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Abstract. More than ever, in breast cancer research, many computer aided 
diagnostic systems have been developed in order to reduce false-positives 
diagnosis. In this work, we present a data mining based approach which might 
support oncologists in the process of breast cancer classification and diagnose. 
A reliable database with 410 images was used containing microcalcifications, 
masses and also normal tissue findings. We applied two feature extraction 
techniques, specifically the gray level co-occurrence matrix and the gray level 
run length matrix, and for classification purposes several data mining classifiers 
were also used. The results revealed great percentages of positive predicted 
value (approximately 70%) and very good accuracy values in terms of 
distinction of mammographic findings (>65%) and classification of BI-RADS® 
scale (>75%). The best predictive method and the best performance on the 
distinction of microcalcifications found was the Random Forest classifier.  

Keywords: Breast cancer diagnosis; Features extraction; Data mining 
techniques. 

1 Introduction 

Breast cancer is a public health problem that, despite not being the most lethal, has 
both high incidence and high mortality rate, especially among women. 

According to data collected by the “Liga Portuguesa Contra o Cancro” [1] it is 
estimated that in Portugal, with a female population of about 5 million people, near 
4500 new cases of breast cancer are detected annually and about 1500 women die 
from this disease each year, which is equivalent to 4 cases per day.  

In a global way, and according to the International Agency for Research on Cancer 
(IARC), in 2012 there were estimated close to 1.7 million breast cancer diagnoses, 
which is approximately 11.9% of all worldwide cancers diagnosed in the same year, 
and about 522000 women have died from the disease in the same year worldwide [2]. 
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In the same study, 19.3 million new cancer cases are expected by 2025, and the 
largest increase will be in breast cancer [2]. 

As an attempt to counteract this trend, there is a need for implementation of early 
diagnosis and patient monitoring systems, as well as, better and more approachable 
health care. A quick advance of technology and the increasingly computerized 
resources will allow the realization of new platforms for medical care, which may 
include electronic recording and decision support systems. 

The main objective of this work relied on the creation of an effective toolkit to 
support breast cancer diagnose by the application of data mining techniques. By this 
we intended to create a decision support approach that could be used either to assist 
professionals or to help students in the correct identification using learning platforms. 
It could improve the diagnose accuracy and treatment, became a tool to better 
understand the patterns of disease and be fundamental in training new specialists. 

The application of classifying methods was later evaluated aiming to determine 
which features and classifiers have a better performance in identifying features on 
mammograms. 

2 Breast Cancer 

The breast cancer is a disease that reflects an uncontrolled growth of breast cells in 
the event of an error in the DNA sequence. About 95% of these cancers are 
carcinomas once they arise as breast epithelial elements [3]. In turn, usually about 
80% of carcinomas are originated in the mammary ducts (DCIS) and 20% in the lobes 
(LCIS) [4, 5]. 

The favorable survival rate in breast cancer is due to two factors: the first one relies 
on the detection of the disease at an early stage through mammograms, and the second 
factor is due to advances in adjuvant systemic treatment such as chemotherapy and 
hormonal therapy for example. 

2.1 Breast Cancer Types  

Not all breast masses are synonymous of cancer. These are distinguished according to 
frequency of appearance, as is the case of cysts and fibroids, which appear and 
disappear in a given period, or as fibro adenomas and intraductal papilloma, which are 
abnormal growths that may indicate a risk factor. The masses clearly indicate that 
cancer is a carcinoma; a term used to describe a cancer that starts in the coating layer 
of organs (epithelial cells) such as the breast [6]. 

In breast tissue, a mass is an important change observed on a mammogram and can 
be cysts (non-cancerous fluid-filled sacs) and fibro adenomas (non-cancerous solid 
tumors) but a biopsy is always required to identify whether or not they are malignant. 
On the other hand, in case of the presence of a calcification, which are small deposits 
of calcium minerals, which can appear singly or in clusters [6]. 
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2.2 Classification Criteria 

In order to ensure the quality of collection and the data processing, the development 
of international guidelines has become essential to ensure the quality of data supplied 
by various sources [7]. 

The American College of Radiology (ACR) [8] is the copyright owner of a work 
entitled "Breast Imaging Reporting and Database System (BI-RADS®)" that contains 
a guide for the standardized mammographic opinion, including a lexicon of 
terminology, an organization of medical report as well as an evaluation framework 
and coding system. The BI-RADS® then suggests a standardized method for reporting 
breast imaging that does not presume to dictate individual decisions of case 
management. 

Briefly described, the BI-RADS® guideline has six levels,  level 0 being the 
inconclusive report or incomplete review; level 1 being the normal mammogram 
without lesions; levels 2 and 3 representing the benign findings and BI-RADS 3 the 
need of initial follow up; level 4 and 5 represent anomalies suspected and a risk of 
malignancy from 20 to 75%; and the final category, BI-RADS 6, shows a malignancy 
proven by biopsy that did not undergo surgery/treatment with 100% of risk of breast 
cancer [7, 8]. 

According to a study by Boyd [9] and later complete by several other studies [10, 
11], breast density is the most important factor that influences the mammographic 
sensitivity. These studies were based on the concept of exposure of breast tissue as a 
relevant measure for breast cancer incidence. Various classification methods of breast 
density have emerged over the years [12] of which the most widely used worldwide is 
the ACR, developed in 2003, which identifies four types of mammographic density 
[8]. The model of classification and standardization presenting meets the following 
criteria:  

(1) Predominantly lipomatous (< 25% glandular tissue); 
(2) Density fibro granulate dispersed (25-50%);  
(3) Heterogeneously dense breast (51-75%); 
(4) Extremely dense breast (> 75% glandular tissue) [8]. 

3 Methodology 

The main advantage of data mining techniques is the ability to provide a set of useful 
rules capable of discriminating between a series of supposed risks [13]. Classification 
is a fundamental task in data mining techniques and relies on a process of 
differentiating two or more classes by labelling each similar set of data in a single 
class. The application of classifying methods was evaluated with the objective to 
determine which features and classifiers have a better performance in identifying 
features on mammograms.  

3.1 Data Description 

The images used in this work were taken from the repository INbreast [14], developed 
by multiple institutions of the University of Porto and available to the public with 
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Fig. 1. Matlab selection of region of 
interest on a mammogram 

authors’ consent. The INbreast includes a total of 410 images (115 patients), from 
which 90 patients are women whose both breasts were affected (four images per case) 
and 25 of the cases are mastectomy patients (two images per case). The sample also 
includes some types of findings (masses, calcifications, distortions and asymmetries) 
which were classified by specialists. 

The available mammograms were firstly preprocessed in Matlab® and smoothed (with 
Gaussian low-pass and top-hat filtering) in order to prevent the loss of details that could 
be important for the following steps. The Gaussian filter was used to create a correlation 
kernel factor that was applied to the image [15, 16, 17]. Subsequent, the first method of 
extraction of characteristics was applied followed by the selection of the region of 
interest (ROI) and an image conversion into 4-bit, required to the second feature 
extraction methodology. In this way, a total of 410 images were processed and, in some 
cases, several injuries were observed on a single mammogram, giving a total of 439 
characteristics, with respect to the multiple injuries found in a single image. 

3.2 Features Extration 

Features extraction is a key point that should be taken into account in the 
implementation of a decision support system. It recognizes breast tissue by selecting 
the most important features, and also due to its ability to describe and maximize 
differences in tissues and/or injuries [18]. Due to this, we selected texture as an 
important image characteristic that has been widely used in medical image analysis 
especially in its automatic classification [19, 20]. 

In this work, two MATLAB® 
functions of feature-based matrices 
were used: GLCM (Gray-level co-
occurrence matrix) and GLRLM (Gray-
level run length matrix). The first is a 
statistical method of texture 
examination that considers the spatial 
relationship between the image pixels, 
and the second are based on 
computerizing the number of lines of 
grey levels at various angles [18, 19, 
21]. 

 
The values of each feature extracted from the matrices above mentioned were 

removed twice at the same image, Table 1, the first for a ROI with a lesion finding, 
SRE_L for example, and the second for a clean/normal ROI, such as SRE_N. This 
technique allowed us to better understand the relationship between the normal tissue 
and a lesion for each mammogram.  
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Table 1. Features extracted 

GLCM GLRLM 
Contrast ; 

Correlation; 
Energy ; 

Homogeneity. 

Short run emphasis (SRE); Long 
run emphasis (LRE) ; Gray level 

non-uniformity (GLN); Run 
length non-uniformity (RLN); 

Run percentage  (RP); Low Gray 
Level Run Emphasis 

(LGRE); High Gray  Level 
Run Emphasis 

(HGRE). 

The correlation between variables was later evaluated through SPSS®. Our case 
study revealed that the majority of variances are equal, showing a significant level (2-
tailed) approximately to 0.001, which reveals that in addition to having significant 
correlation (p < 0.05) they also revealed significant interest (p < 0.001). This method 
allows us to remove of the GLN variable due to the fact that it is the only one that 
does not have a significant correlation with the lesion discrimination (p > 0.05). 

3.3 Classification Methods 

Several classification methods were used, such as: k-nearest Neighbor Support Vector 
Machine, Decision Tree (J48), Random Forest and Naive Bayes. The different 
classification methods were selected in terms of good accuracy on other databases and 
lack of results for comparison when using the INbreast database. The application of 
these different approaches was carried out in order to clarify which was the most 
efficient classifier for each case and compare with some related studies [17, 23], even 
if they were applied to other databases [22, 24, 25]. To apply these methods we use 
WEKA® software version 3.6.11 and ten-fold cross-validation.  

To evaluate the influence of different classifications at the same dataset we created 
three different files. The first file has the BI-RADS classification with GLRLM 
outputs for each described case and was named BI-RADS file. The second includes 
both breast density classification made by radiologists and the GLCM matrix (without 
ROI selection) that we called BrD file. Finally, the last one was created to relate the 
finding type (mass, microcalcification or normal tissue) with GLRLM, for every 
image finding described (Characteristic file).  

4 Results and Discussion 

Therefore, and to analyze the results, they were compared in terms of some metrics. 
The area under the curve (AUC) represents a way to select optimal models, 
independently of the cost or the class distribution context. Using AUC values, 
researchers may trace ideal profiles and be aware of a greater efficiency of the method 
when AUC value is closer to one. Sensitivity and specificity are statistical measures  
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of the performance, the first referring to the test's ability to identify a condition 
correctly and the second metric, specificity, representing the proportion of negatives 
which are correctly identified as such. The positive predicted value (PPV) for each 
classifier was also included to better adapt the results with the clinical practice.   

In order to find both the best predictor and the best method for breast cancer 
diagnosis, global accuracy was presented and analyzed in terms of the global 
percentage of success for each classifier. 
 
First Scenario: In the first scenario we related the BI-RADS® classification with 
features extracted from GLRLM. 

Table 2. Results for GLRLM with BI-RADS® subclass classification 

C
la

ss
if

ie
r 

B
I-

R
A

D
S®

 
su

bc
la

ss
 

P
P

V
 

A
U

C
 

Se
ns

it
iv

it
y 

Sp
ec

if
ic

it
y 

G
lo

ba
l 

A
cc

ur
ac

y 

Naïve 
Bayes 

Benign 0.205 0.486 0.538 0.532 
53.3% 

Malignant 0.837 0.486 0.532 0.538 
SVM - 
SMO 

Benign 0.050 0.508 0.571 0.523 
52.5% 

Malignant 0.965 0.508 0.523 0.571 
k-NN Benign 0.657 0.789 0.724 0.707 

71.4% 
Malignant 0.767 0.789 0.707 0.723 

J48 Benign 0.427 0.604 0.634 0.592 
60.6% 

Malignant 0.771 0.604 0.592 0.633 
Random 
Forest 

Benign 0.757 0.831 0.757 0.775 
76.7% 

Malignant 0.775 0.831 0.775 0.757 

 
While conducting our study we concluded that the results of the chosen parameters 

were good for each classifier, however, the best predictor method was the Random 
Forest. With this classifier we were able to achieve values around 76.0% PPV, both 
for benign and malignant findings, which led us to conclude that this method has a 
good success rate as well as AUC (0.831), sensitivity and specificity (approximately 
0,78 and 0,76 each). The results of this scenario also show that the Naïve Bayes and 
SVM-SMO revealed the worse percentages in terms of mean values for all measures.  

From this analysis, we were able to conclude that using BI-RADS® classification 
for prediction has a large disadvantage because of its 5 classes. Due to this and to 
avoid inconsistencies derived from the different weight for each class we adopted the 
method of dividing BI-RADS® classes into benign and malignant, according to some 
studies conclusions [26, 27].  

Second Scenario: The second tested scenario was based on the GLCM features’ 
extraction related to BrD, according to ACR. 

 



 Using Data Mining Techniques to Support Breast Cancer Diagnosis 695 

Table 3. Results of GLCM with BrD 
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Naïve  
Bayes 

1 0.592 0.725 0.534 0.791 

34.5% 
2 0.206 0.480 0.276 0.615 
3 0.165 0.596 0.250 0.753 
4 0.538 0.750 0.182 0.959 

SVM -  
SMO 

1 0.633 0.782 0.679 0.828 

49.7% 
2 0.817 0.594 0.418 0.786 
3 0.000 0.666 0.000 0.753 
4 0.000 0.500 0.000 0.929 

k-NN 1 0.792 0.820 0.638 0.886 

54.9% 
2 0.557 0.647 0.514 0.743 
3 0.363 0.712 0.500 0.808 
4 0.038 0.651 0.091 0.930 

J48 1 0.625 0.784 0.658 0.823 

51.6% 
2 0.557 0.655 0.507 0.741 
3 0.429 0.722 0.429 0.812 
4 0.115 0.612 0.158 0.934 

Random 
Forest 

1 0.725 0.829 0.690 0.864 

58.7% 
2 0.603 0.715 0.556 0.770 
3 0.516 0.785 0.553 0.844 
4 0.115 0.704 0.200 0.935 

 
Comparing our results with the ones obtained in Fonseca work [22], which uses the 

same database, we realized that for k-NN and SVM methods the results are similar. 
According to fatty tissue the results for correctly classified instances (approximately 
55%), corresponding to our 1 and 2 classes, are the ones with highest instances 
overall, being a contribution to the hit rate. In terms of Random Forest we obtained 
the best results, comparing to a previous work [22], since the accuracy for fatty and 
dense tissue was around 52.0% while we obtained a better result, with 58.7% 
accuracy. 

Through this scenario we observed that in terms of density distinction, by using 
GLCM the results from classes’ prediction presented a great range, maybe due to the 
different number of initial data in each class and also related to the features 
similarities extracted to neighboring classes as 1-2, 2-3 and so far. For Random Forest 
classifier, which was the better method, the PPV and sensitivity values were not 
invariants according to each class, ranging from 72.5% to BrD 1 and 11.5% to BrD 4. 
Once again the reason for these results could be related to the features’ similarities or 
to the size of each class represented in the database. An effective approach to improve 
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these results could be to have a similar number of instances in each class or to group 
those four classes in half by way of creating a cutoff point at 50.0% of the glandular 
tissue.  

 
Third Scenario: The last scenario analyzed was related to the type of finding 
observed for each case. In order to find the best predicting method, those findings 
were grouped into three subsets (3a, 3b and 3c). The first represents the previously 
given classification in the database (Mass, Micro and Normal); the second subset is 
only related to one type of reported lesion – microcalcification and the final subset 
concerns a general approach that reveals the presence of a lesion on the tissue, no 
matter its type. 

Table 4. Results for 3a subgroup (mass, micro and normal tissue distinction) 
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Naïve  
Bayes 

Mass 0.911 0.700 0.348 0.949 
58.7%Micro 0.356 0.774 0.913 0.487 

Normal 1.000 1.000 1.000 1.000 
SVM -  
SMO 

Mass 0.000 0.605 0.000 0.770 
76.9%Micro 1.000 0.705 0.726 1.000 

Normal 1.000 1.000 1.000 1.000 
k-NN Mass 0.228 0.636 0.315 0.787 

70.8% 
 

Micro 0.813 0.737 0.736 0.653 
Normal 1.000 1.000 1.000 1.000 

J48 Mass 0.000 0.600 0.000 0.770 
76.9% 

 
Micro 1.000 0.703 0.726 1.000 
Normal 1.000 1.000 1.000 1.000 

Random 
Forest 

Mass 0.257 0.628 0.280 0.783 
67.6%Micro 0.749 0.729 0.727 0.591 

Normal 1.000 1.000 1.000 1.000 

 
Through analyzing the results obtained from  subgroup 3a (Table 4), in terms of 

global percentage of correctly classified instances in distinguishing between mass, 
microcalcification and normal tissue, our tests revealed that for all classifiers, normal 
tissue show a percentage of 100.0% correctly classified instances. Despite this fact, 
classifiers such as Naïve Bayes or Random Forest revealed low values at the level of 
overall effectiveness and the best results were obtained using SVM-SMO and J48, 
both presenting 76.9% accuracy. Even though these last two methods have shown 
better global performance, by analyzing their results for each class individually, we 
found that none of them have correctly classified masses and achieved 100.0% of  
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PPV for microcalcifications. In turn, k-NN with an accuracy of 70.8% has classified 
every class, even though for masses it did not reveal promising results (PPV = 0.228 
and sensitivity = 0.315). 

Table 5. Results for 3b subgroup (microcalcification distinction) 
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Naïve  
Bayes 

Micro 0.352 0.630 0.879 0.337 
49.5% 

No micro 0.871 0.630 0.337 0.879 
SVM -  
SMO 

Micro 1.000 0.500 0.000 --- 
72.5% 

No micro 0.000 0.500 0.726 0.725 
k-NN Micro 0.798 0.573 0.727 0.280 

63.8% 
No micro 0.208 0.573 0.280 0.727 

J48 Micro 1.000 0.492 0.726 --- 
72.5% 

No micro 0.000 0.492 0.000 0.671 
Random 
Forest 

Micro 0.798 0.577 0.753 0.752 
66.3% 

No micro 0.307 0.577 0.365 0.365 

 
By analyzing Table 5, we were able to recognize that there is no classifier that 

seems to be the best at all evaluated levels. Regardless of this and considering PPV, 
the best performance achieved for micros’ identification was made by J48 and SVM-
SMO, however, for other lesions, specifically for mass identification, the results 
obtained were the worst. Due to this, Naïve Bayes was considered the best test result 
evaluating the mean values and the best on distinguish masses, while Random Forest 
was regarded as the best in terms of global accuracy, showing the best results on 
microcalcifications’ classification.   

The final subset that was studied (3c) concerned a general approach that reveals the 
presence of a lesion on the tissue, no matter its type. By the results of this scenario we 
observed that all the individual methods accomplished the maximum value of 
prediction (100% of each field). Through this we can ensure that with our method all 
lesions were distinguished from normal tissue. 

The conclusions made over this last scenario were interesting for the reason that 
masses are in lower number (267 micros and 101 masses), a fact emphasized in global 
accuracy percentages, which are 59.0% on subset 3a and 50.0% on subset 3b, 
approximately. Even though this global percentage was not optimal, it represents an 
interesting point for future investigation since it contradicts other studies which 
concluded that microcalcifications are a more predictable lesion than masses [28, 29].  
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5 Conclusions 

With our results we can ensure the effectiveness of the developed method for cancer 
detection on a mammogram, through the use of injury classifiers (BI-RADS®) and 
breast density (BrD). 

Some recent works have been using the INbreast database even when applied to 
other classification methods for malignancy [23, 30] or for fatty/dense tissue 
identification [17, 22]. The work developed by Carneiro et al. [17] has used a 
clustering k-means applied to some Haralick features and showed 85% of accuracy 
for identifying density classes. By comparing these results to the ones we obtained, 
we can conclude that clustered density classes would be a better method to identify 
them. Another classification method used by [23], linear discriminant analysis, has 
also presented great results with 89% of accuracy in classifying findings into benign 
and malignant. Once more, compared to our results the difference between the values 
could be explained by different pre-processing methods, despite the setting value of 
accuracy being close. 

To better understand if the global accuracy values are reliable, we intend to apply 
the models proposed in this work to other databases in order to compare results. The 
techniques used on image pre-processing step can also be improved and ROI selection 
for GLRLM extraction features could be automatically selected in order to avoid 
misclassifications To implement these improvements a different software should be 
considered, since there is a need for faster and more efficient processing, a possible 
solution could be for instance use a language such as C++. Other findings should also 
be considered, such as bilateral asymmetry and architectural distortion. 
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