modified fitness measure WFM to be compared against the GP-JSS and R2

approaches. Although 〈4, 256〉 with WFM is not significantly better than the
other configurations, it had the lowest mean deviation for the test set. For each
approach, 30 rules are evolved using the training sets Δ1, Δ2 and Δ3, and their
performances over training runs and the test runs over the respective training
and the test sets are used. This is shown in Table 4.

Table 4. devavg of evolved rules from GP-JSS and EGP-JSS for Jm||Cmax.

Training Testing

R2 GP-JSS EGP-JSS R2 GP-JSS EGP-JSS

Δ1 0.59 ± 0.15 0.57 ± 0.11 0.45 ± 0.03† 0.37 ± 0.13 0.36 ± 0.12 0.26 ± 0.04†

Δ2 0.40 ± 0.15 0.40 ± 0.11 0.33 ± 0.04† 0.32 ± 0.13 0.32 ± 0.10 0.26 ± 0.03†

Δ3 0.11 ± 0.10 0.12 ± 0.10 0.06 ± 0.01† 0.32 ± 0.13 0.34 ± 0.12 0.26 ± 0.01†

Although the GP-JSS extended the R2 approach by adding more terminals
to the terminal set, we can see in Table 4 that it did not improve on the original
approach significantly. It is likely that the added terminals representing the
number of idle jobs waiting at the machine (NJ) and sufficiently large value
(LV) are not important to the sequencing decisions that are made by the DRs.

However, we can see that the rules evolved using EGP-JSS perform signif-
icantly better than the rules evolved using the GP-JSS and R2 approaches,
outperforming the other rules evolved under the three training sets Δ1, Δ2 and
Δ3. In addition, the rules evolved with EGP-JSS have much lower standard devi-
ations, meaning that the evolved rules mostly performed similar to each other
and are more stable than those evolved with GP-JSS and R2. The results show
that EGP-JSS can potentially produce more robust rules than the “standard”
approach.

5.3 Evolved Rules and Benchmark Dispatching Rules

The final evaluation compares the best rules evolved from each training set using
GP-JSS and EGP-JSS against other dispatching rules over the training and the
test sets. The best evolved rules from GP-JSS and EGP-JSS are denoted as ΘGP

1

and ΘEGP
1 respectively, where the subscript on Θ denotes each training set (e.g.

Θ1 means best rule trained over Δ1). The first two benchmarks are non-delay
FIFO and SPT dispatching rules. The three other benchmarks are rules evolved
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by Nguyen et al. [11] using the three different representations for individuals in
the GP population. The best rule from their R1 representation, R2 and R3 are
denoted as Θc1

R1
, Θc2

R2
and Θc3

R3
respectively. This is shown in Table 5.

Table 5. Deviation of the DRs against the lower bound for the training sets (Δ1, Δ2,
Δ3) and the entire dataset.

From the results of Table 5, we can see that the best rules from the GP-JSS
and the EGP-JSS approaches perform significantly better than the two simple
DRs. This reinforces the idea that evolved rules outperform the simple DRs for
JSS problems literature [3,6,11]. On the other hand, the best rules for GP-JSS
and EGP-JSS perform similarly to Θc1

R1
, Θc2

R2
and Θc3

R3
.

6 Conclusions

In this paper, we proposed a novel approach (EGP-JSS) of evolving an ensemble
of DRs using GP and cooperative coevolution. The experimental results show
that the ensemble of rules evolved from the EGP-JSS approach perform signif-
icantly better than the benchmark GP-JSS and R2 approaches. Including the
two new terminals in GP-JSS does not significantly improve the performance
over R2. The rules evolved by EGP-JSS are more robust than the simple con-
ventional rules FIFO and SPT.

For future work, extending the ensemble approach to dynamic JSS problem
would be very interesting. In dynamic JSS problems properties of jobs are not
known before they arrive at the shop floor. Because of this, global optimisation
techniques used in static JSS do not work in dynamic JSS. Good robust dispatch-
ing rule approach will be required to handle the uncertainity in conjunction with
the standard sequencing decisions in dynamic JSS. In addition, developing a GP
based ensemble approach that uses a single population would also be very use-
ful, as it removes the need to define the number of subpopulations and their
respective sizes.
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Abstract. In this paper we introduce a new Grammatical Evolution
(GE) system designed to support the specification of problem semantics
in the form of attribute grammars (AG). We discuss the motivations
behind our system design, from its use of shared memory spaces for
attribute storage to the use of a dynamically type programming language,
Python, to specify grammar semantics.

After a brief analysis of some of the existing GE AG system we outline
two sets of experiments carried out on four symbolic regression type (SR)
problems. The first set using a context free grammar (CFG) and second
using an AG. After presenting the results of our experiments we highlight
some of the potential areas for future performance improvements, using
the new functionality that access to Python interpreter and storage of
attributes in shared memory space provides.

Keywords: Grammatical Evolution · Symbolic regression · Attribute
grammars

1 Introduction

Since it was first introduced [6], Grammatical Evolution (GE) has been success-
fully applied to solve a wide range of problems across a diverse set of domains.
GE operates by producing potential solutions (usually in the form of programs),
to a predefined problem, by combining symbols specified in Backus-Naur Form
(BNF), a convenient way of describing a Context Free Grammar (CFG).

A CFG provides a means of specifying the syntax of programs, by outlin-
ing a set of rules which control the sequences of symbols allowed to appear in
each program. While a CFG provides a means of specifying program syntax, it
does not support specification of semantics, information which could guide the
generation of more meaningful programs.

A GE system uses the rules of a CFG specification in combination with an
individuals genotype to produce the individuals phenotype. After a phenotype
is successfully produced we can extract the parse tree from it and then use this
parse tree to evaluate the fitness of the individual across a set of training data
c© Springer International Publishing Switzerland 2015
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points. Usually in GE it is not until the assignment of fitness that issues of seman-
tic correctness become apparent. A common practice is to include some means of
detecting semantically invalid programs when running fitness evaluation, e.g. pro-
tected division, or assignment of worst fitness score to individuals whose fitness
evaluation “throws” an error.

As fitness scores are used to decide which individuals get to act as par-
ents during evolution and to decide which individuals to replace in a steady
state population, the score assigned to an individual is very important. While
semantically invalid individuals do “die out” due to the evolutionary process the
effects of their initial introduction into a population is something that needs to
be considered [4]. Also as training data sets become much larger and fitness eval-
uation time increases we need to more carefully consider the effects of evaluation
time spent on individuals that eventually get assigned a worst fitness score. One
method that has the potential to reduce these effects is the addition of semantic
information to help guide the genotype to phenotype mapping process, ensuring
individuals produced are not only syntactically but semantically correct.

Knuth [5] proposed a means of annotating a CFG with semantic informa-
tion in the form of attributes and semantic functions, commonly referred to as
Attribute Grammar (AG). Unlike a CFG, when used with GE in the creation of
a derivation tree, an AG in addition to providing a set of production rules, will
also provide an associated semantic function which specify attributes to anno-
tate the nodes of the derivation tree with. The inclusion of attributes provides
a means of giving context to the nodes of the derivation tree, with choices of
terminal or non-terminal nodes at one point in the tree being able to influence
choices of nodes at others.

An AG uses two distinct types of attributes, inherited and synthesised. The
names are used to indicate the direction the attributes passes information in the
derivation tree. Inherited being used to identify attributes which pass informa-
tion down the tree and synthesised for attribute which pass information up or
across tree nodes. Semantic functions are used to interpret attribute information,
using it to make decisions at one point in the tree based on values of attributes
set in another. Semantic functions may also include “helper” type functions that
perform more subtle analysis of attributes and help semantic function make deci-
sion on values to assign to attributes.

One of the most powerful features of GE comes from its decoupling of an
individuals underlying representation from that of the derivation tree it pro-
duces. All grammar information need merely be outlined in a BNF file and GE
can begin generating derivation trees. We strongly feel that any extension to GE
to support attribute grammars needs to strive to maintain this decoupling and
with this in mind we propose a new GE system which supports AG in addition
to CFG BNF specifications.

The main core of our system was designed using C++, with the attribute
information, needed to be added to derivation tree nodes being stored in shared
memory space using C++ pointers. Our system includes an embedded Python
interpreter used to run the semantic function and a C++/Python interface which
allows semantic functions interact with attributes in shared memory.
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Storing attributes in shared memory allows them to be assigned to any num-
ber of nodes in the derivation tree and also facilitates the passing of information
in any direction between the nodes. Changes to an attribute at one node are
immediately seen at all other nodes that share the same attribute. As Python
is dynamically typed it reduces the complexity of the semantic function speci-
fications and allows the loading of semantics at runtime rather than having to
compile them separately before running the GE system. This was a carefully
chosen design to help maintain in as much as possible the containment of the
entire AG specification on the single BNF file, like that of a CFG.

The rest of this paper is organised as follows: Sect. 2 discusses some of the
existing attribute grammar capable GE systems, discusses their use of AG and
highlighting the difference of our proposed new system; Sect. 3 outlines a set of
experiments carried out using our new system, using first a CFG and then an
annotated version of the CFG (an AG); finally Sect. 4 concludes the paper, high-
lighting again the main motivations of our new GE system design and suggesting
some of the areas we can extend our system into in the future.

2 Background

We are not the first to present results of experiments carried out using a GE
system with added support for attribute grammars. As far back as 2005 de la
Cruz et al. [1] presented results of experiments carried out on symbolic regression
type problems using GE with CFG and AG specifications. More recently Karim
and Ryan carried out a number of experiments using GE with AG on a variety
of problem types including, but not limited to, their work on the artificial ant
trail problem [3].

The results presented by both clearly demonstrate the performance gains a
GE system can achieve by supporting AG problem specification. This is some-
thing which will become more important when dealing with problems with
increasingly large train and test sets and ever more time consuming fitness eval-
uation cycles.

Both de la Cruz and Karim provided very little by way of description of their
underlying GE systems design, choosing instead to only focus on the performance
gains fitness gains seen in the solutions produced. Neither discusses attribute
storage strategies or their effect on the information passing between the nodes
of the derivation tree, or the means of specification of semantic functions and
their interaction with the attributes in the derivation tree. Our system utilizes
a number of features in an effort to keep the newly added AG specification
as concise and clear as possible, something we feel merits highlighting a paper
outlining an extension to GE to support AG.

The semantics outlined in an AG, as used by a GE system, act as a form
of logic which, along with the grammar production rules, guides the generation
of the derivation tree during the mapping process. Attributes can be used to
pass information between tree nodes giving them a context, something that is
not possible with a CFG. From a design point of view when adding support for
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AG it makes sense to abstract out the logic (semantics) from the underlying
representation (derivation tree) in the same way that a CFG does with the
production rule specification in a BNF file. This is something we have done in
our system. This will make the expression of semantics less troublesome, allowing
them to be included in, and read directly from, a BNF at the same time as the
production rules.

3 Experiments

We chose four symbolic regression (SR) type problems on which to test our new
system. Problems 1 and 2 have a single independent input, X, while problems 3
and 4 have an additional independent input Y . Details of the problem equations,
along with the range of data points used for train and test are outlined in Table 1.

Table 1. Problem sets and train and test data point ranges

Problem Training set [min : step] 50 points

Test set [min : step] 200 points

1 arcsinh(x) [0.0 : 1.0]

[0.1 : 0.25]

2 x3e−xcos(x)sin(x)(sin2(x)cos(x) − 1) [0.0 : 0.2]

[0.05 : 0.05]

3 y3e−xcos(y)sin(x)(sin2(y)cos(x) − 1) x[0.0 : 0.2], y = x+ 0.03

x[0.05 : 0.05], y = x+ 0.03

4 y2x6 − 2.13y4x4 + y6x2 x[1.9 : 0.075], y = x+ 0.015

x[1.91 : 0.019], y = x+ 0.015

3.1 Setup

An initial CFG specification was created which includes a set of basic mathe-
matical operators (+,−, ∗, /) and a set of 50 persistent random constants [2],
PRC, generated in the range PRC = {c|c ∈ � ∧ −5 ≤ c < 5}. The CFG was
designed so there is a 50/50 chance of either an independent variable (X or Y)
or a PRC getting added to the derivation tree. When a choice is made to add
a PRC, i.e. <prc> ::= PRC, the codon value and mod operation are used to
select which of the 50 available prc values to choose. For the sake of conciseness
we use PRC in the grammar specification in Table 2, in the grammar used by
our system this is replaced with the 50 prc values.

For our AG a set of attributes and semantic function were designed with two
main goals:
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1. Provide a globally accessible shared memory space, called “globalCache”,
which all nodes in the derivation tree have access to. When a node gets
expanded to a terminal its value is added to the globalCache so any node can
access the current evaluation state of the derivation tree as sub-trees become
fully formed (i.e. expanded to terminals)

2. To track when an <op> Symbol node get expanded to, ’/’, and pass the
information back up the tree so the semantic function can use it to ensure
that a / is not followed by value that could be zero.

Along with providing access to add, read and update attribute information
on the nodes of a derivation tree our systems C++ / Python interface also
provides a means for the semantic function to directly access the Symbol infor-
mation stored at node. As can be seen in the grammar specification in Table 2,
using a masked property, “.Data”, the semantic function can change the termi-
nal value from “X” to “X + PRC”, or “Y” to “Y + PRC” or whatever other
value desired.

When each production rule is being read initially from a BNF our system
tests to see if the production includes a set of additional terms, enclosed in
a set of curly brackets. If the set of curly brackets is found then its contents
are formatted into a Python function which is made available to the Python
interpreter so it can be called during the creation of the derivation tree. We
can also very easily include any other Python library, available on the system,
in a semantic function, or create our own semantic helper functions designed
specifically for use with a particular set of problems. In our AG we have defined
a simple helper function which is included in all semantics functions. It was
designed to perform a particular simple function, which is defined as follows:

appendSymbol(nodeOne.A, B). If the derivation tree node, nodeOne has
an attribute called ’A’, then its shared memory space is accessed and its
contents is updated, appending the value ’B’ to whatever already exists in
it. If nodeOne does not have an attribute called ’A’ then nothing is done.

50 runs were carried out for each problem, using each type of grammar, and
the results presented are averaged over those runs. Normalised linear scaled mean
squared error (NLSMSE) [4] was used as a fitness measure in both the sets of
experiments. Details of the GE system parameters used for each run are outlined
in Table 3.

We had initially hoped to include the use of the Python Abstract Syntax
Tree (AST) library in our semantic functions but it was unfortunately not fully
operation in this version of our system. Using the AST library we could poten-
tially evaluate expressions as they appear in sub-tree segments of the derivation
tree. This could be a very powerful feature and among other things be used to
help prevent the generation of more difficult to detect invalids. It is something
we hope to have implemented in the next revision of our system.



110 J.V. Patten and C. Ryan

Table 2. CFG and AG specifications

Semantics (AG only)

S ::= <expr> <expr>.globalCache = ’ ’;

<expr1> ::= <expr2> <op> <expr3> <expr2>.globalCache ← <expr1>.globalCache
<op>.globalCache ← <expr1>.globalCache
<expr3>.globalCache ← <expr1>.globalCache
<op>.op = ’ ’
<expr3>.lastOp ← <op>.op

| ( <expr2> <op> <expr3> ) <expr2>.globalCache ← <expr1>.globalCache
<op>.globalCache ← <expr1>.globalCache
<expr3>.globalCache ← <expr1>.globalCache
<op>.op = ’ ’
<expr3>.lastOp ← <op>.op

| <var> <var>.globalCache ← <expr1>.globalCache
<var>.lastOp ← <expr1>.lastOp

<op> ::= + <op>.op = ’+’
appendSymbol(<op>.globalCache, ’+’)

| − <op>.op = ’-’
appendSymbol(<op>.globalCache, ’-’)

| ∗ <op>.op = ’*’
appendSymbol(<op>.globalCache, ’*’)

| / <op>.op = ’/’
appendSymbol(<op>.globalCache, ’/’)

<var> ::= <ind> <ind>.globalCache ← <var>.globalCache
<ind>.lastOp ← <var>.lastOp

| <prc> <prc>.globalCache ← <var>.globalCache
<prc>.lastOp ← <var>.lastOp

<ind> ::= X if(<ind>.lastOp == ’/’):
....prc = getPRC()
....X.Data = ’X + ’ + prc
....appendSymbol(<ind>.globalCache, X.Data)
else:
....appendSymbol(<ind>.globalCache, ’X’)

| Y if(<ind>.lastOp == ’/’):
....prc = getPRC()
....Y.Data = ’Y +’ + prc
....appendSymbol(<ind>.globalCache, Y.Data)
else:
....appendSymbol(<ind>.globalCache, ’Y’)

<prc> ::= PRC appendSymbol(<prc>.globalCache, PRC)

3.2 Results

For a given problem the same set of training and testing data points were used
for both the CFG and AG runs. Table 4 outlines the experimental results which
include the mean and best fitness score achieved on both the train and test data
sets for each problem (± standard deviation included with each mean).

As can be seen for the results, for each problem type the run using the AG
achieved better fitness scores on both the train and test data sets. While the
semantics included in our AG are relatively simple they do prevent the creation
of certain invalids and this can be seen to influence the resulting scores. A table
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Table 3. Run configuration parameters

Population size 500

Run terminates at 150 generations

Operator probabilities Crossover: 0.9, mutation: 0.1

Tournament size 2

Replacement Steady state, inverse tournament

PRC PRC = {c|c ∈ � ∧ −5 ≤ c < 5}
|PRC| = 50

Normalised fitness 1
1+LSMSE

Initialisation Ramped half and half

(max. initial depth = 8)

Max wraps 5

Table 4. Results

Problem 1 2 3 4

CFG Mean train 0.8784 ± 0.0736 0.9126 ± 0.0078 0.9154 ± 0.0067 0.8174 ± 0.0077

Mean test 0.9926 ± 0.0649 0.9089 ± 0.0068 0.9103 ± 0.0069 0.8973 ± 0.0080

Best train 0.8866 0.9205 0.9319 0.9541

Best test 0.9940 0.9111 0.9318 0.9418

AG Mean train 0.8895 ± 0.0728 0.9139 ± 0.0048 0.9184 ± 0.0076 0.8596 ± 0.0078

Mean test 0.9927 ± 0.0588 0.9098 ± 0.0009 0.9131 ± 0.0087 0.8410 ± 0.0079

Best train 0.9012 0.9282 0.9534 0.9713

Best test 0.9943 0.9282 0.9534 0.9701

of Vargha-Delaney A measure values comparing AG to CFG for both train and
test on each problem type is provided in Table 5.

Table 5. Vargha-Delaney a measure results

Problem 1 2 3 4

Train 0.5226 0.5348 0.5954 0.5456

Test 0.5108 0.5732 0.541 0.576

3.3 Discussion

While the results presented do show an improvement in overall fitness by using
the AG there is room for further improvement. The semantics we used are not
very sophisticated and fail to take full advantage of the storage of attributes
in shared memory and semantic functions access to a number of useful Python
libraries.
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There are a number of areas where we feel we can improve our systems
performance further, evaluating sub-tree expressions in derivation and using the
information to prevent the formation of more complex and difficult to detect
invalids in population, dynamic pre-processing of train inputs at run time and
automatic generation of semantics based on the grammar symbols and inputs,
to name a few.

Each of the problems presented had a relatively small cost associated with
fitness evaluation so the effects of evaluating invalids is not very pronounced.
We can however see that in situations where this is not the case the increased
precision of specification provided by AG will become even more important.

4 Conclusions

In this paper we introduced a new GE system designed to support the specifi-
cation of problem semantics in the form of attribute grammars. We provided a
description of the underlying motivations for our system design, with a core built
using C++, storage of attribute information in shared pointers and support for
semantic function specification in Python scripts.

We followed this by briefly discussing some of the existing GE AG systems
comparing, in as much as possible, the main goals of our system design to them
and emphasising why we feel our systems design could help make the specification
and use of AG with GE much more straight forward and concise.

We then outlined a set of experiments carried out using the new GE system,
one using a traditional CFG and another using a relatively simple AG. We
discussed the results, highlighting the performance improvements seen by using
an AG and finally we finish by suggesting some of the areas we feel we can extend
our system in future.
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Abstract. We investigate coevolutionary Cartesian genetic program-
ming that coevolves fitness predictors in order to diminish the number
of target objective vector (TOV) evaluations, needed to obtain a satisfac-
tory solution, to reduce the computational cost of evolution. This paper
introduces the use of coevolution of fitness predictors in CGP with a new
type of indirectly encoded predictors. Indirectly encoded predictors are
operated using the CGP and provide a variable number of TOVs used
for solution evaluation during the coevolution. It is shown in 5 symbolic
regression problems that the proposed predictors are able to adapt the
size of TOVs array in response to a particular training data set.

Keywords: Coevolution · Cartesian genetic programming · Fitness
prediction

1 Introduction

The development of Genetic Programming (GP) is mainly driven by the increas-
ing demand to solve complex problems which cannot be solved directly or sys-
tematically using informed methods. In many real-world applications, the fitness
evaluation of a candidate program is computationally very expensive. Often, the
fitness in GP is calculated over a set of fitness cases [11]. A fitness case corre-
sponds to a representative situation in which the ability of a program to solve
a problem can be evaluated. A fitness case consists of potential program inputs
and target values expected from a perfect solution as a response to these pro-
gram inputs. Potential program inputs and the corresponding target values are
ordered in a sequence called target objective vector (TOV).

A set of TOVs (training data) is typically a small sample of the entire domain
space. The choice of how many TOVs (and which ones) to use is often a crucial
decision since whether or not an evolved solution will generalize over the entire
domain depends on this choice. It also holds for the evolutionary design which
has been performed by Cartesian Genetic Programming (CGP). In the case of
symbolic regression or the evolutionary image filter design (which is one of the
typical application domains for CGP [8]), from hundreds to tens of thousands
TOVs have to be evaluated in order to obtain a single fitness value. In order to
c© Springer International Publishing Switzerland 2015
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find a robust and acceptable solution a large number of fitness evaluations has
to be performed.

Fitness modeling methods have been used to reduce the computational com-
plexity of expensive fitness evaluations [2]. A predefined model or coarse-grained
simulation has been used to approximate the fitness value in cases in which
obtaining the exact fitness requires an expensive simulation or a physical exper-
iment. Machine learning methods or a subsampling of training data can be used
in order to approximate the fitness efficiently. However, it is not always clear
when the benefits of fitness modeling can outweigh the cost.

A closely related concept to fitness modeling is fitness prediction, which is
a technique used to replace fitness evaluations by a lightweight approximation
that adapts with the solution evolution. Fitness predictors cannot approximate
the entire fitness landscape, but they are instead shifting their focus through-
out the evolution. An algorithm that coevolves fitness predictors, optimized for
the solution population, has been introduced for standard (tree-based) genetic
programming in order to reduce the fitness evaluation cost and frequency by
Schmidt and Lipson [7].

In our previous work, inspired by coevolution of fitness predictors [7] and the
coevolutionary principles which have been summarized in [4], we applied a coevo-
lution of TOVs in order to accelerate fitness evaluations in CGP. We adopted
the fitness predictor encoding in the form of a subset of training data. Fitness
predictors have been represented as a constant-size array of pointers to elements
in the training data and operated using a simple genetic algorithm. Coevolu-
tionary algorithm has been adapted for CGP. We have obtained a significant
speedup (2.03–5.45) over the standard CGP for 5 symbolic regression problems
[10] and the results have been very competitive with tree-based GP. The same
coevolutionary CGP and Hillis’ competitive coevolution approach [1] adapted for
CGP have been used in the evolutionary image filter design [9]. Although the
median time of evolution has been reduced 2.99 times in comparison with stan-
dard CGP, a large number of experiments had to be accomplished in order to
find the most advantageous size of the fitness predictor (the number of TOVs
in predictor) for this particular task. An open problem is how to reduce this
overhead.

This paper deals with a new type of fitness predictors whose size is changing
dynamically during the coevolution. These fitness predictors with a variable
number of TOVs are represented in the form of functional expressions. This
functional expression generates a certain number of indexes into the training
data. Indexes then address specific TOVs from the original training data which
are selected for solution fitness prediction. The proposed method is evaluated
using 5 symbolic regression problems and compared with the original approach.

The paper is organized as follows. Section 2 introduces Cartesian genetic
programming, Sect. 3 summarizes our previous work on Coevolution of Fitness
predictors in the CGP and outlines an open issue. In Sect. 4, a new approach
to fitness predictor encoding is presented. Experimental results are discussed in
Sect. 5. Finally, conclusions are given in Sect. 6.
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Fig. 1. A candidate program in CGP, where l = 4, nc = 4, nr = 2, ni = 1, no = 1, na =
2, Γ = {+(1), − (2), ∗ (3), /(4)} and chromosome is: 0, 0, 1; 0, 0, 1; 0, 0, 3; 2, 2, 2; 3, 1, 4;
3, 0, 3; 3, 6, 2; 3, 6, 1; 8.

2 Cartesian Genetic Programming

The state of the art of Cartesian genetic programming has been summarized in
a monograph [3]. CGP is a variant of genetic programming that uses a specific
encoding in the form of directed acyclic graph and a mutation-based search.
CGP has been successfully employed in many traditional application domains of
genetic programming such as symbolic regression, but has been predominantly
applied in evolutionary design and optimization of logic networks.

A candidate program in CGP is modelled as a Cartesian grid of nc × nr

(columns × rows) programmable elements (nodes). The number of primary
inputs, ni, and outputs, no, of the program are defined for a particular task.
Each node input can be connected to the output of a node placed in previous l
columns or to one of the program primary inputs. The types of na-input node
functions are decided by user and defined in the set Γ . Each node of the directed
graph represents a particular function and is encoded by na +1 genes. One gene
is the code of node function, the remaining genes are the indexes of the node
input connections. Figure 1 shows an example of a candidate program and its
encoding in the chromosome.

In CGP, a variant of a simple (1 + λ) evolutionary algorithm is used as a
search mechanism. The initial population is constructed either randomly, by a
heuristic procedure or uses an existing solution. Every new population consists
of the best individual of the previous generation (so-called parent) and its λ
offspring. To create the offspring individuals from the parent, a point muta-
tion operator is used. Mutation modifies h randomly selected genes to another
randomly generated (but valid) values.

3 Fitness Prediction in CGP

In our previous work, fitness predictors were small subsets of the training data
and coevolved with CGP programs [10]. An optimal fitness predictor was sought
using a simple genetic algorithm (GA) which operated a population of fitness
predictors. Fitness predictor was directly encoded as a constant-size array of
pointers to the elements (TOVs) in the training data. It was shown in 5 symbolic
regression benchmarks that only 12 TOVs for fitness prediction were needed
to find a satisfactory solution. Moreover, a significant improvement (in terms
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of computational cost reduction) has been obtained in comparison with CGP
without coevolution.

The coevolution adapted for CGP has been used in the evolutionary design of
image filters, where the standard CGP has been successful so far. Using coevolu-
tionary CGP, a computational cost reduction has been obtained too [9]. However,
this utilization brings some potential problems. The process of finding the most
advantageous setting in terms of the fitness predictor size for this particular task
was the most time consuming part of the experiments. Too many independent
runs had to be performed to observe that 15–20% (about 10 thousand of TOVs)
of original training data are needed to find an image filter of the same quality
of filtering as the best filter evolved using the standard CGP utilizing the orig-
inal training data. While using GA chromosomes as long as thousands genes,
the so-called scalability problem has been observed. In the context of EAs the
scalability problem refers to the situation in which the evolutionary algorithm
is able to provide a very good solution to a small problem instance, but only
unsatisfactory solutions can be generated for larger problem instances.

4 Proposed Method

The number of TOVs required to obtain a satisfactory solution is variable from
benchmark to benchmark. To simply apply a coevolutionary CGP to a new,
unknown task, we should consider a fitness predictor with the dynamic size which
can be adapted during the coevolutionary process. Although the direct encoding
of the predictor involves a simpler encoding which is suitable for basic applica-
tions, more complex tasks need sizable predictors that are sorely handled by GA.
Several possible encodings of fitness predictor have been mentioned in [6]. Fit-
ness predictors, in this work are not, however, encoded as the constant-size array
of TOVs. Instead, we use an indirect encoding in the form of functional expres-
sion selecting particular TOVs. TOVs used for fitness prediction are selected by
means of indexes that are generated using this expression.

The evolution of this expression can be seen as a form of a symbolic regression
task which is a typical task for genetic programming. We have considered to
employ CGP due to a simpler and faster operation on chromosomes.

4.1 Indirectly Encoded Predictor

In this paper, the evolution of fitness predictors is based on the principles of CGP
as introduced in Sect. 2. The predictor chromosome encodes a Cartesian grid of
two-input functional nodes operating over one primary input and returning two
primary outputs. In addition to the Cartesian grid, an initializing value x0 is
encoded in the chromosome. It is operated using a special mutation operator –
value x0 is multiplied by a randomly generated real number in the user-defined
range.

While composing the array of TOVs for fitness prediction, the initializing
value x0 is used as a primary input of the predictor. In response to the primary
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input xi, the candidate predictor returns two outputs - out0(xi) and out1(xi).
Index j(xi) of selected TOV is then calculated as:

j(xi) = out0(xi) mod n, (1)

where n is the total number of TOVs in the training data. TOVs selection
continues with the next iteration using out0(xi) as a new primary input of the
predictor, until the out1(xi) is out of the user-defined range rout1 or the maximum
size of the array of TOVs for fitness prediction is reached.

4.2 Predictor Training

Predictors have to be coevolved with the solution evolution in order to adapt
them to the solved problem. Predictor training data consists of fitness trainers,
which are selected copies of candidate solutions occurred during the solution
evolution and their corresponding exactly measured fitness values fexact (i.e.
fitness evaluated using the original training data).

The archive of trainers has a well defined structure. The number of trainers
in the archive is kept constant during the evolution. While initializing the coevo-
lution, solutions from the first generation are chosen and copied to the archive of
trainers. If the archive of trainers is larger than the solution population, missing
trainers are generated randomly. Trainers in the archive are updated periodi-
cally – the top-ranked candidate solution is copied to the trainers archive if its
predicted fitness value differs from the top-ranked candidate solution in the pre-
vious generation; the next trainer is updated using a random solution. A new
trainer t replaces the oldest one in the trainers archive and the exact fitness of
the new trainer fexact(t) is evaluated. This approach to the predictor training
data structure leads to maintaining a representative sample of the current solu-
tion population (due to the copies of top-ranked candidate solutions) as well as
maximizing fitness diversity of solutions in the archive of trainers (due to the
randomly generated trainers).

4.3 Fitness of Predictor

While designing the fitness function of the indirectly encoded predictor, two
main options should be considered: (1) prediction precision and (2) prediction
cost. Prediction precision of predictor p is calculated using the relative error of
the exact and predicted fitness values of solutions in the trainers archive:

prec (p) =
1
u

u∑

j=1

u
|fexact(tj) − fpredicted(tj)|

fexact(tj) + c
, (2)

where u is the number of solutions in the trainers archive, parameter c allows to
moderate a sharp increase of relative error while the fexact(tj) is very close to 0.

Prediction cost of a predictor is depended on how many TOVs have to be
used while evaluating the predicted fitness. The number of TOVs in the array for



118 M. Sikulova et al.

Fig. 2. Coevolution of candidate solutions and fitness predictors.

fitness prediction – size (p) – is employed for this purpose. To simplify the fitness
evaluation process, both objectives are embedded in the single fitness function.
To establish the fitness function for predictor p, a desired function flow has
been processed by the Eureqa software [5], and the following function has been
obtained:

f (p) = (a · prec (p))4 + b · size (p)
(
1 + a · prec (p)2

)
, (3)

where size (p) is the number of TOVs addressed by predictor p. Parameters a
and b control the preference between the prediction precision and the prediction
speed (i.e. the number of TOVs addressed by predictor).

4.4 Coevolution of Solutions and Predictors

In the first step, the candidate solutions and candidate predictors are randomly
initialized. Then the solution evolution waits for the first top-ranked predictor
(obtained in the first generation of predictors). The evolution of candidate solu-
tions is based on the principles of CGP. TOVs addressed by the predictor loaded
from the predictor archive are used for fitness prediction of the solutions. The
top-ranked predictor for solution fitness prediction is then updated periodically
in a user-defined number of solution generations. While evolving solution, top-
ranked solutions with different fitness are copied to the one half of the trainers
archive. In each generation of predictors, one trainer from the second half of
trainers archive is updated randomly.
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Predictors are also evolved using CGP. Using each predictor in the current
generation, the predicted fitness of trainers is evaluated and the fitness of the
predictor is established. The top-ranked predictor is then updated in a predictor
archive and also used for producing a new generation of predictors. The overall
scheme of the proposed coevolutionary algorithm is shown in Fig. 2.

If a satisfactory solution is found or the user-defined maximum number of
solution generations is reached, the coevolution is terminated.

5 Results

This section presents benchmark problems, experimental setup and experimental
evaluation of the proposed approach and its comparison with the original directly
encoded fitness predictors and standard CGP without coevolution.

5.1 Benchmark Problems

Five symbolic regression benchmark functions (F1–F5) were selected as TOV
sources for evaluation of the proposed method:

F1 : f(x) = x2 − x3, x = [−10 : 0.1 : 10]

F2 : f(x) = e|x| sin(x), x = [−10 : 0.1 : 10]

F3 : f(x) = x2esin(x) + x + sin
( π

x3

)
, x = [−10 : 0.1 : 10]

F4 : f(x) = e−xx3 sin (x) cos (x)
(
sin2 (x) cos (x) − 1

)
, x = [0 : 0.05 : 10]

F5 : f(x) =
10

(x − 3)2 + 5
, x = [−2 : 0.05 : 8] .

In order to form a training data, 200 equidistant distributed samples were taken
from each function. Functions F1, F2 and F3 are taken from [7], functions F4 and
F5 from [12] and all functions F1–F5 were used in order to evaluate coevolution
of CGP and directly encoded predictors [9].

5.2 Experimental Setup

The setup of the solution evolution is used according to literature [10], i.e.
λ = 12, ni = 1, no = 1, nc = 32, nr = 1, l = 32, every node has two inputs
(i1, i2), Γ = {i1 + i2, i1 − i2, i1 · i2, i1

i2
, sin (i1) , cos (i1) , ei1 , log (i1)} and the max-

imum number of mutation per individual is h = 8. The solution fitness function
is defined as the relative number of hits. There are, in fact, two fitness func-
tions for candidate solution s. While the exact fitness function fexact(s) utilizes
the complete training set, the fitness function for fitness prediction fpredicted(s)
employs only selected TOVs. Formally,
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fexact (s) =
1
n

n∑

j=1

g (y (j)) (4)

fpredicted (s) =
1
m

m∑

j=1

g (y (j)) (5)

g (y (j)) =
{

0 if |y (j) − t (j)| ≥ ε
1 if |y (j) − t (j)| < ε

(6)

where y(j) is a candidate program response to TOV j, t(j) is the target response,
n is the number of TOVs in the training data, m is the number of TOVs
addressed by predictor and ε is a user-defined acceptable error – for benchmarks
F1, F2: 0.5; F3: 1.5; F4, F5: 0.025. The acceptable number of hits is 97 %.

To find the most advantageous setting of the predictor evolution, over 160,000
independent runs were performed. The results were obtained using the following
setup of the predictor evolution: λ = 4, ni = 1, no = 2, nc = 15, nr = 2, l = 4,
every node has two inputs (i1, i2), Γ = {i1+i2, i1−i2, i1·i2, i1

i2
, sin (i1),max (i1, i2),

min (i1, i2) ,−i1, i1 mod i2, |i1| and number of mutation per individual is h = 30.
The range of out1 (affecting the number of TOVs addressed by predictor) is
set as −1000 < rout1 < 1000; the minimum number of TOVs addressed by
predictor is 5 (2, 5 % of the complete training data) and the maximum number
is 50 (25 %). Parameters of predictor fitness function were empirically set as
follows: Predictor precision (Formula 2) parameter c = 0.002 and the predictor
fitness function (Formula 3) parameters a = 17 and b = 0.04. Every 2,000
generations of the solution evolution, a new predictor has been loaded for the
solution fitness evaluation.

5.3 Comparisons of the Algorithms

The goal of this experiment is to compare the proposed coevolution of indirectly
encoded fitness predictors evolved using CGP (FPCGP ) with the original directly
encoded fitness predictors evolved using GA (FPGA) and standard CGP with-
out coevolution (CGPSTD). In all the algorithms, solutions are evolved using
the equivalent setup as presented in Sect. 5.2. FPGA is used according to liter-
ature [9], i.e. 12 TOVs in chromosome, 32 individuals in predictor population,
2-tournament selection, a single point crossover and the mutation probability 0.2.
The algorithms are compared in terms of the success rate (the number of runs,
giving a solution with predefined quality), the number of generations and the
number of TOV evaluations to converge (in order to compare the computational
cost). Table 1 gives the median values calculated of 50 independent runs for each
benchmark function F1–F5.

It can be seen from Table 1 that both coevolutionary approaches have reached
a satisfactory solution using a significantly fewer TOV evaluations than the
standard CGP. Despite the fact that during FPCGP evolution predictors with
a large number of TOVs have to be evaluated, the number of TOV evaluations
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Table 1. Comparison of standard CGP (CGPSTD) and coevolutionary CGP with
directly encoded predictors FPGA and indirectly encoded predictors FPCGP .

Algorithm F1 F2 F3 F4 F5

Success rate CGPSTD 100% 100% 100% 80% 24%

FPGA 100% 100% 100% 100% 100%

FPCGP 100% 100% 100% 100% 90%

Generations to
converge
(median)

CGPSTD 1.11 · 103 4.46 · 103 1.76 · 105 7.15 · 105 1.36 · 106
FPGA 2.62 · 103 2.53 · 103 1.10 · 105 1.00 · 106 1.34 · 106
FPCGP 1.00 · 103 2.25 · 103 4.11 · 104 1.47 · 106 1.74 · 106

TOV
evaluations
to converge
(median)

CGPSTD 2.68 · 106 1.08 · 107 4.24 · 108 1.72 · 109 3.28 · 109
FPGA 5.20 · 105 5.01 · 105 2.19 · 107 2.00 · 108 2.67 · 108
FPCGP 7.43 · 105 1.60 · 106 1.90 · 107 8.05 · 108 8.78 · 108

to converge is similar for both FPCGP -evolved and FPGA-evolved predictors.
Although CGPSTD evaluates the whole TOVs set in every fitness function call,
the number of generations is comparable for all three methods.

5.4 Predictor Behaviour

In this section we discuss how the predictors are able to select a representative
sample of TOVs which allows for obtaining a satisfactory solution. However,
it should be pointed out that to facilitate an indirectly encoded predictor to
maintain eventual geometries or peaks and valleys in training data, the training
set should be well sorted (if it is possible).

In order to observe the behaviour of predictor data samples, we plot (see
Figs. 3 and 4) the number of TOVs and the frequency of TOVs addressed by
predictors, which were used during the course of evolution for solution fitness
prediction (50 independent runs considered). It can be seen from Table 1 that
the satisfactory solution for benchmarks F1 and F2 can be obtained by 2 · 103

generations of the solution fitness prediction, which is the time when only the first
co-evolved predictor is ready for solution fitness prediction. Then Fig. 3 shows
the number and the frequency of TOVs addressed by the top-ranked predictor
taken from the very first (randomly generated) generation. While the evolution
wasn’t allowed to suit to the training data, sizable predictors were selected in
order to accomplish a better prediction precision – see Fig. 3b and d. Despite
this fact, satisfactory solutions for benchmarks F1 and F2 have been found using
a comparable number of TOV evaluations (and less number of generations of
solutions) in comparison with directly encoded predictors using only 12 TOVs
for solution fitness prediction (FPGA).
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(a) Training set F1. (b) Training set F1.

(c) Training set F2. (d) Training set F2.

Fig. 3. Frequency and the number of TOVs in predictors used for candidate solution
fitness prediction (training set F1 and F2).

In case of benchmarks F3, F4 and F5, coevolution exhausted many more
generations to converge. Then predictors were able to adapt to the training
data. Figure 4b, d and f shows that each benchmark prefers a different number
of TOVs for fitness prediction. It can be seen from Fig. 4f that about 10 TOVs
and about 38 TOVs were preferred in order to predict the fitness of candidate
solutions while solving the benchmark F5.

It can be seen in Fig. 4a, c and e that sample points do not focus entirely on
the peaks and valleys of the training data, but are well distributed over the data
set during the coevolution, however some geometries have been observed. If all
TOVs addressed by predictor focus on the interesting regions (peaks and valleys)
of the training data, the predictor would represent the maximum error (which is
improper while requiring the predicted fitness corresponding to the exact fitness).
Furthermore, TOVs addressed by the fitness predictors are variable in response
to the solution evolution. The solution evolution forces the predictors to contain
two types of TOVs, some of them are easy others difficult for particular solutions.

The number of TOVs addressed by predictors also changes during the coevo-
lution in response to the course of solution evolution. Figure 5 shows the exact
fitness of the top-ranked candidate solutions during the course of coevolution
and the size of the predictor used to predict their fitness during a typical run
for the benchmark F3.
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(a) Training set F3. (b) Training set F3.

(c) Training set F4. (d) Training set F4.

(e) Training set F5. (f) Training set F5.

Fig. 4. Frequency and the number of TOVs in predictors used for candidate solution
fitness prediction (training set F3–F5).

Fig. 5. Exact fitness of top-ranked candidate solutions during the course of evolution
and the size of predictor during a typical run for the F3 data set.
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6 Conclusions

In summary, we have introduced the use of coevolution of fitness predictors in
CGP with a new type of indirectly encoded predictors. Indirectly encoded pre-
dictors are operated using the CGP and provide a variable number of TOVs used
for solution fitness prediction during the coevolution in response to the solved
problem. When applied to the symbolic regression problem, this approach was
found to be comparable with the original directly encoded predictors using just
12 TOVs for the solution fitness prediction in terms of the number of evaluated
TOVs to converge. We have shown using 5 benchmarks that proposed predic-
tors are able to adapt the size of TOVs array for solution fitness prediction in
response to the particular training data. This property enables to use the coevo-
lution of fitness predictors for solving a new, unknown task, without the need to
find the most advantageous size of the TOVs array experimentally.

However, as symbolic regression has not been considered as a typical appli-
cation domain for CGP, our future work will be devoted to the utilization of
the proposed fitness prediction algorithm in the evolutionary image filter design
where the original directly encoded predictors have been successful so far. Con-
sidering the fact that the evolutionary design using CGP has been successfully
accelerated in field programmable gate array (FPGA), another goal will be to
implement coevolutionary CGP with indirectly encoded predictors to FPGA and
thus accelerate the search process and use it in a real-world application.
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Abstract. Streaming data classification requires that a model be avail-
able for classifying stream content while simultaneously detecting and
reacting to changes to the underlying process generating the data. Given
that only a fraction of the stream is ‘visible’ at any point in time (i.e.
some form of window interface) then it is difficult to place any guar-
antee on a classifier encountering a ‘well mixed’ distribution of classes
across the stream. Moreover, streaming data classifiers are also required
to operate under a limited label budget (labelling all the data is too
expensive). We take these requirements to motivate the use of an active
learning strategy for decoupling genetic programming training epochs
from stream throughput. The content of a data subset is controlled by a
combination of Pareto archiving and stochastic sampling. In addition,
a significant benefit is attributed to support for a tapped delay line
(TDL) interface to the stream, but this also increases the dimension-
ality of the task. We demonstrate that the benefits of assuming the TDL
can be maintained through the use of oversampling without recourse to
additional label information. Benchmarking on 4 dataset demonstrates
that the approach is particularly effective when reacting to shifts in the
underlying properties of the stream. Moreover, an online formulation
for class-wise detection rate is assumed, where this is able to robustly
characterize classifier performance throughout the stream.

Keywords: Streaming data classification · Non-stationary · Class
imbalance · Benchmarking

1 Introduction

Incremental learning from streaming data represents a new challenge for algo-
rithms applied to classification tasks [11,12,15,17]. Such tasks are non-stationary
(the underlying process creating the data changes over the course of the stream),
have limited capacity for revisiting previously encountered data (single pass con-
straint), generally present a very imbalanced class distribution (care of the slid-
ing window access to the data) and are subject to a labelling budget (it is
prohibitively expensive to label the stream).
c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 126–138, 2015.
DOI: 10.1007/978-3-319-16501-1 11
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In this work we revisit a general architecture previously proposed for apply-
ing genetic programming (GP) to streaming data classification tasks under label
budgets [20]. The framework assumes a non-overlapping window interface (of
length L) to the stream consisting of a continuous sequence of x(t) to x(t−L−1)
exemplars. A subset of instances are stochastically sampled from the current
window location and placed into a data subset (DS). Only these exemplars have
their label information requested. A training cycle is then performed relative
to the current DS content. The authors make use of Pareto archiving to priori-
tize exemplars within the DS for replacement [20]. Thus, the next time the DS
content is updated (corresponding to a new window location) non-dominated
exemplars can be prioritized for retention. Performance was compared to that
of an Adaptive Naive Bayes (ANB) classifier that made similar assumptions
regarding how to sample exemplars from the stream under a label budget [19].

In this work we undertake a through re-evaluation of the relation between
DS updating and training epochs of GP. The hypothesis pursued here is that
more than one generation may be performed per update to DS content with-
out changing the label budget or provoking symptoms of over-learning. This is
particularly important when attempting to support a tapped delay line (TDL)
interface to the stream. Specifically, utilizing a delay line implies that when clas-
sifying exemplar x(t), access to a sequence of lagged instances is supported or:
x(t − lτ), . . . ,x(t − 2τ),x(t − τ),x(t) where l is the depth of the delay line and
τ is the skip size.1 However, each x is a vector of d attributes. Thus, the TDL
implies that each exemplar is a matrix of d × l attributes. On the one hand this
provides a mechanism for capturing temporal properties potentially useful for
characterizing exemplar t. Conversely, the dimensionality of the input space has
now undergone a significant increase, potentially making the task of learning
appropriate models that much more difficult.

The final aspect developed by this work is with respect to benchmarking.
In particular, results for streaming classification tasks are generally expressed in
terms of the prequential error metric [4,13]. Such a metric is incrementally esti-
mated and describes classifier performance as a trajectory through the stream.
The most significant drawback of such a metric, however, is that it represents an
accuracy metric. Unlike approaches to offline batch performance evaluation, it
is not possible to control the distribution of exemplars throughout the (stream)
data set. Hence, local regions of the stream are very likely to be imbalanced, lead-
ing to low levels of class mixing and potentially degenerate classifier behaviours.
Such behaviours are not identified by accuracy style metrics typically assumed
for benchmarking streaming classifiers. In this work we therefore make use of an
online definition for the class-wise detection metric [15].

2 Related Work

Classification under streaming tasks has been addressed from the perspective
of online and ensemble learners for a considerable period of time [11,12,15,17].
1 Note that the label information is limited to that of x(t) alone.



128 A. Vahdat et al.

However, comparatively few works have proposed explicitly evolutionary com-
putation (EC) frameworks for streaming data classification. Most EC effort has
been placed on dynamic optimization tasks where the objective is to accu-
rately track movement in multi-modal optimization tasks [7]. As such, label
information is freely available and there is a much tighter coupling between rep-
resentation space and search space. Several GP researchers have considered the
case of evolving models against a completely labelled stream [2,3,5,10]. How-
ever, other than [20], only non-evolutionary ML researchers have considered the
case of explicitly developing models under label budgets e.g., [16,18].

3 StreamSBB

EC frameworks proposed for dynamic optimization tasks in general make use of
several key components of which support for evolvability, diversity and memory
appear to be critical [7,15]. In this work we are interested in further developing
a recently proposed framework for applying GP to streaming classification tasks
under label budgets [20]. StreamSBB assumes a symbiotic bid-based (SBB) for-
mulation for GP, thus solutions are coevolved into teams of programs [8]. Such
modularity is necessary in non-stationary tasks to provide the basis for address-
ing the evolvability / plasticity requirement [15]. Moreover, multi-class classi-
fication is a natural artifact of the SBB architecture. Figure 1 summarizes the
framework assumed for applying GP to non-stationary streaming tasks.

StreamSBB assumes a non-overlapping window as the generic interface to
the stream (Win(i)). For each unique window location (i), Gap exemplars are

Fig. 1. StreamGP architecture. Win(i) denotes the location of the non-overlapping
window interface to the stream. A sampling policy selects Gap(i) exemplars from
Win(i) without prior knowledge of label information. DS(i) is the data subset (with
labels) against which GP training epochs are performed. The archiving policy defines
which exemplars are retained as i → i + 1.
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sampled with uniform probability after which their corresponding label is req-
uested. Hence, a label budget is enforced. A Pareto archiving policy with an age/
diversity maintenance heuristic prioritizes Gap exemplars for replacement from
the Data Subset (DS) [1,20]. At this point ρ generations are performed where
previous work assumed ρ = 1. As noted in the introduction, such a constraint
impacts on the capacity of StreamSBB to react to changes in the stream. Note
also that for ρ > 1 there is no change to DS content. Only when the position of
the non-overlapping window to the stream shifts to the next ‘chunk’ of stream
data is there an update to DS content. Hence, the index (i) for window location,
label requests, and updates to DS content are all the same.

On the face of it, this is a relatively minor modification to the StreamSBB
framework. However, as will become apparent from Sect. 5 the selection of ρ > 1
has a significant impact on the overall performance of the algorithm. Moreover,
the significance of this is all the more pressing when classification of exemplar t
is performed with reference to a tapped delay line (TDL) describing a sequence
of lagged instances from the stream, i.e. a potentially more descriptive repre-
sentation (see discussion from Sect. 1). The input now takes the form of a d × l
matrix (# attributes by #TDL taps), thus GP needs to rationalize what specific
instances to utilize while the stream continues to pass by.

Finally, anytime operation (as in predicting labels for stream content) is
supported using the current DS(i) content2 to define a ‘champion’ individual.
A class-wise detection rate metric is estimated across DS(i) content for the
non-dominated SBB teams alone (Sect. 4.3, Eq. (2) estimated across DS(i)).
The latter constraint providing some robustness to selecting degenerate SBB
teams. That is to say, DS(i) content is a function of classes sampled from the
stream under a finite label budget, thus could potentially only consist of exem-
plars from a single class.

4 Experimental Methodology

4.1 Streams/Datasets

Four datasets are used for the purposes of benchmarking, two of which are artifi-
cially generated and two represent real world tasks that potentially contain non-
stationary properties. The reason to include two artificially generated streams is
that with real-world datasets the degree of non-stationarity is unknown. Thus,
artificially generated streams enable different forms of concept change to be
embedded.

The artificial data streams3 are denoted “Gradual Concept Drift” and “Sud-
den Concept Shift” and the real-world datasets are “Electricity Demand” [14]
and “Churn Detection”. Electricity Demand has frequently been employed for

2 The only source of labelled data.
3 http://web.cs.dal.ca/∼mheywood/Code/SBB/Stream/StreamData.html.

http://web.cs.dal.ca/~mheywood/Code/SBB/Stream/StreamData.html
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Table 1. Benchmarking dataset properties. d denotes dimensionality, N refers to the
total exemplar count, k reflects class count of datasets, ‘Change’ denotes the % of the
stream in which a label change occurs.

Stream/Dataset d N k ≈Class Distrib. (%) Change

Gradual Concept Drift (drift) 10 150,000 3 [16, 74, 10] 40 %

Sudden Concept Shift (shift) 6 6,500,000 5 [37, 25, 24, 9, 4] 73 %

Electricity Demand (electricity) 8 45,312 2 [58, 42] 15 %

Churn Detection (churn) 16 1,669,593 2 [91, 9] 11 %

streaming data benchmarking tasks [15] whereas the second represents an online
video gaming churn prediction task. The basic properties of the datasets are
summarized by Table 1 in which the last column (or ‘Change’) captures the fre-
quency of label changes through the stream.

Gradual Concept Drift stream [9]: Hyperplanes are defined in a 10-dimen-
sional space. Initial values of the hyperplane parameters are selected with
uniform probability. This Dataset has 150,000 exemplars and every 1,000 exem-
plars, half of the parameters are considered for modification with a 20% chance
of change, hence creating the gradual drift of class concepts. Class labels are
allocated as a function of hyperplanes exceeding a class threshold.

Sudden Concept Shift stream [21]: The stream is created ‘block-wise’ with
13 blocks and each block consists of 500,000 exemplars. Consider a concept
generator tuple of the form: 〈C1%, C2%〉 where C1 and C2 represent two inde-
pendent rule sets defining 5 class tasks. A stream is now defined in terms of
the transition of exemplars from 100 % C1 to 100 % C2 in 10 % increments:
〈100, 0〉, 〈100, 0〉, 〈100, 0〉, 〈90, 10〉, 〈80, 20〉, . . . 〈0, 100〉. A uniform p.d.f. is used
to determine exemplar sequencing in each block.

Electricity Demand characterizes the rise and fall of electricity demand in
New South Wales, Australia, using consumption and price information for the
target and neighbouring regions [14]. As such it is a two class dataset (demand
will either increase or decrease relative to the previous period).

Churn Detection determines the loyalty of a player toward the online video
game he/she is playing. There are 16 features describing each turn of the game
as well as some player-related features. The label indicates whether the player
will (or not) churn within the upcoming 24–48 h time window (horizon). The set
is quite unbalanced with about 91 % being class 0 (will not churn) players who
will keep playing after the time window and only about 9 % being class 1 (will
churn), i.e. most of the time players do not churn within the 2 day period.

4.2 Parameterization of GP

For a test stream of Smax exemplars a non-overlapping window of length Smax/
imax exemplars is assumed where imax are the number of window locations.
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The remainder of the stream passes through at a constant rate. The window
content defines the pool from which the new Gap(i) training exemplars are
sampled and labels requested (Fig. 1).

Model initialization is performed using the first Sinit% of the stream during
the first iinit% of generations. Given that the interface to the stream assumed
by StreamSBB is a non-overlapping window, then this defines the initial window
length and implies that iinit% of the generations are performed against this
window location. Thereafter, the sliding window advances at a fixed rate through
the stream. Both Sinit and iinit parameters are set to 10 percent.

Label budget is the ratio of exemplars whose labels are requested to the total
stream length, or:

label budget (LB) =
imax × |Gap|

Smax
(1)

In other words only imax × |Gap| exemplars are sampled in a stream of length
Smax(≡ N); whereas the total number of generations performed is: imax × ρ.
Only |Gap| = 20 exemplars are added to DS(i) (by the Sampling Policy) at
each window location, Win(i); hence, the label budget in the specific case of the
concept shift data set would be: LB = 1,000×20

6,500,000 ≈ 0.3%.
Given the variation in stream lengths of the benchmarking datasets (Table 1),

different parameterizations for imax will be assumed per dataset (summarized
by Table 2). Note that imax is taken to include the pre-training budget iinit%.
Table 3 summarizes the remaining generic SBB parameter settings assumed in
this study e.g., population size, variation and selection operator frequencies.

Table 2. Stream dataset max. window count (iinit) and label budgets (LB)

Stream/Dataset Smax imax LB

Gradual Concept Drift (drift) 150,000 500 6.7 %

Sudden Concept Shift (shift) 6,500,000 1,000 0.3 %

Electricity Demand (elec) 45,312 500 22.1 %

Churn Detection (churn) 1,669,593 1,000 1.2 %

Parameterization of TDL (x(t − lτ), . . . ,x(t − 2τ),x(t − τ),x(t)) defines
the length (l) and skip size (τ) assumed or tapSize and tapSkip respectively.
The range used for tapSize is [0, . . . , 7], and tapSkip is defined as [1, 2, 4, 8, 16].
Naturally, setting tapSize = 0 implies that classification is performed relative
to x(t) alone. Small values for tapSkip imply more locality (greater resolution)
whereas larger values increase the range covered by the TDL albeit at a lower
resolution.

DS oversampling (or simply referred to as oversampling) reflects the ability
of StreamSBB to decouple the rate at which GP training epochs are performed
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Table 3. Generic SBB parameters. Symbiont population varies dynamically, hence no
size parameter is defined. SBB assumes a ‘breeder’ model of evolution in which Mgap

hosts are removed per generation [8].

Parameter Value Parameter Value

Data Subset (DS) size 120 Host pop. size (Msize) 120

Prob. symbiont deletion (pd) 0.3 Prob. symbiont addition (pa) 0.3

Prob. action mutation (μa) 0.1 Max. symbionts per host (ω) 20

Host pop. gap size (Mgap) 60 Data Subset gap size (Gap) 20

from the rate at which the data subset content is updated (Sect. 3). The degree
of oversampling is parameterized as follows: ρ ∈ {1, 2, 5}; where ρ = 1 implies
one GP training epoch per data subset.

4.3 Detection Rate for Stream Data

An online class-wise detection rate provides the basis for incrementally esti-
mating detection rate throughout the stream while being robust to class imbal-
ance (unlike accuracy or error style metrics) [15]. This is particularly important
under streaming data situations as models are updated incrementally and there-
fore sensitive to the distribution of current window content (typically a skewed
distribution of classes even when the overall class distribution is balanced). The
incremental class-wise detection rate can be estimated directly from stream con-
tent as follows:

DR(t) =
1
C

∑

c=[1,...,C]

DRc(t) where DRc(t) =
tpc(t)

tpc(t) + fnc(t)
(2)

where t is the exemplar index, and tpc(t), fnc(t) are the respective running
totals for true positive and false negative rates up to this point in the stream.

4.4 Comparator Model

The comparator classifier is documented in a recent study of streaming data
classification under label budgets and drift detection [18], and has been made
available in the Massive Online Analysis (MOA) toolbox.4 Specifically, the
Adaptive Naive Bayes (ANB) classifier with budgeted active learning and
drift detection. The ‘random’ active learning strategy was selected as it provided
the baseline in [18] and is closest to the stochastic sampling policy adopted in
this work. Active learning with budgeting is managed under a random exemplar
selection policy in which stream data is queried for labels with frequency set by
the budget parameter.

4 MOA prerelease 2014.03; http://moa.cms.waikato.ac.nz/overview/.

http://moa.cms.waikato.ac.nz/overview/
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5 Results

Benchmarking is performed in three phases in order to assess: (1) the contribu-
tion from tapped delay lines, (2) the role of oversampling, and (3) the perfor-
mance relative to the adaptive Naive Baysian framework. All StreamSBB results
represent the average of 50 runs, thus any StreamSBB performance curve is an
averaged curve.

5.1 Experiments

Tap delay line (TDL) experiment: As per Sect. 4.2, between 1 and 7 histor-
ical instances can be attached to the current instance (tapSize). Such instances
can be offset by 1 to 16 instances far from current instance (tapSkip).

Figure 2 illustrates how increasing tap size from 1 to 3 to 7 collectively
decreases the detection rate of StreamSBB under the concept shift stream regard-
less of tap skip. The original StreamSBB without TDL provides an indication of
the baseline performance (black dashed curve). The other datasets follow a simi-
lar trend of diminishing detection rate while increasing tap size. Varying the tap
skip value provides greater history in the samples retained within the delay line.
The electricity demand dataset was the only data set to respond particularly
favourably to increases to skip size (page limit precludes a supporting figure).

DS oversampling experiment: Figures 3 and 4 illustrate the impact of over-
sampling in terms of detection rate curves for concept drift and shift streams.
Higher detection rates are now maintained throughout the stream. The higher
rate of oversampling appears to be preferable throughout. Further increases to
the oversampling (say to a factor of 10) has only marginal positive effects (results
not shown for clarity). To confirm the significance of the difference between each
pair of curves, the nonparametric Mann-Whitney U test5 of the null hypothesis
is assumed (i.e. does not assume a normal distribution for data). A significance
level of 0.01 is assumed and report the p-value of the test when the null hypoth-
esis is rejected (h = 1) in Table 4. In all cases the higher rate of oversampling is
preferred. Moreover, applying a Bonferroni Correction of 0.01/3 to the p-values
does not change this conclusion. Results for the real-world datasets were also
positive and will be reported later when we compare with the ANB framework
for streaming classification.

Table 4. Mann Whitney U test p-values for comparing different pairs of curves. ×1,
×2 and ×5 define 1, 2 and 5 generations per DS update respectively.

Stream/Dataset ×1 vs. ×2 ×1 vs. ×5 ×2 vs. ×5

Gradual Concept Drift 3.84e-9 5.02e-17 6.30e-13

Sudden Concept Shift 3.92e-8 1.37e-17 9.92e-13

5 Also referred to as the Wilcoxon rank-sum test or Wilcoxon-Mann-Whitney test.
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Fig. 2. Detection rate of StreamSBB for concept shift stream. The dashed curve is the
case of no TDL (i.e. original StreamBB) and the solid colored curves are StreamSBB
using TDL with different tapSize and tapSkip parameters.

Combined TDL and DS oversampling: Figures 5 and 6 show detection rate
curves corresponding to different configurations of StreamSBB with or without
TDL and/or DS oversampling. Note that for clarity the tap skip is fixed to 16
for all curves using TDL. Choosing other tap skip values returns almost identical
curves for all but the electricity demand dataset.

The black solid curve is the original StreamSBB baseline before using TDL or
DS oversampling. The three red curves show the diminishing trend of detection
rate as tap size increases (oversampling disabled). The two blue curves show the
detection rate curves when an oversampling rate of 2 and 5 are applied (TDL
disabled). The black dashed curve is the detection rate curve when a tap delay
line with tap size 1 and DS oversampling of rate 5 is enabled. We call this the
optimal StreamSBB configuration. It is evident that detection rate improves once
both properties are enabled. Table 5 reports the p-values of the Mann Whitney U
test when comparing the optimal StreamSBB (using tap size 1 and oversampling
rate of 5) with the original StreamSBB (disabling TDL and DS oversampling)
under 0.01 significance level.
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Fig. 3. DR on drift stream. Black:
default sampling; Red: ×2 oversam-
pling; and Blue: ×5 oversampling
(Color figure online).
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Fig. 4. DR on shift stream. Black:
default sampling; Red: ×2 oversam-
pling; and Blue: ×5 oversampling
(Color figure online).
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Fig. 5. DR on drift stream. TDL and
oversampling experiments (Color figure
online).
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Fig. 6. DR on shift stream. TDL and
oversampling experiments (Color figure
online).

In summary, the above experiments demonstrated that a tap size of 1 out-
performed a tap size 3 and 7, and the DS oversampling rate of 5 yielded statisti-
cally significantly better results than an oversampling rate of 2. A tap skip of 16
was used to take advantage of farthest historical instance for electricity dataset.
Under these parameter settings the detection rate for the original StreamSBB,
optimal StreamSBB and the Adaptive Naive Bayes (ANB) classifier are displayed
in Figs. 7, 8, 9, and 10.

It appears that ANB has problems when there are sudden changes to the
content of the stream (Fig. 8), whereas both algorithms are effective under the
drift stream (Fig. 7). In all cases ANB is also able to return better detection
rates much faster than StreamSBB. However, during the course of the stream
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Table 5. Mann Whitney U test p-values for comparing Optimal StreamSBB and Orig-
inal StreamSBB detection distributions.

Data set Drift Shift Electicity Churn

p-value 8.46e-18 1.08e-17 7.07e-18 7.06e-18
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Fig. 7. DR curves for Concept Drift
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Fig. 8. DR curves for Concept Shift
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ANB performance decays whereas StreamSBB performance generally continues
to climb, ultimately resulting in StreamSBB reaching or exceeding the perfor-
mance of ANB.

6 Conclusion

The StreamSBB framework has been revisited to support a TDL input represen-
tation. This is of fundamental importance when building classifiers for streaming
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applications. However, the dimensionality of the input space also undergoes a
significant increase. Given that classifiers are built incrementally as the stream
passes, it is necessary to make sure that the ‘rate of evolution’ is significantly
higher than the rate at which the subset of labelled data ‘turns over’. This
is the role of DS oversampling (ρ > 1). Without this, StreamSBB performance
is 10 to 15% worse than originally configured. Moreover, this is performance as
measured in terms of online class-wise detection rate, thus unaffected by merely
improving performance on the majority class. This is the first time that such a
metric has been demonstrated under empirical conditions (previous formulations
being limited to offline evaluation scenarios).

Acknowledgments. The authors gratefully acknowledge support from NSERC Dis-
covery and CRD programs (Canada) and RUAG Schweiz AG (Switzerland) while con-
ducting this research.
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Abstract. A new approach to the evolutionary optimization of large
digital circuits is introduced in this paper. In contrast with evolution-
ary circuit design, the goal of the evolutionary circuit optimization is
to minimize the number of gates (or other non-functional parameters)
of already functional circuit. The method combines a circuit simulation
with a formal verification in order to detect the functional inequivalence
of the parent and its offspring. An extensive set of 100 benchmarks cir-
cuits is used to evaluate the performance of the method as well as the
utilized evolutionary approach. Moreover, the role of neutral mutations
in the context of evolutionary optimization is investigated. In average,
the method enabled a 34 % reduction in gate count even if the optimizer
was executed only for 15 min.

Keywords: Genetic programming · Cartesian Genetic Programming ·
Evolutionary optimization · Combinational circuits · Formal verification

1 Introduction

One of the most serious problems of evolvable hardware, especially in the area
of evolutionary synthesis of logic circuits, is a very time consuming evaluation
of candidate circuits. This problem is known as the problem of scalability. It
causes that the evolutionary synthesis can handle only small and usually simple
problems that are far from real-world problem instances.

In order to improve the scalability of evaluation, application-specific hard-
ware as well as software methods were designed to increase the performance
of the evolutionary optimization and design of logic circuits, see e.g. [2,4–6,9].
These methods enabled to increase the complexity of problem instances that can
be solved in a reasonable time. Unfortunately, the methods are not scalable. The
time needed to evaluate a candidate solution usually grows exponentially with
the increasing number of primary inputs, but the accelerators are usually able to
deliver a linear speedup only. Introducing more domain knowledge and utilizing
more advanced evolutionary methods seem to be the only viable approach for
dealing with the real-world problem instances. A breakthrough in the field of
c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 139–150, 2015.
DOI: 10.1007/978-3-319-16501-1 12
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evolvable hardware was achieved with the introduction of a method which ties
formal verification together with evolutionary optimization and substantially
reduces the scalability issue of the evaluation [7]. Vasicek and Sekanina demon-
strated that the previous empirical limitation of evolutionary design represented
by a digital circuit having about 20 inputs can easily be overcome.

The goal of this paper is to introduce and evaluate a new approach which
extends the method published in [8]. The advantage of the improved approach,
which combines formal verification with simulation-based verification, is the abil-
ity to optimize digital circuits (i.e. to reduce the number of gates, improve power
consumption, delay, etc.) represented at the gate level having hundreds of inputs
and consisting of thousands of gates. The circuits of such a complexity have never
been either evolved or optimized in the field of evolvable hardware at the gate
level directly. In contrast with previously published works which are evaluated
using a few benchmark circuits, an extensive set of 100 benchmarks circuits is
used to evaluate the performance the proposed method. In addition to that, we
would like to identify the key weaknesses of the evolutionary approach and pro-
pose future directions that could help the evolutionary approaches to penetrate
into the area of real applications. In particular, we analyzed the role of neutral
mutations in the context of evolutionary optimization.

2 Evolutionary Optimization of Combinational Circuits

2.1 Cartesian Genetic Programming

Cartesian Genetic Programming can be considered as one of the most efficient
methods for evolutionary design and optimization of digital combinational cir-
cuits [3]. A candidate circuit is represented using an array of gates arranged
in a matrix consisting of nc columns and nr rows. Each gate can be connected
either to the output of a gate placed in previous l columns or to one of the
circuit inputs. It means that no feedback is allowed. This requirement guaran-
tees that only the combinational circuits will arise. Each gate is programmed to
perform one of na-input functions defined in the set Γ . The number of circuit
inputs, ni, and outputs, no, is fixed. Every candidate circuit is encoded using
nc · nr · (na + 1) + no integers. The main advantage of the utilized encoding is
that the size of phenotype is variable even if the size of chromosome is fixed.
The variability is given by the fact that some nodes need not be employed in
encoded circuit.

CGP operates with the population of 1+λ individuals. The initial population
is usually seeded randomly. However, in order to optimize a known circuit (i.e.
to minimize the number of gates), it is useful to seed the initial population by
this circuit. Every new population consists of the best individual of the previous
population and its λ offspring individuals. The offspring individuals are created
using a point mutation operator which modifies h randomly selected genes of
the chromosome. An important rule for selection of the new parent is utilized.
In the case when two or more individuals can serve as the parent, an individual
which has not served as the parent in the previous generation will be selected
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as a new parent. This strategy is important because it ensures the diversity
of population [3]. The algorithm is terminated when the maximum number of
generations is exhausted or a sufficient solution is obtained.

In case of digital circuit evolution, the fitness value of a candidate circuit
is defined as follows. If a fully functional solution is evolved, the fitness value
consist of the number of correct output bits obtained as response for all possible
assignments to the inputs plus the number of unused CGP nodes. Otherwise,
only the number of correct output bits is used. It means that the evolution has
to discover a perfectly working solution firstly while the size of circuit is not
important. Then, the number of gates is optimized. Similarly, delay or power
consumption may be optimized.

2.2 Speeding up the Fitness Evaluation Using a SAT Solver

Contrary to the evolutionary design, the evolutionary optimization of digital
circuits begins with the population seeded by a fully functional circuit. Usually,
the goal is to minimize the number of gates. The most important feature of the
evolutionary optimization is that each candidate solution created by means of
genetic operators must be functionally equivalent with its parent in order to be
further evaluated. This feature was utilized in [7] and furthermore elaborated
in [8]. Equivalence checking was applied to decide whether a candidate circuit
is functionally correct or not. In order to calculate the fitness value, the can-
didate circuit as well as its parent are converted to a Boolean formula whose
satisfiability is investigated using a SAT solver. In fact, the parent serves as
a golden reference for combinational equivalence checking. The advanced ver-
sion, introduced in [8], utilizes another feature of evolutionary-based approach –
the knowledge of the points in a candidate circuit that may break the correct
function. This information is available because each offspring was created by a
mutation from its parent. Hence, only a ‘difference’ (so-called cone of influence)
between the candidate solution and its parent can be calculated. The Boolean
formula can be derived from this ‘difference’. Since the cone of influence usually
represents only a small part of the candidate circuit, the time needed to decide
the satisfiability of the Boolean formula can significantly be reduced.

If the obtained Boolean formula is satisfiable, a negative fitness value is assig-
ned to the candidate circuit because the candidate circuit captures a different
Boolean function. Otherwise, the candidate circuit is functionally equivalent with
the specification and the fitness value is calculated according to the objective of
the optimization. For example, the number of utilized gates was used in [7,8].

The usage of SAT solver helped to reduce the most time consuming part of
the evolutionary algorithm, the evaluation of candidate solutions. In contrast
with a common fitness function based on computing a Truth table, the time of
evolution was reduced by several orders depending on the circuit parameters [8].

3 Proposed Method

In order to improve the performance of the evolutionary optimizer, i.e. to increase
the number of candidate solutions that can be evaluated within a period of time,
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we suggest to combine SAT solver with a circuit simulator which will be used
to disprove the equivalence between a candidate solution and its parent. This
approach is based on the assumption that the time needed to simulate a given
candidate circuit using NV (NV � 2ni) test vectors (tsim) is significantly lower
than the time which is consumed by a SAT solver (tsat).

The correctness of a candidate solution is determined as follows. Firstly, a
circuit simulator is applied to the difference circuit between a candidate solution
and its parent (difference circuit is calculated according to [8]). The simulator
can use up to NV randomly generated test vectors. If there is a test vector which
evaluates the output of the difference to one, the simulator is terminated and a
negative fitness value is assigned to the corresponding candidate solution. Since
it is guaranteed that the candidate solution is not functionally equivalent with
its parent, it is not necessary to call SAT solver to prove that fact. Otherwise,
when all NV test vectors are applied and the output of the difference evaluates
to zero in all the cases, a SAT solver has to be used to prove or disprove the
equivalence because the limited number of test vectors cannot guarantee that
there is not a vector that differentiates the circuits.

The speedup of the proposed method combining a simulator and SAT solver
can be defined as follows:

gain =
tsat

tsim + σfailtsat
=

1
tsim/tsat + σfail

, (1)

where σfail = [0, 1] is a coefficient which determines the fail-rate of the
simulation-based equivalence checking. The σfail may also be understood as
the probability of occurrence of an undetected fault.

If we want to maximize the gain, i.e. the overall performance of the optimizer,
we need to minimize not only the value of the ratio tsim/tsat, but also the
value of σfail. Even if the simulator is e.g. 1000 times faster than SAT solver,
a negligible improvement will be achieved if the value of σfail is close to one.
The value of tsim as well as σfail depend on the number of test vectors that
can be used in the simulator to disprove the equivalence. While tsim increases
linearly with increasing NV and the size of the difference entering the simulator,
σfail decreases with increasing NV . Hence, appropriate value of NV has to be
determined in order to maximize the gain.

4 Experimental Results

4.1 Benchmark Circuits

In order to evaluate the performance of the proposed method, we utilized a set of
100 randomly chosen circuits form QUIP, WLSI and ACM/SIGDA benchmark
set (only circuits with 15 and more primary inputs are considered). These circuits
were synthesized and optimized by ABC1 using ‘choice’ script. The result of ABC
was utilized as the input to the evolutionary optimizer.
1 ABC is a system for sequential synthesis and verification by A. Mishchenko.
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Fig. 1. The number of primary inputs (NPI), primary outputs (NPO) and gates (NG,
right axis) for each benchmark circuit. The X-axis contains the index of benchmark
circuit. The benchmarks are arranged according to the increasing complexity expressed
as 2NPI NG. Note that both Y-axes have a logarithmic scale (The list of benchmark
circuits is available at http://www.fit.vutbr.cz/∼vasicek/gp15).

The basic parameters of the benchmark circuits are given in Fig. 1. The
circuits are arranged according to the increasing complexity. The complexity is
expressed as a time needed to evaluate a candidate solution using a common
fitness function (i.e. the fitness function based on a truth table). In such a case,
the evaluation time is dependent on two factors: the number of primary inputs
(NPI), and the number of gates (NG). As the time needed to evaluate a candidate
solution increases exponentially with the increasing number of primary inputs,
NPI represents the key parameter which has a great impact on the total time.

The least complex circuit, ‘alcom’ circuit with index 1, consists of 106 gates
and utilizes 15 primary inputs and 38 outputs. The most complex circuit, audio
codec controller ‘ac97 ctrl’ with index 100, contains 16158 gates and uses 2176
inputs and 2136 outputs. One half of the benchmark circuits have more than 50
primary inputs and consist of more than 1000 gates.

4.2 Role of Neutral Mutations

The objective of the first experiment was to confirm or reject hypothesis about
the importance of neutral mutations in evolutionary optimization of combi-
national circuits. Two variants of the mutation operator were implemented in
order to evaluate the significance of neutrality. The first implementation does not
impose any special limitations on the mutation operator. The only requirement
is to modify the value of a randomly chosen gene to a different one (but legal).
On the other hand, three restrictions are applied in the second implementation:
(1) inactive gates are never modified; (2) it is not possible to connect an active
gate (or primary output) to an inactive gate; (3) the gene which encodes the
connection of the second input of a single-input gate is never mutated. These
restrictions were introduced in order to mitigate the neutral mutations.

The CGP parameters were chosen as follows: nc = NG, nr = 1, l = NG,
λ = 1, h = 2, Γ = {BUF, INV, AND, OR, XOR, NAND, NOR, XNOR}. These
parameters were chosen according to the [8]. No redundancy in CGP encoding

http://www.fit.vutbr.cz/~vasicek/gp15
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is used; the number of nodes is equal to the size of a benchmark circuit obtained
from ABC. The goal of CGP is to minimize the number of utilized gates, i.e.
the fitness value is equal to the number of active CGP nodes. The fitness func-
tion utilizes SAT solver only. In order to perform a statistical evaluation, fifteen
independent evolutionary runs were executed for each benchmark circuit. Note
that median value will be used to analyze the impact of a particular parame-
ter because no Gaussian distribution can be observed among the benchmarks.
The evolution is terminated after 15 min2. We do not use the number of evalu-
ations as a termination condition because this number is very sensitive to the
structural properties of an optimized circuit and it is impossible to determine
an appropriate value in advance.

The performance of both approaches is evaluated using the number of gener-
ations (Gimpr) that enabled an improvement of the fitness value. This parameter
can be seen as a measure of mutation operator’s performance (i.e. the ability to
generate a candidate solution which is valid and simultaneously improved). The
reason behind the usage of this metric is that the number of evaluations can-
not be compared directly because the neutral mutations are detected and the
created candidate solutions do not enter the time-consuming fitness evaluation
procedure (it is guaranteed that they have the same fitness value as their parent)
resulting in the fact that significantly more generations can be produced if the
occurrence of neutral mutations is high.

Let G = Gvalid + Ginvalid be the total number of generations where Gvalid

is the number of generations in which a valid candidate solution (i.e. function-
ally equivalent with a parental circuit) is generated from a parental solution
by applying the mutation operator. Then, Gvalid can be expressed as Gvalid =
Gimpr+Gnoimpr+Gneutral, where Gneutral is the number of neutral mutations in
the sense defined in previous paragraphs. Gnoimpr represents the candidate solu-
tions in which at least a single gene was changed but the fitness value remained
unchanged. Note that Gneutral = 0 in the second implementation because no
neutral mutations are allowed.

The evaluation of both variants of the mutation operator is shown in Fig. 2.
The performance is expressed as the ratio Gimpr/(Gvalid − Gneutral) calculated
at the end of each 15-minute evolutionary run, averaged over all fifteen runs.
Despite the stochastic nature of evolutionary algorithm which leads to some
variances (see the error bars in Fig. 2 showing the magnitude of standard devia-
tion), we can conclude that the performance of both implementations is almost
identical. In average, 2.34 % of valid generations were produced when the neutral
mutations were enabled and 2.42 % for the opposite case. For 75 benchmarks,
the variant with disabled neutral mutations performs approx. (30 ± 35) % better
in average. The performance was worsened in 25 cases by approx. (9 ± 10) % in
average.

According to the obtained results, we can conclude that it has no advantage
to support neutral mutations in this scenario (i.e. if the goal is to minimize the

2 A PC equipped with Intel Xeon X5670 (24 cores, 2.93 GHz, 12 MB cache), 32 GB
RAM and 64-bit CentOS Linux was used.
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Fig. 2. The mean number of generations that enabled an improvement of fitness
value when the neutral mutations were enabled (disabled). It is expressed as the ratio
Gimpr/(Gvalid−Gneutral). The mean value obtained as an average over all benchmarks
is represented by dotted line whereas the median value is depicted by dash-line.

number of gates in a fully functional circuit). In fact, the neutral mutations have
a negative impact on overall performance because the probability of mutation of
an active gene decreases with the increasing number of inactive genes. Even if
the neutral mutations are detected and the corresponding candidate solutions do
not enter the time-consuming fitness evaluation procedure, the performance of
the evolutionary optimizer deteriorates as the circuit is reduced because a great
portion of neutral mutations is generated.

Looking at the results shown in Fig. 2, we can identify that the performance
of the mutation operator is very sensitive to the optimized circuit. One can
admit that this issue could be related to the impossibility to improve the num-
ber of gates of a given benchmark circuit, but this is certainly not the case. It
can be easily shown that the utilized circuits are not optimal if the number of
gates is considered. Taking into account that the ratio between Gvalid and G is
approx. 0.5 % in average (see Fig. 3), there are circuits for which the mutation

Fig. 3. The number of generations in which a valid candidate solution was produced,
represented as a ratio Gvalid/(Gvalid + Ginvalid). The results are obtained from the
second implementation, where the neutral mutations are disabled. The median value
is shown using a dash-line.
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operator performs very poorly. Less than 0.007 % of the total number of genera-
tions enabled the improvement of the fitness value for one half of the benchmark
circuits. On the other hand, there are instances showing a significantly better
convergence, e.g. more than 0.12 % of the total number of generations leading
to the improvement of the fitness value were produced in the case of circuit 66.

Unfortunately, there is no obvious relation between the circuit complexity (as
defined in Sect. 4.1) and performance of the mutation operator. Thus, we believe
that the performance of the mutation operator is in a close relation with the
internal structure of an optimized circuit. Hence there are two possibilities how
to improve the performance of the evolutionary optimizer. We can (a) increase
the number of generations that can be evaluated within a time period and/or
(b) to design a new mutation operator with better performance.

4.3 Efficiency of the Proposed Approach

To determine the value of σfail and its dependency on NV , three experiments
were performed. A 64-bit parallel simulator which is able to calculate response to
64 input combinations in a single pass was utilized. The simulator was enabled
to use (a) a single pass (NV = 64), (b) up to 16 passes (NV = 1024), and
(c) up to 32 passes (NV = 2048) to disprove the equivalence. Only the cone of
influence determined according to the points of mutation enters the simulator.
The experimental setup and CGP parameters were the same as described in
previous section. The mutation operator with suppressed neutral mutations was
employed.

The obtained results are shown in Fig. 4. The value of σfail was calculated
at the end of fifteen 15 min evolutionary runs. The median value of NV can
be approximated by the exponential trendline σfail ≈ 3.2693NV

−0.611 with
R-squared equal to 0.9955. It means that σfail noticeably decreases at the begin-
ning (i.e. for small NV ) and then, as NV increases, the yield is smaller and
smaller. In most cases, σfail is lower than 0.1 even if a single pass is used. How-
ever, there are cases with surprisingly high ratio of σfail that remains above 50 %

Fig. 4. Fail-rate σfail of simulation-based equivalence checking shown for various num-
ber of randomly generated test vectors (NV ) that are utilized by the circuit simulator
to disprove functional equivalence between candidate solution and its parent.
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Fig. 5. Average time needed to perform equivalence checking using (a) SAT solver (see
tsat) and (b) simulator with a single pass (see tsim).

even if 2048 randomly generated input combinations were utilized (see bench-
marks 26, 47, 55, 77 and 84). Considering the parameters of those circuits (see
Fig. 1), we suppose that this issue is probably related to the high number of
utilized gates which may contribute to a fault masking effect.

The σfail corresponding to the number of test vectors that are used to max-
imize value of Eq. 1 is represented by lines labeled as NV = auto in Fig. 4. We
can observe that less than 16 passes (i.e. less than 1024 test vectors) were used
in most cases. These instances can easily be identified by comparing the value
of σfail for NV = auto and NV = 1024; the lower number of test vector implies
higher σfail. Unfortunately, the ratio tsat/tsim remains very low for the five
benchmarks discussed in previous paragraph (see Fig. 5). Hence only a few test
vectors can be utilized which results in the fact that the fail-rate remains very
high. Thus only a negligible speedup is expected in these cases.

The speedup of the proposed method combining SAT solver with simulator is
given in Fig. 6. The speedup is calculated using the number of candidate solutions
that can be evaluated within 15 min. The number of test vectors was determined
adaptively during the evolution as follows. At the beginning of the evolution, a

Fig. 6. Speedup of the proposed method which combines SAT-based and simulation-
based equivalence checking in the fitness function. For more than 50 benchmark circuits,
adaptive setting of the number of test vectors (see NV = auto) increased the speedup
approx. twice compared to a single-pass simulation (i.e. 64 test vectors). Note that the
y-axis has a logarithmic scale.
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single pass (i.e. 64 test vectors) is utilized. Then, the number of passes doubles
every 10 s until a decrease in the performance is detected. Finally, the best value
is determined and used. The number of test vectors is adaptively modified during
evolution if there exists a different value which provides better performance.

According to the obtained results, the achieved speedup is higher than 5.28
for half of the benchmark circuits. The performance of the implementation
which utilizes the adaptive number of test vectors is approximately two times
higher compared to the implementation with fixed number of test vectors whose
speedup factor is approx. 2.34. This finding can be considered as a very posi-
tive result since the introduction of the simulator can remarkably improve the
performance of the evolutionary optimizer.

Similarly to our previous findings regarding σfail, the value of speedup notice-
ably varies across the benchmarks. There are cases for which the speedup factor
exceeded 30. On the other hand, nearly no improvement was obtained for bench-
marks 26, 47, 55, 77, and 84. According to our expectation, the speedup is close
to 1.0 in these cases.

We analyzed the obtained results and identified that there is a relation
between σfail and speedup. If σfail ≥ 0.05, the higher σfail implies a lower
speedup. However, this relation does not hold for σfail < 0.05 where the speedup
varies in one order independently on the value of σfail. In addition to that, we
can observe decreasing of the tsat/tsim ratio as the complexity of a benchmark
circuit increases. Even if tsat remains relative stable across the benchmarks (see
Fig. 5), tsim increases with the increasing complexity. The ratio tsat/tsim was
decreasing from approx. 350 for less complex circuits to 10 for the most complex
circuit. As a consequence of that, a relative small number of test vectors should
be used in the simulator.

4.4 Performance of the Circuit Optimizer

The impact of the proposed method on the quality of optimization is shown in
Fig. 7. The implementation which utilizes SAT solver and circuit simulator with

Fig. 7. Reduction of the benchmark circuits (relative to the original size) obtained after
15 min of the optimization is shown for (a) sat-based optimizer and (b) the proposed
approach which combines SAT solver with simulator. The best results obtained from
a 24-hour evolutionary optimization are denoted by triangles.
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adaptive number of test vectors is compared against the SAT-based implemen-
tation introduced in [8]. No neutral mutations were enabled. The experimental
setup is the same as used in previous section.

In all cases, the combination of a SAT solver and circuit simulator brought
an improvement. The size was reduced by 13 % in average. Still, there are cases
showing a very slow convergence caused mainly by the time consuming evalua-
tion. If we compare average Gvalid of the four aforementioned benchmarks (26,
47, 55, 77, and 84) with Gvalid of the rest of the benchmarks, we can observe
that the value is two orders of a magnitude lower. This explains why nearly no
improvement was achieved within 15 min in these cases.

5 Conclusion

We introduced a new approach to the evolutionary optimization of large digital
circuits which exploits the combination of a circuit simulator and a formal verifi-
cation. Due to the usage of a simulator with adaptive number of test vectors, the
time of evaluation was significantly reduced for 100 complex benchmark circuits
in comparison with a method published in [8]. In the worst case, the time of
evaluation remains the same.

In addition to that, we investigated the role of neutral mutations that are
believed to be an important part of CGP. According to the obtained results, we
have concluded that it has no advantage to support neutral mutations for circuit
optimization (i.e. in the case that the number of gates is minimized for a fully
functional circuit). This can be understood as an important result not only from
theoretical but also from practical point of view because the neutral mutations in
fact have negative impact on the performance of the evolutionary optimization.
Our findings related to the role of neutrality correspond with observations on
the evolutionary design of parity circuits [1].

The performance of the proposed method was evaluated on an extensive set
of real-world benchmark circuits having tens to hundreds of inputs and consisting
of hundreds to thousands of gates. For more than half of the benchmark circuits,
approximately five times higher number of evaluations was performed within the
same time period compared to the approach that utilizes only a formal approach.
While the latter method was able to reduce the circuits by 21 % in average, the
proposed method is able to reduce the circuits by 34 % using the same amount
of time. Considering the fact that the runtime of the optimization process was
15 min, the obtained results are very encouraging.

We demonstrated that the circuit optimization conducted by CGP is applica-
ble on complex real-world digital circuits. However, we simultaneously shown
that there are instances for which the proposed method can bring only a mar-
ginal or none improvement in the performance. Our method is based on the
assumption that evolutionary-based approach generates a large number of invalid
candidate solutions that can be detected very quickly by means of applying a
few test vectors on the inputs (i.e. that the time consuming formal verification
can be replaced with a faster simulation-based approach). While this assumption
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is valid and an enormous number of invalid candidate solutions are generated
during evolution, there exist circuits that are hard for the simulation-based veri-
fication. We believe that the evolutionary-based approach requires to generate a
large number of candidate solutions to compensate the poor performance of the
mutation operator. We observed that at least 5 · 104 valid candidate solutions
were generated within 15 min for problem instances exhibiting a reasonable con-
vergence. Unfortunately, approx. two orders of a magnitude (i.e. 106) candidate
solutions have to be generated to obtain 5 · 104 valid candidate solutions.

One of the possibilities how to substantially improve performance of the
evolutionary optimization is to orient the future research towards improving of
the mutation’s operator performance. Another option is to replace the randomly
generated test vectors with a smart selection of test vectors which can quickly
detect the inequivalence. One of the possibilities is to build a database of test
vectors using the counter examples that are produced by a SAT solver during
verification.

Acknowledgments. This work was supported by the Czech science foundation
project 14-04197S.
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Abstract. IBM Watson is an intelligent open-domain question answering
system capable of finding correct answers to natural language questions
in real-time. Watson uses machine learning over a large heterogeneous
feature set derived from many distinct natural language processing algo-
rithms to identify correct answers. This paper develops a Genetic Pro-
gramming (GP) approach for feature selection in Watson by evolving
ranking functions to order candidate answers generated in Watson. We
leverage GP’s automatic feature selection mechanisms to identify Wat-
son’s key features through the learning process. Our experiments show
that GP can evolve relatively simple ranking functions that use much
fewer features from the original Watson feature set to achieve compara-
ble performances to Watson. This methodology can aid Watson imple-
menters to better identify key components in an otherwise large and
complex system for development, troubleshooting, and/or customer or
domain-specific enhancements.

Keywords: Genetic Programming · IBM Watson · Question answer
ranking · Feature selection

1 Introduction

IBM Watson is an intelligent open-domain question answering (QA) system
capable of answering questions posed in rich natural language in real-time [7].
The open-domain QA problem is one of the most challenging in computer science
and artificial intelligence as it leverages aspects from information retrieval (IR),
natural language processing (NLP), knowledge representation, machine learn-
ing (ML) and complex reasoning. Watson gained international attention after
beating human champions on the American TV quiz show, Jeopardy! [7]. Since
Jeopardy!, Watson has shown success in many other commercial domains such
as health care, finance and customer engagement [8].

IBM Watson uses the DeepQA architecture, a massively parallel probabilis-
tic and evidence-based approach, to search and reason over large volumes of
unstructured information [9]. DeepQA uses ML to rank candidate answers gen-
erated by the system in response to an input question using a large extremely
heterogeneous feature set derived from many distinct and independently devel-
oped NLP and IR algorithms [10]. However, there is need by Watson developers
c© Springer International Publishing Switzerland 2015
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and implementers to better understand the feature contributions in the data,
in particular, to find the most useful features in the system for a given task
or domain. This knowledge can aid Watson implementers identify key compo-
nents for troubleshooting and/or delivering faster customer or domain-specific
enhancements in an otherwise large and complex system.

Genetic Programming (GP), an evolutionary ML algorithm, has shown suc-
cess in feature selection [4,12] and in the IR domain to automatically learn
numeric ranking functions to order relevant or non-relevant web documents
[16,18]. Learning IR ranking functions is difficult as these are typically man-
ually designed by experts based on heuristics and statistical theories. However,
feature selection is not a major requirement in these works where, unlike Wat-
son, these web ranking tasks typically use small, carefully selected (by domain
experts) and relatively homogeneous feature sets [16,17].

This paper attempts to bridge these two domains (GP feature selection and
question-answer ranking). Our main goal is to develop a two-phase domain-
independent GP approach for feature selection in IBM’s NLP question answering
system, Watson. In the first phase, we leverage GP’s automatic feature selection
mechanisms to evolve simple (small) but highly accurate functions to rank and
classify candidate answers generated by Watson. Here we limit the evolved tree
sizes to increase selection pressure for good features during evolution. In the
second phase, we leverage GP’s model transparency/interpretability properties
to mine the pool of evolved GP trees of varying complexity/size (from the first
phase) to automatically extract feature subsets; these represent key features
automatically identified through the learning process. We evaluate the proposed
GP approach on English general knowledge questions with factoid answers in
English Wikipedia. Our experiments involve two main investigations. The first
evaluates the performance of the evolved GP functions to directly rank and
classify answer answers generated by Watson. The second evaluates Watson’s
performance (using Watson’s ML framework) using feature subsets automati-
cally generated from the pool of evolved GP trees. Our experiments find that
GP can successfully identify very small feature subsets (using fewer than 8 %
of all Watson’s total features) that perform to within 90 % Watson’s overall
accuracy.

The rest of this paper is identified as follows. Section 2 introduces relevant
background in Watson and related work in GP. Section 3 outlines the GP app-
roach for question answer ranking. Section 4 presents the experimental results
which applies GP directly to the answer ranking task. Section 5 presents our
methodology for building our GP feature subsets and presents the feature selec-
tion results. Section 6 presents our conclusions and future work.

2 Background and Related Work

This section introduces Watson in more detail, presents related work in GP for
feature selection and answer ranking, and outlines the main challenges for our
approach.
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2.1 Watson Overview

In 2011, Watson gained international attention when it beat two human cham-
pions on the American TV quiz show, Jeopardy! [7]. Here factoid-type general
knowledge questions over are posed to competitors in rich natural language,
where the first to buzz in with a correct answer wins points. Watson uses
the DeepQA architecture, a massively parallel, probabilistic and evidence-based
approach, to answer natural language questions in real-time [9]. The DeepQA
pipeline uses four main phases to answer a question. Question Analysis per-
forms a detailed syntactic and semantic analysis of the input question using
various NLP technologies such as a natural language parser and named entity
recognizers. Hypothesis Generation builds candidate answers to a question
by searching over a corpora (such as Wikipedia, as used in this paper) and
extracting potential answers from the search hits. Hypothesis Scoring uses
many NLP algorithms to score the relevance of candidate answers to the ques-
tion. Each scoring algorithm outputs one or more features that measure how
well the evidence supports a candidate answer (the Watson configuration in this
paper uses 354 features). In Final Merging and Ranking (FMR), similar
candidate answers are merged and ML is used to rank the merged set of answers
based on their feature scores. Here the top-ranked candidate is selected as the
final answer to a given question.

The ML phase in Watson estimates the probability that a generated candi-
date answer (in response to a question) is correct [10]. A cascade of (binary)
logistic regression classifiers is employed in successive phases, where all outputs
from one phase are passed as input to the classifier in the next phase. Once
the probabilities of all candidate answers for a given question are obtained, the
candidate with the highest probability is selected as the final answer to a given
question. Each logistic regression classifier is trained (offline) using existing ques-
tions and their correct answers.

2.2 Related Work in GP

Feature Selection. Watson generates a large feature set (354 features) in its
ML phase. Within IBM Watson, Pearson’s Coefficient and Gram-Schmidt ortho-
normalising (GSO) have been used for feature analysis to estimate feature infor-
mative in the data [10]. Both are deterministic numerical analysis methods to
rank features in order of decreasing relevance to the target output (class label).
However, both offer naive and “shallow” feature analysis as they only consider
a linear combination of features. Machine learning algorithms such as Genetic
programming (GP) can address this limitation by formulating feature selection
as a combinatorial optimization problem. GP has been widely used for feature
selection in the classification domain for two main tasks 2, mainly due to the
implicit feature selection and construction mechanisms inherent in the evolution
(see Sect. 3.3 for details on these mechanisms).

The first task is to find useful feature subsets from the original set (that
maximizes some criterion) [1,3]. In [3], several GP classifiers are evolved (using
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the full feature set) and the most frequently used features from these GP trees
are extracted; a second classifier is then evolved using only the extracted fea-
tures. In [1], only feature terminals are used in the GP trees and tree depth is
strictly limited to increase selection pressure for features in the evolved trees.
Our work combines aspects from both these approaches: we limit GP tree depth
for feature selection and extract frequently used features from the evolved GP
ranking functions. The second task is to construct new composite features (via
arithmetic operators on the original features) [13,15]. GP approaches for fea-
ture construction are split into filter or wrapper-based approaches. The former
constructs features before classifier induction (e.g. [13]), whereas the latter inter-
weaves feature construction and classifier induction (e.g. [15]). In both cases, the
evolved GP trees represent new constructed features.

Answer Ranking. GP has typically been used to learn numerical ranking
functions to order web documents from user queries, where documents are either
is relevant or non-relevant (two classes) [5,6,16–18]. These approaches all use
a tree-based GP representation, a relatively similar function/terminal set (to
evolve numeric expressions), and a fixed tree depth to address bloat. All also
use a ranking-based IR measure (such as Mean Average Precision) directly in
the fitness function. By contrast, older work in this area tend to approach this
problem in two-steps: solve as a classification problem and then use loss functions
to train a ranking model. These works typically compare the evolved GP trees
(on a given data set) to well-known (static) ranking functions manually designed
by experts (such as Okapi-BM25). All emphasize that GP can perform as well
as, or better than, the established manually designed functions.

In [5], GP outperforms Okapi-BM25 on news-wire document ranking from
the Associate Press. In [17], multiple evolved GP functions and Okapi-BM25
are aggregated into a logistic regression function (as composite features) for
improved accuracy, where this aggregate is shown to outperform individual com-
ponents. In [6], GP functions are evolved for individual user search queries which
outperform two established ranking functions (Okapi-BM25 and PTFIDF). In
[16], GP is shown to evolve accurate general-purpose ranking functions across
several unstructured IR tasks from the TREC (Text Retrieval Evaluation Con-
ference) collection.

The GP representation in our paper is similar to these works except for
two main differences. We use an extra conditional operator (if) for better pro-
gram flexibility, and a finer-grain ranking measure in the fitness function (Mean
Reciprocal Rank).

Major Challenges in Question-Answer Ranking. A major limitation in
the related works are the comparatively small number of features considered in
a given problem. Most use roughly 10 features [5,6,17], while other use 21 [16]
or 40 [18] features. This means that feature selection is not a major require-
ment in these works. As a result, GP for feature selection in this domain has
previously been explored (to our knowledge). By comparison, Watson uses 354
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features – a considerably larger feature-space for the GP evolutionary search.
Furthermore, the feature in the related works above tend to be relatively homo-
geneous. These are typically classic IR document/corpus statistics (such as term
frequency, inverse document frequency, document length, etc.), based on tried-
and-tested a priori domain knowledge in web document ranking. In contrast,
Watson’s features are extremely heterogeneous as they are derived from a vari-
ety of distinct and independently developed NLP algorithms. Features may be
also radically different between questions (e.g. depending on the type and/or
structure of the question). Another challenge is the large class imbalance inher-
ent in the data. There are potentially hundreds of incorrect candidate answers
generated by the system in response to a question compared only one or two
correct answers.

3 GP Approach

This section outlines our GP representation, fitness function for question answer
ranking, GP mechanisms for feature selection and other evolutionary parameters.

3.1 Evolving GP Functions for Ranking

For a given input question (e.g. “What is the capital city of Ireland?”), each
candidate answer generated by Watson has a string label, an associated feature
vector, and its relevance judgment (class label) [10]. The class label (correct
or incorrect) is determined by comparing the candidate answer label to the
ground-truth1 containing correct answers for each question in a question set.
General knowledge questions with factoid answers are considered, e.g., “Dublin”,
“Cork” or “Belfast” represent (factoid) candidate answers generated by Watson
in response to the above question (where the answer(s) judged as correct by
the ground-truth is highlighted in bold text).

The goal of an evolved GP function is to rank the candidate answers gen-
erated from the Watson system for each input question. Once all candidate
answers for a question are ranked, the candidate in the first position is taken
as the final answer. This ranking is based on the raw output of the evolved GP
expression when the expression is evaluated on a candidate answer feature vec-
tor. The question is considered correctly answered if the top-ranked candidate
answer according to the ranking function (in this GP, an evolved GP tree) has
the correct class label. Otherwise, if the top-ranked candidate answer has the
incorrect, the question is not answered correctly.

A tree-based structure is used to represent the evolved genetic programs [12].
Each GP solution represents a mathematical expression that outputs a (floating
point) number when evaluated on a given input (candidate answer feature vector
to be ranked). We use feature terminals (features) and constant terminals (ran-
domly generated floating point numbers), and a function set comprising of the
1 The ground-truth dictionary is manually created and curated by the Watson devel-

opment team.
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four standard arithmetic operators, +, −, ×, and %, and the conditional operator
if. The +, − and × operators have their usual meanings (addition, subtraction
and multiplication) while % is protected division (usual division except that a
divide by zero returns zero).

The conditional if function takes three arguments and returns either the
second argument if the first is negative, or the third argument otherwise. This
function allows programs to contain expressions in different regions of feature-
space and allows discontinuities rather than insisting on smooth functions. As
mentioned (in Sect. 2.2), related works have not previously used a conditional
if. This operator has been shown to improve program flexibility in classifiers [2].

3.2 Fitness Function for Answer Ranking

A statistical measure of rank, the Mean Reciprocal Rank (MRR), is used as
the GP fitness function. The reciprocal rank of a question is the multiplicative
inverse of the rank of the first correct answer (answer with correct class). For
a set of questions Q, the MRR is the average of the reciprocal ranks, as shown
in Eq. (1).

mrr =
1
|Q|

|Q|∑

i=1

1
reciprocal ranki

(1)

where

reciprocal ranki = arg max[GP(ai,0),GP(ai,1), ...,GP(ai,m)]

In the equation above, GP(ai,j) is the output of an evolved GP expression
when evaluated on the jth candidate answer a for question i, where m is the
number of candidate answers for question i. For example, the reciprocal rank
will be 2 for the ordered list [Belfast, Dublin, Cork] – as the correct answer is
in position two. The reciprocal rank will be 0 if no correct answers are generated
for a question. If multiple correct answers occur in the list, the highest reciprocal
rank is used.

The question accuracy (number of questions correctly answered) measure
metric can also be used in GP as the fitness function. We chose the MRR for the
fitness function as it is much more fine-grained measure than question accuracy.
The MRR reflects subtle changes in the ranking across all candidate answers;
whereas question accuracy only takes into account the top-ranked candidate
answers, ignoring the ranked positions of the other candidates. For example,
give the two following two ranked lists:

list1 = [Belfast, Cork, Dublin] (reciprocal rank is 3)
list2 = [Belfast, Dublin, Cork] (reciprocal rank is 2, so ranking is better).

Here the question accuracy for both lists are zero as the top-ranked answer in
both lists are incorrect. However, the MRR judges that list2 is better-ranked
than list1 as its reciprocal rank is higher.
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3.3 GP Tree Size and Other Evolutionary Parameters

By imposing a strict limit on the maximum tree depth we aim to leverage GP’s
implicit feature selection and construction properties (due to stronger selection
pressures for good features) in the evolution [4]. Since GP trees have variable
lengths, not all features can be instantiated as a tree node in an individual
when the tree depth is limited to relatively small GP trees. Implicit feature
selection is performed through selection pressures for available nodes in a tree,
as only a limited number of features can be instantiated in a individual during
the evolution. Implicit feature construction is performed in a similar manner by
the application of arithmetic operations in the trees (to process features). Using
a limit on GP tree depth also helps to address bloat and overfitting. Note that
the evolved trees do not have to be fully-formed.

In the experiments, we explore six maximum GP tree depth settings (between
4 and 9) where the maximum number of features used in an evolved GP tree
depends on the maximum tree depth. The maximum number of leaf nodes
(potential feature nodes) in a fully-formed GP tree is ArD where Ar is the high-
est arity in the GP function set (e.g. 3 due to if operator) and D is the maximum
tree depth. Similarly, the maximum number of nodes in a fully-formed GP tree
is (ArD+1−1). However, these represent generous estimates as it is unlikely that
the evolved GP trees will be fully-formed, have all internal tree nodes set to the
if operator, and have all leaf nodes set to feature terminals (no constant termi-
nals). In practice, Ar is closer to 2 as the other arithmetic operators take two
arguments (this can be seen in our experiments in Table 1 in the next section).
Using this as a guide, the maximum number of feature nodes in the evolved
GP trees can be between 16 and 512 for depths 4 and 9, respectively (but this
estimate is also generous due to the same reasons previously discussed). As the
Watson system has 354 total features, a maximum tree depth of 9 will allow
many different feature combinations to be used in a single GP tree.

For the other evolutionary parameters, the ramped half-and-half method
is used for generating genetic programs in the initial population and for the
mutation operator [12]. The population size is 500. The crossover, mutation and
elitism rates are 60 %, 35 % and 5 %, respectively, and the tournament selection
size is 7 (these settings are recommended in the GP literature [14]). The evo-
lution is allowed to run for maximum of 50 generations or terminated early if
a solutions with optimal fitness is found. In practice, the second constraint was
never satisfied on the training set. We also experimented with several settings
for the maximum number of generations (25, 50 and 100), but found very little
(if any) improvement in fitness after 50 generations.

4 Experimental Results: GP for Answer Ranking

This section outlines the Watson data, experiment setup and evaluation mea-
sures, and presents the results using GP directly for answer ranking (to learn
the feature subsets).
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4.1 Experimental Data

A variant of the Jeopardy! challenge Watson pipeline [7] is used to generate
the experiment data (candidate answers to be ranked). Two English question
sets consisting of 1200 training and 698 test questions are used as input to the
Watson system. Both sets contain general knowledge questions with factoid-
type answers (such as the example shown in Sect. 3.1) in the ingested Watson
corpus (in this case, English Wikipedia). This means that Watson searches over
English Wikipedia for answers where source Wikipedia XML documents2 are
first ingested into the system (ingestion is the process of transforming and loading
documents for use by Watson). These questions and answer sets were originally
gathered by the Watson team [7]. In its ML phase, this Watson configuration
uses a two-phase machine learning cascade, i.e., two connected binary logistic
regression models, where each model is trained using the full feature set (354
features) to perform answer ranking [10].

The Watson scoring algorithms output 118 base features (floating point num-
bers) for each generated candidate answer. Each of these 118 base features are
post-processed to further generate two derived features, giving a total feature
list of 354 features [10]. The first derived feature denotes whether a given scoring
algorithm fired or not (derived feature values are 1.0 or 0.0, respectively). The
second derived feature is the normalized value of each base feature across all
feature vectors (using the minimum and maximum feature values). Due to IBM
disclosure purposes we are unable to provide details on the type of features used
in Watson.

As mentioned (in Sect. 2.2), there is a large class imbalance in the data as
many more incorrect candidate answers generated compared the relatively few
correct answers for a question. The 1200 training questions generated 204829
total candidate answers, split into 2282 and 202547 correct and incorrect answers,
respectively. The 698 test questions generated 164069 total candidate answers,
split into 2023 and 162046 correct and incorrect answers, respectively.

4.2 Experiment Setup

The goal of these experiments is to evolve GP ranking functions of varying
complexity/size and evaluate the accuracy of these evolved ranking functions
when applied directly to the test questions. The experiments use different GP
tree depth limits to control the complexity/size of the evolved functions, where
the pool of evolved GP trees forms the basis for feature mining in the next
section. To evaluate accuracy, we use the correct@1 metric. This is the percentage
of questions correctly answered by an evolved GP function over all questions in
the test set, where a question is correctly answered if the top-ranked candidate
answer has the correct class label. For IBM disclosure purposes we are unable to
provide direct accuracy values from our experimental results. Instead, we provide
GP’s accuracy proportional to Watson’s accuracy (both on the test set of 698
questions), as shown by Eq. (2).
2 Obtained from: http://dumps.wikimedia.org/.

http://dumps.wikimedia.org/
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correct@1prop =
correct@1GP

correct@1Watson
× 100% (2)

In Eq. (2), the numerator is the accuracy of an evolved GP function, and the
denominator is the accuracy of the Watson system used to generate the exper-
iment data (from Sect. 4.1). The same training set (1200 questions) is used for
Watson and GP. Values for Eq. (2) will be between 0 and 100 where the higher
the value, the better the GP accuracy proportional to Watson.

4.3 GP Experiment Results

Table 1 shows the results of four GP configurations (GP tree depth limits of 4,
5, 8 and 9) when GP used for candidate answer ranking over 50 runs on test
set. This includes the correct@1 question accuracy, the GP tree node counts
(indicating model size), and feature node counts in the evolved trees (each feature
node is counted exactly once in a tree). Table 1 shows both the average and best-
of-run results over 50 runs, where the best-of-run GP tree is selected based on
highest train accuracy over the 50 runs. The evolved GP tree with the maximum
achieved test accuracy over 50 runs shown in parenthesis (next to best-of-run
results); this is included to contrast the selected best-of-run model with the best
possible GP performance on the test set. We experimented with six GP tree
depth limits (4–9) but omit 6 and 7 for brevity and because our main goal here
is to highlight the lower and upper bounds for GP accuracy (using the fewest
number of model features).

Table 1 shows that GP achieves very good accuracy in relation to Watson,
in particular, the best-of-run evolved GP trees. These GP functions use much
fewer features than Watson and only employ one function for ranking compared
to multiple (logistic regression) models in Watson. The best-of-run evolved GP
trees for depths 4 and 8 achieve 85.6 % and 89.9 % accuracy, respectively, using
only 8 and 21 features, respectively, compared to Watson (354 features). Even
though GP cannot achieve 100 % accuracy (to match Watson accuracy), these
results nevertheless represent a significant feature reduction. These evolved GP
function provide a valuable indication of the key features in Watson, which is
the main goal of our investigation. For example, the 21 features identified in the

Table 1. Results of four GP configurations when GP used for candidate answer ranking
over 50 runs on test set (± is standard deviation). The best-of-run GP tree over 50
runs is selected based on highest train accuracy (maximum achieved test accuracy over
50 runs shown in parenthesis).

GP Config. Average over 50 runs Best-of-run GP tree over 50 runs

Test Acc. #Tree Nodes #Feat. Nodes Test Acc. #Tree Nodes #Feat. Nodes

Depth 4 82.3 ± 2.7 17.1 ± 3.3 6.8 ± 1.2 85.6 (90.0) 17 (15) 8 (7)

Depth 5 83.1 ± 2.3 29.7 ± 5.2 8.2 ± 1.5 82.2 (91.1) 24 (32) 10 (10)

Depth 8 83.7 ± 2.3 111.7 ± 39.5 26.6 ± 7.8 89.9 (91.7) 96 (132) 21 (31)

Depth 9 85.4 ± X.X 163.6 ± 85.2 32.2 ± 13.1 88.2 (93.7) 112 (128) 19 (25)
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best-of-run GP function for depth 8 are responsible for roughly 90 % of Watson’s
question ranking accuracy and represent key components in the larger complex
Watson system.

Regarding the GP configurations, as expected, a clear relationship can be
seen between the tree depth limit and accuracy in Table 1. Here larger evolved
GP trees (typically) have better accuracies (since larger trees contain more use-
ful features. There is very little difference in the average GP accuracy when
maximum tree depth is 4, 5 and 8. This suggests a performance plateau for tree
depths <= 8, where larger more complex GP trees do not perform much better
than smaller trees (on average). Table 1 also shows the the average number of
total nodes and feature nodes in the evolved GP trees are both much lower than
the maximum expected values (estimated in Sect. 3.3).

5 Experimental Results: Feature Subsets in Watson

This section outlines the approaches to automatically build the feature subsets
and the results of the Watson system using these generated feature subsets.

5.1 Constructing the Feature Sets

The previous section evolved GP functions of varying complexity/sizes and
applied these functions directly to the rank the test questions. This section does
feature mining of these evolved GP trees to automatically extract feature subsets
to use directly in the Watson system. In other words, Watson will use is own
machine learning framework to rank the test questions (as outlined in Sect. 2.1)
but using a limited feature set (and not the full 354 Watson features). The goal
of these experiments is to evaluate the performance of a learned feature subset
in the Watson system. Two approaches are compared to automatically build fea-
ture subsets from the evolved GP trees. Each approach constructs two differently
sized feature sets (a small feature set using at most 10 features, and a larger set
using closer to 20 features) to compare different levels of feature reduction on
question accuracy in the Watson system.

The first approach automatically extracts all features from the best-of-run
evolved GP trees for a given GP configuration (from Sect. 4.3). Here one evolved
GP tree produces one feature set, where the feature set size depends on the
number of feature nodes in the GP tree. For example, the extracted feature set
for the GP expression (+ (if f2 -2.0 f5) f4) will be {f2, f4, f5}. In these
experiments, the two best-of-run evolved GP trees using maximum tree depths
of 4 and 8 are selected (giving 8 and 21 features, respectively).

The second is a more consensus-based approach which takes the most fre-
quently occurring N features from all evolved GP trees over all GP configura-
tions. Here all feature nodes are counted across 300 evolved GP trees (50 runs ×
6 GP configurations using different maximum tree depths). A feature node is
counted exactly once in a tree (even if it occurs in multiple locations in a tree).
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In these experiments, the two features sets are built using N values of 10 and 20,
representing the top 10 and top 20 most commonly occurring features over all
evolved GP trees.

For a comparison, we also evaluate two other approaches for feature selection.
The first approach uses the Gram-Schmidt orthonormalising (GSO) numerical
analysis procedure to rank the feature vectors by decreasing relevance to output
(class label), where the top N features represent the N most relevant features.
The second approach uses the WEKA toolkit [11], which provides a broad array
of algorithms for this purpose. Here attribute selection consists of pre-processing
the data set, selecting an algorithm for evaluating individual attributes and its
corresponding parameters, selecting a method for performing the search using
the evaluator, and deciding whether to perform cross-validation or to run on the
whole dataset. During pre-processing, the data was re-sampled to balance the
classes, and to reduce the size to roughly 15000 instances. The GreedyStepwise
attribute selection method was applied in the forward direction (to incrementally
add the attribute that most improves the prediction), stopping when additional
attributes fail to yield additional gains. This algorithm produces a ranked list
of attributes. Finally, the ClassifierSubsetEval attribute evaluator algorithm
paired with the Logistic classifier trainer was run, limiting the number of iter-
ations to 10 (with 5-fold cross-validation in WEKA).

5.2 Experiment Results

Table 2 shows the experimental results using eight different feature subsets
directly in the Watson system on the test set (698 questions). These feature sub-
sets are categorized into small sets (exactly 10 features) and larger sets (closer
to 20 features) and are constructed using features derived from GP, WEKA
and GSO. The features extracted from the two GP strategies, that is, from the
best-of-run GP trees and and all evolved GP trees, are denoted by GP-Best and
GP-All, respectively, in Table 2. In each experiment, the Watson system was
retrained using the given feature subset only. As the logistic regression model
training process in Watson is deterministic, only one training run is required.
Similar to the previous results, the accuracy values in Table 2 are proportional
to the full Watson system using all features.

Table 2. Question accuracy (on the test set) of the Watson system using feature
subsets.

Small feature sets (approx. 10 features) Larger feature set (approx. 20 features)

Feature Selection # Features Accuracy % Feature Selection # Features Accuracy %

GP-Best (Dep. 4) 8 91.9 GP-Best (Dep. 8) 21 88.7

GP-All (Top 10) 10 91.6 GP-All (Top 20) 20 93.7

WEKA Top 10 10 75.0 WEKA Top 20 18 87.9

GSO Top 10 10 89.5 GSO Top 20 20 94.2
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In Table 2, the best accuracy for the small and larger feature subsets are
achieved by GP-Best (Dep 4) and GS0 Top 20, that is, 91.9 % and 94.2 %,
respectively (highlighted in bold). Notice that feature sets based on the GP-Best
approach achieved similarly good accuracies across both the smaller and larger
feature set groups (these are only slightly lower than the best accuracies in
Table 2). In contrast, the WEKA-based feature subsets show the poorest perfor-
mance for both feature set groups; while GSO and GP-Best both perform well
on one feature set group but not the other. This makes sense intuitively as the
most frequently occurring feature combinations are based on a consensus over
many different evolved GP ranking functions. This also suggests that extracting
the most frequently occurring features across all evolved GP trees is an effective
strategy to find small and accurate feature subsets compared to Weka and GSO.

It is interesting that the best-performing GP functions when applied directly
for ranking as a “stand-alone” model (from Table 1) achieves competitive perfor-
mances on the same test questions relative to the Watson system limited to the
smaller feature subsets (from Table 2) but still using a cascade of logistic regres-
sion models. For example, the best-evolved GP tree of depth 8 achieves 89.9 %
accuracy as a “stand-alone” ranking model, but the Watson system limited to
the same 21 features from this tree has 88.7 % accuracy. This is likely due to the
expressive power of the evolved GP ranking functions, in particular, the feature
construction aspect (arithmetic operators in the GP trees can manipulate fea-
ture values). This is not available to the logistic regression classifiers, even when
applied in successive phases in the cascade.

However, no evolved GP tree is able to achieve the best accuracy in Table 2,
that is, 94.2 % from Watson using the GSO Top 20 feature subset (the maximum
test accuracy from Table 1 is 93.7 for GP configuration using depth 9). This might
be due to several factors such as the GP configuration (maximum tree depth
too restrictive), and only single “stand-alone” ranking model (not a cascade of
models). A full comparison between Watson and GP where GP is not limited in
program complexity and/or is applied in successive phases is outside the scope
of this paper and will be future work.

6 Conclusions and Future Work

The main goal of this paper is to develop a two-phase GP approach to find
the most useful features in IBM Watson’s NLP pipeline. GP is first used to
evolve simple but accurate functions to classify and rank candidate answers
generated by Watson in response to question. The evolved GP functions are then
mined to automatically extract the most frequently occurring features as these
represent features automatically identified from the learning process. This goal
was achieved by examining the question accuracy of the evolved GP functions on
the question ranking data, automatically extracting several feature subsets from
the evolved GP trees, and evaluating the performance of these feature subsets
directly in the Watson system.

Experiments show that the best-evolved GP functions achieve accuracies
to within 93 % of the Watson system but used much fewer features (fewer
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than 8 % of Watson features). Some evolved GP functions also outperformed the
Watson system limited to the same feature subsets (from the GP functions)
and using multiple logistic regression models. This demonstrates the expressive
power of the relatively simply evolved GP ranking models compared to the logis-
tic regression cascade. Experiments also show that a consensus-based approach
for extracting the most frequently occurring N features from the evolved GP
trees can effectively find features that perform well consistently across two fea-
ture group sizes; whereas other approaches to build the feature subsets tend to
perform well on one feature group size but not other. As Watson is an open-
domain system, the key features identified by our GP approach is relative to
the factoid questions we asked of Watson. However, our approach is a gener-
alised methodology to find useful features that can easily be applied to any
question/customer domain.

For future work our next steps involve a deeper analysis of these learned
feature subsets. This includes a careful analysis of the evolved GP trees to find
commonly occurring composite features in the trees. We will investigate a parsi-
mony objective in the fitness function to explicitly favour the evolution of small
GP trees, and also explore different training configurations in GP and Watson
to improve question accuracy using smaller feature subsets.
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Abstract. Writing recursive programs for fine-grained task-level execu-
tion on parallel architectures, such as the current generation of multi-core
machines, often require the application of skilled parallelization knowl-
edge to fully realize the potential of the hardware. This paper automates
the process by using Grammatical Evolution (GE) to exploit the multi-
cores through the evolution of natively parallel programs. We present
Multi-core Grammatical Evolution (MCGE-II), which employs GE and
OpenMP specific pragmatic information to automatically evolve task-
level parallel recursive programs. MCGE-II is evaluated on six recursive
C programs, and we show that it solves each of them using parallel
code. We further show that MCGE-II significantly decreases the parallel
computational effort as the number of cores increase, when tested on an
Intel processor.

Keywords: Grammatical evolution · Automatic parallelization · Recur-
sion · Program synthesis · OpenMP · Evolutionary auto-parallelization

1 Introduction

The advent of multi-core (2 or more) processors for PCs has been little short
of a revolution in terms of price/performance ratio. Multi-core processors are
integrated with multiple processing elements on a single chip.

However, the actual improvement experienced often depends on the way that
the parallel programs are coded. With a small number of cores, single processes
or Virtual Machines can occupy each, but, as multi-core becomes many-core1,
the operating systems face difficulty in utilizing the power of all the cores.

High performance computing researchers manifested this so-called multi-core
menace as the third software crisis [3], the imminent inability to program and
fully exploit multi-cores. In accordance, Gartner [4] also predicted that software
is trailing the surge of multi-cores, and urged the need for the development of
computer applications that can ease the difficulty in programming them.
1 For example, the Intel Polaris has 80 cores, while the picoChip PC200 has 200+.
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Achieving parallelism is hard considering its challenges, uppermost of which
is that, in general, programmers are trained to think and write sequential pro-
grams. Other significant roadblocks include the difficulties involved in code and
data restructuring, race and deadlock occurrences, debugging parallel programs
and attaining behavioural equivalence of both serial and parallel programs.
Evolutionary Computation (EC), on the other hand, has less baggage than its
human counterparts, making parallel programs an ideal target. In this paper, we
propose to apply EC to evolve parallel programs that optimize a non-functional
property (time) while we also produce a qualitative solution to a given problem.

We employ Grammatical Evolution (GE) [15] to evolve C programs that use
OpenMP API [12]; this results in the evolution of a complete parallel program.
Our approach obviates the need for programmers to think in a parallel manner
while still letting them produce parallel code using essentially the same tech-
niques as are used in standard GE and GP. Also, to the best of our knowledge it
is the first evolutionary attempt to evolve a natively parallel recursive program.

The rest of the paper is outlined as follows: Sect. 2 introduces a motivat-
ing example, discusses the literature on evolutionary attempts on recursion and
automatic parallel code generation; Sect. 3 details our approach in automatic
evolution of parallel programs; Sect. 4 presents the experimental methodology
and results; and finally, Sect. 5 concludes and outlines the future aspirations.

2 Background

In this section, we explore the scope for parallel recursion, evolution of recursive
programs and, evolutionary parallel code generation.

2.1 Scope for Parallel Recursion

Recursion is a method of making self referential calls, widely used to solve a
problem by breaking it into smaller sub-problems, a divide-and-conquer strategy.

int f i b ( int n){
i f (n <= 2) return n ;
else return f i b (n−1) + f i b (n−2);

}

Fig. 1. Motivating example that generates Fibonacci sequence recursively.

Consider a simple recursive program that generates a Fibonacci sequence,
as in [9], shown in Fig. 1. The procedure fib terminates upon fulfilling the base
case. The two independent recursive calls follow with input decreasing by 1 and
2 in the first and second call respectively. These recursive calls can be computed
simultaneously, thus allowing to execute the two calls in parallel. The parallelism
exploited can be fine-grained, where both the calls are computed before the final
addition happens. Also, note that since the two recursive calls generate different
execution traces, their concurrent execution represents task level parallelism.
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The challenge then is to automatically discover such a scope for parallel recur-
sion through Machine Learning techniques; we explore Grammatical Evolution
(GE) to this end in this paper. However, first we review literature on evolving
recursive programs regardless of parallelism in Sect. 2.2 and then, in Sect. 2.3 we
review approaches to evolve parallel programs.

2.2 Evolution of Recursive Programs

EC based attempts on automatic evolution of recursive programs were initiated
by Koza [9] with the introduction of a sequence reference function, (SRF K D)
for Fibonacci sequence. The function referenced the previously evaluated values
from a table and returned the Kth value if available, otherwise, default value D.

Brave [6] explored tree search on a simple planning problem through a
restrictive form of recursion using Automatically Defined Functions (ADFs). To
prevent excessive recursive calls, the ADFs used were only allowed as many recur-
sive calls as the tree depth. Whigham and McKay [19] used tree based GP to
learn recursive functions that take as input an element of a list and its position.
The function returned true if the element was found in the list, and NIL (false)
otherwise. However, they concluded that evolving recursion was inappropriate
for automated learning because of infinite calls.

In an attempt to discourage infinite recursion, Wong and Mun [21] used an
adaptive grammar based GP by adjusting the weights associated with the pro-
duction rules of the grammar. This approach increased the probability of suc-
cess and decreased the number of infinite-recursive programs. Yu and Clark [22]
used implicit recursion in performance gains in GP. Implicit recursion material-
ized through a higher order function that took two arguments, a binary operator
and a list of values; the operator then is placed in between successive pairs of
items of the list and evaluated from left to right.

Recent EC literature also shows renewed efforts to automatic recursion.
Among them, Spector et al., [17] evolved recursive programs using PushGP.
PushGP supports explicit manipulation of iterative and recursive routines.
Agapitos and Lucas [1,2] analysed the generality of evolving modular recur-
sive sorting algorithms with the help of Object Oriented Genetic Programming
(OOGP) by defining special classes and methods in Java. Moraglio et al., [10]
presented a general non-recursive scaffolding method that evolved a recursive
list reversal program using a context free grammar based GP.

2.3 Evolutionary Generation of Parallel Code

The generation of parallel code can, broadly speaking, be divided into two cate-
gories: auto-parallelization of sequential code and the generation of native paral-
lel code. Auto-parallelization mirrors the approach taken by many programmers
when they generate parallel code. That is, they first identify the parallelism
in an algorithm through an analysis. Examples such as Automatic Polyhedral
Parallelizer [5] converts C programs to multi-core executable OpenMP programs,
many conventional approaches operate in this way.
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Evolutionary auto-parallelization of serial code was initiated by Walsh and
Ryan using GP, PARAGEN-I [[13], Chapter-5] automatically mapped the serial
programs onto parallel hardware; however, handling complex loops remained
a major challenge. Then, they extended it as PARAGEN-II [[13], Chapter-7]
to evolve transformations that first analysed serial-dependency of instructions;
this analysis was performed during the fitness evaluation. A further attempt [16]
extended PARAGEN-II to perform loop fusion, that is, merge independent tasks
of different loops into a single loop. All the experiments in [13,16] were carried
out on a Beowulf cluster using a distributed memory model.

Similar approaches for GAs include: Nisbet [11], presented the Genetic
Algorithm Parallelization System (GAPS) that dealt with the optimization of
transformations while, Williams [20] proposed REVOLVER with two represen-
tations (gene-transformation, gene-statement) to transform loops and programs.

The preceding approaches rely on the existence of a working program that
they modify. In contrast, natively parallel code generation solves two problems
together: generate a working program which is also parallel. For example
Trenaman [18] showed automatic design of controllers for autonomous agents using
a multi-tree GP representation that evolved concurrent execution of the agents.

With the advent of modern multi/many-core architectures, and the so called
death of scaling2 parallel code generation is critical to performance scaling. Realiz-
ing that Chennupati et al., [7] innovated with Multi-Core Grammatical Evolution
(MCGE) by evolving multi-core based parallel programs for two well known GP
regression problems. They also analysed execution times of the evolved
programs in [8]. The next section elaborates on the opportunities, both in hard-
ware and software for EC to advance multi-core computing and presents the new
approach that builds on MCGE (or MCGE-I as we term it here).

3 Multi-core Grammatical Evolution (MCGE)

Multi-core processors are now commonplace, where the operating system treats
each core as an independent execution entity. All multi-core processors sharemem-
ory to interact and synchronize among themselves.

The general approach to exploit parallelism in shared memory models is to
write fork/join programs. In that a master thread spawns slave threads on all
cores and then joins them back after the completion of their task. In this paper,
we use the OpenMP that uses the fork/join model. Next, we describe OpenMP.

3.1 OpenMP

OpenMP [12] is a portable, scalable directive based specification to write parallel
programs on shared memory systems, jointly defined by major computer hardware
and software vendors. It has compiler directives, environment variables, and run
time libraries that combine to parallelize code in C/C++ and Fortran. OpenMP
programs allow both shared and thread-private data structures.
2 http://www.gotw.ca/publications/concurrency-ddj.htm.

http://www.gotw.ca/publications/concurrency-ddj.htm
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The general syntax of an OpenMP directive can be seen as follows:

#pragma omp directive name [clause[[, ]clause] . . . ] {< statement block >}
where, a directive name can be replaced with any one of the constructs: paral-
lel for, parallel sections, master and synchronization (critical). The number of
threads allowed in a given parallel region depends on the clauses that a directive
allows to control. A complete description of OpenMP can be found in [12].

omppragma ::= #pragma omp parallel for newline ‘{’ parcode
#pragma omp parallel newline ‘{’ parcode #pragma
omp parallel sections newline ‘{’ parblocks

parcode ::= if( var lop const ) ‘{’int a = expr ; res bop = a;
newline ‘}’ else ‘{’ int a = expr ; newline res bop =

a; ‘}’ newline ‘}’ newline result newline ‘}’

parblocks ::= if( var lop const ) ‘{’ newline int a = expr ; ‘}’
else ‘{’ newline blocks newline ‘}’

blocks ::= blocks blocks newline blocks #pragma omp sec-
tion newline ‘{’ int a = stmt ; newline #pragma
omp atomic newline res bop = a; ‘}’ newline ‘}’
newline result newline

result ::= return var ;

expr ::= var stmt stmt bop stmt

stmt ::= fib( var bop const )

bop ::= + | - | * | /

lop ::= ‘>=’ | ‘<=’ | ‘>’ | ‘<’ | ‘==’

const ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

var ::= n | res

newline ::= \n

Fig. 2. MCGE-II grammar that generates a recursive Fibonacci sequence program,
where OpenMP parallelization pragmatic information is included.

3.2 MCGE-II

Unlike MCGE-I that evolved programs exhibiting data parallelism (identical
sequence of instructions operating on different data), MCGE-II evolves parallel
programs that exhibit fine-grained task level parallelism (different sub-tasks exe-
cuting in parallel).
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Note, MCGE-II does not make any changes to the design of GE. Instead, it
relies on grammars so designed as to embody the knowledge that allows GE to
produce parallel recursive programs. The grammars allow GE to select from var-
ious OpenMP pragma directives. Unlike PARAGEN-II [13], MCGE-II does not
utilise dependency analysis; instead, GE works the data interdependencies out
by selecting pragmas that suite program correctness. Figure 2 presents one such
grammar for the Fibonacci sequence problem described in Sect. 2.1.

In Fig. 2 the non-terminal symbol < stmt > maps to problem specific recursive
call (fib in this case). Any choice of the non-terminal < omppragma > ensures
that any recursive calls they enblock execute in parallel, but, the last choice (i.e.,
parallel sections) particularly suites task level parallelism. However, it is down to
evolution to select this directive preferentially. The syntax of this pragma requires
the use of a special pragma (#pragma omp section) that designates blocks of code
to execute as separate tasks.

Although we evolve programs in C, MCGE-II is general enough to apply to
other programming languages that offer OpenMP like parallelization.

4 Experiments

We test the proposed approach on six well known recursive problems as summa-
rized in Table 1. The solutions to the problems require several interesting features
of a parallel recursive solution such as branching, recursive calls, recursive calls
over arrays, and temporary, shared and/or private (OpenMP specific) variables.
The results also indicate that the difficulty of the problems varies.

In all the experiments, we maximise fitness by first computing the mean
absolute difference between the desired and evolved output and then normaliz-
ing it between 0 and 1. For the problems that take an array as input, we generate
100 random integers that are in the range 0 to 100. For the single input problems,
we randomly select a value from the range 1 to 50; it is large enough to expand the

Table 1. The problem sets used in the experiments and their properties.

# Problem Description Input Local Variables

1 Sum-of-N Sum of first N numbers int 1

2 Factorial Factorial of a given number int 1

3 Fibonacci Generate a fibonacci
sequence

int 2

4 Binary-Sum Add pairs of elements in an
array

int [ ], int, int 2

5 Reverse Reverse the array/list of
elements

int [ ], int, int 2

6 Quicksort Sorts an array in ascending
order

int [ ], int, int 3



Automatic Evolution of Parallel Recursive Programs 173

execution trace. For example, to compute the Fibonacci sequence for 50 we have to
get the sequence right for the smaller inputs as well. We take the non-evolutionary
result of the respective problem as output of that problem.

The experimental results that we report in this paper are carried out using
the default experimental settings of GE, with a population size of 500 individuals
for all the problems. We use Sensible Initialisation [14], a ramped half and half
approach to initialize derivation trees in GE, where the minimum depth of the
derivation tree is 9, and the maximum depth is 15. We use one-point crossover
with a probability of 0.9, and a per bit mutation with a probability of 0.01. We use
a steady state GA where the best individuals replace the worst in the population.
The results reported in this paper base on a total of 50 runs per setting, with each
run lasting for 100 generations. The experiments are conducted on an Intel (R)
Xeon (R) CPU E7-4820 (16 cores) while the evolved programs are evaluated using
GNU GCC compiler with -fopenmp option.

4.1 Terminating Recursion

Preventing infinite recursion is crucial in automatic generation of recursive pro-
grams. To this end, we limit the maximum number of recursive calls to the max-
imum number of generations allowed to GE. If a program exhausts this quota,
the evolved function simply returns the input value and terminates; otherwise,
the function returns the computed value. Although, the actual limit is an ad-hoc
choice, it is akin to setting a maximum size limit in standard GP.

Furthermore, we investigate three different approaches in formulating the ter-
mination (for base case). The first approach, referred to as const-10 henceforth,
allows the condition as well as the recursive calls to entail a constant with any one
of the 10 constants (< const >) ranging between 0 and 9 (both inclusive).

The second approach, termed as cond evolves the terminating condition so
that it always compares with 1, that is < condition >::= if(< var >< lop > 1).
Thus, only one constant is available to choose from, however, the recursive calls
are allowed to choose from all the 10 available constants in < const >.

Finally, the third approach, termed as const-limit, where the constants
(< const >) range is reduced from (0 . . . 9) to (1, 2). That is, both the base case
and the recursive calls can only choose one of the two available constants, 1 and
2. It is evident that we reduce the search space. However, the last two approaches
incorporate problem specific knowledge into the grammar to facilitate evolution.

4.2 Experimental Results

We report two key statistics in this section: the mean best fitness and the mean
of the total execution time for all the best of generation programs.

Mean Best Fitness: Figure 3 presents and compares the mean best fitness for
the 6 experimental problems; the results are averaged across 50 runs at each gen-
eration for all the three variations. On all the six problems, a Student’s t-test at
α = 0.05 shows insignificant difference between const-10 and cond. However, the
results for cond improve slightly late in the runs.
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Fig. 3. Mean best fitness graphs (with standard deviation) of MCGE-II for all the six
experimental problems that are averaged across 50 runs of 100 generations.
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Mean best fitness of const-limit proved to be significantly different from the
rest as measured with the Student’s t-test at α = 0.05. In fact, const-limit solved
all the problems. An obvious reason for that is that the constants used for gener-
ating the base case are limited to suite the problem.

The results indicate that except for Sum-of-N, the problems tackled here are
not easy: even with const-limit it takes at least 40 generations to find the correct
solution. We observed that although, syntactically an almost-ideal solution can
be generated quite early, finding the exact solution can take a long time.

For example, in the case of const-limit, the best evolved Fibonacci program in
generation 17 is given as follows, that has a fitness value of 0.36,

#pragma omp p a r a l l e l {
i f (n > 2) { int a = n ; r e s += a ; }
else { int a = f i b (n−2) ∗ f i b (n−1);
r e s += a ; }

} return r e s ;

and, at generation 98, we find the following individual that has fitness 1.

#pragma omp p a r a l l e l s e c t i o n s {
i f (n <= 2) { #pragma omp s e c t i o n { int a = n ;

#pragma omp atomic r e s += a ;
} }
else { #pragma omp s e c t i o n { int a = f i b (n−1);

#pragma omp atomic r e s += a ; }
#pragma omp s e c t i o n { int a = f i b (n−2);

#pragma omp atomic r e s += a ; } }
} return r e s ;

In the ideal program, the logical operator > changed to <= in the if condition and,
the binary operator * to +, and now sums the result of recursive calls. Moreover,
the parallelism exerting pragmas also changed: the pragma ( parallel) in the first
program creates multiple threads and executes the program code that it enblocks
in parallel. Although, the evolved program (with its binary operation (*)) is not
an optimal solution, it is even worse with the chosen pragma, because it computes
the same (and wrong) process twice in two threads. The ideal program, uses a
correct pragma ( parallel sections), and also identifies tasks to execute separately
in threads; these tasks are enblocked with the pragma sections. Notice, the shared
variable res is updated atomically, thus preventing race conditions. This perfectly
achieves task level parallelism, thus instantiating a parallel recursive program.

We can try another approach that first finds a correct solution and then paral-
lelize it. This can be encouraged by incorporating even more problem
specific information. In the absence of such knowledge we can use a multi-staged
approach where the first stage finds the correct solution while the second stage
maximizes the parallelism; however, we leave that to future work.

Execution Time: The advantage of multi-cores is to scale up the performance
through parallel processing. Therefore we report the execution time taken by the
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Table 2. Mean best execution time (in secs) (mean [standard deviation]) of MCGE-II,
averaged across 100 generations of 50 runs. We record the execution time for a varying
number of cores on an Intel Xeon multi-core processor.

Problem Cores

1 2 4 8 16

Sum-of-N 1884.31[15.46] 1782.16[16.01] 551.02[18.42] 628.61[25.27] 331.89[36.24]

Factorial 2481.48[37.09] 2988.14[22.31] 781.21[26.32] 724.18[29.74] 487.76[35.61]

Fibonacci 3799.31[41.14] 2821.27[37.32] 1409.54[34.11] 921.39[21.92] 608.18[49.17]

Binary-Sum 3336.24[67.76] 2134.92[29.16] 1683.86[29.22] 738.99[37.32] 482.48[27.46]

Reverse 3222.69[64.76] 3348.59[38.41] 1035.77[43.36] 596.62[35.17] 520.11[63.19]

QuickSort 4644.87[29.04] 2578.19[27.11] 1540.07[63.69] 705.78[44.51] 577.18[41.28]

evolving individuals that in this section represents the total time required to exe-
cute all the best of generation programs produced in a run; we report the mean
of this time (averaged over 50 runs). We term it mean best execution time.

Note, that the execution time of an evolved program depends on various
factors such as the number of users using the resources, and the level of paral-
lelism exerted. We do not delineate the effect of different factors in this study and
report the total time and observe the impact of parallelism across an increasing
number of cores. We use the OpenMP timer utility function omp get wtime() to
record the execution time for each individual.

Table 2 presents the mean best execution time of the MCGE-II evolved
programs for the six experimental problems that are averaged across 50 runs with
each run containing 100 generations. We also record the execution time as we
increase the number of cores from 2 to 16.

The results show that the time reduces significantly as we increase the num-
ber of cores; again, we measure the significance with the t-test at α = 0.05, except
when we increase the cores from 1 to 2. [8] discusses why increasing from 1 to 2
cores fails to yield the expected gains; the reasons include scheduling overhead nul-
lifying the gain in speed-up through two cores, as well as somewhat longer genomes
of the OpenMP enabled solutions that use pragma directives (unlike the normal
individuals which do not have this additional code).

5 Conclusions

In summary, this study clearly showed the evolution of parallel recursive
programs that employed the OpenMP directives along with the GE context free
grammars. The presented results explored various possibilities of evolving parallel
programs while also maintained solution correctness; this was a dual challenge, a
challenge that an EC approach tackled successfully given the problem suite. We
noticed that the attempts to prevent infinite recursion, although ad-hoc, did not
prevent evolution from exploring the high quality solution space.
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We also presented the computational speed up exploited by the evolved pro-
grams on multi-cores. This is a first attempt to automatically solve the problem
so significant as to be described as the third software crisis.

Future work can expand in several directions: we intend to see the impact of
parallel recursion on code growth so as to delineate the computational overhead of
scheduling threads (similar to [8]). Furthermore, we aim to extend beyond C and
explore the potential of interpreted languages for evolving parallel code. This will
decrease the time taken to complete the evolutionary simulations that currently
rely on external system calls to write the evolving programs on to the disk, compile
and then execute it as an external process. Finally, we can use evolution to promote
parallelism: in this study we did not prefer individuals that exploited maximum
parallelism. Challenges associate such an undertaking are avoiding excessive par-
allelism which can result from producing too many threads that accomplish too
little individually, and maintaining correctness of the evolving solution while pro-
moting parallelism.
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Abstract. This work proposes and presents a preliminary investiga-
tion of a fitness evaluation scheme supported by a proper genotype
representation intended to guide an under development expansion to
EASEA/EASEA-CLOUD platforms to evolve partial differential equa-
tions as models for a specific system of interest, starting with measures
from that system. A simple proof of concept using a dynamic bidirec-
tional surface wave is presented, showing that the proposed fitness eval-
uation scheme is very promising to enable automate system modelling,
even when dealing with up to ±10 % noise-added data.

Keywords: System modelling · Partial differential equations · Fitness
function · Galerkin’s method · Jacobi-Legendre polynomials · Tree-based
Genetic Programming

1 Introduction

Systems modeling has important implications, from Physics and Chemistry to
Biology and Social sciences [2]. Because many natural phenomena can be mod-
elled in terms of differential equations, Genetic Programming could be used to
perform symbolic regression in order to find the differential equations behind a
data set obtained through observation. This is not a recent idea [6] but although
symbolic regression is typically used to find explicit and differential equations, this
research intends, as stated by [10], to detect any underlying physical law that the
system of interest obeys to, rather than trying to model a specific signal. This is
also explored by the work of [5] which presents a GP-based methodology to learn
ordinary differential equations starting from experimental data.

In other words, this work is aimed to retrieve – with the help of an under
development GP – underlying physical laws that could be described by a partial
c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 179–191, 2015.
DOI: 10.1007/978-3-319-16501-1 15
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differential equation (PDE) from the data measured from the system of interest.
Note that this is not symbolic regression: starting from measurements, the objec-
tive is to retrieve the PDE whose unknown function solution explains the data.
Moreover, this work is part of a research to enable EASEA and EASEA-CLOUD
platforms [1] to model complex systems using GP principles shown by [9].

Section 2 briefly describe some theoretical concepts related to approximating
PDE solving. Section 3 presents developments and the proposed approach to eval-
uate fitness. Section 4 shows a practical example: using a multivariate model – a
dynamic bidirectional surface wave with known solution – to simulate the mea-
sured data, along with fitness evaluation for seven arbitrary individuals. Section 5
draws conclusions and discusses ongoing work.

2 Theory

This proposal for fitness evaluation is based on the idea, among others, that
it is possible to approximate PDEs solving. Some criteria to build those PDEs
are presented in Sect. 3.5. A brief introduction is presented in this Section on
weighted residual and Galerkin’s method, as well as on Jacobi polynomials.

2.1 Weighted Residual and Galerkin’s Method

The method presented by Galerkin [4] is widely classified into the class of spectral
methods from the family of weighted residual methods. It could be defined as a
numerical scheme to approximate the solving of differential equations represented
by D [u(x)] = s(x).

Mostly, weighted residual methods are approximation techniques in which a
residual R [u(x)] = D [u(x)] − s(x) (that represents the approximation error) is
a quantity to be minimized (R [u(x)] = 0) [11], where x defines the domain of
the problem; D is the functional known as the differential operator; u(x) is the
unknown solution; and s(x), known as the source function, is independent of u.

Therefore, the differential equation is known to be presented in its residual
form if it could be described as D [u(x)] − s(x) which is equal to zero.

An approximation û(x) to the unknown solution u(x), also known as the
trial function, is initially built as a projection on a function space characterized
with a finite set of N + 1 basis functions B = {φi(x)}|Ni=0, as shown in (1):

û(x) =
N∑

i=0

ũi φi(x) (1)

where ũi’s are unknown coefficients of the trial function.
Weighted residual methods state that the minimized residual must be orthog-

onal to a set of arbitrary test functions. Galerkin’s method presents the idea of
using basis functions as test functions. It requires the PDE in its residual form
(the residual) to be orthogonal to each of the early chosen basis functions in B.
Also, all those basis functions φi(x) must satisfy some previously known con-
ditions (usually linear homogeneous boundary conditions) [7]. The approximate
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solution (trial function) is the truncated Galerkin expansion. To achieve this
solution, a system of N + 1 equations is built using the orthogonality require-
ment, as shown in (2):

〈φn(x), R [û(x)] 〉|N−1
n=0 = 〈φn(x), D [û(x)] − s(x)〉|Nn=0 = 0 (2)

where 〈 f(x), g(x) 〉 =
∫ b

a
f(x)g(x)w(x) dx is the inner product between f(x) and

g(x) on the interval [ a, b ] and w(x) is a weight function which aids the definition
of a Hilbert inner product space.

After solving (2) for N+1 unknown coefficients ũi and plugging them into (1),
the truncated Galerkin expansion for the differential equation solution is finally
achieved. This approximate solution is the projection of the PDE solution on
the Hilbert inner product space, i.e. a weighted sum of orthogonal functions.

2.2 Jacobi Polynomials

Using orthogonal polynomials with Galerkin’s method ensures an orthogonal
Hilbert space where any desirable smooth function could be projected, i.e. a
powerful approximation could be built using truncated Galerkin expansions.
Jacobi (orthogonal) polynomials are an interesting choice for basis functions
due to some of their properties [7].

Jacobi polynomials have the univariate hypergeometric definition present
in (3), as shown by [12] and [7].

P (α,β)
n (x) =

Γ (n + α + 1)
Γ (n + 1)γ(α + 1) 2F1

(
−n, n + α + β + 1;α + 1;

1
2
(1 − x)

)
(3)

where Γ (·) is the gamma function; 2F1(p, q; r; z) is the Gauss’s hypergeometric
function with respect to z; α ≥ −1; β ≥ −1; and n ≥ 0 is the polynomial degree.

Using α ≥ −1 and β ≥ −1 ensures the integrability of w(x) [12]. Yet, when
given the appropriate choice α = β the associated error is asymptotically mini-
mized in an Lp(α)-norm, as stated by [7]. Regarding Hilbert inner product space,
Jacobi polynomials are orthogonal with respect to the interval [−1, +1 ] and the
weight function w(x) = (1 − x)α (1 + x)β .

Special cases of Jacobi polynomials are achieved by choosing appropriate
α and β. Basis functions could be generated to be asymptotically similar to
Legendre polynomials, as adopted for this work, by choosing α = β = 0.

When in need of arbitrary upper and lower limits for Jacobi polynomials, a
linear mapping M : {x ∈ R | a ≤ x ≤ b } �→ { ξ ∈ R | − 1 ≤ ξ ≤ +1 } must be
defined. Szëgo [12, pp. 58] proposed orthogonal polynomials with respect to the
interval [ a, b ] as defined in (4):

P (α,β)
n

(

2
x − a

b − a
− 1

)

=
Γ (n + α + 1)

Γ (n + 1)Γ (α + 1 )
2F1

(

−n, n + α + β + 1; α + 1;
b − x

b − a

)

(4)
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Differential operators deal with derivatives. An important identity for deriv-
atives of Jacobi polynomials [7,8] is presented in (5):

dk

dxk
P (α,β)

n (x) =
Γ (n + α + β + k + 1)
2kΓ (n + α + β + 1)

P
(α+k,β+k)
n−k (x) (5)

Note that an arbitrary order k derivative of a Jacobi polynomial can be
exchanged for another Jacobi polynomial, without any precision loss.

3 Proposed Method

3.1 Modifications to the Classical Galerkin Method

Starting from Szëgo’s mapped Jacobi polynomials on the finite interval [ a, b ] [12]
and the derivation of identity (5) [8], this work was successful in achieving the
derivation for the identity in (6):

dk

dxk
P (α,β)

n

(

2
x − a

b − a
− 1

)

=
Γ (n + α + β + k + 1)

(b − a)kΓ (n + α + β + 1)
P

(α+k,β+k)
n−k

(

2
x − a

b − a
− 1

)

(6)

This result, together with mapped polynomials in (4), enables to analytically
operate differentials on Galerkin expansions which precedes definite integrations
(inner products) from Galerkin’s method. Note that both differential
operator identity and definite integrations to be carried could be taken over
arbitrary intervals. Those properties make mapped Jacobi polynomials an inter-
esting option to work as basis functions when taking precautions on boundary
conditions (e.g. [7]). Following this idea to build the basis set, the approximate
solution has the form present in (7):

û(x) =
N∑

i=0

[
ũi · P

(α,β)
i

(
2

x − a

b − a
− 1

)]
(7)

where N is the polynomial degree of the truncated Galerkin expansion.

3.2 Multivariate Problems

When addressing to problems on multivariate domains, some adjustments must
be done. One of them is the definition for the inner product which must be
extended to support multiple integrals. Note that the use of Legendre polyno-
mials (α = β = 0) simplifies this effort, once w(x) = 1 whatever the adopted
variable. The Galerkin system of equations, solved for the unknown coefficients
of the expansion, is then built as shown in (8):

〈φn(x), R [û(x)] 〉|(N+1)d−1
n=0 =

b0∫
a0

b1∫
a1

· · ·
bd−1∫

ad−1

φn(x) · {D [û(x)] − s(x)} dx0 dx1 . . . dxd−1

∣∣∣∣∣

(N+1)d−1

n=0

= 0
(8)
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where d is the number of dimensions (variables) of the domain of the problem;
N is the predetermined polynomial degree with respect to all variables in the
expansion; x is the vector of d variables (x0, x1, . . . xd−1)

T ; and ai and bi are the
i-th lower and upper limits of integration, respectively, for i = 0, . . . d − 1.

The truncated Galerkin expansion must be adjusted as in (9):

û(x) =
(N+1)d−1∑

i=0

ũi φi(x) (9)

where φi(x) is a multivariate basis function from a finite basis set with a span
of (N + 1)d functions.

Finally, a proper basis set is built based on linear mappings xi �→ ξi, i.e.
mapping functions ξi(xi) = 2 xi−ai

bi−ai
− 1 for i = 0, . . . d − 1, and combinatorics of

different Legendre polynomials, both with respect to each variable that consti-
tutes the domain. This multivariate basis set is shown in (10):

B = {φn(x)}|(N+1)d−1
n=0 =

{
d−1∏

i=0

P
(0,0)

n‡ (ξi(xi))

}∣∣∣∣∣

(N+1)d−1

n=0

(10)

where n‡ =
{⌊

n
(N+1)i

⌋
mod (N + 1)

}
is the formula to keep track of the

subindex related to the respective Legendre polynomial degree with respect to
the i-th variable inside the product.

3.3 Building a Custom Galerkin System

This work successfully adopts a modification to the classic procedure for obtain-
ing the Galerkin system: instead of getting all (N+1)d equations derived from the
inner product statement, some equations could be coined from known informa-
tion related to the problem (e.g. boundary conditions) applied to the truncated
Galerkin expansion.

Once the value of the solution is known at a given point on the domain, i.e.
both the measurement V and its respective domain coordinates (x0, x1 . . . xd−1)T

are available from the dataset, those numbers can be plugged to the Galerkin
expansion in order to achieve a complementary equation to the system in the
form of (9) and (10), i.e. û((x0, x1 . . . xd−1)T ) = V . A minimum of 2d points is
required to this approach, which means that 2d complementary equations could
be written. Note that, in this way, basis functions themselves do not need to
satisfy boundary conditions which are already part of the system of equations.

Together with the first (N + 1)d − 2d equations produced by inner products,
a “custom” Galerkin system is then built, as seen in (11):
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b0∫

a0

b1∫

a1

· · ·
bd−1∫

ad−1

φn(x) · {D [û(x)] − s(x)} dx0 dx1 . . . dxd−1

∣
∣
∣
∣
∣

(N+1)d−2d−1

n=0

= 0

(N+1)d−1∑

m=0

ũi ·
⎡

⎣
d−1∏

i=0

P
(0,0){⌊

m
(N+1)i

⌋
mod (N+1)

} (ξi(Xni)) − Vn

⎤

⎦

∣
∣
∣
∣
∣
∣

2d−1

n=0

= 0

(11)
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where Xn = (Xn0,Xn1, . . . Xnd)T is the point on the domain at which the
solution is known to assume value Vn.

Note that this custom system could be a linear or a non-linear one, depending
only on the differential operator which is part of the partial differential equa-
tion in its residual form. Also, regarding this work, it is important to notice
that Galerkin method approximation quality depends on the chosen polynomial
degree N which needs to be chosen beforehand.

3.4 Data Preparation

After collecting experimental data from the system of interest, the preparation
step takes place before the GP run and consists in dividing the domain into
overlapping sub-domains1 defined by 2d +1 points which are the closest possible
to each other and have non-zero depth in all related dimensions. Each of those
sub-domains has 2d points necessary to coin complementary equations to the
custom Galerkin system in (11) and an extra point to be used as a reference to

Fig. 1. Examples of sub-domain S with a total of 2d + 1 points in one, two or three
dimensions. Legend: ◦ represents a point from the database with known coordinates
and respective value for the quantity of interest; ♦ is the reference point; � and � are
calculated a posteriori as the minimum coordinates a and maximum coordinates b,
respectively. Different from other points, a and b do not have a known value for the
quantity of interest as they only define limits of integration.

1 The number of sub-domains has as an upper bound the number of available points
in the dataset.
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evaluate fitness. This reference point must be the closest one to the sub-domain
“center of mass”, in order to raise the quality of evaluations. The idea is to verify
if the approximate solution of the differential could explain measurements from
the dataset. Figure 1 shows examples of 1, 2 or 3-dimensional sub-domains.

Points a and b are calculated to define limits of integration for inner products
and to verify if their respective sub-domain has non-zero depths in all dimensions.
The set of sub-domains is identified by S = {Si}. Each i-th sub-domain, therefore
named as Si, is defined in this work by having four members: P2d which is a list of
2d points from the domain; V2d , their respective measured values for the quantity
of interest; Pref , the point of reference; and Vref , the value for the quantity of
interest at the reference.

This preparation step is essential to the proposed fitness function, but it
needs to be performed just once to be used as input data to the GP run.

3.5 Representing PDEs Within Genetic Programming

To the system modelling GP aimed in this research, each individual is a PDE,
i.e. a candidate model for the system of interest, in its residual form. The aim
is to evolve those differentials until the emergence of a model whose solution
could explain the measure data. An algebraic syntax tree representation was
chosen as the genotype to enable heuristics to manipulate individuals and a
simplified compiler evaluator to take place during execution time. Figure 2 shows
an example that could be evolved in this scenario.

Those syntax trees could contain one to several of the following nodes:

– Constants: a predetermined finite set of arbitrary real numbers;
– Variables: user can decide the number of dimensions for the domain, they will

be identified by sub-index for the x symbol (e.g. x0, x1);
– Operator: the four arithmetic operators – plus, minus, division, and product;
– Function: trigonometric, mathematical or user defined ones;

Fig. 2. Algebraic syntax tree representing the following partial differential equation in

its residual form: ∂2

∂x2 u(x, y) − y2 ∂
∂y

u(x, y) + u(x,y)
2.7

− exp
(− y

3.1

)
= 0.
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– Unknown function: this special node represents the multivariate function (with
respect to all related variables) that is supposed to explain the measure data,
i.e. this is the solution of the desired partial differential model;

– Derivative of first order: this special node represents the derivative which
can operate the unknown function or another derivative (to build up higher
order derivatives) – the limitation of not operating any other node could be
supported by the product rule.

3.6 Fitness Evaluation

The present proposal for fitness evaluation of partial differential individuals could
be resumed by the following procedure:

1. Take a given individual (Sect. 3.5) and apply Galerkin method (Sect. 3.3)
using boundary conditions given by known points for each predefined sub-
domain (Sect. 3.4) to achieve piecewise approximate solutions;

2. For each sub-domain, plug the related reference point (the “plus one”) to the
respective approximate solution and an estimated value for the quantity of
interest at that point is evaluated;

3. Use a metric to keep track of errors between estimated values from approx-
imate solutions and registered values from measure data – in this work, the
squared error was used to get the mean squared error (MSE);

4. After evaluating the error on every valid sub-domain, the expected value of
those errors (MSE) is taken as the fitness for the evaluated individual, which
turn this into a minimization problem.

4 Results/Discussion

The present case study assumes as the physical system of interest a dynamic
bidirectional surface wave. This problem is defined in (12):

{
PDE : k0

∂
∂xu(x, y, t) + k1

∂
∂y u(x, y, t) + k2

∂
∂tu(x, y, t) + k3 u(x, y, t) = 0

IC : u(x, y, 0) = e−(x2+y2)

(12)
where k0, k1, k2, and k3 are known constants.

Fig. 3. Example for a dynamic bidirectional surface wave simulation over the direction
domain 0 ≤ x, y ≤ 2.5 m and time domain 0 ≤ t ≤ 2 s.
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The known solution for (12) is u(x, y, t) = e
−
[(

x− k0 t
k2

)2
+
(

y− k1 t
k2

)2]− k3 t
k2

(adapted from [3, pp. 211]). In Fig. 3, a simulation with k0 = k1 = k2 = 1
and k3 = 0.1.

4.1 “Sampling” the Simulated Data

In order to have available measure data to perform tests, a surface wave was
simulated with arbitrary constants (Fig. 3) based on the known solution of (12).
For each time t ∈ {0., 0.25, 0.5, 0.75, 1., 1.25, 1.5, 1.75, 2.} there were 30 two-
dimensional points generated at random (for spatial dimensions x and y). Those
270 three-dimensional points had their “measures” defined by the known solu-
tion equation. After, the preparation step (Sect. 3.4) achieved a set of 157 sub-
domains with 9 points each (2d + 1, with d = 3).

The first experimental run is referred in this work as the noise-free experi-
ment. Table 1 shows some statistics of the data. This work also uses other “mea-
sure” datasets, both developed by applying noise to “measures” as in (13).

Vnoise = Voriginal · [1 + U(−l, +l)] , (13)

where Voriginal are the original values; U(−l,+l) is an uniform random variable
ranging from −l to +l; and Vnoise are the noise-added values. Note that coor-
dinates from the dataset are kept the same. The noise must be added before
the preparation step due to the overlapping of sub-domains. After the prepara-
tion step, those points have formed the exact same set of 157 sub-domains, but
with updated noisy values. Second and third experimental runs are referred as
noise-add experiments and are related to their noise level l.

Table 1. Simulated “measure” data statistics, noise-free.

Minimum Q1 Median Q3 Maximum

2.066 10−3 105.475 10−3 295.814 10−3 542.981 10−3 947.308 10−3

4.2 Applying Fitness to Arbitrary Individuals

Here are some results of the proposed fitness evaluation scheme when applied
to candidate models for the dynamic bidirectional surface wave. Table 2 shows
seven arbitrary individuals coined to this example that could be evolved by GP.

Note that PDE-3 is the “optimal” which GP needs to reach. PDE-2 is prac-
tically the same, differing just by the last term coefficient. PDE-1 is slightly
different due to a 2nd-order derivative and the last term coefficient. PDE-4 and
PDE-5 are structurally different from PDE-3. Finally, PDE-6 and PDE-7 are
listed cause their developments lead to ill-posed Galerkin system of equations.
Noise-free experiment: Table 3 shows resulting fitness evaluation for indi-
viduals from Table 2. Individual PDE-3 has the lowest fitness, being the best
individual so far as expected, followed by PDE-2.
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Table 2. Individuals and respective residual form PDEs. The symbol u denotes the
function u(x, y, t); ux is the first order partial derivative of u(x, y, t) with respect to x;
uxx is the respective second order with respect to x, and so on.

Individual PDE, residual form

PDE-1 uxx − uy + ut − 0.3 u

PDE-2 ux + uy + ut + 0.2 u

PDE-3 ux + uy + ut + 0.1 u

PDE-4 uxx − 3 uxy + uyy − 0.2 ut + 0.1 u

PDE-5 −3 uxy + 2 ut − 5 u

PDE-6 ut + x y t

PDE-7 10 ut + x y

Noise-add experiment, level 5%: Table 4 shows fitness when original mea-
sure data is updated according (13) with noise level l = 0.05. Note that individual
PDE-3 continues to have the lowest fitness, followed by PDE-2. Fitness of PDE-5
has changed dramatically within this scenario.

Noise-add experiment, level 10%: Table 5 shows fitness when original mea-
sure data is updated according (13) with noise level l = 0.1. Individuals PDE-3
and PDE-2 continues to lead. PDE-5 fitness followed the former scenario.

This case study indicates that the proposed fitness evaluation scheme for
partial differential individuals was successful to point out fit individuals to the
problem, which means it could guide evolution of models within a GP run. Even
when noisy data is available (up to ±10%), the proposed scheme could indicate
the right model (PDE-3) to the case study, a dynamic bidirectional surface wave.

Regarding other individuals, PDE-2 also has its fitness evaluated in agree-
ment of what should be expected, as long as it is the closer to PDE-3 of all others.
PDE-5 and PDE-6 are the worst fit of all, even that PDE-5 has improved its

Table 3. Comparative table for fitness. Each PDE has an approximate polynomial
solution built with: 64 terms; with respect to the three variables of the problem; and
of polynomial degree 3. Noise-free data. Valid sets refers to non-improper evaluations.

Individual Fitness (MSE) Valid sets

PDE-1 35.542 10−3 99.4 %

PDE-2 2.759 10−3 96.8 %

PDE-3 1.402 10−3 100.0 %

PDE-4 11.889 10−3 95.5 %

PDE-5 971.027 10−3 97.5 %

PDE-6 834.214 10−3 100.0 %

PDE-7 91.605 10−3 100.0 %
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Table 4. Comparative table for fitness. Approximate solutions are three-dimensional
polynomials with 64 terms and degree 3. Performed on ±5 % noise-add data.

Individual Fitness (MSE) Valid sets

PDE-1 55.787 10−3 99.4 %

PDE-2 6.378 10−3 96.2 %

PDE-3 4.977 10−3 100.0 %

PDE-4 15.951 10−3 94.9 %

PDE-5 116.398 10−3 96.8 %

PDE-6 818.794 10−3 100.0 %

PDE-7 86.113 10−3 100.0 %

Table 5. Comparative table for fitness. Approximate solutions are three-dimensional
polynomials with 64 terms and degree 3. Performed on ±10 % noise-add data.

Individual Fitness (MSE) Valid sets

PDE-1 94.112 10−3 99.4 %

PDE-2 18.105 10−3 96.2 %

PDE-3 16.817 10−3 100.0 %

PDE-4 22.059 10−3 93.6 %

PDE-5 122.419 10−3 96.8 %

PDE-6 804.932 10−3 100.0 %

PDE-7 82.178 10−3 100.0 %

fitness when dealing with noisy data. All of those could benefit from the used
linear solver, as far as all PDEs achieved more than 93% valid solutions for
the 157 possible sub-domains, even with noisy data. Note that the scheme is
able to evaluate PDE-6 and PDE-7 with their ill-posed Galerkin system of equa-
tions. The order of magnitude for listed fitnesses must be analysed in the light
of Table 1 which shows the magnitude of measure data.

5 Conclusion and Developments

In this work, a proposal for fitness evaluation of partial differential individuals
supported by a proper genotype representation is presented. This scheme to
evaluate fitness was able to deal with the case study, a dynamic bidirectional
surface wave, achieving promising results that could fulfil expectations for a
robust and versatile automated system modelling application, even when dealing
with up to ±10% noise-added data. Some advantages must be pointed out:

– This approach is relatively robust due to local evaluations, i.e. possible local
approximation errors could be minimized when consolidating the whole;
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– Possible improper calculations do not invalidate fitness evaluation, i.e. if some
sub-domain contains improper data that could turn into a numerical calcula-
tion exception, the scheme just dismisses it without greater losses;

– Due to arithmetic and algebraic manipulation, as with identities in (4) and (5),
procedures for building equations are not subject to precision losses or other
approximation issues – the scheme itself is able to be solved analytically –
only that solutions to those equations are approximations;

– In theory, it can work with several dimensions (scalable property), limited
only by the required computational power;

– In this scheme, “time” is considered to be just another dimension.

Also, some issues that are subject of further investigation are the following:

– High computational execution time (few hours per individual) – authors are
currently adapting algorithms to CUDA C/C++ to integrate to EASEA and
EASEA-CLOUD platforms which can provide easy massive parallelization of
evolutionary algorithms on GPGPUs for improved performance [1].

– The choice for polynomial degree of the truncate Galerkin expansion must
rely on data sufficiency assumption, which is subjective, especially in higher
dimensions – one workaround is to ensure sufficient measurements from the
system of interest, enough to keep polynomial degree between three or four.

– As the idea is that GP must evolve a model that reflects the underlying
law that the system of interest obeys and the Galerkin method assumes all
expansion coefficients equal to zero if the residual does not contain terms with
derivatives, GP must ensure individuals being differential equations.

Developments: Currently, the scheme is implemented and dealing only with
linear differential individuals due to the adopted solver for the system of equa-
tions. Theoretically, this very scheme could also work with non-linear individuals.
Authors are researching possibilities for non-linear solvers that must deal with
large systems of equations that can deal with eventual ill-posed systems.

As the main objective is to perform system modelling starting from measure
data, the GP application needs to work with the three classical subsets (training,
validation and test) to avoid over-fitting. The initial idea is to get the set of sub-
domains to be randomly divided into three subsets. For example, the 157 from
the case study would turn into three subsets with ≈ 52 sub-domains each.

Another step into the research is to enable this complex system modelling
GP to handle not only one, but a set of PDEs. When dealing with scalar fields,
it is usual to deal with a model which is a single PDE. When starting to deal
with vector fields, though, it becomes necessary to deal with sets of PDEs.

Acknowledgements. I. S. Peretta would like to thank the non-simultaneous sup-
port received from CAPES (PDSE scholarship #18386-12-1) and CNPq (Full PhD
scholarship - GD), both Brazilian funding agencies.



Proposal and Preliminary Investigation of a Fitness Function 191

References
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Abstract. Boolean functions represent an important primitive when
constructing many stream ciphers. Since they are often the only non-
linear element of such ciphers, without them the algorithm would be
trivial to break. Therefore, it is not surprising there exist a substantial
body of work on the methods of constructing Boolean functions. Among
those methods, evolutionary computation (EC) techniques play a sig-
nificant role. Previous works show it is possible to use EC methods to
generate high-quality Boolean functions that even surpass those built by
algebraic constructions. However, up to now, there was no work investi-
gating the use of Cartesian Genetic Programming (CGP) for producing
Boolean functions suitable for cryptography. In this paper we compare
Genetic Programming (GP) and CGP algorithms in order to reach the
conclusion which algorithm is better suited to evolve Boolean functions
suitable for cryptographic usage. Our experiments show that CGP per-
forms much better than the GP when the goal is obtaining as high as
possible nonlinearity. Our results indicate that CGP should be further
tested with different fitness objectives in order to check the boundaries
of its performance.

Keywords: Boolean functions · Genetic programming · Cartesian
Genetic Programming · Cryptographic properties · Comparison

1 Introduction

Most cryptographic systems in use today are built as hybrid cryptosystems. In
these systems asymmetric-key cryptography is used to exchange the keys and
symmetric-key cryptography is used to encrypt and decrypt data. This separa-
tion is due to the fact that symmetric-key cryptography is much faster than the
asymmetric-key [8]. The name symmetric-key denotes the fact that the same key
is used for both data encryption and decryption.

One usual division of symmetric-key cryptography is block and stream
ciphers [8]. In block ciphers algorithms encrypt and decrypt data in blocks of
c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 192–204, 2015.
DOI: 10.1007/978-3-319-16501-1 16
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certain size and in stream ciphers this is done bitwise. In both of these types
of cipher often the only nonlinear elements are Boolean functions or vectorial
Boolean functions (vectorial Boolean functions are better known as Substitu-
tion boxes or S-boxes). Boolean functions are in general used in stream ciphers
whereas S-boxes are used in block ciphers. In the rest of this paper we con-
centrate only on Boolean functions suitable for cryptographic usage in stream
ciphers.

There exist three main approaches to generate Boolean functions for crypto-
graphic usage: algebraic construction, random generation and heuristic construc-
tion [6]. In algebraic construction one usually uses some mathematical procedure
that gives very good results such as the cipher RAKAPOSHI [3]. One of the most
famous constructions is a finite field inversion [17]. However, although finite field
inversion can be used to generate S-boxes with the highest possible nonlinear-
ity levels, this is not so for Boolean functions. Furthermore, such constructions
cannot give optimal results when considering side-channel attack resistance [21].

Random generation of Boolean functions has its strong points, the most
prominent being that it is easy and fast, but the resulting Boolean functions
usually have suboptimal properties for cryptography [11].

Heuristic methods offer easy and efficient way of producing large number
of Boolean functions with very good cryptographic properties [2]. Among other
heuristic methods, evolutionary computation (EC) offers highly competitive
results when generating Boolean functions [19]. More details about different
methods for evolving Boolean functions are given in Sect. 1.1. However, as far
as the authors know, Cartesian Genetic Programming (CGP) has never been
used for constructing Boolean functions suitable for cryptography. Since CGP
is recognized as a suitable option when generating Boolean functions [13,14], its
absence in the evolution of cryptography-suitable Boolean function creation is
somewhat surprising.

In this paper we concentrate only on Boolean functions with 8 inputs since
that represents the size most used in practical scenarios (e.g. cipher
RAKAPOSHI [3]). Evolving Boolean functions with 8 inputs is a challenging
task since there exist 22

n

possible functions of n inputs (i.e. for 8 inputs this
gives 2256 candidate solutions). To serve as a benchmark problem when com-
paring the algorithms, we look for a balanced Boolean function with maximum
nonlinearity. However, this problem should not be only be considered as a bench-
mark, but rather as a difficult problem that has practical implications. It is a
well known fact among the cryptography community that the upper bound for
the nonlinearity property in the case of an 8-bit balanced Boolean function is
118 [22]. However, no one has been able to find such a function. Indeed, finding it
would represent not only a significant result from the cryptographic perspective
but also from the EC perspective since it would help profile EC methods as the
truly viable option for cryptographic usages.
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1.1 Related Work

As previously stated, there have been several applications of heuristic methods
to the generation of Boolean functions for cryptography. Here we give only a few
representative examples of work related to our research.

Millan et al. use Genetic Algorithms to evolve Boolean functions that have
high nonlinearity [10]. Clark et al. experiment with Simulated Annealing when
evolving Boolean functions with cryptography-relevant properties [4]. Burnett in
her thesis use Genetic Algorithms in a combination with hill climbing to evolve
Boolean functions and S-boxes [2]. McLaughlin and Clark on the other hand
use Simulate Annealing to evolve Boolean functions that have several crypto-
graphic properties with optimal values [9]. Picek et al. experiment with Genetic
Programming and Genetic Algorithms to find Boolean functions that possess
several optimal properties [19]. Several evolutionary algorithm methods are used
by Picek et al. to evolve Boolean functions that have better DPA-related prop-
erties [18]. With the goal of finding maximal nonlinearity values of Boolean
functions Picek et al. experiment with a handful of evolutionary algorithms and
approaches [20]. Hrbacek and Dvorak use CGP to evolve bent Boolean functions
of size up to 16 inputs. However, since bent Boolean functions should not be used
in cryptography [5] this work has a limited applicability from the cryptographic
perspective.

1.2 Our Contributions

To our best knowledge we are the first to consider CGP when evolving Boolean
functions suitable for cryptographic usage. Furthermore, we experiment with
different genotype sizes and mutation rates to investigate their influence on the
ability of CGP to find good solutions. Since there is no prior experimental work,
this should also be regarded as a guideline for future research. When experi-
menting with GP, we also investigate the influence of tree depth on the quality
of the obtained solutions. We compare GP and CGP algorithms on a real-world
difficult cryptographic problem to investigate their suitability.

The remainder of this paper is organized as follows: in Sect. 2 we describe
relevant cryptographic properties and representations of Boolean functions. In
Sect. 3 experimental setup and algorithms are presented, while results and short
discussion are given in Sect. 4. Finally, Sect. 5 concludes with some suggestions
for future work.

2 Boolean Functions and Their Properties

In this section we give a short overview of relevant cryptographic properties of
Boolean functions. For further details we refer interested readers to [1,5].

The inner product of vectors a and b is denoted as a · b. It is defined as
⊕n

i=1aibi, where “⊕” represents addition modulo 2 (bitwise XOR).
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A Boolean function f on F
n
2 can be uniquely represented by a truth table

(TT), which is a vector (f(0 ), ..., f(1 )) that contains the function values of f ,
ordered lexicographically [1].

The Hamming weight HW (f) of a Boolean function f is the number of ones
in its binary truth table representation [1].

The second unique representation of Boolean function is the Walsh transform.
It measures the similarity between f(x ) and the linear function a · x [1]. The
Walsh transform of a Boolean functions f equals:

WF (a) =
∑

x∈F
n
2

(−1)f(x)⊕a·x . (1)

A Boolean function is balanced (denoted “BAL” throughout the paper) if
its Hamming weight is equal to 2n−1 [1].

The nonlinearity NLf of a Boolean function f can be expressed in terms
of the Walsh coefficients as [1]:

NLf = 2n−1 − 1
2
maxa∈F

n
2
|Wf (a)|. (2)

A Boolean function f is correlation immune of order t - CI(t) if the
output of the function is statistically independent of the combination of any t of
its inputs [1]. For the Walsh spectrum it holds that

Wf (a) = 0, for 0 ≤ HW (a) ≤ t. (3)

A Boolean function f is t-resilient if it is balanced and with correlation
immunity of degree t [1]. Due to the lack of space, we do not explain the roles
of each property in the security application of Boolean function, but we rather
refer readers to relevant literature.

2.1 Balanced Boolean Functions and Maximal Nonlinearity

Sarkar and Maitra showed that if a t-resilient Boolean function f has an even
number of inputs n and t + 1 ≤ n

2 − 1 then its nonlinearity NLf is bounded as
follows [22]:

NLf ≤ 2n−1 − 2
n
2 −1 − 2t+1. (4)

Since we are looking for a Boolean function that has maximal nonlinearity,
we can see that the resilience needs to be 0 which then simplifies the equation
to the following one:

NLf ≤ 2n−1 − 2
n
2 −1 − 2. (5)

From the formula it follows that the maximum nonlinearity for n = 8 and
t = 0 equals 118.
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3 Algorithms and Experimental Setup

We remind the reader that we focus on the evolution of Boolean functions that
are balanced and with as high nonlinearity as possible. Naturally, the end goal is
to find such a function that has nonlinearity 118, but even lower values can help
us to reach the conclusion about the strength of a certain method. Moreover, such
Boolean functions can have also practical applications in the design of stream
ciphers. To conclude, the goals of our experiments can be stated through the
following questions.

– Is CGP suitable for evolving Boolean functions when the focus is on the
cryptographic usage?

– What is the influence of the genotype size on the quality of the solutions
obtained?

– How does the performance of CGP compare with GP?
– What is the influence of tree depth in GP when evolving cryptographically

suitable Boolean functions?

Additionally, we experiment with Genetic Algorithm (GA) which serves as a
basic case scenario to determine a reference performance of the algorithm.

3.1 Genetic Algorithm

Our GA implementation uses the function truth table as chromosome represen-
tation, which is an array of bits of length 2n, where n is the size of a Boolean
function (therefore, in this research the chromosome length is 256 bits). For GA
we use a steady state tournament selection with tournament size k equal to 3
and population size 100. In steady state tournament selection mechanism the
worst of k randomly selected individuals is identified and replaced with a new
individual. The new individual is constructed with the crossover of two random
surviving parents from the tournament. After crossover, each new individual
undergoes a mutation with a given probability.

We experimented with several genetic operators, but the best results were
obtained with one-point crossover and simple mutation which inverts a randomly
selected bit.

3.2 Tree-Based Genetic Programming

In Genetic Programming a function is represented as a tree of a certain depth.
The inner nodes (function set) of a tree are Boolean primitives (such as AND,
OR, NOT), while the leaves (terminals) may be a single input Boolean vari-
ables (v0..v7). We use the same function set, which is given below, for both GP
and CGP. In GP experiments, the mutation probability is set to 0.3 per indi-
vidual, and the population size is 500. Steady-state tournament selection with
tournament size of 3 is used.
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A small number of experiments were also conducted to select the appropriate
operators, and based on that we used a simple tree crossover with 90 % bias for
functional nodes and a subtree mutation.

The maximum tree depth is a parameter that is selected by the user and
influences the available genotype size. When GP/CGP is used, one is effectively
evolving a digital circuit and then examining its truth table to assess whether the
function has the desired properties (e.g. balancedness or nonlinearity). However,
with a GA approach one is directly evolving a truth table, so that the question
of how it is implemented is not involved. Indeed the size of the truth table
determines the size of the GA genotype (bitstring) whereas in the GP/CGP
approaches, the size of the genotype is not directly related to the size of the
desired truth table.

3.3 Cartesian Genetic Programming

In Cartesian Genetic Programming a program is represented as an indexed
graph. The graph is encoded in the form of a linear string of integers [15]. Ter-
minal set (inputs) and node outputs are numbered sequentially. Node functions
are also numbered separately [15].

CGP has three parameters that are chosen by the user; number of rows nr,
number of columns nc and levels-back l [14]. The number of rows and number of
columns make the two-dimensional grid of computational nodes and their prod-
uct gives the maximum number of computational nodes. The levels-back para-
meter controls the connectivity of the graph, i.e. it determines which columns a
node can get its input from [14].

In CGP the genotype is a list of integers that represents the program primi-
tives and how they are connected together [16]. The genotype is mapped to the
directed graph that is executed as a program. Genotypes are of fixed length while
phenotypes have variable length in accordance with the number of unexpressed
genes.

The maximal length of the genotype is given by the following formula:

max length = nrnc(nn + l) + no. (6)

In this application the number of node input connections nn is 2 and the
number of program output connections no is 1. The population size for CGP
equals 5 in all our experiments. For CGP individual selection we use a (1 + 4)-
ES evolution strategy in which offspring are favored over parents when they have
a fitness less than or equal to the fitness of the parent. The mutation operator is
one-point mutation where the mutation point is chosen with a fixed probability.
The number of genes mutated is defined as fixed percentage of the total number
of genes. Note, the single output gene is not mutated and is taken from the
last node in the genotype. The genes chosen for mutation might be a node input
connection or a function. For more details about CGP we refer readers to [13–16].
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3.4 Fitness Functions

When searching for a balanced function with the best possible nonlinearity, we
experimented with two fitness functions, both to be maximized. The first fitness
function simply adds the balancedness penalty and nonlinearity values.

fitness = BAL + NLf . (7)

When a Boolean function is balanced we assign the BAL component a value
of 0, and when it is unbalanced we assign it the negative difference up to the
balancedness (i.e. the number of bits that need to be changed to reach bal-
ancedness) multiplied with a constant c. Based on the results from [19,20] we
set that constant to 5 so that the unbalancedness penalty exceeds the values of
nonlinearity.

For the second fitness function, we have used a two stage fitness in which
a fitness bonus equal to the nonlinearity is awarded only to a genotype that is
perfectly balanced (this occurs when BAL = 0); otherwise, the fitness is only
the balancedness penalty. This is given in Eq. 8. The delta function δBAL,0 takes
the value one when BAL = 0 and is zero otherwise.

fitness = BAL + δBAL,0NLf . (8)

Two stage fitness functions are commonly used in CGP when one is trying
to optimize one quantity under a strict constraint; for instance, when trying to
evolve a Boolean function that exactly matches a given truth table but which
has the minimum number of gates [7]. Note that when Eq. 8 is used, one does not
have to assign weights to the relative importance of different objectives. In Eq. 7
a nearly balanced Boolean function with high nonlinearity could receive the same
fitness score as a fully balanced Boolean function with a lower nonlinearity. In
the two stage fitness function described in Eq. 8 unbalanced Boolean functions
are not assessed for nonlinearity at all. Note that we do not use a multiobjective
approach, since the balancedness is a constraint rather than a separate objective.

An observant reader can easily notice that in Eq. 4 there is a resilience term
which we know needs to be 0 so we disregard it and proceed to Eq. 5. The
question is, should we disregard this property so readily? It is clear from those
two formulas that the nonlinearity property changes in jumps of two and it
always has an even value for Boolean functions with even number of inputs.

This means, if we reach the nonlinearity of 116, to move to the value of
118 actually a random search is performed - since there are no values between
those two, the evolutionary algorithm has no means of differentiating different
solutions with nonlinearity 116. To add this missing information, we may include
the resilience property in the fitness function.

However, the problem is that we do not know what resilience values can lead
to nonlinearity 118. It is plausible to consider it better to have the resilience as
small as possible, since we know that for the best nonlinearity the resilience must
be 0. However, it is possible that Boolean functions with resilience larger than
0 can lead the search towards new, unexplored areas which can eventually lead
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to nonlinearity 118. Since there is no research investigating those conditions at
this moment, all that researchers can do is use their intuition to decide on the
best approach. We take into account the first option where we add to the fitness
function the constraint that the resilience must be 0 and carry out empirical
experiments.

3.5 Experimental Setup

Since there are no previous results when using CGP to evolve Boolean functions
with good cryptographic properties, first we need to consider how to set CGP
parameters. Setting the number of rows to be 1 and levels-back to be equal to
the number of columns is regarded as the best and most general choice [14]. This
choice should be used when there is no specialist knowledge about the problem.

However, this still leaves open the question what should be the size of the
number of columns parameter. Furthermore, CGP usually uses small population
sizes and has no crossover operator [14]. Determining the best combination of
maximum number of nodes (gates in this case) and mutation rate is an important
step in hitting the parameter sweet spot for CGP. Indeed, it has been shown that
generally very large genotypes and small mutation rates perform very well [12].
Thus some experiments were performed varying these two parameters.

Common Parameters. The following parameters of the experiments are com-
mon for all algorithms: the size of Boolean function is 8 (the size of the truth
table is 256) and the number of independent runs for each experiment is 50. The
function set nf for both GP and CGP in all the experiments consists of binary
Boolean primitives OR, XOR, AND, XNOR and AND with one input inverted.
For the stopping condition we use the number of evaluations which we set to
500 000.

4 Results and Discussion

First we note that for the GA case, the best obtained result are balanced func-
tions with nonlinearity value of 112 with the average of 111.8 over 50 runs. This
is considerably worse than the best (and most average) solutions obtained with
CGP, as shown below.

Furthermore, in all the experiments so far, we have been unable to obtain the
nonlinearity of 118; only the value of 116 could be found for balanced functions.
While not the maximum, this nonlinearity level is still very high for practical
purposes, so we used the number of runs with 116 solution occurrences as a
secondary measure of algorithm quality.

In Tables 1 and 2 we give results for CGP with fitness functions as in Eqs. 7
and 8 respectively, for different genotype sizes and mutation probabilities. The
first value in each column represents the average value over all runs and the
second value, in brackets, represents the number of obtained 116 nonlinearity
solutions over all runs (higher is better for both values). The results for both
fitness versions with GP for various tree depths are given in Table 3.
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As it can be seen from the tables, CGP outperforms GA and GP quite
easily. It should be noted that many additional GA and GP combinations were
already experimented with in our previous research that are not shown here,
which exhibit the same or worse performance than the configurations used in this
work. Thus, we concentrate on the CGP efficiency which has not been previously
investigated.

In addition, we can compare CGP variants with the weighted fitness and two-
stage fitness. In Fig. 1 we plot the one-stage and two-stage fitness data shown in
Tables 1 and 2 as a scatter graph showing the average fitness versus the genotype
length for all mutation rates. We also show the number of nonlinearity 116
solutions found in both cases.

The results for the weighted fitness outperform two-stage fitness in many
cases. This is a surprising result as a two-stage fitness is often used in CGP,
ever since it was first described [7,14]. It implies that more work should be done

Table 1. Results for Eq. 7 and CGP.

Genotype/pm 1 3 5 7 9 11 13

100 101.58 (0) 105.78 (1) 100.9 (0) 105.52 (0) 105.94 (2) 105.68 (1) 104.58 (0)

300 110.86 (2) 110.62 (14) 111.22 (13) 111.5 (16) 109.98 (12) 112.12 (16) 111.36 (10)

500 111.26 (11) 112.94 (20) 113.04 (24) 113.5 (24) 114.18 (25) 113.16 (21) 112.42 (20)

700 112.92 (15) 112.7 (23) 113.24 (26) 113.76(27) 113.98 (29) 113.54 (29) 113.16 (30)

900 110.72 (11) 114.38(31) 114.16 (28) 114.48 (31) 114.28 (30) 114.32 (31) 114.7 (34)

1 100 112.4 (10) 114.28 (29) 114.82 (35) 114.56 (33) 114.14 (27) 114.44 (34) 114.74 (36)

1 300 112.76 (12) 114.38 (30) 114.76 (35) 114.3 (30) 114.3 (32) 114.98 (37) 114.58 (34)

1 500 112.58 (12) 114.56 (34) 114.58 (33) 115.08 (40) 114.44 (35) 114.96 (37) 115.16 (39)

1 700 112.88 (15) 113.96 (27) 114.8 (35) 113.7 (29) 114.2 (32) 113.94 (29) 115.12 (40)

1 900 112.52 (12) 114.12 (31) 114.32 (33) 114.48 (31) 114.8 (36) 114.22 (29) 113.38 (25)

Table 2. Results for Eq. 8 and CGP.

Genotype/pm 1 3 5 7 9 11 13

100 94.16 (0) 96.8 (2) 92.96 (0) 96.32 (0) 94 (1) 99.76 (0) 96.32 (0)

300 108.28(0) 108.00 (8) 107.6 (3) 109.68 (9) 102.56 (6) 104.72 (7) 107.36 (6)

500 106.64(1) 110.8 (7) 108.92 (7) 110.4 (6) 110.64 (13) 107.28 (9) 109.84 (9)

700 111.92 (5) 109.96 (11) 111.6 (15) 110.64 (15) 110.68 (9) 111.52 (14) 110.48 (7)

900 110.8 (5) 112.32 (13) 112.76 (20) 112.08 (17) 112.72 (17) 110.96 (15) 112.92 (16)

1 100 111.64 (8) 112.96 (17) 112.96 (19) 113.36 (17) 111.84 (11) 111.40 (13) 112.72 (12)

1 300 110.88 (2) 112.84 (19) 113.28 (17) 112.96 (20) 111.72 (12) 112.48 (13) 112.56 (12)

1 500 111.48 (2) 112.48 (9) 112.20 (13) 113.60 (20) 113.12 (19) 112.76 (14) 112.52 (11)

1 700 112.16 (8) 111.6 (15) 112.88 (15) 111.88 (17) 112.92 (16) 113.04 (20) 113.20 (17)

1 900 111.0 (5) 112.96 (15) 112.76 (17) 112.6 (14) 112.64 (23) 112.8 (15) 112.36 (10)

Table 3. Results for GP.

Tree depth 5 7 9 11 13

Eq. 7 112.13 (1) 112.2 (2) 111.36(0) 111.64 (0) 111.22 (0)

Eq. 8 112.13 (1) 112 (0) 111.76 (1) 111.72 (0) 111.58 (0)
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(a) One-stage average fitness (b) Two-stage average fitness

(c) Number of 116 solutions found with
one-stage average fitness

(d) Number of 116 solutions found with
two-stage average fitness

Fig. 1. Comparative results for one-stage 1(a) and two-stage 1(b) fitness functions
showing average fitness achieved and the number of 116 solutions found against geno-
type length for all mutation rates.

on a variety of problems to establish the relative merits of the two approaches.
In addition in [12] it was suggested that optimal mutation rates should decrease
as genotype length increases. However, the results here indicate that for the
cryptographic problem studied this is not the case. Indeed fairly high muta-
tion rates produced the best results. This is also surprising and merits further
investigation.

When adding the resilience constraint to the fitness function, we observe that
all Boolean functions within several generations obtain the resilience value of 0.
This suggests that this condition is not hard enough objective to lead the search
towards very high nonlinearity values in different parts of search space when
compared with fitness functions without that objective.

When considering the average number of active nodes for CGP we give num-
bers for the best set of parameters and both fitness functions in Table 4. Notice
that we selected the best algorithm on the basis of the number of achieved 116
nonlinearity values. In the case that two algorithms have the same number of
116 values, then we consider the average value as the second criteria.

We carried out longer runs of 10 million evaluations for the best combina-
tions of CGP parameters considering the total number of obtained 116 non-
linearity values. We do not give similar comparison for GP since it is much
slower and from that perspective is not competitive with CGP for such large
number of evaluations. Figure 2 shows a boxplot comparison of best parameter
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Table 4. Average number of active nodes.

Algorithm CGP, Eq. 7 CGP, Eq. 8 CGP, Eq. 7, long run CGP, Eq. 8, long run

Genotype, pm 1 700, 13 1 900, 9 1 700, 13 1 900, 9

Value 84.24 76.62 81.76 86.33

Fig. 2. Boxplot comparison of the most successful algorithms.

combinations for GA, GP and CGP with fitness functions Eqs. 7 and 8. Fur-
thermore, we present best parameter combinations for CGP with 10 million
evaluations. Note that the same parameter combinations for CGP are presented
in Table 4.

5 Conclusion and Future Work

This paper describes an application of GA, GP and CGP in an evolution of cryp-
tography relevant Boolean functions. The main contribution is the application
of CGP, whose efficiency has not been previously investigated for this problem,
and a comparison with two other methods. The results show that CGP is able to
produce results that are clearly better than previous approaches, and is at the
same time a valid choice for this kind of problem. Additionally, the described
optimization problem may be considered a viable candidate as a benchmark
problem for GP-related algorithms, both for its hardness as well as its real-world
applicability.
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vol. 8672, pp. 822–831. Springer, Heidelberg (2014)

http://eprint.iacr.org/
http://eprint.iacr.org/


204 S. Picek et al.

21. Prouff, E.: DPA Attacks and S-Boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005). http://www.
iacr.org/cryptodb/archive/2005/FSE/3172/3172.pdf

22. Sarkar, P., Maitra, S.: Nonlinearity Bounds and Constructions of Resilient Boolean
Functions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 515–532.
Springer, Heidelberg (2000)

http://www.iacr.org/cryptodb/archive/2005/FSE/3172/3172.pdf
http://www.iacr.org/cryptodb/archive/2005/FSE/3172/3172.pdf


TEMPLAR – A Framework
for Template-Method Hyper-Heuristics

Jerry Swan and Nathan Burles(B)

Department of Computer Science,
University of York, York YO10 5GH, UK

jerry.swan@cs.york.ac.uk, nathan.burles@york.ac.uk

Abstract. In this work we introduce Templar, a software framework
for customising algorithms via the generative technique of template-
method hyper-heuristics. We first discuss the need for such an approach,
presenting Quicksort as an example. We provide a functional defini-
tion of template-method hyper-heuristics, describe how this is imple-
mented by Templar, and show how Templar may be invoked using
simple client-code. Finally, we describe experiments using Templar to
define a ‘hyper-quicksort’ with the aim of reducing power consumption—
the results demonstrate that the generated algorithm has significantly
improved performance on the test set.

Keywords: Genetic programming · Generative hyper-heuristics · Temp-
late method · Energy profiling · Reduced power consumption · Quicksort

1 Introduction

Despite two decades of research, scalability remains an issue for program synthesis
via metaheuristics. Although there have been some recent promising results [20],
for many problems generative approaches such as Genetic Programming (GP) [9]
still work best at the scale of expressions. A greater degree of explicit structure
can be imposed by Grammatical Evolution [19], although this approach is known
to suffer from a lack of locality [18]. By contrast, human ingenuity has already
provided a vast repertoire of specialized algorithms, usually with known asymp-
totic behaviour. Given these limitations of scale, how can we best use generative
approaches to improve upon human-designed algorithms?

One motivating observation is that the performance of many well-known algo-
rithms arises in practice from the inclusion of heuristically-informed decision
points and/or ad hoc boundary conditions (e.g. the recursion depth at which
Musser’s widely-used sorting algorithm ‘Introsort’ switches from Quicksort to
Heapsort [15]). The method of hyper-heuristics [4] (‘heuristics to select or gener-
ate heuristics’) performs metaheuristic search over function spaces in which the
functions are themselves heuristics. This leads naturally to the idea of a genera-
tive hyper-heuristic approach to algorithm design, in which we search for superior
versions of the heuristically-informed parts of an algorithm. As described in a
recent paper on ‘Template Method hyper-heuristics’ [27], rather than hope to
synthesise a complete algorithm from the ‘bottom up’, we can instead use the
c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 205–216, 2015.
DOI: 10.1007/978-3-319-16501-1 17
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DoubleArray
qso r t ( a r r : DoubleArray , pivotFn : DoubleArray → Double) {

Double p ivot = pivotFn ( ar r ) ;
// ˆˆˆ pivotFn can be var i ed g e n e r a t i v e l y
return qso r t ( a r r . f i l t e r ( < p ivot ) , pivotFn )

++ arr . f i l t e r ( == pivot )
++ qsor t ( a r r . f i l t e r ( > pivot ) , pivotFn ) ;

}
Listing 1. Quicksort with variant pivot function

‘Template Method’ Design Pattern [6] and provide an algorithm skeleton (the
template) that is parameterized by one or more ‘variation points’. Each variation
point is permitted to express a family of behaviours, whether constrained merely
by the types of its function signature, or more strongly via ‘design by contract’.
By expressing an algorithmic framework in Template Method terms, we can then
use generative techniques (in this case GP) to learn good implementations for
the variant parts. By ‘good’, we mean ‘biased towards the distribution to which
the algorithm is exposed’. If our algorithms are metaheuristics, an important
corollory is that they are not subject to the ‘No Free Lunch’ theorem [24], since
the distribution over problem instances is biased away from uniform by the train-
ing set. This approach has been successfully demonstrated in the generation of
more effective selection and mutation operators for Genetic Algorithms [25,26].

1.1 Quicksort - A Motivating Example

Although Quicksort [7] is of course a generic algorithm (i.e. it can be defined
over any partially-ordered type), for simplicity of exposition we consider it to
operate on arrays of floating point values, denoted by DoubleArray. Quicksort
performance is well-known to be dependent on the choice of pivot, which we can
therefore consider as a variation point for the algorithm. The pivot-function can
be taken to have signature: pivotFn : DoubleArray → Double, i.e. it returns the
choice of pivot value for a given input array. Listing 1 gives the pseudocode for
a version of Quicksort that takes the pivot function as an additional argument.
By specifying our algorithm in this fashion, we can generate a version that best
meets some training criterion specified in client-code, such as robustness against
pathological inputs (e.g. hardening against denial-of-service attacks), reduced
power consumption, etc.

In the remainder of this article we describe Templar, a generic JavaTM

framework for Template Method hyper-heuristics, and show how it can be used
for rapid prototyping. The outline of the article is as follows: in Sect. 2, we give
a functional definition of Template Method hyper-heuristics and describe the
corresponding Templar implementation. Starting from elementary examples,
in Sect. 3 we show how Templar is configured and invoked from client-code.
In Sect. 4, we detail an experiment with ‘hyper-quicksort’ to demonstrate the
utility of this approach, giving conclusions in Sect. 5.
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@Funct iona l Inte r face
// ˆ t e l l s Java t h i s can be t r e a t e d as a lambda func t i on
interface Fun1<Arg , Result> {

Result apply (Arg arg ) ;
}

@Funct iona l Inte r face
interface Fun2<Arg1 , Arg2 , Result> {

Result apply (Arg1 arg1 , Arg2 arg2 ) ;
}

// We can now use f unc t i on s as parameters
// and re turn va l u e s :
Fun1<A, C> compose (Fun1<A, B> f , Fun1<B, C> g ) {

return (A x ) −> g . apply ( f . apply (x ) ) ;
}

Listing 2. Higher-order functions in Java

2 A Functional Framework for Template Method
Hyper-Heuristics

For an algorithm with function signature I → O, Template Method hyper-
heuristics can be described as follows:

1. A list of variation points describing the parts of the algorithm to be auto-
matically generated:

VP : (I1 → O1) × (I2 → O2) × . . . × (In → On)

2. An algorithm template expressing the algorithm skeleton. The template pro-
duces a customized version of the algorithm from automatically-generated
implementations of the variation points:

Template : VP → (I → O)

3. A loss function to evaluate the customized algorithm on supplied training
and testing sets as a function of the difference between actual and expected
outputs:

LossFn : (O × O) → V

4. An algorithm factory that searches the space of variation points to produce
an optimized version of the algorithm:

Factory : VP × Template × LossFn → (I → O)

Despite the success of applications such as [5], the vast majority of hyper-
heuristic publications concern selective hyper-heuristics—there are far fewer on
generative approaches. Hoos [8] discusses automated algorithm improvement,
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interface AlgTemplate<I , O> {
public Fun1<I, O> makeAlg (ProgramList programs ) ;

}

class AlgFactory<I , O> {
AlgFactory (GPConfig[] var i a t i onPo in tCon f i g s ,

AlgTemplate<I, O> template ) { . . . }

ProgramList run (FitnessCases<I, O> cases ,
LossFn<O> l o s sFn ) { . . . }

}
Listing 3. Core Templar classes

and the benefits this can bring—such as removing the menial work involved in
manually experimenting with new algorithms and the improved performance of
the resulting algorithms. Unfortunately generative hyper-heuristics are labori-
ous to implement on a per-case basis, but also nontrivial to generalize. There
are several reasons for the latter: firstly, generation of the variant programs is
typically implemented via GP and is invoked repeatedly by the Factory in the
process of the hyper-level search. Unfortunately, popular GP implementations
such as ECJ [12] and PushGP [21] prefer to be the ‘top’ of the system (not least
because of their ‘configuration file’ based approach) and hence attempting to use
them for generative hyper-heuristics is not a simple matter. Secondly, the fitness
of each variation point depends on the others, and a generic implementation of
the complex ‘wiring diagram’ of dependencies is likely to be offputting to many
experimenters. There has recently been some interesting related work using an
algorithm configuration tool [10] to play an analogous role to the grammar in
Grammatical Evolution [19]. This has been successfully used to automatically
generate local search heuristics [13].

3 The TEMPLAR Framework

Functional programming makes intensive use of higher-order functions, i.e. func-
tions which can accept (and significantly, return) other functions. Listing 2 shows
how higher-order functions can be defined in Java. As of Java 8, equivalents of
Fun1,Fun2 are supported natively as java. util .Function1,Function2 and Lambda
functions can be expressed in the concise syntax we use in the program listings1.

The core Templar classes are given in Listing 3. AlgFactory defines the
process of hyper-heuristic search for program variants (supplied subclasses offer
Iterative Improvement or Genetic Algorithms), whereas the end-user must sub-
class AlgTemplate in order to generate a new algorithm from a ProgramList con-
taining a generated program for each of the variation points. At the top of
Listing 4 is IdentityTemplate, the simplest possible subclass of AlgTemplate. It has
1 docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html.

http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
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class Ident i tyTemplate implements AlgTemplate<Double ,
Double> {

public Fun1<Double, Double> makeAlg (ProgramList progs ) {
// Wrap the VP in a func t i on :
return (Double arg ) −> progs . get (0 ) . execute ( arg ) ;

}
}

class CompositionTemplate implements AlgTemplate<Int , String>
{

Fun1<Int, String> makeAlg (ProgramList progs ) {
Fun1<Int, Double> f = ( Int arg ) −>

progs . get (0 ) . execute ( arg ) ;
Fun1<Double, String> g = (Double arg ) −>

progs . get (1 ) . execute ( arg ) ;
// t h i s t emp la te composes the two var i an t programs :
return compose ( f , g ) ;

}
}

Listing 4. Simple AlgTemplate examples

no actual algorithm skeleton, i.e. it merely wraps the generated program of its
(sole) variation point inside a function and returns it. This is therefore equivalent
to a ‘standard’ (i.e. non-template) generative approach. Of slightly greater util-
ity is CompositionTemplate, in which the algorithm skeleton is the composition
of two generated variants f and g to give f(g(x)). As can be seen in Listings 4
and 5, using Templar requires that the end user do only the following:

1. Define an AlgTemplate subclass as described above.
2. Configure GP for each variation point (Listing 5).
3. Invoke Templar on user-supplied training and testing sets (Listing 5).

The GPConfig class contains all the information (function set, population
size, mutation and crossover rates and operators, etc.) required to generate pro-
grams for each variation point. In Listing 5, the RationalFunctionConfiguration

({+,−, ∗,%}) built-in to Templar is used. The lossFn parameter determines
the fitness of algorithm variants as a function of the difference between actual
and expected outputs—here root mean square error (RMS) is used.

In terms of computational expressiveness, Templar is equivalent to
approaches such the Grammatical Evolution or the automated configuration
tool irace mentioned above. Aside from the issue of lack of locality in such
approaches [18], the main advantage we claim for Templar is that it is more
programatically integrated: unlike grammar configuration files or parsed EBNF
grammar strings, the entities manipulated by Templar are all first-class objects
and the validity of the resulting program can be enforced to the extent that
Java’s type-system permits. This approach also brings some other benefits when
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public stat ic void main ( String[ ] args ) {
// Conf igure GP fo r each v a r i a t i on po in t
AlgTemplate<Double, Double> template =

new Ident i tyTemplate ( ) ;
GPConfig[] vpConfigs = new GPConfig[] {

new RationalFunct ionConf ig ( ) } ;
LossFn<Double> l o s sFn = new RMSLossFn<Double>() ;

// Set−up t r a i n i n g and t e s t i n g s e t s :
FitnessCases t r a i n i n gS e t = . . .
FitnessCases t e s t S e t = . . .

// Invoke Templar :
ProgramList bestVPs = Templar . run ( template , vpConfigs ,

t r a in ingSe t , t e s tSe t , lossFn ) ;
p r i n t l n ("best VPs : " + bestVPs ) ;

}
Listing 5. Configuring and running Templar

working with non-trivial datatypes. For example, the algorithm described above
operates on values of type Double. For more sophisticated algorithms, it is desir-
able for the generated programs to operate directly on user-defined datatypes
(e.g. BitString, Timetable, RoutePlan, AntTrail etc.). However, the manual cre-
ation of GP nodes for function sets on such custom representations is tedious.
Following [11], a FunctionSetGenerator utility is provided by Templar, using
reflection to automatically build a function set from the methods defined on any
Java object.

4 Hyper-Quicksort

By following the steps described above, it is a simple matter to create hyper-
heuristic versions of any algorithm. In this section, we describe how to create
a ‘hyper-quicksort’. Listing 6 gives the complete client code for this. Java is an
unnecessarily verbose language and unlike languages such as C++ which can
reduce syntactic clutter by using typedef to create a type alias, there is no explicit
support in Java for this. Something similar can, however, be achieved by creating
an appropriately named subclass, as has been done here with PivotFn.

It is well-known that Quicksort does not perform well on certain pathologi-
cal distributions (e.g. nearly-sorted or reverse-sorted input) [14]. To demonstrate
the effectiveness of our approach, we used as input a ‘pipeorgan’ distribution, in
which the values in the input array increase monotonically until some randomly-
specified index, then decrease monotonically. Quicksort is known to behave
poorly against data drawn from this distribution, so the case study we present
could be considered as a simple example of ‘hardening’ software against a denial-
of-service attack. An example is given in Fig. 1.
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Fig. 1. Example of ‘pipeorgan’ training set for hyper-quicksort

4.1 Optimising for Energy Reduction

Measuring the power consumption of a computer can be performed using a
number of methods, such as reading the data from an uninterruptible power
supply, or the use of an electronic watt-meter. Recently, software-based alterna-
tives have become available that use power models in conjunction with timings
and system information such as CPU utilisation in order to provide reasonably
accurate estimations [2]. These hardware and software tools can be very useful
for informing users of their power consumption, or as a course-grained overview
of energy used by an application. Unfortunately their precision and accuracy are
too low to be suitable for use in automated software improvement—competing
algorithms would need to be run an inordinate number of times to obtain a sin-
gle measurement, essentially making the hyper-heuristic intractable. Although
software-based tools can only provide estimates of the power consumed, the
important factor is relative consistency between competing solutions. The use of
a more accurate software measure is thus acceptable, such as the Wattch [3] and
Jalen [16] tools. Wattch is a cycle-level simulator that has been used successfully
with GP (e.g. [23]), however it requires a parameterised model of the processor
and does not support Java. Jalen is a more recent alternative that targets Java,
and can calculate an estimate of the power consumption by monitoring the exe-
cution time alongside system resources such as processor utilisation. Due to its
simplicity and target language, in this work we have chosen to use Jalen to
determine the fitness of competing algorithms.

4.2 Experimentation and Results

The experimental setup was as follows: the GP metaheuristic was configured with
a population size of 100, 200 generations per run, an initial tree depth of 2 and
a max tree depth of 4. These values were determined empirically as a reasonable
trade-off between solution quality and execution time of the hyper-heuristic.
All other GP parameters and operators were as the EpochX 1.4 defaults. An
iterative-improvement hyper-heuristic was used on top of a GP metaheuris-
tic, with a stopping condition of 100 iterations. The training set contained 70
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// 1 . Define an AlgTemplate s u b c l a s s :

// ‘ t y p ed e f ’ f o r PivotFn to inc rea se r e a d a b i l i t y :
@Funct iona l Inte r face
abstract class PivotFn
extends Fun2<DoubleArray , Int , Double> {

Double apply (DoubleArray a , Int recurs ionDepth ) ;
}

class QuicksortTemplate
implements AlgTemplate<DoubleArray , Int> {

Fun1<DoubleArray, Int> makeAlg (ProgramList progs ) −> {
PivotFn pivotFn = (DoubleArray a , Int recurs ionDepth ) −> {

int progResult = programs . get (0 ) . execute ( a . s i z e ( ) ,
recurs ionDepth ) ;

int numSamples = Math . min (Math . abs ( progResult ) ,
a . s i z e ( ) ) ;

return median ( randomSample ( a , numSamples ) ) ;
} ;
return (DoubleArray arg ) −> Quicksort . s o r t ( arg , pivotFn ) ;

}
}

Int qu i ck so r t (DoubleArray a , PivotFn pivotFn ) ;
// ˆ instrumented to re turn f i t n e s s ( e . g . power consumed )

// 2 . Conf igure GP to genera te pivotFn VP:
List<Var> vars = {Var ( ‘ ‘ s i z e ’ ’ ) , Var ( ‘ ‘ recurs ionDepth ’ ’ ) } ;
List<Node> funcSet = { I fFn ( ) , LessFn ( ) , AddFn( ) , . . .} ;
GPParams params = . . . // crossover , s e l e c t i o n , e t c
GPConfig vpConfigs = {new GPConfig ( funcSet , vars , params ) } ;

// 3 . Invoke Templar
AlgTemplate<Double, Double> template =

new QuicksortTemplate ( ) ;
FitnessCases t r a i n i n gS e t = . . .
FitnessCases t e s t S e t = . . .
Templar . trainAndTest ( template , vpConfigs , t r a in ingSe t ,

t e s tSe t , new RMSLossFn<Double>() ) ;

Listing 6. Client-code for Hyper-quicksort

cases, where each case consisted of 100 arrays to be sorted, each with size 100.
The function to be minimized was the energy used to perform the Quicksort,
using a modified version of the Jalen tool2.

2 In order to provide the highest possible accuracy, Jalen was modified to run from
within the Java Virtual Machine, rather than as an external Java Agent.



TEMPLAR – A Framework for Template-Method Hyper-Heuristics 213

Fig. 2. Energy required to sort 1000 ‘pipeorgan’ arrays using various pivot functions

As described above, the pivot function is the sole variation point, and the
input variables for the generated programs are ‘array size’ and ‘recursion depth’.
The template for the evolved GP function is configured as follows: the Oracular
pivot value of an array of values is its median. Here, we use GP to generate the
function GP(arraySize, recursionDepth) → numSamplePoints and take as pivot
the median of numSamplePoints randomly-chosen array elements. Although
Quicksort is defined on anything with a partial order, note that this particular
method only works when the array values are numeric. A number of different fun-
ctions were generated by different runs of the GP, however commonly-observed
amongst the fitter functions was recursionDepth. This suggests that as the recur-
sion depth increases (and array size decreases), performance is improved by
increasing the number of samples.

In Fig. 2, the performance is compared with three well-known pivot func-
tions: ‘Middle index’, ‘Random index’, and ‘Sedgewick’ (the latter returning the
median of the first, middle, and last elements). In this testing, Jalen was used
to calculate the energy required to sort 1000 arrays of varying lengths using each
of the pivot functions. This test was performed 100 times, and Fig. 2 presents the
mean results. Hyper-quicksort can be seen to outperform all of the alternatives.
In order to verify that the results are significant, we used the non-parametric
Mann-Whitney U-test [1]. For each array length, 23 − 211, we ran the U-test
comparing the set of results obtained using hyper-quicksort to each of the alter-
native pivots in turn. As shown in Table 1, in all of the cases it was clear that
the distributions of the results were significantly different, with p < 0.05.

Having demonstrated significance, it is important that the effect size is also
measured [1]. For this we used Vargha and Delaney’s non-parametric Â12 sta-
tistic [22] for each of the sets of results above. This test returns the probability
that using algorithm A provides higher values than using algorithm B. We wish
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Table 1. Energy (J) required to sort 1000 ‘pipeorgan’ arrays using various pivot func-
tions, as well as the p-values (p) and effect size measures (e) comparing hyper-quicksort
to the alternative pivot functions.

to minimize the energy used, and so in each case algorithm B is hyper-quicksort,
and algorithm A the alternative—the results of the Â12 statistic therefore give
the probability that using the alternative pivot function will use more energy
than hyper-quicksort. Vargha and Delaney suggest the following guidelines for
interpreting the effect size: 0.5 indicates that there is no benefit to either algo-
rithm; 0.56 indicates a small difference; 0.64 indicates a medium difference; and
0.71 indicates a large difference. As would be expected, there is some range in the
effect sizes across the various array sizes and alternative pivot functions—from
0.970 to 1.000. The results are presented in full in Table 1, and show definitively
that the Quicksort variant generated by Templar provides improved perfor-
mance compared to common pivot functions, with respect to the energy required
to sort families of data drawn from a pathological ‘pipeorgan’ distribution.

5 Conclusion and Future Work

We have introduced Templar, a framework that supports ‘Template Method
Hyper-heuristics’ [27], by which any algorithm can be parameterized by a collec-
tion of variant subroutines to be generated automatically. By judicious choice of
subroutines (and their associated function signatures), the framework can make
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effective use of Genetic Programming to tune the algorithm to some target dis-
tribution. Since the supporting algorithm skeleton can be arbitarily complex,
this allows greater scalability than can be achieved by the näıve application of
Genetic Programming. In implementation terms, Templar makes creation of
generative hyper-heuristics a more procedural matter of GP parameter tuning.
We described how to create a ‘Hyper-quicksort’ and showed the effectiveness
of the approach by optimizing for power consumption. Regarding future work,
Templar currently uses EpochX [17] as the GP backend. It would also be desir-
able to support PushGP and ECJ as alternatives. This may be difficult because
of their ‘configuration file’ based-approach, but if successful would allow direct
comparison of their performance as a generative hyper-heuristic mechanism.

Although this approach has proven successful, the imprecision of the power
measurement approach used in our experiments imposes an undesirable con-
straint on experimentation—algorithms must be run numerous times within a
single measurement. This greatly increases the time required to run the hyper-
heuristic. In future work it would be advantageous if a bytecode or opcode power
model was developed for use with an execution trace. Such an implementation
would allow highly precise modelling of power consumption, reducing the time
required for optimizations and potentially improving results.

References

1. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing random-
ized algorithms in software engineering. Softw. Test. Verif. Reliab. 24(3), 219–250
(2014)

2. Bekaroo, G., Bokhoree, C., Pattinson, C.: Power measurement of computers: analy-
sis of the effectiveness of the software based approach. Int. J. Emerg. Technol. Adv.
Eng. 4(5), 755–762 (2014)

3. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a framework for architectural-level
power analysis and optimizations. In: 27th Annual International Symposium on
Computer Architecture, ISCA 2000, pp. 83–94. ACM (2000)

4. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.:
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Abstract. In this paper, the approximate circuit design problem is
formulated as a multi-objective optimization problem in which the cir-
cuit error and power consumption are conflicting design objectives. We
compare multi-objective and single-objective Cartesian genetic program-
ming in the task of parallel adder and multiplier approximation. It is
analyzed how the setting of the methods, formulating the problem as
multi-objective or single-objective, and constraining the execution time
can influence the quality of results. One of the conclusions is that the
multi-objective approach is useful if the number of allowed evaluations is
low. When more time is available, the single-objective approach becomes
more efficient.

Keywords: Genetic programming · Cartesian genetic programming ·
Evolutionary design · Approximate computing · Approximate circuits ·
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1 Introduction

Approximate computing is a promising approach for the design of energy
efficient computer-based systems (see detailed motivation and survey in [1,5]).
It exploits the fact that many applications are error resilient which means that
their users are willing to accept less than perfect solutions, simply because the
inaccuracies in the output are not recognizable, or they are well justified under
some circumstances. Multimedia applications, search, classification, prediction
and recognition tasks are typical domains for approximate computing. Approx-
imations can be introduced at the circuit, component, architecture, software,
operating system or system’s level. In some cases, the degree of approximation
can be adapted during system’s deployment. Because of the nature of evolution-
ary algorithms which evolve target systems by introducing small changes into
existing structures, it seems that evolutionary computing could be an efficient
method to approximate (i.e. purposely modify) circuit designs [10,11].

From the designer’s perspective, a reasonable trade-off is sought between the
accuracy and power consumption. (Alternatively, the accuracy can be traded for
the speed of operation in some applications.) The approximate circuit design
c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 217–229, 2015.
DOI: 10.1007/978-3-319-16501-1 18
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problem can be formulated as a multi-objective design and optimization prob-
lem in which the accuracy and power consumption are conflicting design objec-
tives. A good approximate circuit design tool should provide a set of solutions
which exhibit various trade-offs among key circuit parameters, in particular, the
accuracy and power consumption. These solutions should, in an idealized case,
perfectly match the so-called Pareto optimal front [2]. Current approximation
tools (such as [9,12,13]) typically solve this problem by multiple executions of
approximation engines in order to obtain a set of various solutions. With respect
to given constraints and specification, the designer finally selects one of the
compromises to be implemented on a chip.

The approximate circuit design is a computationally demanding process
which involves generating and comparing many circuit designs. In order to
justify this computation time, the resulting circuit should really represent a
good compromise between the target objectives. The maximum number of cir-
cuits that is allowed to be generated and evaluated thus becomes the main
constraint for approximation engines.

The goal of this paper is to compare multi-objective and single-objective
versions of Cartesian genetic programming (CGP) [8] in the task of combina-
tional circuit approximation. The reasons for using an advanced evolutionary
approach (contrasted to a greedy search used in the state of the art tools [9]) are
that the population-based approach suits well in finding multiple solutions and
its niche-preservation methods can be exploited to discover diverse solutions [2].

The methodology presented in this paper uses the following principles: (1)
the single- and multi-objective search methods are compared under various con-
straints on the execution time because the design time is one of the crucial
factors determining applicability of a design method; (2) the key circuit para-
meters (area and delay) are estimated during the optimization process while the
resulting approximate circuits are implemented using a standard design flow and
compared with their accurate counterparts. It has to be noted that performing
a fair comparison of various approximation algorithms is not trivial in practice
because different teams have the access to different test circuits (some of them
are proprietary) and fabrication technologies (correct power estimation depends
on a particular fabrication process).

Section 2.1 surveys relevant methods developed to approximate circuit designs.
Section 2.2 is devoted to the principles of multi-objective optimization. The pro-
posed single-objective and multi-objective approximate circuit design methods are
introduced in Sect. 3. Experimental results are presented in Sect. 4. Conclusions
are given in Sect. 5.

2 Related Work

2.1 Approximate Computing

In approximate computing systems, the accuracy (or quality) of the output is
traded for improvements in power consumption or performance. This is possible
because many applications are intrinsically error resilient and users are willing
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in many cases to accept less than perfect performance or quality. Approxima-
tions are currently applied at all system’s levels [5]. We will solely focus on
approximate circuits in this paper.

Initial approaches to the functional approximation have been based on a
manual identification of subcircuits that should be approximated, for example,
in adders and multipliers [7]. However, the manual approach is not efficient
and scalable. Later, several systematic automated methodologies have been pro-
posed [9,10,12,13].

For example, ABACUS creates an abstract synthesis tree from the input
behavioral description and then applies various operators to it using an itera-
tive stochastic greedy approach [9]. Candidate designs are evaluated in terms
of accuracy, power consumption and area using a single objective optimization
algorithm. The objectives are combined together in a weight function. The Pareto
front is obtained from multiple runs of the search algorithm (only about 50 can-
didate circuits are generated in each run [9]).

The aforementioned methods try to approximate the Pareto optimal front by
either combining more design objectives in a single objective search (ABACUS)
or executing the approximation algorithm with one fixed criterion (e.g. the error
is constant) and optimizing for another one (minimizing power consumption).
However, in many cases, the resulting solutions do not cover the whole Pareto
front and the design alternatives are centered around a few dominant designs.
These methods employ the standard design flow to construct and evaluate every
candidate circuit, which is very time consuming. On the other hand, the circuit
parameters obtained are very close to real ones.

Systematic methods based on the evolutionary design paradigm consider
the approximate circuit design problem as a search problem. It was exploited
in [10,11] that power consumption is often highly correlated with occupied
resources and the evolutionary design is capable of constructing partly work-
ing solutions even if sufficient resources (required for finding a fully functional
solution) are not available. The user then obtains, in multiple runs of CGP,
a set of approximate combinational circuits, each of which typically exhibits
different trade-off between the accuracy and the number of gates. Delay was not
addressed in papers [10,11].

2.2 Multi-objective Optimization

In general, the multi-objective optimization problem can be defined in the fol-
lowing form:

optimize: fm(x), m = 1, 2, ...,M

subject to: gj(x) ≥ 0 j = 1, 2, ..., J (1)
hk(x) = 0 k = 1, 2, ...,K

where x = (x1, x2, . . . , xn) is a vector representing the solution consisting of n
decision variables. The objective functions are denoted f1, . . . , fM . Some of these
functions have to be minimized, others have to be maximized. Functions gj(x)
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and hk(x) define the optimization constrains and thus determine the space of
feasible solutions.

In order to compare two solutions, Pareto-dominance relations are employed [2]:
Solution x(1) dominates another solution x(2) if the following conditions are sat-
isfied: (i.) The solution x(1) is no worse than x(2) in all objectives. (ii.) The
solution x(1) is strictly better than x(2) in at least one objective.

The result of the multi-objective optimization is no longer a single solution,
but a set of solutions. In a set of solutions P , a non-dominated subset of solu-
tions P ′ contains those solutions that are not dominated by any member of P .
The non-dominated subset of all possible solutions is called Pareto-optimal set
(front). The members of this subset are optimal solutions to the multi-objective
optimization problem. The ultimate goal of any multi-objective optimization
algorithm is to find all solutions which belong to the Pareto-optimal front. In
practice, the goal is to find a set of solutions as close as possible and as diverse
as possible with respect to the Pareto-optimal front.

A straight forward approach to the multi-objective optimization is converting
the multi-objective problem to a single objective one using a weight function∑

wifi, where wi is the weight of the i-th objective. Because a single run of the
optimizer which uses the sum yields only one solution, multiple runs are needed
for obtaining various trade-offs. The proper setting of weights wi is not an easy
task and is usually based on the user intuition. Another limitation of the weight
function lies in the fact that certain Pareto-optimal solutions are not reachable
in the case of nonconvex objective space [2]. Since it is difficult to detect whether
the resulting objective space is nonconvex, the weight function has to be applied
with caution.

In order to precisely approximate the whole Pareto-optimal front and obtain
various diverse non-dominate solutions in a single run of an optimizer, truly
multi-objective evolutionary algorithms have been introduced, for example, non-
dominated sorting genetic algorithm (NSGA-II). Contrasted to the single-
objective optimization algorithms, they internally sort individuals according to
the dominance relation, build archives of non-dominating solutions, and ensure
population diversity to avoid converging to a single solution. In the context of
evolutionary design of (exact) circuits, multi-objective CGP has been applied
in [6,8].

3 The Proposed Search Methods

The proposed approach is based on Cartesian genetic programming [8] and its
multi-objective extension utilizing the NSGA-II [3].

3.1 Circuit Representation

A candidate circuit is modeled by means of a directed acyclic graph whose nodes
(gates) are organized in nc columns and nr rows. The circuit has ni primary
inputs and no primary outputs. Each node input can be connected either to the
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output of a node placed in previous l columns or to one of the primary circuit
inputs, where l is one of CGP parameters.

A candidate solution consisting of two-input nodes is represented in the chro-
mosome by nr · nc triplets (x1, x2, ψ) determining for each processing node its
function ψ (ψ ∈ Γ), and addresses of nodes x1 and x2 which its inputs are
connected to. The last part of the chromosome contains no integers specifying
either the nodes where the primary outputs are connected to or logic constants
(‘0’ and ‘1’) which can directly be connected to the primary output. While the
chromosome size is constant for a given product nr · nc, the phenotype size is
variable and measured as the number of used nodes (gates).

3.2 Single-Objective Search

The initial population of CGP is created either randomly or seeded by avail-
able circuits. Candidate circuits are evaluated using the fitness function. If a
multi-objective optimization is conducted, there are several fitness functions
formulated, each of them reflecting to what extent a given circuit parameter
(accuracy, area, delay etc.) satisfies the specification.

When multiple-objectives are aggregated to a single fitness value (e.g. using
the weight function), we speak about a single-objective optimization. Each
member of the population then receives one fitness value and the highest-scored
idividual becomes a new parent of the next population.

The offspring circuits are created from the parent using mutation, which is
the only operator used in CGP. The mutation modifies h randomly selected genes
(integers) of the parent circuit. CGP usually employs a 1+λ search strategy. The
evolution is terminated when a predefined number of generations is exhausted
or a suitable solution is discovered.

3.3 Multi-objective Search

In the multi-objective algorithm, the 1 + λ search strategy is replaced by
procedures of NSGA-II which implement non-dominated sorting of the pop-
ulation (non-dominated solutions are emphasized) and diversity preservation
mechanisms (less crowded points of the search space are promoted) – details
can be found in [3]. Here, the population consists of λMO individuals. The non-
dominated sorting algorithm of NSGA-II was modified in such a way that when
all components of the fitness score of a parent and its offspring remain unchanged,
the offspring is classed as dominating the parent, and is therefore ranked higher
than the parent. Moreover, the maximum allowed error Emax (which the designer
is going to observe and accept in the resulting Pareto fronts) is defined as a
constraint in our algorithm. In order to optimize the error (inaccuracy), area
and delay, three fitness functions (all to be minimized) will be constructed. If
fitness ferror > Emax, the solution is considered as unacceptable.
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3.4 Methodology

Because many candidate circuits will be generated and evaluated in the course
of evolution, it is intractable to precisely calculate power consumption and other
circuit parameters for each of them. Hence we will only calculate the error and
estimate the area and delay. As power consumption is highly correlated with
the area (which can be assumed for certain technology nodes), it is particularly
important to find good compromises between the area and error. At the end of
the evolutionary optimization, selected approximate circuits will be implemented
using a standard design flow and compared with their fully functional versions.

In order to estimate parameters of a given circuit, the area and delay are
calculated using the parameters defined in the liberty timing file available for
a given semiconductor technology. This file gives the area, timing and power-
relevant parameters of each cell (gate).

Delay td of a cell ci is modeled as a function of its input transition time ts
and capacitive load cl on the output of the cell, i.e. td(ci) = f(tcis , ccil ). Delay of
circuit C is determined as delay of the longest path:

Delay(C) = max
∀p∈path

∑

ci∈p

td(ci).

The capacitive load on the circuit outputs is chosen to be equal to the input
capacitance of an inverter cell. The transition time on circuit inputs corresponds
to the transition time on the output of an inverter cell.

The area of circuit C is calculated as the sum of areas of all cells ci involved
in the circuit:

Area(C) =
∑

ci∈C

area(ci).

Various error criteria can be utilized to evaluate the quality of an approximate
arithmetic circuit. The average error magnitude Eavg(C) is employed in our case.
This metric is defined as the sum of absolute differences in magnitude between
the original and approximate circuits averaged over all inputs:

Eavg(C) =
∑

∀i |Y (Corig, i) − Y (C, i)|
22w

(2)

where Y (Corig, i) denotes the output value of the fully functional circuit for the
input vector i, Y (C, i) denotes the output value of approximate circuit C and w
specifies the bit-width.

Multi- as well as single-objective algorithm is seeded with a fully functional
version of an arithmetic circuit. In both cases the user is supposed to define Emax.
However, the interpretation of Emax is different. In the case of multi-objective
optimization, solutions with the error greater than Emax are unacceptable; the
remaining solutions are considered during the Pareto front construction. In the
case of single-objective optimization, the evolutionary algorithm is used to find
a solution showing the error as close as possible to Ei. In order to construct
Pareto front, the single-objective algorithm has to be executed multiple times
with Ei increasing from a small error to Emax in several steps.
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When a solution showing the error Ei has to be discovered, the single-
objective algorithm works in two stages. The aim of the first stage is to produce
a circuit with an error as close as possible to the required level Ei regardless the
other optimization criteria. To achieve this objective, the fitness value fitnessL1

is calculated as the relative absolute difference from the required error level and
the goal is to minimize this difference, i.e.

fitnessL1(C) =
|Eavg(C) − Ei|

Ei

If the required error is obtained (fitnessL1 < 0.01), the algorithm continues
by the second stage. In this stage, additional optimization objectives are taken
into account and the error Ei serves as a constraint which guarantees that the
average error value is kept as close as possible to the target error level. Each
objective is normalized to the interval < 0, 1 > and weighted with a weight we,
wa or wd (we + wa + wd = 1). Then,

fitnessL2(C) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

weE
′
avg(C)+

waArea′(C)+
wdDelay′(C), if fitnessL1 < 0.01
∞, otherwise,

where the apostrophe denotes a normalized value with respect to the original,
fully functional circuit.

4 Results

4.1 Experimental Setup

The single-objective (SO) and multi-objective (MO) algorithms based on CGP
are evaluated in the task of 4-bit and 8-bit adder and multiplier approximation.
Emax is chosen to be 2.5 % of the maximum average error, where the maxi-
mum average error is (2w − 1)2 for the multiplier and 2(2w − 1) for the adder.
While the multi-objective algorithm is executed with Emax, the single-objective
algorithm is executed SOrun times; one run for one error level from 0 % to
2.5 %. In both cases, CGP was initialized by fully functional circuits. We com-
pared three sets of weights for the single-optimization algorithm we/wa/wd =
{(0.8, 0.12, 0.08), (0.5, 0.38, 0.12), (0.12, 0.5, 0.38)} (inspired in [9]).

In both approaches we used the following CGP parameters: h = 5, l = nc =
Ng, nr = 1, ni = 2w, no = 2w for w-bit multiplier and no = w + 1 for w-bit
adder, where Ng is the number of gates of the original fully functional circuit.
In both cases, 5 · 103 evaluations (fitness calls) were allowed, corresponding to
100 generations of the multi-objective algorithm (λMO = 50). In the case of
the single-objective algorithm, 50 generations are produced for each of 20 error
levels (λSO = 5, SOrun = 20). This number of evaluations is very low from the
perspective of evolutionary circuit design; however, this number is still much
higher than in conventional methods [9].
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Fig. 1. Adders: Performance of single- and multi-objective methods with respect to
original fully functional circuits (0 % error).

The experiments were conducted for I3T25 technology (0.35 μm digital
process). The following cells (and thus functions in Γ) are considered: and, or,
xor, nand, nor, xnor, buf, inv, with corresponding relative areas 1.333, 1.333, 2,
1, 1, 2, 1.333, and 0.667.

4.2 Comparison of Single- and Multi-objective Search

Figures 1 and 2 show the resulting parameters of all circuits as dots in two 2D
plots (area vs. error and delay vs. error). These figures contain results from
25 independent runs of the algorithms for each scenario. The 3D Pareto front
(projected to two 2D graphs) is interpolated using solid lines for each investigated
scenario. Other Pareto fronts (dashed lines) are constructed in such a way that
one objective (either area or delay) is ignored. These (dashed) Pareto fronts
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represent better compromises because the problem is simplified. One can observe
that MO performs better than SO and the role of weight setting is less important.

In another experiment, we investigated whether increasing the number eval-
uations to 500 · 103 can improve the quality of results. Figure 3 shows that with
decreasing the acceptable error, the results produced by SO are better than
those from MO. The weight of the area in the fitness function (SO) becomes
more important and its unsuitable setting can influence the result by 20 %. The
SO approach exploits the fact that the error is fixed and the overall effort can
be put into minimizing the area and delay. On the other hand, MO has to cover
the whole Pareto front and the available time seems to be insufficient to compete
with SO.

In order to further investigate the computation requirements, we analyzed the
quality of resulting solutions with respect to the number of allowed evaluations
(generations) in Fig. 4. In the case of MO, the progress of evolution is negligible
after 50 · 103 evaluations. SO is capable of improving the quality until 250 · 103

evaluations are spent on average.
The computational requirements of the multi-objective algorithm are slightly

higher than for the single-objective method (457 vs. 491 evaluations per second
for the 8-bit adder and 240 vs. 284 evaluations per second for the 8-bit multiplier).

Table 1. Parameters of the approximate 8-bit adders and multipliers. The Impr.
columns give the improvement w.r.t. the original circuits.

estimated professional tool

Error Delay Impr. Rel.Area Impr. Delay Impr. Area Impr. Power Impr.

[%] [µm2 [µ[ns] [%] [–] [%] [ns] [%] ] [%] W] [%]

a
d
d
er

0.0

0.6 2.5 12 51 49 2.2 19 2460 49 104 50

1.2 2.1 27 32 68 1.9 29 1622 66 71 66

1.9 1.7 38 28 72 1.6 40 1374 72 55 74

2.5 1.8 36 20 80 1.6 39 978 80 42 80

m
u
lt

ip
li
er

0.0

2.8 – 99 – 2.7 – 4759 – 208 –

13.1 – 495 – 12.1 – 24245 – 1367 –

0.6 8.7 34 175 65 8.0 35 8480 66 409 71

1.3 6.3 52 118 77 5.6 54 5424 78 233 83

1.9 5.4 59 92 82 5.1 58 4513 82 164 88

2.5 4.5 66 64 87 4.3 65 3118 88 106 93

4.3 Results of Synthesis

In order to validate the presented results, we implemented selected circuits using
a standard design flow. The original circuits and selected circuits obtained by
CGP were converted into a netlist, and after synthesis, placement and routing
(Cadence Encounter RTL Compiler), we compared parameters of resulting cir-
cuits with the estimated values used during the evolution. Table 1 shows that



226 Z. Vasicek and L. Sekanina

Fig. 2. Multipliers: Performance of single- and multi-objective methods with respect
to original fully functional circuits (0 % error).

Fig. 3. Resulting Pareto fronts when 500 · 103 evaluations are allowed
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Fig. 4. Resulting Pareto fronts with respect to the number of evaluations

our estimated values are almost perfectly matched with the results of the profes-
sional tool (see Impr. columns). The area is correlated with power consumption
under the investigated scenario.

A direct and fair comparison with some results from the literature is difficult
for several reasons: implementations of methods such as SASIMI and SALSA
are not available; only some parameters of benchmark circuits reported in the
literature are known (i.e. their implementations are not available); and results
are given for different fabrication technology. However, one can observe that the
proposed method led to 71 % power reduction with 0.6 % average error, which
seems to be a good result for 8-bit multiplier in comparison with SASIMI [12]
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(45 % power reduction with 0.5 % average error) and Gupta et al. [4] (35 % power
reduction with 2.5 % average error), despite the fact that different technology
was used.

5 Conclusions

In this paper, we proposed and compared two evolutionary approximation circuit
design methods based on single- and multi-objective CGP. Contrasted to cur-
rent approaches, in which every candidate circuit is implemented and evaluated
by means of a professional design tool, candidate circuits’ parameters are only
quickly estimated in the optimization process. It allowed us to generate many
more candidate designs than state-of-the art methods. It was shown that the
multi-objective method is useful if the number of allowed evaluations is low.
On the other hand, when more time is available, the single-objective method
outperforms the multi-objective one. We validated key circuit parameters of
selected approximate circuits by means of a professional design tool. By employ-
ing the advanced optimization algorithms and allowing more computation time,
we obtained very good approximations of the Pareto optimal fronts for adders
and multipliers.
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