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Abstract. Interior illumination is a complex problem involving numer-
ous interacting factors. This research applies genetic programming to-
wards problems in illumination design. The Radiance system is used
for performing accurate illumination simulations. Radiance accounts for
a number of important environmental factors, which we exploit dur-
ing fitness evaluation. Illumination requirements include local illumina-
tion intensity from natural and artificial sources, colour, and uniformity.
Evolved solutions incorporate design elements such as artificial lights,
room materials, windows, and glass properties. A number of case studies
are examined, including a many-objective problem involving 6 illumi-
nation requirements, the design of a decorative wall of lights, and the
creation of a stained-glass window for a large public space. Our results
show the technical and creative possibilities of applying genetic program-
ming to illumination design.

Keywords: Illumination · Genetic programming · Radiance · Many-
objective optimization

1 Introduction

The illumination design of interior spaces is a challenging task. Within any space,
the efficient use of both natural and artificial light sources is required, as rooms
are often occupied during both day and night. Light reflects off of walls, floor, fur-
niture, and other objects, and the degree of reflection depends on their geometry
and material composition. Although large windows can fill an environment with
sunlight, designers must ensure that occupants are also protected from harsh
brightness and glare. These same rooms can then be illuminated during the
night, with artificial lighting designed to create completely different moods and
settings. Although the aesthetic nature of this task is difficult to formally model,
technical requirements such as illumination levels, colours, material effects, and
others, are more easily quantified.

This paper explores evolutionary design problems in illumination using ge-
netic programming (GP) [1].1 We use the Radiance system for evaluating aspects
1 See http://www.cosc.brocku.ca/∼bross/IllumGP/ for more details about this

research.
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of illumination in an environment [2,3]. Radiance uses a sophisticated simula-
tion of illumination, which lets it accurately account for a wide range of relevant
factors. By using Radiance, the GP system can consider a variety of factors for
artificial and natural (solar) illumination. Since multiple and often conflicting
instances of lighting specifications can be used, the problem is multi-objective
in nature. By using the “many objective” technique of sum of rank (or average
rank), we consider problems using up to 6 factors. The GP language addresses a
host of factors relevant to illumination design, including artificial lighting (loca-
tion, intensity, colour), windows (size, locations, colour), and room materials
(walls, floors, ceiling).

Another contribution made is the application of GP to some innovative prob-
lems in illumination design. First, we design a decorative “wall of lights”, com-
prising a variable-sized grid of coloured lights. In another problem, an enormous
stained-glass window is generated for a public space. In both these problems,
we exploit GP’s ability to evolved mathematical expressions for generating the
colour of lights and windows, essentially evolving procedural textures to solve
the problems. The evolution of procedural textures has an established history in
evolutionary design [4,5].

The paper is organized as follows. Section 2 reviews some relevant concepts in
illumination design, and discusses the Radiance illumination modeling system.
We discuss the implementation of our system architecture in Sect. 3. Experiments
and results are reported in Sect. 4, including a many-objective room illumina-
tion problem, a decorative wall of lights, and a stained glass wall. Concluding
discussions are in Sect. 5.

2 Background

2.1 Illumination Design

Illumination is a topic of specialization within architecture and interior design [6].
The inverse illumination problem involves finding of potential lighting options
for a pre-defined interior space [7]. It takes into account the desired lighting
requirements in various locations in the space, and looks for optimal positions,
kinds, and number of light sources. This allows a degree of freedom and creativity
to solve illumination problems, given the many feasible solutions possible. Energy
efficiency are often considered as well, since passive solar illumination can be used
for both illumination requirements and energy saving (artificial light reduction,
room heating).

The challenges of illumination design makes it an interesting problem for com-
puter automation and computational intelligence. Fernandez [8] used a heuristic
search to recreate an initial lighting scene. The program was tasked with find-
ing placements of skylights to illuminate a pre-made building layout. Tena [7]
used an interactive genetic algorithm to find solutions for inverse illumination
problems. Castro [9] used a number of different heuristic and evolutionary based
approaches, which searched for a desired illumination solution using optimally
minimum emission power. Caldas [10] investigated energy efficiency concerns
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involving illumination, using a multi-objective genetic algorithm. Another app-
roach to the problem is to design a building model incorporating specific illumi-
nation characteristics – and especially in regards to solar illumination [11,12].

2.2 Radiance

Radiance is a well known open-source illumination simulation tool for designers
and architects [2,3]. It implements a physically-based backward raytracer ren-
dering algorithm that accounts for a number of important environmental factors,
including light intensity, materials, geographic location, time, date, and others.

To use Radiance, one first defines a 3D model of the environment. For a
room, this will be the obvious room walls, ceiling, floors, and windows. Material
definitions specifying colours and reflectivity are also defined. The room can be
filled with objects, such as furniture and decoration, and materials are similarly
supplied. Artificial lighting is defined, and involves locations, colours, and inten-
sities. The geographic location, time, and date are then supplied, in order to
simulate natural sunlight accurately.

Once the environment is defined, Radiance performs an illumination simu-
lation. A number of outputs can be obtained. Individual lighting measurements
can be sampled at locations of interest. Lighting characteristics such as glare can
be measured. An overall rendering of the scene can be generated. This can be a
photorealistic image, or a colour-coded illuminosity map.

3 System Design

3.1 Genetic Programming Language

A strongly-typed GP language [13] is used (Table 1). Types designate specific
design tasks within the environment. This defines GP trees similar to those used
in grammar-guided GP [14]. For example, W is a type denoting the generation of
windows and skylight for a room, and the Windows operator fulfills that design
task. Numeric types include float (F), integer (I), and tree float (TF). Some of
functions used are:

– Materials(...) assigns materials for the 4 walls, ceiling, and floor. If not used,
pre-defined materials are assigned.

– North Wall Center(I,a,b,c,d) creates windows for the north wall. “I” is con-
verted to a value between 0 and 30, and is the number of wall panels or sections
to create for windows. The a, b, and c arguments use the fraction portion of
the float value. They scale the windows, as shown in Fig. 1(a). All the win-
dows on a wall’s panels will have the same scale. The d argument determined
whether a window is to be created on a panel. Its floating point expression is
given the panel coordinates. If the value is positive, a window is defined on
that panel. Otherwise no window is created.
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Table 1. Language

Type Function Name Description

R Root(W,MM,LM,...) Creates the scene. Parameters vary
according to design task

LM Top Light(LB) Creates the artificial lighting

W Windows(C,NW,SW,EW,NW) Creates walls and windows

MM Materials(M,M,M,M,M,M) Creates materials

M (F,F,F,F,F) Material defn: R, G, B, reflection,
roughness

C SkyLight(F,F,F,F) Skylight window on the ceiling. Args
define coords for 2 opposite corners

NW North Wall Center(I,F,F,F,TF) Evenly patterns the wall of the

SW South Wall Center(I,F,F,F,TF) room based on percentage

EW East Wall Center(I,F,F,F,TF) measures for window size and

NW West Wall Center(I,F,F,F,TF) location on wall section

LM Top Light(LB) Creates artificial lighting

LB Light Filler(LB,LB) Branches the light creation tree

LB Basic Light(F,F) Light source of fixed white intensity.
Args define location

LW Light Wall(I,I,TF,TF,TF) Grid of lights on a wall. TF expressions
compute RGB of each light

SG Stained Glass(I,I,TF,TF,TF) Grid of stained glass on wall

TF Add(TF[2..4]) Add op for colour expressions. Between
2 to 4 arguments

TF -, *, /, neg, sin, cos, log Other math operators

TF X, Y Grid coordinates

TF ERCTF Ephemeral TF (−1.0 ≤ TF < 1.0)

F ERCFloat Ephemeral float (0.0 ≤ F < 100.0)

I ERCInt Ephemeral integer (0 ≤ I < 100)

– Basic Light(...): Create a fixed intensity white light. A minimum distance of
0.5 metres between lights is enforced.

– Light Wall(I,J,R,G,B) generates a K-by-L grid of lights. I and J are integers
converted to values between 3 ≤ K ≤ 10 and 3 ≤ L ≤ 36. Each light’s grid
coordinate is accessible to the colour channel expressions.

– Stained Glass(I,J,R,G,B) creates a grid of square stained glass windows on
a wall. It works much like Light Wall(I,J,R,G,B). One difference is that we
project each glass element’s coordinate to the range −1.0 ≤ x, y ≤ 1.0. This
range can be altered as desired.
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Fig. 1. (a) Window sizing parameters. (b) Colour map for wall of lights and stained
glass. (c) Colour mapping in stained glass room. Spheres locations and colours show
where matching done. Example uses solution in Fig. 6(a).

3.2 Fitness Evaluation

Fitness evaluation is performed on designated illumination readings of interest
within the environment. These measurements are requested from Radiance to
compute, at specific locations and directions. Illumination features used as fitness
criteria are measured at desired locations in a room. They are as follows:

1. Illumination intensity (or illumination): This is a measure of brightness. Mea-
surements are performed in units of lux, a measurement of luminous flux per
unit area. It is equal to one lumen per square metre. Lumens measure the total
illumination power emitted from a light source. Lux readings are matched in
the scene against corresponding target values, and the absolute difference
between them is measured. Often multiple sample points are measured and
averaged.

2. Colour sampling : Radiance’s illumination model denotes light values using a
high dynamic range (HDR) data type. This makes it difficult for specifying
exact colours to match, as can be done with a more constrained RGB colour
scheme. We therefore denote colour matching using ratios between colour
channels:

V alue1 = RedChannel ÷ GreenChannel
V alue2 = RedChannel ÷ BlueChannel
V alue3 = GreenChannel ÷ BlueChannel

This permits a range of colours having a similar hue, based on the relationship
of channel values in a target colour. The sum of errors between the measured
and target colour ratios is calculated. Low scores are preferred.

3. Uniformity (evenness): Uniformity promotes gradual illumination changes.
Typically some K number of illumination readings are sampled from an area.
Then uniformity is:

Uniformity = Lmin/Lavg
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where Lmin and Lavg are the minimum and average lux readings from the
samples. We use the sum of 3 separate test areas for uniformity scores, giving
a target value of 3.

Next, the absolute error differences between the measured values described
above and the targets are placed in a feature vector. This vector denotes the
multi-objective scores for the GP individual being assessed. Lower error values
are better scores. Once all the population is assessed, the sum of ranks fitness
score is determined for the population. This is a multi-objective scoring strategy
for high-dimensional multi-objective problems [15]. Given a feature vector of size
n, a population member k has a raw objective vector (fk

1 , ..., f
k
n). Each objective

f is separately ranked for the population, resulting in a rank vector (rk1 , ..., r
k
n).

The sum of ranks score is calculated:

Fitnessk =
n∑

i=1

rki
maxi

where maxj is the maximum rank value for objective j. The scaling by each
objective’s maximum rank is a normalization step that balances the contribution
of each objective to the overall score.

3.3 GP Parameters

We use RobGP – a C++ based GP system [16]. It was chosen for its ease of
integration with Radiance. Typical GP parameters used are shown in Table 2,
and are common in the literature [1].

Table 2. GP Parameters

Parameter Value

Runs/experiment 20

Generations 50

Population size 250

Initialization Ramped half-and-half

Init. tree depth range 4–6

Max tree depth 11

Tournament size 3

Crossover rate 90 %

Mutation rate 10 %

Mut. grow tree depth range 2–4
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Table 3. Room parameters

Parameter Value

Room width 20 m

Room length 60 m

Ceiling height 6 m

Wall material Plastic(0.309,0.051,0.051,0,0)

Ceiling material Plastic(0.8,0.8,0.8,0,0)

Floor material Radiance library wood floor

Glass definition Glass(0.96,0.96,0.96)

Light size 0.125 m

Daylight date, time Sept 23, 12:00EDT

Location 43.12 N, 79.25 W

(a) Day, from south side facing north. (b) Day, from north side facing south.

(c) Night, from south side facing north. (d) Night, from north side facing south.

Fig. 2. Day/night illumination best solution.

4 Results

4.1 Illuminated Room: Day and Night

We consider the illumination of a rectangular room having a north-south orien-
tation, with long walls facing east and west. Two variations of the problem are



Interior Illumination Design Using Genetic Programming 155

(a) (day) #1, #3, #4. (b) (night) #2, #5. (c) (day) #6.

Fig. 3. Population fitness plots for day/night illumination (avg 20 runs). See text for
target values for these objectives.

(a) Solution 1 (day). (b) Solution 1 (night).

(a) Solution 2 (day). (b) Solution 2 (night).

Fig. 4. Day/night illumination with materials evolution.

considered. In the first, we supply material definitions for the room (Table 3).
The second experiment discards the predefined materials, and uses GP to evolve
them. In both cases, we use GP to define artificial lights and a sky light on the
ceiling, and optional windows on all 4 walls. The room is divided into 3 equal
areas – north, middle, and south. Measurements are performed twice during the
day – at noon, and during a moonless night. The objectives are:

#1 (day) South area having an illuminance of 4000 lux.
#2 (night) South area having an illuminance of 500 lux.
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#3 (day) Middle area having an illuminance of 1000 lux.
#4, #5 (day, night) North having an illuminance of 0 lux.

#6 (day) Uniformity value of 3.

This represents a many-objective optimization problem. Illumination is sampled
and averaged over 16 evenly distributed measurement locations in each section.
Lights are turned off during the day.

Figure 2 shows the best scoring solution. The south sides (facing north)
are made brighter by artificial lighting (day and night) and a skylight during
the day. The middle and north sides are darker. The uniformity test encourages
the even distributions of lights and windows. Figure 3 shows the population per-
formance of the predefined material runs, averaged over 20 runs. Plots show the
raw measurements of the factors. Most plots show a general convergence towards
the desired target values. However, objective #4 (day dark) had difficulty reach-
ing the target of 0.

Figure 4 shows two selected results from the second experiment. In both,
side windows were ignored, and reflective walls were used to distribute light
in the room. Whereas the predefined materials in Table 3 had no reflectivity,
the evolved wall materials had reflection coefficients as high as 0.86 (a perfect
mirror is 1.0). Analysis showed that material evolution resulted in statistically
significant improvements in objectives #3 and 4, while the pre-defined material
runs were superior in #5 and 6.2

4.2 Decorative Wall of Lights

The task is to define a wall of coloured lights at one side of the room. The
Light Wall function is used to do this, and treats light colouring as a procedural
texture. The resolution of the light grid can be evolved to range between 3× 3 to
10 × 36. We require a minimum distance of 0.5 m between neighbouring lights.
A total of 9 lights in a 3× 3 square pattern are selected from the whole light grid
for colour sampling. The goal is to have these selected lights evolve colours that
match those in the target colour map of Fig. 1(b). The colour score computes the
sum of ratio errors of the 9 sampled lights and respective target colours (see
Sect. 3.2). Therefore, this is a single-objective problem. Note that the lights not
measured are more free to emit any colour (although overly bright lights may
influence nearby colour measurements). This should result in interesting patterns
of colours that are still somewhat constrained by the colour map. The integer
grid coordinates of lights are used by the colour expressions.

Figure 5 shows 4 selected results from different runs. Figure 5(a) has the best
score. The low resolution light grid produces different styles of images compared
to high resolution bitmaps [5]. Also, direct colour matching is difficult for GP
[17]. Therefore, typically 6 of the 9 colour targets might be satisfied at best.

2 Two-tailed unpaired t-test with unequal variance, p = 0.05 %.
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Fig. 5. Examples of light wall results.

4.3 Stained-Glass Windows

An enormous wall encompassing a stained glass window is to be created for a
large public space. We use the Stained Glass function to generate this windowed
wall. The evolvable grid resolution resides between 50 × 50 to 100 × 100 (i.e.
between 2500 and 10000 glass panels). We used a coordinate system of −1.0 ≤
x, y ≤ 1.0, with the origin (0,0) centered on the window.

To make this experiment different from the wall of lights problem, a new
approach to colour analysis is used. Although somewhat contrived, the scheme
is interesting and challenging, and must rely on Radiance’s rendering abili-
ties. Colour measurement is done at mid-day, when the southern Sun shining
through the window maximally illuminates the interior floor. Although the win-
dow colours vary during the day as the Sun’s direction changes, this mid-day
illumination is used for fitness evaluation. Colour matching again uses the colour
map in Fig. 1(b). We use 9 evenly-spaced sample points on the floor, from where
projected window colours are sampled as they are seen by a viewer looking down-
ward at the floor at a 45 degree direction. Thus colour is measured indirectly,
and relies on the stained glass illuminating the sample positions on the floor that
match the target colour map colour. The view from the window looking towards
these locations is shown in Fig. 1(c). As before, a sum of colour ratio errors is
used for colour scoring.

Figure 6 shows 2 interesting results. The window encompasses the entire far
wall, and a vaulted ceiling slopes downwards on each side to the height indicated
by the dark bands on each side of the window. Each image shows the window
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(a) Solution 1, noon. (b) Solution 1, late day.

(c) Solution 2, noon. (d) Solution 2, late day.

Fig. 6. Example stained glass results.

illuminating the empty room at two times during the day. The evolved pattern
is centered on the window, showing the effect of the projected texture coordi-
nate space on the evolved colour expression [18]. Note how the window’s colour
changes substantially during the day.

5 Conclusion

This paper makes a number of contributions in evolutionary illumination design.
The Radiance system allowed us to accurately consider a number of illumina-
tion factors. By treating illumination design as a many-objective problem, we
considered up to 6 objectives. Elsewhere, we used up to 8 objectives, concluding
factors such as glare. Although all fitness strategies introduce particular search
biases, we feel that the sum of ranks is less prone to the immediate influences
of poorly designed weighted sum formulae. It also handles higher-dimensional
problems than Pareto ranking, without generating outlier solutions.

We also considered two innovative problems – a decorative wall of lights,
and a stained-glass window. The success of these problems was due to GP’s well
known proficiency in evolving procedural textures. In both cases, rather than
compute pixel colours on a bitmap, we defined the colour of lights and stained
glass. Being able to apply procedural textures to these alternative problems was
due to Radiance’s illumination abilities.
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There are many directions for future work. One obvious extension is to
include energy-efficiency considerations, as done by Caldas [10], Marin et al.
[12] and others. Although we considered the illumination of pre-existing struc-
tures, it is possible to integrate floorplan and 3D model design with illumination.
We have only scratched the surface of using procedural textures for decorative
illumination. By including texture operators that use noise and entropy [18], and
employing aesthetic fitness evaluation techniques [19], many exciting results in
illumination design are waiting to be discovered.
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