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Abstract. We introduce a generative system for “avoidance drawings”,
drawings made by virtual drawing robots executing a random walk while
simultaneously avoiding the paths of other robots. The random walk
method is unique and is based on a curvature controlling scheme ini-
tially introduced by Chappell. We design a fitness function for evaluating
avoidance drawings and an evolutionary framework for evolving them.
This requires us to follow principles we elucidate for simulated evolution
where the generative system is highly stochastic in nature. Examples
document the evolutionary system’s efficacy and success.

1 Introduction

To execute his self-avoiding random walk drawings, Chappell [1] introduces a
model for random walks based on curvature. Chappell’s point that moves in
the plane and executes a self-avoiding random walk can be viewed as virtual
drawing robot. Using a variation of Chapelle’s random walk model we intro-
duce a generative system that uses a small number of virtual drawing robots
that each executes a random walk while simultaneously avoiding all other robot
paths. Thus, in effect, n such robots create paths that partition the canvas into
n simply-connected regions. Examining examples of these “avoidance drawings”
that are generated using several different initial configurations leads to an aes-
thetic evaluation criterion that can be implemented as a fitness function. How-
ever, due to the chaotic nature of the generative system, we are forced to evolve
avoidance drawings using only a limited number of the available parameters and
adopting a very conservative evolutionary framework. The evolutionary system
is successful in evolving novel and interesting avoidance drawings.

This paper is organized as follows. In section two we review self-avoiding
random walks. In section three we consider Chappell’s model for random walks
based on curvature. In section four we provide some background on drawing
robots. In section five we give the details of the design of our virtual drawing
robot. Section six shows examples of avoidance drawings. In section seven we
develop our fitness function and in section eight we describe our evolutionary
framework. Section nine discusses the evolved avoidance drawings we obtained
while section ten gives our summary and conclusion.
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2 Self-Avoiding Random Walks

Self-avoiding walks arise in the physics and chemistry literature because of their
application to protein folding and other polymer-related problems [2]. Usually
self-avoiding walks are implemented using lattices [3], and in this case it is known
that there are algorithms for infinite self-avoiding walks [4]. In order to generate
smooth self-avoiding random walks Chappell introduced a model for random
walks in the plane based on curvature [1]. Then, by formulating rules based
on readings from sensory apparatus — two sets of “feelers” attached to the
point executing the walk — and incorporating a stylized line, Chappell gen-
erated drawings of points executing prolonged self-avoiding walks such as the
one shown in Fig. 1. More recently, Greenfield used a similar random walk cur-
vature model, but a different sensory system and line stylization method to
generate self-avoiding walks resulting in labyrinths such as the one also shown
in Fig. 1.

3 Random Walks Based on Curvature

The random walk algorithm based on curvature introduced by Chappell [1] is
parametrized by arc length. To cut to the chase, if after the point has traveled a
distance s, the point has tangential angle (i.e., direction) θ(s), curvature κ(s)
and position (x(s), y(s)) then at distance s+Δs the behavioral update equations
are given by:

κ(s + Δs) = κ(s) + κ0X(s),
θ(s + Δs) = θ(s) + κ(s + Δs)Δs

where X(s) is a stochastic random variable assuming values +1 and −1 and κ0

is a “small” constant, while the positional update equations are given by:

x(s + Δs) = x(s) + cos(θ(s + Δs))Δs,

y(s + Δs) = y(s) + sin(θ(s + Δs))Δs.

In fact, it is through the use of more elaborate update formulas for θ that Chap-
pell implements his self-avoidance rules, but the details will not concern us here
since we will consider a simpler model below.

4 Drawing Robot History

Because they have sensory apparatus, obey rules that act as controllers, and
incorporate stylized line drawing methods, it is clear that points executing self-
avoiding walks such as the ones described by Chappell and Greenfield can be
viewed as virtual drawing robots. If the walks were in 3D rather than 2D, they
might also fall within the category of agents in swarms potentially following rules
such as the flocking rules of Reynolds [5] or Jacob et al. [6].
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Fig. 1. Top: An example of a point in the plane performing a self-avoiding random
walk using Chappell’s model. (Copyright 2014 David Chappell. Reprinted from [1]
with permission.) Bottom: SA Labyrinth #8352, a self-avoiding random walk using
Greenfield’s model. (Copyright 2014 Gary Greenfield. Reprinted from http://gallery.
bridgesmathart.org/exhibitions/2015-joint-mathematics-meetings/gary-greenfield.)

There is a brief history of drawing robots in evolutionary art. The most
famous physical drawing robots are undoubtedly those of Moura, Ramos, and
Pereira [7,8] who referred to their collective robotic swarm drawings as “non-
human art”. Bird et al. [9] engaged in a more scientific experiment by attempting
to evolve controllers for line drawing primitives for a single robot. Recently, a
team led by Monmarché has posted video of experiments conducted with small
groups of drawing robots [10]. We assume details of their work will be forthcom-
ing. On the virtual drawing robot front, numerous agent based generative art
systems might be viewed as qualifying for virtual robot status. Due to their focus
on agents marking and establishing territory two deserve particular attention:
Annuziato’s system [11] which drew attention in the graphics and artificial life
communities at the start of computer generated generative art, and more recently
an homage to that work done by McCormack [12]. A series of papers by Green-
field was devoted to virtual robot drawings. His virtual robots were modeled

http://gallery.bridgesmathart.org/exhibitions/2015-joint-mathematics-meetings/gary-greenfield
http://gallery.bridgesmathart.org/exhibitions/2015-joint-mathematics-meetings/gary-greenfield
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after Khepera robots. He evolved robot paintings using as genomes initial place-
ment configurations [13], evolved encoding tables such that DNA data could be
used to drive controllers [14], explored a variation of the robot wherein the pen
moved transversely to the robot’s straight line motion in order to provide the
ability to draw curvilinear lines [15], and evolved programs for his virtual robots
in a higher level language modeled after video game controller languages [16].

5 Our Virtual Drawing Robot

With one exception, the behavior for our point mass virtual robot is exclusively
controlled by updating κ as its position changes. The exception is an avoidance
turn. If the robot is not executing an avoidance turn, then the update equation
for κ uses 0.4 for the distance increment Δs, lets κ0 = 0.04, and takes X(s)
to be zero for seven consecutive updates before letting it be a random number
between −1 and +1. Over time this smoothness condition on the robot’s turning
yields a random walk that causes the robot to transition back and forth between
a flowing line and a tight spiral. If the robot is executing an avoidance turn,
then it does not modify κ at all, so κ(s+Δs) = κ(s), but when it completes the
avoidance turn it resets κ using the formula

κ(s + Δs) = −κ(s)/4 + κr/2 + κ0Y (s)

where κr is the value saved prior to initiating the turn, Δs and κ0 are as above,
and Y (s) is a random number between −1 and +1. The idea is to try to transition
from the avoidance turn back to the previously interrupted course.

Avoidance turns are induced from sensing. Sensing occurs after each position
update. The robot has two “feelers” extending 17 units from its point mass and
located 15◦ to each side of its forward heading. The feelers can sense canvas
boundaries and the paths of other robots. The feelers also transmit the distance
to such obstacles. If an obstacle is detected that is distant, then the robot initiates
a turning sequence away from it by saving the current value of κ and assigning κ
the magnitude 0.15 with sign opposite to that of the saved value. This effectively
causes the robot to veer off and initiate a “tight” turn that lasts 25 update steps.
If an obstacle is detected that is deemed close, then it takes more drastic action
by completely reversing course; that is, it increments θ by 180◦ ± 30◦. Note
that it does not otherwise cancel any avoidance turn which is in progress. The
demarcation between distant and close is 10 units.

The mark making ability of our drawing robot is anti-climactic. It has an
assigned color, and after each change in position it deposits a 3×3 pixel splat of
that color as well as an identifier so that its path can be sensed by other robots.
Note that since it takes multiple updates to traverse a pixel, the use of a splat
helps anti-alias the curve the robot draws.

6 Examples of Avoidance Drawings

To explore the type of drawings the virtual robots described above can create,
we conducted three experiments using a 600 × 600 canvas and allowing 400,000
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position updates per robot. For all three experiments there were four drawing
robots, each assigned a distinct color. By using different seeds for the pseudo
random number generator, we generated 40 drawings where (a) the robots were
uniformly spaced around a circle all pointing outward (b) the robots were uni-
formly spaced around a circle all pointing inward and (c) and the robots were
uniformly spaced along a horizontal bisector all pointing upward. Figure 2 shows
the drawings from the outward pointing and upward pointing experiments that
we felt were most aesthetically pleasing. It also reveals how the drawings might
be interpreted as the outcome of a competition among the four robots to stake
out a simply-connected region of the canvas where they are free to meander in.

Fig. 2. Left: Avoidance drawing where the four robots were initially uniformly spaced
around a circle all pointing outward. Right: Avoidance drawing where the four robots
were initially uniformly spaced along a horizontal bisector all pointing upward.

7 The Fitness Function

In considering the 120 drawings we had pseudo randomly generated we came to
the realization that the ones we found most interesting were the ones where the
robot paths were most clearly delineated and no robot had gotten hemmed in
resulting in its path looking like a region that had been flood filled. One crude
way to measure the extent to which flood fill has been avoided is to consider
N(i), the number of adjacent background pixels summed over all pixels of the
canvas that have been marked by robot i. The robot with the smallest value of
N should be one that was most hemmed in. Therefore, if we maximize over the
minimum of the N values, we should be able to identify drawings where all four
paths are most clearly delineated. This argument suggests assigning drawing D
fitness

f(D) = mini {N(i)}.
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As we shall see, this fitness function does not address aesthetic issues such as
region balance or canvas coverage. Be that as it may, even though the problem
of designing fitness functions is known to be hard [17], past experience suggests
simplistic fitness criteria can often yield positive results.

8 The Evolutionary Framework

The 120 avoidance drawings we generated from our preliminary experiments were
ample testimony to the chaotic nature of our generative process and its sensitivity
to perturbations and initial conditions. To apply evolutionary techniques we
formulated principles to help must constrain the system in order to have some
hope of obtaining meaningful results. The rationale for the principles is to yield
drawings that arise from an evolutionary process, not random search.

Our first principle is that the fitness landscape be well-defined. To that end,
our implementation first sets aside a fixed sequence of pseudo random numbers
to present to the robots as the need arises by reserving the first 400,000 pseudo
randomly generated numbers from the lrand48() generator using seed 121314.
Note that using month/day/year format, 12/13/14 is the last sequential date of
the 21st century. We then re-seed the pseudo random number generator so that
it can oversee the genetics of our evolutionary algorithm.

Our second principle is that the initial configuration is the same for every
drawing, save for parameters under evolutionary control. We initialize robots so
that their initial headings all point upward i.e., we set θ(0) = π/2 and κ(0) =
0 for each robot. This means that our avoidance drawing is now completely
determined by the initial positions of the four robots, whence if robot i has
integral initial position (xi(0), yi(0)) where each coordinate lies in the interval
[20, 580], there are essentially 5608 ≈ 9.6 × 1021 genomes of the form

(x1(0), y1(0), x2(0), y2(0), x3(0), y3(0), x4(0), y4(0))

to consider.
Designing a genetic framework to use for our genomes also presents diffi-

culties. We adopt a very conservative approach which arises as a consequence
of our third principle: at least at the genomic level, change must be gradual.
In our implementation, a new genome is produced from an old one by cloning
it and mutating one randomly selected robot position as follows: 75 % of the
time a new position that lies in the 15 × 15 neighborhood of the old position
is randomly selected, and 25 % of the time a completely new position is ran-
domly selected. As this portends, our re-population scheme selects and retains
the most fit genome from the population of size P and then clones and applies
our mutation operator to provide P −1 genomes for the next generation. Thus an
evolutionary run lasting G generations considers P + (G − 1)(P − 1) genomes.
Clearly this scheme does make evolution slow and gradual and make its dynam-
ics easy to trace and understand. Note that as a bonus the evolutionary process
can easily be interrupted and resumed simply by writing out the most fit genome
and subsequently reading it back in.
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9 Evolved Avoidance Drawings

For the evolutionary runs described here we set the population size P = 12 and
the number of generations G = 90, so that each run considered 12 + (89)(11) =
991 genomes. A run takes approximately 12 hours. A run usually yields no more
than 3 genomes beyond a transient phase lasting, say, 10 generations indicating
fitness improvements for the best individual after that stage of evolution typi-
cally occur infrequently. This reflects the slow, gradual and careful hill-climbing
nature of our evolutionary design. It also reinforces our belief that the con-
strained fitness landscape is very rugged with local maximums abundant and
easily found. Further evidence is obtained by noting that within each generation
the population of mutated clones exhibits fitness values that fall off dramatically.
Thus, it is not unusual to observe a fairly uniform spread in the 12 individual
fitnesses ranging from, for example, 4000 to 24000. We discuss the results from
two sample runs.

Fig. 3. Clockwise, starting after the most fit individual in the initial population at top
left, are the three sequentially mutated improved individuals found at generations 3,
23, and 79 respectively.
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Fig. 4. Clockwise, starting after the most fit individual in the initial population at top
left, are the three sequentially mutated improved individuals found at generations 49,
87, and 88 respectively.

Table 1. The most fit genomes from an evolutionary run. Leftmost column shows
generation number g, rightmost column shows fitness value f, and column ri shows the
initial position of the i-th robot.

g r1 r2 r3 r4 f

0 (268, 321) (24, 356) (524, 533) (528, 38) 24372

3 (268, 321) (24, 356) (517, 537) (528, 38) 28956

23 (394, 122) (24, 356) (517, 537) (528, 38) 29008

79 (390, 129) (24, 356) (517, 537) (528, 38) 29444

For the first run, Table 1 shows that the most fit individual in the initial
population had fitness 24372 and there were three subsequent improvements
occurring at generations 3, 23, and 79 leading to a top fitness score of 29444.
Further, these improvements resulted from finding a nearby new starting position
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Fig. 5. Enlargement of the bottom left avoidance drawing from the previous figure —
the most fit individual we have successfully evolved.

for robot #3 at generation 3, and a completely new position for robot #1 at
generations 23 and 79. This means the mutated individual from generation 23
could have been skipped if the one from generation 79 had been encountered
earlier. But, in looking at the avoidance drawings (phenomes) for these four
individuals shown in Fig. 3, in our opinion that would have been a loss because
we feel it was the best of the four. On the other hand, even though the two
later drawings greatly reduce the flood fill phenomena found in the two earlier
ones, they are both too top heavy with too much open space in the center of the
composition.

The second run, again yielding only four genomes, seemed to avoid such
problems, and in the next to last generation found the best avoidance drawing we
have evolved to date. The four genomes are shown in Table 2 and the phenomes in
Fig. 4. This time we observe that first a nearby position for robot #4 was found,
then a new position for robot #3 was located, and finally a nearby position for
robot #1 was obtained. To better appreciate the evolved result, and to give a
sense of the detail found in avoidance drawings, we show an enlargement of the
most fit individual from this run in Fig. 5.
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Table 2. The most fit genomes from an evolutionary run. Leftmost column shows
generation number g, rightmost column shows fitness value f, and column ri shows the
initial position of the i-th robot.

g r1 r2 r3 r4 f

0 (183, 77) (445, 60) (456.245) (287, 55) 29144

49 (183, 77) (445, 60) (456, 245) (292, 49) 30022

87 (183, 77) (445, 60) (194, 319) (292, 49) 30570

88 (188, 82) (445, 60) (194, 319) (292, 49) 31544

10 Summary and Conclusion

We introduced a generative system for avoidance drawings, drawings made by
virtual drawing robots executing a random walk based on a curvature while
simultaneously avoiding the paths of other robots. We designed a fitness function
for evaluating such drawings and an evolutionary framework for evolving them.
We provided examples to document the system’s efficacy. The main contribution
of this work is the set of principles we developed to design an evolutionary
framework for a generative system that is highly stochastic in nature.
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10. Monmarché, M. et al., 2014. http://youtu.be/GrxthHngARU
11. Annunziato, M.: The Nagual experiment. In: Soddu, C., (ed.) Proceedings 1998

International Conference on Generative Art, pp. 241–251 (1998)

http://youtu.be/GrxthHngARU


88 G. Greenfield

12. McCormack, J.: Creative ecosystems. In: McCormack, J., d’Inverno, M. (eds.)
Computers and Creativity, pp. 39–60. Springer, Heidelberg (2012)

13. Greenfield, G.: Robot paintings evolved using simulated robots. In: Rothlauf, F.,
et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 611–621. Springer,
Heidelberg (2006)

14. Greenfield, G.: Evolved look-up tables for simulated DNA controlled robots. In:
Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 51–60. Springer, Heidelberg
(2008)

15. Greenfield, G.: On simulating drawing robots with straight line motion but curvi-
linear pen paths. In: Roeschel, O., Santos, E., Yamaguchi, Y., (eds.) 14th Interna-
tional Conference on Geometry and Graphics, International Society for Computer
Graphics, Conference DVD (2010)

16. Greenfield, G.: A platform for evolving controllers for simulated drawing robots.
In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol.
7247, pp. 108–116. Springer, Heidelberg (2012)

17. McCormack, J.: Open problems in evolutionary music and art. In: Rothlauf, F.,
et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 428–436. Springer,
Heidelberg (2005)


	Avoidance Drawings Evolved Using Virtual Drawing Robots
	1 Introduction
	2 Self-Avoiding Random Walks
	3 Random Walks Based on Curvature
	4 Drawing Robot History
	5 Our Virtual Drawing Robot
	6 Examples of Avoidance Drawings
	7 The Fitness Function
	8 The Evolutionary Framework
	9 Evolved Avoidance Drawings
	10 Summary and Conclusion
	References


