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Abstract. Evolutionary algorithms have frequently been applied in the
field of computer-generated art. In this paper, a novel approach in the
domain of automated music composition is proposed. It is inspired by
genetic programming and uses a tree-based domain model of composi-
tions. The model represents musical pieces as a set of constraints chang-
ing over time, forming musical contexts allowing to compose, reuse and
reshape musical fragments. The system implements a multi-objective
optimization aiming for statistical measures and structural features of
evolved models. Furthermore a correspondent domain-specific computer
language is introduced used to transform domain models to a comprehen-
sive, human-readable text representation and vice versa. The language
is also suitable to limit the search space of the evolution and as a com-
position language for human composers.

Keywords: Automated music generation · Multi-objective genetic
programming · Domain-specific languages

1 Introduction

Since the beginning of the computer era it has been a question if computers
could ever be considered creative. The idea of computer-generated music goes
back to 1843, when Ada Lovelace mentioned the “Analytical Engine’s poten-
tial for automated composition” [1]. Since then, numerous attempts have been
made to create music with computer programs. Applied programming tech-
niques include pseudo-randomly generated musical sequences, generative gram-
mars, recursive transition networks, Markov models, artificial neural networks
and cellular automata [2]. Another approach is the application of evolutionary
algorithms (EAs). A widely held belief is that the highest observable extent of
creativity exhibited by computer programs is limited by the creativity of the
programmer. However, the application of evolutionary algorithms is especially
promising because at times results of considerable innovative and subjectively
perceived “creative” quality are produced. These results often surprise experts,
including the programmer [3]. In this paper, a system inspired by genetic pro-
gramming (GP, which is a subset of evolutionary algorithms) is presented.
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2 Related Work

A number of relevant systems have been proposed, most of which are based
on genetic algorithms (GAs) [3]. Horner and Goldberg proposed an approach
to thematic bridging, evolving transitions from an initial musical pattern to
another pattern [4]. Biles created an interactive system named GenJam which
evolves jazz solos using musically meaningful mutation and crossover operators
[5,6]. Horowitz focused on evolving rhythmic patterns [7]. GAs have also been
applied to the problem of harmonization, adhering to a number of constraints
according to traditional music theory [8,9]. Jacob developed a composition sys-
tem named variations [10,11]. It uses three GA-based components which are
responsible for generating, evaluating and arranging music respectively. A sys-
tem generating short melodies using GP was introduced by Johanson and Poli
[12]. Specialized crossover and mutation operators were used by Marques et al.
[13] and a grammar-based approach was proposed by de la Puente et al. [14].
SARAH is a composition language introduced by Fox [15], enabling to define
musical phrases and arrange them hierarchically. A GA-based program named
GenDash was developed by Waschka II [16], in which the whole evolutionary
process, transforming musical user input, represents the composition.

3 Motivation

The intended purpose of the proposed model is to overcome some limitations
inherent in genetic representations of previous works. In most of the models,
the evolution is focused on only one or few musical aspects such as pitches or
rhythms. Misleadingly, “music” is often regarded as simply a sequence of notes
and rests. In fact, these elements have to be seen within their context, taking
metre, rhythm, tonal system, tonal center, harmony, scale and loudness into
account. In many of the mentioned systems these contexts are hard-coded and
are not part of the actual evolution. The proposed model is designed to (a) repre-
sent a large number of musical aspects and parameters, (b) encode compositions
of arbitrary complexity and length with minimal redundancy, (c) allow not only
the evolution of one-dimensional sequences, but also their hierarchical context,
(d) enable to reuse and vary existing material rather than introducing new mate-
rial all the time and (e) incorporate some mechanisms of human creativity, as
explained in the next section. None of the systems mentioned above combine all
of these characteristics in their representation.

4 Creativity and Constraints

It is highly implausible that all aspects of human creativity can ever be mod-
eled by a computer. However, the proposed software system tries to incorporate
some aspects of human creativity. Boden outlines an interesting relation between
constraints and creativity as follows: “Constraints – far from being opposed
to creativity – make creativity possible. To throw away all constraints would
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be to destroy the capacity for creative thinking” [17]. As soon as constraints
are present in creative processes, three common principles of creativity can be
applied: Exploration, where the space of possibilities is searched, Combina-
tion, where aspects in the possibility space are combined in order to form new
ideas and Transformation, in which the constraint space itself is modified,
leading to a different, mostly larger space of possibilities [18].

5 Domain Model

The proposed model represents compositions in terms of musical constraint
sets changing over time. Possibilities in this space can be explored, aspects
can be combined and the space can be transformed by a computer program.
This is accomplished by arranging the following elements in a tree-based struc-
ture: Musical constraints, constraint modifiers, constraint generators and control
structures. Constraints include basic compositional elements such as tonal sys-
tems, instruments, beats, rhythms, harmonies, chords, scales and pitches. Com-
positions are often structured in such a way that established constraints are not
completely changed, but only slightly modified in order to reshape already intro-
duced material. Constraint modifiers represent modifications such as rhythmic
and tonal variations, inversions, displacements and transpositions. Generators
have the functionality of generating new constraints based on already existing
ones in a specific pattern. For example, an arpeggio generator is responsible for
generating pitch constraints based on the current harmony using the current
rhythm and a specified pattern of sequentially sounding chord notes.

5.1 Example

The function of the individual components is explained using a constraint model
of the first four measures of Bach’s Prelude in C major from The Well-Tempered
Clavier (BWV 846) which is shown in Fig. 1. The nodes are arranged in an acyclic
graph structure. Every model has a root node which is displayed labeled compo-
sition. Models are evaluated from top to bottom, aggregating all constraints at
the leaf nodes. This implies that every leaf node has a musical context, which is
defined as a set of all constraints in the path from the root node to the leaf node.
Multiple child nodes are interpreted as a consecutive sequence of constraints. If
a path contains a constraint of the same type more than once, the constraint
which is nearest to the leaves overwrites all upper constraints of that type. This
model architecture allows temporary transformations of previously established
constraint spaces, enabling to model surprising musical twists in a composition.
The model supports modularization in the form of fragments. These are reusable
subtrees which can be referenced from anywhere else in the model as long as no
cycle is produced. In this way musical ideas can be reused and even reshaped
by creating child nodes under the reference node, supporting context-dependent
variations. The model also features control structures (e.g. repetitions and itera-
tions). Polyphonic compositions are represented using a control structure named
parallelization indicating that its child nodes are arranged concurrently in time.
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Fig. 1. Constraint model of the first four measures of Bach’s Prelude in C major from
The Well-Tempered Clavier (BWV 846)

6 The Domain-Specific Language

A domain-specific language (DSL) correspondent to the introduced model was
developed. Its name is MC3L, abbreviating Musical Constraint, Context and
Composition Language. Its main purpose is to provide a comprehensive textual
representation of models. Thus the evolutionary process can be monitored in a
very convenient way as the progress can be persisted in simple text files at any
time. The process also works vice versa which enables users to express musical
compositions in terms of constraint spaces. By this means, a “side-product” of
the system is a comprehensive computer language that can be used by human
composers to capture compositions and ideas. This makes the language a multi-
purpose tool for both traditional and algorithmic composition.

6.1 Language Syntax

The language syntax is demonstrated with a code example which is equivalent
to Fig. 1. As demonstrated in the first lines, model fragments can be distributed
over several files in order to minimize redundancy. The language allows users to
specify custom tonal systems and instruments. The grammar features a basic
expression language which enables to formulate parameters using arithmetical
and logical expressions, whereupon functions can be invoked. The explanation
of the complete language syntax, however, would go beyond the scope of this
paper.
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� �

1 import"../../ tonalSystems/western.mcl"

2 import "../../ instruments/piano.mcl"

3 title "Prelude in C major"

4 composer "J.S. Bach"

5 root {

6 tonalSystem western {

7 beat 4/4 {

8 instrument piano {

9 harmony C {

10 fragmentRef rhythmicDistribution

11 }

12 harmony Dm/C {

13 fragmentRef rhythmicDistribution

14 }

15 harmony G7/B {

16 fragmentRef rhythmicDistribution

17 }

18 harmony C {

19 fragmentRef rhythmicDistribution

20 }

21 }

22 }

23 }

24 }

25 fragment rhythmicDistribution {

26 arpeggioGenerator [startOctave 3, numberOfNotes 5, noteIndexSequence 0 1 2

3 4 2 3 4, includeBassNote true]

27 {

28 repeat 2 {

29 parallel {

30 rhythm 2

31 rhythm _16 7/16

32 rhythm _8 16 16 16 16 16 16

33 }

34 }

35 }

36 }
� �

Listing 1.1. Syntactical Representation of the Prelude Constraint Model in Fig. 1

7 Transformation Infrastructure

The system supports a number of transformations in order to produce graphi-
cal and audible material from models. Graphical representations of models, as
already seen in Fig. 1, are generated using a graph language called DOT. Mod-
els can be transformed to a sequential stream model. This is accomplished by a
compiler which traverses the tree structure until it reaches a leaf node. It then
evaluates the constraint space and writes sequences of constraints, one for each
constraint type, into a corresponding timeline depending on the parallelization
context. Stream models can in turn be converted into a score model containing
score-specific events such as notes, rests and loudness instructions. Currently an
export module to the music notation language LilyPond is implemented which
enables to export the score as PDF and MIDI files.

8 Evolutionary Composition System

The core of the automated composition system is inspired by the genetic program-
ming paradigm. An initial constraint space and the fitness function configuration
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are given as input. The initial constraint space can either be unbounded (which
means virtually any composition can be the result) or contain constraints lim-
iting the possibility space of the evolution. For example, a set of applicable
instruments, musical fragments to be incorporated or musical forms and struc-
tures can be purported. The initial constraint space can conveniently be specified
using MC3L. Note that it is possible to define which parts of the initial constraint
space may be modified during the evolution. This is possible using two keywords:
The fixed keyword indicates that the correspondent node must not be moved or
removed. The final keyword indicates the same policy applied recursively for a
whole subtree. Additionally, no more child nodes may be added to a final subtree.
For example, if the user would like the output to be a canon with three voices,
the initial constraint space shown in Listing 1.2 could be specified. It defines
a parallelization with three voices, each of which references the same fragment
named melody. The references of the second and third voice are delayed by two
respectively four whole measures of rests. This effectively limits the evolution to
happen under the last repetition node.

� �

1 root final {

2 parallel {

3 fragment voice1 {

4 fragmentRef melody

5 }

6

7 fragment voice2 {

8 rhythm _2!

9 fragmentRef melody

10 }

11

12 fragment voice3 {

13 rhythm _4!

14 fragmentRef melody

15 }

16 }

17 }

18 fragment melody fixed {

19 repeat 3 fixed

20 }
� �

Listing 1.2. Syntactical Representation of a Constraint Space Yielding a Canon with
Three Voices

9 Fitness Function

A particularly challenging part when generating music using evolutionary algo-
rithms is the design of a suitable fitness function to evaluate and compare the
evolved compositions on a scalar basis. Considering that every human has a dif-
ferent taste in music which in turn is dependent on cultural influences, personal
experiences, social periphery and probably also the mood of the person, there
apparently can not be a universal fitness function for music. The approach in the
proposed system is a configurable, modular fitness function which is optimized in
respect of statistical measures and structural features. The system implements
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a multi-objective optimization process that aims to minimize the total absolute
distance from optimum values for all modules, which can be weighted individ-
ually. The author is currently investigating which module configurations yield
musically appealing results.

9.1 Statistical Fitness Function Modules

Implemented fitness function modules regarding statistical musical measures are
listed in Table 1. All measures starting from the third row can be applied to
either the global composition or to a single voice (respectively instrument) in
the piece. Some modules are explained in greater detail below.

Table 1. List of statistical fitness function modules

Name Description

Duration Optimizes the piece to span a specified duration in
beats or measures

Number of voices Biases the system to favor compositions with a
given number of instruments or voices

Note duration Optimizes note length average and standard
deviation

Rest duration Optimizes rest length average and standard
deviation

Note duration ratio Considers the ratio between the total duration of
notes and rests

Global dissonance Analyzes simultaneously sounding notes in order to
compute an average dissonance value and its
standard deviation

Dissonance distribution Considers simultaneously sounding notes and aims
for a given distribution of interval occurrences

Dissonance in rhythmic context Optimizes dissonance values depending on the
point of time they appear in a measure

Interval leap distribution Analyzes consecutively sounding note intervals and
aspires a given distribution of interval leaps

Chord compliance Checks the relative occurrence of notes matching
their context harmony

Scale compliance Aims for a relative occurrence of notes matching a
scale corresponding to the context harmony or
tonal center

9.2 Dissonance Analysis

A measure to compare the perceived dissonance of two simultaneously sounding
notes is the Tenney Harmonic Distance or Tenney Height, defined as log2ab,
where a

b is the ratio between the two note frequencies [19, p. 407]. Tenney Heights
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Fig. 2. Dissonance values of simultaneously sounding note intervals within an octave

for common intervals are visualized in Fig. 2. To compute a dissonance value of
more than two simultaneously sounding notes, all combinations of intervals are
analyzed. For example for an A minor chord the intervals A-C, A-E and C-E
are analyzed. The dissonance value is then determined by calculating the average
dissonance value of all note combinations in the chord. The system is capable
of optimizing compositions regarding their global average dissonance value and
its standard deviation. Furthermore the system can be instructed to aim for a
given frequency distribution of simultaneously sounding intervals. In order to be
independent from the total number of notes in the piece, the relative frequencies
(i.e. the number of times an interval appears divided by the total number of
intervals detected) can be specified as part of the fitness function.

Another approach is to optimize simultaneously sounding note intervals
depending on the rhythmic context (i.e. the point of time they appear in a
measure). In order to address points of time in a measure (i.e. pulses in a
metric context) independently from the beat signature, the pulses are given
numbers according to their importance in the metric context. The formula, yield-
ing the pulse strengths of any multiplicative metre, was developed by Barlow
[20, pp. 44–47]. For the quarter notes of a 4

4 beat, for example, the formula yields
the pulse strengths (or “indispensabilities”, as referred to by Barlow) 3 0 2 1.
The higher the number, the higher is the importance of the pulse. For a metre
with 5 pulses the formula produces the series 4 0 3 1 2 and for the six eighth
notes in a 3

4 bar 5 0 3 1 4 2. A distribution of dissonance values depending on
the pulse indispensability can be specified as fitness function objective.
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9.3 Interval Leap Analysis

Not only is it functional to analyze simultaneously sounding intervals, but also
to take consecutively played intervals into account. Therefore, the system com-
pares all pitches of notes played in direct succession. Analyzing the distribution
of successively played intervals for human compositions, it is remarkable that
interval leaps of two semitones appear far more often (with a frequency of occur-
rence up to nearly 40 % dependent on the musical style) than intervals of 1 or 0
semitones [21, p. 218ff.]. In general the probability of intervals greater than two
semitones decreases with ascending interval size with local minima at tritones
and major sevenths as well as a local maximum for octaves. It is possible to define
a target distribution of interval leaps as part of the fitness function for ascending
as well as descending intervals (i.e. the distribution does not necessarily have to
be symmetric).

9.4 Structural Fitness Function Modules

Since compositions are represented using tree-structured model instances, it is
possible to define additional fitness function modules considering structural fea-
tures of the model as shown in Table 2.

Table 2. List of structural fitness function modules

Module Description

Tree depth Controls the maximum tree depth of the model

Superfluous elements Aims to eliminate nodes in the model which are
syntactically allowed but semantically obsolete

Modifier ratio Prefers compositions with a specified ratio of
modifiers and constraints. The higher the ratio, the
more compositions in which existing material is
reshaped are preferred

Reference count Favors compositions which reuse existing material by
referencing fragments from different places in the
model

Canonic pattern detector Detects structures in which a fragment is successively
referenced from different voice contexts (as applied
in canons or fugues, for example)

Variation pattern detector Promotes compositions repeating existing musical
material in a varied form

10 Mutation and Crossover Operators

The following basic mutation operators are applied: node additions, replacements
and removals are carried out for all types of nodes. The elements are either
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added as child nodes to existing ones or inserted between two already existing
nodes. Replacements and removals can either happen for a single node (node
replacement mutation) or whole subtrees (subtree mutation) [22]. For rhythmic
constraints the following specialized mutations are applied: adding, removing or
replacing single rhythmic notes or rests and turning rhythmic notes into rests
and vice versa. For pitch constraints individual pitches are added, removed or
replaced.

The system applies three different crossover operators. The first one swaps
random subtrees of two compositions determined by roulette wheel selection.
Another operator selects on average 50 % of the nodes of a specific type in a
model. Nodes of the same type are randomly selected from the other model and
exchanged with the previously selected ones. The third operator works simi-
larly to the second one, though it additionally mixes sequences (e.g. pitches or
rhythmic notes) contained in the nodes. During the evolution the system assures
that neither the root node nor any of the locked model nodes (as described in
Sect. 8) are replaced or removed, that no referential cycles are produced and that
referenced fragments are copied to the target models recursively.

Note that the system does not differentiate between terminal and non-terminal
nodes like in conventional genetic programming. In fact, all constructable models
that have a root node are syntactically correct. Models that produce little or no
output are semantically obsolete and will become extinct quickly as they are con-
sidered inferior in terms of fitness.

11 Results

The system successfully evolves compositions largely complying with the reques-
ted features. An example fitness function configuration is shown in Table 3.
Although the compositions meet the statistical requirements, the pieces are only
partially aesthetically pleasing. Evolved pieces clearly become more appealing
when optimizing for high ratios of chord compliance and scale compliance in
combination with a normally distributed, symmetric frequency distribution of
consecutive intervals. This aligns with previous research with systems producing
musically pleasant results by considering notes in a harmonic context and thereof
derived scale context (e.g. [5,6,13,15]). When increasing the allowed standard
deviation for note durations, the rhythms sound unstructured and random. This
can be improved by implementing fitness functions analyzing pulse strengths in
the metric context or considering approaches proposed by Horowitz [7]. Another
weakness of the system is probably that there are no restrictions regarding the
arrangement of the model nodes. A layer-based approach, where nodes of the
same hierarchy level have the same type (with less strict conditions at the leaf
node levels) similar to Fig. 1 could help to organize the evolved compositions.
Then it is possible to develop enhanced crossover and mutation operators. The
ones used in the current implementation seem to be too generic for the task of
musical composition, so “musically intelligent” operators are required (as pro-
posed by [6,13,15]). The system can be further improved by introducing more
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specialized modules, such as algorithms considering voice leading rules, harmonic
progressions and redundancy measures of several musical aspects.

Table 3. Example fitness function configuration

Module Target value(s)

Duration 16 measures

Average note duration 0.25 (quarter note)

Note duration σ 0.15

Note duration ratio 80 %

Global average dissonance 3.5

Superfluous elements 0

Interval leap distribution Symmetric distribution centered at perfect unisons:
5 % with±minor seconds: 10 %,±major
seconds: 17.5 %,±minor thirds: 5 %,±major
thirds: 5 %,± perfect fourths: 2.5 %,± perfect
fifths: 2.5 %,± perfect octaves: 5 %

Chord compliance 60 %

Scale compliance 90 % relative to default scale matching the harmony

12 Conclusions and Future Work

The application of genetic programming in the field of automated music gen-
eration is promising considering that the system is capable of generating short
musical pieces which are at least tonally pleasing. Improvements are still to
be implemented for other aspects such as rhythms and harmonic progressions.
Another goal to be pursued is to extend the system in such a way that it gen-
erates longer pieces with multiple sections which have different statistical and
structural properties. The next ambition is to establish mechanisms which con-
nect different sections in a musically satisfying way. Furthermore additional node
types for relative harmonic constraints and modifiers are planned as well as a
real-time capable compiler for direct playback of the compositions.
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