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Preface

In the last centuries continuum mechanics developed from a theory treating very
specific problems to a general theory suitable for many applications. Continuum
mechanics started with the description of one-dimensional continua where Euler’s
elastica is maybe its most famous problem. With the seminal work of Cauchy on the
existence of the stress tensor in a three-dimensional continuum, the foundations of
modern continuum mechanics have been laid down. After a century with the par-
adigm of infinitesimal deformations and linear elastic material laws, the second half
of the twentieth century has been dominated by finite strain theories with large
deformations and nonlinear material laws. Especially with the emergence of the
computer and its fast rising power, to date, it is possible to treat more complex
mechanical behavior than ever before. Nevertheless, an axiomatic consideration of
continuum mechanics together with an appropriate mathematical framework is still
a major challenge. The foundations of mechanics deal with the identification of the
fundamental objects and the postulation of its principles. Due to the high level of
abstraction, the mathematical discipline of intrinsic differential geometry seems to
be best suited for the description of continuum mechanics. Step-by-step, additional
mathematical structure can be introduced and motivated by the underlying physics.
Without specifications of constitutive laws, geometric continuum mechanics is on
the one hand coordinate independent and on the other hand a priori metric inde-
pendent. Since a geometric continuum mechanics generalizes the well-established
objects of the classical theories, every single object has to be rethought and eval-
uated if it is fundamental or not.

This book is intended to make the reverse direction of the historical develop-
ment. It starts with an attempt of geometric continuum mechanics where body and
physical space are assumed to be smooth manifolds. Combining the mechanical
principles of Paul Germain from the 1970s with an intrinsic differential geometric
description of continuum mechanics of Reuven Segev of the 1980s, the principle of
virtual work emerges as the fundamental principle of continuum mechanics. In the
second part of the book, the classical model of the physical space, the three-
dimensional Euclidean space, is assumed and induced beam theories are treated as
an application of continuum mechanics. Then it is possible to consider a beam as a
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continuous body with a constrained position field guaranteed by a perfect constraint
stress field. Defining a constrained position field and applying the restricted kine-
matics to the principle of virtual work of a continuous body, the constraint stresses
are eliminated due to the principle of d’Alembert–Lagrange and the weak varia-
tional form of an appropriate beam theory is induced directly. This induced
approach to beam theory relates the point of view of beams as generalized one-
dimensional continua to the theory of continuous bodies. In this work all classical
beam theories, in which the cross sections remain rigid and plain, are presented.
Additionally, augmented beam theories allowing for cross section deformations are
derived using the very same procedure. All theories are suitable for large dis-
placements and large rotations. The obtained weak variational forms of the
appropriate beam theories serve then as the basis for the numerical implementation
by finite elements.

The work presented in this book has been carried out during my time as research
assistant at the Center of Mechanics at the ETH Zurich and appeared as doctoral
thesis with the title “On the Foundations of Continuum Mechanics and its Appli-
cation to Beam Theories”. I was accompanied by many people whom I would like
to thank for their kind support of my work. I am very thankful to my supervisor
Prof. Dr.-Ing. Dr.-Ing. habil. Christoph Glocker for supporting and guiding my
research. I have got the opportunity to delve into the very foundations of mechanics
and by the way to improve my mathematical background enormously. His distinct
idea of mechanics, based on the principle of virtual work as its fundamental
principle, has always been a clear guideline to my work. Special thanks go to Prof.
Dr. ir. habil. Remco Leine who has taught me the art of academic writing, has been
an ideal of how to present research results, and has always been a critical voice in
my research. I am looking forward to an intensive time as “Akademischer Rat”
working together with him at the Institute for Nonlinear Mechanics at the Uni-
versity of Stuttgart. Many thanks go to Dr.-Ing. O. Papes who hooked me as a
student to continuum mechanics and who infiltrated my mind by the concept of a
geometric description of continuum mechanics. Finally, I would like to thank my
family and friends for their support and continuous encouragement.

Stuttgart, December 2014 Simon R. Eugster
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Chapter 1
Introduction

This monograph is concerned with fundamental questions on the foundations of
continuum mechanics and its application to beam theories. It does not pretend to be
in any way ‘complete’, but merely serves as a discussion about novel approaches
applied to these very classical fields of mechanics.

This first chapter starts with a short introduction and motivation for this book.
Subsequently, Sect. 1.2 sheds some light on the virtual work in mechanics. After a
literature survey in Sect. 1.3, the aim and scope of the work is presented in Sect. 1.4.
An outline of the monograph is given in Sect. 1.5.

1.1 Motivation

One of the main goals of mechanics is the description and the prediction of the
motion of mechanical devices, machines and mechanical processes. To meet this
aim, abstract mechanical theories are formulated, thereby applying concepts from
mathematical science. In such a determinism, a strict separation between reality
and mathematical abstraction, called the model, has to be considered. The mod-
eling process, being the procedure of the mathematical abstraction, is an interac-
tion between the choice of the assumed mathematical structure and the description
of observations in the real world within this mathematical framework. Hence, a
mechanical theory can be developed on different levels of mathematical abstrac-
tion. The higher the level of mathematical abstraction, the less mathematical objects
are involved and the more general a mechanical theory is. By increasing the level of
abstraction in a mechanical theory, we try to extract the essential mechanical objects.
An important step on that route of abstraction is the description of mechanics with
as little mathematical structure as necessary, to recognize the fundamental laws of
mechanics. There exists a vast amount of specificmechanical theories in whichmany
assumptions on the kinematics of the system and on constitutive level are taken. For
instance, we may distinguish between rigid body mechanics, beam theories, shell
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theories, theory of elasticity, theory of fluids, finite degree of freedom mechanics to
name a few. A fundamental question emerges: does a mechanical theory on a high
level of abstraction exist which is able to induce these specific theories? The question
immediately asks for the assumptions and concepts to arrive in a rigorous way at all
these specific theories. The question of the embedding of well-known specific theo-
ries in a more general mechanical theory is one of the major challenges of modern
classical mechanics. Such an embedding of theories leads to a more compact for-
mulation of the vast field of classical mechanics. It leads to a deeper understanding
of mechanics and will eventually allow treating more complex mechanical systems.
This is what can be understood as scientific progress.

1.2 The Virtual Work

A rather novel insight in analytical mechanics is that the virtual work of a mechanical
system is invariant with respect to the change of coordinates. This is directly related
to the fact that there is a (coordinate free) differential geometric definition of the
virtual work. To explain the basic idea, consider the case of finite degree of freedom
mechanics, where the configuration manifold fully describes the kinematic state of
the mechanical system. A generalized virtual displacement is a tangent vector of the
configuration manifold. A covector of the configuration manifold as an element of
the cotangent space constitutes a generalized force. The virtual work is defined as the
real number obtained by the evaluation of a generalized force acting on a generalized
virtual displacement. This geometric definition of the virtual work is completely free
of any choice of coordinates and does not require any further geometric structure
such as a metric.With the geometrical point of view inmind, the determination of the
configuration manifold, being the kinematic description of the mechanical system,
induces the space of generalized forces of the mechanical system. In a nutshell,
the choice of kinematics defines, in the sense of duality, what kind of forces we
may expect.

An illustrating example is a moving particle in the Euclidean three-space, where
the very same space corresponds to the configurationmanifold of the particle. Conse-
quently, the generalized forces are elements of the cotangent space of the Euclidean
three-space. In the Euclidean three-space there exist two important isomorphisms.
One isomorphism is a canonical isomorphism between the tangent space and the
Euclidean three-space. The second isomorphism is the isomorphism between tan-
gent and cotangent space induced by the Euclideanmetric. Using both isomorphisms,
a generalized force on the particle can be identified with an element from the Euclid-
ean three-space. This corresponds to the very classical understanding of a force as
a geometric object from the Euclidean three-space satisfying the parallelogram law.
As a side note, it is meaningless to speak of such thing as a couple of the particle,
since there is no kinematic counterpart in the description of a particle.

Being the invariant object inmechanics, the virtual work almost naturally emerges
as a central element in the postulation of the fundamental laws of mechanics.
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The virtual work of a mechanical system is the sum of the virtual work contributions
of all forces of the mechanical system. The principle of virtual work, stated as an
axiom, claims that the virtual work of amechanical system has to vanish for all virtual
displacements. Hence, the principle of virtual work as a fundamental mechanical law
is a coordinate free andmetric independent formulation. Introducingmore geometric
structure as e.g. a metric, it is possible to formulate constitutive laws which relate
force quantities with kinematic quantities and to arrive at more specific mechanical
theories. For instance, a metric is required to define the strain of a continuous body
which is necessary for the formulation of a material law. Another example is the
formulation of the dynamics of a particle moving in the Euclidean three-space. The
linear relation between the velocity of the particle and the linear momentum needs
a metric of the space and the mass of the particle as a proportionality factor. Thus,
from a differential geometric point of view, the linear momentum as “as mass times
velocity” can be considered as an assumption on constitutive level.

In computational mechanics for infinite dimensional systems, the principle of
virtual work in the form of weak variational forms is a fully accepted concept. It is
used to perform existence and uniqueness proofs on the one hand, and to develop
numerical schemes on the other hand. As a variational formulation, the principle of
virtual work provides the only possibility within classical mechanics to mathemat-
ically define perfect bilateral constraints. The latter is done in form of a variational
equality, known as the principle of d’Alembert–Lagrange, which puts the constraint
forces into the annihilator space of the admissible virtual displacements. The concept
of perfect constraints is omnipresent in each branch of mechanics and is quintessen-
tial to induce more specific theories from a general mechanical theory.

Many specific mechanical theories can be considered as special cases of the
theory of continuous bodies. Rigid body mechanics, for instance, is the dynamics
of a continuous body whose deformation is constrained such that the position field
of the body can be described by a displacement of one material point of the body
and a rotation of the body. Hence, the rigid body can be considered as a constrained
continuous body. As discussed above, the principle of virtual work as a variational
formulation is the only way to treat perfect bilateral constraints. Consequently, to
induce a specific mechanical theory from the theory of a continuous body by impos-
ing further constraints on the mechanical system, a variational formulation of the
dynamics of a continuous body is inevitable.

In order to obtain an intrinsic theory of a continuous body in variational form, we
have to use the concepts of analytical mechanics, where the forces are induced by
the choice of the kinematics of the mechanical system. Before starting with a play,
the actors and the scene have to be determined. Here, the body plays the role of a
single actor and the scene is given by the model of the physical space. The play, i.e.
how the body performs on the scene, corresponds to the admissible configurations
of the body in the physical space. Using appropriate definitions of the body and
the physical space, the set of all maps of the body into the physical space build
an infinite dimensional manifold, called configuration manifold. This configuration
manifold induces as in the finite dimensional setting the space of forces in the sense
of duality. Applying the principle of virtual work together with further assumptions,
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which forces are involved, how these forces are represented and what their virtual
work contribution is, this leads us directly to the fundamental law of a continuous
body in a variational setting.

The section is closed with a list of several reasons why a general mechanical
theory should be formulated variationally by the principle of virtual work.

• The space of forces of a mechanical system is induced by its kinematics. Hence,
the forces cannot be defined regardless of the underlying kinematics.

• Set-valued force laws, including perfect bilateral constraints, can only be formu-
lated variationally. This argument follows directly the sloganof P.D. Panagiotopou-
los “In mechanics, there are forces and force laws”.

• Many specific mechanical theories can be obtained by constraining the position
field of amore general theory. To treat the perfect bilateral constraints, a variational
formulation is inevitable.

• The most successful numerical methods, as e.g. finite element methods, rely on
variational formulations.

• Under special assumptions on the mechanical system, variational problems and
energy methods are directly obtained from the principle of virtual work.

• An intrinsic differential geometric formulation of mechanics requires the virtual
work. Insofar, amore general definition of a body and the physical space is possible.
Thus, the physical space is not restricted to be a Euclidean space and can be
modeled, for instance, as a space-time vector bundle.

1.3 Literature Survey

In this section, a short literature survey on the foundations of continuum mechanics
and on beam theories is given. To understand some developments in the foundations
of continuum mechanics, it is tried to bring the literature on this field into a rough
historical context. The survey on beam theories is merely intended to give some
references which might be helpful in getting more detailed information.

1.3.1 Foundations of Continuum Mechanics

Over the past two centuries continuummechanics has become one of the cornerstones
of classical mechanics. Evidently, there exist an immense and unmanageable number
of publications on the foundations of continuum mechanics. After the celebrated
theorem about the existence of a stress tensor of Cauchy [1] and the derivation of
Cauchy’s first law of motion [2], the 19th century was to a large extent occupied with
continuum mechanics for very specific material laws. The theory of elasticity, i.e.
continuum mechanics for solids with infinitesimal deformations and linear elastic
material laws, was the predominated paradigm for solids. This very specific theory
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allows to find analytic solutions for many problems. Hence, the theory of linear
elasticity has been the basis to further develop the theory of strength of materials.

For a detailed historical overview of continuum mechanics in the 20th century,
we refer to Maugin [3]. In the first part of this century, there has been an increase in
popularity in the description of the behavior of solids undergoing finite deformations
as variational problems. This trend is manifested in a series of publications such as
Murnaghan [4], Reissner [5] or Doyle and Ericksen [6]. The drawback of a formu-
lation of continuum mechanics as a variational problem is, that the possible material
laws of the continuum are restricted to the very specific subset of hyperelastic mate-
rial laws. This drawback has been eliminated in the seminal treatise of Truesdell and
Toupin [7] in which the theory of classical field theories is based on the balance of
linear and angular momentum. The treatment therein has been mainly influenced by
the system of axioms formulated in Noll [8, 9], a former student of Truesdell. The
balance of linear and angular momentum, completed by the balance of energy and
the conservation of mass, are generally referred to as the balance laws. Soon after
the publication of the classical field theories, the theory of continuum mechanics
has been enriched in Truesdell and Noll [10], completing the former work by an
extensive treatise on material laws. The influence of Truesdell and Noll on contin-
uum mechanics has led to a wealth of textbooks on continuum mechanics which
follow the very same philosophy, e.g. Malvern [11], Gurtin [12], Chadwick [13],
Holzapfel [14], Liu [15], Spencer [16], Dvorikin [17]. For a treatment in curvilinear
coordinates, we refer to Green and Zerna [18], Ogden [19], Ciarlet [20] and Başar
and Weichert [21]. The approach of Truesdell and Noll to continuum mechanics is
revealed in the list of contents of the very technical treatise on rational continuum
mechanics [22]: “I. Bodies, Forces, and Motions”, “II. Kinematics”, “III. The Stress
Tensor” and “IV. Constitutive Relations”. Very outstanding in this approach to con-
tinuummechanics is the strong division between balance laws and constitutive laws.
The attitude of Truesdell concerning variational principles is clarified in [7], Par. 231,
where he distances himself from variational principles as fundamental equations of
mechanics and regards them merely as derivative and subservient to the balance
laws. Even stronger words can be found in [23] where he claims, that Lagrange has
misunderstood or neglected general principles and concepts of mechanics.

According to [7], the first application of the virtual work to a continuum can be
found in Piola [24]. Eighty years later, Hellinger [25] based continuum mechanics
on the principle of virtual work and emphasized the benefits of the invariance of the
virtual work. Therein, the virtual work of the continuum is formulated as the duality
between the 1st Piola-Kirchhoff stress and the gradient of the virtual displacements.
As one of the last classic books on theoretical mechanics in the German literature,
also Hamel [26] applied the principle of virtual work to continuous bodies.

In the French literature there has been a renaissance of the concept of virtual work,
or more precisely “Les puissances virtuelles”, in the context of continuummechanics
induced by the publications of Germain [27–29]. Therein, first gradient and second
gradient theories as well as continua with microstructure have been applied by the
postulation of virtual work principles. One important contribution is the “Axiom of
Power of Internal Forces”which corresponds to the variational formulation of the law
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of interaction. Another important contribution is the recognition, that also external
stress contributions can be considered in a gradient theory. A rather mathematical
approach to the idea of duality in mechanics has been developed in Nayroles [30].
A discussion about the stress tensor as dual object to a strain distribution has been
given by Moreau [31]. The treatment of continuum mechanics using the principle
of virtual work as its fundamental law of mechanics can be found in introductory
textbook form by Germain [32] and Salençon [33].

The principle of virtual work is often used, when a coupling between different
theories is demanded. Maugin [34] has formulated a coupling between the theory of
electromagnetism and mechanics formulating a virtual work principle. A coupling
between non-equilibrium thermodynamics and mechanics has been formulated by
Biot [35]. In the publication of Del Piero [36], the internal virtual work is deduced
from an invariance of the virtual work of the external force under change of observer.
The equivalence of the principle of virtual work and the integral laws under certain
regularity conditions has been shown in Antman and Osborn [37].

Noll [9] already recognized the importance of a differential geometric point of
view on continuum mechanics and introduced the idea to regard a body as a smooth
manifold. In the well-known treatise on the foundations of elasticity, Marsden and
Hughes [38] have formulated body and space as Riemannian manifolds. The funda-
mental law of covariant elasticity has been considered as an invariance principle of
energy, proposed in a non-differential geometric setting by Green and Rivlin [39].
An application of the covariant theory to solids, rods and plates has been treated
by Simo et al. [40]. In Kanso [41] a new differential geometric interpretation of the
stress tensor as a covector-valued differential two-form is given. A concise differen-
tial geometric consideration of the kinematics of the body and the space as manifolds
has been presented by Aubram [42].

A formulation of continuum mechanics in an intrinsic differential geometric set-
ting is discussed in the seminal work of Segev [43]. In the sense of analytical mechan-
ics, forces of nth gradient theories are defined by duality. Using the concepts of jet-
bundles and covariant derivatives, force representations for the gradient theories have
been found. The virtual work principle is formulated as amathematical compatibility
condition between a force of the continuum and a stress representation. When the
physical space is equipped with a connection, the variational stress of a first gradient
theory is obtained as a linear map of the covariant derivative of the virtual displace-
ment field to a volume form of the body. To date, perhaps the only existing work
on intrinsic differential geometric formulation of continuum mechanics stems from
Segev and his supervisor Epstein. The first steps in the development of this theory can
be found in Epstein and Segev [44] and in the dissertation of Segev [45]. Segev [46]
gives an application of the intrinsic theory to the special case, where the physical
space is assumed asR3 and the body as a closed subset of the former. More explana-
tions and focus on the fundamental questions of the intrinsic theory, can be found in
[47–49]. An application of the theory to micro-structure has been presented in [50].
In a recent review article Segev [51] summarizes most of his publications. Due to the
high level of abstraction in the intrinsic formulation, it is possible to contribute also
in completely different fields, as the application to general relativity of [52] shows.
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Due to the relaxation of the continuity assumptions and due to the generalization of
the concept of stress, completely new fields, such as fractal mechanics [53], have
been developed. Recently, an introductory textbook on the geometric understanding
of continuum mechanics has been published by Epstein [54].

1.3.2 Beam Theory

There exists a vast amount of treatises on the topic of beam theory. A very classical
treatment of the mathematical theory of elasticity with application to beams is given
by Love [55]. The beam equations are obtained by applying the balance of linear
and angular momentum at an infinitesimal beam element. A textbook with plenty
of applications and examples on beams is Sokolnikoff [56]. Villaggio [57] intro-
duces beams on the one hand as an approximation of the three-dimensional elastic
theory and on the other hand as directed curves. Classical linear beam theories are
discussed in Bauchau and Craig [58]. For linear theories of beams, including beams
with warping fields, we refer to Hjelmstad [59]. An extensive treatise on nonlinear
beam theories is given in Antman [60], where almost any possible interpretation of
beams is discussed. Outstanding is the chapter on generalized beam theories which
relies on [61], in which beams are considered as constrained continuous bodies. A
concise introduction to intrinsic special Cosserat beam theory is given by Ballard
and Millard [62]. A discussion about two-director Cosserat beams also dealing with
beam constitutive laws is part of Rubin [63]. A theory of beams deduced at an infini-
tesimal beam element and reformulated to a virtual work expression can be found in
Wempner [64]. For a textbook including more involved cross section deformations
we refer to Hodges [65].

The plane and linear Timoshenko beam has originally been developed in Timo-
shenko [66, 67]. The treatment of the same kinematical assumption for large dis-
placements but small strains has been given for the plane and the spatial case by
Reissner [68, 69]. Another derivation for the spatial Timoshenko beam has been
obtained by Simo [70]. Considering the Timoshenko beam as a constrained contin-
uum, Clerici [71] induces the weak and strong variational form of the Timoshenko
beam from the virtual work principle of a three-dimensional continuous body. The
same approach is proposed by Auricchio et al. [72].

The plane Euler–Bernoulli beam has been formulated as an induced theory by
Epstein and Murray [73]. A spatial version is discussed in Hodges et al. [74]. The
Kirchhoff beam, originating fromKirchhoff [75], is treated in amoremodern version
by Dill [76].

Augmented beam theories are theories, in which the cross sections are not
restricted to remain plane and rigid. Classically, as proposed by Cosserat and
Cosserat [77], such theories are formulated by intrinsic director theories, where
the equations of motion are obtained by an invariance principle of a stated action.
The theory of one-dimensional Cosserat media are included in Naghdi [78] and
Cohen [79] and a theory of directed curves with further constraints is developed in
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Naghdi and Rubin [80]. An intrinsic and an induced theory for more than two direc-
tors are discussed by Epstein [81, 82]. For beam theories with out-of-plane warping
fields we refer to Danielson and Hodges [83–85] and Simo and Vu-Quoc [86]. The
theory of Gruttmann et al. [87] allows additionally for arbitrary cross sections and
elastoplastic material behavior.

For beams with in- and out-of-plane warping field a fundamental work for
large strain analysis with rotation degrees of freedoms is given by Pimenta and
Campello [88]. This contribution is extended by the presentations of Dasambiagio
et al. [89, 90] where the restriction to a rigid cross section and to a Saint-Venant-like
elastic warping are removed. Other applications are treated in Bauchau and Han [91]
and Papes [92].

1.4 Aim and Scope

As stated in Sect. 1.1, to obtain the essential objects ofmechanics and to recognize the
fundamental laws of mechanics, a high level of mathematical abstraction is aspired.
An intrinsic differential geometric description, as proposed in the contributions of
Segev, seems the appropriate level of abstraction for the formulation of continuum
mechanics. Just as important are the formulation of further assumptions and concepts
to arrive in a rigorous way at very specific theories. The scope of this book lies in an
intrinsic differential geometric approach to first gradient continuum mechanics. For
the case of a Euclidean three-space as the physical space, the discussion on beam
theories serves as a playground to show how specific theories can be induced. The
aims of this research monograph are:

• to introduce the reader to the differential geometric objects required for an intrinsic
differential geometric description of a first gradient continuum,

• to combine the intrinsic differential geometric approach of Segevwith themechan-
ical principles of a first gradient theory stated by Germain,

• to define beams, in an induced sense, as three-dimensional continuous bodies with
constrained position fields,

• to show that the principle of virtual work of a continuous body is the adequate
principle to induce arbitrary beam theories, classical as well as augmented beam
theories.

Themain philosophy of this book is that the virtual work is THE invariant quantity
in mechanics.
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1.5 Outline

This monograph is divided in two parts which can be read independently. Part I
is devoted to the foundations of continuum mechanics formulated in an intrinsic
differential geometric way. Part II deals with beam theories, which are considered
as induced theories from a three-dimensional theory of a continuous body.

Part I begins in Chap.2 with an intertwined introduction to differential geometric
concepts together with the definition of required mechanical objects. First, the body
and the physical space are introduced as differentiable manifolds. Subsequently, the
configuration manifold of all embeddings of the body into the physical space and the
representation of its tangent vectors, the virtual displacements, are discussed. Finally,
the notion of an affine connection is treated which serves as an additional geometric
structure for the physical space. Applying the concept of the virtual work, forces
are defined as linear functionals on the space of virtual displacements. Chapter 3
discusses the representation of forces of a first gradient continuum in accordance
with the achievements of Segev. Furthermore the principle of virtual work for the
case of classical continuum mechanics is formulated and applied to the Euclidean
space as a choice of the physical space.

Part II begins with Chap.4, which first repeats some results from the previous part
about the dynamics of a continuous body within the Euclidean space. Subsequently,
perfect bilateral constraint stresses which may guarantee constrained position fields
of a continuous body are discussed. Finally, different approaches to beam theories are
presented. Using the constrained position field of a classical nonlinear beam, Chap. 5,
induces the weak and the strong variational form of the classical beam from the vir-
tual work principle of the continuous body. The equations of motion of the beam
are then completed in a semi-induced sense by an intrinsic constitutive law, relating
internal generalized forces of the beam with generalized strain measures. Imposing
further constraints on the Timoshenko beam, Euler–Bernoulli and Kirchhoff beams
are obtained. Chapter 6 presents the linearization of the classical nonlinear beam
theory around a reference configuration which leads to the classical linear beam
theory, valid for small displacements and small rotations. The constitutive laws are
formulated as well in an intrinsic setting and relate the internal generalized forces
with the linearized generalized strains. Similar to the nonlinear theory, Timoshenko,
Euler–Bernoulli and Kirchhoff beams are induced by imposing further constraints.
As an example of a fully induced theory, Chap.7 derives the weak and the strong
variational form of the classical linearized beam theories in the case of planarmotion.
Applying non-admissible virtual displacements to the principle of virtual work, the
total stress field of the constrained continuous body is obtained up to certain inde-
terminacies. Chapter 8 is devoted to augmented beam theories which allow for cross
section deformation. Applying the same procedure as for the classical nonlinear the-
ory, the weak and the strong variational form of the nonlinear two-director Cosserat
beam and the nonlinear Saint–Venant beam are induced from the principle of virtual
work of a continuous body.

http://dx.doi.org/10.1007/978-3-319-16495-3_2
http://dx.doi.org/10.1007/978-3-319-16495-3_3
http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_5
http://dx.doi.org/10.1007/978-3-319-16495-3_6
http://dx.doi.org/10.1007/978-3-319-16495-3_7
http://dx.doi.org/10.1007/978-3-319-16495-3_8
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Separated into the two parts of the monograph, finally, concluding remarks and
an outlook on further scientific questions are given in Chap. 9. Moreover, the merit
of this work is discussed in detail.
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Part I
Geometric Continuum Mechanics



Chapter 2
Kinematics

In this chapter we discuss the admissible kinematics of a continuous body in the
physical space from a differential geometric point of view, as it is proposed by
Epstein and Segev [1, 2]. A major part of the chapter deals with the introduction
of the necessary differential geometric concepts. These geometric concepts are then
directly applied to the description of a first gradient continuum as a model of a
deformable body.

Section2.1 introduces the objects of continuummechanics, the body and the phys-
ical space as manifolds. The idea to regard a body as a smooth manifold originates
from Noll [3] and is applied explicitly in [1]. In Sect. 2.2, tangent bundles, vector
fields and global flows are defined to formulate the idea of a smooth spatial vir-
tual displacement field. In Sect. 2.3, we introduce the configuration as a mapping
between manifolds and discuss the infinite dimensional manifold structure of the set
of all differentiable mappings. Furthermore, we introduce pullback tangent bundles
which are required to represent elements of the tangent space of the configuration
manifold, i.e. virtual displacement fields. In Sect. 2.4, we give a brief introduction to
affine connections.

2.1 Body and Space

Many definitions of differential geometric concepts require notions from point set
topology. We refer to textbooks like [4] for a detailed treatise on that topic. For the
sake of completeness, we briefly introduce the necessary terminology of topology.

A topology on a set X is a collection T of subsets of X having the three properties
that (i) the empty set ∅ and the set X itself are elements of T , (i i) the union of the
elements of any subcollection of T is contained in T , and (i i i) the intersection of the
elements of any finite subcollection of T is in T . A topological space is the ordered
pair (X, T ) consisting of a set X and a topology T on X . Elements of T are called
open sets, their complements closed sets. An open set U ∈ T containing P ∈ X is
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18 2 Kinematics

called an open neighborhood of P . A topological space (X, T ) is called a Hausdorff
space if for each pair of distinct points of X , there exist open neighborhoods of these
points, that are disjoint. A space X is said to be compact if any open covering of X
contains a finite subcollection that also covers X . A function x : X1 → X2 between
two topological spaces (X1, T1) and (X2, T2) is said to be continuous if for each
open subset V of X2, its preimage under x , i.e. x−1(V ), is an open subset of X1. If
a function x : X1 → X2 is continuous and bijective with continuous inverse, then x
is called a homeomorphism. The function x is said to be proper if for every compact
set K ⊂ X2, the preimage x−1(K ) is compact.

We define the closed n-dimensional upper half-space H
n ⊂ R

n as the set

H
n := {(a1, . . . , an) ∈ R

n | an ≥ 0} .

For n > 0, we denote the interior and the boundary of H
n by IntHn and ∂H

n ,
respectively, which are defined as

IntHn := {(a1, . . . , an) ∈ R
n | an > 0} ,

∂H
n := {(a1, . . . , an) ∈ R

n | an = 0} .

For the case n = 0, H
0 := R

0 = {0}, so IntH0 = R
0 and ∂H

0 = ∅.

Definition 2.1 (Topological Manifold with Boundary) An n-dimensional topologi-
cal manifold with boundary M is a Hausdorff space (X, T ) with a countable basis
and the property, that every point P of X has an open neighborhood U (P) ⊂ M,
which is homeomorphic to an open set of H

n .

The pair (U, x) consisting of an open neighborhood U ⊂ M and a homeomor-
phism x , which maps the open neighborhood U to an open set of H

n , is called
a coordinate chart on M. We call (U, x) an interior chart if x(U ) is an open
subset of H

n such that x(U ) ∩ ∂H
n = ∅, and we call it a boundary chart if

x(U ) is an open subset of H
n such that x(U ) ∩ ∂H

n �= ∅. A point P ∈ M is
called an interior point of M if it is in the domain of some interior chart. It is
a boundary point of M if it is in the domain of a boundary chart that maps P
to ∂H

n . The boundary of M, denoted by ∂M, is the set of all boundary points.
The interior of M is the set of all interior points, denoted by IntM. For an inte-
rior chart (U, x), the canonical projection πi : R

n → R, (a1, . . . , an) �→ ai

induces the function xi : U (P) → V ⊂ R, xi := πi ◦ x , which extracts the
i-th component of the homeomorphism x and is called the component function
of x . The n-tuple (x1(P), . . . , xn(P)) ∈ H

n is called the coordinate description
of P . For a boundary point Q ∈ ∂M the coordinate description is the n-tuple
(x1(Q), . . . , xn−1(Q), 0) ∈ H

n where the nth component is zero.
If (U, x) and (Ũ , x̃) are two charts such that U ∩ Ũ �= ∅, the composite map

x̃◦x−1 : x(U∩Ũ ) → x̃(U∩Ũ ) is called the transition map from x to x̃ . The transition
map relates two different coordinate descriptions of the same point on the manifold
which is referred to as change of coordinates. Many of the discussed concepts are
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Fig. 2.1 Illustration of a two-dimensional topological manifold with boundary. The chart (U, x)

and (Ũ , x̃) are interior and boundary charts, respectively. The point P is an interior point, the point
Q is a boundary point

depicted in Fig. 2.1 at the example of a 2-dimensional topological manifold with
boundary.

If U and V are open subsets of R
m and R

n , respectively, a function γ̂ : U → V
is said to be Ck-continuous or in short Ck if each of its component functions is
k-times continuously differentiable. The function γ̂ is called smooth or C∞ if all
its component functions have continuous partial derivatives of all orders. If a Ck-
continuous function is also bijective and has aCk-continuous inverse map, it is called
a Ck-diffeomorphism. For the case, that a bijective function and its inverse map are
smooth, the function is called a diffeomorphism. Let ρ̂ be a map from a subset,
possibly closed, D ⊂ R

n to R
n . The function ρ̂ is called a (Ck-)diffeomorphism if

at each point x ∈ D, it admits an extension to a (Ck-)diffeomorphism, defined on an
open neighborhood of x in R

n , cf. [5], Appendix C.
Two charts (U, x) and (Ũ , x̃) are said to be smoothly compatible if eitherU ∩Ũ =

∅ or the transition map x̃ ◦ x−1 is a diffeomorphism. We define an atlas for M to be
a collection of charts whose domains cover M. An atlas A is called a smooth atlas
if any two charts in A are smoothly compatible with each other. A smooth atlas A
onM is maximal when any chart that is smoothly compatible with every chart inA,
is already contained in A.

Definition 2.2 (Smooth Manifold with Boundary) An n-dimensional smooth man-
ifold with boundary (or in short smooth manifold) is an n-dimensional topological
manifold with boundary with a maximal smooth atlas A.

One possibility to define an n-dimensional smooth manifold without boundary is to
exchange the upper half space H

n by R
n in the previous definitions about smooth

manifolds with boundary. Another possibility, which we choose here, is to define
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an n-dimensional smooth manifold without boundary as a smooth manifold with
boundary, whose boundary ∂M is the empty set ∅.

Definition 2.3 (Body) A body is a compact m-dimensional smooth manifold with
boundary. Typically, a body will be denoted by B and its dimension by m. A point
P of the body B is called a material point of the body.

Neither R
m nor the upper half space H

m are compact sets with respect to the stan-
dard topology. Hence, these cannot be bodies by Definition 2.3. Nevertheless, non-
compact bodies are often used in linear elasticity, cf. for instance [6]. In the following,
we rely on some importantmathematical results which do not allow relaxing the com-
pactness assumption. Furthermore, it is worth noticing that the geometric definition
of a body does not require metric concepts, such as length or angles. These are infor-
mation of the body which are obtained by an embedding of the body into the physical
space, which is defined in the following way.

Definition 2.4 (Physical Space) Let n ≥ m. The physical space is an n-dimensional
smooth manifold S without boundary. A point Q of the physical space S is called a
space point.

2.2 Spatial Virtual Displacement Field

When not stated differently, M and N are henceforth smooth manifolds of dimen-
sions m and n, respectively. Let γ : N → M be a map, P ∈ N and (V, x) be a chart
on M such that γ(P) ∈ V . Furthermore, let (U, θ) be a chart on N with P ∈ U
and γ(U ) ⊂ V . Then γ has, as depicted in Fig. 2.2, a local representation around
P by the composition map γ̂ := x ◦ γ ◦ θ−1 : H

n → H
m . The function γ is said

to be Ck-continuous or in short Ck if for each P ∈ N the local representation γ̂ is

Fig. 2.2 Illustration of a function between a one- and a two-dimensional manifold
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Ck . The function γ is called smooth or C∞, if the local representation for each point
P ∈ N is smooth. The set of allCk andC∞ functions betweenN andM are denoted
by Ck(N ,M) and C∞(N ,M), respectively. If γ ∈ Ck(N ,M) is bijective with a
Ck-continuous inverse map, the function is called a Ck-diffeomorphism. In the case
of a smooth function with a smooth inverse, the function is called a diffeomorphism.
We denote the set of all smooth real-valued functions by C∞(M) := C∞(M, R).

Definition 2.5 (Germ) Let U, V and W ⊂ U ∩ V be open neighborhoods of a point
P ∈ M. Given real-valued smooth functions f : U → R and g : V → R, we define
an equivalence relation ∼P as follows:

f ∼P g ⇔ ∃ W open neighborhood of P : f ≡ g on W .

A germ of f at P is the equivalence class

[ f ]P := {g : V → R | g smooth function in P, (g, V ) ∼P ( f, U )} .

The set of all germs at P is denoted by C∞
P (M).

Let [ f ]P and [g]P be germs at P and λ ∈ R. With the operations

λ[ f ]P + [g]P = [λ f + g]P ,

[ f ]P [g]P = [ f g]P ,

[ f ]P (P) = f (P) ,

the set of all germs C∞
P (M) constitute a real vector space.

Definition 2.6 (Tangent Space)A linearmapv : C∞
P (M) → R is called aderivation

on C∞
P (M), if for all [ f ]P , [g]P ∈ C∞

P (M) the Leibniz rule

v([ f g]P) = f (P)v([g]P ) + v([ f ]P )g(P) (2.1)

holds. The set TPM of all derivations on C∞
P (M) is called the tangent space of M

at P .

Proposition 2.7 Let u, v ∈ TPM, [ f ]P ∈ C∞
P (M) and λ ∈ R. Defining addition

and scalar multiplication as

(u + v)([ f ]P ) := u([ f ]P ) + v([ f ]P ) ,

(λu)([ f ]P ) := λu([ f ]P ) ,
(2.2)

the tangent space at P is a vector space.

Proof Let u, v ∈ TPM, [ f ]P , [g]P ∈ C∞
P (M) and λ ∈ R. We need to show that

an arbitrary linear combination λu + v is linear and satisfies the Leibniz rule (2.1).
Linearity of λu + v follows directly from the definitions of addition and scalar
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multiplication (2.2). The Leibniz rule for the linear combination follows by linearity
and straight forward computation:

(λu + v)([ f ]P [g]P) = λu([ f ]P [g]P) + v([ f ]P [g]P )

(2.1)= λ f (P)u([g]P ) + λu([ f ]P )g(P) + f (P)v([g]P ) + v([ f ]P )g(P)

= f (P)(λu + v)([g]P) + (λu + v)([ f ]P )g(P) .

Definition 2.8 (Induced Partial Derivative) Let (U, x) be a chart on M, P ∈ U
and f : U → R a smooth function. We define an induced partial derivative at P on
M for i ∈ {1, . . . , m} as

∂xi |P ([ f ]P ) := ∂i ( f ◦ x−1)|x(P) , (2.3)

where ∂i denotes the i th partial derivative on R
m .

Using the definition of the induced partial derivative together with the product rule
of R

m , it can easily be shown that the induced partial derivative at P is a linear map
which satisfies the Leibniz rule (2.1) and consequently is a derivation on C∞

P (M).

Theorem 2.9 Let (U, x) be a chart on M and P ∈ U. The derivations (∂x1 |P , . . . ,

∂xm |P ) form a basis of the tangent space TPM. Consequently, applying a vector
v ∈ TPM on a germ [ f ]P ∈ C∞

P (M), the vector can be represented as a linear
combination

v([ f ]P ) = v([xi ]P )∂xi |P ([ f ]P ) = vi∂xi |P ([ f ]P ) , (2.4)

where summation over repeated indices is applied and the components vi are defined
as v([xi ]P ).

Proof For the proof we refer to [7], Sect. 1.8 or to [8], Sect. 5.6.

Excluded analytic functions, each germ of a smooth function has a representative
which is defined on the whole M, cf. [7]. Thus, we henceforth omit the brackets
designating the equivalence class, defining a germ of a smooth function at a point on
a manifold.

The definition of tangent vectors of M at a point P as the set of all derivations
on C∞

P (M) is a coordinate free and consequently chart independent definition. Nev-
ertheless, in applications, charts have to be chosen and it is of major interest how
objects transform under a change of coordinates. In the following, we show how the
basis and the components of a tangent vector transform. Let (U, x) and (Ũ , x̃) be
charts ofM and let P ∈ U ∩ Ũ . The definition of the induced partial derivative (2.3)
together with the chain rule from higher dimensional calculus implies a transfor-
mation rule for a change of coordinates. Let f ∈ C∞(M), then by a telescopic
expansion it follows



2.2 Spatial Virtual Displacement Field 23

∂x̃ i |P ( f )
(2.3)= ∂i ( f ◦ x̃−1)|x̃(P) = ∂i ( f ◦ x−1 ◦ x ◦ x̃−1)|x̃(P)

= ∂ j ( f ◦ x−1)|x(P)∂i (x j ◦ x̃−1)|x̃(P) = Λ
j
i ∂x j |P ( f ) ,

where we have recognized the transformation matrix Λ
j
i := ∂i (x j ◦ x̃−1)|x̃(P). By

an abuse of notation, where a point in H
m is named by the coordinate function x̃ i ,

the transformation matrix is often introduced as Λ
j
i = ∂x j

∂ x̃ i , cf. for instance [9].
The transformation is independent of the choice of the smooth function f and we
summarize the important result as follows:

∂x̃ i |P = Λ
j
i ∂x j |P , Λ

j
i := ∂i (x j ◦ x̃−1)|x̃(P) . (2.5)

Let v ∈ TPM. The components ṽi = v(x̃ i ) of the coordinate representation in the
chart (Ũ , x̃) can be transformed further using the coordinate representation of v in
the chart (U, x), i.e.

ṽi = v(x̃ i )
(2.4)= v j∂x j |P (x̃ i )

(2.3)= ∂ j (x̃ i ◦ x−1)|x(P)v
j = Λ̃i

jv
j ,

with the transformation matrix Λ̃i
j := ∂ j (x̃ i ◦ x−1)|x(P). Hence, the transformation

rule for the components of a tangent vector is

ṽi = Λ̃i
jv

j , Λ̃i
j := ∂ j (x̃ i ◦ x−1)|x(P) .

Definition 2.10 (Cotangent Space) For each P ∈ M, the cotangent space at P ,
denoted by T ∗

PM, is the dual space to TPM. An element of the cotangent space is
called a covector.

Let dxi |P ∈ T ∗
PM denote a dual basis to ∂x j |P which satisfies dxi |P (∂x j |P ) = δi

j .
According to (A.5), a covectorω ∈ T ∗

PM can be represented as a linear combination

ω = ωidxi |P ,

with the components ωi = ω
(
∂xi |P

)
. Let (U, x) and (Ũ , x̃) be charts ofM and let

P ∈ U ∩ Ũ . Using (2.5), the transformation rule of the component ω̃i follows by
linearity and duality of the base vectors

ω̃i = ω(∂x̃ i )|P
(2.5)= ωkdxk |P (Λ

j
i ∂x j |P ) = Λ

j
i ω j .

Thus, the transformation rule for the components of a covector is

ω̃i = Λ
j
i ω j , Λ

j
i = ∂i (x j ◦ x̃−1)|x̃(P) , (2.6)



24 2 Kinematics

which is the same as for the base vectors of a tangent vector. Since the transformation
(2.6) is performed byΛ

j
i , i.e. the ‘inverse’ of Λ̃

j
i , it is classically called contravariant

transformation. A covector ω has its representation as a linear combination for any
chart. Hence, the transformation of the components of a covector (2.6) immediately
implies the transformation rule of the dual base vectors dxi |P by

ω = ω jdx j |P = Λ̃i
j ω̃idx j |P = ω̃idx̃ i |P .

The transformation rule for the dual base vectors is

dx̃ i |P = Λ̃i
jdx j |P , Λ̃i

j = ∂ j (x̃ i ◦ x−1)|x(P) ,

which is the same transformation rule as for the components of a tangent vector, i.e.
a covariant transformation.

Definition 2.11 (Tangent Bundle) The tangent bundle of M is the triple (TM,

πM,M), where TM denotes the disjoint union of the tangent spaces at all points
of M

TM :=
⋃

P∈M
{P} × TPM .

The manifold M is the base space and πM denotes the natural projection πM :
TM → M. The natural projection maps v ∈ TM to its base point P ∈ M.

Definition 2.12 (Cotangent Bundle) The cotangent bundle of M is the triple
(T ∗M, πM,M), where T ∗M denotes the disjoint union of the cotangent spaces at
all points of M

T ∗M :=
⋃

P∈M
{P} × T ∗

PM .

The manifold M is the base space and πM denotes the natural projection πM :
T ∗M → M. The natural projection maps ω ∈ TM to its base point P ∈ M.

The tangent and cotangent bundle have again the structure of a manifold, cf. [5] or
[7]. All upcoming operations on elements of the tangent bundle TM do not act on
the base points. Hence, we often use the slight abuse of notation by referring to the
vectorial part of v ∈ TM by the same symbol, i.e. “v = (P, v)”. For any other
bundle structure we do the same. From the context, however, it will be clear which
object is meant.

Definition 2.13 (Vector Field) A vector field on M is a section of the map πM :
TM → M. Thatmeans, it is a continuousmap v : M → TMwith the property that

πM ◦ v = IdM .

The set ofCk-continuous sections on TM is denoted byCk(TM). The set of smooth
sections is denoted by Γ (TM).
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Let (U, x) be a chart onM and v ∈ Γ (TM), then the value of v can be represented
at any point P ∈ U in coordinates as

v(P) = (x(P), vi (P)∂xi |P ) .

This defines m functions vi : U → R, called the component functions of v in the
given chart.

Definition 2.14 (Smooth Global Flow) A smooth global flow on M is a smooth
map ϕ : R × M → M satisfying the following properties for all ε1, ε2 ∈ R and
P ∈ M :

ϕ(ε1,ϕ(ε2, P)) = ϕ(ε1 + ε2, P) , ϕ(0, P) = P . (2.7)

Let f ∈ C∞(M) and P ∈ M, then a smooth global flow ϕ : R×M → M induces
a smooth vector field δϕ ∈ Γ (TM) defined by

δϕ(P)( f ) = (ϕ(0, P), δϕ(P)( f )) := (
P, ∂1( f ◦ ϕ)|(0,P)

)
. (2.8)

The smooth vector field δϕ is called the infinitesimal generator of ϕ. We want
to emphasize, that the δ-sign does not act as an operator and remains mainly as a
decoration due to historical reasons.

Let (U, x) be a chart on M and P ∈ U , then the infinitesimal generator is
represented at P as

δϕ(P)( f ) = ∂1( f ◦ x−1 ◦ x ◦ ϕ)|(0,P) = ∂i ( f ◦ x−1)|x(P)∂1(xi ◦ ϕ)|(0,P)

= ∂1(xi ◦ ϕ)|(0,P)∂xi |P ( f ) = δϕi (P)∂xi |P ( f ) ,
(2.9)

where the component functions of the infinitesimal generator evaluated at P are
identified as δϕi (P) := ∂1(xi ◦ ϕ)

∣∣
(0,P)

.

Definition 2.15 (Spatial Virtual Displacement Field) Let ϕ : R × S → S be a
smooth global flow on the physical space S with an associated infinitesimal gen-
erator δϕ ∈ Γ (TS). The infinitesimal generator of ϕ is called the spatial virtual
displacement field.

2.3 Configuration Space

The following definition of the pullback bundle is illustrated in Fig. 2.3.

Definition 2.16 (Pullback Tangent Bundle) Let (TM,πM,M) be the tangent bun-
dle and γ : N → M be a map. The pullback tangent bundle by γ is the bundle
(γ∗TM, γ∗πM,N ), where the total space is defined as

γ∗TM := {(P, v) ∈ N × TM : πM(v) = γ(P)}
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Fig. 2.3 Illustration of a pullback tangent bundle γ∗TM over a one-dimensional base manifold
N . Loosely, the pullback bundle can be thought of as a base manifold N , in which at all points P
on N and for Q = γ(P), the tangent space TQM is attached

and the projection γ∗πM of the pullback tangent bundle is defined as

(γ∗πM) (P, v) = P .

It can be shown that the pullback tangent bundle is a fiber bundle. For the definition
of a fiber bundle we refer to textbooks like [10] or [11]. Let γ ∈ Ck(N ,M) and v ∈
Γ (TM). Then the pullback section γ∗v is a Ck-section of γ∗TM. The evaluation
of the section at P is

γ∗v(P) = (P, v(γ(P))) .

Let P ∈ N and (V, x) be a chart on M with γ(P) ∈ V . Then for each P ∈ N the
evaluation of γ∗v at P can be represented as

γ∗v(P) =
(

P,
(
(x ◦ γ)(P), (vi ◦ γ)(P)(∂xi ◦ γ)|P

))
.

Let ṽ : N → TM be a Ck-continuous function such that πM(ṽ) = γ, then ṽ is
called a vector field along γ. For an appropriate chart (U, x) on M and for each
P ∈ N the vector field along γ is represented in coordinates as

ṽ(P) =
(
(x ◦ γ)(P), ṽi (P)(∂xi ◦ γ)|P

)
.

The pullback section γ∗v and the vector field ṽ along γ differ only in the addi-
tional base point in the pullback section. Hence, the isomorphism between the set of
pullback sections Ck(γ∗TM) and the set of vector fields along γ is obvious. Since
a pullback section contains more geometric structure than a vector field along γ, we
prefer in the following the pullback section.
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Definition 2.17 (Differential) Let k > 0 and γ : N → M be a Ck-continuous map.
The differential Dγ(P) of γ at P is a linear map

Dγ(P) : TPN → Tγ(P)M

such that for v ∈ TPN and f ∈ C∞(M)

Dγ(P)v( f ) = v( f ◦ γ) . (2.10)

Let P ∈ N , (V, x) be a chart on M with γ(P) ∈ V and let (U, θ) be a chart on N
with P ∈ U and γ(U ) ⊂ V . Then the coordinate representation of the differential
Dγ(P) applied to a tangent vector v ∈ TPN is derived using the local representation
γ̂ := x ◦ γ ◦ θ−1 as follows:

Dγ(P)v( f )
(2.10)= v( f ◦ γ) = v( f ◦ x−1 ◦ γ̂ ◦ θ)

(2.4)= vi∂θi |P ( f ◦ x−1 ◦ γ̂ ◦ θ)

(2.3)= vi∂i ( f ◦ x−1 ◦ γ̂)|θ(P) = vi∂ j ( f ◦ x−1)|x(γ(P))∂i γ̂
j |θ(P)

(2.3)= ∂i γ̂
j |θ(P)v

i∂xi |γ(P)( f ) = F j
i (P)vi∂xi |γ(P)( f ) ,

(2.11)

where in the last line we have made use of the component functions F j
i := ∂i γ̂

j ◦ θ.

Definition 2.18 (Tangent Map) Let k > 0 and γ : N → M be a Ck-continuous
map inducing the pullback tangent bundle (γ∗TM, γ∗πM,N ). Then the tangent
map T γ is defined as the bundle homomorphism over N

T γ : TN → γ∗TM
(P, v) �→ (P, (γ(P), Dγ(P)v(P))) ,

(2.12)

satisfying the commutative diagram:

Definition 2.19 (Embedding) A Ck-continuous and proper map γ : N → M is
called a Ck-embedding if its tangent map T γ is injective. The set of all Ck-
embeddings is denoted by Embk(N ,M).

The analysis of mappings between manifolds is an important part of the theory of
global analysis, cf. [12–14]. For a short historical overview of the theory ofmanifolds
ofmappings, which started in the late fiftieswith Eells [15], we refer toMarsden [16].
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The beginning of global analysis was strongly influenced by the works [12, 17, 18].
The special case of embeddings is treated in [19]. For the application of global
analysis in physics, we refer to [16, 20].

Theorem 2.20 (Manifold Structure of Ck(N ,M), [20], Theorem 5.4.1) Given two
smooth manifolds N and M of which N is compact and M without boundary. Then
for each integer k < ∞ the set Ck(N ,M) is a smooth manifold modeled over
Banach spaces, i.e. Ck(N ,M) is a Banach manifold.

Proof For a proof and a discussion about the topology ofCk(N ,M), we refer to [20].

Definition 2.21 (Configuration) LetB be a body andS the physical space.We define
the configuration of a first gradient continuum (or continuous body) to be a C1-
embedding κ of the body B into the physical space S. The set of all C1-embeddings,
i.e. Emb1(B,S), is called the configuration manifold Q.

As recognized by Segev [2], the requirement that a configuration of a body into phys-
ical space is an embedding, is based upon two classical principles, cf. [21], Sect. 16.
These are, the permanence of matter and the principle of impenetrability. The for-
mer states that no region of positive finite volume is deformed into one of zero or
infinite volume. The latter states that one portion of matter never penetrates within
another. In order that the set of configurations admits the structure of a manifold,
Theorem 2.20 requires a body B to be a compact manifold.

Definition 2.22 (Virtual Displacement Field) Let δϕ ∈ Γ (TS) be the spatial virtual
displacement field and κ ∈ Q. Then the virtual displacement field of a continuous
body is defined as the pullback section δκ = κ∗δϕ ∈ C1(γ∗TS).

Theorem 2.23 (Tangent Space of Ck(N ,M)) Let N and M be manifolds of which
N is compact and M without boundary. For any map γ ∈ Ck(N ,M), the tangent
space at γ TγCk(N ,M) is isomorphic to the set of pullback sections Ck(γ∗TM).

The identification of the tangent space at γ with Ck-sections of the pullback tangent
bundle, is stated in [2]. For a proof it is referred to [12, 13, 18]. Also in [22] the same
identification without a proof is stated with reference to [23, 24]. In [25] the isomor-
phism is mentioned merely as a note of Theorem 11.1 without proof. Nevertheless,
a complete proof for the above stated assumptions could neither be found nor can be
given in this book by the author. Strongly related results with proof can be found in
[20], Theorem.5.4.3, for the case of smooth mappings γ. Using the assumption of a
Riemannian manifold N [18], “Corollaries for Ck”, serves as a reference. Inspired
by Binz et al. [20], we prove one direction which should support the reasonability
of the theorem.

Proof (Idea of Proof) Let ϕ : R × M → M be a global flow on M. Then the
composition function

ϕ̃ : R × N → M , (ε, P) �→ ϕ̃(ε, P) = ϕ(ε, γ(P))



2.3 Configuration Space 29

defines a smooth curve through the Ck(N ,M) manifold. The properties of a global
flow (2.7) imply that

ϕ̃(0, ·) = γ .

Let f ∈ C∞(M) and P ∈ N . Then the composition function ϕ̃ induces the section
γ∗δϕ̃ ∈ Ck(γ∗TM) defined by

γ∗δϕ̃(P)( f ) = (P, (ϕ̃(0, P), δϕ̃(P)( f ))) = (
P,

(
γ(P), ∂1( f ◦ ϕ̃)|(0,P)

))
.

Let (U, x) be a chart on M and γ(P) ∈ U . Then by (2.9), the section through the
pullback tangent bundle can locally be represented as

γ∗δϕ̃(P) =
(

P,
(
(x ◦ γ)(P), (δϕi ◦ γ)(P)(∂xi ◦ γ)|P

))
.

A tangent vector can alternatively be defined, cf. [26], by an equivalence class of
curves which pass with the same velocity through the same point on the manifold.
The composition function ϕ̃ is such a curve through Ck(N ,M). Since the section
γ∗δϕ̃ is obtained by taking the velocity of the smooth curve ϕ̃ at γ, a tangent vec-
tor of Ck(N ,M) induces a section through the pullback tangent bundle γ∗TM.
The inverse, to show that a section Ck(γ∗TM) induces a smooth curve through
Ck(N ,M) and that the involved mappings are bijective are necessary to finish the
proof of the isomorphism rigorously.

Corollary 2.24 The tangent space to Embk(N ,M) at γ is isomorphic to TγCk

(N ,M).

Proof According to [19] the set Embk(N ,M) is open in the set of Ck(N ,M).

Due to Theorem 2.23, the virtual displacement field of a continuous body δκ ∈
C1(κ∗TS) can be identified with an element of the tangent space TκQ. This follows
the tradition of analytical mechanics, where the virtual displacements are tangent
vectors to the finite-dimensional configuration manifold, cf. [27].

2.4 Affine Connection

Definition 2.25 (Affine Connection) Let u, v ∈ Γ (TM), f ∈ C∞(M). An (affine)
connection on M is a mapping ∇ which assigns to every pair u, v another vector
field ∇uv ∈ Γ (TM) with the following properties:

(a) ∇uv is bilinear in u and v ,

(b) ∇ f uv = f ∇uv ,

(c) ∇u( f v) = f ∇uv + u( f )v .

(2.13)

We call ∇uv the covariant derivative of v along u.
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Let (U, x) be a chart on M, then we define the m3 functions Γ k
i j by

∇∂xi

(
∂x j

) = Γ k
i j∂xk . (2.14)

The Γ k
i j are called the Christoffel symbols of the connection ∇.

Definition 2.26 (Covariant Derivative) Let ω ∈ Γ (T ∗M) and u ∈ Γ (TM). For
every vector field v ∈ Γ (TM) we consider the tensor field ∇v ∈ Γ (TM⊗ T ∗M)

defined by
∇v(ω, u) := ω(∇uv) . (2.15)

The tensor field ∇v is called the covariant derivative of v.

Let (U, x) be a chart on M, then v = vi∂xi and ∇v = vi
; j∂xi ⊗ dx j . Notice the

semicolon in the component of the covariant derivative. This has its origin from
index notation, in which only components of the tensors are written. The semicolon
distinguishes between partial derivative, i.e. application of the base vectors to the
components of a vector, and covariant derivative of a vector field. According to the
representation of a tensor as a linear combination (A.9) together with (2.13b) and
(2.14), we obtain the component functions of the tensor field as

vi
; j = ∇v(dxi , ∂x j )

(2.15)= dxi (∇∂x j (v
k∂xk ))

= dxi (∂x j (vk)∂xk + vkΓ l
jk∂xl ) = ∂x j (vi ) + Γ i

jkv
k .

Definition 2.27 (Covariant Derivative of Pullback Section) Let γ ∈ Ck(N ,M),
a ∈ Γ (TN ), v ∈ Γ (TM) with the associated pullback section γ∗v ∈ Ck(γ∗TM)

and ω ∈ Ck(γ∗T ∗M). Let M be equipped with an affine connection ∇. Then, for
every pullback section γ∗v, the tensor field (γ∗∇)(γ∗v) ∈ Ck(γ∗TM⊗ T ∗N ) over
N is defined as

(γ∗∇)(γ∗v)(ω, a) := ω(γ∗(∇T γav)) . (2.16)

The tensor field (γ∗∇)(γ∗v) is called covariant derivative of γ∗v.

Let (U, θ) be a chart onN and let (V, x) be a chart onM such thatγ(U ) ⊂ V . Let v ∈
Γ (TM) be defined on the whole of V . Then the covariant derivative of the pullback
section γ∗v corresponds to a tensor field (γ∗∇)(γ∗v) = (γ∗vi ); j (∂xi ◦ γ) ⊗ dθ j .
The computation of the component functions of the tensor field follows (A.9), i.e.

(γ∗vi ); j = (γ∗∇)(γ∗v)(dxi ◦ γ, ∂θ j )
(2.16)= (dxi ◦ γ)(γ∗(∇T γ∂

θ j v)) .

Let γ̂ = x ◦ γ ◦ θ−1 be the local representation of γ around P ∈ U . Using (2.11),
the vectorial part of the tangent map T γ of a vector field ∂θ j ∈ Γ (TN ) can locally
be represented as
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Dγ ∂θ j = (∂ j γ̂
i ◦ θ) ∂xi |γ(·) = Fi

j (∂xi ◦ γ) . (2.17)

Let P ∈ U . Using a telescopic expansion and applying the chain rule, we show the
following identity:

∂θ j |P (vi ◦ γ)
(2.3)= ∂ j (v

i ◦ x−1 ◦ x ◦ γ ◦ θ−1)|θ(P)

= ∂k(v
i ◦ x−1)|(x(γ(P))(∂ j γ̂

k ◦ θ)(P)

= ∂xk |γ(P)(v
i ) Fk

j (P) .

(2.18)

Using property (2.13b) and the local representation by the Christoffel symbols (2.14)
we compute:

γ∗(∇T γ∂
θ j v)

(2.17)= Fi
j γ

∗((∂xi (vk)∂xk + vkΓ r
ik∂xr )|γ(·))

(2.18)= (∂θ j (v
k ◦ γ) + (vr ◦ γ)(Γ k

ir ◦ γ)Fi
j )(∂xk ◦ γ) .

Hence, the component functions of the covariant derivative of γ∗v are represented
locally as

(γ∗vi ); j = ∂θ j (vk ◦ γ) + (vr ◦ γ)(Γ k
ir ◦ γ)Fi

j . (2.19)

Example 2.28 Let N = I be an interval of R, γ : I → M be a curve on M and
v ∈ Γ (TM). An illustrative application of the covariant derivative of a pullback
section is its correlation to the covariant derivative of v along a curve γ, denoted by
∇γ̇v. For the definition of a covariant derivative of v along a curve γ we refer to [28],
Definition2.7.3. Let (I, θ = IdI) and (U, x) be charts on I andM, respectively, then
Fi
1 = ∂1(xi ◦ γ). Using (2.16) and (2.19), we obtain a vector field v along γ when

taking the covariant derivative of γ∗v along ∂θ, i.e.

(γ∗∇)(γ∗v)(·, ∂θ) =
(
∂θ(v

k ◦ γ) + (vr ◦ γ)(Γ k
ir ◦ γ)∂1(xi ◦ γ)

)
(∂xk ◦ γ) = ∇γ̇v .

Since θ is the identity map, the induced partial derivative ∂θ and the partial derivative
∂1 coincide. For every t ∈ I , the covariant derivative of γ∗v along ∂θ

(γ∗∇)(γ∗v)(·, ∂θ)(t) =
(
∂1(v

k ◦ γ)|t + vr (γ(t))Γ k
ir (γ(t))∂1(xi ◦ γ)|t

)
(∂xk ◦ γ)|t = ∇γ̇(t)v

corresponds to the covariant derivative of v along γ.
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Chapter 3
Force Representations

This chapter introduces the concept of force, states the principle of virtual work of
a continuous body, discusses admissible force representations and concludes with
the application to classical nonlinear continuum mechanics. In Sect. 3.1, forces are
defined as linear functionals on the space of virtual displacements and the princi-
ple of virtual work for the continuous body is formulated. Subsequently, the force
representation of Segev [1] by smooth tensor measures is introduced. In Sect. 3.2
the applied forces are restricted to a subclass of possible forces and the equations of
motion of a continuous body mapped to the Euclidean vector space are derived.

3.1 Principle of Virtual Work

For this chapter, let B and S be the body and the physical space according to Defin-
itions 2.3 and 2.4, respectively, with dimensions m = n = 3. The configuration of a
continuous body is a C1-embedding, i.e. κ ∈ Q = Emb1(B,S). The space of virtual
displacements at a configuration κ is the tangent space TκQ to the infinite dimen-
sional configuration manifoldQ, which is, due to Theorem 2.23, represented by the
set of pullback sectionsC1(κ∗TS). By pointwise scalar multiplication and pointwise
addition, the set of pullback sections constitute a linear infinite dimensional vector
space.

Definition 3.1 (Forces) Let C1(κ∗TS) be the space of virtual displacements of the
continuous body. The space of forces is the set of real-valued linear functionals

C1(κ∗TS)∗ := {f : C1(κ∗TS) → R : f linear} . (3.1)

An element of C1(κ∗TS)∗ is called a force of a continuous body. Let δW := f(δκ)

be the real number obtained by the evaluation of a force f ∈ C1(κ∗TS)∗ acting on
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a virtual displacement δκ ∈ C1(κ∗TS). The real number δW is called the virtual
work of the continuous body.

Classically, people have had difficulties to define the concept of force. Thomson and
Tait [2], Par. 217, define a force as any cause which tends to alter a body’s natural
state of rest, or of uniform motion in a straight line. So, force is wholly expended
in the action it produces. Kirchhoff [3] already recognized that the perception to
artificially split a mechanical process in action and reaction is disadvantageous.
Mechanics is primarily interested in describing the mechanical process as a whole.
However, [3] has refused to give a definition of a force. In more recent literature,
Noll [4] and Truesdell [5] have dared to define forces as vector valued measures.
Due to the representation theorem of Riesz-Markov, cf. [6], in our framework, such
forces can be represented by elements of the dual space of C0-continuous sections
of the pullback bundle κ∗TS. Hence, Definition 3.1 and the definition of Noll and
Truesdell do not coincide.

As the fundamental principle of mechanics, we postulate the principle of virtual
work of a continuous body as an axiom.

Principle 3.1 (Principle of Virtual Work of a Continuous Body) Let f ∈ C1

(κ∗TS)∗ be a force of a continuous bodyB. Then, the principle of virtual work states,
that the virtual work of a continuous body vanishes for all virtual displacements, i.e.

δW = f(δκ) = 0 ∀δκ ∈ C1(κ∗TS).

A force of a continuous body in the principle of virtual work, consists of all forces
acting on that body. Further specifications, representations and the introduction of
force laws are the next steps in the modeling process towards a proper description of
the behavior of a deformable body. It is worth noticing, that this is another viewpoint
on the principle of virtual work as it is given by Epstein and Segev [7], who interpret
the principle of virtual work as a mathematical compatibility between a force of the
continuous body and its stress representation. To obtain the classical and established
equations of motion of a continuous body, further assumptions and choices have to
be done. The first assumption is to equip the physical space with further geometrical
structure and redefine it as follows.

Definition 3.2 (Physical Space) Let n ≥ m. The physical space is an n-dimensional
smooth manifold S without boundary with an affine connection ∇. A point Q of the
physical space S is called a space point.

Remark, that the affine connection is independent of the choice of a metric, a sym-
metric and positive definite covariant tensor field of rank two. If there is a metric
available, then it is convenient, but not necessary, to define an affine connection as the
Levi-Civita connection, which is the uniquemetric compatible and torsion free affine
connection, cf. [8], Theorem5.16. Doing so, we lose degrees of freedom to model
the physical space and to describe desired mechanical behavior of the space. A chart
independent formulation of accelerated frames, for instance, requires the concept
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of vector bundles. Such a vector bundle consists of a one-dimensional Riemannian
base space, modeling the time, together with a typical fiber of a three-dimensional
Euclidean vector space, modeling the real space. The acceleration of the frame can
then be described by an affine connection, whose definition corresponds to the choice
of an inertial frame.

According to (3.1), forces of a continuous body are from the space C1(κ∗TS)∗.
A relation to the definition of forces as vector valued measures is obtained by a rep-
resentation theorem proposed in [1]. According to Definition 2.27, the connection ∇
of the physical space implies a covariant derivative (κ∗∇)(δκ) ∈ C0(κ∗TS ⊗ T ∗B)

of the virtual displacement δκ ∈ C1(κ∗TS). Hence, the covariant derivative is a C0-
section through the tensor bundle κ∗TS ⊗ TB∗ over B. We introduce the function

∇ : C1(κ∗TS) → C0(κ∗TS ⊕ (κ∗TS ⊗ T ∗B))

δκ 
→ (δκ, (κ∗∇)(δκ)),

where ⊕ denotes the direct sum. With reference to [1], for the space of linear func-
tionals on the image of ∇, the identity

C0(κ∗TS ⊕ (κ∗TS ⊗ T ∗B))∗ = C0(κ∗TS)∗ ⊕ C0(κ∗TS ⊗ T ∗B)∗ (3.2)

holds. Thus, using the function ∇ together with the identity (3.2) and the repre-
sentation theorem of Riesz-Markov, a force of a continuous body f ∈ C1(κ∗TS)

has a representation by a collection of tensor measures (f0, f1) ∈ C0(κ∗TS)∗ ⊕
C0(κ∗TS ⊗ T ∗B)∗. Consequently, the virtual work of a continuous body can be
represented as1

δW = f(δκ) =
∫

B
δκdf0 +

∫

B
(κ∗∇)(δκ)df1.

It is important to note, that the tensor measures (f0, f1) are not uniquely determined
by f . The measure f0 corresponds to forces defined as vector valuedmeasures, cf. [4].
The tensor measure f1 includes the stress tensor of classical continuum mechanics.

Let (U, x), (V, θ) and (W,λ) be appropriate charts on S, B and ∂B, respectively.
Then a smooth sectionβ ∈ Γ (κ∗T ∗S⊗�3T ∗B) can be represented in coordinates as

β = βi123(dxi ◦ κ) ⊗ dθ1 ∧ dθ2 ∧ dθ3
(A.21)= βi123(dxi ◦ κ) ⊗ dθ123, (3.3)

which describes a body force, i.e. a force per volume. A smooth section τ ∈
Γ (κ∗T ∗S ⊗ �2T ∗∂B) is considered as a traction force, i.e. a force per surface,
which is locally represented as

τ = τi12(dxi ◦ κ) ⊗ dλ1 ∧ dλ2 (A.21)= τi12(dxi ◦ κ) ⊗ dλ12.

1 We refer to [9], Proposition9.20, for a similar representation theorem for functions of the Sobolev
space W 1,p

0 (Ω) on a subset Ω ⊂ R
n .

http://dx.doi.org/10.1007/978-3-319-16495-3_2
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The evaluation of the tensor field β of body forces (3.3) at a point on the body
is a tensor of rank 4, in which the last three tensor slots are alternating. Let δκ ∈
C1(κ∗TS) be a virtual displacement. By a slight abuse of notation, we introduce the
convention to denote the mapping from C1(κ∗TS) to Γ (�3T ∗B) by

β(δκ) := β(δκ, ·, ·, ·) (3.4)

Hence,β(δκ) ∈ Γ (�3T ∗B) is a volume formwhich can be integrated over the body
B. For the traction τ the convention holds in a similar way.

Assuming that B is orientable, then the smooth sections β and τ induce a stress
measure f0 by ∫

B
δκdf0 =

∫

B
β(δκ) +

∫

∂B
τ (δκ).

Similar to the body and traction forces, we consider the variational stress π ∈
Γ (κ∗T ∗S ⊗ TB ⊗ �3T ∗B), which can locally be represented as

π = π
j
i123 (dxi ◦κ)⊗∂θ j ⊗dθ1∧dθ2∧dθ3 = π

j
i123 (dxi ◦κ)⊗∂θ j ⊗dθ123. (3.5)

Applying the convention (3.4) to π and requiring B to be orientable, the smooth
sections π induce a tensor measure f1 by

∫

B
(κ∗∇)(δκ)df1 =

∫

B
π((κ∗∇)(δκ)) =

∫

B
π(δF), (3.6)

where δF := (κ∗∇)(δκ) has been recognized.
Due to the high continuity assumptions on the virtual displacement field, forces

such as point forces, line distributed forces, traction forces within the body an many
more cannot be described. A relaxation to piecewise continuous virtual displacement
fields has to be discussed to allow for a broader spectrum of forces which is inevitable
in mechanics.

3.2 Classical Nonlinear Continuum Mechanics

Following the assumptions of classical nonlinear continuum mechanics, cf. [10],
external forces are assumed to be given by vector valued measures f0 only. The
corresponding virtual work contributes negatively to the total virtual work as

δW ext = −
∫

B
df0(δκ). (3.7)

Within a first gradient theory, Germain [11] allows also external forces to be given
by f1 tensor measures.
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The internal forces are modeled as “short range forces”. Thus, the internal
forces are restricted to f1 tensor measures. Due to (3.6), this implies the virtual
work contribution

δW int =
∫

B
π((κ∗∇)(δκ)). (3.8)

Such an identification of the force representatives of internal forces, seems rather
arbitrary. Assuming the physical space S to be Riemannian, i.e. a manifold with a
metric, the identification of internal forces can be deduced from an additional funda-
mental principle. The additional principle is the law of interaction, which defines the
internal forces of an arbitrary subsystem B′ ⊂ B. We give here just a short outlook
and an idea without proofs, how the law of interaction can be formulated on mani-
folds. Let g ∈ Γ (T ∗S ⊗ T ∗S) be a metric on the physical space and δϕ ∈ Γ (TS)

be the spatial virtual displacements. Let Lδϕg denote the Lie derivative of g with
respect to δϕ, cf. [12]. We define a Killing vector field δϕ ∈ Γ (TS) to be a vector
field satisfying

Lδϕg = 0. (3.9)

The space of Killing vector fields is denoted by Γk(TS). The requirement (3.9) can
be considered as a local symmetry of the physical space. In terms of a Levi-Civita
connection on S, (3.9) can be transformed and represented locally as

δϕk
; j gki + δϕk

;i gk j = δϕi; j + δϕ j;i = 0,

where semicolon denotes the covariant derivative. This condition for rigidifying vir-
tual displacement fields and also the following variational form of the law of inter-
action has already been formulated in [13]. Let the spatial virtual displacement field
δϕ ∈ Γk(TS) be a Killing vector field. We denote the induced virtual displacement
field δκ = κ∗δϕ by δκ rigidifying. Then the law of interaction asks the internal
forces f int ∈ C1(κ∗TS)∗ to satisfy

δW int = f int(δκ) = 0 ∀δκ rigidifying.

Let the Euclidean three-space E
3 be the physical space. Then, for smooth force

representatives it can be shown, that the internal virtual work has to be of the
form (3.8). Additionally, a symmetry condition for the first two components of the
variational stress π is obtained.2

Using the virtual work contribution of the external and internal forces (3.7) and
(3.8), respectively, the metric independent virtual work principle of a continuous
body of (3.1) is restated for the classical choice of force representatives.

2 Notice, symmetry condition does not mean that the two first components of π are symmetric.
Such a statement is meaningless, since both components belong to different vector spaces. Hence,
the symmetry condition will include metric information as well as the tangent map T κ.
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Principle 3.2 (Principle of Virtual Work of Continuum Mechanics) Let π ∈ Γ

(κ∗T ∗S ⊗ TB ⊗ �3T ∗B) and f0 ∈ C0(κ∗TS)∗ be the force representatives of
f ∈ C1(κ∗TS). Then, the principle of virtual work of a continuous body B states,
that the virtual work

δW (δκ) = δW int(δκ) + δW ext(δκ)

=
∫

B
π((κ∗∇)(δκ)) −

∫

B
df0(δκ) = 0 ∀δκ ∈ C1(κ∗TS).

(3.10)

vanishes for all virtual displacements.

In the local representation of the variational stress (3.5), the three last slots of the
tensor are constituted by a volume form. Let dV = ρ dθ1 ∧ dθ2 ∧ dθ3 = ρ dθ123 be
a volume element on the body B, i.e. a nowhere vanishing volume form on B. Then
the variational stress can be transformed to

π = π
j
i123 (dxi ◦κ)⊗∂θ j ⊗dθ123 = ρ−1π

j
i123(dxi ◦κ)⊗∂θ j dV = PdV , (3.11)

where P j
i = ρ−1π

j
i123 and P = P j

i (dxi ◦ κ) ⊗ ∂θ j . Notice that P as an independent
object, generally denoted as the stress tensor, is not a tensor field. By splitting-off of
the volume element dV from the variational stressπ, the tensor property is destroyed.
At most, P can be considered as a tensor valued density. This explains the awkward
transformation rules for the different stress tensors in classical nonlinear continuum
mechanics, cf. [14]. Nevertheless, the internal virtual work (3.8) as a whole remains
an invariant quantity and using (3.11), it can be transformed further to

δW int =
∫

B
P(δF) dV =:

∫

B
P : δF dV, (3.12)

where we introduced the commonly used notation of the double contraction.

Example 3.3 Let the physical space S be the three-dimensional Euclidean space E3

with the Levi-Civita connection ∇ and let (E3, x) be a cartesian chart, i.e. the base
vectors (∂x1 , ∂x2 , ∂x3) are orthonormalwith respect to the givenmetric. Furthermore,
assume that the body can be described by a single chart (B, θ) and let dV = dθ123 ∈
Γ (�3T ∗B) be the volume element. Due to the cartesian chart x , the Christoffel
symbols vanish in the covariant derivative (2.19). Denote the duality pairing by a
dot (·) and introduce t̂i := Pi

k (dxk ◦ κ). Then, the internal virtual work (3.12) is
transformed further to

δW int =
∫

B
∂θi (δκ j (∂x j ◦ κ)) · Pi

k (dxk ◦ κ) dθ123 =
∫

B
∂θi (δκ) · t̂i dθ123.

http://dx.doi.org/10.1007/978-3-319-16495-3_2
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Let B := θ(B) be the domain of the body in the chart θ and use the composite
functions δξ := δκ ◦ θ−1 and ti := t̂i ◦ θ−1. The local representation of the internal
virtual work in the body chart follows as

δW int =
∫

B
∂i (δκ ◦ θ−1) · (t̂i ◦ θ−1) dθ1dθ2dθ3 =

∫

B
∂i (δξ) · ti dθ1dθ2dθ3

=
∫

B
δξ,i · ti d3θ,

where in the last line the partial derivative ∂i and the volume element dθ1dθ2dθ3 are
abbreviated by (·),i and d3θ, respectively. Note, that the integration of the volume
formover the bodymanifoldB is defined by the integration of the chart representation
in R3, cf. [12].

Assume furthermore that the Cartesian chart of E3 is an inertial chart. A motion
κt : B × R → E

3 of the body is a differentiable parametrization of configurations
with respect to time t ∈ R. Thus, at a given instant of time t the closed subset
Ω t = κt (B) ⊂ E

3 is covered by the body manifold. The coordinate representation
of the motion is the vector valued function

ξ : B × R → E
3, (θk, t) 
→ ξ = κt ◦ θ−1(θk) = ξ(θk, t).

Let dm be amass distribution on B. Then, we assume the inertia force to contribute as

δW dyn =
∫

B
δξ · ξ̈ dm (3.13)

to the total virtual work of the body, where the superposed dot (•̇) denotes the
derivative with respect to time t . Since the cartesian chart is restricted to be an inertial
chart, the introduction of inertia forces (3.13) is chart dependent and does not fit into
the geometric concepts proposed otherwise in Part I. To describe the virtual work
of inertia forces in an intrinsic differential geometrical setting, an extension of the
physical space as discussed previously below Definition 3.2 is necessary.

Example 3.4 Let the physical space S be the three-dimensional Euclidean space E3

with the Levi-Civita connection ∇. Furthermore, let (E3, X) be a cartesian chart
and the body B be a closed subset of E3. Hence, the body chart and the space chart
coincide. The coordinate description of the boundary of the body ∂B is given by the
chart (∂B, Y ). Let the volume element be dV = dX1 ∧ dX2 ∧ dX3 and the surface
element dA = dY 1 ∧ dY 2. Assume the external forces to be given by body forces
β ∈ Γ (κ∗T ∗

E
3⊗�3T ∗

E
3) and traction forces τ ∈ Γ (κ∗T ∗

E
3⊗�2T ∗∂B). Using

the volume element dV and the surface element dA, the body and the traction forces
can be represented in the sense of (3.11) as β = BdV and τ = TdA. Together
with the abbreviations dxi := dXi ◦ κ and ∂xi := ∂Xi ◦ κ, the negative virtual work
contribution of the external forces can locally be represented as
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−δW ext =
∫

B
df0(δκ)

=
∫

B
β(δκ) +

∫

∂B
τ (δκ) =

∫

B
B(δκ)dV +

∫

∂B
T(δκ)dA

=
∫

B
Bidxi (δκ j∂x j )dV +

∫

∂B
Tidxi (δκ j∂x j )dA

=
∫

B
Biδκ

idV +
∫

∂B
Tiδκ

idA.

Since the body is a subset of the Euclidean space, the connection on the body is
given by the Levi-Civita connection of the space. Within cartesian coordinates, the
Christoffel symbols vanish and the internal virtual work contribution (3.12) is locally
represented as

δW int =
∫

B
π(δF) =

∫

B
P(δF)dV

=
∫

B
(P j

i dxi ⊗ ∂X j )(∂Xl (δκk)∂xk ⊗ dXl)dV =
∫

B
P j

i ∂X j (δκi )dV .

For the remainder of this example the derivations are performed in the chart repre-
sentation. The principle of virtual work (3.10) of the continuous body in the body
chart X is

δW =
∫

B
P j

i ∂ j (δκ
i )dV −

∫

B
Biδκ

idV −
∫

∂B
Tiδκ

idA = 0 , ∀δκi ∈ C1(B),

(3.14)

where B = B ∪ ∂B denotes the domain of the body in the chart. The virtual work
expression (3.14) is generally known as the weak variational form of the continuous
body. Using a telescopic expansion together with the product rule and the theorem
of Gauss-Ostrogradsky, cf. [15], the virtual work is transformed further to the strong
variational form

δW =
∫

B
P j

i ∂ j (δκ
i )dV −

∫

B
Biδκ

idV −
∫

∂B
Tiδκ

idA

=
∫

B

{
P j

i ∂ j (δκ
i ) − ∂ j (P j

i δκi )
︸ ︷︷ ︸

(�)

+∂ j (P j
i δκi ) − Biδκ

i}dV −
∫

∂B
Tiδκ

idA

=
∫

B

{
−∂ j (P j

i )δκi + ∂ j (P j
i δκi ) − Biδκ

i
}
dV −

∫

∂B
Tiδκ

idA

= −
∫

B

{
(∂ j (P j

i ) + Bi )δκ
i
}
dV −

∫

∂B

{
(Ti − P j

i N j )δκ
i
}
dA, (3.15)
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where N j denote the components of the normal vector to the boundary ∂B.
Since (3.15) has to vanish for all δκi ∈ C1(B), the strong variational form together
with the Fundamental Lemma of Calculus of Variations leads to

0 = ∂ j P j
i + Bi in B,

Ti = P j
i N j on ∂B.

which constitute the equations of motion of the continuous body and the bound-
ary conditions. Notice, that the derivation (3.15) relies on cartesian coordinates and
for the theorem of Gauss-Ostrogradsky, introducing the normal vector, a metric is
required. Hence, the strong variational form in (3.15) is obtained by a coordinate-
and metric-dependent derivation. To formulate a complete coordinate- and metric-
independent description of classical continuum mechanics, this derivation must
be performed on the manifold using concepts from differential geometry. Such a
coordinate- and metric-independent formulation can be found in [1] and in a more
elaborate way in [16]. Reference [16] defines the divergence of the stress tensor in
the sense of the subtraction (�) which does not simplify in a coordinate free setting.
This explains the artificial intermediate step of the second line in (3.15).

In Example 3.3, we have formulated the virtual work contributions of a continuous
bodymoving in theEuclidean three-space. Therein,wehave obtained the virtualwork
contributions which are required to start with the second part of the book dealing
with beam theories. Concluding remarks on Part I can be found in Chap.9.
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Part II
Induced Beam Theories



Chapter 4
Preliminaries

In this chapterwe discuss the fundamentalmechanical principleswhich are necessary
for the formulation of induced beam theories. In order that Part II remains more or
less self-contained, Sect. 4.1 repeats some results of the first part about the dynamics
of a continuous body within the Euclidean space. Section4.2 introduce the concept
of perfect constraint stresses which are required that the motion of a continuous body
follows a constrainedpositionfield. InSect. 4.3,wediscuss an appropriate description
of a beam-like body and introduce the classification into intrinsic, induced and semi-
induced beam theories.

4.1 Fundamental Principles of a Continuous Body

We adhere to the convention that pairs of Latin indices are summed from 1 to 3
and pairs of Greek indices are summed from 1 to 2. When a function depends on
the three components (a1, a2, a3) or on the first two components (a1, a2) of a triple
a ∈ R

3, the argument is abbreviated by (ai ) or (aβ), respectively. We consider a
three-dimensional continuous body B as a three-dimensional compact differentiable
manifold with boundary. In order to avoid discussions about mathematical subtleties,
we assume in the following that the body can be covered by a single chart θ, see
Fig. 4.1. Hence, every material point P ∈ B can be described by three coordinates

(θ1, θ2, θ3) ∈ B ⊂ R
3, where B := θ(B). A configuration κ ∈ Emb1(B,E3) is a

C1-embedding of the body into the Euclidean three-space E3, where the Euclidean
three-space represents the physical space. The configurations are restricted to embed-
dings, which are proper injective immersions. Thus, the principle of impenetrability
and the permanence of matter is guaranteed by the choice of the kinematics. Since
the configuration maps the material points P to the Euclidean three-space, which
is a vector space, the placement of a material point κ(P) can be represented by the
position vector ξ ∈ E

3. A motion κt : B × R → E
3 of the body is a differentiable

parametrization of configurations (or current configurations) with respect to time

© Springer International Publishing Switzerland 2015
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Fig. 4.1 Schematic overview of the kinematics of the body manifold B

t ∈ R. Thus, at a given instant of time t , the closed subset Ω t = κt (B) ⊂ E
3 is

covered by the body manifold. Using the chart θ, the coordinate representation of
the motion is the vector valued function

ξ : B × R → E
3, (θk, t) �→ ξ = κt ◦ θ−1(θk) = ξ(θk, t),

also denoted as the position field. Note that we are using the same symbol for the
variables ξ as for the functions whose results they are. In the following we will
mainly work with the coordinate representation of the motion and treat motion and
coordinate representation of the motion synonymously. We consider only cartesian
base vectors for E3 to avoid the concept of covariant derivatives. Additionally, this
assumption allows to commute derivatives with respect to θi and derivatives with
respect to a variation parameter ε.

A variational family of the position field is a differentiable parametrization of
motions ξ̂(θk, t, ε) with respect to a single parameter ε ∈ R. The actual motion is
embedded in the family ξ̂ and is obtained for ε = ε0, i.e. ξ(θk, t) = ξ̂(θk, t, ε0). The
variation of the position field ξ is defined as

δξ(θk, t) := ∂ξ̂

∂ε
(θk, t, ε0).

Let i ∈ {1, 2, 3} and (i, j, k) be an even permutation of (1, 2, 3), then we introduce
the fields of covariant base vectors gi (θ

k, t), its corresponding variations δgi (θ
k, t)

and its associated contravariant base vectors gi (θk, t) as

gi := ξ,i , δgi = δξ,i , gi := g−1/2(g j × gk), g1/2 := g1 · (g2 × g3),

where partial derivatives ∂(·)/∂θk are abbreviated by (·),k . The co- and contravariant
base vectors fulfill the reciprocity condition gi · g j = δi

j .
The formulation of the fundamental principle of the dynamics of a continuous

body demands the postulation of three contributions to the virtual work. The first
contribution represents the internal virtual work δW int of the continuous body which
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is formulated in the body chart θ as

δW int(δξ) :=
∫

B
σ : (δgi ⊗ gi )g1/2d3θ =

∫

B
ti · δgi d

3θ, (4.1)

where d3θ = dθ1dθ2dθ3. The stress vector ti (θk, t) can be recognized in the Cauchy
stress tensor σ(ξ(θk, t), t) = g−1/2 ti ⊗ gi . Let the indices (i, j, k) be an even per-
mutation of (1, 2, 3), then the stress vector ti corresponds to the traction in the current
configuration which acts at the surface element g j × gk dθ jdθk = gi g1/2 dθ jdθk .
A similar formulation of the internal virtual work (4.1) can also be found in [1],
Sect. 16.2. The remaining two contributions to the virtual work are those of the iner-
tia and the external forces df which contribute as

δW dyn(δξ) :=
∫

B
δξ · ξ̈ dm, δW ext(δx) := −

∫

B
δξ · df , (4.2)

where the superposed dot (•̇) denotes the derivative with respect to time t . We
consider the mass distribution dm and the force distribution df as measures, allowing
for Dirac-type contributions as well.

As the first fundamental principle of a continuous body, we postulate the principle
of virtual work as an axiom.

Principle 4.1 (Principle of Virtual Work) At any instant of time t, the virtual work
δW of the body B vanishes for all virtual displacements δξ, i.e.

δW (δξ) = δW int(δξ) + δW dyn(δξ) + δW ext(δξ) = 0 ∀δξ,∀t. (4.3)

Beside the virtual work principle, the law of interaction for internal forces has to
be respected as a second axiom. In Glocker [2], Sect. 2, the law of interaction is
stated for force and couple distributions. A variational form of the law of interaction
corresponds to the “Axiom of Power of Internal Force” formulated by Germain [3].
In the case of particle mechanics the law of interaction coincides with “Newton’s
Law of Action and Reaction”. For a variational formulation of the law of interaction,
a special subset of virtual displacements is required. Virtual displacements are called
rigidifying if they are induced by a rigid body motion of the continuous body.

Principle 4.2 (Law of Interaction) At any instant of time t, the internal virtual
work of the body B vanishes for all rigidifying virtual displacements, i.e.

δW int(δξ) = 0 ∀δξ rigidifying,∀t. (4.4)

Since the considered mechanical system is a continuous body and the law of inter-
action has to be fulfilled for all bodies, including any subbody B′ ⊂ B, it is shown
in Eugster et al. [4], that the law of interaction for a smooth stress distribution can
be formulated in the following local form:
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gi × ti = 0 ∀θk ∈ B,∀t. (4.5)

This requirement corresponds to the symmetry condition of the Cauchy stress tensor.
When the body coordinates are chosen such that they coincide with the cartesian
coordinates of the Euclidean space, we can rewrite (4.5) as ei × σi j e j = 0. Due
to the orthonormality of the base vectors ei , we directly obtain the three symmetry
conditions of the Cauchy stress, i.e. σ12 = σ21, σ13 = σ31 and σ23 = σ32.

4.2 Constrained Position Fields

To formulate induced beam theories, one has to study constrained position fields
of a continuous body. Since the constraints are treated as pointwise conditions in
time, t is an inessential parameter which is omitted in the notation for the sake of
clarity. For a given body chart θ and at every instant of time t , the configuration
manifold of the continuous body is given by all possible configurations of the body
which form the infinite dimensional manifold K := Emb1(B,E3). Let A be a finite
or infinite dimensional manifold and x : A → K be an embedding. For a ∈ A,
the embedding x induces a position field ξ = x(a) of the continuous body. The
submanifold C := x(A) ⊂ K represents all position fields which can be described
by the embedding of A in K and is called the constraint manifold. A configuration
ξ ∈ C is called a constrained position field. The tangent space at the point ξ ∈ C to the
constraint manifold is denoted by TξC. Elements of the tangent space TξC are called
admissible virtual displacements. Let a ∈ A and ξ = x(a), then the differential of x

Dx(a) : TaA → TξC, δa �→ δξ = Dx(a)δa, (4.6)

induces admissible virtual displacements.
Assume a continuous body with a position field ξ whose dynamics is described

by the principle of virtual work (4.3). To constrain the position field ξ such that it
remains on the constraint manifold C, a constraint stress field ti

C (θk, t)with a virtual
work contribution

δW int
C :=

∫

B
ti
C · δξ,i d

3θ

is introduced.1 The stress contribution of (4.1) is renamed as ti
I and is called an

impressed stress field. Consequently, a continuous body with position field ξ ∈ C
which is enforced to follow a constrained position field, is exposed to a total stress
field

ti (θk, t) := ti
I (θ

k, t) + ti
C (θk, t), (4.7)

1 It is a choice that the constraint is guaranteed by a stress field. Alternatively the constraints can
also be satisfied by constraint forces dz ∈ C0(E3)∗.
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which is composed by an impressed and a constraint stress field. Hence, the dynamics
of a continuous body with a constrained position field is described by the principle of
virtual work (4.3) with the total stress field (4.7). The constraint stresses are said to
be perfect, if the constitutive law is given by the principle of d’Alembert–Lagrange,
which states that the virtual work of the constraint stresses

δW int
C (δξ) =

∫

B
ti
C · δξ,i d

3θ = 0 ∀δξ ∈ TξC,∀t. (4.8)

Let a ∈ A induce the constrained position field ξ = x(a) and assume the admissible
virtual displacements δξ = Dx(a)δa := δx ∈ TξC. Then the virtual work of the
perfect constraint stresses (4.8) vanishes for all δa ∈ TaA. To obtain the weak varia-
tional form of a constrained continuous body in a minimal description, the principle
of virtual work (4.3) with the total stress field (4.7) is evaluated for the constrained
position field x together with admissible virtual displacements δx = Dxδa. Since
the constraints are assumed to be perfect, the constraint stress contribution vanishes
for the admissible virtual displacements δx by definition.

4.3 Intrinsic and Induced Beam Theories

A major challenge in beam theory is a rigorous definition of its central object, the
beam. A beam formulation includes loads of modeling assumptions which are hard
to grasp in their full diversity. A beam-like body can be considered as a model of
a real body with one characteristic direction. In the case of a slender body with an
isotropic material behavior, the characteristic direction coincides with the direction
of the largest expansion of the body. Hence, only additional information about the
body, such as geometry or material behavior, and its loading allows determining
the characteristic direction of the body. Another difficulty is, that there exist several
theories which call their investigated object beam, cf. for instance [1, 5–13]. In
this section we discuss three different classifications of beam theories which are
introduced in Antman [1]. There are the intrinsic beam theories, the induced and the
semi-induced beam theories.

Basically, there exist two ways to state the dynamics of a beam-like body. The
most classical way is an intrinsic beam formulation, as it is proposed by Euler [14],
Kirchhoff [15] or Cosserat and Cosserat [7] or more recently by Ballard and Mil-
lard [5]. Since a beam-like body has but one characteristic direction, denoted by
the parameter ν ∈ [ν1, ν2] ⊂ R, we assume it as a generalized one-dimensional
continuum. At every point ν a microstructure is attached, which is described by
an N -dimensional configuration manifold of the beam Q. Hence, the motion of the
beam-like body is described by finitely many generalized position functions

q : [ν1, ν2] × R → Q, (ν, t) �→ q(ν, t), (4.9)
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Fig. 4.2 Visualization of the reference and the current configuration of the intrinsic classi-
cal beam, also denoted as Cosserat beam, q(ν, t) = (r(ν, t), d1(ν, t), d2(ν, t)) and Q(ν) =
(r0(ν), D1(ν), D2(ν)), respectively

where t parametrizes the time. The motion can schematically be visualized such
as depicted in Fig. 4.2. The reference configuration of the intrinsic beam is a time
independent map Q : [ν1, ν2] → Q, called the reference generalized position func-
tions. Subsequently, the virtual work of the generalized one-dimensional continuum
is stated directly. That means, we postulate the virtual work contributions of the
internal, external and the inertia forces of the generalized one-dimensional contin-
uum as integrated line densities per unit of ν and formulate a virtual work principle
in the sense of (4.3) for a one-dimensional continuum. By stating the virtual work
contributions, the generalized forces are defined in the sense of duality. To com-
plete the formulation, intrinsic generalized strains have to be defined and relations
between these intrinsic generalized strains and the internal generalized forces have to
be stated. The benefit of an intrinsic formulation is that it is a closed and independent
theory which is often free of indeterminacy. The drawback of such a formulation is,
that much mechanical intuition is required for its successful application. The vali-
dation of an intrinsic formulation and the determination of constitutive parameters
is done experimentally, cf. [16, 17]. Since an intrinsic formulation is completely
decoupled from a three-dimensional theory, we cannot draw any conclusions about
stress distributions of a beam in an intrinsic formulation.

In an intrinsic theory, every choice of generalized position functions q implies a
different beam formulation. Eventually, this leads to infinitely many beam theories.
In order to eliminate the intuition in the derivation of beam theories, we aspire a
consistent procedure to obtain various beam theories. This possibility is given by
induced beam theories. Induced beam theories are characterized by the following
description of a beam:

A beam, in the sense of an induced theory, is a three-dimensional continuous body with one
characteristic direction where the irrelevant deformations are eliminated by allowing merely
constrained position fields for the bodies motion.

We want to mention that in the above description of a beam the terms “characteristic
direction” and “irrelevant” are undefined. The determination of these terms is part



4.3 Intrinsic and Induced Beam Theories 51

of the modeling process and is strongly influenced by the considered application
at hand.

To formulate the constrained position fields, we use the very same generalized
position functions (4.9) as introduced in the intrinsic beam formulation. At any
instants of time t , letA := C1([ν1, ν2],Q) be the set of all C1-continuous pathes on
the configuration manifold Q. An induced beam theory states now the embedding

x : A → K,

q(·, t) �→ ξ = x(q(·, t)),
(4.10)

which induces a constrained position field for the current configuration of the contin-
uous body. In an induced theory, the body chart is chosen such that the parametriza-
tion of the characteristic direction ν equals the third body coordinate ν := θ3. Let
ν ∈ [ν1, ν2] and Ā(ν) := {

(θ1, θ2) | (θ1, θ2, ν) ∈ B
}
, then we denote the collection

of material points ξ( Ā(ν), ν, t) of the beam-like body as the cross section of the
beam. The admissible virtual displacements

δx(·, t) = Dx(q(·, t))δq ∈ TξC (4.11)

are obtained by (4.6).
Formulating the embedding (4.10), the beam-like body is considered as a contin-

uous body which is enforced by perfect constraint stresses to follow a constrained
position field. Hence, the dynamics for the beam is described by (4.3) with the total
stress field (4.7). According to the principle of d’Alembert–Lagrange (4.8), the vir-
tual work contribution of the constraint stress field ti

C vanishes for all admissible
virtual displacement fields (4.11) and at any instant of time t . Thus, a formulation of
the principle of virtual work of the constrained continuous body using the embed-
ding x together with the generalized position functions q, eliminates the constraint
stresses and induces directly the weak variational form of the induced beam theory.
The virtual work is obtained by an integration over the three-dimensional bodywhich
is performed by an iterated integral over the cross section areas of the body, followed
by an integration along ν. Since the generalized virtual displacements only depend on
(ν, t), these functions can be dragged outside the surface integral. Subsequently, we
define the weighted surface integrals as resultant forces. By performing the surface
integrals, the virtual work of the beam reduces to an integral of line densities only.
This reduced virtual work expression of the induced beam can then be identified with
the virtual work of an intrinsic theory.

The embedding (4.10) of an induced theory generates the connection between a
three-dimensional theory and a corresponding generalized intrinsic theory. Within
an induced beam theory, we have two possibilities to interpret the resultant forces
at ν ∈ [ν1, ν2]. Either as weighted integrals of forces and stresses of the Euclidean
space which are mapped to the cotangent space T ∗

q(ν,t)Q or as a generalized force of

T ∗
q(ν,t)Q without a relation to the Euclidean space. The virtual work in the form of

integrated line densities corresponds to the weak variational form of the beam theory.
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If enough continuity assumptions on the line densities are required, then integration
by parts is possible which leads to the strong variational form of the beam. By
applying the Fundamental Lemma of Calculus of Variations the equations of motion,
the boundary and transition conditions of the beam are obtained. The equations of
motion are partial differential equations with one spatial variable ν only. Hence,
in an intrinsic setting, it is reasonable to consider a beam as a generalized one-
dimensional continuum. Nevertheless, an intrinsic formulation only makes sense,
when there exists a set of constrained position fields such that the boundary value
problem of an intrinsic theory is obtained by an identification with the boundary
value problem of an induced theory.

An induced theory shares with a three-dimensional theory that for a complete for-
mulationof theproblem, constitutive laws for the resultant contact forces are required.
In an induced theory, we have defined the resultant contact forces as weighted surface
integrals which are mapped to the cotangent space of the configuration manifold of
the beam. Hence, we may introduce a three-dimensional material law for ti

I which
depends on a three-dimensional strain measure. Such an induced theory is shown
in Chap.7. Using non-admissible virtual displacements and up to a certain indeter-
minacy in the constraint stress field ti

C , it is possible to find a correlation between
generalized internal forces and the total stress field of the continuous body. In the geo-
metrically nonlinear beam theories of Chaps. 5, 6 and 8 we formulate the constitutive
law in an intrinsic setting. Denoting partial derivativewith respect to ν by a prime (·)′,
we define a generalized strain depending on q′ only and state a constitutive law for
the generalized internal forces directly. This form of a theory is called semi-induced
theory, because we introduce the generalized forces from a three-dimensional theory,
identify them with an intrinsic formulation and state the constitutive laws of the gen-
eralized internal forces in a generalized setting. Within a semi-induced theory we cut
the connection of the generalized internal forces to the stress field in the Euclidean
space. Hence, also in a semi-induced theory, we cannot draw any conclusions about
the stresses in the beam as a continuous body. Assuming also set-valued force laws
for the generalized internal forces, it is possible to impose further constraints on the
beam and to develop deviated beam theories from an original formulation. This is
done to show the hierarchical structure of the classical beam theories.
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Chapter 5
Classical Nonlinear Beam Theories

Classical nonlinear beams from the point of view of an induced theory are continuous
bodies with a constrained position field which are described by the motion of a
centerline and the motion of plane rigid cross sections attached to every point at
the centerline. This restricted kinematics allows to determine resultant forces at
each cross section and to reduce the equations of motion of a three-dimensional
continuous body to a partial differential equation with only one spatial variable. The
present chapter is partly based on the publication of Eugster et al. [1].

First, in Sect. 5.1, the kinematical assumptions are stated. Subsequently, in
Sect. 5.2, the virtual work contributions of the internal forces, the inertia forces and
the external forces are reformulated by the application of the restricted kinematics to
the virtual work of the continuous body. In Sects. 5.3–5.5 we present the generalized
constitutive laws of the geometrically nonlinear and elastic theories of Timoshenko,
Euler–Bernoulli and Kirchhoff in the form of a semi-induced beam theory. Lastly,
Sect. 5.6 closes the chapter with a concise literature survey of numerical implemen-
tations of nonlinear classical beam theories.

5.1 Kinematical Assumptions

For the derivation of the classical beam theory, it is convenient to think of a slender
continuous body with an isotropic material behavior as depicted in Fig. 5.1. First, we
assume at a given instant of time t a placement of the slender body in E

3, at which
the body covers the subset Ω t ⊂ E

3. We identify the characteristic direction of the
slender isotropic body with an arbitrarily chosen centerline r which propagates along
the largest expansion of the body. The property that the configuration ξ(·, t) at time
t is an embedding, enables us to identify every point of the continuous body in Ω t

with a unique point in the set B := ξ(·, t)−1(Ω t ) ⊂ R
3. Subsequently, we choose

the body chart θ such that the centerline r is parametrized by θ3 =: ν only. For a
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Fig. 5.1 Reference and current configuration of the beam

classical beamwe assume the existence of a motion given by the constrained position
field of the form

ξ(θα, ν, t) = x(q(·, t))(θα, ν) = r(ν, t) + θαdα(ν, t), (5.1)

where the generalized position functions q(·, t) are recognized as r(·, t), d1(·, t)
and d2(·, t). The centerline is given by the space curve r(·, t) = ξ(0, 0, ·, t) and
is bounded by its ends ν = ν1 and ν = ν2 for ν2 > ν1. A customary choice
of ν is the arc length parametrization s of the centerline r. Since the arc length
parametrization comes along with an additional constraint and may change under
deformation from one instant of time to another, we do not want to restrict us to
this special case. At every material point ν of the centerline r a positively oriented
orthonormal director triad (d1(ν, t), d2(ν, t), d3(ν, t)) is attached. The two direc-
tors dα span the plane cross section of the beam. The current state of the cross
section ξ( Ā(ν), ν, t) is parametrized by the cartesian coordinates (θ1, θ2) ∈ Ā(ν),
where Ā(ν) := {

(θ1, θ2) | (θ1, θ2, ν) ∈ B
}
. The restriction to cartesian coordinates

is implied by the parametrization of the cross section by two orthonormal directors.
For specific problems, e.g. computation of the cross section area, appropriate local
reparametrizations can be performed. One could think of different descriptions of the
plane which do allow for more general coordinates, but such a generalization is out-
side the scope of this book. The director triad (d1, d2, d3) can be related to an inertial
orthonormal basis (e1, e2, e3) by introducing for the rotation tensorR(ν, t) ∈ SO(3)
such that

dk(ν, t) = R(ν, t)ek, with R = dk ⊗ ek. (5.2)

For orthonormal vector triads, we do not distinguish here between co- and contravari-
ant vectors. In (5.1) we have identified the generalized position functions q(·, t)with
r(·, t), d1(·, t), d2(·, t) and have constrained the directors d1(·, t) and d2(·, t) by
(5.2) to remain orthonormal. Hence, the evaluation at ν of the generalized posi-
tion functions q(·, t) can be considered as a point on the 6-dimensional manifold
E
3 × SO(3).
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Since a beam in an induced theory is treated as a continuous body with a con-
strained position field, one has to guarantee that the motion always requires the
conditions of an embedding. As long as the density of the volume form g1/2 > 0
does not vanish for every point θk and the function remains injective, the perma-
nence of matter and the principle of impenetrability are fulfilled and the motion is an
embedding. As an example of how extreme such deformations can be, we assume a
beam with circular cross sections of radius r where the cross sections remain orthog-
onal to the tangent vector of the centerline. As depicted in Fig. 5.2, the beam is bent
in-plane up to a bending radius R. As long as the bending radius is larger than the
radius of the beam R ≥ r , no interpenetration of the cross sections may appear. This
restriction seems to be reasonable for the example at hand. Ultimately, at the con-
figuration where the bending radius coincides with the cross section radius r = R,
the lateral surfaces of the beam come into contact. Because of the impenetrability
condition R ≥ r , beam theories are generally limited to slender bodies (among other
reasons).

In the classical beam theory, the cross section deformation is considered to be
irrelevant for the deformation of the body. Consequently, the cross section is rigidi-
fied by the choice of the constrained position field (5.1). This implies that material
points which are on the same cross section stay on the same cross section through-
out the whole motion of the body. The choice of the body chart together with the
current configuration can be denominated as a fibration of the continuous body. In
the remainder of this section the kinematical expressions which are necessary for the
formulation of the virtual work (4.3) of the constrained continuous body are derived.

To begin with the effective curvature, the angular velocity and the virtual rotation,
which all describe the change of the directors when changing a single parameter, e.g.
the parameter ν. Using (5.2), we derive

(dk)
′ = (R(ν, t)ek)

′ = R′RTdk =: k̃dk, (5.3)

in which we recognize the effective curvature k̃ = R′RT and denote the partial
derivative with respect to ν by a superposed prime (·)′. The effective curvature k̃
only coincides with the curvature of a spatial curve r(ν, t) when ν corresponds to
the arc length parametrization s of the spatial curve at a given instant of time t . The
skew-symmetry of k̃ can easily be shown using the SO(3) properties of the rotation
tensor R:

RRT = 1
(·)′⇒ k̃

(5.3)= R′RT = −R(RT)′ = −(R′RT)T = −k̃T.

Fig. 5.2 Maximal allowed
deformation of a beam with
cross section radius r and
limit bending radius R

http://dx.doi.org/10.1007/978-3-319-16495-3_4
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Hence, the skew-symmetric effective curvature k̃ has an associated axial vector
k(ν, t) ∈ E

3 such that

(dk)
′ = k̃dk = k × dk, with k̃ = R′RT = (di )

′ ⊗ di . (5.4)

The tilde-operator will be used to denote the skew-symmetric tensor to an associated
axial vector. The components of the effective curvature can be written using the
alternating symbols εi jk as

ki = 1

2
εi jk(k̃)k j = 1

2
εi jk(dk · (d j )

′).

Similar to (5.4) we introduce the angular velocity ω̃(ν, t) and its associated axial
vector ω(ν, t) as

ḋk = ω̃dk = ω × dk, with ω̃ = ṘRT = ḋi ⊗ di . (5.5)

Likewise, we obtain the virtual rotation δφ̃(ν, t) and its associated axial vector
δφ(ν, t) by considering virtual variations of the directors dk, i.e. through derivation
with respect to the variation parameter ε,

δdk = δφ̃dk = δφ × dk, with δφ̃ = δRRT = δdi ⊗ di . (5.6)

The velocity and acceleration fields are introduced by taking the total time derivative
of the position field (5.1) and the kinematical relation introduced in (5.5)

ẋ = ṙ + ω × (x − r) = ṙ + ω × ρ, with ρ = x − r = θαdα,

ẍ = r̈ + ω̇ × ρ + ω × (ω × ρ). (5.7)

Using (5.1) and (5.4), the partial derivatives of the constrained position field take the
form

x,α = dα, x′ = r′ + k × ρ. (5.8)

The variation of the constrained position field and insofar the admissible virtual
displacement field is, in accordance with (5.1) and (5.6), given by

δx = δr + δφ × ρ. (5.9)

The variation of the partial derivatives (5.8) are reformulated to

δx,α = δφ × x,α , δx′ = δr′ + δk × ρ + k × (δφ × ρ). (5.10)

Since cartesian coordinates are chosen, the derivative with respect to ν and the
variation commute, i.e. (δdk)

′ = δ((dk)
′) = δd′

k. By (5.4) and (5.6) we write this
identity as
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(δφ × dk)
′ = δ(k × dk).

Applying the product rule and using again (5.4) and (5.6) yields

δφ′ × dk + δφ × (k × dk) = δk × dk + k × (δφ × dk).

By subtracting the left-hand side from the right-hand side, and by applying the skew-
symmetric property of the cross product and the Jacobi identity (B.1), one obtains

0 = δk × dk + k × (δφ × dk) + δφ × (dk × k) − δφ′ × dk

(B.1)= δk × dk − dk × (k × δφ) − δφ′ × dk

= (δk − δφ × k − δφ′) × dk.

Since the right-hand side of (5.1) has to vanish for all directors dk ∈ E
3 we retrieve

the important identity
δφ′ = δk − δφ × k. (5.11)

For the formulation of constitutive laws or for the determination of mass densities
it is convenient to introduce a special configuration, called reference configuration.
Let r0 andDα be the reference generalized position functions ofQ, then the reference
configuration of the beam corresponds to the constrained position field

�(θα, ν) = X(Q)(θα, ν) = r0(ν) + θαDα(ν). (5.12)

We call the space curve r0 = �(0, 0, ·) the reference curve of the beam. At each
material point of the reference curve r0 we have attached a positively oriented ortho-
normal director triad (D1(ν), D2(ν), D3(ν)) which is related to the basis (e1, e2, e3)
by introducing the rotation tensor R0(ν) ∈ SO(3) such that

Dk(ν) = R0(ν)ek, with R0 = Dk ⊗ ek.

The directors Dα describe the reference state of the cross section �( Ā(ν), ν). In the
formulation of constitutive laws, the reference configuration is often defined as the
stress free configuration of the body.

5.2 Virtual Work Contributions

In an induced theory, the classical nonlinear beam is a continuous body with the
constrained position field (5.1). The dynamics of a continuous body with such a
restricted kinematics can be described by the principle of virtual work (4.3) with the
total stress field (4.7). The constraint position field (5.1) which defines the constraint

http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4


60 5 Classical Nonlinear Beam Theories

manifold C ⊂ K corresponds to the embedding (4.10) determining an induced theory.
The admissible virtual displacements (5.9) are directly obtainedby the variation of the
constrained position field. Using the constrained kinematics (5.1), in the following
section, the contributions of the virtual work (4.3) due to the admissible virtual
displacements (5.9) are determined. Since the constraint stresses are assumed to be
perfect, by the principle of d’Alembert–Lagrange (4.8), they do not contribute to the
virtualwork and theweakvariational formof the classical nonlinear beam is obtained.
By further continuity assumptions on the involved functions, the strong variational
form and the corresponding boundary value problem of the classical nonlinear beam
is determined.

It is important to notice, that within this formulation we lose all information about
the constraint stresses which rigidify the cross sections. The fact that the constraint
stresses do not appear in the equations of motion does not imply that no stresses act
in the cross section.

5.2.1 Virtual Work Contributions of Internal Forces

Using (4.1), (5.10) and the property of the cross product of (B.2), the internal virtual
work density can be written as

ti · δx,i = δφ · (x,α ×tα) + t3 · δr′ + δk · (ρ × t3) + t3 · (k × (δφ × ρ)). (5.13)

Employing the symmetry condition (4.5), we can rewrite the first term in (5.13) as
follows:

δφ · (x,α ×tα)
(4.5)= −δφ · (x′ × t3)

(5.8,B.2)= −t3 · (δφ × r′ + δφ × (k × ρ)).

Using the above derived relation and the Jacobi identity (B.1), we can manipulate
(5.13) further and obtain

ti · δx,i = −t3 · (δφ × r′ + δφ × (k × ρ)) + t3 · δr′ + δk · (ρ × t3)

+ t3 · (k × (δφ × ρ))

= t3 · (δr′ − δφ × r′) + δk · (ρ × t3)

+ t3 · (k × (δφ × ρ) + δφ × (ρ × k))

(B.1)= t3 · (δr′ − δφ × r′) + δk · (ρ × t3) + t3 · (ρ × (δφ × k))

(B.2)= t3 · (δr′ − δφ × r′) + (ρ × t3) · (δk − δφ × k).

(5.14)

http://dx.doi.org/10.1007/978-3-319-16495-3_4
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http://dx.doi.org/10.1007/978-3-319-16495-3_4
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Since the kinematical quantities δr′ − δφ × r′ and δk − δφ × k depend merely on
(ν, t), we split the integration over B in an integration over the cross section in the
body chart Ā(ν) and an integration along ν ∈ (ν1, ν2)

δW int =
∫

B
ti · δx,i d

3θ

(5.14)=
∫ ν2

ν1

{
n · (δr′ − δφ × r′) + m · (δk − δφ × k)

}
dν.

(5.15)

Herein, the integrated kinetic quantities n and m are the resultant contact forces and
the resultant contact couples of the current configuration defined by

n(ν, t) :=
∫

Ā(ν)

t3 d2θ, m(ν, t) :=
∫

Ā(ν)

(ρ × t3) d2θ, (5.16)

with abbreviation of the area element d2θ = dθ1dθ2. Due to the surface integral,
the resultant contact forces and couples are independent of the cross section coordi-
nates θα. Although not explicitly expressed in the notation, the stress distributions
under the surface integral are mapped from the Euclidean cotangent space to the
cotangent space of the beams configuration manifold. Nevertheless, in an induced
theory, we still have the connection to the stress distribution of the Euclidean space.
In order to make the connection to an intrinsic theory, it is necessary to introduce an
equivalence class of forces. Force distributions in the Euclidean space which have the
same resultant contact forces and contact couples are considered to be equivalent. The
representatives of the equivalence class are then identified with the internal general-
ized forces of an intrinsic beam theory which postulates the right-hand side of (5.15)
as its internal virtual work of the generalized one-dimensional continuum. By the
definition of an equivalence class, we decouple our induced theory from the theory
of a constrained three-dimensional continuous body and arrive at an intrinsic theory.

5.2.2 Virtual Work Contributions of Inertia Forces

For convenience, themass density is introduced in the bodies reference configuration
as a real valued field ρ0 : X(Q)(B) ⊂ E

3 → R which to every point of the body
in the Euclidean space assigns a local mass per volume. Together with a volume
element dV = dx1 dx2 dx3 we obtain the mass distribution dm = ρ0 dx1 dx2 dx3.
The pullback of the mass distribution to the domain B with respect to the reference
configuration leads to the local description of the mass distribution as

dm = ρ0 G1/2 d3θ, G1/2 = X,1 · (X,2 × X,3 ).



62 5 Classical Nonlinear Beam Theories

Considering the virtual work (4.3) and the virtual displacements (5.9) we can
transform the virtual work contributions of the inertia terms. For the manipulation
of the inertia terms we introduce some abbreviations of integral expressions which
have their analogous expressions in rigid body dynamics. The cross section mass
density per unit of ν is defined as

Aρ0(ν) :=
∫

Ā(ν)

ρ0 G1/2 d2θ. (5.17)

When the centerline does not coincide with the line of centroids rc(ν, t), e.g. when
the centerline is determined by the shear centers and the shear centers do not coincide
with the centroids of the cross sections, a coupling term remains, which we introduce
as the integrated quantity

c(ν, t) := Aρ0(rc − r) =
∫

Ā(ν)

ρ ρ0 G1/2 d2θ. (5.18)

The cross section inertia density is introduced as

Iρ0(ν, t) :=
∫

Ā(ν)

ρ̃ρ̃Tρ0 G1/2 d2θ. (5.19)

Furthermore, it is convenient to express the time derivatives of the coupling term
by the angular velocity. Using (5.5) and (5.18), the second time derivative of the
coupling term is expressed by

c̈ = (ω × Aρ0(rc − r))̇ = ω̇ × Aρ0(rc − r) + ω × (ω × Aρ0(rc − r)). (5.20)

Another quantity which is going to occur, is the product of the cross section inertia
density and the angular velocity

h(ν, t) := Iρ0(ν, t)ω(ν, t).

In the basis di ⊗d j the moment of inertia Iρ0 is constant with respect to time t . Using
a coordinate description it can easily be shown that

ḣ = ((Iρ0)i jω j di )̇ = (Iρ0)i j ω̇ j di + (Iρ0)i jω j ḋi

= (Iρ0)i j di ⊗ d j (ω̇kdk + ω × ωkdk) + ω × (Iρ0)i jω j di

= Iρ0ω̇ + ω × Iρ0ω.

(5.21)

Substitution of the admissible virtual displacements (5.9) and the accelerations (5.7)
of the restricted kinematics into the virtual work expression (4.2) yields:

δW dyn =
∫

B
δx · ẍ dm =

∫

B
{(δr − ρ̃δφ) · (r̈ − ρ̃ ω̇ + ω̃ω̃ρ)} ρ0 G1/2 d3θ.

http://dx.doi.org/10.1007/978-3-319-16495-3_4
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Similar to the internal virtual work contribution, the integration over B is split in an
integration over the cross section in the body chart Ā(ν) and an integration along
ν ∈ (ν1, ν2). Together with the definitions (5.17), (5.18) and (5.19) and the property
(B.5) of the cross product we obtain

δW dyn =
∫ ν2

ν1

{
δr · (

Aρ0 r̈ + Aρ0(r̃c − r̃)T ω̇ + ω̃ω̃Aρ0(rc − r)
)

+ δφ · (Aρ0(r̃c − r̃) r̈ + Iρ0 ω̇ + ω̃Iρ0ω
)}

dν.

Using (5.20) and (5.21) the virtual work contribution of the inertia terms is rewritten
in an even more compact form

δW dyn =
∫ ν2

ν1

{
δr · (

Aρ0 r̈ + c̈
) + δφ · (

q × r̈ + ḣ
)}

dν. (5.22)

As for the internal virtual work expression, we have two possible points of view.
Either we consider the cross section mass density, the coupling term and the cross
section inertia as integrated quantities fromamass distribution of a three-dimensional
continuous body or we identify them as constitutive parameters of an intrinsic theory
which relate the generalized inertia forces from (5.22) with the time derivatives of
the generalized position functions.

5.2.3 Virtual Work Contributions of External Forces

There is a vast amount of possibilities how external forces can be impressed on the
beam. Forces may occur as volume or surface forces and even point forces applied
somewhere at the beam are common in engineering problems. An elegant way to
be short in notation is, if we allow the force contribution df to contain Dirac-type
contributions. Since the forces may also contribute on the boundaries, it is essential
thatwe integrate over the closed set of the body.Using the same split of the integration
as above and the admissible virtual displacements (5.9), we obtain

δW ext =
∫

B
δx · df

(5.9)=
∫

[ν1,ν2]
{δr · dn + δφ · dm} ,

where the resultant external force distribution dn and the resultant external couple
distribution dm are the integrated quantities

dn(ν, t) :=
∫

Ā(ν)

df, dm(ν, t) :=
∫

Ā(ν)

ρ × df .
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With the same equivalence class argument as for the resultant contact forces and
couples, we can identify the resultant external force and couple distributions with
external generalized force distributions of an intrinsic theory. In order to avoid cum-
bersome derivations, we only allow the discontinuities in the force distributions at
the boundaries ν1 and ν2. This leads to the virtual work contribution

δW ext =
∫ ν2

ν1

{δr · n + δφ · m} dν +
2∑

i=1

{δr · ni + δφ · mi } |ν=νi . (5.23)

The resultant external forces and couples ni and mi , respectively, are the resultant
external forces which are impressed at ν1 and ν2. Whereas the unit of n is [N] per
unit of ν, the unit of ni is [N]. For the couples we argue in a similar way.

5.2.4 The Boundary Value Problem

Taking all the transformed contributions of the virtual work for admissible virtual
displacements (5.15), (5.22) and (5.23), the principle of virtual work (4.3) with the
total stress (4.7), together with the principle of d’Alembert–Lagrange (4.8) leads
directly to the weak variational form of the classical beam

δW =
∫ ν2

ν1

{
n · (δr′ − δφ × r′) + m · (δk − δφ × k)

+ δr · (Aρ0 r̈ + c̈ − n
) + δφ · (c × r̈ + ḣ − m

)}
dν

−
2∑

i=1

{δr · ni + δφ · mi } |ν=νi = 0 ∀δr, δφ, t.

(5.24)

Using the identity (5.11) and integration by parts, the virtual work is expressed as

δW = −{δr · (n + n1) + δφ · (m + m1)} |ν=ν1

+
ν2∫

ν1

{
δr · (

Aρ0 r̈ + c̈ − n − n′) + δφ · (
c × r̈ + ḣ − m − m′ − r′ × n

)}
dν

+ {δr · (n − n2) + δφ · (m − m2)} |ν=ν2 = 0 ∀δr, δφ, t,

which corresponds to the strong variational form of the classical beam. When the
functions in the round brackets are continuous and when the virtual displacements
δr and the virtual rotations δφ are smooth enough, then by the Fundamental Lemma
of Calculus of Variation, the former terms have to vanish pointwise. This leads to
the complete boundary value problem with the equations of motion of the classical
beam which are valid for ν ∈ (ν1, ν2)

http://dx.doi.org/10.1007/978-3-319-16495-3_4
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n′ + n = Aρ0 r̈ + c̈,

m′ + r′ × n + m = c × r̈ + ḣ,
(5.25)

togetherwith the boundary conditionsn(ν1) = −n1,m(ν1) = −m1 andn(ν2) = n2,
m(ν2) = m2. If we allow discontinuities of the force distributions at countable many
points inside the beam, the domain (ν1, ν2) has to be divided into sets where the force
distributions are continuous. The integration by parts can then only be performed on
the differentiable parts. Consequently, this leads to an equation of motion (5.25) for
the differentiable parts, to boundary conditions at the boundaries and to transition
conditions at the points of the discontinuities.

To summarize, we have seen that the restricted kinematics of the beam allows
us reducing the virtual work of the continuous body in such a way, that the equa-
tions of motion (5.25) correspond to partial differential equations with only one
spatial variable. As mentioned several times, we have two different viewpoints. In an
induced theory, the force contributions in (5.25) are interpreted as resultant forces,
i.e. weighted surface integrals of forces and stresses of the Euclidean space mapped
to the cotangent space of the beams configuration manifold. In an intrinsic theory
the forces are considered as generalized forces which lose their connection to force
and stress distributions of the Euclidean space.

5.3 Nonlinear Timoshenko Beam Theory

Constitutive laws for the resultant contact forces n and the resultant contact cou-
ples m are required to complete the equations of motion (5.25). In an induced the-
ory, it is customary to choose a three-dimensional material law with an appropriate
three-dimensional strainmeasure and integrate the corresponding stress contributions
(5.16) over the cross sections. Here, however, we propose a semi-induced approach
for the formulation of constitutive laws in three-dimensional beam theories. Hence-
forth, we interpret the resultant contact forces and couples as generalized internal
forces and formulate a constitutive law between generalized strains and generalized
internal forces. The generalized strains are directly determined by the generalized
position functions q. When proposing an elastic constitutive behavior, we have to
show, that the variation with respect to the generalized strain measures leads to the
same form of the internal virtual work (5.15) of the induced theory. This shows
the compatibility between an induced and an intrinsic beam formulation. In classi-
cal beam theories, the generalized constitutive laws relate the generalized position
functions of the beam, i.e. the motion of the centerline and the rotation of the cross
sections, with the internal generalized forces n and m. As in the three-dimensional
theory, we allow the generalized internal forces to consist of an impressed and of a
constraint part

n = nI + nC , m = mI + mC . (5.26)
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The subscripts (·)I and (·)C stand for impressed forces and constraint forces, respec-
tively. Whereas the constitutive laws of impressed internal generalized forces are
formulated by single valued force laws, the constitutive law of the constraint internal
generalized forces are given by the principle of d’Alembert–Lagrange (4.8) which
can be considered to be a set-valued force law.

Even though in Timoshenko [2, 3] only the linear and plane case is treated, we
call the beam theory of this section, in which no further constraints are impressed on
the beam, the nonlinear Timoshenko beam theory. Accordingly, the constraint parts
of internal generalized forces vanish, i.e.

nC = 0, mC = 0. (5.27)

There exists amultitude of other names for the same beam theory. Ballard andMillard
[4] call the beam “poutre naturelle”, Antman [5] denotes it as “special Cosserat rod”
and as “geometrically exact beam”. With reference to Reissner [6] and Simo [7], it
is also called “Simo–Reissner beam”. In our genealogy of beam theories, we denote
a beam with the same constraints by the same name. We distinguish further between
a nonlinear theory, a linearized theory and a plane linearized theory.

The most basic constitutive law for a nonlinear Timoshenko beam is an elastic
force law being expressed by an elastic potential Ŵ (ν, t) for the impressed part of
the generalized internal forces, such that

δW int
I = δ

∫ ν2

ν1

Ŵ (ν, t) dν.

We assume the elastic potential to depend on the generalized strain measures γi

and κi

W̃ (ν, t) = W (γi (ν, t),κi (ν, t)). (5.28)

The generalized strain
γi (ν, t) := di · r′ − Di · r′

0, (5.29)

measures the difference between the deformation of the centerline in the direction di

and the deformation of the reference curve in the directionDi . The effective reference
curvature is defined as k̃0(ν) = R′

0RT
0 = (Di )

′⊗ Di .Whenmeasuring the difference
between the effective curvature and the effective reference curvature in the direction
dk, d j and Dk, D j , respectively, we obtain the components k̃k j − (k̃0)k j . Since
these components are skew-symmetric, there is an associated axial vector with the
components

κi (ν, t) := 1

2
εi jk(dk · k̃d j −Dk · k̃0D j ) = 1

2
εi jk(dk · (d j )

′ − Dk · (D j )
′). (5.30)

http://dx.doi.org/10.1007/978-3-319-16495-3_4
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In the following we demonstrate the compatibility of the intrinsic generalized strain
measures with the induced theory, thereby showing that the internal virtual work
expression (5.15) is obtained when varying the elastic potential (5.28), i.e. that

δW int
I =

∫ ν2

ν1

{
∂W

∂γi
δγi + ∂W

∂κi
δκi

}
dν

holds. Using (5.6) and (B.2), the variation of W with respect to γi takes the form

∂W

∂γi
δγi

(5.29)= ∂W

∂γi
(δr′ · di + r′ · δdi ) = nI · (δr′ − δφ × r′), (5.31)

where we have recognized the resultant contact force nI := nI i di = ∂W
∂γi

di . By

expansion with the orthonormality condition δi j = di · d j and using (5.6), the
variation with respect to κi yields

∂W

∂κi
δκi = ∂W

∂κi
di · δκ j d j = mI · (δk − δφ × k) , (5.32)

in which the resultant contact couple as mI := m Ii di = ∂W
∂κi

di has been identified.

Comparison of (5.31) and (5.32) with (5.15) demonstrates the compatibility of the
chosen generalized strain measures and their corresponding elastic potential.

Let E and G be the Young’s and shear modulus, respectively, and let Aα be the
area of the cross sections A multiplied by a shear correction factor. Let I1, I2 and J
be the second moments of area and polar moment, respectively. In the following we
assume that the elastic potential takes the quadratic form

W (γi ,κi ) = 1

2
γi (D̂1)i j γ j + 1

2
κi (D̂2)i j κ j , (5.33)

with
[D̂1] = Diag[G A1, G A2, E A], [D̂2] = Diag[E I1, E I2, G J ],

where [D̂1] and [D̂2] contain the collection of the stiffness components (D̂1)i j and
(D̂2)i j , respectively. In the elastic potential (5.33) the directors dα have been cho-
sen such that they correspond to the principle axes of the cross section surfaces.
Consequently, the constitutive laws for the generalized internal forces are given as

n = nI = nI i di = (D̂1)i jγ j di , m = mI = m Ii di = (D̂2)i jκ j di .

which coincide with the impressed part, since the constraint parts (5.27) vanish.
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5.4 Nonlinear Euler–Bernoulli Beam Theory

The nonlinear Euler–Bernoulli beam (or Navier–Bernoulli beam) can be regarded
as a Timoshenko beam on which additional constraints have been imposed. The
cross sections, and insofar the directors dα, have to remain orthogonal to the tangent
vectors r′ of the centerline. These constraints are formulated for every instant of
time t by the two constraint functions

gα(ν, t) = dα · r′ = 0.

It is convenient to let the reference configuration also to satisfy the orthonormality
condition. In this case, the constraints coincide with vanishing shear deformation, i.e.

gα = γα = dα · r′ − Dα · r′
0 = 0. (5.34)

The bilateral constraints are guaranteed by the constraint forces nCα. Using (5.6)
and properties of the cross product, the generalized constraint forces nC = nCαdα

contribute to the virtual work of the beam as

δW int
C = δgαnCα = (dα · δr′ + δdα · r′)nCα = nC · (δr′ − δφ × r′). (5.35)

The generalized constraint forces contribute in the same way as the generalized
internal forces in (5.15). This is in accordance with the decomposition of the internal
generalized forces (5.26) into an impressed and a constraint part. The force law
of the generalized constraint forces, which are considered to be perfect, can only
be formulated variationally by the principle of d’Alembert–Lagrange, which states
that (5.35) vanishes for all virtual displacements which are admissible with respect
to (5.34). Such a variational force law is described by a set-valued force law as
depicted in Fig. 5.3. The force law at hand may be cast in a normal cone inclusion
nCα ∈ N{0}(γα) = R, where the normal cone, cf. [8, 9], to the convex set {0} is
defined as

N{0}(x) = {
y ∈ R | y(x∗ − x) ≤ 0, x ∈ 0, ∀x∗ ∈ 0

} = R.

Fig. 5.3 Bilateral constraint
as set-valued force law
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By setting (x∗ − x) = δgα and y = nCα in the normal cone inclusion, we readily
recognize the principle of d’Alembert–Lagrange in inequality form.

For the impressed part, we assume the same quadratic form (5.33) as its elastic
potential. Since the constraint forces do not allow any shear deformation γα, the
corresponding shear stiffness components are immaterial and

[D̂1] = Diag[∗, ∗, EA], [D̂2] = Diag[E I1, E I2, G J ].

The generalized shear forces nIα of the underlying Timoshenko beam theory have
become bilateral generalized constraint forces nCα in the Euler–Bernoulli beam
theory. Hence, an elastic material law of the Euler–Bernoulli beam is given by

n = nI + nC , m = mI ,

where the impressed parts are represented by

nI = nI i di = (D̂1)i jγ j di , mI = m Ii di = (D̂2)i jκ j di

and the generalized constraint forces are formulated by the normal cone inclusions

nC = nCαdα, with nCα ∈ N{0}(γα) = R.

Using further concepts of convex analysis, e.g. the indicator function and the con-
cept of the subdifferential, it is possible to also include the set-valued part in the
potential (5.33), cf. [10]. This allows an alternative interpretation, that the bilateral
generalized constraint forces nCα are obtained by the limit to infinity of the shear
stiffnesses GA1 and GA2.

5.5 Nonlinear Kirchhoff Beam Theory

The nonlinear Kirchhoff beam (or nonlinear inextensible Navier–Bernoulli beam) is
an Euler–Bernoulli beam with additional inextensibility constraints. Hence, in the
Kirchhoff beam theory the cross sections remain orthogonal to the tangent vectors
of the centerline and the centerline is not allowed to stretch. When also the reference
configuration satisfies these constraints, the set of constraints for every instant of
time t is described by three bilateral constraint functions on the longitudinal and the
shear strains

gi (ν, t) = γi = di · r′ − Di · r′
0 = 0.

The contribution of the generalized constraint forces nC = nCi di to the virtual work
is similar to the Euler–Bernoulli beam

δW int
C = δgi nCi = (di · δr′ + δdi · r′)nCi = nC · (δr′ − δφ × r′).
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For the impressed part, we assume the same quadratic form (5.33) as its elastic
potential. Since the generalized constraint forces do not allow any deformation γi ,
the corresponding stiffness components are immaterial and

[D̂1] = Diag[∗, ∗, ∗], [D̂2] = Diag[EI1, EI2, GJ].

Hence, an elastic constitutive law of the nonlinear Kirchhoff beam is given by

n = nC , m = mI ,

where the impressed parts are represented by

mI = m Ii di = (D̂2)i jκ j di .

and the generalized constraint forces are formulated by the normal cone inclusions

nC = nCi di , with nCi ∈ N{0}(γi ) = R,

representing the bilateral constraints.

5.6 Literature Survey of Numerical Implementations

The benefit of the procedure proposed in Sect. 5.2 is that the derivation of the beam
equations results directly in the weak variational form (5.24) which is the starting
point of any one-field beam finite element formulation. The numerical implementa-
tion of the nonlinear Timoshenko beam with a hyperelastic constitutive law (5.33) is
treated in the celebrated papers of Simo and Vu-Quoc [7, 11]. These two papers have
been the starting point of a wealth of new discussions about the numerical imple-
mentation of the Timoshenko beam, often cited as “geometrically exact beam” or
“Simo–Reissner beam”. The configuration space of the Timoshenko beam requires
the parametrization of the positions of the centerline and the parametrization of the
rotations of the cross sections.Whereas the positions of the centerline constitute a lin-
ear space, the space of rotations is given by the SO(3)-group whose parametrization
is not straight forward. Formulations which employ rotation vectors to parametrize
the rotations can be found in Iura and Atluri [12, 13] and in Pimenta and Yojo [14].
An overview of different rotation parameterizations is given by Ibrahimbegović [15].
A formulation suitable for arbitrary cross section geometry is treated in Gruttmann
and Sauer [16]. Crisfield and Jelenić [17, 18] have recognized that several discretiza-
tion procedures using additive updates of the approximate rotations lead to a lack of
objectivity and path dependent solutions and eliminated the problem by an interpo-
lation of the local rotations. Another approach to remedy this problem are director
interpolations originally proposed by Romero and Armero [19] and by Betsch and
Steinmann [20, 21]. A further improvement of the director approach which accounts
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for the lackof orthonormality in theGauss points is givenbyEugster et al. [1]. Further-
more, the director approach facilitates the design of structure-preserving time inte-
grators as has been shown in Betsch and Steinmann [22], Armero and Romero [23],
and Leyendecker et al. [24].

A drawback of the one-field finite element formulation, where position vectors
and rotations are interpolated, is on the one hand problems with shear locking [25,
26], and on the other hand the occurrence of stress discontinuities across element
boundaries [27]. In order to overcome these problems more extensive more-field
formulation has been developed. By augmenting the weak variational form (5.24)
Zupan and Saje [28, 29], Pimenta [30] and Santos et al. [27, 31] present recent
development where displacements, stresses and strains are interpolated. An excellent
overview of the whole numerical development of the nonlinear Timshenko beam in
the last three decades is given by Santos et al. [27].

Beside the vast amount of contributions to the nonlinear Timoshenko beam the
amount of publications on the numerical treatment of the spatial Euler–Bernoulli
beam is rather moderate. The crucial point is, that for the spatial Euler–Bernoulli
beam the non-holonomic constraints (5.35) have to be guaranteed. These constraints
require higher continuity of the shape functions which are fulfilled e.g. by hermite
polynomials as shown in Boyer and Primault [32]. Due to the popularity of the isoge-
ometric analysis [33], where B-splines and NURBS can guarantee higher continuity
assumptions, more contributionsmay be expected as the recent publications of Greco
and Cuomo [34, 35] show.

The Kirchhoff beam as an inextensible Euler–Bernoulli beam incorporates the
same difficulties. Here very recently a finite element formulation byMeier et al. [36]
is given. In the context of computer graphics the super helix approach byBertails [37]
is another approach.
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Chapter 6
Classical Linearized Beam Theories

Inmanyengineering applications beamsare so stiff, that only small deformationswith
respect to a reference configuration occur. Thus, a linear beam theory is preferred
which simplifies the problem drastically. Using the nonlinear beam theory from
the previous chapter, such a linear beam theory is obtained in a straight forward
manner by the linearization around a reference configuration. This chapter presents
the process of linearization of a nonlinear theory at the example of classical beam
theories, whose results are best-known, cf. [1].

In Sect. 6.1 the kinematical quantities of Chap.5 are linearized around a reference
state. Subsequently, in Sect. 6.2, the virtual work contributions and its corresponding
differential equations are stated in its linearized form. Finally, Sects. 6.3–6.5 dis-
cuss the elastic constitutive laws of the linearized Timoshenko, Euler–Bernoulli and
Kirchhoff beam theory.

6.1 Linearized Beam Kinematics

In accordance with (5.12), the reference configuration of the classical beam is given
by the placement

�(θα, ν) = X(Q)(θα, ν) = r0(ν) + θαDα(ν).

For the upcoming linearization it is convenient to rewrite the motion of the beam
(5.1) using its constrained position field together with R = RRT

0 in the form

ξ(θα, ν, t) = x(q(·, t))(θα, ν) = r0(ν) + w(ν, t) + θαR(ν, t)Dα(ν), (6.1)

where the generalized position functions q(·, t) are identifiedwithw(·, t) andR(·, t).
The displacement of the centerline with respect to the reference curve is represented
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by w. The rotation R describes the rotation of the cross section from the reference
configuration to the current configuration. Within a linearized theory we assume that

∣∣w′∣∣ � 1, and
∣∣R − 1

∣∣ � 1.

Weparametrize a path through the space of rotations SO(3) by η ∈ R and demand
the identity condition R(0) = 1. A Taylor expansion up to first order terms yields

R(η) = 1 + dR
dη

(0)η + O
(
η2

)

and define the skew-symmetric matrix θ̃ := dR
dη (0)η. The skew-symmetry of θ̃ fol-

lows from the orthogonality of R. By taking the derivative of RTR = 1 with respect
to η and by evaluating the functions at η = 0 we obtain the skew-symmetry prop-
erty of θ̃

dR
dη

T

R = −RT dR
dη

⇒ dR
dη

T

(0) = −dR
dη

(0).

As it is also shown in [1], from (6.1) it follows directly that the rotation up to first
order terms can be approximated as

R ≈ 1 + θ̃, |θ| � 1. (6.2)

As the reference curve r0 is a priori known and does not depend on the motion,
the variation of the centerline r is determined by the variation of the displacement
vector only

δr = δr0 + δw = δw.

According to the definition of the virtual rotations (5.6) and (6.2), the linearized
virtual rotations are approximated by the variation of θ̃, i.e.

δφ̃ = δRRT = δR RT ≈ δθ̃(1 + θ̃)T ≈ δθ̃.

Assuming also small angular velocities and applying the same linearization argument
as for the virtual rotations, the angular velocities are approximated in a similar way as

ω̃ = Ṙ RT = Ṙ RT ≈ ˙̃θ(1 + θ̃)T ≈ ˙̃θ.

The approximation of the coupling term (5.20) and the inertia term (5.21) up to first
order of θ and θ̇, are determined by

c̈ ≈ θ̈ × c, ḣ ≈ Iρ0 θ̈.

http://dx.doi.org/10.1007/978-3-319-16495-3_5
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In order to linearize the generalized strain measure (5.29), we first rewrite the strain
using di = RDi and apply the motion of the beam in the form (6.1). Then, by the
approximation for small rotations (6.2), we obtain the linearized generalized strain
measure γlin

i

γi
(5.29,6.1)= Di · (

(RT − 1)r′
0 + RTw′ )

(6.2)≈ Di · (θ̃
T

r′
0 + w′) = Di · (w′ − θ × r′

0) =: γlin
i .

(6.3)

For the approximation of the generalized strain measure (5.30), the effective curva-

ture ˜̄k with respect to the rotation R is required. Using the definition of the effective
curvature (5.3) and applying the identity (RT

0 )′ R0 = −RT
0 R′

0, we rewrite the effec-

tive curvature ˜̄k as

˜̄k = R
′
RT = (RRT

0 )′R0RT = R′RT
0 R0RT − RRT

0 R0
′RT. (6.4)

In order to reformulate the generalized strain measure (5.30), we express the current
directors by the reference directors dk = RDk and simplify the components of the
strain using the orthogonality of the rotation

κ̃k j = Dk · (R0RTR′RTRRT
0 − R′

0RT
0 )D j

= Dk · (R0RTR′RT
0 − R′

0RT
0 )D j .

Using a telescopic expansion by identities, we are able to express the components
of the curvature with the rotations R only. The linearization up to first order terms is
then easily obtained by applying (6.2)

κ̃k j = Dk · (
R0RTR′RT

0 (R0RT)(RRT
0 ) − (R0RT)(RRT

0 )R′
0(R

TR)RT
0

)
D j

(6.4,6.1)= Dk · (
RT

(R
′
RT

)R
)
D j

6.2≈ Dk · θ̃
′
D j .

The components of the associated axial vector are obtained using the alternating
symbols, i.e.

κi (ν, t) = 1

2
εi jk κ̃k j ≈ 1

2
εi jkDk · θ̃

′
D j = Di · θ′ =: κlin

i .

The second generalized linearized strain κlin
i measures the change of orientation θ′

in direction of the reference directors Di .
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6.2 The Boundary Value Problem of the Classical
Linearized Beam Theory

After the linearization of the kinematic expressions, the virtual work of the linearized
beam is obtained in a straight forward manner from (5.24) by replacing the nonlinear
kinematic expressions by their linearized ones. As in the nonlinear case, this leads
directly to the weak variational form of the linearized classical beam

δW =
∫ ν2

ν1

{
n · (δw′ − δθ × r′

0) + m · δθ′ +

+ δw · (
Aρ0ẅ + θ̈ × c − n

) + δθ · (
c × ẅ + Iρ0 θ̈ − m

)}
dν

−
2∑

i=1

{δw · ni + δθ · mi } |ν=νi = 0 ∀δw, δθ, t.

(6.5)

After integration by parts, the virtual work takes the form

δW = −{δw · (n + n1) + δθ · (m + m1)} |ν=ν1

+
∫ ν2

ν1

{
δw · (Aρẅ + θ̈ × c − n − n′) +

+ δθ · (c × ẅ + Iρ0 θ̈ − m − m′ − r′
0 × n)

}
dν

+ {δw · (n − n2) + δθ · (m − m2)}ν=ν2 = 0 ∀δw, δθ, t,

which corresponds to the strong variational form of the linearized classical beam.
Using the same smoothness arguments as in the nonlinear setting, the Fundamental
Lemma of Calculus of Variation leads to the complete boundary value problem of
the linearized classical beam. The boundary value problem consists of the equations
of motion for the interior of the beam ν ∈ (ν1, ν2)

n′ + n = Aρ0ẅ + θ̈ × c,

m′ + r′
0 × n + m = c × ẅ + Iρ0 θ̈,

(6.6)

and of the boundary conditions n(ν1) = −n1, m(ν1) = −m1 and n(ν2) = n2,
m(ν2) = m2. The force contributions in (6.6) can be considered either as resultant
force contributions with a relation to the Euclidean space or as generalized forces of
a generalized one-dimensional continuum.

Let the generalized external forces n and m be potential forces only. Then, for
static problems, it is possible to solve the equilibrium equation (6.6) for n and m with
generalized force boundary conditions only. When we are interested in the displace-
ment of the beam, a constitutive law for the generalized internal forces completes
the description of the beam.

http://dx.doi.org/10.1007/978-3-319-16495-3_5
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6.3 Linearized Timoshenko Beam Theory

As in the geometrically nonlinear case, we propose a semi-induced theory and look
for the same form of the elastic potential

Ŵ (ν, t) = W (γlin
i (ν, t),κlin

i (ν, t))

as in (5.28) but exchange the nonlinear generalized strainmeasures by their lineariza-
tions. Also in the linearized setting, we have to show the compatibility of the chosen
linearized generalized strain measures with the linearized induced theory. Defining
nI = nI i Di := ∂W

∂γlini
Di , the variation

∂W

∂γlin
i

δγlin
i

(6.3)= ∂W

∂γlin
i

Di · (δw′ − δθ × r′
0) = nI · (δw′ − δθ × r′

0),

shows the compatibility with the virtual work contribution (6.5). Defining mI =
m Ii Di := ∂W

∂κlini
Di , the variation

∂W

∂κlin
i

δκlin
i = ∂W

∂κlin
i

Di · δθ′ = mI · δθ′,

shows also the compatibility with the virtual work contribution (6.5). For the elastic
potential, we assume the same quadratic form (5.33) as in the nonlinear case, but
replace the generalized strains by their corresponding linearizations

W (γlin
i ,κlin

i ) = 1

2
γlin

i (D̂1)i j γlin
j + 1

2
κlin

i (D̂2)i j κlin
j , (6.7)

with the stiffness components

[D̂1] = Diag[G A1, G A2, E A], [D̂2] = Diag[E I1, E I2, G J ].

Consequently, the constitutive laws for the generalized internal forces are

n = nI = nI i Di = (D̂1)i jγ
lin
j Di , m = mI = m Ii Di = (D̂2)i jκ

lin
j Di .

As in the nonlinear case, the linearized Timoshenko beam is described by impressed
generalized internal forces only.

http://dx.doi.org/10.1007/978-3-319-16495-3_5
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6.4 Linearized Euler–Bernoulli Beam Theory

The linearized Euler–Bernoulli beam is a linearized Timoshenko beam with the
additional linearized constraints, that the cross sections remain orthogonal to the
tangent vector of the centerline. The linearized version of the orthogonality con-
straints results in a beam, which does not allow any linearized shear deformation.
Thus, for any time t , a linearized Euler–Bernoulli beam has to satisfy the following
constraint functions

gα(ν, t) = γlin
α = Dα · (w′ − θ × r′

0) = 0.

The contribution of the generalized constraint forces nC = nCαDα to the virtual
work is similar to the nonlinear case, i.e.

δW int
C = δgαnCα = Dα · (δw′ − δθ × r′

0)nCα = nC · (δw′ − δθ × r′
0). (6.8)

For the impressed part, we assume the same quadratic form (6.7) as its elastic poten-
tial. Since the generalized constraint forces do not allow any deformation γα, the
corresponding stiffness components are immaterial and

[D̂1] = Diag[∗, ∗, E A], [D̂2] = Diag[E I1, E I2, G J ].

The elastic material law of the linearized Euler–Bernoulli beam is summarized as
follows:

n = nI + nC , m = mI ,

where the impressed parts are represented by the single-valued force law

nI = nI i Di = (D̂1)i jγ
lin
j Di , mI = m Ii Di = (D̂2)i jκ

lin
j Di .

and the generalized constraint forces are formulated by the normal cone inclusions

nC = nCαDα, with nCα ∈ N{0}(γlin
α ) = R,

representing the bilateral constraints.

6.5 Linearized Kirchhoff Beam Theory

The linearized Kirchhoff beam is a linearized Euler–Bernoulli beam which addition-
ally restricts the elongation of the centerline. The constraint functions are completely
described by the linearized generalized strain measure γlin

i , i.e.
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gi (ν, t) = γlin
i = Di · (w′ − θ × r′

0) = 0.

The contribution of the generalized constraint forces nC = nCi Di is obtained in the
sense of (6.8). For the impressed part, we assume the same quadratic form (6.7)
as the elastic potential. Since the generalized constraint forces do not allow any
deformation γlin

i , the corresponding stiffness components are immaterial and

[D̂1] = Diag[∗, ∗, ∗], [D̂2] = Diag[E I1, E I2, G J ].

The elastic material law of the linearized Kirchhoff beam is summarized as follows:

n = nC , m = mI ,

where the impressed parts of the internal generalized forces are represented by

mI = m Ii Di = (D̂2)i jκ
lin
j Di

and the force laws for the generalized constraint forces are formulated by the normal
cone inclusions

nC = nCi Di , with nCi ∈ N{0}(γlin
i ) = R,

representing the bilateral constraints.
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Chapter 7
Classical Plane Linearized Beam Theories

We speak of a classical plane linearized beam as being a classical linearized beam
fulfilling the following assumptions. The cross section geometry remains the same
for all cross sections, the motion is restricted to a plane, the reference configuration
is straight and the material of the continuous body is described by a linear elastic
material law. These assumptions on the motion of the beam and material law enable
us to formulate statements which are not easily accessible for a more general config-
uration of a beam. One key point is that we are able to arrive at a fully induced beam
theory where the integration of the stress distributions over the cross sections can
be performed analytically. Hence, we recognize relations between the generalized
internal forces and the three-dimensional stress field of the Euclidean space. This
allows to apply concepts of the theory of strength of materials to beams which is of
vital importance to solve engineering problems. In order to achieve such a connec-
tion, we restate the generalized internal forces for the plane linearized beam. The
restriction to small displacements allows us to start from the internal virtual work
formulated with the linearized strain. Afterwards, we proceed in a similar way as in
the previous chapters. We state the constrained position field of the beam and apply
it to the virtual work which leads us consequently to the boundary value problem
of the beam. Using the solutions of the boundary value problem and non-admissible
virtual displacements, it is possible to access in a further step the constraint stresses
of the beam which guarantee the restricted kinematics of the beam.

The outline of the chapter is as follows. In Sect. 7.1 we repeat the principle of
d’Alembert–Lagrange for linear elasticity and introduce an elastic constitutive law
for the impressed stresses. In Sects. 7.2–7.4 the equations of motion and the plane
stress distribution of the plane linearizedTimoshenko,Euler–Bernoulli andKirchhoff
beam are determined.
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7.1 Constrained Position Fields in Linear Elasticity

In the theory of linear elasticity, we linearize the configuration of the continuous
body around a reference configuration �(θk) and describe the motion ξ(θk, t) of the
body with the vector valued displacement field

u(θk, t) := ξ(θk, t) − �(θk). (7.1)

The deformation of the body is measured by the linearized strain measure which is
defined as

ε(u) = 1

2

(
(∇u)T + ∇u

)
,

where∇ represents the gradient of the Euclidean space. Using the symmetry property
of the Cauchy stress, the internal virtual work (4.1) can be written, for a linearized
kinematics, with the variation of the displacement field δu as its virtual displace-
ment field

δW int =
∫

B
σ : ε(δu) dV . (7.2)

We assume the parametrization of the body to be given by the reference configuration
of the continuous body in the Euclidean space, i.e. B ⊂ E

3. For convenience, we
restrict us to cartesian coordinates (x, y, z) which parametrize the set B. Hence, the
volume element is given by dV = dx dy dz and the gradient reduces to a partial
derivative with respect to (x, y, z).

As discussed in Sect. 4.2, a continuous body which is enforced to follow a con-
strained position field is exposed to the stress field

σ = σ I + σC , (7.3)

which is composed by an impressed part σ I and a constraint part σC of perfect
constraint stresses. For admissible virtual displacements and, consequently, for the
strain due to virtual displacements being admissible, the virtual work due to the
perfect constraint stresses

δW int
C =

∫

B
σC : ε(δu)dV = 0 ∀δu ∈ TξC,

vanishes identically.
For the impressed part of the stress, we apply a slightly modified isotropic linear

elastic material law described by the Young’s modulus E and the shear modulus
G. We consider the beam’s motion in the eI

x–eI
z plane. Stresses in eI

y-direction are
constituted by the constraint stresses. Since we assume the cross sections to be rigid,
lateral contraction is not possible. To avoid constraint stresses due to the material law
in the cross sections,we set the Poisson’s ratio for the normal forcesσI i i , i = {1, 2, 3}

http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4
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to zero. The shear deformations are not influenced by the kinematical restrictions of
the beam and are treated insofar in the same way as for an unconstrained continuous
body. Finally, we arrive at the following linear elastic material law for the impressed
part of the stress field

σI i i = Eεi i ,

σI i j = 2Gεi j , i �= j

}
i, j = {1, 2, 3} . (7.4)

7.2 The Plane Linearized Timoshenko Beam

In the following, we investigate the plane beam theories at the example of a clamped
beam, as depicted in Fig. 7.1, with length l, constant cross section area A, Young’s
modulus E , shearmodulusG, cross sectionmass density Aρ0 and cross section inertia
density Iρ0 . The inertia terms arise from a homogenous mass distribution and from
the definitions (5.17) and (5.19). The centerline coincides with the line of centroids
which in its reference configuration corresponds to the eI

x -axis. The beam is loaded
by applied normal forces n(x) in eI

x -direction and by applied shear forces q(x) in
eI

z -direction whose force distributions in the Euclidean space are both homogenously
distributed over the cross section. At x = l, additional forces nl and ql , which are
also homogenously distributed over the cross section, are applied.

7.2.1 Kinematics, Virtual Work and the Boundary
Value Problem

Since in a linear theory the motion of the beam is described by the displacement
field (7.1), we assume the embedding (4.10) to induce a constrained displacement
field. Themotion of theTimoshenko beam is described by themotion of the centerline
and the rotation of the cross sections. In the plane, but kinematically nonlinear case,
the nonlinear displacement field unl is constrained to

Fig. 7.1 Plane linearized Timoshenko beam

http://dx.doi.org/10.1007/978-3-319-16495-3_5
http://dx.doi.org/10.1007/978-3-319-16495-3_5
http://dx.doi.org/10.1007/978-3-319-16495-3_4
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unl((x, y, z), t) = xnl(q(·, t))(x, y, z) =
⎛

⎝
u(x, t) − sin (α(x, t))z

0
w(x, t) + (1 − cos (α(x, t)))

⎞

⎠ ,

where the generalized position functions q(·, t) are identified with u(·, t), w(·, t)
and α(·, t). The longitudinal displacement is described by u(·, t), the transverse
displacement by w(·, t) and the rotation of the cross section by α(·, t). Due to
the clamping, the displacement at x = 0 has to vanish, i.e. unl((0, y, z), t) = 0.
A linearization around the straight reference configuration yields the constrained
linearized displacement field

u((x, y, z), t) =
⎛

⎝
u1(x, y, z, t)
u2(x, y, z, t)
u3(x, y, z, t)

⎞

⎠ = x(q(·, t))(x, y, z) =
⎛

⎝
u(x, t) − α(x, t)z

0
w(x, t)

⎞

⎠ ,

(7.5)

with the clamping conditionu((0, y, z), t) = 0.A plane linearized Timoshenko beam
is a continuous body whose motion is restricted to the displacement field (7.5). The
strain of the continuous body

ε(u) =

⎛

⎜⎜
⎝

∂u1
∂x

1
2 (

∂u1
∂y + ∂u2

∂x ) 1
2 (

∂u1
∂z + ∂u3

∂x )

∂u2
∂y

1
2 (

∂u2
∂z + ∂u3

∂y )

sym. ∂u3
∂z

⎞

⎟⎟
⎠ =

⎛

⎝
u′ − α′z 0 1

2 (w
′ − α)

0 0
sym. 0

⎞

⎠

is consequently constrained too such that it can be formulated in terms of u, w and
α only. The admissible virtual displacements δx and the corresponding strain ε(δx)
with respect to the constraint displacements (7.5) are

δx =
⎛

⎝
δu − δαz

0
δw

⎞

⎠ , ε(δx) =
⎛

⎝
δu′ − δα′z 0 1

2 (δw
′ − δα)

0 0
sym. 0

⎞

⎠ . (7.6)

Since the clamping is guaranteed, δx((0, y, z), t) = 0. The material law of the
impressed stress field (7.4) applied to the constrained displacement field is given by

σI xx = Eεxx = E(u′ − α′z),
σI xz = 2Gεxz = G(w′ − α).

(7.7)

In order to eliminate the constraint stresses due to the kinematical restrictions, we
evaluate the virtual work for the admissible virtual displacements (7.6). With the
usual split of the integration, we write the internal virtual work of (7.2) for the
strains of the admissible virtual displacements (7.6) as
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δW int =
∫

B

{
(δu′ − δα′z)σI xx + (δw′ − δα′)σI xz

}
dV

=
∫ l

0

{
δu′

∫

A
σI xxdA − δα′

∫

A
zσI xxdA + (δw′ − δα)

∫

A
σI xzdA

}
dx

=
∫ l

0

{
δu′NI − δα′MI + (δw′ − δα)QI

}
dx . (7.8)

Herein, the resultant contact forces of the plane linearized Timoshenko beam have
been recognized as the integrated quantities

NI (x, t) :=
∫

A
σI xxdA,

QI (x, t) :=
∫

A
σI xzdA,

MI (x, t) :=
∫

A
zσI xxdA,

(7.9)

which we also denote as the resultant contact normal forces, resultant contact! shear
forces and the resultant contact couples. Using the linear elastic material law for
the constrained displacement field (7.7), the internal virtual work is reformulated
further to

δW int =
∫ l

0

{
δu′E

∫

A
dAu′ − δα′

(
−E

∫

A
z2dAα′

)
+

+ (δw′ − δα)G
∫

A
dA(w′ − α)

}
dx

=
∫ l

0

{
δu′E Au′ − δα′(−E Iα′) + (δw′ − δα)G A(w′ − α)

}
dx

(7.10)

in which the second moment of area is abbreviated by I := ∫
A z2 dA. Since the

centerline corresponds to the line of centroids, the integral
∫

A z dA = 0 vanishes
and the couple terms between u′ and α′ vanish in the second line of (7.10) . By
comparing (7.8) and (7.10), we obtain a constitutive law for the generalized internal
forces

NI = E Au′, MI = −E Iα′, QI = G A(w′ − α). (7.11)

The connection between the generalized internal forces and the impressed stress field
of the continuous body

σI xx = E(u′ − α′z) = NI

A
+ MI

I
z,

σI xz = G(w′ − α) = QI

A
,

(7.12)
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is established by (7.7) and (7.11). Applying the plane kinematics to (6.5) and using
the results of (7.8), we obtain the weak variational form of the plane linearized
Timoshenko beam as

δW =
∫ l

0

{
δu′NI + (δw′ − δα)QI − δα′MI + δu(Aρü − n) + δw(Aρẅ − q)

−δα(−Iρα̈)
}
dx − {

δunl + δwql
} |x=l = 0, ∀δu, δw, δα, t, (7.13)

with δu(0) = δw(0) = δα(0) = 0 in order to satisfy the clamping boundary
condition. Using integration by parts, we obtain the strong variational form

δW =
∫ l

0

{
δu(Aρün − N ′

I ) + δw(Aρẅ − q − Q′
I )

−δα(−Iρα̈ − M ′
I + QI )

}
dx − (δu(nl − NI )|x=l

− (
δw(ql − QI ) − δα(−MI ))

∣
∣
x=l = 0, ∀δu, δw, δα, t

(7.14)

of the plane linearized Timoshenko beam. Using the common arguments of calculus
of variations, the terms in the round brackets of (7.14) have to vanish pointwise. This
leads for the interior of the beam x ∈ (0, l) to the equations of motion

Aρü = N ′
I + n,

Aρẅ = Q′
I + q,

−Iρα̈ = M ′
I − QI ,

(7.15)

to the kinetic boundary conditions NI (l) = nl , QI (l) = ql and MI (l) = 0 and
to the kinematic boundary conditions u(0) = w(0) = α(0) = 0. In the equations
of motion (7.15), we recognize that the longitudinal deformations are completely
decoupled from the shear andbendingdeformations of thebeam.With the constitutive
laws of (7.11) the equations of motion of the Timoshenko beam take the form

ρAü = E Au′′ + n,

ρAẅ = G A(w′′ − α′) + q,

ρI α̈ = E Iα′′ + G A(w′ − α).

(7.16)

It is possible to modify the second and the third equations of (7.16), such that the
rotation angleα can be eliminated. Firstly, we take the derivative of the third equation
with respect to x . Secondly, we solve the second equation for α′. Lastly, we insert
α′ and its further derivatives with respect to time and position into the differentiated
third equation. This leads us to a forth order differential equation in the transverse
displacements w

http://dx.doi.org/10.1007/978-3-319-16495-3_6
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ρAü − E Au′′ = n

E Iw′′′′ + ρAẅ − Iρ

(
E

G
+ 1

)
ẅ′′ + Iρ2

G
....
w = q + ρI

G A
q̈ − E I

G A
q ′′.

(7.17)

For vanishing distributed shear forces q and a shear correction factor of 1, the second
equation of (7.17) coincide with Eq. (7) of the celebrated publication of [1].

7.2.2 Constraint Stresses of the Plane Timoshenko Beam

In the previous subsection, (7.12) connects the generalized internal forces to the
impressed stress distribution of the continuous body. Unfortunately, we do not access
the total stress distribution of the beam, since the constraint stressesσC are eliminated
by the principle of d’Alembert–Lagrange. Insofar, the constant shear stress σI xz is
not in contradiction with a stress free boundary at the lateral surface of the beam. The
constraint stress σCxz is guaranteeing a stress free surface. To make the constraint
stresses visible, we have to evaluate the virtual work of the beam for non-admissible
virtual displacements. Since the non-admissible virtual displacements do not respect
the kinematical restrictions (7.5), the constraint stresseswill appear in the virtualwork
expression. With the solution of the boundary value problem, we can determine the
appearing constraint stresses up to a certain indeterminacy.

In the following, we are going to use two special functions, which are very con-
venient to extract the desired constraint stresses. We require the unit step function

h(x) : R → {0, 1} , x 	→
{
0 : x < 0
1 : x ≥ 0

(7.18)

and its derivative, the Delta-Dirac distribution δ. The Delta-Dirac distribution is
loosely defined for a real valued function f (x) as

δ(x0) :
∫

R

δ(x0) f (x)dx = f (x0). (7.19)

In accordance with the first equation of motion of (7.15), we rewrite the resultant
contact normal force at x = l as

NI (l) = NI (x0) +
∫ l

x0
N ′

Idx = NI (x0) +
∫ l

x0
(ρAü − n)dx . (7.20)

In order to evaluate the constraint stress distribution σCxx (x0) we cut the beam, as
depicted in Fig. 7.2, at the position x = x0 apart and virtually displace the right part
of the beam by the constant value δa ∈ R. Technically, the non-admissible virtual
displacements and their corresponding strains are written as
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Fig. 7.2 Non-admissible virtual displacements for the extraction of the constraint stresses σCxx

δxna =
⎛

⎝
δa h(x − x0)

0
0

⎞

⎠ , ε(δxna) =
⎛

⎝
δa δ(x0) 0 0

0 0
sym. 0

⎞

⎠ , (7.21)

where we have applied the unit step function (7.18) and the Delta-Dirac distribution
(7.19). Using the internal virtual work (7.2) and the virtual work contribution of
the external and inertia forces from (7.14), we obtain the virtual work for the non-
admissible virtual displacements (7.21) as

δW =
∫ l

0

∫

A
δa δ(x0)(σI xx + σCxx )dAdx +

∫ l

x0
δa(ρAü − n)dx − δanl .

Using the property of the Delta-Dirac distribution together with (7.12), we rewrite
the virtual work into the form

δW = δa

(∫

A

{
NI

A
(x0) + MI

I
(x0)z + σCxx (x0)

}
dA

+
∫ l

x0
{ρAü − n} dx − nl

)
.

Since the centerline corresponds to the line of centroids, the term with the resultant
contact couple MI vanishes after integration over the cross section. The principle of
virtual work states that

δW = δa
∫

A
σCxx (x0)dA + δa

(
NI (x0) +

∫ l

x0
{ρAü − n} dx − nl

)
= 0 ∀δa.

Using the equivalence (7.20) and the boundary condition at the end of the beam, the
round bracket in the above equation vanishes. Hence, the normal constraint stresses
in eI

x -direction integrated over the cross section have to vanish

∫

A
σCxx (x0)dA = 0. (7.22)
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Here we already recognize the first indeterminacy of the constraint stresses. It is not
possible to determine the constraint stresses σCxx uniquely. In order to obtain in the
further derivations the classical results for the constraint transverse shear stresses,
we choose the normal constraint stresses to vanish, i.e. σCxx = 0.

We extract the constraint transverse shear stress in the cross section σxz(z0) at
z = z0, by shearing the beam with the non-admissible virtual displacements and its
corresponding virtual strains

δxna =
⎛

⎝
δa(x)h(z − z0)

0
0

⎞

⎠ , ε(δxna) =
⎛

⎝
δa′h(z − z0) 0 1

2δa δ(z0)
0 0

sym. 0

⎞

⎠ , (7.23)

where the smooth function δa(x) vanishes at the boundary δa(0) = δa(l) = 0. It is
convenient to introduce the following integrated quantities

Az0 :=
∫

A
h(z − z0)dA, Hz0 :=

∫

A
zh(z − z0)dA, (7.24)

where we call Hz0 first moment of area. Using the internal virtual work (7.2) and the
virtual work contribution of the external and inertia forces from (7.14), we obtain
the virtual work for the non-admissible virtual displacements (7.23) as

δW =
∫ l

0

∫

A

{
δa′h(z − z0)σI xx + δa δ(z0)σxz

+δa

(
ρü − n

A

)
h(z − z0)

}
dAdx .

In accordance with (7.12) and the abbreviations of (7.24), we integrate the virtual
work over the cross section. As depicted in Fig. 7.3 the size of the beam at z0 in
eI
y-direction is given by b(z0). Assuming that the transverse shear stresses σxz are
constant in ey-direction, we reformulate the virtual work to

Fig. 7.3 Non-admissible virtual displacements to evaluate constraint shear stresses σCxz
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δW =
∫ l

0

{
δa′ MI

I
Hz0 + δa′ NI

A
Az0 + δa b(z0)σxz(z0)

+δa

(
ρü − n

A

)
Az0

}
dx .

Using integration by parts and the connection between the resultant contact shear
forces and the shear stresses of (7.12), we obtain the expression

δW =
∫ l

0
δa

{−M ′
I

I
Hz0 + b(z0)

(
QI

A
+ σCxz(z0)

)

+ (
Aρü − n − N ′

I

) Az0

A

}
dx .

By the first equation of (7.15) the last term in the round brackets have to vanish and
we state the principle of virtual work for the non-admissible virtual displacements
(7.23) as follows:

δW =
∫ l

0
δa

{−M ′
I

I
Hz0 + b(z0)

(
QI

A
+ σCxz(z0)

)}
dx = 0 ∀δa.

Using the common arguments of calculus of variations, the integrand has to vanish
pointwise, which leads to the constraint transverse shear stress distribution

σCxz(z0) = M ′
I Hz0

I b(z0)
− QI

A
, (7.25)

where M ′
I is given by the last equation of (7.15). The first term is equivalent to the

transverse shear stress due to bending. We will discuss this case within the Euler–
Bernoulli theory, where this result is commonly known.

The normal constraint stresses σCzz in the rigid cross sections is the last con-
tribution of constraint stresses which we evaluate. These normal constraint stresses
only appear in the dynamical consideration of the problem or when distributed shear
forces q are imposed. In order to make statements about the constraint stress distri-
bution we have to assume, that the shear forces q arise from a homogenous force
distribution over the cross section. For the extraction of the constraint stresses, we
assume the following non-admissible virtual displacements, as depicted in Fig. 7.4,
and its corresponding strain

δxna =
⎛

⎝
0
0

δa(x)h(z − z0)

⎞

⎠ , ε(δxna) =
⎛

⎝
0 0 1

2δa′h(z − z0)
0 0

sym. δa δ(z0)

⎞

⎠ , (7.26)

where the smooth function δa(x) vanishes at the boundary δa(0) = δa(l) = 0. Using
the internal virtual work (7.2) and the virtual work contribution of the external and
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Fig. 7.4 Non-admissible virtual displacements for constraint normal stresses σzz

inertia forces from (7.14), we obtain the virtual work for the non-admissible virtual
displacements (7.26) as

δW =
∫ l

0

{∫

A
δa′h(z − z0)σxzdA + δa b(z0)σCzz(z0)

+δa(ρAẅ − q)
Az0

A

}
dx .

In accordance with (7.12), (7.25) and integration by parts, we transform the virtual
work further to

δW =
∫ l

0
δa

{ −M ′′
I

I b(z0)

∫

A
h(z − z0)Hz0dA + b(z0)σCzz(z0)

+(ρAẅ − q)
Az0

Az

}
dx = 0 ∀δa.

The standard arguments lead to the constraint stress

σCzz = M ′′
I

I b(z0)2

∫

A
h(z − z0)Hz0dA − Az0

A
(ρAẅ − q). (7.27)

Using (7.3), (7.12), (7.22), (7.25) and (7.27) the total stress field of the plane lin-
earized Timoshenko beam is given by

σxx = NI

A
+ MI

I
z,

σxz = M ′
I Hz0

I b
,

σzz = M ′′
I

I b(z0)2

∫

A
h(z − z0)Hz0dA − Az0

A
(ρAẅ − q).

(7.28)

Due to the constraint shear stress the boundary conditions at the lateral surface is
fulfilled. When calculating the stress distribution for a clamped cantilever beam with
rectangular cross section of height h under a constant shear force distribution q ,
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the static solution implies with respect to z, that σxx (z) is a linear function, σxz(z)
is quadratic and σzz(z) is cubic. The solutions are of the magnitude σxx ∼ h

l ,

σxz ∼ ( h
l

)2
and σzz ∼ ( h

l

)3
. The magnitudes of the stress distributions justify

for slender bodies to neglect the normal stress contribution in eI
z -direction. When

working with composite structures also the shear stresses become more relevant.
Hence, terms up to second order are considered in engineering for the criterions of
failure.

7.3 The Plane Linearized Euler–Bernoulli Beam

The Euler–Bernoulli beam assumption is that the cross sections remain orthogonal to
the tangent vector of the centerline. In the plane case, the condition is fulfilled when
the derivative of the lateral displacement w is related to the cross section rotation α
by w′ = tanα. For small rotations the constraint condition is written as

g = α − w′ = 0. (7.29)

In contrast to the three-dimensional Euler–Bernoulli beam theories, the plane theory
allows to fulfill the additional Euler–Bernoulli constraint directly by a constrained
position field of the continuous body and the constraint do not have to be guaranteed
afterwards by a set-valued force law on the generalized internal forces. The con-
straint (7.29) leads to some specialty in the Euler–Bernoulli beam formulation. The
embedding (4.10) does not only depend on the position functions q but also on their
derivatives q′ with respect to ν.

7.3.1 Kinematics, Virtual Work and the Boundary
Value Problem

In accordance with (7.29) and (7.5), the constrained displacement field of the
Euler–Bernoulli beam is

u((x, y, z), t) = x(q(·, t),q′(·, t))(x, y, z) =
⎛

⎝
u(x, t) − w′(x, t)z

0
w(x, t)

⎞

⎠ , (7.30)

with the clamping condition u((0, y, z), t) = 0. We recognize the generalized posi-
tion functions q with the longitudinal and transverse displacements u andw, respec-
tively. The strain of the continuous body

http://dx.doi.org/10.1007/978-3-319-16495-3_4
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ε(u) =
⎛

⎝
u′ − w′′z 0 0

0 0
sym. 0

⎞

⎠

is due to the restricted kinematics formulated in terms of u and w only. Hence, the
Euler–Bernoulli assumption leads to a beamwith constrained shear deformation. The
admissible virtual displacements δx and its corresponding strain ε(δx) with respect
to the constrained displacements (7.30) are

δx =
⎛

⎝
δu − δw′z

0
δw

⎞

⎠ , ε(δx) =
⎛

⎝
δu′ − δw′′z 0 0

0 0
sym. 0

⎞

⎠ . (7.31)

Since the clamping is guaranteed, δx((0, y, z), t) = 0. The internal virtual work of
(7.2) for the admissible virtual strains (7.31) is written using the common split of
integration as

δW int =
∫ l

0

{
δu′

∫

A
σI xxdA − δw′′

∫

A
zσI xxdA

}
dx

=
∫ l

0

{
δu′NI − δw′′MI

}
dx,

(7.32)

where the internal generalized forces are defined as in (7.9).Using the sameprocedure
as in (7.10), the constitutive laws for the generalized internal forces are obtained as

NI = E Au′, MI = −E Iw′′. (7.33)

Since we treat the Euler–Bernoulli beam in the sense of an induced theory, we can
formulate the connection between the generalized internal forces and the impressed
stress distribution of the continuous body as

σI xx = E(u′ − w′′z) = NI

A
+ MI

I
z,

σI xz = 0.
(7.34)

Applying the plane kinematics to (6.5) and using the results of (7.32), we obtain the
weak variational form of the plane linearized Euler–Bernoulli beam as

δW =
∫ l

0

{
δu′NI − δw′′MI + δu(Aρü − n) + δw(Aρẅ − q)

− δw′(−Iρẅ′)
}
dx − (δunl + δwql)|x=l = 0, ∀δu, δw, t,

http://dx.doi.org/10.1007/978-3-319-16495-3_6
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where δu(0) = δw(0) = δw′(0) = 0 in order to satisfy the clamping boundary
condition. The strong variational form is obtained by applying integration by parts,
once for the δu′- and δw′-terms and twice for the δw′′-terms

δW =
∫ l

0

{
δu(Aρü − n − N ′

I ) + δw(Aρẅ − q − M ′′
I − Iρẅ′′)

}
dx

− (δu(nl − NI ) + δw(ql − M ′
I ) − δw′(−MI ))

∣∣
x=l = 0, ∀δu, δw, t.

Using the common arguments, we obtain the equations of motion of the plane lin-
earized Euler–Bernoulli beam

Aρü = N ′
I + n,

Aρẅ − Iρẅ′′ = M ′′
I + q,

(7.35)

together with the kinetic boundary conditions at x = l, nl = ND(l), ql = M ′
D(l) and

MI (l) = 0 and the kinematic boundary conditions u(0) = w(0) = w′(0) = 0. Using
the constitutive laws (7.33), the dynamic equations of motion for the Euler–Bernoulli
beam take the form

Aρü − E Au′′ = n,

E Iw′′′′ + Aρẅ − Iρẅ′′ = q.
(7.36)

7.3.2 Constraint Stresses of the Plane Euler–Bernoulli Beam

In the equations of motion of the Euler–Bernoulli beam (7.35) we recognize, that
no traction force QI appears. Nevertheless, it is possible that traction forces q are
equilibrated. The equilibrium is guaranteed by the constraint stresses and their corre-
sponding internal generalized constraint forces, which in (7.35) drop out, due to the
projection on admissible virtual displacements. In order to access these constraint
stresses, we introduce non-admissible virtual displacements as done in the previous
section. The virtual displacements (7.6), which are admissible for the Timoshenko
beam, are non-admissible virtual displacements for the Euler–Bernoulli beam, i.e.

δxna =
⎛

⎝
δu − δαz

0
δw

⎞

⎠ , ε(δxna) =
⎛

⎝
δu′ − δα′z 0 1

2 (δw
′ − δα)

0 0
sym. 0

⎞

⎠ . (7.37)

Since the clamping is still guaranteed, δxna((0, y, z), t) = 0. As for the Timoshenko
beam, we choose the normal constraint stresses to vanish, i.e. σCxx = 0. Using the
vanishing impressed transverse shear stresses (7.34), we rewrite the internal virtual
work of the plane linearized Euler–Bernoulli beam according to non-admissible
virtual displacements (7.37) as
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δW int =
∫ l

0

{
δu′

∫

A
σI xxdA − δα′

∫

A
zσI xxdA + (δw′ − δα)

∫

A
σCxzdA

}
dx

=
∫ l

0

{
δu′NI − δα′MI + (δw′ − δα)QC

}
dx,

in which we define the resultant contact shear force as

QC (x) :=
∫

A
σCxz dA.

By substituting QI with QC and α with w′ in (7.13) and (7.14), this leads to the
non-minimal equations of motion

Aρü = N ′
I + n,

Aρẅ = Q′
C + q,

−Iρẅ′ = M ′
I − QC .

These are exactly the equations of motion which are obtained, when starting with
the balance of linear and angular momentum, cf. for the static case [2]. From such a
derivation it does not become clear, that within the Euler–Bernoulli beam theory the
resultant contact shear forces QC (x) are in fact constraint forces. The derivation of
the constraint stresses is identical to the Timoshenko beam, hence it holds that

σCxx = 0, σCxz = M ′
I Hz0

I b
,

σCzz = M ′′
I

I b2

∫

A
h(z − z0)Hz0dA − Az0

A
(ρAẅ − q).

The total stress distribution coincides therefore with the stress distribution of the
Timoshenko beam (7.28). For the static case of the clamped beam under end load
ql = P , the transverse shear stress at z0 is obtained by

σxz(z0) = P Hz0

I b(z0)
.

This is the transverse shear stress formula which is derived in all technical mechan-
ics books and is commonly used for criterions of failure. However, it is seldom
mentioned, that also constraint stresses, which cannot be determined uniquely, are
considered for criteria of failure.
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7.4 The Plane Linearized Kirchhoff Beam

The Kirchhoff beam has an additional inextensibility constraint

g = u′ = 0,

i.e. that the derivative of longitudinal displacement has to vanish. Since the dynamics
in eI

x -direction is eliminated, the equations of motion of the Kirchhoff beam coincide
with the second line of (7.35) and (7.36). The derivation of the equations of motion
works analogously to the Euler–Bernoulli beam and is therefore omitted here. The
constitutive equations for the generalized internal forces is given as

MI = −E Iw′′.

The relationship between the three-dimensional theory and the internal generalized
forces is obtained as

σI xx = E(−w′′z) = MI

I
z, σI xz = 0, σI zz = 0.

With the same non-admissible virtual displacements as for the Euler–Bernoulli
beam and the definition of NC := ∫

A σCxx dA we obtain the non-minimal equations
of motion of the Kirchhoff beam

Aρü = n + N ′
C ,

Aρẅ = q + Q′
C ,

−Iρα̈ = M ′
I − QC .

By replacing NI with NC in (7.28), we obtain the total stress distribution of the
Kirchhoff beam.

In this chapter, we have introduced the well-known equations of motion of the
plane classical beam theories as induced theories using the principle of virtual work
of a constrained continuous body. The virtual work together with the solution of the
equations of motion and non-admissible virtual displacements have enabled us to
extract the constraint stresses. It is important to notice, that the constraint stresses have
only been extracted up to certain indeterminacy. Doing further assumptions on the
constraint stress distribution, the total stress distribution (7.28) consequently has been
uniquely determined. The main achievement of this chapter is that the very classical
results of the equations of motion and the stress distributions of the plane classical
beams are obtained by the principle of virtual work in a purely analytical way.



References 99

References

1. S.P. Timoshenko, LXVI. On the correction for shear of the differential equation for transverse
vibrations of prismatic bars. Philos. Mag. Ser. 6 41(245), 744–746 (1921)

2. D. Gross, W. Hauger, J. Schröder, W.A. Wall, Technische Mechanik 1 (Springer, Berlin, 2011)



Chapter 8
Augmented Nonlinear Beam Theories

Augmented nonlinear beams are beams whose constrained position field and insofar
whose cross section deformations are more involved than those in the classical the-
ory. In classical theories the deformation of the cross sections are described by six
generalized position functions, whose dual kinetic quantities are resultant contact
forces and contact couples. Since the balance of linear and angular momentum hold
six equations, it is also possible to derive the equations of motion of an induced
theory for classical beams from the balance of linear and angular momentum, cf. [1].
Assuming more complex deformation states of the cross sections using more than
six generalized position functions, as for instance to describe in-plane deformation
or out-of-plane warping, more complex and counterintuitive generalized resultant
contact forces do appear. The postulation of the correct intrinsic equations requires
much mechanical intuition. Hence, we determine the equations of motion of the non-
linear two-director Cosserat beam and the nonlinear Saint–Venant beam in a concise
way in the sense of induced beam theories.

InSect. 8.1,we introduce thenonlinearCosserat beamwhich is intensely discussed
in Naghdi [2] and Rubin [3]. In Sect. 8.2, we treat a beam theory with out-of-plane
warping, derived by Danielson and Hodges [4] in its static version as an induced
theory. A dynamical version of the Saint–Venant beam is obtained in Simo and
Vu-Quoc [5] as an intrinsic theory. In accordance to Saint–Venants solution of a
linear elastic body under torsion, who has recognized the effect of warping fields,
we call this theory Saint–Venant beam theory.

8.1 The Nonlinear Cosserat Beam

The Cosserat beam theory goes back to the celebrated work of the Cosserat broth-
ers [6] who developed intrinsic theories for generalized one-, two- and three-
dimensional continua founded on an action principle. For further historical
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102 8 Augmented Nonlinear Beam Theories

information and an alternative derivation of the upcoming equations of motion of the
nonlinear two-director Cosserat beam, we refer to [3].1

8.1.1 Kinematical Assumptions

Similar to the treatment in Chap. 5, we first assume at a given instant of time t a
placement of the slender body in E

3, at which the body covers the subset Ω t ⊂ E
3.

We identify the characteristic direction of the slender body with an arbitrarily chosen
centerline r which propagates along the largest expansion of the body. Subsequently,
we identify every point of the continuous body in Ω t with a unique point of the set
B := ξ(·, t)−1(Ω t ) ⊂ R

3. Then we choose the body chart θ such that the centerline
r is parametrized by θ3 =: ν only. For a Cosserat beam, we assume the existence of
a motion given by the constrained position field

ξ(θα, ν, t) = x(q(·, t))(θα, ν) = r(ν, t) + θαdα(ν, t), (8.1)

where the generalized position functions q(·, t) are recognized as r(·, t), d1(·, t)
and d2(·, t). The centerline is given by the space curve r(·, t) = ξ(0, 0, ·, t) and is
bounded by its ends ν = ν1 and ν = ν2 for ν2 > ν1. At every material point ν of the
centerline r two directors dα are attached which span the plane cross section of the
beam. In contrast to the classical beam, the directors are allowed to deform. Hence,
the cross sections remain plane, but in-plane deformation may occur. The current
state of the cross section ξ( Ā(ν), ν, t) is parametrized by the coordinates (θ1, θ2) ∈
Ā(ν), where Ā(ν) := {

(θ1, θ2) | (θ1, θ2, ν) ∈ B
}
. In (8.1), we have identified the

generalized position functions q(·, t) with r(·, t), d1(·, t) and d2(·, t). Hence, the
generalized position functions q(·, t) evaluated at ν can be considered as a point on
the 9-dimensional manifold E

3 × E
3 × E

3.
A body is modeled as a Cosserat beam, when the in-plane deformation is assumed

to be relevant for the motion. We want to mention, that the in-plane deformation is
described by the two directors only. According to the classification in [7] merely nor-
mal cross section extension, tangential shear deformation and normal cross sectional
shear deformation may appear.

Since the directors are unconstrained, there is no such kinematical quantity as
a rotation. Rotations commonly appear in the context of rigidified and extended
objects. According to the constrained position field, the velocity and acceleration of
a material point are introduced by the total time derivative of the constrained position
field (8.1) as

ẋ = ṙ + θαḋα, ẍ = r̈ + θαd̈α. (8.2)

1 Rubin [3] induces the equations of motion of the nonlinear Cosserat beam from the balance of
angular, linear and averaged linear momentum. Without recognizing, using the balance of averaged
linear momentum, he applies the principle of virtual work for admissible virtual displacements.

http://dx.doi.org/10.1007/978-3-319-16495-3_5
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The partial derivatives of the constrained position field follow straight forward
from (8.1)

x,α = dα, x′ = r′ + θα(dα)′, (8.3)

where the partial derivative with respect to ν is still denoted by a superposed prime
(·)′. The admissible virtual displacements with respect to the constrained position
field (8.1) and the corresponding partial derivatives are

δx = δr + θαδdα, δx,α = δdα, δx′ = δr′ + θα(δdα)′. (8.4)

For the formulation of constitutive laws or for the determination of mass densities it
is convenient to introduce a special configuration, called reference configuration. Let
r0 and Dα be the reference generalized position functions of Q, then the reference
configuration of the beam corresponds to the constrained position field

�(θα, ν) = X(Q)(θα, ν) = r0(ν) + θαDα(ν). (8.5)

We call the space curve r0 = �(0, 0, ·) the reference curve of the beam. The direc-
tors Dα describe the reference state of the cross section �( Ā(ν), ν) at ν.

8.1.2 Virtual Work Contribution of Internal Forces

In the following, we determine the contribution of the virtual work due the admissi-
ble virtual displacements (8.4). According to the principle of d’Alembert–Lagrange
(4.8), the constraint stresses due to the constrained position field drop out and the
boundary value problem of the nonlinear Cosserat beam is obtained.

Applying the derivatives of the admissible virtual displacements (8.4) to the inter-
nal virtual work of the continuous body (4.1), we obtain by the common split of the
integration the internal virtual work of the Cosserat beam as

δW int =
∫

B
ti · δx,i d

3θ =
∫ ν2

ν1

{
δdα · kα + δr′ · n + (δdα)′ · mα

}
dν. (8.6)

Herein, the integrated kinetic quantities kα, n and mα are the intrinsic director
couples, the resultant contact forces and the resultant director contact couples of the
current configuration defined by

kα(ν, t) =
∫

Ā(ν)

tαd2θ,

mα(ν, t) =
∫

Ā(ν)

θαt3d2θ,

n(ν, t) =
∫

Ā(ν)

t3d2θ.

(8.7)

http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4
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In order to make the connection to an intrinsic theory, it is possible to introduce
an equivalence class of forces. Force distributions in the Euclidean space which
have the same intrinsic director couples, the same resultant contact forces and the
same director contact couples are considered to be equivalent. The representatives
of this equivalence class are then identified with the internal generalized forces
of an intrinsic Cosserat beam theory which postulates the right-hand side of (8.6)
as its internal virtual work of the generalized one-dimensional continuum. By the
definition of an equivalence class, we decouple our induced theory from the theory
of a constrained three-dimensional continuous body and arrive at an intrinsic theory.
It is worth mentioning, that since we have no rotations as kinematical quantities,
also no resultant contact couples in the sense of the classical theory appears in the
equations of motion of the Cosserat beam.

8.1.3 Virtual Work Contribution of Inertia Forces

As for the classical beam, the pullback of the mass distribution ρ0 with respect to
the reference configuration (8.5) allows us to formulate the mass distribution on the
domain B as

dm = ρ0 G1/2 d3θ, G1/2 = X,1 · (X,2 ×X,3 ). (8.8)

In accordancewith the virtualwork of (4.2), the accelerations (8.2) and the admissible
virtual displacements (8.4), the virtual work of the inertia forces

δW dyn =
∫

B

δx · ẍ dm =
ν2∫

ν1

{∫

Ā(ν)

(δr + θαδdα) · (r̈ + θβ d̈β)ρ0 G1/2 d2θ

}
dν

=
∫ ν2

ν1

{
δr · Aρ0 r̈ + δdα · qα

ρ0
r̈ + δr · qβ

ρ0
d̈β + δdα · Mαβ

ρ0
d̈β

}
dν (8.9)

is obtained, where in the last line the time independent inertia coefficients

Aρ0(ν) :=
∫

Ā(ν)

ρ0 G1/2 d2θ, qα
ρ0

(ν) :=
∫

Ā(ν)

θαρ0 G1/2 d2θ,

Mαβ
ρ0

(ν) :=
∫

Ā(ν)

θαθβρ0 G1/2 d2θ.

are defined. If the centerline coincides with the line of centroids, then the inertia term
qα
ρ0

vanishes.

http://dx.doi.org/10.1007/978-3-319-16495-3_4
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8.1.4 Virtual Work Contribution of External Forces

As for the classical beam theory, we do allow forces df with Dirac-type contri-
butions. Using the common split of integration and using the admissible virtual
displacements (8.4), we obtain the external virtual work contribution

δW ext =
∫

B

δx · df =
∫

[ν1,ν2]

{
δr · dn + δdα · dmα

}
,

where the resultant external forces distribution dn and the resultant external director
couple distribution are the integrated quantities

dn(ν, t) :=
∫

Ā(ν)

df, dmα(ν, t) :=
∫

Ā(ν)

θαdf .

With the sameequivalence class argument as for the resultant contact forces anddirec-
tor couples, we can identify the resultant external forces and director couples with
external generalized force distributions of an intrinsic theory. We want to emphasize
again, that naturally there appear no couples as in the classical beam theory. Never-
theless, together with constraint conditions on the directors, it is possible to assign
couples from the classical theory to a Cosserat beam. As a consequence, at the point
of application, the cross section is rigidified. For the sake of brevity, we only allow
discontinuities in the force contributions at the boundaries ν1 and ν2 and obtain the
virtual work contribution for external forces as

δW ext =
ν2∫

ν1

{
δr · n + δdα · mα

}
dν +

2∑

i=1

{δr(νi ) · ni + δdα(νi ) · mi } . (8.10)

8.1.5 The Boundary Value Problem

Using the principle of virtual work of the continuous body (4.3) with the total
stress (4.7), together with the modified virtual work contributions (8.6), (8.9), (8.10)
and the principle of d’Alembert–Lagrange (4.8), we obtain to the weak variational
form

δW =
ν2∫

ν1

{
δr · (Aρ0 r̈ + qβ

ρ0
d̈β − n) + δr′ · n + (δdα)′ · mα + δdα · (kα + qα

ρ0
r̈

+Mαβ
ρ0

d̈β − mα)
}
dν +

2∑

i=1

{
δr · ni + δdα · mα

i

}∣∣
ν=νi

= 0 ∀δr, δdα

http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4
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of the nonlinear Cosserat beam. Using integration by parts, the virtual work is
expressed in the form

δW = − {
δr · (n + n1) + δdα · (m + mα

1 )
} |ν=ν1

−
∫

ν1
ν2

{
δr · (Aρ0 r̈ + qβ

ρ0
d̈β − n − n′)

+ δdα · (kα + qα
ρ0

r̈ + Mαβ
ρ0

d̈β − mα − (mα)′)
}
dν

+ {
δr · (n − n2) + δdα · (m + mα

2 )
} |ν=ν2 = 0 ∀δr, δdα,

which corresponds to the strong variational form of the Cosserat beam. If the func-
tions in the round brackets are continuous and if the variations of the generalized
position functions are smooth enough, then by the Fundamental Lemma of Calculus
of Variation, the former terms have to vanish pointwise. This leads to the complete
boundary value problem with the equations of motion of the Cosserat beam which
are valid for ν ∈ (ν1, ν2)

n′ + n = Aρ0 r̈ + qβ
ρ0

d̈β,

(mα)′ + mα − kα = Mαβ
ρ0

d̈β + qα
ρ0

r̈,

together with the boundary conditions n(ν1) = −n1, mα(ν1) = −mα
1 and n(ν2) =

n2, mα(ν2) = mα
2 .

8.1.6 Constitutive Law and Restrictions on Internal Forces

In the same spirit as for the classical beam theory, we propose a semi-induced theory
for the nonlinear Cosserat beam, where we formulate an elastic generalized consti-
tutive law relating generalized strains and generalized internal forces. Since we do
not consider any Cosserat beam with further constraints, which is possible, we omit
the subscript (·)I for the impressed generalized internal forces.

The most basic constitutive law for a nonlinear Cosserat beam is an elastic force
law in the sense of (5.28), such that

Ŵ (ν, t) = W (γi , (δα)i , (εα)i ),

where we have introduced the generalized strain measures

γi (ν, t) := ei · r′ − ei · r′
0,

(δα)i (ν, t) := ei · dα − ei · Dα,

(εα)i (ν, t) := ei · (dα)′ − ei · (Dα)′,

http://dx.doi.org/10.1007/978-3-319-16495-3_5
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with (e1, e2, e3) being an inertial orthonormal basis of E3. It can readily be shown,
that the chosen generalized strains are compatible with the internal virtual work (8.6)
of the induced theory. The variation of the potential W is written as

δW = ∂W

∂γi
ei · δr′ + ∂W

∂(δα)i
ei · δdα + ∂W

∂(εα)i
ei · δ(dα)′

= n · δr′ + kα · δdα + mα · (δdα)′,

where it is summed over repeated latin and over repeated greek indices and the
generalized internal forces

n := ∂W

∂γi
ei , kα := ∂W

∂(δα)i
ei , mα := ∂W

∂(εα)i
ei

have been recognized. In accordance with the law of interaction (4.4), from the three-
dimensional theory, we induce an additional restriction on our generalized internal
forces. Since the symmetry condition (4.5) has to hold pointwise, also its integration
over the cross section must be valid, i.e.

∫

Ā(ν)

x,i ×ti d2θ = 0 ∀ν

Using the partial derivatives of the constrained position field (8.3) together with the
definition of the generalized internal forces (8.7), we identify a symmetry condition

dα × kα + r′ × n + (dα)′ × mα = 0 ∀ν (8.11)

for the intrinsic theory. The additional condition (8.11) on the internal generalized
forces makes it elaborate to formulate a constitutive law. A very extended treatise on
constitutive laws of Cosserat beams is given in the book [3] or in the corresponding
publication [8]. Another treatise on that topic can be found in [9].

8.2 The Nonlinear Saint–Venant Beam

In all previously discussed beam theories, the cross sections are assumed to remain
plane during the motion of the beam. In the work of Saint–Venant, the deforma-
tion of homogenous linear elastic prismatic bodies which are loaded only near their
ends are investigated. The exact solution of the torsional problem for non-circular
cross sections leads to out-of-plane deformation of the cross sections. These solu-
tions suggest that the classical beam theories are inadequate for a three-dimensional
analysis of beam-like bodies. In this section, we derive the equations of motion of a
beam which describes also out-of-plane warping. Since the warping field is gener-
ally related to the investigations of Saint–Venant, we call the following beam theory
nonlinear Saint–Venant beam theory.

http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4
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8.2.1 Kinematical Assumptions

For the nonlinear Saint–Venant beam, we assume the following constrained position
field:

ξ(θα, ν, t) = x(q(·, t))(θα, ν)

= r(ν, t) + θαdα(ν, t) + λ(θα, ν)ψ(ν, t)d3(ν, t),
(8.12)

where the generalized position functions q(·, t) are recognized as r(·, t), d1(·, t),
d2(·, t) and ψ(·, t). The centerline is given by the space curve r(·, t) = x(0, 0, ·, t)
and is bounded by its ends ν = ν1 and ν = ν2 for ν2 > ν1. At every mate-
rial point ν of the centerline r a positively oriented orthonormal director triad
(d1(ν, t), d2(ν, t), d3(ν, t)) is attached which is related to an inertial basis in E

3

by a rotation as introduced in (5.2). Superimposed to this rigid motion of the plane,
a point on the cross section is allowed to deform additionally out-of-plane in direc-
tion of d3. This deformation is not arbitrary, but it is induced by an ansatz function
λ(θα, ν)ψ(ν, t) composed by the multiplication of two functions. The geometrical
form of the out-of-plane displacement is given by a Saint–Venant warping function
λ(θα, ν) which depend on the coordinates θα and is allowed to vary along the beam
ν. The magnitude of the deformation is described by the warp amplitude ψ(ν, t)
depending on the coordinate of the characteristic expansion ν only. The warping
function is given analytically for simple cross section forms or evaluated by a pre-
computational step for more complex cross section forms and has to require

∫

Ā(ν)

λd2θ =
∫

Ā(ν)

λθαd2θ = 0. (8.13)

In (8.12) we have identified the generalized position functions q(·, t) with r(·, t),
d1(·, t), d2(·, t) and ψ(·, t) and have constrained the directors d1(·, t) and d2(·, t)
by (5.2) to remain orthonormal. Hence, the generalized position functions q(·, t)
evaluated at ν can be considered as a point on the 7-dimensional manifold E

3 ×
SO(3) × R. The large displacement of the beam is described by the motion of the
centerline and the rotation of the cross sections. The out-of-plane warping field,
whose magnitude is small compared to the displacements of the centerline, models
an additional degree of freedom of the continuum which is especially relevant for
torsional problems. Nevertheless, we still restrict in-plane warping, which would be
necessary to allow an exact solution for the pure bending problem of a linear elastic
continuum.

It is convenient to abbreviate the position vector from the centerline to a material
point in the cross section by

ρ(θα, ν) = x − r = θαdα + λψd3. (8.14)

http://dx.doi.org/10.1007/978-3-319-16495-3_5
http://dx.doi.org/10.1007/978-3-319-16495-3_5
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The velocity and the acceleration fields

ẋ = ṙ + ω × ρ + ψ̇λd3,

ẍ = r̈ + ω̇ × ρ + ω × (ω × ρ) + 2ω × (ψ̇λd3) + ψ̈λd3
(8.15)

are introduced by taking the total time derivative of the position field (8.12) and using
the angular velocity ω defined in (5.5). By applying the effective curvature (5.4), the
partial derivatives of (8.12) are of the form

x,α = dα + λ,α ψd3, x′ = r′ + k × ρ + (λψ)′d3 . (8.16)

With the virtual rotations (5.6), for the admissible virtual displacement field

δx = δr + δφ × ρ + δψλd3

is obtained. In accordance with (5.6) and (8.14), the variation of the position vector
ρ is

δρ = δφ × θαdα + δψλd3 + δφ × λψd3 = δφ × ρ + δψλd3.

The variations of the partial derivatives with respect to θα

δx,α = δφ × x,α +δψλ,α d3 (8.17)

and the variation of the partial derivative with respect to ν

δx′ = δr′ + δk × ρ + k × δρ + δψλ′d3 + δψ′λd3 + δφ × (λψ)′d3 (8.18)

follow directly from (8.16).

8.2.2 Virtual Work Contribution of Internal Forces

The transformation of the internal force contribution follows closely to the trans-
formation of the internal force contribution of the classical beam. Using (8.17) and
(8.18) together with the property of the cross product of (B.2), the internal virtual
work density (4.1) can be written as

ti · δx,i = δφ · (x,α ×tα) + δψλ,αtα · d3 + δr′ · t3 + δk · (ρ × t3)

+ t3 · (k × δρ + δψλ′d3 + δψ′λd3 + δφ × (λψ)′d3).
(8.19)

http://dx.doi.org/10.1007/978-3-319-16495-3_5
http://dx.doi.org/10.1007/978-3-319-16495-3_5
http://dx.doi.org/10.1007/978-3-319-16495-3_5
http://dx.doi.org/10.1007/978-3-319-16495-3_5
http://dx.doi.org/10.1007/978-3-319-16495-3_4
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Applying the symmetry condition (4.5), the first term of (8.19) can be written with
x′ of (8.16) and together with the property of the cross product of (B.2) the internal
virtual work density takes the form

ti · δx,i = −t3 · (δφ × r′ + δφ × (k × ρ) + δφ × (λψ)′d3)

+ δψλ,α tα · d3 + δr′ · t3 + δk · (ρ × t3)

+ t3 · (k × δρ + δψλ′d3 + δψ′λd3 + δφ × (λψ)′d3).

Using (8.2) and rearranging the terms, we manipulate the expression further to

ti · δx,i = t3 · (δr′ − δφ × r′) + δk · (ρ × t3)

+ t3 · (k × (δφ × ρ) + δφ × (ρ × k))

+ δψ(λ,α tα · d3 + t3 · (k × λd3) + t3 · λ′d3) + δψ′t3 · λd3,

where the term δφ × (λψ)′d3 cancels. The Jacobi identity (B.1) and the skew-
symmetry of the cross-product finally leads to

ti · δx,i = t3 · (δr′ − δφ × r′) + (ρ × t3) · (δk − δφ × k) + δψ′t3 · λd3

+ δψ d3 · (λ,α tα + λt3 × k + λ′t3)

as the internal virtual work density for admissible virtual displacements. With the
usual split of the integration, the internal virtual work of the Saint–Venant beam is
represented as

δW int =
∫ ν2

ν1

{
n · (δr′ − δφ × r′) + m · (δk − δφ × k) + δψ′D + δψB

}
dν.

(8.20)
Herein, the integrated kinetic quantities

n(ν, t) :=
∫

Ā(ν)

t3 d2θ, m(ν, t) :=
∫

Ā(ν)

(ρ × t3) d2θ,

D(ν, t) := d3 ·
∫

Ā(ν)

λt3d2θ,

B(ν, t) := d3 ·
∫

Ā(ν)

(λ,α tα + λt3 × k + λ′t3)d2θ.

are the resultant contact forces, the resultant contact couples, the resultant contact
bi-moments and the resultant contact bi-shears, respectively, of the current configu-
ration.2

2 Since Danielson and Hodges [4] introduce the constrained position field with a warping function
which is constant along ν, the λ′-term in the resultant contact bi-shear vanishes in their derivation.

http://dx.doi.org/10.1007/978-3-319-16495-3_4
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8.2.3 Virtual Work Contribution of Inertia Forces

As for the Cosserat beam, we choose the mass distribution (8.8). For the manipula-
tion of the inertia terms it is convenient to introduce some abbreviations of integral
expressions and their properties. In order that the following transformations do not
explode, we consider the centerline to be the line of centroids. According to that
choice, together with the requirement (8.13) for the warping function, all terms
which are linear in ρ and integrated over the cross section, vanish. The cross section
inertia density is introduced as

∫

Ā(ν)

ρ̃ρ̃Tρ0 G1/2 d2θ = Iρ0(ν, t) + ψ2Ξρ0(ν)Pd3(ν),

where Iρ0 corresponds to the cross section inertia density (5.19) of the classical beam
3

and the projection Pd3 and the warping inertia density are defined as

Pd3(ν, t) := d̃3(ν, t)d̃3(ν, t)T, Ξρ0(ν) :=
∫

Ā(ν)

λ2ρ0 G1/2 d2θ.

Furthermore, it is convenient to abbreviate the product of the cross section inertia
density and the angular velocity by

h(ν, t) := (Iρ0(ν, t) + ψ2(ν, t)Ξρ0(ν)Pd3(ν, t))ω(ν, t).

By considering the derivation in (5.21) and using the same arguments for the projec-
tion Pd3 , it can easily be shown that

ḣ = (Iρ0 + ψ2Ξρ0Pd3)ω̇ + ω × (Iρ0 + ψ2Ξρ0Pd3)ω + 2ψψ̇Ξρ0Pd3ω.

With the admissible virtual displacements (8.12) and the accelerations (8.15) of the
restricted kinematics, the virtual work contribution of the inertia forces as

δW dyn =
∫

B
δx · ẍ dm =

∫

B

{
(δr + δφ × ρ + δψλd3) · (r̈ + ω̇ × ρ+

+ω × (ω × ρ) + 2ω × (ψ̇λd3) + ψ̈λd3)
}
ρ0 G1/2 d3θ

is obtained. For the sake of clarity, the inertia terms are treated separately for all the
variations δr, δφ and δψ. Since the terms linear in ρ integrated over the cross section
vanish, the inertia forces in δr-direction are of the form

∫

B
δr · ẍ dm =

∫ ν2

ν1

δr · Aρ0 r̈dν, (8.21)

3 Notice, that within the classical theory ρ = θαdα.

http://dx.doi.org/10.1007/978-3-319-16495-3_5
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where the cross section mass density (5.17) has been used. The skew-symmetry of
the cross product, together with (B.2) and (B.5), implies the δφ-terms of the inertia
forces as

∫

B
(δφ × ρ) · ẍ =

∫

B

{
δφ · (ρ̃ρ̃Tω̇ + ω̃ρ̃ρ̃Tω + 2ψψ̇λ2Pd3ω)

}
ρ0G1/2d3θ

=
∫ ν2

ν1

δφ · ḣ dν.

(8.22)

For the δψ-terms all terms which are linear in λ and those who are orthogonal to d3
drop out. Using (B.3) and (B.4), the inertia contribution is of the form

∫

B
δψλd3 · ẍ =

∫ ν2

ν1

{
δψd3 · Ξρ0(ψ̈d3 + ω × (ω × ψd3))

}
dν

(B.3)=
∫ ν2

ν1

{
δψΞρ0

(
ψ̈ − ψ

(
(ω · ω) − (ω · d3)

2
))}

dν (8.23)

(B.3)=
∫ ν2

ν1

{
δψΞρ0

(
ψ̈ − ψ(ω × d3)

2
)}

dν.

According to (8.21)–(8.23), the virtual work contribution

δW dyn =
∫ ν2

ν1

{
δr · Aρ0 r̈ + δφ · ḣ + δψΞρ0

(
ψ̈ − ψ(ω × d3)

2
)}

dν (8.24)

can be written in compact form.

8.2.4 Virtual Work of External Forces

As for the classical beam theory, we do allow forces df withDirac-type contributions.
Using the usual split of the integration together with the virtual displacements (8.2),
we obtain the external virtual work contribution

δW ext =
∫

B
δx · df =

∫

[ν1,ν2]

{
δr · dn + δφ · dm + δψdD

}
,

where the generalized external force distributions

dn :=
∫

Ā(ν)

df, dm :=
∫

Ā(ν)

ρ × df, dD := d3 ·
∫

Ā(ν)

λdf,

http://dx.doi.org/10.1007/978-3-319-16495-3_5
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have been recognized. For the sake of brevity, we only allow discontinuities in
the force contributions at the boundaries ν1 and ν2 and obtain the virtual work
contribution for external forces as

δW ext =
∫ ν2

ν1

{
δr · n + δφ · m + δψD

}
dν

+
2∑

i=1

{
δr · ni + δφ · mi + δψDi

} |ν=νi .

(8.25)

8.2.5 The Boundary Value Problem

Using the principle of virtual work of the continuous body (4.3) with the total
stress (4.7), together with the modified virtual work contributions (8.20), (8.24) and
(8.25), we obtain the weak variational form

δW =
∫ ν2

ν1

{
n · (δr′ − δφ × r′) + m · (δk − δφ × k) + δr · (Aρ0 r̈ − n)

+ δφ · (m − ḣ) + δψ′ D + δψ
(
Ξρ0

(
ψ̈ − ψ(ω × d3)

2
)

+ B − D
)}

dν

+
2∑

i=1

{
δr · ni + δdα · mα

i + δψDi
}∣∣

νi
= 0 ∀δr, δφ, δψ

of the nonlinear Saint–Venant beam. Applying the identity (5.11) and integration by
parts, the virtual work is expressed in the form

δW = − {
δr · (n + n1) + δφ · (m + m) + δψ(D + D1)

} |ν=ν1

+
∫ ν2

ν1

{
δr · (Aρ0 r̈ − n − n′) + δφ · (ḣ − m − m′ − r′ × n)+

+ δψ
(
Ξρ0

(
ψ̈ − ψ(ω × d3)

2
)

+ B − D′ − D
)}

dν

+ {
δr · (n − n1) + δφ · (m − m) + δψ(D − D1)

} |ν=ν2 = 0 ∀δr, δφ, δψ,

which corresponds to the strong variational form of the Saint–Venant beam. For the
common arguments of calculus of variations, this leads to the complete boundary
value problem with the equations of motion of the nonlinear Saint–Venant beam
which are valid for ν ∈ (ν1, ν2)

http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_4
http://dx.doi.org/10.1007/978-3-319-16495-3_5
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n′ + n = Aρ0 r̈,

m′ + r′ × n + m = ḣ,

D′ − B + D = Ξρ0

(
ψ̈ − ψ(ω × d3)

2
)

,

together with the boundary conditions n(ν1) = −n1, m(ν1) = −m1, D(ν1) = −D1
and n(ν2) = n2, m(ν2) = m2, D(ν2) = D2.

8.2.6 Constitutive Laws

In comparison with the classical beam formulation, two new scalar quantities appear
additionally. Thus, the generalized strain measures (5.29) and (5.30) are completed
by ψ and ψ′. A very straight forward elastic potential is

Ŵ (ν) = W (γi ,κi ,ψ
′,ψ),

The variation of the elastic potential leads to the internal virtual work

δW = ∂W

∂γi
· (δr′ · di + r′ · δdi ) + ∂W

∂ki
di · δk j d j + ∂W

∂ψ
δψ + ∂W

∂ψ′ δψ
′

= n · (δr′ − δφ × r′) + m · (δk − φ × k) + Bδψ + Dδψ′,

where we have recognized

n := ∂W

∂γi
di , m := ∂W

∂ki
di , B := ∂W

∂ψ
, D := ∂W

∂ψ′ .

For an explicit formulation of a constitutive law we refer to [5].
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Chapter 9
Conclusions and Outlook

The monograph has been divided into two parts. Whereas in the first part questions
on the foundations of continuummechanics are discussed, the second part applies the
obtained theory to induce a number of different beam theories. To retain the purpose
that the two parts may be read independently, the conclusions and the outlook of
both are given in separate sections.

9.1 Geometric Continuum Mechanics

In Part I of this book differential geometric concepts and their application to mechan-
ical objects have been discussed. Thereby, an intrinsic differential geometric setting
of a continuous body has been obtained. In the sense of analytical mechanics, the
space of forces of a continuous body is defined as the set of linear functionals on the
space of virtual displacements. An affine connection on the physical space which
induces a covariant derivative on the space of virtual displacements allows for a non-
unique representation of forces by vector and tensor valued measures. Classically,
the vector and tensor valued measures represent the external and the internal forces,
respectively. How internal and external forces interact is postulated in the principle
of virtual work.

The scientific merits of the first part of the book can be summarized as follows:

• In this work the spatial virtual displacement field has been defined as the infin-
itesimal generator of a smooth global flow on the physical space. The virtual
displacement field has then been defined as the pullback section of the spatial
virtual displacement field with respect to the configuration of the body. Using the
isomorphism between the tangent space of the configuration manifold and the set
of pullback sections, the virtual displacement field has been identified with an
element of the tangent space of the configuration manifold.

© Springer International Publishing Switzerland 2015
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• A definition of the covariant derivative of a pullback section induced by an affine
connection on the ‘target’-manifold has been introduced. Furthermore, its local
representation has been shown in this book.

• The forces of a continuous body and their representations have been obtained in
the sense of duality as proposed by Segev. The interaction between the different
classes of forces, i.e. internal and external forces, has then been introduced in this
book by postulating a virtual work principle which is in accordance with the first
gradient theory of Germain.

• Asplit of the variational stress into a tensor density, classically denoted as the stress
tensor, and a volume element of the body has been introduced. This point of view
on the classical stress, given in this book, clarifies the non-tensorial transformation
rules between the classical stresses as e.g. the Cauchy or 1st Piola-Kirchhoff stress.

• By introducing rigidifying virtual displacements as Killing vector fields, we have
introduced a concept to define internal forces in an intrinsic setting. A proof of the
symmetry condition of the stress under certain regularity assumptions still needs
to be given.

The author is aware that rigorous proofs for some of the statements are missing.
The challenging task of an intrinsic differential geometric description of continuum
mechanics is the interaction between infinite dimensional geometry, measure theory
and functional analysis. The combination of all these mathematical topics forms a
rather modern research field in pure mathematics. For a concise formulation of an
intrinsic theory, first, the required mathematical framework has to be gathered and
prepared. The following open questions and tasks are identified:

• The topology of the infinite dimensional manifold of embeddings and its mechan-
ical interpretation have to be discussed. The possibilities to relax the continuity
assumptions of the embeddings, such that the manifold structure of the set of
configurations is preserved, have to be analyzed. The corresponding admissible
force representatives have to be studied. For instance, for piecewise continuous
virtual displacement fields it is assumed that traction forces within the body can
be described.

• A complete proof of Theorem 2.23 has to be given.
• The representation theorem of C1(κ∗TS)∗-forces has to be proved. A representa-
tion theorem for relaxed continuity assumptions must be discussed.

• The symmetry condition of the variational stress for rigidifying virtual displace-
ments for the Euclidean three-space as physical space has to be derived.

• It has to be shown, that the classical stresses, as e.g. Cauchy stress, Kirchhoff stress
or Biot stress, arise from the variational stress by choosing distinct configurations,
volume elements and coordinate representations.

• Using Stokes’ theorem on manifolds and the traction stress of [1] the strong vari-
ational form of the continuous body has to be derived.

• For hyperelasticmaterials the internal virtualwork has to be obtained by a variation
of an internal energy. Together with an intrinsic differential geometric formulation
of variational calculus this leads directly to the theory of covariant elasticity.

http://dx.doi.org/10.1007/978-3-319-16495-3_2
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Comparing the equilibrium equation of a linear elastic bar of infinite length with
the equation of motion of a particle moving in a one-dimensional physical space,
one recognizes that the differential equations coincide. Moreover, the concept of
stress and the concept of linear momentum are the same from a geometric point of
view. Furthermore, driven by the insights of general relativity, a vision of an intrinsic
differential geometric description of classical continuum dynamics emerges. In such
a description, the body is a space-time continuum which is mapped to the physical
space modeled as a vector bundle. The vector bundle consists of a one-dimensional
Riemannian basemanifold,modeling the time, togetherwith a typical fiber of a three-
dimensional Euclidean vector space, modeling the real space. An affine connection
on the vector bundle defines the inertial forces and corresponds to the choice of an
inertial frame in classical mechanics. Such an invariant theory constitutes the basis
of classical mechanics and the virtual work, or more appropriate the virtual action is
‘The Invariant Quantity’ of this theory.

9.2 Induced Beam Theories

Starting from the principle of virtual work of a continuous body and by considering a
beam as a continuous body with a constrained position field, induced beam theories
have been obtained in this book in a systematic and concise way. A constrained
position field is guaranteed by a constraint stress field, whose constitutive law can
only be formulated in variational form with the principle of d’Alembert–Lagrange.
Due to the principle of d’Alembert–Lagrange, the constraint stress field vanishes for
all admissible virtual displacements, i.e. for variations of the constrained position
field. Themost convenient approach for a systematic treatment of an arbitrary induced
beam theory is therefore given by the principle of virtual work of a continuous
body. This emphasizes the importance of the principle of virtual work in the field of
structural mechanics.

The main contributions of the second part of the book can be summarized as
follows:

• As an example of how specific theories are induced from a general mechanical
theory, beam theories have been induced in Part II from the theory of a continuous
body. A variational formulation of the general theory, together with the principle
of d’Alembert–Lagrange allows us to induce the specific beam theory merely by
the choice of the constrained position field. This remains in the spirit, as discussed
in Sect. 1.2, that the kinematics defines which kind of forces we may expect.

• Assuming various constrained position fields together with further constraint
conditions on the level of generalized position fields, several beam theories
have been induced in this book. The classical theories of Timoshenko, Euler–
Bernoulli and Kirchhoff have been formulated in a nonlinear and linearized set-
ting. Additionally, the derivation of augmented beam theories, such as the two-
director Cosserat-beam, and the Saint–Venant beam, emphasizes the systematic
procedure of an induced beam theory obtained by the principle of virtual work
of the continuous body.

http://dx.doi.org/10.1007/978-3-319-16495-3_1
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• The classical plane linearized beam theory is generally applied in the theory of
strength of materials. By the application of non-admissible virtual displacements,
the total stress distribution of the constrained continuous body is obtained. In this
book, this analytical procedure has led to the insight that the constraint stress
distribution cannot be determined uniquely and certain assumptions on the con-
straint stress distribution have to be taken. Hence, the total stress distribution used
for the determination of failure criteria in technical mechanics is not unique.

• Avaluable by-product of the formulation using the principle of virtual work is, that
the weak variational form of all beam theories have been derived automatically in
this book. A finite element discretization, as in [2], follows in a very natural way by
further constraining the generalized position fields such that those can be described
by finitely many degrees of freedom. Thus, also the numerical discretization fits
into the concept of induced theories.

The above insight brings forth a wealth of new open questions which are to be
addressed in further research. Most urgent is to derive the nonlinear theories in this
book not only as semi-induced, but also as fully induced theories, i.e.ũsing consti-
tutive laws of a continuous body to determine the constitutive laws of the internal
generalized forces. The interaction between the constrained position field and the
constitutive law has to be discussed. For instance in the classical beam theory, the
Poisson effect modeled within a three-dimensional linear elastic and isotropic mate-
rial law leads only to additional constraint stresses. Especially for a numerical treat-
ment of an induced theory, the constrained position field and the material law have
to harmonize. Another topic is to derive more elaborate augmented beam theories
which include in- and out-of-plane warping as proposed in [3, 4]. Lastly, experimen-
tal work is needed to find out which beam theory is most successfully applied to a
given application problem. There is no such thing as ‘The Beam’, every application
asks for its own solution.

In the same spirit as for the beam, we are able to describe more complex structural
elements as constrained three-dimensional continuous bodies:

• An incompressible continuum is a classical continuum with three characteristic
directions with pointwise incompressibility constraints.

• A shell is a continuous body with two characteristic directions where the irrelevant
deformations are eliminated by a constrained position field.

• A rigid body is a continuous body with no characteristic direction and pointwise
rigidity constraints.

Hence, one should be able to induce all specific theories such as rigid body mechan-
ics, multibody mechanics, beam theories and shell theories from the theory of a
continuous body. Such a unification of mechanics will not only bring more clarity in
the scientific field but will also allow to develop more complex structural elements
and will lead to more efficient numerical discretizations.
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Appendix A
Multilinear Algebra

This chapter presents concepts frommultilinear algebra based on the basic properties
of finite dimensional vector spaces and linear maps. The primary aim of the chapter
is to give a concise introduction to alternating tensors which are necessary to define
differential forms on manifolds. Many of the stated definitions and propositions can
be found in Lee [1], Chaps. 11, 12 and 14. Some definitions and propositions are
complemented by short and simple examples.

First, in Sect. A.1 dual and bidual vector spaces are discussed. Subsequently, in
Sects. A.2–A.4, tensors and alternating tensors together with operations such as the
tensor and wedge product are introduced. Lastly, in Sect. A.5, the concepts which
are necessary to introduce the wedge product are summarized in eight steps.

A.1 The Dual Space

Let V be a real vector space of finite dimension dim V = n. Let (e1, . . . , en) be a
basis of V . Then every v ∈ V can be uniquely represented as a linear combination

v = vi ei , (A.1)

where summation convention over repeated indices is applied. The coefficients vi ∈
R are referred to as components of the vector v.

Throughout thewhole chapter, onlyfinite dimensional real vector spaces, typically
denoted by V , are treated. When not stated differently, summation convention is
applied.

Definition A.1 (Dual Space) The dual space of V is the set of real-valued linear
functionals

V ∗ := {ω : V → R : ω linear} . (A.2)

The elements of the dual space V ∗ are called linear forms on V .
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The dual space, equipped with pointwise addition and scalar multiplication is again
a real vector space.

Proposition A.2 Given any basis (e1, . . . , en) for V , let ε1, . . . , εn ∈ V ∗ be the
linear forms defined by

εi (e j ) := δi
j , (A.3)

where δi
j is the Kronecker delta symbol defined by

δi
j :=

{
1 if i = j
0 if i �= j .

(A.4)

Then (ε1, . . . , εn) is a basis for V ∗, called the dual basis to (e1, . . . , en) and conse-
quently dim V ∗ = dim V . Any linear form ω can be uniquely represented as a linear
combination

ω = ωi εi , (A.5)

with components ωi = ω(ei ).

Proof We need to show that (ε1, . . . , εn) (i) spans the dual space V ∗ and (i i) is
linearly independent. Let v ∈ V and ω ∈ V ∗.

(i) Due to the linearity of ω we have

ω(v)
(A.1)= ω(vi ei )

(A.2)= viω(ei ) . (A.6)

Writing the linear form as a linear combination (A.5) and applying it to v, it follows
by linearity of the linear form and the definition of the dual basis (A.3) that

ω(v) = ωiε
i (v j e j )

(A.2)= ωiv
jεi (e j )

(A.3)= ωiv
jδi

j
(A.4)= ωiv

i . (A.7)

Let ωi = ω(ei ). Then comparison of (A.6) and (A.7) proves that (ε1, . . . , εn) spans
V ∗.

(ii) To show that (ε1, . . . , εn) is linearly independent, suppose some linear com-
bination equals zero, i.e. ω = ωiε

i = 0. Applying to both sides an arbitrary vector
v ∈ V , it follows by the computation of (A.7) that

∀v ∈ V : ω(v) = 0 ⇒ ∀ vi ∈ R : viωi = 0 ⇒ ωi = 0 .

Thus, the only linear combination of elements of (ε1, . . . , εn) that sums to zero is
the trivial one. This proves the linear independency of (ε1, . . . , εn).

The application of a linear form ω ∈ V ∗ on a vector v ∈ V is called the duality
pairing and is expressed in components as in (A.7).
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Since the dual space V ∗ is also a vector space, we may consider the dual space
of V ∗, called the bidual space V ∗∗ := (V ∗)∗. For each vector space V , there exists
a linear isomorphism

φ : V → V ∗∗ , v �→ φv : ∀ω ∈ V ∗ , φv(ω) = ω(v) .

Hence, we identify the vectors of the bidual space V ∗∗ naturally with the vectors of
the vector space V . For convenience, we suppress the function φ in our notation and
write

φv(ω) =: v(ω) .

The duality pairing between the identified bidual basis ei ∈ V ∗∗ and the dual basis
ε j ∈ V ∗ is evaluated as

ei (ε
j ) = δ

j
i .

A.2 Multilinear Forms and Tensors

Definition A.3 (Multilinear Form, Tensor) Suppose V1, . . . , Vk are vector spaces.
AmapF : V1×· · ·×Vk → R is said to bemultilinear, if it is linear in each argument,
i.e. for any i ∈ {1, . . . , k}, v j ∈ Vj , wi ∈ Vi , a, b ∈ R

F(v1, . . . , avi +bwi , . . . , vk) = aF(v1, . . . , vi , . . . , vk)+bF(v1, . . . , wi , . . . , vk) .

We refer to multilinear F as multilinear form or tensor of rank k.1 The set of such
multilinear forms is denoted by L(V1, . . . , Vk;R).

Example A.4 Let V and U be vector spaces, then the multilinear form

F : V ∗ × V × U → R, (ω, v, u) �→ F(ω, v, u)

is a tensor of rank 3.

Example A.5 Let (e1, . . . , en) be the basis vectors of V and (ε1 . . . , εn) the corre-
sponding dual basis. Then the basis vectors

ε j : V → R , v �→ ε j (v) = v j ,

ei : V ∗ → R , ω �→ ei (ω) = ωi ,

1 There exists also an abstract definition of tensor spaces as quotient spaces of free vector spaces,
cf. [1], Chap.12. Since we are assuming the vector spaces to be finite dimensional, there exists
a canonical isomorphism between the abstract tensor space and the space of multilinear forms.
Accordingly, the two terms multilinear form and tensor are used synonymously.
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are tensors of rank 1, projecting the vector v and the covector ω to their j-th and i-th
component, respectively.

Definition A.6 (Tensor Product) Let V1, . . . , Vk , W1, . . . , Wl be vector spaces, and
let F ∈ L(V1, . . . , Vk;R) and G ∈ L(W1, . . . , Wl;R). Define a function

F ⊗ G : V1 × · · · × Vk × W1 × · · · × Wl → R

by

(F ⊗ G)(v1, . . . , vk, w1, · · · , wk) := F(v1, . . . , vk)G(w1, · · · , wk) . (A.8)

From the multilinearity of F and G it follows that (F ⊗ G) is multi linear too.
So, F ⊗ G ∈ L(V1, . . . , Vk, W1, . . . , Wl;R) and is called the tensor product of F
and G.

Example A.7 Let U and V be vector spaces, F : V × U → R and g : V ∗ → R. The
tensor product of F and g is given by the multilinear form

F ⊗ g : V × U × V ∗ → R ,

defined by its application on the vectors (v, u,ω) as

(v, u,ω) �→ (F ⊗ g)(v, u,ω) = F(v, u)g(ω) .

Applying the definition of the tensor product (A.8) several times, it follows straight
forward, that the tensor product is bilinear and associative. Insofar it is allowed to
write the tensor products between the tensors F, G and H without any brackets as

F ⊗ (G ⊗ H) = (F ⊗ G) ⊗ H =: F ⊗ G ⊗ H .

With the tensor product, it is possible to find the building blocks of tensors of arbi-
trary rank. The following proposition is formulated and proved for L(U, V, V ∗;R),
but extends on a basis of the space of multilinear forms.

Proposition A.8 Let U, V be vector spaces of dimensions k and l with bases
(b1, . . . , bk) and (e1, . . . , el), respectively. Let (β1, . . . ,βk) and (ε1, . . . , εl) be
the corresponding dual bases of U∗ and V ∗, respectively. Then the set

B =
{
βα ⊗ εi ⊗ e j : 1 ≤ α ≤ k, 1 ≤ i, j ≤ l

}

is a basis for F ∈ L(U, V, V ∗;R), which therefore has dimension kl2.

Summing repeated greek indices from 1 to k and repeated roman indices from 1
to l, any multilinear form F can be written as a linear combination
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F = F j
αi βα ⊗ εi ⊗ e j , (A.9)

with F j
αi = F(bα, ei , ε

j ).

Proof The proof is very similar to the proof of Proposition A.2. We need to show
that B is linearly independent and spans L(U, V, V ∗;R). Let u ∈ U , v ∈ V and
ω ∈ V ∗. Due to the multilinearity of F it follows directly that

F(u, v,ω) = F(uαbα, vi ei , ω jε
j ) = F(bα, ei , ε

j )uαviω j . (A.10)

Writing the multilinear form as a linear combination (A.9) and applying it to the
same vectors u, v and ω, it follows by the definition of the tensor product that

F(u, v,ω)
(A.9)= (F j

αi βα ⊗ εi ⊗ e j )(u, v,ω)

(A.8)= F j
αi βα(uβbβ) εi (vmem) e j (ωnεn) (A.11)

(A.3)= F j
αi uβvmωn δα

β δi
m δn

j
(A.4)= F j

αi uαvi ω j .

Let F j
αi = F(bα, ei , ε

j ). Then comparison of (A.10) and (A.11) proves that B spans
L(U, V, V ∗).

To show that B is linearly independent, suppose some linear combination equals
zero:

F = F j
αi βα ⊗ εi ⊗ e j = 0

Applying the multilinear form F to arbitrary vectors u ∈ U , v ∈ V and ω ∈ V ∗, it
follows by the computation of (A.11) that

∀u ∈ U, v ∈ V,ω ∈ V ∗ : F(u, v,ω) = 0

⇒ ∀ uα, vi , ω j ∈ R : F j
αi u

αviω j = 0

⇒ F j
αi = 0 .

That means, the only linear combination of elements of B that sums to zero is the
trivial one.

Lead by the basis representation of a multilinear form (A.9) and by [1], Prop. 12.10,
we use the notation U∗ ⊗ V ∗ ⊗ V to denote the space of multilinear forms
L(U, V, V ∗;R). For more general spaces of multilinear forms the notation works
analogously.

Definition A.9 (Covariant k-Tensor) For a positive integer k, we define the space
of covariant k-tensors on V to be the vector space

T k(V ∗) := V ∗ ⊗ · · · ⊗ V ∗
︸ ︷︷ ︸

k copies

∼= L(V, . . . , V︸ ︷︷ ︸
k copies

;R) .
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The number k is called the rank of the tensor.

Definition A.10 (Contravariant k-Tensor) For a positive integer k, we define the
space of contravariant k-tensors on V to be the vector space

T k(V ) := V ⊗ · · · ⊗ V︸ ︷︷ ︸
k copies

∼= L(V ∗, . . . , V ∗
︸ ︷︷ ︸

k copies

;R) .

The number k is called the rank of the tensor.

A 0-tensor is, by convention, just a real number. The tensor product between a 0-
tensor and a k-tensor corresponds to a scalar multiplication.

Definition A.11 (Mixed (k, l)-Tensor) For a positive integers k, l, we define the
space of mixed (k, l)-tensors on V to be the vector space

T (k,l)(V ) := V ⊗ · · · ⊗ V︸ ︷︷ ︸
k copies

⊗ V ∗ ⊗ · · · ⊗ V ∗
︸ ︷︷ ︸

l copies

∼= L(V ∗, . . . , V ∗
︸ ︷︷ ︸

k copies

, V, . . . , V︸ ︷︷ ︸
l copies

;R) .

Example A.12 Some of the defined tensor spaces are identical, i.e.

T (0,0)(V ) = T 0(V ∗) = T 0(V ) = R ,

T (0,1)(V ) = T 1(V ∗) = V ∗ ,

T (1,0)(V ) = T 1(V ) = V ,

T (0,k)(V ) = T k(V ∗) ,

T (k,0)(V ) = T k(V ) .

A.3 Alternating Tensors

For a positive integer k ∈ N, let Sk denote the symmetric group on k elements, i.e. the
group of all bijective maps s : {1, . . . , k} → {1, . . . , k}. An element of Sk is called a
permutation. Explicitly, s ∈ Sk is represented in the form

(
1 2 · · · k

s(1) s(2) · · · s(k)

)
.

A transposition is a permutation which exchanges two elements and keeps all
others fixed. Any permutation can be expressed as a non-unique composition of
transpositions. There exists an invariant in the representation of a permutation s
by transpositions, which is the number of transpositions n modulo 2, denoted by
sgn(s) = (−1)n . This invariant is called the sign of the permutation s.
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Let s, t ∈ Sk be two permutations. Since the composition of two odd sgn(1) = −1
or two even sgn(s) = 1 permutations, respectively, is an even permutation and the
composition of an even and an odd permutation is an odd permutation, the sign of
the composition t ◦ s is given by

sgn(t ◦ s) = sgn(t) sgn(s) . (A.12)

Example A.13 Let s ∈ S3 be a permutation defined by

s =
(

1 2 3
s(1) = 1 s(2) = 3 s(3) = 2

)
. (A.13)

The permutation is expressible as a transposition between 2 and 3 which is an odd
number of transpositions. Hence, the sign of the permutation is sgn(s) = −1. Any
possible permutations s, v, t ∈ S3 with a positive sign are

s =
(
1 2 3
1 2 3

)
, v =

(
1 2 3
2 3 1

)
, t =

(
1 2 3
3 1 2

)
.

Any possible permutations s, v, t ∈ S3 with a negative sign are

s =
(
1 2 3
1 3 2

)
, v =

(
1 2 3
2 1 3

)
, t =

(
1 2 3
3 2 1

)
.

Definition A.14 (Action of a Permutation) We define the action of a permutation
s ∈ Sk on a covariant k-tensor2 F ∈ T k(V ∗) as follows:

sF : (v1, . . . , vk) �→ F(vs(1), . . . , vs(k)) . (A.14)

Example A.15 Assume the permutation s =
(
1 2 3 4
2 1 4 3

)
. The action of s on a tensor

F ∈ T 4(V ∗) is defined by its application on v1, . . . , v4 ∈ V as

sF(v1, v2, v3, v4) = F(v2, v1, v4, v3) .

Definition A.16 (Alternating Tensor) An alternating covariant k-tensor (alternat-
ing multilinear form or a k-form) is a tensor A ∈ T k(V ∗) for which

∀s ∈ Sk sA = sgn(s)A , (A.15)

holds.

2 Similar, we could define the action of a permutation on a contravariant k-tensor. For a mixed
tensor the action of a permutation is meaningless.
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That means, whenever two arguments of an alternating tensor are interchanged, then
its sign changes. We denote the set of all alternating tensors by

Λk(V ∗) :=
{

A ∈ T k(V ∗) | sA = sgn(s)A, ∀s ∈ Sk

}
.

Obviously, the set of alternating k-tensors is a subset of k-tensors, i.e. Λk(V ∗) ⊂
T k(V ∗). Since the action of a permutation can also be defined for a contravariant
tensors, it is also possible to introduce alternating contravariant k-tensors.

Example A.17 Let B ∈ Λ3(V ∗) be a 3-form. For v1, v2, v3 ∈ V it holds:

B(v1, v2, v3) = −B(v1, v3, v2) = B(v3, v1, v2) =
− B(v3, v2, v1) = B(v2, v3, v1) = −B(v2, v1, v3) .

Lemma A.18 ([1], Lem. 14.1) Let A be a covariant k-tensor on a vector space V .
Then the following statements are equivalent:

(a) A is alternating, i.e. A ∈ Λk(V ∗).
(b) A(v1, . . . , vk) = 0, whenever the k-tuple (v1, . . . , vk) is linearly dependent.
(c) A gives the value zero whenever two of its arguments are equal:

A(v1, . . . , w, . . . , w, . . . , vk) = 0 .

Proof For the proof, we refer to [1].

Definition A.19 (Alternation) We define the function Alt : T k(V ∗) → Λk(V ∗),
called alternation, as follows:

Alt F = 1

k!
∑

s∈Sk

sgn(s) sF , (A.16)

where Sk is the symmetric group on k elements and sF denotes the action of a
permutation s on the tensor F. More explicitly, this means for v1, . . . , vk ∈ V

Alt F(v1, . . . , vk) = 1

k!
∑

s∈Sk

sgn(s) F(vs(1), . . . , vs(k)) . (A.17)

The linearity of the alternation follows directly by the linearity of the summation and
can be shown by straight forward computation.

Proposition A.20 Let A be a covariant k-tensor on a vector space.

(a) Alt A is alternating.
(b) Alt A = A if and only if A is alternating.
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Proof (a) First we have to prove, that Alt A satisfies condition (A.15). To this end,
let s, t ∈ Sk and A ∈ T k(V ∗). The composition of the two permutations is another
permutation r = t ◦ s ∈ Sk . The action of the permutation t on Alt A is computed as
follows:

t (Alt A)
(A.16)= 1

k!
∑

s∈Sk

sgn(s) (t ◦ s)A = 1

k!
∑

s∈Sk

sgn(t) sgn(t) sgn(s) (t ◦ s)A

(A.12)= 1

k!
∑

s∈Sk

sgn(t) sgn(t ◦ s) (t ◦ s)A = 1

k!
∑

r∈Sk

sgn(t) sgn(r) rA

(A.16)= sgn(t)(Alt A) .

This demonstrates that Alt A is alternating and proves the first claim.
(b) Let A ∈ Λk(V ∗) be an alternating tensor. Due to Definition A.16, we have

sA = sgn(s)A for each s ∈ Sk and consequently

sgn(s)sA
(A.15)= (sgn(s))2A = A . (A.18)

Since there are k! permutations s ∈ Sk ,
∑

s∈Sk
1 = k! and

Alt A
(A.16)= 1

k!
∑

s∈Sk

sgn(s) sA
(A.18)= 1

k!
∑

s∈Sk

A = 1

k!k! A = A ,

which finishes the proof.

Example A.21 Let G ∈ T 2(V ∗) and H ∈ T 3(V ∗) be two covariant tensors. The
alternation of G is computed as

Alt G(v1, v2) = 1

2
(G(v1, v2) − G(v2, v1)) ,

and the alternation of H as

Alt H(v1, v2, v3) = 1

6
(H(v1, v2, v3) + H(v2, v3, v1) + H(v3, v1, v2)

− H(v1, v3, v2) − H(v2, v1, v3) − H(v3, v2, v1)) .

Example A.22 Let G ∈ T 2(V ∗) be a 2-tensor, then

Alt G(v2, v1) = 1

2
(G(v2, v1) − G(v1, v2))

= −1

2
(G(v1, v2) − G(v2, v1)) = −Alt G(v1, v2) .
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Lemma A.23, allows to formulate the proof of Lemma A.34 by straight forward
computation.

Lemma A.23 Let F ∈ T k(V ∗) and G ∈ T l(V ∗) be covariant tensors of rank k and
l, respectively, then

Alt(Alt F ⊗ Alt G) = Alt(F ⊗ G) . (A.19)

Proof By definition of the alternation (A.16), we can write (A.19) as

Alt(AltF ⊗ AltG) = 1

k! l!
1

(k + l)!
∑

r∈Sk+l

∑

s∈Sk

∑

q∈Sl

sgn(r)sgn(s)sgn(q) r(sF ⊗ qG)

(A.20)

The permutations s ∈ Sk and q ∈ Sl can be embedded in the set of permutations
Sk+l . Let us define two new permutations s′ ∈ S′

k ⊂ Sk+l and q ′′ ∈ S′′
l ⊂ Sk+l , such

that s′ acts on the first k elements and q ′′ acts on the last l elements of total k + l
elements, i.e.

s′(i) =
{

s(i) for i ≤ k
i for i > k

, q ′′(i) =
{

i for i ≤ k
q(i − k) + k for i > k .

We calculate:

Alt(Alt F ⊗ Alt G) =
(A.20)= 1

k! l!
1

(k + l)!
∑

r∈Sk+l

∑

s′∈S′
k

∑

q ′′∈S′′
l

sgn(r)sgn(s′)sgn(q ′′)(r ◦ s′ ◦ q ′′)(F ⊗ G)

(A.12)= 1

k! l!
1

(k + l)!
∑

r∈Sk+l

∑

s′∈S′
k

∑

q ′′∈S′′
l

sgn(r)sgn(s′ ◦ q ′′) r ◦ (s′ ◦ q ′′)(F ⊗ G)

Since we sum over all permutations Sk+l , we can interchange the order of the per-
mutations as follows

Alt(AltF ⊗ AltG) =
= 1

k! l!
∑

s′∈S′
k

∑

q ′′∈S′′
l

sgn(s′ ◦ q ′′)(s′ ◦ q ′′)
(

1

(k + l)!
∑

r∈Sk+l

sgn(r) r(F ⊗ G)

)

(A.16)= 1

k! l!
∑

s′∈S′
k

∑

q ′′∈S′′
l

sgn(s′ ◦ q ′′)(s′ ◦ q ′′)Alt(F ⊗ G)

(A.18)= 1

k! l!
∑

s′∈S′
k

∑

q ′′∈S′′
l

Alt(F ⊗ G) = 1

k! l!Alt(F ⊗ G)
∑

s′∈S′
k

∑

q ′′∈S′′
l

1

= Alt(F ⊗ G) .
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In the last step we used, that S′
k and S′′

l are described by k! and l! numbers of
permutations. Thus, we have k! l! compositions s′ ◦ q ′′, s′ ∈ S′

k, q ′′ ∈ S′′
l .

Definition A.24 (Elementary Alternating Tensor) Let I = (i1, . . . , ik) be a multi-
index of length k, i.e. a k-tuple of positive integers, and (ε1, . . . , εn) be a basis of V ∗.
Wedefine the elementary alternating tensor (or elementary k-covector) ε I ∈ Λk(V ∗)
as

ε I := k!Alt(εi1 ⊗ · · · ⊗ εik ) =
∑

s∈Sk

sgn(s) εis(1) ⊗ · · · ⊗ εis(k) . (A.21)

According to Proposition A.20, the elementary alternating tensor ε I is by definition
an alternating tensor. Interchanging two indices in the multi-index I consequently
changes the sign of ε I .

Example A.25 Let I = (1, 3). Then the elementary alternating tensor is obtained as

ε13 = ε1 ⊗ ε3 − ε3 ⊗ ε1 = −ε31 .

We want to remark the slight abuse of notation for the explicit use of multi-indices.
For a multi-index I = (3, 2, 5) the elementary alternating tensor is computed as

ε325 = ε3 ⊗ ε2 ⊗ ε5 − ε3 ⊗ ε5 ⊗ ε2 + ε2 ⊗ ε5 ⊗ ε3

− ε2 ⊗ ε3 ⊗ ε5 + ε5 ⊗ ε3 ⊗ ε2 − ε5 ⊗ ε2 ⊗ ε3 .

Definition A.26 (Determinant) Let [F] be an (n × n)-matrix with components Fi
j .

The determinant of the matrix [F] is defined as

det([F]) :=
∑

s∈Sn

sgn(s)Fs(1)
1 · · · Fs(n)

n . (A.22)

Since the multiplication of scalars commute, by relabeling, we are allowed to rewrite
the determinant as

det([F]) =
∑

s∈Sn

sgn(s)F1
s(1) · · · Fn

s(n) .

While the first version can be associated with the expansion of the determinant along
the columns, the second version corresponds to the expansion along the row.

Let ε I be the alternating k-tensor of (A.21) with a multi-index I = (i1, . . . , ik)

and v1, . . . , vk ∈ V . We denote the (n × k)-matrix of the component description of
the vectors in the basis (e1, . . . , en) by [v] = ([v1], . . . , [vk]). Choosing only the
rows i1, . . . , ik of [v], we obtain the submatrix [v I ]. If we apply the alternating tensor
ε I on the vectors v1, . . . , vk ∈ V , we can express the result using the determinant of
the submatrix [v I ], i.e.
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ε I (v1, . . . , vk) =
∑

s∈Sk

sgn(s) εis(1) ⊗ · · · ⊗ εis(k) (v1, . . . , vk)

=
∑

s∈Sk

sgn(s) v
is(1)
1 · · · vis(k)

k
(A.22)= det

⎛

⎜
⎝

v
i1
1 . . . v

i1
k

...
. . .

...

v
ik
1 . . . v

ik
k

⎞

⎟
⎠ = det([v I ]) .

Example A.27 In the previous setting, let v1, v2 ∈ V . Then

ε13(v1, v2) = (ε1 ⊗ ε3 − ε3 ⊗ ε1)(v1, v2) = ε1(v1)ε3(v2) − ε3(v1)ε1(v2)

= v11v
3
2 − v31v

1
2 = det

(
v11 v12

v31 v32

)

.

Definition A.28 (Multi-Index Kronecker Delta) Let I = (i1, . . . , ik) and J =
( j1, . . . , jk) be two multi-indices and (ε1, . . . , εn) be a dual basis of the basis
(e1, . . . , en) on V . By applying the elementary alternating tensor ε I to the set of
basis vectors (e j1 , . . . , e jk ), we define a multi-index Kronecker delta as follows:

δ I
J := ε I (e j1 , . . . , e jk ) = det

⎛

⎜⎜
⎝

δ
i1
j1

. . . δ
i1
jk

...
. . .

...

δ
ik
j1

. . . δ
ik
jk

⎞

⎟⎟
⎠ . (A.23)

It is easily shown, that the multi-index Kronecker delta is characterized by the fol-
lowing function:

δ I
J =

⎧
⎪⎪⎨

⎪⎪⎩

sgn(s), if neither I nor J has a repeated index
and J = s(I ) for some s ∈ Sk ,

0, if I or J has a repeated index
or J is not a permutation of I .

(A.24)

Example A.29 Let I = (1, 2) and J = (2, 3) be two multi-indices. Then

δ1223 = det

(
δ12 δ13

δ22 δ23

)

= det

(
0 0
1 0

)
= 0 .

Using the argumentation with the function (A.24), the multi-index Kronecker delta is
zero, since J is not a permutation of I . In the case that J = (2, 1), the multi-index J
is obtained by one transposition of the multi-index I , which is an odd permutation of
sign −1 and consequently δ I

J = −1. Again we verify the result using the definition
of the multi-index Kronecker delta, i.e.

δ1221 = det

(
δ12 δ11

δ22 δ21

)

= det

(
0 1
1 0

)
= −1 .
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Proposition A.30 Let (ε1, . . . , εn) be a basis of V ∗. Then for each k ∈ {1, . . . , n},
the set

E = {ε I | I is an increasing multi-index of length k}

is a basis for Λk(V ∗). Therefore,

dimΛk(V ∗) =
(

n

k

)
= n!

k! (n − k)! . (A.25)

If k > n, then dimΛk(V ∗) = 0.

According to Proposition A.30, we can write a k-form A ∈ Λk(V ∗) as a linear
combination

A =
∑

{I : i1<···<ik }
AI ε

I =:
∑

I

′
AI ε

I , (A.26)

where the primed sum denotes the summation over increasing multi-indices of
length k.

Proof The fact that Λk(V ∗) is the trivial vector space when k > n follows imme-
diately from Lemma A.18(b), since every k-tuple of vectors is linearly dependent
in that case. For the case k ≤ n, we need to show that the set E spans Λk(V ∗) and
is linearly independent. Let (e1, . . . , en) be the basis for V dual to (ε1, . . . , εn). To
show that E spans Λk(V ∗), let A ∈ Λk(V ∗) and J = ( j1, . . . , jk) be a multi-index.
Since A ∈ Λk(V ∗) ⊂ T k(V ∗), an alternating tensor is spanned with a basis of
T k(V ∗) by A = AJ ε j1 ⊗ · · · ⊗ ε jk . According to Proposition A.20 it holds for any
alternating tensor, that A = Alt A. Using the definition of the alternation (A.16) and
its linearity, we can write

A = Alt(AJ ε j1 ⊗ · · · ⊗ ε jk )
(A.16)= 1

k!
∑

s∈Sk

sgn(s) s(AJ ε j1 ⊗ · · · ⊗ ε jk )

= AJ
1

k!
∑

s∈Sk

sgn(s) s(ε j1 ⊗ · · · ⊗ ε jk )
(A.21)= 1

k! AJ εJ . (A.27)

Let I be any increasing multi-index of length k. Since εJ is alternating, we can
rewrite it by an elementary alternating tensor ε I of increasing multi-indices as εJ =
sgn(s)ε I . Since A is an alternating tensor the components AJ are connected to the
I th components of the increasing multi-index by AJ = sgn(s)AI . Suppressing the
summation convention it holds that

AJ εJ = sgn(s)2AI ε
I = AI ε

I , no summation.
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There exist k! permutations of each increasing multi-index I . Hence, the alternating
k-form (A.27) is transformed further to

A = 1

k! AJ εJ =
∑

I

′
AI ε

I , (A.28)

which proves that E spans Λk(V ∗).
To show that E is a linearly independent set, suppose that

∑
I
′ AI ε

I = 0 holds
for some coefficients AI . Let J be any increasing multi-index. Applying both sides
of the identity to the vectors (e j1 , . . . , e jk ) and using (A.23), we get

0 =
∑

I

′
AI ε

I (e j1 , . . . , e jk ) =
∑

I

′
AI δ

I
J = AJ .

Thus each coefficient AJ is zero, what shows the linear independency of E .

Example A.31 Let V be a vector space of dimension n = 3. The space of alternating
2-tensors Λ2(V ∗) has the dimension

dimΛ2(V ∗) =
(
3

2

)
= 3!

2!(3 − 2)! = 3 .

The basis of Λ2(V ∗) is given by all three elementary alternating tensors ε I with an
increasing multi-index I of length 2, i.e.

ε12 = ε1 ⊗ ε2 − ε2 ⊗ ε1

ε13 = ε1 ⊗ ε3 − ε3 ⊗ ε1

ε23 = ε2 ⊗ ε3 − ε3 ⊗ ε2

Hence, we represent any 2-form A ∈ Λ2(V ∗) as

A
(A.26)=

∑

I

′
AI ε

I = A12ε
12 + A13ε

13 + A23ε
23 .

According to (A.28), it is also possible to span the alternating tensor with all ele-
mentary alternating tensors. Since the components of an alternating tensor of rank 2
satisfy Ai j = −A ji , we compute

A = 1

2! AJ εJ = 1

2

(
A12ε

12 + A21ε
21 + A13ε

13 + A31ε
31 + A23ε

23 + A32ε
32

)

= 1

2

(
(A12 − A21)ε

12 + (A13 − A31)ε
13 + (A23 − A32)ε

23
)

= A12ε
12 + A13ε

13 + A23ε
23 =

∑′
AI ε

I .
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A.4 The Wedge Product

Definition A.32 (Wedge Product) Given A ∈ Λk(V ∗) and B ∈ Λl(V ∗), we define
their wedge product (or exterior product) as

A ∧ B = (k + l)!
k! l! Alt(A ⊗ B) = 1

k! l!
∑

s∈Sk+l

sgn(s) s(A ⊗ B) . (A.29)

Example A.33 Let A ∈ Λ1(V ∗) = T 1(V ∗) and B ∈ Λ1(V ∗) = T 1(V ∗), then their
wedge product is

(A ∧ B)(v1, v2)
(A.29)= (A ⊗ B)(v1, v2) − (A ⊗ B)(v2, v1)

= (A ⊗ B − B ⊗ A)(v1, v2) .

Lemma A.34 Let (ε1, . . . , εn) be a basis for V ∗. For multi-indices I = (i1, . . . , ik)

and J = ( j1, . . . , jl), the wedge product of the two associated elementary alternating
tensors ε I and εJ satisfy

ε I ∧ εJ = ε I J ,

where I J = (i1, . . . , ik, j1, . . . , jl) is obtained by concatenating I and J .

Proof We calculate

ε I ∧ εJ (A.29)= (k + l)!
k! l! Alt(ε I ⊗ εJ )

(A.21)= (k + l)!
k! l! Alt(k!Alt(εi1 ⊗ · · · ⊗ εik ) ⊗ l!Alt(ε j1 ⊗ · · · ⊗ ε jl ))

(A.19)= (k + l)!Alt((εi1 ⊗ · · · ⊗ εik ) ⊗ (ε j1 ⊗ · · · ⊗ ε jl ))

(A.21)= ε I J .

The algebraic properties of the wedge product are summarized in the following
proposition.

Proposition A.35 ([1], Prop. 14.11) Suppose A, B, and C are multicovectors on a
vector space V .

(a) Bilinearity: For a, b ∈ R,

(aA + bB) ∧ C = a(A ∧ C) + b(B ∧ C)

C ∧ (aA + bB) = a(C ∧ A) + b(C ∧ B) .
(A.30)
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(b) Associativity:

A ∧ (B ∧ C) = (A ∧ B) ∧ C .

(c) Anticommutativity: For A ∈ Λk(V ∗) and B ∈ Λl(V ∗),

A ∧ B = (−1)klB ∧ A .

(d) If (ε1, . . . , εn) is a basis of V ∗ and I = (i1, . . . , ik) a multi-index, then

ε I = εi1 ∧ · · · ∧ εik . (A.31)

(e) For any covectors ω1, . . . ,ωk ∈ V ∗ and vectors v1, . . . , vk ∈ V ,

ω1 ∧ · · · ∧ ωk(v1, . . . , vk) = det([ω j (vi )]) .

Proof For the proof, we refer to [1].

Example A.36 Let (ε1, . . . , εn) be a basis of V ∗. Then we have

ε12
(A.21)= 2Alt(ε1 ⊗ ε2)

(A.16)= ε1 ⊗ ε2 − ε2 ⊗ ε1
(A.29)= ε1 ∧ ε2 .

Let dim(V ) = 3 and A ∈ Λ2(V ∗) be an arbitrary 2-form. According to Proposi-
tions A.30 and A.35, the 2-form can be written in component form as

A = A12ε
12 + A13ε

13 + A23ε
23

= A12(ε
1 ∧ ε2) + A13(ε

1 ∧ ε3) + A23(ε
2 ∧ ε3) .

The wedge product of the 2-form A ∈ Λ2(V ∗) and a 1-form B ∈ Λ1(V ∗) is written
in component form as

A ∧ B = (A12ε
12 + A13ε

13 + A23ε
23) ∧ (B1ε

1 + B2ε
2 + B3ε

3)

(A.30)= A12B3ε
123 + A13B2ε

132 + A23B1ε
231

(A.15)= (A12B3 − A13B2 + A23B1)ε
123

(A.31)= (A12B3 − A13B2 + A23B1)ε
1 ∧ ε2 ∧ ε3 .
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A.5 In Eight Steps to the Wedge Product

1. Let {1, . . . k} be a set of k positive integers. A permutation s ∈ Sk is the
bijective map s : {1, . . . k} → {1, . . . k}, (1, . . . , k) �→ (s(1), . . . s(k)).
The sign of a permutation s ∈ Sk is defined by

sgn(s) :=
{+1 if s is even,

−1 if s is odd.

2. Action of a permutation s ∈ Sk on a covariant k-tensor F ∈ T k(V ∗). Let
v1, . . . , vk ∈ V , then

sF : (v1, . . . , vk) �→ F(vs(1), . . . , vs(k)) .

3. An alternating covariant k-tensor A ∈ Λk(V ∗) satisfies ∀s ∈ Sk

sA = sgn(s)A .

4. The alternation projection Alt : T k(V ∗) → Λk(V ∗) is defined as

Alt F := 1

k!
∑

s∈Sk

sgn(s) sF .

5. Let ε1, . . . , εn be a basis of V ∗ and I = (i1, . . . , ik) be a multi-index. The
elementary alternating tensor is defined as

ε I := k!Alt(εi1 ⊗ · · · ⊗ εik ) .

6. Let J be an arbitrary and I be an increasing multi-index of length k. The
component description ofA ∈ Λk(V ∗)withn = dim V anddimΛk(V ∗) =(n

k

)
is given by

A = 1

k! AJ εJ =
∑

I

′
AI ε

I =
∑

{I :i1<···<ik }
AI ε

I .

7. Let A ∈ Λk(V ∗) and B ∈ Λl(V ∗). The wedge product is defined as

A ∧ B = (k + l)!
k! l! Alt(A ⊗ B) = 1

k! l!
∑

s∈Sk+l

sgn(s) s(A ⊗ B) .
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8. Let I = (i1, . . . , ik), J = ( j1, . . . , jl) and I J = (i1, . . . , ik, j1, . . . , jl) be
multi-indices. Thewedge product of elementary alternating tensors satisfies

ε I ∧ εJ = ε I J .

By induction, we have ε I = εi1 ∧ · · · ∧ εik .

Reference

1. J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics,
vol. 218, 2nd edn. (Springer New York, 2012)



Appendix B
Properties of the Cross Product

The cross product × as a skew-symmetric operator on R3 has some useful identities
which are frequently used in this book. In R

3 the cross product fulfills the Jacobi
identity

a × (b × c) + b × (c × a) + c × (a × b) = 0 ∀a, b, c ∈ R
3 . (B.1)

The triple product is invariant with respect to even permutation, i.e.

a · (b × c) = b · (c × a) = c · (a × b) ∀a, b, c ∈ R
3 . (B.2)

The vector triple product satisfies Grassmann’s identity

a × (b × c) = (a · c)b − (a · b)c ∀a, b, c ∈ R
3 . (B.3)

The quadruple product

(a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c) ∀a, b, c, d ∈ R
3 , (B.4)

and another useful identity, where the tilde denotes the skew-symmetric tensor to an
associated axial vector, is

ãb̃b̃a = a × (b × (b × a)) = −b × (a × (a × b)) = −b̃ããb ∀a, b ∈ R
3 . (B.5)
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A
Acceleration field, 58, 102, 109
Action of a permutation, 129, 139
Affine connection, 9, 29, 30, 34, 117
Alternating tensor, 129, 139
Alternation, 130, 139
Angular velocity, 58, 76
Atlas, 19

B
Base space, 24, 35
Basis, 123

alternating tensor, 135, 136, 138
dual, see dual basis
of tangent space, 22
transformation rule, 23

Beam, 49
induced, 48–51, 65, 83, 119
intrinsic, 49, 50, 61, 65
semi-induced, 49, 52, 65, 79, 106, 120

Bidual basis, 125
Body, 20, 28, 33
Body chart, 39, 40, 47, 48, 51, 55, 57, 102
Body force, 35, 39
Boundary, 18, 41
Boundary chart, 18
Boundary conditions

classical beam, 65, 78, 88, 96
continuous body, 41
Cosserat beam, 106
Saint-Venant beam, 114

Boundary of manifold, 18, 20
Boundary point, 18

C
Cartesian chart, 38, 39
Centerline, 55, 56, 62, 75, 85, 102, 108
Change of coordinates, 2, 18, 22
Chart, 19, 20, 22, 45
Chart independent, 22, 34, 41
Christoffel symbols, 30, 38, 40
Closed set, 17, 63
Compact, 18, 28, 45
Compact manifold, 20, 28, 45
Compact set, 18, 20
Components, 22, 23, 123, 124, 135
Configuration, 3, 28, 45
Configurationmanifold, 2, 28, 29, 33, 48, 49,

51
Constitutive law

Cosserat beam, 107
Euler–Bernoulli beam, 69, 80, 95
Kirchhoff beam, 70, 81, 98
Saint-Venant beam, 114
Timoshenko beam, 67, 79, 87

Constrained displacement field, 85, 86, 94
Constrained position field, 48, 50

classical beam, 56, 75
Cosserat beam, 102
Saint-Venant beam, 108

Constraint
Euler–Bernoulli beam, 68, 80, 94
Kirchhoff beam, 69, 80, 98

Constraint force, 66, 97
Constraint manifold, 48, 60
Constraint stress, 48, 49, 51, 84, 97, 120
Constraint transverse shear stress, 92, 97
Continuous, 18
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Ck -, 19, 20, 27
Continuous body, 28, 45
Contravariant tensor, 128
Contravariant transformation, 24
Coordinate chart, 18
Coordinate description, 18, 39, 62
Coordinate free, 2, 3, 22, 41
Cotangent bundle, 24
Cotangent space, 2, 23, 24, 51, 61, 65
Countable basis, 18
Covariant derivative, 6, 30, 37, 117

along, 29, 31
of pullback section, 30, 31, 35, 38, 118

Covariant tensor, 34, 127
Covariant transformation, 24
Covector, 2, 23, 126

transformation rule, 23
Cross section, 51, 56, 67, 102, 108

inertia density, 62, 111
mass density, 62, 85

Current configuration, 45, 47, 51, 76

D
Derivation, 21, 22
Determinant, 133
Diffeomorphism, 19, 21

Ck -, 19, 21
Differential, 27, 48
Displacement field, 84
Dual basis, 23, 124

transformation rule, 24
Dual space, 23, 34, 123

E
Effective curvature, 57, 58, 66, 77
Elastic potential, 66, 79, 106, 114
Elementary alternating tensor, 133, 135, 139
Embedding, 20, 27, 28, 45, 48, 51, 57

Ck -, 27
Equations of motion

classical beam, 64, 78, 88, 96–98
continuous body, 41
Cosserat beam, 106
Saint-Venant beam, 113

Equivalence class, 21, 22, 29, 61, 64, 104,
105

External force, 36, 39, 47, 63

F
Fiber bundle, 26
First gradient continuum, 8, 28

Force, 33
continuous body, 33

G
Generalized constraint force, 68, 69, 80, 81
Generalized external force, 64, 105, 112
Generalized force, 51
Generalized internal force, 50, 61, 66, 67, 87,

95, 104
Generalized position function, 49, 56, 75, 86,

94, 102, 108
Generalized strain, 50, 66, 77, 106, 114
Germ, 21, 22
Global flow, 25, 29, 117
Grassmann’s identity, 141

H
Half-space, 18
Hausdorff space, 18
Homeomorphism, 18

I
Impressed force, 66, 81
Impressed stress, 48, 49, 84, 86, 87, 95
Induced partial derivative, 22, 31
Inertia forces, 39, 47, 63, 104, 111
Inertial chart, 39
Infinitesimal generator, 25, 117
Interior, 18
Interior chart, 18
Interior of manifold, 18
Interior point, 18
Internal force, 37, 47, 60, 103, 106, 109
Intrinsic director couple, 103

J
Jacobi identity, 59, 60, 110, 141

K
Killing vector field, 37, 118
Kronecker delta, 124

multi-index, 134

L
Law of interaction, 37, 47, 107
Leibniz rule, 21, 22
Levi-Civita connection, 34, 37–40
Line of centroids, 62, 85, 104, 111
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Linear form, 123, 124
Linearized strain measure, 84
Local representation, 20, 21
Longitudinal displacement, 86, 94, 98

M
Manifold, 24, 28

with boundary, 18–20, 45
without boundary, 19, 20, 28, 34

Mapping between manifolds, 27
Mass density, 61
Material point, 20, 45, 57
Maximal, 19
Metric, 3, 20, 34, 37, 41
Metric independent, 3, 37, 41
Mixed tensor, 128
Motion, 39, 45, 46, 49, 56, 75, 84, 102
Multi-index, 135, 139
Multilinear, 125
Multilinear form, see tensor

N
Natural projection, 24
Neighborhood, 18
Normal constraint stress, 91, 93, 96

O
Open set, 17

P
Permanence of matter, 28, 45, 57
Permutation, 128, 139
Physical space, 20, 28, 33, 34, 37, 45, 119
Position field, 46, 48
Principle of d’Alembert–Lagrange, 49, 68,

84
Principle of impenetrability, 28, 45, 57
Principle of virtual work

of continuous body, 34, 40, 47
of continuum mechanics, 38

Projection of pullback tangent bundle, 26
Proper, 18, 27, 45
Pullback section, 26, 28–30, 34
Pullback tangent bundle, 25, 27, 28

Q
Quadruple product, 141

R
Reference configuration, 50, 103

classical beam, 59, 75
Cosserat beam, 103

Resultant
director contact couple, 103
external couple distribution, 63
external director couple distribution, 105
external force distribution, 63, 105

Resultant contact
bi-moment, 110
bi-shear, 110
couple, 61, 67, 87, 110
force, 61, 67, 87, 103, 110
shear force, 97

Riemannian manifold, 28

S
Section

Ck -continuous, 24
smooth, 24, 35

Set of C1-embeddings, 28
Set of derivations, 21, 22
Set of germs, 21
Set of pullback sections, 28
Set-valued force law, 4, 66, 68, 94
Smooth, 19, 21
Smoothly compatible, 19
Smooth real valued function, 21
Space point, 20, 34
Stress tensor, 35, 38, 47, 118
Strong variational form, 118

classical beam, 64, 78, 88, 96
continuous body, 40
Cosserat beam, 106
Saint-Venant beam, 113

Surface element, 39, 47
Symmetric group, 128, 130
Symmetry condition, 37, 48, 107, 118

T
Tangent bundle, 24, 25
Tangent map, 27, 30
Tangent space, 21

of Ck(N ,M), 28
of Embk(N ,M), 29

Tangent vector, 2, 22, 29
transformation rule, 23

Tensor, 125
Tensor basis, 126
Tensor density, 38, 118
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Tensor measure, 35, 36
Tensor product, 126
Tensor rank, 128
Topological manifold, 18, 19
Topological space, 17
Topology, 17
Traction force, 35, 39
Transposition, 128, 134
Transverse displacement, 86, 88, 94
Triple product, 141

V
Variational family, 46
Variational stress, 36–38, 118
Vector field, 24, 25, 29, 37

along curve, 26
Vector valued measure, 34–36
Velocity field, 58, 102, 109
Virtual displacement field, 28

admissible, 51, 58, 86, 95, 103, 109
continuous body, 29, 33
non-admissible, 89, 91, 92, 96

rigidifying, 37, 47
spatial, 25, 28, 37, 117

Virtual rotation, 58, 76, 109
Virtual work

constraint stress, 48, 49, 84
continuous body, 34
internal, 37, 38, 40, 46, 47, 61, 84, 87,
95, 103, 110

of external forces, 36, 39, 47, 63, 105,
113

of inertia forces, 47, 63, 104, 112
Volume element, 38, 39, 61, 84, 118
Volume form, 36, 38, 39

W
Warping function, 108
Weak variational form, 51, 120

classical beam, 64, 78, 88, 95
continuous body, 40
Cosserat beam, 105
Saint-Venant beam, 113

Wedge product, 137, 139
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