
Chapter 5
Classical Nonlinear Beam Theories

Classical nonlinear beams from the point of view of an induced theory are continuous
bodies with a constrained position field which are described by the motion of a
centerline and the motion of plane rigid cross sections attached to every point at
the centerline. This restricted kinematics allows to determine resultant forces at
each cross section and to reduce the equations of motion of a three-dimensional
continuous body to a partial differential equation with only one spatial variable. The
present chapter is partly based on the publication of Eugster et al. [1].

First, in Sect. 5.1, the kinematical assumptions are stated. Subsequently, in
Sect. 5.2, the virtual work contributions of the internal forces, the inertia forces and
the external forces are reformulated by the application of the restricted kinematics to
the virtual work of the continuous body. In Sects. 5.3–5.5 we present the generalized
constitutive laws of the geometrically nonlinear and elastic theories of Timoshenko,
Euler–Bernoulli and Kirchhoff in the form of a semi-induced beam theory. Lastly,
Sect. 5.6 closes the chapter with a concise literature survey of numerical implemen-
tations of nonlinear classical beam theories.

5.1 Kinematical Assumptions

For the derivation of the classical beam theory, it is convenient to think of a slender
continuous body with an isotropic material behavior as depicted in Fig. 5.1. First, we
assume at a given instant of time t a placement of the slender body in E

3, at which
the body covers the subset Ω t ⊂ E

3. We identify the characteristic direction of the
slender isotropic body with an arbitrarily chosen centerline r which propagates along
the largest expansion of the body. The property that the configuration ξ(·, t) at time
t is an embedding, enables us to identify every point of the continuous body in Ω t

with a unique point in the set B := ξ(·, t)−1(Ω t ) ⊂ R
3. Subsequently, we choose

the body chart θ such that the centerline r is parametrized by θ3 =: ν only. For a
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56 5 Classical Nonlinear Beam Theories

Fig. 5.1 Reference and current configuration of the beam

classical beamwe assume the existence of a motion given by the constrained position
field of the form

ξ(θα, ν, t) = x(q(·, t))(θα, ν) = r(ν, t) + θαdα(ν, t), (5.1)

where the generalized position functions q(·, t) are recognized as r(·, t), d1(·, t)
and d2(·, t). The centerline is given by the space curve r(·, t) = ξ(0, 0, ·, t) and
is bounded by its ends ν = ν1 and ν = ν2 for ν2 > ν1. A customary choice
of ν is the arc length parametrization s of the centerline r. Since the arc length
parametrization comes along with an additional constraint and may change under
deformation from one instant of time to another, we do not want to restrict us to
this special case. At every material point ν of the centerline r a positively oriented
orthonormal director triad (d1(ν, t), d2(ν, t), d3(ν, t)) is attached. The two direc-
tors dα span the plane cross section of the beam. The current state of the cross
section ξ( Ā(ν), ν, t) is parametrized by the cartesian coordinates (θ1, θ2) ∈ Ā(ν),
where Ā(ν) := {

(θ1, θ2) | (θ1, θ2, ν) ∈ B
}
. The restriction to cartesian coordinates

is implied by the parametrization of the cross section by two orthonormal directors.
For specific problems, e.g. computation of the cross section area, appropriate local
reparametrizations can be performed. One could think of different descriptions of the
plane which do allow for more general coordinates, but such a generalization is out-
side the scope of this book. The director triad (d1, d2, d3) can be related to an inertial
orthonormal basis (e1, e2, e3) by introducing for the rotation tensorR(ν, t) ∈ SO(3)
such that

dk(ν, t) = R(ν, t)ek, with R = dk ⊗ ek. (5.2)

For orthonormal vector triads, we do not distinguish here between co- and contravari-
ant vectors. In (5.1) we have identified the generalized position functions q(·, t)with
r(·, t), d1(·, t), d2(·, t) and have constrained the directors d1(·, t) and d2(·, t) by
(5.2) to remain orthonormal. Hence, the evaluation at ν of the generalized posi-
tion functions q(·, t) can be considered as a point on the 6-dimensional manifold
E
3 × SO(3).
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Since a beam in an induced theory is treated as a continuous body with a con-
strained position field, one has to guarantee that the motion always requires the
conditions of an embedding. As long as the density of the volume form g1/2 > 0
does not vanish for every point θk and the function remains injective, the perma-
nence of matter and the principle of impenetrability are fulfilled and the motion is an
embedding. As an example of how extreme such deformations can be, we assume a
beam with circular cross sections of radius r where the cross sections remain orthog-
onal to the tangent vector of the centerline. As depicted in Fig. 5.2, the beam is bent
in-plane up to a bending radius R. As long as the bending radius is larger than the
radius of the beam R ≥ r , no interpenetration of the cross sections may appear. This
restriction seems to be reasonable for the example at hand. Ultimately, at the con-
figuration where the bending radius coincides with the cross section radius r = R,
the lateral surfaces of the beam come into contact. Because of the impenetrability
condition R ≥ r , beam theories are generally limited to slender bodies (among other
reasons).

In the classical beam theory, the cross section deformation is considered to be
irrelevant for the deformation of the body. Consequently, the cross section is rigidi-
fied by the choice of the constrained position field (5.1). This implies that material
points which are on the same cross section stay on the same cross section through-
out the whole motion of the body. The choice of the body chart together with the
current configuration can be denominated as a fibration of the continuous body. In
the remainder of this section the kinematical expressions which are necessary for the
formulation of the virtual work (4.3) of the constrained continuous body are derived.

To begin with the effective curvature, the angular velocity and the virtual rotation,
which all describe the change of the directors when changing a single parameter, e.g.
the parameter ν. Using (5.2), we derive

(dk)
′ = (R(ν, t)ek)

′ = R′RTdk =: k̃dk, (5.3)

in which we recognize the effective curvature k̃ = R′RT and denote the partial
derivative with respect to ν by a superposed prime (·)′. The effective curvature k̃
only coincides with the curvature of a spatial curve r(ν, t) when ν corresponds to
the arc length parametrization s of the spatial curve at a given instant of time t . The
skew-symmetry of k̃ can easily be shown using the SO(3) properties of the rotation
tensor R:

RRT = 1
(·)′⇒ k̃

(5.3)= R′RT = −R(RT)′ = −(R′RT)T = −k̃T.

Fig. 5.2 Maximal allowed
deformation of a beam with
cross section radius r and
limit bending radius R

http://dx.doi.org/10.1007/978-3-319-16495-3_4
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Hence, the skew-symmetric effective curvature k̃ has an associated axial vector
k(ν, t) ∈ E

3 such that

(dk)
′ = k̃dk = k × dk, with k̃ = R′RT = (di )

′ ⊗ di . (5.4)

The tilde-operator will be used to denote the skew-symmetric tensor to an associated
axial vector. The components of the effective curvature can be written using the
alternating symbols εi jk as

ki = 1

2
εi jk(k̃)k j = 1

2
εi jk(dk · (d j )

′).

Similar to (5.4) we introduce the angular velocity ω̃(ν, t) and its associated axial
vector ω(ν, t) as

ḋk = ω̃dk = ω × dk, with ω̃ = ṘRT = ḋi ⊗ di . (5.5)

Likewise, we obtain the virtual rotation δφ̃(ν, t) and its associated axial vector
δφ(ν, t) by considering virtual variations of the directors dk, i.e. through derivation
with respect to the variation parameter ε,

δdk = δφ̃dk = δφ × dk, with δφ̃ = δRRT = δdi ⊗ di . (5.6)

The velocity and acceleration fields are introduced by taking the total time derivative
of the position field (5.1) and the kinematical relation introduced in (5.5)

ẋ = ṙ + ω × (x − r) = ṙ + ω × ρ, with ρ = x − r = θαdα,

ẍ = r̈ + ω̇ × ρ + ω × (ω × ρ). (5.7)

Using (5.1) and (5.4), the partial derivatives of the constrained position field take the
form

x,α = dα, x′ = r′ + k × ρ. (5.8)

The variation of the constrained position field and insofar the admissible virtual
displacement field is, in accordance with (5.1) and (5.6), given by

δx = δr + δφ × ρ. (5.9)

The variation of the partial derivatives (5.8) are reformulated to

δx,α = δφ × x,α , δx′ = δr′ + δk × ρ + k × (δφ × ρ). (5.10)

Since cartesian coordinates are chosen, the derivative with respect to ν and the
variation commute, i.e. (δdk)

′ = δ((dk)
′) = δd′

k. By (5.4) and (5.6) we write this
identity as
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(δφ × dk)
′ = δ(k × dk).

Applying the product rule and using again (5.4) and (5.6) yields

δφ′ × dk + δφ × (k × dk) = δk × dk + k × (δφ × dk).

By subtracting the left-hand side from the right-hand side, and by applying the skew-
symmetric property of the cross product and the Jacobi identity (B.1), one obtains

0 = δk × dk + k × (δφ × dk) + δφ × (dk × k) − δφ′ × dk

(B.1)= δk × dk − dk × (k × δφ) − δφ′ × dk

= (δk − δφ × k − δφ′) × dk.

Since the right-hand side of (5.1) has to vanish for all directors dk ∈ E
3 we retrieve

the important identity
δφ′ = δk − δφ × k. (5.11)

For the formulation of constitutive laws or for the determination of mass densities
it is convenient to introduce a special configuration, called reference configuration.
Let r0 andDα be the reference generalized position functions ofQ, then the reference
configuration of the beam corresponds to the constrained position field

�(θα, ν) = X(Q)(θα, ν) = r0(ν) + θαDα(ν). (5.12)

We call the space curve r0 = �(0, 0, ·) the reference curve of the beam. At each
material point of the reference curve r0 we have attached a positively oriented ortho-
normal director triad (D1(ν), D2(ν), D3(ν)) which is related to the basis (e1, e2, e3)
by introducing the rotation tensor R0(ν) ∈ SO(3) such that

Dk(ν) = R0(ν)ek, with R0 = Dk ⊗ ek.

The directors Dα describe the reference state of the cross section �( Ā(ν), ν). In the
formulation of constitutive laws, the reference configuration is often defined as the
stress free configuration of the body.

5.2 Virtual Work Contributions

In an induced theory, the classical nonlinear beam is a continuous body with the
constrained position field (5.1). The dynamics of a continuous body with such a
restricted kinematics can be described by the principle of virtual work (4.3) with the
total stress field (4.7). The constraint position field (5.1) which defines the constraint

http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4
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manifold C ⊂ K corresponds to the embedding (4.10) determining an induced theory.
The admissible virtual displacements (5.9) are directly obtainedby the variation of the
constrained position field. Using the constrained kinematics (5.1), in the following
section, the contributions of the virtual work (4.3) due to the admissible virtual
displacements (5.9) are determined. Since the constraint stresses are assumed to be
perfect, by the principle of d’Alembert–Lagrange (4.8), they do not contribute to the
virtualwork and theweakvariational formof the classical nonlinear beam is obtained.
By further continuity assumptions on the involved functions, the strong variational
form and the corresponding boundary value problem of the classical nonlinear beam
is determined.

It is important to notice, that within this formulation we lose all information about
the constraint stresses which rigidify the cross sections. The fact that the constraint
stresses do not appear in the equations of motion does not imply that no stresses act
in the cross section.

5.2.1 Virtual Work Contributions of Internal Forces

Using (4.1), (5.10) and the property of the cross product of (B.2), the internal virtual
work density can be written as

ti · δx,i = δφ · (x,α ×tα) + t3 · δr′ + δk · (ρ × t3) + t3 · (k × (δφ × ρ)). (5.13)

Employing the symmetry condition (4.5), we can rewrite the first term in (5.13) as
follows:

δφ · (x,α ×tα)
(4.5)= −δφ · (x′ × t3)

(5.8,B.2)= −t3 · (δφ × r′ + δφ × (k × ρ)).

Using the above derived relation and the Jacobi identity (B.1), we can manipulate
(5.13) further and obtain

ti · δx,i = −t3 · (δφ × r′ + δφ × (k × ρ)) + t3 · δr′ + δk · (ρ × t3)

+ t3 · (k × (δφ × ρ))

= t3 · (δr′ − δφ × r′) + δk · (ρ × t3)

+ t3 · (k × (δφ × ρ) + δφ × (ρ × k))

(B.1)= t3 · (δr′ − δφ × r′) + δk · (ρ × t3) + t3 · (ρ × (δφ × k))

(B.2)= t3 · (δr′ − δφ × r′) + (ρ × t3) · (δk − δφ × k).

(5.14)

http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4
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Since the kinematical quantities δr′ − δφ × r′ and δk − δφ × k depend merely on
(ν, t), we split the integration over B in an integration over the cross section in the
body chart Ā(ν) and an integration along ν ∈ (ν1, ν2)

δW int =
∫

B
ti · δx,i d

3θ

(5.14)=
∫ ν2

ν1

{
n · (δr′ − δφ × r′) + m · (δk − δφ × k)

}
dν.

(5.15)

Herein, the integrated kinetic quantities n and m are the resultant contact forces and
the resultant contact couples of the current configuration defined by

n(ν, t) :=
∫

Ā(ν)

t3 d2θ, m(ν, t) :=
∫

Ā(ν)

(ρ × t3) d2θ, (5.16)

with abbreviation of the area element d2θ = dθ1dθ2. Due to the surface integral,
the resultant contact forces and couples are independent of the cross section coordi-
nates θα. Although not explicitly expressed in the notation, the stress distributions
under the surface integral are mapped from the Euclidean cotangent space to the
cotangent space of the beams configuration manifold. Nevertheless, in an induced
theory, we still have the connection to the stress distribution of the Euclidean space.
In order to make the connection to an intrinsic theory, it is necessary to introduce an
equivalence class of forces. Force distributions in the Euclidean space which have the
same resultant contact forces and contact couples are considered to be equivalent. The
representatives of the equivalence class are then identified with the internal general-
ized forces of an intrinsic beam theory which postulates the right-hand side of (5.15)
as its internal virtual work of the generalized one-dimensional continuum. By the
definition of an equivalence class, we decouple our induced theory from the theory
of a constrained three-dimensional continuous body and arrive at an intrinsic theory.

5.2.2 Virtual Work Contributions of Inertia Forces

For convenience, themass density is introduced in the bodies reference configuration
as a real valued field ρ0 : X(Q)(B) ⊂ E

3 → R which to every point of the body
in the Euclidean space assigns a local mass per volume. Together with a volume
element dV = dx1 dx2 dx3 we obtain the mass distribution dm = ρ0 dx1 dx2 dx3.
The pullback of the mass distribution to the domain B with respect to the reference
configuration leads to the local description of the mass distribution as

dm = ρ0 G1/2 d3θ, G1/2 = X,1 · (X,2 × X,3 ).
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Considering the virtual work (4.3) and the virtual displacements (5.9) we can
transform the virtual work contributions of the inertia terms. For the manipulation
of the inertia terms we introduce some abbreviations of integral expressions which
have their analogous expressions in rigid body dynamics. The cross section mass
density per unit of ν is defined as

Aρ0(ν) :=
∫

Ā(ν)

ρ0 G1/2 d2θ. (5.17)

When the centerline does not coincide with the line of centroids rc(ν, t), e.g. when
the centerline is determined by the shear centers and the shear centers do not coincide
with the centroids of the cross sections, a coupling term remains, which we introduce
as the integrated quantity

c(ν, t) := Aρ0(rc − r) =
∫

Ā(ν)

ρ ρ0 G1/2 d2θ. (5.18)

The cross section inertia density is introduced as

Iρ0(ν, t) :=
∫

Ā(ν)

ρ̃ρ̃Tρ0 G1/2 d2θ. (5.19)

Furthermore, it is convenient to express the time derivatives of the coupling term
by the angular velocity. Using (5.5) and (5.18), the second time derivative of the
coupling term is expressed by

c̈ = (ω × Aρ0(rc − r))̇ = ω̇ × Aρ0(rc − r) + ω × (ω × Aρ0(rc − r)). (5.20)

Another quantity which is going to occur, is the product of the cross section inertia
density and the angular velocity

h(ν, t) := Iρ0(ν, t)ω(ν, t).

In the basis di ⊗d j the moment of inertia Iρ0 is constant with respect to time t . Using
a coordinate description it can easily be shown that

ḣ = ((Iρ0)i jω j di )̇ = (Iρ0)i j ω̇ j di + (Iρ0)i jω j ḋi

= (Iρ0)i j di ⊗ d j (ω̇kdk + ω × ωkdk) + ω × (Iρ0)i jω j di

= Iρ0ω̇ + ω × Iρ0ω.

(5.21)

Substitution of the admissible virtual displacements (5.9) and the accelerations (5.7)
of the restricted kinematics into the virtual work expression (4.2) yields:

δW dyn =
∫

B
δx · ẍ dm =

∫

B
{(δr − ρ̃δφ) · (r̈ − ρ̃ ω̇ + ω̃ω̃ρ)} ρ0 G1/2 d3θ.

http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4
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Similar to the internal virtual work contribution, the integration over B is split in an
integration over the cross section in the body chart Ā(ν) and an integration along
ν ∈ (ν1, ν2). Together with the definitions (5.17), (5.18) and (5.19) and the property
(B.5) of the cross product we obtain

δW dyn =
∫ ν2

ν1

{
δr · (

Aρ0 r̈ + Aρ0(r̃c − r̃)T ω̇ + ω̃ω̃Aρ0(rc − r)
)

+ δφ · (Aρ0(r̃c − r̃) r̈ + Iρ0 ω̇ + ω̃Iρ0ω
)}

dν.

Using (5.20) and (5.21) the virtual work contribution of the inertia terms is rewritten
in an even more compact form

δW dyn =
∫ ν2

ν1

{
δr · (

Aρ0 r̈ + c̈
) + δφ · (

q × r̈ + ḣ
)}

dν. (5.22)

As for the internal virtual work expression, we have two possible points of view.
Either we consider the cross section mass density, the coupling term and the cross
section inertia as integrated quantities fromamass distribution of a three-dimensional
continuous body or we identify them as constitutive parameters of an intrinsic theory
which relate the generalized inertia forces from (5.22) with the time derivatives of
the generalized position functions.

5.2.3 Virtual Work Contributions of External Forces

There is a vast amount of possibilities how external forces can be impressed on the
beam. Forces may occur as volume or surface forces and even point forces applied
somewhere at the beam are common in engineering problems. An elegant way to
be short in notation is, if we allow the force contribution df to contain Dirac-type
contributions. Since the forces may also contribute on the boundaries, it is essential
thatwe integrate over the closed set of the body.Using the same split of the integration
as above and the admissible virtual displacements (5.9), we obtain

δW ext =
∫

B
δx · df

(5.9)=
∫

[ν1,ν2]
{δr · dn + δφ · dm} ,

where the resultant external force distribution dn and the resultant external couple
distribution dm are the integrated quantities

dn(ν, t) :=
∫

Ā(ν)

df, dm(ν, t) :=
∫

Ā(ν)

ρ × df .
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With the same equivalence class argument as for the resultant contact forces and
couples, we can identify the resultant external force and couple distributions with
external generalized force distributions of an intrinsic theory. In order to avoid cum-
bersome derivations, we only allow the discontinuities in the force distributions at
the boundaries ν1 and ν2. This leads to the virtual work contribution

δW ext =
∫ ν2

ν1

{δr · n + δφ · m} dν +
2∑

i=1

{δr · ni + δφ · mi } |ν=νi . (5.23)

The resultant external forces and couples ni and mi , respectively, are the resultant
external forces which are impressed at ν1 and ν2. Whereas the unit of n is [N] per
unit of ν, the unit of ni is [N]. For the couples we argue in a similar way.

5.2.4 The Boundary Value Problem

Taking all the transformed contributions of the virtual work for admissible virtual
displacements (5.15), (5.22) and (5.23), the principle of virtual work (4.3) with the
total stress (4.7), together with the principle of d’Alembert–Lagrange (4.8) leads
directly to the weak variational form of the classical beam

δW =
∫ ν2

ν1

{
n · (δr′ − δφ × r′) + m · (δk − δφ × k)

+ δr · (Aρ0 r̈ + c̈ − n
) + δφ · (c × r̈ + ḣ − m

)}
dν

−
2∑

i=1

{δr · ni + δφ · mi } |ν=νi = 0 ∀δr, δφ, t.

(5.24)

Using the identity (5.11) and integration by parts, the virtual work is expressed as

δW = −{δr · (n + n1) + δφ · (m + m1)} |ν=ν1

+
ν2∫

ν1

{
δr · (

Aρ0 r̈ + c̈ − n − n′) + δφ · (
c × r̈ + ḣ − m − m′ − r′ × n

)}
dν

+ {δr · (n − n2) + δφ · (m − m2)} |ν=ν2 = 0 ∀δr, δφ, t,

which corresponds to the strong variational form of the classical beam. When the
functions in the round brackets are continuous and when the virtual displacements
δr and the virtual rotations δφ are smooth enough, then by the Fundamental Lemma
of Calculus of Variation, the former terms have to vanish pointwise. This leads to
the complete boundary value problem with the equations of motion of the classical
beam which are valid for ν ∈ (ν1, ν2)

http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4
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n′ + n = Aρ0 r̈ + c̈,

m′ + r′ × n + m = c × r̈ + ḣ,
(5.25)

togetherwith the boundary conditionsn(ν1) = −n1,m(ν1) = −m1 andn(ν2) = n2,
m(ν2) = m2. If we allow discontinuities of the force distributions at countable many
points inside the beam, the domain (ν1, ν2) has to be divided into sets where the force
distributions are continuous. The integration by parts can then only be performed on
the differentiable parts. Consequently, this leads to an equation of motion (5.25) for
the differentiable parts, to boundary conditions at the boundaries and to transition
conditions at the points of the discontinuities.

To summarize, we have seen that the restricted kinematics of the beam allows
us reducing the virtual work of the continuous body in such a way, that the equa-
tions of motion (5.25) correspond to partial differential equations with only one
spatial variable. As mentioned several times, we have two different viewpoints. In an
induced theory, the force contributions in (5.25) are interpreted as resultant forces,
i.e. weighted surface integrals of forces and stresses of the Euclidean space mapped
to the cotangent space of the beams configuration manifold. In an intrinsic theory
the forces are considered as generalized forces which lose their connection to force
and stress distributions of the Euclidean space.

5.3 Nonlinear Timoshenko Beam Theory

Constitutive laws for the resultant contact forces n and the resultant contact cou-
ples m are required to complete the equations of motion (5.25). In an induced the-
ory, it is customary to choose a three-dimensional material law with an appropriate
three-dimensional strainmeasure and integrate the corresponding stress contributions
(5.16) over the cross sections. Here, however, we propose a semi-induced approach
for the formulation of constitutive laws in three-dimensional beam theories. Hence-
forth, we interpret the resultant contact forces and couples as generalized internal
forces and formulate a constitutive law between generalized strains and generalized
internal forces. The generalized strains are directly determined by the generalized
position functions q. When proposing an elastic constitutive behavior, we have to
show, that the variation with respect to the generalized strain measures leads to the
same form of the internal virtual work (5.15) of the induced theory. This shows
the compatibility between an induced and an intrinsic beam formulation. In classi-
cal beam theories, the generalized constitutive laws relate the generalized position
functions of the beam, i.e. the motion of the centerline and the rotation of the cross
sections, with the internal generalized forces n and m. As in the three-dimensional
theory, we allow the generalized internal forces to consist of an impressed and of a
constraint part

n = nI + nC , m = mI + mC . (5.26)
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The subscripts (·)I and (·)C stand for impressed forces and constraint forces, respec-
tively. Whereas the constitutive laws of impressed internal generalized forces are
formulated by single valued force laws, the constitutive law of the constraint internal
generalized forces are given by the principle of d’Alembert–Lagrange (4.8) which
can be considered to be a set-valued force law.

Even though in Timoshenko [2, 3] only the linear and plane case is treated, we
call the beam theory of this section, in which no further constraints are impressed on
the beam, the nonlinear Timoshenko beam theory. Accordingly, the constraint parts
of internal generalized forces vanish, i.e.

nC = 0, mC = 0. (5.27)

There exists amultitude of other names for the same beam theory. Ballard andMillard
[4] call the beam “poutre naturelle”, Antman [5] denotes it as “special Cosserat rod”
and as “geometrically exact beam”. With reference to Reissner [6] and Simo [7], it
is also called “Simo–Reissner beam”. In our genealogy of beam theories, we denote
a beam with the same constraints by the same name. We distinguish further between
a nonlinear theory, a linearized theory and a plane linearized theory.

The most basic constitutive law for a nonlinear Timoshenko beam is an elastic
force law being expressed by an elastic potential Ŵ (ν, t) for the impressed part of
the generalized internal forces, such that

δW int
I = δ

∫ ν2

ν1

Ŵ (ν, t) dν.

We assume the elastic potential to depend on the generalized strain measures γi

and κi

W̃ (ν, t) = W (γi (ν, t),κi (ν, t)). (5.28)

The generalized strain
γi (ν, t) := di · r′ − Di · r′

0, (5.29)

measures the difference between the deformation of the centerline in the direction di

and the deformation of the reference curve in the directionDi . The effective reference
curvature is defined as k̃0(ν) = R′

0RT
0 = (Di )

′⊗ Di .Whenmeasuring the difference
between the effective curvature and the effective reference curvature in the direction
dk, d j and Dk, D j , respectively, we obtain the components k̃k j − (k̃0)k j . Since
these components are skew-symmetric, there is an associated axial vector with the
components

κi (ν, t) := 1

2
εi jk(dk · k̃d j −Dk · k̃0D j ) = 1

2
εi jk(dk · (d j )

′ − Dk · (D j )
′). (5.30)

http://dx.doi.org/10.1007/978-3-319-16495-3_4
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In the following we demonstrate the compatibility of the intrinsic generalized strain
measures with the induced theory, thereby showing that the internal virtual work
expression (5.15) is obtained when varying the elastic potential (5.28), i.e. that

δW int
I =

∫ ν2

ν1

{
∂W

∂γi
δγi + ∂W

∂κi
δκi

}
dν

holds. Using (5.6) and (B.2), the variation of W with respect to γi takes the form

∂W

∂γi
δγi

(5.29)= ∂W

∂γi
(δr′ · di + r′ · δdi ) = nI · (δr′ − δφ × r′), (5.31)

where we have recognized the resultant contact force nI := nI i di = ∂W
∂γi

di . By

expansion with the orthonormality condition δi j = di · d j and using (5.6), the
variation with respect to κi yields

∂W

∂κi
δκi = ∂W

∂κi
di · δκ j d j = mI · (δk − δφ × k) , (5.32)

in which the resultant contact couple as mI := m Ii di = ∂W
∂κi

di has been identified.

Comparison of (5.31) and (5.32) with (5.15) demonstrates the compatibility of the
chosen generalized strain measures and their corresponding elastic potential.

Let E and G be the Young’s and shear modulus, respectively, and let Aα be the
area of the cross sections A multiplied by a shear correction factor. Let I1, I2 and J
be the second moments of area and polar moment, respectively. In the following we
assume that the elastic potential takes the quadratic form

W (γi ,κi ) = 1

2
γi (D̂1)i j γ j + 1

2
κi (D̂2)i j κ j , (5.33)

with
[D̂1] = Diag[G A1, G A2, E A], [D̂2] = Diag[E I1, E I2, G J ],

where [D̂1] and [D̂2] contain the collection of the stiffness components (D̂1)i j and
(D̂2)i j , respectively. In the elastic potential (5.33) the directors dα have been cho-
sen such that they correspond to the principle axes of the cross section surfaces.
Consequently, the constitutive laws for the generalized internal forces are given as

n = nI = nI i di = (D̂1)i jγ j di , m = mI = m Ii di = (D̂2)i jκ j di .

which coincide with the impressed part, since the constraint parts (5.27) vanish.



68 5 Classical Nonlinear Beam Theories

5.4 Nonlinear Euler–Bernoulli Beam Theory

The nonlinear Euler–Bernoulli beam (or Navier–Bernoulli beam) can be regarded
as a Timoshenko beam on which additional constraints have been imposed. The
cross sections, and insofar the directors dα, have to remain orthogonal to the tangent
vectors r′ of the centerline. These constraints are formulated for every instant of
time t by the two constraint functions

gα(ν, t) = dα · r′ = 0.

It is convenient to let the reference configuration also to satisfy the orthonormality
condition. In this case, the constraints coincide with vanishing shear deformation, i.e.

gα = γα = dα · r′ − Dα · r′
0 = 0. (5.34)

The bilateral constraints are guaranteed by the constraint forces nCα. Using (5.6)
and properties of the cross product, the generalized constraint forces nC = nCαdα

contribute to the virtual work of the beam as

δW int
C = δgαnCα = (dα · δr′ + δdα · r′)nCα = nC · (δr′ − δφ × r′). (5.35)

The generalized constraint forces contribute in the same way as the generalized
internal forces in (5.15). This is in accordance with the decomposition of the internal
generalized forces (5.26) into an impressed and a constraint part. The force law
of the generalized constraint forces, which are considered to be perfect, can only
be formulated variationally by the principle of d’Alembert–Lagrange, which states
that (5.35) vanishes for all virtual displacements which are admissible with respect
to (5.34). Such a variational force law is described by a set-valued force law as
depicted in Fig. 5.3. The force law at hand may be cast in a normal cone inclusion
nCα ∈ N{0}(γα) = R, where the normal cone, cf. [8, 9], to the convex set {0} is
defined as

N{0}(x) = {
y ∈ R | y(x∗ − x) ≤ 0, x ∈ 0, ∀x∗ ∈ 0

} = R.

Fig. 5.3 Bilateral constraint
as set-valued force law
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By setting (x∗ − x) = δgα and y = nCα in the normal cone inclusion, we readily
recognize the principle of d’Alembert–Lagrange in inequality form.

For the impressed part, we assume the same quadratic form (5.33) as its elastic
potential. Since the constraint forces do not allow any shear deformation γα, the
corresponding shear stiffness components are immaterial and

[D̂1] = Diag[∗, ∗, EA], [D̂2] = Diag[E I1, E I2, G J ].

The generalized shear forces nIα of the underlying Timoshenko beam theory have
become bilateral generalized constraint forces nCα in the Euler–Bernoulli beam
theory. Hence, an elastic material law of the Euler–Bernoulli beam is given by

n = nI + nC , m = mI ,

where the impressed parts are represented by

nI = nI i di = (D̂1)i jγ j di , mI = m Ii di = (D̂2)i jκ j di

and the generalized constraint forces are formulated by the normal cone inclusions

nC = nCαdα, with nCα ∈ N{0}(γα) = R.

Using further concepts of convex analysis, e.g. the indicator function and the con-
cept of the subdifferential, it is possible to also include the set-valued part in the
potential (5.33), cf. [10]. This allows an alternative interpretation, that the bilateral
generalized constraint forces nCα are obtained by the limit to infinity of the shear
stiffnesses GA1 and GA2.

5.5 Nonlinear Kirchhoff Beam Theory

The nonlinear Kirchhoff beam (or nonlinear inextensible Navier–Bernoulli beam) is
an Euler–Bernoulli beam with additional inextensibility constraints. Hence, in the
Kirchhoff beam theory the cross sections remain orthogonal to the tangent vectors
of the centerline and the centerline is not allowed to stretch. When also the reference
configuration satisfies these constraints, the set of constraints for every instant of
time t is described by three bilateral constraint functions on the longitudinal and the
shear strains

gi (ν, t) = γi = di · r′ − Di · r′
0 = 0.

The contribution of the generalized constraint forces nC = nCi di to the virtual work
is similar to the Euler–Bernoulli beam

δW int
C = δgi nCi = (di · δr′ + δdi · r′)nCi = nC · (δr′ − δφ × r′).



70 5 Classical Nonlinear Beam Theories

For the impressed part, we assume the same quadratic form (5.33) as its elastic
potential. Since the generalized constraint forces do not allow any deformation γi ,
the corresponding stiffness components are immaterial and

[D̂1] = Diag[∗, ∗, ∗], [D̂2] = Diag[EI1, EI2, GJ].

Hence, an elastic constitutive law of the nonlinear Kirchhoff beam is given by

n = nC , m = mI ,

where the impressed parts are represented by

mI = m Ii di = (D̂2)i jκ j di .

and the generalized constraint forces are formulated by the normal cone inclusions

nC = nCi di , with nCi ∈ N{0}(γi ) = R,

representing the bilateral constraints.

5.6 Literature Survey of Numerical Implementations

The benefit of the procedure proposed in Sect. 5.2 is that the derivation of the beam
equations results directly in the weak variational form (5.24) which is the starting
point of any one-field beam finite element formulation. The numerical implementa-
tion of the nonlinear Timoshenko beam with a hyperelastic constitutive law (5.33) is
treated in the celebrated papers of Simo and Vu-Quoc [7, 11]. These two papers have
been the starting point of a wealth of new discussions about the numerical imple-
mentation of the Timoshenko beam, often cited as “geometrically exact beam” or
“Simo–Reissner beam”. The configuration space of the Timoshenko beam requires
the parametrization of the positions of the centerline and the parametrization of the
rotations of the cross sections.Whereas the positions of the centerline constitute a lin-
ear space, the space of rotations is given by the SO(3)-group whose parametrization
is not straight forward. Formulations which employ rotation vectors to parametrize
the rotations can be found in Iura and Atluri [12, 13] and in Pimenta and Yojo [14].
An overview of different rotation parameterizations is given by Ibrahimbegović [15].
A formulation suitable for arbitrary cross section geometry is treated in Gruttmann
and Sauer [16]. Crisfield and Jelenić [17, 18] have recognized that several discretiza-
tion procedures using additive updates of the approximate rotations lead to a lack of
objectivity and path dependent solutions and eliminated the problem by an interpo-
lation of the local rotations. Another approach to remedy this problem are director
interpolations originally proposed by Romero and Armero [19] and by Betsch and
Steinmann [20, 21]. A further improvement of the director approach which accounts
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for the lackof orthonormality in theGauss points is givenbyEugster et al. [1]. Further-
more, the director approach facilitates the design of structure-preserving time inte-
grators as has been shown in Betsch and Steinmann [22], Armero and Romero [23],
and Leyendecker et al. [24].

A drawback of the one-field finite element formulation, where position vectors
and rotations are interpolated, is on the one hand problems with shear locking [25,
26], and on the other hand the occurrence of stress discontinuities across element
boundaries [27]. In order to overcome these problems more extensive more-field
formulation has been developed. By augmenting the weak variational form (5.24)
Zupan and Saje [28, 29], Pimenta [30] and Santos et al. [27, 31] present recent
development where displacements, stresses and strains are interpolated. An excellent
overview of the whole numerical development of the nonlinear Timshenko beam in
the last three decades is given by Santos et al. [27].

Beside the vast amount of contributions to the nonlinear Timoshenko beam the
amount of publications on the numerical treatment of the spatial Euler–Bernoulli
beam is rather moderate. The crucial point is, that for the spatial Euler–Bernoulli
beam the non-holonomic constraints (5.35) have to be guaranteed. These constraints
require higher continuity of the shape functions which are fulfilled e.g. by hermite
polynomials as shown in Boyer and Primault [32]. Due to the popularity of the isoge-
ometric analysis [33], where B-splines and NURBS can guarantee higher continuity
assumptions, more contributionsmay be expected as the recent publications of Greco
and Cuomo [34, 35] show.

The Kirchhoff beam as an inextensible Euler–Bernoulli beam incorporates the
same difficulties. Here very recently a finite element formulation byMeier et al. [36]
is given. In the context of computer graphics the super helix approach byBertails [37]
is another approach.
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26. A. Ibrahimbegović, F. Frey, Finite element analysis of linear and non-linear planar deformations
of elastic initially curved beams. Int. J. Numer. Methods Eng. 36(19), 3239–3258 (1993)

27. H.A.F.A. Santos, P.M. Pimenta, J.P. Moitinho de Almeida, A hybrid-mixed finite element for-
mulation for the geometrically exact analysis of three-dimensional framed structures. Comput.
Mech. 48(5), 591–613 (2011)

28. D. Zupan, M. Saje, Finite-element formulation of geometrically exact three-dimensional beam
theories based on interpolation of strainmeasures. Comput.MethodsAppl.Mech. Eng. 192(49–
50), 5209–5248 (2003)

29. D. Zupan, M. Saje, Rotational invariants in finite element formulation of three-dimensional
beam theories. Comput. Struct. 82(23–26), 2027–2040 (2004). Computational Structures Tech-
nology

30. P.M. Pimenta, E.M.B. Campello, P. Wriggers, An exact conserving algorithm for nonlinear
dynamics with rotational DOFs and general hyperelasticity. Part 1: rods. Comput. Mech. 42(5),
715–732 (2008)



References 73

31. H.A.F.A. Santos, P.M. Pimenta, J.P. Moitinho de Almeida, Hybrid and multi-field variational
principles for geometrically exact three-dimensional beams. Int. J. Non-Linear Mech. 45(8),
809–820 (2010)

32. F. Boyer, D. Primault, Finite element of slender beams in finite transformations: a geometrically
exact approach. Int. J. Numer. Methods Eng. 59(5), 669–702 (2004)

33. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD
and FEA (Wiley, Chichester, 2009). ISBN 9780470749098

34. L. Greco, M. Cuomo, B-spline interpolation of Kirchhoff-love space rods. Comput. Methods
Appl. Mech. Eng. 256, 251–269 (2013)

35. L. Greco, M. Cuomo, Consistent tangent operator for an exact Kirchhoff rod model. Contin.
Mech. Thermodyn., pp. 1–17 (2014)

36. C.Meier, A. Popp,W.A.Wall, An objective 3D large deformation finite element formulation for
geometrically exact curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 278, 445–478
(2014)

37. F. Bertails, B. Audoly, M.-P. Cani, B. Querleux, F. Leroy, J.-L. Lévêque. Super-helices for
predicting the dynamics of natural hair, in ACM Transactions on Graphics (Proceedings of the
ACM SIGGRAPH ’06 Conference), (ACM, 2006), pp. 1180–1187


	5 Classical Nonlinear Beam Theories
	5.1 Kinematical Assumptions
	5.2 Virtual Work Contributions
	5.2.1 Virtual Work Contributions of Internal Forces
	5.2.2 Virtual Work Contributions of Inertia Forces
	5.2.3 Virtual Work Contributions of External Forces
	5.2.4 The Boundary Value Problem

	5.3 Nonlinear Timoshenko Beam Theory
	5.4 Nonlinear Euler--Bernoulli Beam Theory
	5.5 Nonlinear Kirchhoff Beam Theory
	5.6 Literature Survey of Numerical Implementations
	References


