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Abstract. The Internet of Things promises a continuous flow of data
where traditional database and data-mining methods cannot be applied.
This paper presents a novel variant of the well-known Self-Organized
Map (SOM), called Ubiquitous SOM (UbiSOM), that is being tailored for
streaming environments. This approach allows ambient intelligence solu-
tions using multidimensional clustering over a continuous data stream to
provide continuous exploratory data analysis. The average quantization
error over time is used for estimating the learning parameters, allowing
the model to retain an indefinite plasticity and to cope with concept drift
within a multidimensional stream.

Our experiments show that UbiSOM outperforms other SOM propos-
als in continuously modeling concept-drifting data streams, converging
faster to stable models when the underlying distribution is stationary
and reacting accordingly to the nature of the concept-drift in continuous
real world data-streams.

Keywords: self-organizing maps, data streams, concept drift, sensor
data, clustering, exploratory analysis.

1 Introduction

At present, all kinds of stream data processing based on instantaneous data have
become critical issues of Internet, Internet of Things (ubiquitous computing),
social networking and other technologies. The massive amounts of data being
generated in all these environments push the need for algorithms that can extract
knowledge in a readily manner.

Within this increasingly important field of research the application of arti-
ficial neural networks to this task remains a fairly unexplored path. The Self-
Organizing Map (SOM) [4] is an unsupervised neural-network algorithm with
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topology preservation. The SOM has been applied extensively within fields rang-
ing from engineering sciences to medicine, biology, and economics [5] over the
years. The SOM can be visualized as a sheet-like neural network array, whose
neurons become specifically tuned to various input vectors (observations) in an
orderly fashion. SOM and k -means both represent data in a similar way through
prototypes of data, i.e., centroids in k -means and neuron weights in SOM, and
their relation and different usages has already been studied [7]. It is the topolog-
ical ordering of these prototypes in large SOM networks that allows the appli-
cation of exploratory visualization techniques providing insight on learned data,
i.e., clusters and non-linear correlations between features [8].

This paper is the first demonstration of a novel variant of SOM, called Ubiqui-
tous SOM (UbiSOM), that is being specially tailored for streaming and big data
by using the average quantization error along time to estimate learning param-
eters. Current SOM variants either estimate parameters based on time which
is inadequate for potentially unbounded streams, or the instantaneous output
error of the network. This latter approach also suffers from several problems,
namely the deficiency to map the input space density, critical for the use of the
powerful visualization techniques.

Our experiments show that UbiSOM can be applied to data processing sys-
tems that want to use the SOM method to provide a fast response and timely
mine valuable information from the data. Indeed our approach, albeit being a
single-pass algorithm, outperforms current online and batch SOM proposals in
continuously modeling concept-drifting data streams, converging faster to stable
models when the underlying distribution is stationary and reacting accordingly
to the nature of the concept-drift.

The paper has the following structure: the next section reviews current SOM
algorithms that can, in theory, be used for streaming data, highlighting their
problems in this setting. The overall methodology of UbiSOM is described in
section 3 and experimental results are presented in section 4, by using two ar-
tificial datasets and one real world study. The experiments compare the perfor-
mance over time for stationary and drifting data between UbiSOM and current
variants. The real-world application uses sensor data from household electric
power consumption. Finally, in section 5 conclusions are drawn and future work
is anticipated.

2 Background

A multidimensional stream can be regarded as a continuous, and potentially
unbounded, set of observations from a manifold Ω ∈ R

d. The SOM establishes
a projection from the manifold Ω onto a set of K neurons, formally written as
Ω → K. Each neuron i is associated with a prototype wi ∈ R

d, all of which es-
tablish the set {wi} ∈ K that is referred as the codebook. The classical Online
SOM algorithm [4] employs an iterative process between time ti = 0 and time
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t = tf ∈ N
+ where observations1 x ∈ Ω are sequentially presented to the

map and learning parameters, e.g., learning rate (ε) and neighborhood radius
(σ), are decreased monotonically within the time interval [ti, tf ]. Decrease of
learning parameters is required for the network to converge steadily towards a
topological ordered state and to map the input space density.

However, in a real-world streaming environment tf is unknown or not defined,
so the classical algorithm cannot be used. Even with a bounded stream the
Online SOM loses plasticity over time and cannot cope easily with changes in
the underlying distribution, i.e., concept drift. Gama [3] explains why concept
drift must be taken into account in a streaming environment: “In data streams
the concept about which data is being collected may shift from time to time, each
time after some minimum permanence. Changes occur over time. The evidence of
drift in a concept is reflected in the observations (e.g., change of mean, variance
and/or correlation). Old observations, which reflect the behavior in nature in the
past, become irrelevant to the current state of the phenomena under observation”.

The proposed SOM algorithm in this paper estimates learning parameters
based on the performance of the map over streaming data by monitoring the
quantization error (QE) within a sliding window. Some SOM variants have al-
ready been proposed to address the parameterization of the SOM not based on
time, but based on the local QE, albeit, never intending to process data streams
with drifting concepts; the concern was to reduce the parameterization-space
and/or accelerate the convergence of the algorithm. The two most recent exam-
ples are: the Parameterless SOM (PLSOM) [2], which evaluates the local QE and
calculates the learning parameters depending on the local quadratic fitting error
of the map to the input space, and; the Dynamic SOM (DSOM) [6] which fol-
lows a similar reasoning by adjusting the magnitude of the learning parameters
to the instantaneous QE, but failing to converge from a totally unordered state.
Unfortunately, the adjustment of learning parameters is done without evaluating
the error in most of neurons. Moreover, authors of both proposals admit that
their algorithms are unable to map the input space density onto the prototypes.
This has a severe impact on the application of common visualization techniques
for exploratory analysis.

3 The Ubiquitous Self-Organizing Map

UbiSOM estimates learning parameters based on the performance of the learning
procedure over the most recent observations, trough a sliding window of length
T that provides the average quantization error qe(t) at any particular instant.
This provides insight on how well the map is performing on current an recent
past data and if drift is occurring. A consequence is that there will always be
a learning delay when the underlying concept is truly changing in the order of
T/2. Nonetheless, it makes the learning more robust to false drifts, so T can be
1 Normalization of x is suggested to equate the dynamic ranges along each dimension

of x. This ensures that no feature dominates the Euclidean computations, improving
the numerical accuracy [4].
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seen as a sensitivity parameter. This idea stems from a PAC learning model [9]
premise which states that “the error rate of the learning algorithm will decrease
while the number of examples increase if the distribution is stationary”. This
idea is empirically described in equation (1), where wc is the best matching unit
of the map for the observation x presented at time t.

qe(t) =
1

T

t−T+1∑

t

‖x(t)−wc(t)‖Ω . (1)

Previous works, namely PLSOM and DSOM, use the local quantization error
(i.e., the error of the last observation) to estimate learning parameters. However,
the local error is very unstable because Ω → K is a many-to-few mapping, where
some observations are better represented than others. Since the first value of
qe(t) is only available at t = (T − 1), UbiSOM decreases the learning parameters

monotonically as the classical algorithm: ε0 = εi

(
εf
εi

)t/T

and σ0 = σi

(
σf

σi

)t/T

.
We call this the bootstrap phase of the learning procedure which coincides

with the ordering phase suggested by Kohonen and T is chosen accordingly to a
value never below 1000 [4]. Indeed T ≥ 1000, has consistently given good results.
Then UbiSOM update rule is given by:

Δwi = ε(qe(t))hσ(qe(t), i, c) [x−wi] . (2)

hσ(qe(t), i, c) = exp

(
−
( ‖pi − pc‖
Θσ(qe(t))/2

)2
)
, (3)

where Θ is a normalization factor related to the lattice size, corresponding to
the maximum distance between any two neurons in the lattice. ε and σ are now
a function of the average quantization error in time t. In our empirical validation
a simple proportion of the average error at time t was then applied to εf and
σf . The learning parameters are increased or decreased proportionally to the
variation of the quantization error after qe0 = qe(T − 1), being truncated to εf
and σf , when qe(t) > qe0.

4 Experimental Results

The presented results show the performance of UbiSOM with stationary and
drifting data, using artificial datasets – from which we can establish the ground
truth of the expected outcome, and a real-world electric power consumption
problem from UCI repository [1], where we further illustrate the potential of
UbiSOM when dealing with sensor data in a streaming environment.

All experiments use a map size of 20 × 25 with random initial prototypes
and input data is normalized, e.g., x ∈ [0, 1]d. All algorithms are presented
with data only once, hence simulating a stream of multidimensional data2. After
2 Given that these data streams are bounded, the classical Online SOM can be cor-

rectly parameterized for the presented experiments.
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several tries, the best parameters for the chosen map size and for each compared
algorithm were selected. The classical Online SOM uses εi = 0.1 and sigmai =√
k, decreasing monotonically to εf = 0.01 and σf = 1 respectively; PLSOM

uses a single parameter β called neighborhood range and the value yielding the
best results for the used lattice size was β = 45. DSOM was initially tried with
same parameters as in [6]: elasticity = 3 and ε = 0.1, but its convergence from
the required completely random initial state (Fig. 1) was not possible and the
requirement to initialize the prototypes to evenly cover the input space forced
this variant out of further experiments. UbiSOM uses T = 2000 (twice the
recommended minimum) and parameters: εi = 0.1, εf = 0.08, σi = 0.5 and
σf = 0.2.

4.1 Density Mapping

We illustrate the modeling and quantization of a two-dimensional stream of data
(100 000 observations) describing a stationary Gaussian distribution, centered
in the input space, for all algorithms in Figure 1. It can be seen that only
Online SOM and UbiSOM are able to model the input space density correctly,
assigning more neurons to the denser area of observations; the later achieves
a better convergence. The inability of PLSOM to map the density limits its
applicability to exploratory analysis with visualization techniques.

OnlineSOM (20 x 25)

(a)

PLSOM (20 x 25)

(b)

DSOM (20 x 25)

(c)

UbiSOM2 (20 x 25)

(d)

Fig. 1. Gaussian stream and final maps obtained for: a) Online SOM; b) PLSOM; c)
DSOM, and; d) UbiSOM

4.2 Convergence with Stationary and Concept-Drifting Data

The experiments in the presence of a concept that gradually changes over time
(drift) are described here. Figure 2 illustrates the trace of dataset drift and dis-
plays the final maps obtained for an artificial 2D Gradual drift dataset (200 000
observations). The cloud of points starts its drift from the top-left input space
and gradually splits into two-clouds in opposite positions. The top cloud moves
at linear speed, while the other moves at exponential speed. Only UbiSOM is
able to correctly represent the final distribution of the two clouds.
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OnlineSOM (20 x 25)

(a)

PLSOM (20 x 25)

(b)

UbiSOM2 (20 x 25)

(c)

Fig. 2. Gradual Drift dataset and final maps obtained for (a) Online SOM; (b) PLSOM,
and (c) UbiSOM with a single data stream cloud that starts in the top-left quadrant
and then splits into two-clouds “drifting” to their final positions

0.
01

0
0.

02
0

0.
03

0

0.
00

6
0.

01
0

0.
01

4

0.
01

0.
03

0.
05

0.
00

9
0.

01
1

0.
00

4
0.

00
6

0.
01

0.
02

0.
03

0.
04

0 20000 40000 60000 80000 100000

0.
01

0
0.

02
0

0.
03

0

0 50000 100000 150000 200000

0.
00

4
0.

00
8

0.
01

2

0 500000 1000000 1500000 2000000

0.
01

0.
03

Fig. 3. Average quantization error during learning of different streams for Online SOM
(top row), PLSOM (center row) and UbiSOM (bottom row). The columns regard the
Gaussian, Gradual and Household datasets respectively.

The average quantization error during learning of different streams was mea-
sure for Online SOM, PLSOM and UbiSOM, using the above Gaussian dataset,
the Gradual dataset and the real-world Household electric power consumption
dataset [1], spanning four years (2 049 280 observations with missing data dis-
carded) of collected data to the minute (section 4.3). For easier comparison, all
values are dimension-independent, normalized by (max−min)

√
d. The size of

the sliding window used to compute the errors is the same that UbiSOM uses,
i.e., T = 2000. This is considered fair for all algorithms, given that this measure
is evaluating their performance over the last T learned observations. Figure 3
depicts the evolution of the average quantization error for all algorithms across
the different datasets. In the first dataset (left column) it can clearly be seen that
UbiSOM converges faster to a lower average quantization error, which remains
stable in this stationary stream. The quantization error of the PLSOM is a little
erratic, while the convergence of the Online SOM is dictated by the monotonic
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decrease of the learning parameters. Similar observations can be made on the
Gradual dataset; moreover, UbiSOM and PLSOM react quickly to the beginning
of the gradual drift (t = 50 000), while values of the Online SOM learning param-
eters at that point in time do not allow it to do so. UbiSOM is able to follow the
gradual drift and to converge when the drift stops (t = 150 000); the results are
consistent with many other experiments we devised that are not presented due
to space constraints. The Household dataset indeed is a continuously-drifting
data stream as expected; the overall behavior of the average quantization error
seems similar across algorithms, yet, the variance of the errors for the Online
SOM is smaller, indicating that it is less reactive to the drifts in the data – this
is consistent with the previous dataset.

Table 1 shows the final values at the end of the different streams that corre-
sponds to the final iteration of Figure 3. Results show that comparisons among
average quantization error for Online and UbiSOM variants must be evaluated
with care, since UbiSOM is accurately describing the final observations presented
to the algorithms, while Online SOM tries to describes a static dataset (i.e. in a
no-drift scenario with previously known dataset size).

Table 1. Final normalized average quantization errors for the different algorithms in
the described datasets. Lower values in bold.

Dataset Final Average QE

Name d Size Online SOM PLSOM UbiSOM

Gaussian 2 100 000 8.50× 10−3 8.61 × 10−3 7.48 × 10−3

Gradual Drift 2 200 000 4.96 × 10−3 6.55 × 10−3 5.39 × 10−3

Household 7 2 049 280 1.07 × 10−2 1.87 × 10−2 1.47 × 10−2

4.3 Exploratory Analysis in Real-Time

A real world demonstration is achieved by applying the UbiSOM to the previ-
ously mentioned real-world Household electric power consumption dataset [1].
Collected data is represented to the minute and only the features relating to
sensor values were used resulting in a final dimensionality of the used dataset
of d = 6. The Household dataset is deemed to contain several drifts in the
underlying distribution given the nature of electric power consumption.

Here, we briefly present a visualization technique called component planes [8],
that further motivates the application of UbiSOM to a concept-drifting data
stream. Component planes can be regarded as a “sliced” version of the SOM,
showing the distribution of different features values in the map. This visualiza-
tion can be obtained at any point in time, providing a snapshot of the model
for the present and recent past. Ultimately, one can take several snapshots and
inspect the evolution of the underlying stream.
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Fig. 4. Household data stream analysis respectively for features: Global Active Power
(kW);Voltage (V) and Heating (W/h). (a) shows original values. Illustrative component
planes at t = 1 000 000 are shown using Online SOM (b to d) and UbiSOM (e to g).
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Figure 4 (e to g) shows some illustrative component planes obtained at the
middle (t = 1 000 000) of the entire Household dataset when using UbiSOM.
This images indicate correlated features, namely it is visible that the feature
Global Active Power (kW, in e) is inversely correlated to Voltage (V in f). Since
UbiSOM is able to map the input space density, the component planes of the
heating sensors indicate their relative overall usage in that period of time, e.g.,
Heating (W/h in g) has a high consumption approximately 2/3 of the time.
Since this point in time concerns the month of December 2008, this seems self-
explanatory.

The comparison of UbiSOM component planes (e to g) with the analogous
Online SOM component planes (respectively b to d) is interesting. Indeed, after
looking at dataset values for related features in lines (a to c) of Figure 4, ob-
served results confirm the results in Figure 3, with the Online SOM component
planes showing less focused and less defined pattern groups that the equivalent
component planes of UbiSOM. For example, (a) shows higher values for heating
consumption before iteration 1 000 000. While UbiSOM component plane (g) is
already representing this, the Online SOM component plane (d) still presents a
mix of higher and lower values for this feature. This could be expected since,
instead of describing the current data stream, Online SOM tries to describe the
full dataset.

5 Conclusions

This paper presented a new SOM algorithm that is being tailored to learn from
data streams, called Ubiquitous Self-Organizing Map (UbiSOM). Based on lit-
erature review, it is the first SOM variant that is capable of learning stationary
and drifting distributions. Experiments presented indicate that the use of the
moving average quantization error to estimate learning parameters is a reliable
method to achieve the proposed goal and that UbiSOM outperforms current
variants in stationary and concept-drifting streams.

UbiSOM usage of average quantization error proportion proved fairly robust.
The achieved results show the relevance of the algorithm when applied to data
streams. Namely the evolution of the average quantization error showed that
UbiSOM is capable of both convergence and reaction to drift. The component-
plane based exploratory analysis of the household dataset is particularly relevant
for illustrating the behavior of the algorithm over time. Indeed the UbiSOM
component planes are more specific and keep the model adapted to distinct usage
scenarios. This points to particular useful usage of UbiSOM in many practical
applications.

Although theoretical formalization and test of distinct families of functions
for quantization error influence are beyond the scope of this paper, presented
results motivate its relevance for further ANN studies and models. The value of
T should be further explored on distinct settings, since it allows the tunning of
model robustness of noise vs. concept drift detection capabilities. Drift detection
and signaling can be of great importance, since we can then store current models
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that can be later compared to study the evolution of the clusters through the
visualization techniques. Applications of high social value where this method may
prove useful include using data streams for health monitoring, powering a greener
economy in smart cities or financial domains. Ongoing work is now addressing
alert systems for strange (or fraudulent) financial data streams based both on
macro-economic data and on instantaneous threats to a company resulting from
unpredictable market dependencies.
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